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ABSTRACT
An essential step of software development is obtaining an under-
standing of the behaviour of a system. Accurate state models of
system behaviour might help software developers build such an
understanding. There exist several techniques for automatically
inferring models on system behaviour using log analysis, but these
do not scale well for systems that produce large amounts of logs.

In this study, we present an approach for inferring concise
state models of system behaviour using log analysis, called MASM
(Markov Algorithm for inferring concise State Models), which im-
plements a Markov chain. We argue this approach has the potential
for higher scalability than existing techniques, as it attempts to
approximate a state model by exploiting the properties of Markov
chains. This is achieved by considering a sequence of log statements
as a stochastic process, which enables MASM to infer a naive state
model from a set of log statements, which is then minimized using
the properties of Markov chains.

We evaluated MASM in an empirical study on the XRP Ledger
Consensus Protocol. In this empirical study, MASM was evaluated
on accuracy at different compression rates, and scalability. The
results indicate that MASM shows several knee points in terms of
accuracy, suggesting several optimal compression rates. We also
found that the run-time of MASM scales linearly with the size of
the dataset. Finally, we discovered that MASM is unable to out-
perform a random compression algorithm, which compresses the
model by randomly merging states, in terms of accuracy. However,
further research is required on measuring the readability of the pro-
duced models to derive definitive conclusions on the performance
of MASM compared to a random compression algorithm.

1 INTRODUCTION
An essential step of software development is obtaining an under-
standing of the behaviour of a system, which is required for tasks
such as test case generation [4, 10] and the analysis of software
processes [6]. Accurate models of system behaviour might help soft-
ware developers build such understanding and "reduce software
development effort and improve quality" [22].

There exist several techniques for inferring models on system
behaviour, such as profiling [11], tracing [20], or source code analy-
sis [16]. These techniques perform well enough for relatively small
systems [17], of which the source code is available, but suffer from
limitations. As such, profiling and tracing introduce additional over-
head, making this technique infeasible for large real-time systems
in which performance is essential. The aforementioned methods
also require full access to the source code of the given system
and any third-party packages that the system might depend upon.

Such access might not always be available. For these reasons, other
approaches need to be considered.

This paper focuses on modelling system behaviour using log
analysis, as logs can be retrieved without introducing additional
overhead nor requiring access to the source code. Therefore, sys-
tems that already produce logs do not need to be adapted, nor would
their performance decrease by utilizing such a technique.

Various studies have used log analysis to infer state models of
system behaviour [13, 17, 21], which have shown promising results.
However, as the problem of constructing a minimal state model is
NP-hard [1], existing solutions are unable to perform this task for
large and complex systems within a feasible amount of time. For
this reason, further research is required on methods that have the
potential for higher scalability.

This study investigates the effectiveness of using Markov chains
for inferring accurate and concise state models of system behaviour
from a set of logs. A Markov chain is a prevalent mathematical
modelling technique for stochastic processes [28]. By considering a
sequence of log statements as a stochastic process, we can apply the
Markov chain model on such sequences, using the Markov chain’s
adjacency matrix to keep track of the probability of each possible
state transition, where the states in the state model correspond to
one or more log statements.

Our approach, called MASM (Markov Algorithm for inferring
concise State Models), attempts to infer concise state models of
system behaviour in several steps. We first infer a naive initial state
model from a large dataset of logs. While doing so, a Markov chain
is trained such that its adjacency matrix contains the approximate
probabilities of the state transitions. After the initial model has been
constructed, MASM attempts to compress this model by exploit-
ing certain properties of adjacency matrices. One such property
is that two states in the model can be merged when they corre-
spond to equivalent rows in the adjacency matrix, as they share the
same probabilities for outgoing edges. MASM compresses the initial
model until either a maximum result size or minimum accuracy
value is met, which are set by the user. Some compression iterations
likely result in several sets of candidate states to merge. In such
cases, all sets are evaluated to determine which would result in the
best model according to the user’s priorities.

We argue that MASM has a potential for higher scalability than
existing techniques in inferring a state model on system behaviour,
as we approximate a behavioural state model by exploiting the
properties of Markov chains.

We evaluated MASM in an empirical study on the logs of the
XRP Ledger Consensus Protocol by Ripple [3]. The results indi-
cate that MASM shows several knee points in terms of accuracy,
suggesting several optimal compression rates [27]. For the logs
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of the Consensus Protocol, these knee points are located at the
compression rates of 52%, 69%, and 78%. We also found that MASM
is unable to outperform a random compression algorithm, which
compresses the model by randomly merging states, in terms of
accuracy. However, further research is required on measuring the
readability of the produced models to derive definitive conclusions
on the performance of MASM compared to a random compression
algorithm. Lastly, we discovered that MASM scales linearly with
the size of the training set.

This paper is structured as follows: first, Section 2 provides a
brief overview of the required background knowledge. In Section
3, a detailed description of MASM is presented. An overview of
the empirical experiment performed in this study can be found
in Section 4. Furthermore, the results can be viewed in Section 5,
followed by a brief description of the threats to validity in Section
6. Section 7 contains more information about the ethical aspects
of this study. Finally, Section 8 highlights the conclusions of this
research and future work.

