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Abstract

Estimating a room geometry using multiple microphones rises an echoes labeling prob-
lem. Two recent methods called the graph-based and the subspace-greedy methods
have shown their capability in solving this problem. The graph-based method attains
a good accuracy but suffers in maintaining the computational cost when the number
of microphones is larger than 7. On the other hand, the subspace-greedy method pro-
vides suboptimal accuracy with much lower computational time. Here we construct
the hybrid combination methods using those two baseline methods by interchanging
their intermediate steps: the refinement step and the source localization step. To as-
sess their practicability in a real-life application such as virtual reality games and robot
navigation, the performance of these hybrid methods were tested against the close
microphones arrangement on the sphere’s surface. However, this new microphones’
constellation brings up a low dimensional problem. To deal with this matter, we use
the weighted least squares as the source localization procedure. Finally, experiments
on synthetic squared distance data demonstrate the feasibility of all hybrid methods
for estimating the room geometry with centimeter precision within seconds.

v



vi



Acknowledgments

First, I would like to thank Jesus for His grace and faithfulness that make me who I am
today. Many thanks to my supervisor Dr. R. Heusdens for his guidance, insight, and
powerful feedback throughout my thesis. It is such an honor for me to do my thesis with
you. To all lecturers who I met in TU Delft, thank you for giving me unforgettable
experiences and great knowledge. Mario, thank you for your time in helping me to
understand this topic and giving me some good advice. Finally, I would like to express
my gratitude to my dad, Gwan Hok, my mom, Trivena, and my sister, Hilary for their
unending support and trust towards me.

Raissa Lynn B.Sc.
Delft, The Netherlands
20 September 2018

vii



viii



Contents

Abstract v

Acknowledgments vii

1 Introduction 1
1.1 Research Statement and Outline . . . . . . . . . . . . . . . . . . . . . . 3

2 Background Theory 5
2.1 Room Geometry Estimation Pipeline . . . . . . . . . . . . . . . . . . . 5
2.2 Background Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Room Impulse Response (RIR) . . . . . . . . . . . . . . . . . . 5
2.2.2 Image Source Models . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Room Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.4 Euclidean Distance Matrix (EDM) . . . . . . . . . . . . . . . . 9

2.3 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Hybrid Method for Room Geometry Estimation Based on The Graph
Based and The Subspace-Greedy Approach 11
3.1 Detailed Overview of Acoustic Echo Labeling Problem . . . . . . . . . 12
3.2 Preliminary Equations and Relations . . . . . . . . . . . . . . . . . . . 13
3.3 Pre-filtering Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.1 Rank Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.2 Subspace Based Method . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Refinement Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4.1 Graph Based (Maximum Independent Set) . . . . . . . . . . . . 16
3.4.2 Greedy with Rank Criterion . . . . . . . . . . . . . . . . . . . . 17

3.5 Source Position Localization . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5.1 Pollefey’s method . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.6 Comparison of The Graph Based Method and The Subspace-Greedy
Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.7.1 Comparison between Pollefeys and the least squares as the image

source localization method of the graph based method . . . . . 20
3.7.2 Comparison of Graph vs Greedy as The Refinement Step of The

Graph Based Method . . . . . . . . . . . . . . . . . . . . . . . . 24
3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Implementation of the Hybrid Methods on The Sphere’s Surface Mi-
crophones Constellation 29
4.1 Microphones Constellation . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 A Problem due to The Sphere’s surface Microphones Configuration . . 30
4.3 Improving The Least Squares as The Image Sources Localization Technique 31

ix



4.4 Variance Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5.1 The Number of Sources . . . . . . . . . . . . . . . . . . . . . . . 35
4.5.2 The Number of Microphones . . . . . . . . . . . . . . . . . . . . 35
4.5.3 The Radius of The Sphere . . . . . . . . . . . . . . . . . . . . . 37

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Conclusions 39
5.1 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

A Pollefeys Method for Sources and Microphones Localization 41
A.1 Preliminary Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A.2 Sources and Microphones Localization . . . . . . . . . . . . . . . . . . 41

x



List of Figures

1.1 Left: A two dimensional top view of a room with a microphone (r) and
a source (S ). Right: An ideal room impulse response (RIR) with peaks
correspond to the sound paths in the room. Each τ in x axes defines the
time of arrival (TOA) of each path on the microphone . . . . . . . . . . 1

