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Problem Statement

Netherlands won’t manage to build 1 million homes in 10 years. (n.d.)

Value, C. (n.d.). 
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Problem Statement

IBISWorld (2021). 

1.18% 
increase

4.7% demand increase in 4 years 2.1% industry growth in 5 years

Value, C. (n.d.). 

in demand per 
year

0.42% 
growth

in AEC industry 
per year
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Problem Statement

To keep up with the rising demands for architecture, engineering, and 

construction services, the industry needs to radically rethink the 

design, planning, and construction process.
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Design Automation

Souza (2020}

Shape Grammar

Koning and Eizenber (1981)

Generative Design
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Design Automation

Machine Learning Integrated 
Generative Design

Generative Design

Generative Design Primer (2021) ITB (n.d.)
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Overview
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Imagine …

Inputs Site into Trained 
Model

City Needs to Build new 
Affordable Housing 

Complex 

Code-Compliant Design 
Results in Hours
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Deep Learning

Deep Learning 
Benefits

Housing Crisis 
Needs

Code-Compliant, healthy, 
and safe design

Needs options quickly One typology: housing

Learns expertise based on 
training data

Trained model produces 
output on demand

Generates site-specific 
models of learned typology



12

Typology: Multifamily Housing

Can Provide Affordable 
Housing Options

Large-Scale, 
Sustainable Solution

Has Repeating Patterns 
and Standardizations

Not Iconic Building 
Typology
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Training Data

AVAILABLE : Single-Family HousesOPTIMAL : Multifamily Housing

10 models, not categorized Over 1,000 models
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Existing Applications

Smith and Meger (2017). 

Wu, et al. (2016). 

3D GAN

WGAN
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Gaps in Current Research

Newton (2019) 



16

Gaps in Current Research

Too small geometry 
space

Limited applications of 
3D GANs on 
architecture

Limited research about 
GANs for creating 3D 

geometry 
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How can a GAN model be trained to
produce 3D building geometry given
3D models of single-family houses as
input?

Research Questions
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Framework
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Generative Adversarial Networks

Concept: Goodfellow, I., et al. (2014). Image: Lisa-Marie Mueller 
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GAN Discriminator Goal
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GAN Discriminator Goal

Learned Features
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GAN Discriminator Goal

Learned Features
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GAN Generator Goal
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GAN Generator Goal

Updated

Geometry
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Generator Training
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Notoriously Difficult to Train

Improvement to One 
Comes at Cost to the 

Other

Two Neural Networks 
Trained Simultaneously
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Data Set

Biljecki, F., et al. (2016) Selvaraju, P., et al. (2021).

BuildingNet v 0.1
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Processed Data Set for Release

Cleaned Model

Original Model

Cleaned Dataset Selecting Typology
(913 Models Left)

Clean Data Set Clean Models – Data Set of 913

100 Cleaned Models
Single-Story 
Single-Family 

House 

Two-Label

For Thesis
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WGAN vs DCGAN | 1 model
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State of the Art Architecture: 3D GAN

Wu, et al. (2016). 

Geometry Space

160 x 160 x 80

Starting Architecture

48 x 20 x 20 x 10

24 x 40 x 40 x 20
12 x 80 x 80 x 40
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Vanishing Gradients Problem
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Generative Adversarial Networks
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WGAN vs DCGAN Hyperparameter Results

Leaky ReLU Learning Rate 
Decay

Wasserstein Loss

Positive Impact on 
Training

Necessary for Stable 
Training

Necessary for Stable 
Training

WGAN AND DCGAN
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WGAN 11G | 1 Model
4 Layers   |   48-24-12-211

Leaky ReLU + Learning Rate DecayG
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WGAN 11G | 1 Model
4 Layers   |   48-24-12-211

Leaky ReLU + Learning Rate DecayG
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Data Set Examples | 100 Models
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WGAN 11G | 100 Models
4 Layers   |   48-24-12-211

Leaky ReLU + Learning Rate DecayG

11G 
Result at 7999 epochs
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Hyperparameters factors and results