2 BACKGROUND
2.1 Terms and definitions
This section provides descriptions of the main concepts and terms
relevant to this study.

Log statements: We define log statements as a textual represen-
tation of occurred events. Several examples of log statements can
be found in appendix A. In this study, log statements start with a
timestamp of the event. This timestamp is followed by a message
consisting of a static part, which can be used as an identifier for the
event type, and a dynamic part, which contains some of the event
parameters [12]. For instance, the event type of the log statement
“2020-10-12 18:30:29.54726 agent_3 votes YES on TX_5”
can be recognized by the static part votes and on. The remaining
parts of the log statement are dynamic and may vary.

Log trace: A log trace is a list of logs statements. Log traces are
formally defined as ⟨𝑙1, ..., 𝑙𝑘 ⟩,∀𝑖1≤𝑖≤𝑘 : 𝑙𝑖 ∈ L, where L is the set
of all possible log statements.

Finite state machines: Log traces consisting of log statements are
parsed by MASM to infer a finite state machine. The definition of
these finite state machines is similar to that of finite automata, as
defined by Sipser [18]. Such finite automata are be represented by a
tuple (Q, Σ, 𝛿, 𝑞0, F ), where Q is the set of states, Σ is the alphabet
(set of log statements), 𝛿 is the transition function Q × Σ → Q, 𝑞0
is the start state or root, and F is the set of accept states.

In this study, we apply a variation on the formal definition of
finite automata. More specifically, the finite state machines used
in this study contain one more element, such that they can be
represented by the tuple (Q, Σ, 𝛿, 𝑞0, F ,P𝑠 ), where P𝑠 is defined
as a trained set of all probabilities for transitions between any
states, when the next log template is unknown, such that P𝑠 =

{⟨𝑎, 𝑏, 𝑝⟩,∀𝑎, 𝑏 ∈ Q ∧ 0 ≤ 𝑝 ≤ 1}. Furthermore, all edges that have
a probability 𝑝 = 0 are discarded from the model. More formally,
∀⟨𝑎,𝑤,𝑏⟩ ∈ 𝛿 : {𝑎, 𝑏 ∈ Q ∧𝑤 ∈ Σ} ⇔ �⟨𝑎, 𝑏, 𝑝⟩ ∈ P𝑠 : {𝑝 = 0}.

Markov chains: MASM implements the usage of Markov chains
to infer finite state machines. A Markov chain is a relatively simple
and prevalent data structure used to analyze and model stochastic
processes [28]. As such, applications adopting Markov chains have

been proposed in various studies. For example, Sahin and Sen have
used Markov chains to predict wind speed states [14]. Markov
chains have also been used for predicting train states and estimating
delay probabilities [28].

As Markov chains are used to model stochastic processes, we
consider a sequence of log statements, i.e. a log trace, as a stochastic
process, allowing for the usage of Markov chains.

We define a Markov chain such that it can be represented by an
adjacency matrix 𝑀 , in which the number of rows and columns
are equal and finite, such that the adjacency matrix has a size of
𝑛 × 𝑛, where 𝑛 ∈ N. An adjacency matrix defines the probabilities
of all possible state transitions. The rows of the adjacency matrix
represent the current state of a system, and the columns represent
the next state of a system. Formally, given a functionA which maps
indices in the adjacency matrix to states in the finite state machine,
the adjacency matrix contains the probability of edge transitions
such that∀𝑖1≤𝑖≤𝑛, 𝑗1≤ 𝑗≤𝑛 : (𝑀𝑖, 𝑗 = 𝑝∧∃⟨A(𝑖),A( 𝑗), 𝑝⟩ ∈ P𝑠∧0 ≤
𝑝 ≤ 1), where P𝑠 is the set of probabilities for state transition as
defined above. A defining characteristic of Markov chains is that
the probability of transitioning to any state depends solely on the
current state. Earlier states do not affect the next state transition.

The ability of adjacency matrices to be compressed was exploited
during this study. Such compressions can be performed without
introducing error using row and column equivalence [19]. More
specifically, when the rows in the adjacency matrix of some state
A and some other state B are equivalent, these states can be com-
pressed into a state AB, as they contain equivalent probabilities
for all outgoing edges. For this study, the state AB represents the
occurrence of either the event type of state A or B.

2.2 Related work
An example of an algorithm similar to MASM is flexfringe [21].
Flexfringe is a greedy algorithm that infers state models of sys-
tem behaviour. The main aim of flexfringe is to reverse-engineer
these state models using log analysis and "accelerate and improve
the software development and inform domain experts about the
processes actually executed in a system" [21].

Flexfringe’s effectiveness was investigated in a study by Roelvink
[13], in which flexfringe was used to infer an empirical model of
the system behaviour of the Consensus Protocol of the XRP Ledger.
This model was compared to a theoretical model of the Consensus
Protocol to verify whether the system behaves as expected.