1.2 Source localization from intersection of three distances . . . . . . . . . 2
1.3 Echo labeling problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Room geometry estimation pipeline . . . . . . . . . . . . . . . . . . . . 5
2.2 Energy vs Time Curve of Room Impulse Response . . . . . . . . . . . . 6
2.3 (a) Image source model for the first and second order reflections. Vector

n i is the unit normal associated with the i th wall. s̃ i denotes the image
sources w.r.t the i th wall. s̃ ij is the image source for the second order
echo. (b) Repeated image source pattern for a box shaped room (the
orange box) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 An image source model generation . . . . . . . . . . . . . . . . . . . . . 8

3.1 Block diagram of the graph and the subspace-greedy methods . . . . . 11
3.2 Ambiguity in the echoes that received by the microphones . . . . . . . 13
3.3 Echo combinations in D̃Cε as nodes in a graph. The set of blue nodes is

the (maximum) independent set. . . . . . . . . . . . . . . . . . . . . . 17
3.4 The block diagram for the first experiment . . . . . . . . . . . . . . . . 21
3.5 The number of microphones varied, N = 6, σ = 0.001 . . . . . . . . . . 22
3.6 The number of sources varied . . . . . . . . . . . . . . . . . . . . . . . 23
3.7 The noise standard deviation varied . . . . . . . . . . . . . . . . . . . 24
3.8 Block diagram of the second experiment. . . . . . . . . . . . . . . . . 24
3.9 Comparison of the greedy and the graph technique as the refinement

step of the graph based method when M is varied, N = 6 , σ = 1mm. . 25
3.10 Comparison of the greedy and the graph technique as the refinement

step of the graph based method when N is varied, M = 6 , σ = 1mm. . 25
3.11 Comparison of the greedy and graph method as the refinement step of

the graph based method when σ is varied, M = 6 , N = 6. . . . . . . . 26
3.12 Computational time of echo labeling solver part (a) and the complete

algorithm (b)in estimating the room geometry when σ is varied. . . . . 26

4.1 A realization of microphones configuration on the surface of a sphere
with radius 0.10 m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 The true S matrix (the first square), its estimation result using WLS
(the second square), and the Newton iteration (the third square). . . . 32

4.3 The squared distance (D) matrix between the microphones and the im-
age sources for the random and the sphere’s surface microphones config-
uration when M = 6, N = 6, and room size = [8 6 5]m. The position of
the true source is the same for both microphones configurations. . . . . 33

xi



4.4 The block diagram of estimating the image source position for the ran-
dom microphones configuration (top box) and the sphere’s surface mi-
crophones configuration (bottom box) . . . . . . . . . . . . . . . . . . . 34

4.5 All possible combinations of the echo labeling solver that will be im-
plemented for estimating the room geometry with the sphere’s surface
microphones configuration. . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.6 The number of sources varied . . . . . . . . . . . . . . . . . . . . . . . 35
4.7 The number of microphones varied . . . . . . . . . . . . . . . . . . . . 36
4.8 The vertex estimation error VS the number of microphones when N =

6, σ = 0.001m, r = 10cm with the apriori knowledge of the squared
distance data matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.9 The sphere radius varied . . . . . . . . . . . . . . . . . . . . . . . . . . 37

xii



List of Tables

3.1 Computational complexity comparison of each step in the graph based
and the subspace greedy methods [1]. . . . . . . . . . . . . . . . . . . . 19

3.2 The plus and minus of graph based and subspace-greedy method. . . . 20
3.3 The final result of both experiment for M = 6, N = 6, σ =

0.001, and roomsize = [8 6 5] . . . . . . . . . . . . . . . . . . . . . . . . 27

xiii



xiv



Introduction 1

Figure 1.1: Left: A two dimensional top view of a room with a microphone (r) and a source
(S ). Right: An ideal room impulse response (RIR) with peaks correspond to the sound
paths in the room. Each τ in x axes defines the time of arrival (TOA) of each path on the
microphone

Advance development of reality technologies changes the way we perceive our en-
vironment. For example, using augmented reality technology people can see virtual
objects on top of real ones. Even in the latest mixed reality technology, users can in-
teract with the virtual objects in a real scene. This condition means that the degree of
immersion between a human and the reality technology should be high and dynamic.
Thus, a combination of visual and auditory information is required since the visual per-
ception is significantly augmented with the matched sound stimuli. Moreover, a good
room estimation result can benefit several applications such as scene reconstruction,
spatial sound rendering [2], and objects or sources localization [3]. This fact pushes the
room geometry estimation to play an important role in improving the reality technology.