Batch 
Normalization

Weight Clipping | 
Gradient Penalty

RMS Prop

Negative Impact Helped Improve Training Helped Improve Training
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Architecture 11R

11R 
5599 epochs of training

4 Layers   |   48-24-12-211

RMSProp + Gradient PenaltyR

11R 
training

Rotate last image
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Depth and Width factors and results

Larger Kernel Size More LayersMore Channels

No Positive Impact Helped Improve Training Helped Improve Training
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16 R

16R 
after 5600 epochs training

10 Layers   |   96-96-48-48-24-24-12-12-2-216

RMSProp + Gradient PenaltyR

Models from Data Set
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17 R V1

17R V1 
after 2600 epochs training

10 Layers   |   192-192-96-96-48-48-24-24-2-217

RMSProp + Gradient PenaltyR

Models from Data Set
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17 R V2

17R  V2
after 2600 epochs training

10 Layers   |   192-192-96-96-48-48-24-24-2-217

RMSProp + Gradient PenaltyR

Models from Data Set
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Evaluating Trained Models

17R V2 
Epoch 7400 Model from Data Set
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Best Performing Architectures

16R 
after 3400 epochs training

17R 
after 4000 epochs training

17R  V2
after 3400 epochs training
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Generated 100 models
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Analyzing Results | 17R V1

Generated Model 43 

10 Layers   |   192-192-96-96-48-48-24-24-2-217

RMSProp + Gradient PenaltyR

From the data set
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Analyzing Results  | 17R V2 10 Layers   |   192-192-96-96-48-48-24-24-2-217

RMSProp + Gradient PenaltyR

Generated Model 8  From the data set
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Analyzing Results  | 17R V2 10 Layers   |   192-192-96-96-48-48-24-24-2-217

RMSProp + Gradient PenaltyR

Generated Model 60  From the data set
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Analyzing Results 10 Layers   |   192-192-96-96-48-48-24-24-2-217

RMSProp + Gradient PenaltyR

Model 58 Model 95 Model 60 
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Solid Filled Models More Training 
Models

Important to train 
on large data sets

No Positive Impact Requires deeper and 
wider architecture

No Positive Impact

Rectangular Prism 
Input

Inputs
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Improved 3D WGAN | 17 R 10 Layers   |   192-192-96-96-48-48-24-24-2-217

RMSProp + Gradient PenaltyR
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Data Set and Source Code

https://github.com/lm2-me/3DWGANHouses
https://doi.org/10.4121/4d82052e-650c-4775-8bd9-

623df68991b6.v1
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Jupyter Notebook to Generate Geometry

61
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• Takes time

• Trial and error

Parameter Tuning

• Can have many causes

• Same cause doesn’t always have consistent
solution

Unstable Training

• Need to have a lot of training data

• Minimum 100 models, in the thousands is more
ideal

Large Training Data Set

What are the challenges and benefits 
of using GAN for architectural design?
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• Once model is trained, can be used repeatedly with
little cost

• Training can be updated as more data is available

Use after Training

• Detects patterns in the data

• No need to define rules

Use for Complex Problems

• Research method can be applied to other deep
learning research

• Developed architecture can be applied to other
disciplines

Multi-Disciplinary

What are the challenges and benefits
of using GAN for architectural design?



64

How can a GAN model be trained to
produce 3D building geometry given
3D models of single family homes as
input?

Research Questions
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Conclusion

Incorporated Key 
Hyperparameters that 

were Identified Through 
Experimentation

New WGAN 
architecture

Trained on revised 
building data set
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Reflection
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Bigger Picture
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Bigger Picture
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Future Research

Memorization Rejection Additional 
Hyperparameters

Data Augmentation Context-Responsive and 
code-responsive design

0
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Future Research

Label Generated 
Geometry

Other Generative 
Methods

Integrate Analysis User Input to Modify 
Output

Xiaohui, Z., et al. (2022)
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Thank You!
Lisa-Marie Mueller

27.06.2023
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