Furthermore, Shin et al. [17] presented a method that used a di-
vide and conquer approach to infer a model on the system behaviour,
called SCALER. They approach this problem by first inferring mod-
els of individual components of a system using log analysis, which
are then combined into a system-level model.

As the problem of generating a minimal finite state machine is
NP-hard [1], existing solutions are unable to perform this task for
large and complex systems within a feasible amount of time. For
this reason, further research is required on methods that have the
potential for higher scalability.

3 APPROACH
This section describes in detail the manner in which MASM at-
tempts to infer concise state models using log-analysis.



To summarize, we first generate a naive initial finite state ma-
chine that has been inferred from parsing log statements. To parse
log statements, we implemented a data structure capable of recog-
nizing the event types of log statements, called a syntax tree, which
recognizes log statements based on their static part. The syntax tree
is formally defined in Section 3.1. While the initial state machine is
being inferred, the probabilities of all state transitions are stored in
theMarkov chain’s adjacency matrix, which is described in Sections
3.2 and 3.3.

Once the initial state machine has been inferred, MASM com-
presses this state machine iteratively until either a specified max-
imum result size or minimum accuracy value is reached, which
are both specified by the user. The compression is performed by
exploiting properties of adjacency matrices, which is elaborated in
Section 3.4. As there may exist several ways to compress the initial
model, we require the ability to determine the best option. This
process is described in Section 3.5.

3.1 Syntax tree
The syntax tree is used by MASM to parse log statements by rec-
ognizing their static parts. We achieve this by applying regular
expressions. Formally, a syntax tree can be represented by a tu-
ple (N , 𝑟 , 𝜙, F𝑠 ), where N is the set of all nodes in the tree, 𝑟 is
the root node, 𝜙 is the set of all edges, and F𝑠 is the set of all ac-
cepting paths, such that F𝑠 = {⟨𝑛1, ..., 𝑛𝑘 ⟩, 𝑛1 = 𝑟 ∧ �⟨𝑛𝑘 , 𝑛𝑘+1⟩ ∈
𝜙 ∧ ∀𝑖1≤𝑖≤𝑘−1 : {𝑛𝑖 ∈ N ∧ ⟨𝑛𝑖 , 𝑛𝑖+1⟩ ∈ 𝜙}}. Each node 𝑛 ∈ N
has a name for the specific event type and a regular expression
capable of recognizing a part of a log statement. More specifically,
∀⟨𝑙1, ..., 𝑙𝑘 ⟩ ∈ L : ∃⟨𝑛1, ..., 𝑛𝑘 ⟩ ∈ F𝑠 , where L is the set of all log
statements as defined in Section 2.1 and the regular expression of 𝑛𝑖
matches 𝑙𝑖 , for all 𝑖1≤𝑖≤𝑘 . It is important to note that the syntax tree
requires to be manually constructed to recognize the event types,
and that we assume that all unique event types have a unique static
part which can be used to recognize the event types. The syntax
tree is not directly part of the resulting model, as its only purpose
is to parse log statements.

3.2 State model representation
To infer a concise model, a larger initial model needs to be created.
This initial model is created using all the log traces in a training set.
For this study, two state model representations were considered,
prefix trees and unique state graphs.

3.2.1 Prefix tree. A prefix tree is a data structure in which all log
traces are represented without any loops, making it an accurate
reflection of the dataset used to infer it. A prefix tree is characterized
by its determinism, which means that an arbitrary state can not
have two outgoing states corresponding to the same event type.

When this functionality was first implemented, we discovered
that MASM could not compress the initial state model to a more
concise state model using a prefix tree in a reasonable amount
of time. This is mainly caused by the manner in which MASM
searches for options to compress the initial model and by the size of
the initial model: usually more than one million states, depending
on the size of the dataset. We therefore decided to abandon the
prefix tree representation for the remainder of this study.

3.2.2 Unique state graph. This state model representation aims
to decrease the size of the initial model, allowing MASM to infer
a concise state model in a shorter amount of time. A unique state
graph differs from a prefix tree in that it can only contain a single
state for every event type.

A unique state graph can be formally defined by (Q𝑢 , 𝑟𝑢 , Σ𝑢 , 𝛿𝑢 , 𝑓𝑢 ),
where Q𝑢 is the set of all states, 𝑟𝑢 is the root of the unique state
graph, Σ𝑢 is the alphabet, equal to the set of all log statements L,
𝛿𝑢 is the set of all edges, and 𝑓𝑢 is the accepting state.

The unique state graph contains a path from the root 𝑟𝑢 to the
accepting state 𝑓𝑢 for every log trace in the training set. Formally,
given the set T , which contains all log traces the unique state
graph was trained upon, and a function 𝐿 which maps log state-
ments to their corresponding states, we define this characteristic
as {∀⟨𝑙1, ..., 𝑙𝑘 ⟩ ∈ T ,∀𝑖1≤𝑖≤𝑘−1} : {∃⟨𝐿(𝑙𝑖 ), 𝐿(𝑙𝑖+1)⟩ ∈ 𝛿𝑢 ∧ 𝐿(𝑙𝑘 ) =
𝑓𝑢 }. We say that a log trace ⟨𝑙1, ..., 𝑙𝑘 ⟩, which is not in T , is accepted
when ∀𝑖1≤𝑖≤𝑘−1 : ∃⟨𝐿(𝑙𝑖 ), 𝐿(𝑙𝑖+1)⟩ ∈ 𝛿𝑝 ∧ 𝐿(𝑙𝑘 ) = 𝑓𝑝 .