Consider a two dimensional top view of a room as shown in the left part of Fig.1.1.
The first arrived signal in the microphone is called a direct path. Signals that come
after this are called echoes or reflections. All the sound paths in the room are also
indicated as peaks in the room impulse response (The right figure in Fig. 1.1). It
shows that the received signal energy decreases as the travel distance increases. As
we can see from Fig.1.1, the locations of the reflections contain spatial cues of the
enclosures. Adopting the image source method to model the sound propagation inside
a room, we can replace a reflected path with a direct path from an image source outside
the enclosure to the microphone [4]. This situation is illustrated in Fig.1.1 where S
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and S̃ denotes the real source and image source respectively. If the location of the
reflections, i.e., image sources and real sources are known, the normals and the location
of the reflective surfaces (walls) can be deducted by a simple geometric relation. Thus,
in order to infer the room geometry, our main task is to find the location of the image
sources.

Figure 1.2: Source localization from intersection of three distances

In two dimensions case when a microphone receives the direct path contribution,
we know that the source lies on a sphere with radius related to the time of arrival. To
resolve the ambiguity, we need at least three independent observations (microphones).
Figure 1.2 illustrates that the image source location (̃s) is the intersection of three
circles with radii equal to the distance between each microphone and the image source.
For a three dimensional case, the minimum number of microphones that is required
is four. However, adding more microphones does not guarantee that the position of
image sources can be found since echoes (distances) for locating them are ambiguous.
In the RIR representation, we do not know which peaks match the corresponding image
source. This ambiguity issue is also known as an echo labeling problem and is depicted
in Fig. 1.3. In this picture, the order of echoes that arrive at each microphone is
swapped so a simple assumption that the first echo in the RIR of both microphones
belongs to the green wall will lead to a false room geometry estimation. Therefore, a
correct assignment between echoes and its responsible walls is necessary.

There are some available methods for solving the echo labeling problem. In [5],
Dokmanic et al. exploited the properties of Euclidean distance matrices which leads
to a multidimensional scaling (MDS) method for correctly assigned the wall using one
real source and five microphones. Though this method gives accurate results, the com-
putational cost is very high which makes it is not suitable for real-time application. Al-
ternatively, Jager et al. in [6] formulated the echo labeling problem as a graph problem
which can be solved in a modest time with the small number of microphones (M < 7)
while retaining the same accuracy as [5]. The latest approach based on a subspace
technique and a greedy echo selection procedure by Coutino et al [7] further reduced
the computational complexity but gave a sub-optimal performance. Consequently, a
tradeoff between computational cost and the accuracy is an inevitable issue. In both
Jager’s and Coutino’s methods, the microphones for performing the measurements are
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Figure 1.3: Echo labeling problem

randomly distributed inside a room.
For an application of room geometry estimation in the area such as virtual reality

and robot navigation, the environmental awareness is a crucial part. Imagine when the
virtual reality user or the robot moves from one room to another room. In this case,
the room geometry estimation must be done in a continuous, real-time, and adaptable
manner to achieve a good performance. These requirements are tantamount to having
mobile sensors with reasonable size that can be carried by the user (a person or a robot).
For example, in a virtual reality game, the user can be equipped with a visual glass
and helmet like sensors (microphones) while in the robot navigation, the microphones
can be located on the head of the robot.

1.1 Research Statement and Outline

In this thesis, the following general research question is addressed:

What is the most efficient and accurate technique for estimating the room ge-
ometry based on the graph and subspace method for the specific case of close
microphones arrangement?
with assumptions that the RIR of a shoe box room is known and there is no oc-
clusion inside the room.

The rest of the thesis is organized as follows: Chapter 2 describes some background
theories. Chapter 3 introduces the methods by Jager and Coutino in more detail, also
provides its evaluation result. In Chapter 4, the implementation of both methods for
helmet microphones configuration is presented. Finally, Chapter 5 closes this thesis
with the conclusion and suggestion for future work.
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Background Theory 2
This chapter outlines supporting theories of some basic tools for estimating the room
geometry.

2.1 Room Geometry Estimation Pipeline

The room geometry estimation problem can be divided into different subproblems as
shown in Figure 2.1.

Figure 2.1: Room geometry estimation pipeline

The input of the room geometry estimation pipeline is the distance data obtained
from the room impulse response. In the initial step, we solve the echo labeling problem.
The output of this step is the true labeled distance data. In the next step, this data
is processed to localize the real and image source positions. Finally, based on the
knowledge of the source positions and the microphone positions, the room boundaries
can be revealed.

The next section will deal with some basic theories that serve as a guide for the
reader to understand this topic clearly. Moreover, some related works in solving the
room geometry estimation problem are presented in the last section of this chapter.

2.2 Background Theory

2.2.1 Room Impulse Response (RIR)

A room (enclosure) can be considered as an acoustic system which transforms any sound
signal that fed into it. The acoustic response which caught by receivers (microphones)
in a room varies according to the position of the sources, receivers, and acoustical
condition of room surfaces. According to the concept of geometrical room acoustics
(as described in [8]), the transformation that is experienced by the sound signal is the
result of multiple time reflections at the room boundaries, so it is also related with
how the sound signal propagates in a room. Thus, a received signal at the microphone
would be the superposition of many replicas of the original signal. Each of them has its
particular strength and is delayed by its particular traveling time. This phenomenon

5



Figure 2.2: Energy vs Time Curve of Room Impulse Response

can be well understood using the response of a room to an ideal impulse signal, i.e.,
room impulse response (RIR) which can be expressed as

h(t) =
∑
n

Anδ(t− τn). (2.1)

Ideally h(t) is a train of delta pulses, each pulse corresponds to an echo. An and τn are
the signal strength and delay time of the nth echo respectively.

Any sound emitted in a room will be affected by the RIR. The resulting output
signal g(t) is the convolution of the emitted sound signal s(t) and the RIR h(t). In
equation form, it can be expressed as

g(t) =

∫ ∞
−∞

s(τ)h(t− τ)dτ = s(t) ∗ h(t). (2.2)

A simple illustration of an RIR is depicted in Fig 2.2. Typically, the RIR is divided
into three major parts :

• Direct sound: The first arriving sound at the microphone.

• Early reflection: Discrete, sparse reflective sound signal from nearby surfaces.

• Late reverberation: Densely populated reflective sound signal.

From the RIR we can extract the time delay of arrival (TOA) related to the direct
sound and early reflections (echoes). These TOAs can be translated into distances
between the sources and the microphones through

τn =
dn
c

n = 0,1,2,· · · , n , (2.3)

where τn is the TOA, c is the sound velocity, dn is the distance, index n = 0 corresponds
to the direct sound while n = 1, 2, · · · ,n correspond to the echoes. We can link this
information with the image source model that will be described in the next section to
locate the room boundaries.
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Figure 2.3: (a) Image source model for the first and second order reflections. Vector n i is
the unit normal associated with the i th wall. s̃ i denotes the image sources w.r.t the i th wall.
s̃ ij is the image source for the second order echo. (b) Repeated image source pattern for a

box shaped room (the orange box)

2.2.2 Image Source Models

The image source model is categorized as a ray-based method which based on geo-
metrical room acoustics. In geometrical room acoustics, the concept of sound waves
is substituted by the concept of sound rays [8]. Provided a homogeneous medium, the
sound ray travels along a straight line with constant energy. If a sound ray strikes a
solid surface, it will be reflected. The reflection law is the same as from optics. Any
typical wave effects such as diffraction and interference are neglected in geometrical
room acoustics. Then, it is evident that geometrical room acoustics can only reflect a
partial aspect of the acoustical phenomena inside a room. However, this disadvantage
is covered by its conceptual simplicity and practical computation.

The concept of the image source model is straightforward: for each reflective surface,
a virtual sound source is produced by mirroring the sound source across the correspond-
ing surface (wall) as illustrated in Fig. 2.3(a). Therefore, the echo can be modeled by
the direct sound emanating from the virtual source. If a reflected sound ray strikes the
second wall, the continuation of the sound path can be found by repeating the mirror-
ing process. The image sources method is very efficient for a box-shaped environment
due to the rectilinear symmetries of a box [4]. Figure 2.3(b) shows this situation.