The unique state graph’s distinguishing characteristic that it can
only contain a single state for every event type, is defined such that
∀𝑥,𝑦 ∈ L : (𝐿(𝑥) = 𝐿(𝑦) ⇔ S(𝑥) = S(𝑦)), where S is a function
capable of recognizing a log statement’s event type using the syntax
tree. This characteristic enforces the constraint |Q𝑢 | ≤ |F𝑠 |, where
F𝑠 is the set of all accepting paths of a syntax tree, as defined above.
This constraint is likely to improve the performance of MASM in
terms of run-time significantly.

A disadvantage of utilizing a unique state graph compared to
a prefix tree is that the unique state graph can enforce fewer con-
straints than the prefix tree. For instance, if there exists a constraint
specifying that a certain event type must occur a fixed amount
of times in a row, the prefix tree can detect log traces where this
constraint is not satisfied, while a unique state graph is unable to
detect such violations. Another disadvantage of using a unique state
graph is that it contains more paths than a prefix tree, limiting its
ability to detect invalid log traces.

3.3 Training the Markov chain
To create the initial model, the adjacency matrix needs to be trained
with existing log traces. This is done by following these steps:

(1) Initialize an adjacency matrix of |F𝑠 | × |F𝑠 | with a value of
0 for every cell, where F𝑠 is the set of all accepting paths in
the syntax tree.

(2) Loop over all the log statements of the log traces of the
training set. Add a value of 1 to the corresponding cell in the
adjacency matrix for every log statement transition.

(3) Remove unreachable states from the adjacency matrix.
(4) Normalize every row by dividing the value of every cell with

the sum of the row.

3.4 Merging states
After the initial model has been inferred from log traces, it will
likely not yet meet the specified requirements of either a maximum
result size or minimum accuracy, which the user can specify. To
compress the initial model to a more concise model, in which one of
these requirements is satisfied, MASM implements three methods
to find candidate states to merge:



(1) Search for subsequent states in which the previous state has
a probability of 1 to go to another state. Formally, given the
set of probabilities for all state transitions P𝑠 and the set of
all edges 𝛿𝑝 , a function 𝑆 , which can detect these subsequent
states, is defined in equation 1.

𝑆 (𝐴, 𝐵) → ⟨𝐴, 𝐵⟩ ∈ 𝛿𝑝 ∧ ⟨𝐴, 𝐵, 𝑝⟩ ∈ P𝑠 ∧ 𝑝 = 1 (1)

As a probability of 1 indicates that the next event type always
follows the previous event type, they can be considered the
same state and be merged. The new state should have a
self-loop, as the merged sequence should still be accepted.

(2) Search for duplicate rows in the adjacency matrix. This
method was inspired from an article by Spears [19], in which
it is proven that probabilistic matrices can be compressed
with the smallest amount of error by merging the most simi-
lar states.

(3) Search for duplicate columns in the adjacency matrix. This
method was inspired by [19] as well.

It is important to note that there exists a dynamic threshold for
all of the aforementioned methods. This threshold indicates the
extent to which two states may diverge from the requirements to
be classified as candidate states. A formal definition is given in
equation 2, in which a function F takes two rows and a threshold 𝜀
and determines whether the rows are equivalent.

𝐹 (𝐴, 𝐵, 𝜀) → 𝐴 = 𝐵 ⇔ |𝐴| = |𝐵 | ∧ ∀𝑖0≤𝑖< |𝐴 | : ( |𝐴𝑖 − 𝐵𝑖 | ≤ 𝜀) (2)

The dynamic threshold 𝜀 will be increased when no candidate states
are found.

When the two states 𝑞𝑖 , 𝑞 𝑗 ∈ Q𝑢 are merged, the adjacency
matrix needs to be modified. This is done according to an adaptation
of the guidelines described in [19]:

(1) Sum the probabilities of the rows corresponding to 𝑞𝑖 and
𝑞 𝑗 and place them in the row of 𝑞𝑖 .

(2) Divide all the values in the row of 𝑞𝑖 by 2, as the sum of the
values in the row is now 2 and needs to be normalized.

(3) Delete the row of 𝑞 𝑗 .
(4) Sum the probabilities of the columns corresponding to the

two states and place them in the column of 𝑞𝑖 . All the edges
directed towards 𝑞 𝑗 are then directed towards 𝑞𝑖 .

(5) Delete the column of 𝑞 𝑗 .
According to these guidelines, merged states adhere to an OR condi-
tion, which entails that only one of the event types corresponding
to a state, constructed by merging individual states, needs to occur
for transitioning to that specific state.