In a mathematical form, the position of an image source can be represented by

s̃ i = s − 2〈s − p,n i〉n i , (2.4)

where s denotes the source position , s̃ i is the position of the image source correspond
to the ith wall, n i is the wall unit normal vector and p is an arbitrary point on the
wall. See Fig.2.4 for an illustration.
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Figure 2.4: An image source model generation

2.2.3 Room Reconstruction

To localize the wall , we employ the loudspeaker-image bisection (LIB) algorithm [9].
The ith wall (W i) is a plane that bisecting the line from the source s to its image
source s̃ i (the dotted green line in Fig. 2.4). Their midpoint p lies on the plane. Once
both the true source (s) and the first order image source position (s̃ i) are available,
the unit vector normal to the W i can be computed:

n i =
s − s̃ i

‖s − s̃ i‖
, (2.5)

where ‖ · ‖ represents the Euclidean norm. The midpoint p is defined as

p =
s + s̃ i

2
. (2.6)

Hence, using this midpoint and the normal vector n i, the plane W i can be defined in
homogeneous coordinates as:

W i =
[
nT

i ,−pTn i

]T
. (2.7)

Any points a that lies on the W i must satisfy:

〈n i,a − p〉 = 0 . (2.8)

The vertices of the room can be found at the intersections of the boundary planes.
The accuracy of the estimated i th wall position improves as more points on the boundary
plane are involved. These points can be obtained by either moving the source or
providing more sources inside the room.
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2.2.4 Euclidean Distance Matrix (EDM)

An EDM consists of squared Euclidean distances between a set of M points in an N -
dimensional Euclidean space. Consider a matrix X ∈ RN×M , X = [x1,x2, · · · ,xM ]
which columns represent points in N dimensional Euclidean space. The squared dis-
tance between point xi and xj is defined by

dij = ‖xi − xj‖2 . (2.9)

Expanding Eq. 2.9 yields

dij = (xi − xj)
T (xi − xj) = xT

i xi − 2xT
i xj + xT

j xj. (2.10)

If we calculate dij for every paired point in the point set X, we can construct a Euclidean
distance matrix, EDM(X) which equal to a matrix D with element dij:

EDM(X) , D = 1diag(XTX)T − 2(XTX)T + diag(XTX)1T , (2.11)

diag(A) is a column vector of the diagonal entries of A and 1 is the all ones column
vector.

Equation 2.11 reflects a very important property of the EDM that we will encounter
and exploit later in this thesis to solve the echo labeling problem. In fact, D is a
function of XTX. Since the rank of X is at most N, so does the rank of XTX. The
remaining parts in Eq. 2.11 have rank one. By rank inequalities, the rank of the sum of
matrices should less than or equal the sum of the ranks of the summands. The plausible
conclusion of this condition is stated in Theorem 1.

Theorem 1. The rank of an EDM (D) corresponding to points in an N dimensional
space is:

rank(D) 6 N + 2. (2.12)

Theorem 1 entails a fundamental matter about the dimension of the smallest affine
subspace that contains the point set, i.e., the affine dimension of the point set (X),
denoted by affdim(X). As an illustration, consider points from the point set X ∈ R3

that lie randomly on a plane in R3, the rank of the corresponding EDM is not five
but four. It means that the EDM which is generated by this point set can also be
generated from another set of points X′ ∈ R2 maintaining the same distance as in the
three dimensional case. Hence, there are infinitely many points sets able to construct
a given EDM.

Theorem 1 also states that the rank of an EDM is independent of the number of
points that generate it. In many applications, N is three or less while M can be in
thousands [10].

When we work with an EDM, we translate our problem or information, i.e., our point
set X into the distance geometry. The encoding process eliminates the information
about the absolute position and orientation of X. Intuitively, the rigid transformations
do not change the distances between the fixed points in X. This fact is easily deduced
from Equation 2.11 since (D) is actually a function of the Gram matrix XTX.

For the sake of clarity, we can show that rotations and reflections do not alter
the distances. Any rotation or reflection can be regarded as an orthogonal matrix

9



Q ∈ RN×N acting on the point set X ∈ RN×M . Thus, the Gram matrix of the rotated
point set Xr = QX is

XT
r Xr = (QX)T (QX) = XTQTQX = XTX , (2.13)

here the orthogonality of the matrix Q , QTQ = I has been used. Furthermore,
consider the point set X is translated by a vector b ∈ RN , i.e.,

Xt = X + b1T . (2.14)

Observing that diag(XT
t Xt) = diag(XTX)+2XTb +‖b‖21, one can easily demonstrate

that this translation leaves (2.11) unchanged which proves exhibit the invariance of
EDM against the rigid transformations. In summary,

EDM(QX) = EDM(X + b1T ) = EDM(X). (2.15)

The corollary of this invariance is the inability to reconstruct the absolute orientation
of the generating point set using only the distances. Different reconstruction procedures
that recover X from D lead to distinct realizations of the point set. Each of them is
differentiated by the rigid transformations.

2.3 Related Works

This section summarizes some prior works from other literature which have addressed
the problem of room geometry estimation using RIR. Most of the methods either assume
prior knowledge of the RIR or impose some conditions on the microphones and sources
position.

In [11], the author estimated the 2D shape of a room using a single RIR from a
collocated sound source and microphone. Atonacci et al [12] localized 2D reflectors
by deploying RIR from multiple microphones and a moving source, then the authors
used elliptical constraints and Hough transform to finalize the result. Furthermore, [13]
improved and extended the latest methods into 3D case.

In [14] the 3D room estimation problem is tackled with RIR between a small circular
array of microphones and an integrated source in the center of the array. The output
from this step was feed into L1 regularized Least Square (LS) method for inferring the
room geometry.

Dokmanic et al in [5] apply the properties of Euclidean Distance Matrices (EDMs)
and Multidimensional Scaling (MDS) to iteratively find the room geometry in general
3D case with a single source and five randomly placed microphones. Adopted the same
usage of EDM’s property, Jager et al [6] further recast the echo labeling problem into
finding the Maximum Independent Set (MIS) of a graph. This approach gave the same
accuracy as Dokmanic’s method at a lower computational complexity using at least 5
microphones and 2 sources. Nonetheless, both [5] and [6] will be unmanageable when
the number of microphones increases. Finally, Coutino et al [7] succeed to reduce the
computational complexity while maintained the sub-optimal performance in solving
the echo labeling problem by implementing a subspace filtering method followed by a
greedy-based rank constraint of an EDM.
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Hybrid Method for Room
Geometry Estimation Based on
The Graph Based and The
Subspace-Greedy Approach 3
This chapter introduces the improved solution of the acoustic echo sorting problem for
a shoe box shaped room. The improved solution is based on the methods proposed by
Jager [6] and Coutino [7]. The method of Jager and Coutino are called the graph based
method and the subspace-greedy method respectively. Fig. 3.1 depicts the sequence of
each method for estimating the room geometry.

(a) Block diagram of the graph based method (b) Block diagram of the subspace greedy method

Figure 3.1: Block diagram of the graph and the subspace-greedy methods

From Fig 3.1 we can see that we can further divide the echo labeling solver stage
into two steps. The first step is the pre-filtering step and the second step is the refine-
ment step. From the graph based method and the subspace greedy methods we are
provided with some options of the technique for the echo labeling solver and the source
localization procedure as listed below:

1. Echo labeling solver

(a) Pre-filtering stage

• Rank filtering

11



• Subspace filtering

(b) Refinement stage

• Graph (finding a maximum independent set)
• Greedy based with rank criterion.

2. Image source localization method

• Pollefeys method

• Least squares

Based on those options, we would examine some possible combinations that can be
constructed to find a suitable combination with higher accuracy and faster computation
time for estimating the room geometry. The detail of the combinations will be defined
in Section 3.6.

3.1 Detailed Overview of Acoustic Echo Labeling Problem

As explained in the previous chapter, section 2.1, we face the echo ambiguity problem
when determining the room boundaries (four walls, a floor, and a ceiling). Before we
deal with the methods for solving the ambiguity problem, we initiate some assumptions
that must hold :

1. A correct estimation of the RIR
From RIR data, it is assumed that the correct peak related to the TOA is always
available and extracted properly.

2. Synchronization
The microphones and sources are synchronized so that the TOAs are absolute and
directly correspond to distances.

3. Known Microphones Position
The relative microphones position are known a priori.

Converting the TOAs into the squared distances and keeping those assumptions,
then echo labeling problem can be defined as :

• Echo Labeling Problem
From an unlabeled squared distance matrix D between the M microphones and
the N sources, it is required to find a correct labeled squared distance matrix
D ∈ RM×N which the n-th column comprises the squared distances between the
M microphones and the n-th image source ∀ n = 1, ..., N. Note that each column
of D is unique so the columns in D must not share elements in common.