3.5 Evaluating a model
The initial model is the most accurate, as it is the closest to a re-
flection of the log traces that were trained upon. Therefore, this
initial model will contain implicit constraints, such as state 𝑋 must
be followed by state 𝑌 . However, as the loss of accuracy is a funda-
mental characteristic of compressing such a model, these implicit
constraints can be lost in the process. For instance, if the arbitrary
pair of subsequent states 𝑞𝑎, 𝑞𝑏 ∈ Q, such that ⟨𝑞𝑎, 𝑞𝑏⟩ ∈ 𝛿𝑢 , are
merged into a new state 𝑞𝑎𝑏 , there exists no constraint on the order
in which the log statements corresponding to 𝑞𝑎 or 𝑞𝑏 can appear
subsequently in a log trace.

Table 1: Overview on the result classes

True False
Positive Valid traces recognized

as valid. (TP)
Invalid traces recog-
nized as valid. (FP)

Negative Invalid traces recog-
nized as invalid. (TN)

Valid traces recognized
as invalid. (FN)

The aforementioned methods to find the best candidate states to
merge attempt to minimize the loss of accuracy while compressing
the model. These methods may however regularly result in several
sets of candidate states. Therefore, MASM must be able to evaluate
all candidates to determine which candidate to merge. We achieve
this by temporarily merging these candidate states and evaluating
the resulting model.

When evaluating a single trace, the result will be true/false pos-
itive/negative, depending on the input and whether the model
recognizes it. These result classes are further elaborated in Table 1.

For this study, 4 metrics were used for evaluation:
• Recall: specifies how many of the valid traces are recognized
as valid.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3)

• Precision: specifies how many of all the traces recognized as
valid are actually valid.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(4)

• Specificity: specifies how many of the invalid traces are rec-
ognized as invalid.

𝑆𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(5)

• Conciseness: specifies the degree of compression.
We chose these metrics because they are well-established, often

used in literature [8, 15, 17], and result in normalized values on the
model’s accuracy, which simplifies comparison.

While the precision metric is not used for evaluating candidate
states, as we argue that the model’s behaviour is sufficiently cap-
tured by specificity and recall, the precision was included in the
results of the empirical study.

To determine what candidate states should be merged, we calcu-
late a score for all sets of candidates (in equation 6). The candidate
states of the set that obtains the highest score will be merged.

𝑆𝑐𝑜𝑟𝑒 = 𝑤𝑐 ·
𝑎𝑚𝑜𝑢𝑛𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑎𝑚𝑜𝑢𝑛𝑡𝑚𝑎𝑥
+𝑤𝑎 · 𝑠𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑖𝑡𝑦 + 𝑟𝑒𝑐𝑎𝑙𝑙

2
(6)

𝑎𝑚𝑜𝑢𝑛𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is this number of states that would be merged for the
current set of candidate states. 𝑎𝑚𝑜𝑢𝑛𝑡𝑚𝑎𝑥 is the maximum number
of states that would be merged for all sets of candidate states. The
weights of conciseness𝑤𝑐 and accuracy𝑤𝑎 can be specified by the
user and may vary depending on their priorities.

One of the main reasons we decided to abandon the prefix tree
state model representation is the manner in which this score is
calculated. The calculation of the specificity and recall metrics
requires a large number of log traces to obtain an accurate result.
The usage of larger models, such as a prefix tree, would greatly
increase the number of times this calculation needs to be performed,



which causes unreasonably long execution times. It would also
require a larger set of valid and invalid log traces to guarantee
coverage on all paths in the prefix tree.

4 EMPIRICAL STUDY
The purpose of this section is to describe how MASM was used to
evaluate the performance of a Markov chain-based algorithm. First
of all, Section 4.1 states the research questions this experimental
study aims to answer. Section 4.2 explains the benchmark used dur-
ing this study, and Section 4.3 provides details on the experimental
setup. This includes the methods and parameters used to prepare
and run the evaluation. Finally, Section 4.4 indicates how the results
from the evaluation were analyzed.

4.1 Research questions
The main research question this study aims to answer is as follows:

How effective are Markov chains for inferring a concise and accurate
state model of code behaviour?

Several aspects are considered relevant to formulate a proper an-
swer to the stated research question. These aspects include compar-
ison with other approaches, scalability, and the relation between
conciseness and accuracy. We derived the following sub-question
to clarify these aspects:

(1) How does MASM perform in terms of accuracy over different
inferred model sizes?

(2) How does MASM scale with the size of the training set?
(3) How does MASM perform compared to other approaches stud-

ied by peers?
(4) How does MASM compare to a random compression algorithm?

4.2 Benchmark
This empirical study is a case study on the logs of the XRP Ledger.
The XRP Ledger is a distributed payment system for the XRP cryp-
tocurrency. More specifically, this empirical study focuses on the
Consensus Protocol of the XRP Ledger, which aims to achieve con-
sensus on which nodes are members of the network and which
transactions should be included in the next block [3]. Since the XRP
Ledger produces large amounts of logs, it is capable of creating
datasets of sufficient size for this study.