To demonstrate how to handle this problem, let us assume that after extracting the
RIR we have the following unlabeled squared distance matrix

D = {dmn}∀ m = 1, · · · ,M and n = 1, · · · , N . (3.1)

12



Figure 3.2: Ambiguity in the echoes that received by the microphones

Each dmn resembles the squared distance between the m-th microphone and the n-th
image source. As the order of n is unsorted ,i.e., the image source responsible for the
echo is obscure, all possible echoes combination have to be generated and examined in
order to find the correct group of echoes at different microphones that belongs to the
same image source. This process produces a big M ×NM unlabeled squared distance
matrix, D̃.

The number of columns in D̃ is NM . Figure 3.2 shows a small example when the
number of microphones is 3 and the number of image sources (walls) is 2. Factually, the
three microphones have different echo arrival sequence so we do not know the precise
order of echoes received in the microphones correspond to the green or the orange wall.
Hence, all 8 (23)possible combinations of squared distance (D̃) must be inspected to
obtain the correct echo combination,

D̃ =

 d11 d11 d11 d11 d12 d12 d12 d12
d21 d21 d22 d22 d21 d21 d22 d22
d31 d32 d31 d32 d31 d32 d31 d32

 ∈ RM×NM

. (3.2)

This condition reveals that the number of columns in D̃ will increase exponentially
as the number of microphones grows. Thus an algorithm that can reduce our column
search space is necessary. We call this initial step a pre-filtering step. In the presence
of noise, an additional step to refine the previous step’s output is unavoidable since the
pre-filtering step cannot directly give us the correct D ∈ RM×N matrix.

3.2 Preliminary Equations and Relations

In this section the fundamental equation and relation will be featured. Assume we
have a shoe box shaped room with M microphones and N sources randomly distributed
inside a room with position in Cartesian coordinate defined by rm = [xm, ym, zm]T ∈ R3
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and sn = [Xn, Yn, Zn]T ∈ R3 respectively. The squared distance between the (m,n)-th
microphone and source pair can be formulated as :

dm,n = (xm −Xn)2 + (ym − Yn)2 + (zm − Zn)2 . (3.3)

Expressed in vector notation, Eq. A.1 becomes

dm,n = RT
mSn , (3.4)

where

Rm = [rTmrm − 2xm − 2ym − 2zm 1]T ∈ R5×1 , (3.5)

Sn = [1 Xn Yn Zn sTnsn] ∈ R5×1 . (3.6)

Stacking up all the (m,n) pair squared distance dm,n yields a squared distance matrix
D ∈ RM×N and Eq. A.2 can be expressed in a matrix form as

RTS = D ∈ RM×N , (3.7)

where R = [R1, ...,RM ] and S = [S1, ...,SN ] are the microphone and source position
matrices according to Eq. 3.5 and 3.6.

3.3 Pre-filtering Step

The input for this step is all possible column combinations of the squared distance
data (D̃ ∈ RM×NM

). The first state-of-the-art method proposed by Jager et al. in [6]
used a method based on the EDM rank property of the squared distance matrix while
Coutino et al. in [7] exploited the subspace relation of the squared distance data and
a microphone position matrix (R).

3.3.1 Rank Filtering

Assuming the knowledge of the microphones position (r1, · · · , rm), an EDM (E) can be
built using the squared Euclidean distance between all pairs of the microphones (drirj),

E =


dr1r1 dr1r2 · · · dr1rM
dr2r1 dr2r2 · · · dr2rM

...
...

. . .
...

drMr1 drMr2 · · · drMrM

 ∈ RM×M . (3.8)

According to Theorem 1 in Section 2.1.4, the rank of an EDM, E with affdim(E) = 3

is at most 5. By appending each column of D̃ to E one column at a time, we augment
the E and form an Ẽ,

Ẽ =

[
E D̃c

D̃T
c 0

]
∈ R(M+1)×(M+1) , (3.9)

D̃c ∈ RM×1 denotes the c-th column of D̃. Then we impose the rank constraint on
Ẽ to check whether each column of D̃ is feasible as a true echo combination. If E is
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augmented with the correct echoes combination, rank(Ẽ) should be ≤ 5. However, in
a real situation where erroneous TOA estimation is inevitable, this rank test always
fails and we get an empty set. To overcome this problem, Jager et al. in [6] proposed

a tolerance called ε. Instead of rank(Ẽ), now we will consider:

rank(Ẽ, ε) = min
||Ẽ−X||2≤ε

rank(X) . (3.10)

This condition filters out singular values from the SVD of Ẽ which is greater than ε
and generates a set of column indexes given by

Cε = {c : rank(Ẽ, ε) ≤ 5} . (3.11)

The output of this step is a matrix of echo combination candidates which contains the
column of D̃ listed in Cε (Eq.3.12) :

D̃Cε ∈ RM×|Cε| . (3.12)

In the case of noiseless measurement data, D̃Cε provides exactly N columns correspond
to the true echo combination. Unfortunately, in practice this is unrealistic. Thus
|Cε| � N in practice.