The logs of the XRP Ledger were first filtered to remove all
log statements unrelated to the Consensus Protocol. The resulting
logs were then divided into several log traces. As the Consensus
Protocol works with consensus rounds, of which the start and end
are clearly indicated with log statements, we split the filtered logs
into individual traces. These traces were used to create 5 different
datasets of 1000 log traces each. Each log trace contains 995 log
statements on average.

4.3 Experimental setup
MASM requires certain parameters as input. Due to time constraints,
only a single set of experimental parameters was used for the evalu-
ation. These parameters can be found in Table 2. Furthermore, The
hardware used to evaluate MASM is the HP ZBook Studio G5. This
machine contains a 12 core Intel i7-8750H CPU @ 2.20GHz with 16

Table 2: Experimental parameters

Parameter Value
Conciseness weight𝑤𝑐 0.5
Accuracy weight𝑤𝑎 0.5

GB of Random Access Memory and runs Microsoft Windows 10.
The used Python interpreter is of version 3.9.

4.3.1 Accuracy: To evaluate the accuracy of MASM on a variety
of sizes, we adapted MASM to store the value of the metrics speci-
ficity, precision, and recall, after each individual compression. To
ensure the generation of samples for all sizes, the input parameters
of MASM were configured such that the initial model would be
compressed iteratively to a one-node model, i.e. a model consisting
of a single state, while evaluating all intermediate models.

Furthermore, we used k-folds cross-validation to evaluate the
performance of MASM . This method of evaluation is often used in
literature [9, 17, 26]. Each of the five different datasets was divided
into five folds, allowing for a 4:1 ratio of the training and test set.
Each fold was used one time as a test set, while the remaining folds
were used as the training set.

To measure the specificity and precision, we require invalid log
traces; these will be called negative log traces and will be created
using an adapted method inspired by [13, 17, 23]. It entails that
negative traces are created by randomly selecting valid traces and
performing a random number of mutations on them. These muta-
tions are not performed on individual lines, but rather on sections
of subsequent lines that correspond to the same event type. The dif-
ferent types of mutations are: swapping two consecutive sections,
swapping two randomly chosen sections, and deleting a random
section. The number of applied mutations is randomly chosen in
the range of one to three. We extended this implementation with
additional functionality, checking whether mutated log traces are
invalid using a prefix tree inferred from the training set. More mu-
tations are applied when a mutated log trace remains valid.

The described accuracy experiments were also performed on a
random compression algorithm. This random compression algo-
rithm functions equivalent to MASM , except for always choosing
random candidate states to merge. As there will only be a single set
of candidates, the initial model will be compressed iteratively by
merging randomly chosen states. We used this random compression
algorithm as a baseline for this empirical study.

4.3.2 Run-time: To evaluate the scalability of MASM , experiments
on the run-time were performed by varying the size of the used
datasets. The dataset sizes that were evaluated upon are 100, 250,
500, 750 and 1000. For each of these sizes, the input parameters
of MASM were configured to compress the model iteratively to a
one-node model 10 times. The used ratio of the training and test
datasets is 1:1, as accuracy is not relevant during this experiment.

4.4 Analysis methodology
The collected data are visualized in the form of graphs on both
accuracy and run-time of MASM . The graphs on accuracy (Figures
1 and 2) contain data on specificity, recall, and precision against
different rates of compression. By considering the compression as
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Figure 1: MASM accuracy. 75 moving point average of the
metrics specificity, precision, F-measure and recall against
the rate of compression (%). This graph was created using a
sample size of N=5394.

a percentage of the original size, we compensate for the differences
in the size of the initial models. As both the precision and recall
are about the number of true positives a resulting model can detect,
these metrics can be combined. This is done using the F-measure [7],
as calculated in equation 7 and displayed in Figures 1 and 2.

F-measure =
2 · 𝑟𝑒𝑐𝑎𝑙𝑙 · 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

(7)

The graph on run-time (Figure 3) contains the amount of time it
took to compress the model to a one-node model in seconds against
the amount of log traces as the size of the dataset.

After these graphs have been constructed, they are manually
inspected to find knee points [2]. These knee points indicate an
optimal rate of compression, as the improvement in either one of the
aforementioned metrics or conciseness will result in a significant
loss of the other objective(s) [2, 27].

Using the collected data and the found knee points, conclusions
can be derived to each of the sub-questions of this research. Each
of the formulated sub-question are answered individually.

Finally, two models at the rates of 90% and 95% compression
were visualized to give the reader an idea of the models MASM is
able to infer. The produced graphs can be found in appendix B.

5 RESULTS
This section presents the results from the empirical study performed
using MASM to investigate the effectiveness of utilizing Markov
chains in modelling system behaviour. Section 5.1 answers the sub-
questions of this empirical study. The main research question is
answered in Section 5.2.

The experiments on accuracy were focused on collecting data
on the specificity, precision, recall, and F-measure at different rates
of compression. An equivalent experiment was performed on a ran-
dom compression algorithm to provide a baseline for comparison.
Finally, the run-time was evaluated to collect data on MASM ’s
scalability. During the latter experiment, we collected data on the
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Figure 2: Random compression algorithm accuracy. 75 mov-
ing point average of the metrics specificity, precision, F-
measure and recall against the rate of compression (%). This
graph was created using a sample size of N=7601.

amount of seconds required to infer and compress an initial model
to a one-node model.

5.1 Sub-questions
5.1.1 How does MASM perform in terms of accuracy over different
inferred model sizes? The results for all metrics, including the F-
measure, can be found in Figure 1. Note that all the metrics have a
minimum value of 0 and maximum value of 1, 0 being a complete
lack of this metric and 1 being the optimal score. These metric were
plotted against the rate of compression, where 0% is no compression,
i.e. the initial model, and 100% represents a one-node model.

Specificity reaches a value of 0 at 100% compression. This is
caused by the model’s incapability to detect true negatives when the
model is compressed to a one-node model. Furthermore, precision
converges to a value of exactly 0.5. This can be explained because
a model consisting of a single node is unable to reject any negative
traces but does accept all positive traces. As the ratio of positive
and negative traces is 1:1, a precision value of 0.5 follows logically.

Before the point of 52% compression, MASM achieves a very
high score on all metrics. After this point, the specificity, precision,
and the f-measure start to decrease as the model gets compressed.
It is likely that MASM is unable to find candidate states with a low
threshold 𝜀, as defined in Section 3.4, at this specific compression
rate. Therefore, a trade-off occurs: we sacrifice accuracy to gain
conciseness. These trade-offs are made until the model reaches a
size of a single node. Another notable result is that MASM achieves
a recall close to 1 at every compression rate. This result can be
explained by the usage of unique state graphs, as unique state graphs
generally contain more paths than prefix trees.

From the accuracy results in Figure 1, one can see a few knee
points. The clearest knee point is at around 52% compression. Before
the 52% compression, all metrics score greater than 0.85. Another
knee point can be found at around 69%. The last knee point can
be found at 78% compression. It ought to be noted that these knee
points differ per dataset and that the knee points found in this
study are only valid for the Consensus Protocol of the XRP Ledger.
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Figure 3: Boxplot graph which shows the connection be-
tween the size of the dataset and the required time to com-
press the initial model to a one-node model. N=50

As multiple knee points emerge from the results of this empirical
study, there is no “best” rate of compression for this specific dataset.
There may however be a certain rate of compression that best fits
one’s needs. If one would require a highly accurate model, they
might choose a compression rate below 50%. On the other hand,
if one requires a concise model, they might choose a compression
rate of at least 80%.

5.1.2 How does MASM scale with the size of the training set? To
analyze the scalability of MASM , we measured the amount of
seconds required to compress this model on different dataset sizes.
The dataset sizes on which this experiment was performed were
100, 250, 500, 750 and 1000. Each of these dataset sizes was evaluated
10 times. The results can be viewed in Figure 3.

From the collected data, it becomes clear that the run-time scales
linearly with the size of the dataset, which is promising for the
scalability of MASM . It takes around 50 seconds to infer a model
on a dataset with a size of 100 traces, while taking 325 seconds to
infer a model on a dataset consisting of 1000 log traces. However,
it was discovered that the largest portion of time was spent on
training the Markov chain and generating the positive and negative
log traces to evaluate upon. This is because all evaluation traces are
loaded into memory and pre-processed, such that the individual
log statements are mapped to leaves in the syntax tree, eliminating
the need of regular expressions during compression.

The results show that using a dataset of 1000 traces takes on
average less than five minutes, which might be fast enough for
most appliances. However, these results are only valid to this spe-
cific dataset and hardware, and the produced models may not be
sufficiently accurate for complex systems with a large number of
distinct event types or short log traces.

5.1.3 How does MASM perform compared to other approaches stud-
ied by peers? Another method to infer concise and accurate state
models of system behaviour using log analysis was considered by
a peer in parallel research, which includes Multiple Objective Meta-
heuristic Search (MOMS) [5]. As this method does not allow for

the same type of evaluation, the advantages and disadvantages of
MOMS compared to MASM are discussed.

Preliminary research shows that one of the main advantages of
this MOMS is that MOMS takes less time to produce results than
MASM . Another advantage of MOMS over MASM is that MOMS
produces several trade-offs from which an analyst can choose the
option that best fits their needs, whereas MASM requires a user to
provide stopping criteria, i.e. maximum result size and minimum
accuracy, to determine when to stop compressing the model, and
only produces a single result. However, being able to provide these
criteria allows a user to obtain full control of the compression
process and produce models of the desired size and accuracy.

5.1.4 How does MASM compare to a random compression algo-
rithm? An equivalent accuracy experiment, as was used to answer
the research question of Section 5.1.1, was performed on a random
compression algorithm, see Figure 2.

From this figure, it becomes clear that the random compression
algorithm scores better than MASM overall on all metrics, which
was an unanticipated result. We argue this is caused by the method
used to generate negative traces. These are generated by applying
a small number of mutations which affect the “normal flow” of the
Consensus Protocol. As MASM adapts the “normal flow” of the
graph as well, the model is less capable of detecting true negatives,
thus explaining the loss of specificity. However, as the random com-
pression algorithm randomly merges two states, it is less likely to
alter the “normal flow” of the graph. The random compression algo-
rithm is more likely to create new paths which are not covered by
negative traces. MASM could outperform the random compression
algorithm if more mutations were applied during the generation of
negative traces, but further research is required.

Note that the high accuracy does not necessarily imply high
readability. It is likely that MASM produces models which have
higher readability than the models inferred by the random compres-
sion algorithm. Measuring a state model’s readability is, however,
not within the scope of this study.

5.2 Research question
How effective are Markov chains for inferring a concise and accurate
state model of code behaviour? During this empirical study, we found
that a Markov chain-based algorithm for inferring concise state
models of code behaviour shows several knee points in terms of
accuracy when evaluated on the XRP Ledger Consensus Protocol
dataset. Moreover, we found that MASM does not perform better
than a random compression algorithm, which randomly merges
states to compress the model, in terms of accuracy. We hypothesise
this is caused by the manner in which negative traces are generated,
but further research is required.

Furthermore, we discovered that MASM scales linearly in run-
time with the size of the dataset used to infer the model.

Lastly, we compared this Markov chain-based approach with
another approach using Multiple Objective Meta-heuristic Search,
studied by a peer in parallel research. We found several advantages
and disadvantages for each approach and discovered that the choice
for an algorithm depends greatly on the user’s requirements.



6 THREATS TO VALIDITY
This section discusses the threats to the internal and external valid-
ity of this study.

6.1 Threats to internal validity
The most relevant threat to the internal validity of this study is the
sample size. We prepared 5 different datasets of 1000 log traces each,
as described in Section 4.2 to mitigate this threat. The total size
of all log traces amount to 779 megabytes. We also experimented
using several random seeds, as described in Section 4.3, to mitigate
the probability of using a biased random seed.

6.2 Threats to external validity
The main threat to external validity is generalizability. This study
was a case study on the Consensus Protocol of the XRP Ledger,
which might cause one to wonder this study’s generalizability. As
MASM has only been tested on the Consensus Protocol, there is
a probability of the results not being generalizable and thus only
applicable to the Consensus Protocol. Tomitigate this threat, further
research is required using datasets of different systems.

7 RESPONSIBLE RESEARCH
Reproducibility and integrity are the main ethical aspects of this
study. This section will discuss how we ensured these aspects were
handled ethically during the course of this study.

7.0.1 Reproducibility. To ensure the reproducibility of this study,
we made the source code of MASM publicly available in a Github
repository [25]. The source code has been thoroughly documented
to help one understand it. Furthermore, arbitrarily chosen ran-
dom seeds were used to ensure the reproducibility of the random
numbers. These random seeds are 5, 6, and 7 for the accuracy ex-
periments. For the run-time experiment, the used random seed is 5,
which is set once at the algorithm’s initialisation. Lastly, To increase
the reproducibility of this empirical study, all the used log files have
been uploaded and are available online [24].

7.0.2 Integrity. During this research, no results were withheld
from the presented results in section 5; all collected results are
included in the displayed graphs. The results were not filtered
nor modified in any way to increase or decrease the projected
performance of MASM .

8 CONCLUSIONS AND FUTUREWORK
This preliminary research investigated the effectiveness of using a
Markov chain-based algorithm for inferring concise and accurate
state models using log analysis. To achieve this, the Markov Al-
gorithm for inferring concise State Models (MASM ) was created
and evaluated. This algorithm compresses an initial state model,
created by parsing logs, using a technique to merge states. MASM
implements three different approaches to find states to merge to
compress the model, namely: searching for subsequent states with
a transition probability of 1, searching for equal rows in the adja-
cency matrix, and searching for equal columns in the adjacency
matrix. When initialized, MASM continues to compress the model
until either a maximum result size or minimum accuracy value is
reached.

An experimental study was performed on the logs of the XRP
Ledger Consensus Protocol. The results show thatMASM achieves a
lower value for the metrics of specificity, recall, and precision at any
rate of compression compared to a random compression algorithm,
which randomly merges states to compress the model iteratively.
It was also found that MASM shows several knee points at certain
rates of compression for the aforementioned metrics, indicating
several optimal compression rates for this specific dataset. The
most notable knee point for this specific dataset can be found at a
compression rate of 52%. Finally, we discovered that this Markov
chain-based approach scales linearly in run-time with the size of
the dataset, which is promising for MASM ’s scalability.

Future research is required to investigate the cause of the high
performance of the random compression algorithm; it is hypothe-
sised that this is caused by the manner in which negative traces are
generated. Furthermore, integration of an AND condition, rather
than an OR condition as described in Section 3.4, on the transitions
to states corresponding to several event types remains to be inves-
tigated as it might improve the accuracy of the produced models.
Finally, measuring the produced model’s readability and comparing
these results with the readability of models produced by the random
compression algorithm also remains to be studied in future work.
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B VISUALIZED GRAPHS
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B.2 Graph at 90% compression
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