3.3.2 Subspace Based Method

The subspace based method is an alternative method for solving echo labeling problem
presented by [7] which has a similar function as rank filtering. It is able to perfectly

select the correct columns of D̃ under a noise free condition.
Recall the microphone position matrix (R) from Eq. A.5, the singular value decom-

position (SVD) of this matrix is :

R = UΣVT . (3.13)

From here we can calculate a projection matrix which projects any vector in the null
space of R (ker(R)) denoted as ΠN (R),

ΠN (R) = IM − ṼṼT , (3.14)

where Ṽ ∈ RM×5 is the economy size V matrix from the SVD of R. Applying ΠN (R)

to D and R it can be shown that

ΠN (R)D = ΠN (R)R
TS = 0 , (3.15)

which can be employed to estimate D from D̃. This projection matrix has an interesting
property

‖ΠN (R)‖2 = 1 , (3.16)

which implies that there is no amplification errors, i.e.,

‖ΠN (R)D + N‖2 = ‖ΠN (R)(R
TS + N)‖2 (3.17)

= ‖ΠN (R)N‖2 (3.18)

≤ ‖N‖2 (3.19)

= σmax(N) , (3.20)
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where σmax(N) is the maximum singular value of the noise matrix N. This fact makes

the application of projection matrix useful when the elements of D̃ are contaminated
with noise.

To appreciate how the subspace filtering works, let us define a function for a pro-
jection of D̃ into the nullspace of R:

f(c) = ‖ΠN (R)d̃c‖22 ∀ c ∈ [1, · · · , NM ] , (3.21)

where d̃c is the c-th column vector of D̃. Using the property in Eq. 3.15, we can select
the subset of feasible columns

C = {c : f(c) = 0} , (3.22)

and the candidate echoes combinations which retain the column specified by C is given
by

D̃C ∈ RM×|C| . (3.23)

However, in the noisy condition the set C in Eq.3.22 turns empty. To deal with this
issue, Coutino et al in [7] introduced an upper bound (κc), then Eq.3.22 is rewritten as

C = {c : f(c) ≤ κc} , (3.24)

κc = 4 γ σ2
N ‖d̃

◦ 1
2

c ‖22, γ ≥ 1 . (3.25)

Complete derivation of κc can be found in [7]. The accuracy of the method for estimat-
ing the TOA is considered to be known as well as the noise power σ2

N . For simplicity,

the authors of [7] presume that all columns in D̃ are subject to the same noise level σ2
N .

The upper bound κc raises the same problem about overestimation of |C|. Therefore,
the following section will explain the next step to refine this intermediate result.

3.4 Refinement Step

Both pre-filtering steps always end up with an overestimated number of squared dis-
tance columns (|Cε| and |C| � N). Consequently, another step is required to select the
appropriate columns. There are two possible methods that can be implemented: (i) the
graph based method, (ii) the greedy based rank criterion, as we will see in more detail
in Section 3.4.1 and 3.4.2. The basic idea behind the graph and the greedy method is
the same, i.e., the columns in D must not share elements in common.

3.4.1 Graph Based (Maximum Independent Set)

The input of this step is D̃Cε with |Cε| � N . To find the correct echo combination,
Jager et al.[6] formulated the problem as a graph problem of finding the maximum

independent sets (MISs) from D̃Cε . This method relies on the fact that the Euclidean
squared distances between the image sources and microphones are unique.

First, each column in D̃Cε is modeled as a node (V ) in an undirected graph G(V,E).
An edge (E) between two nodes will be defined if their corresponding columns share
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Figure 3.3: Echo combinations in D̃Cε as nodes in a graph. The set of blue nodes is the
(maximum) independent set.

one or more elements in common. Then, the algorithm will search a subset of all echo
combinations (nodes) that do not share connections in the graph. Suppose in 2D there

are three microphones and four walls, and assume that D̃Cε is given by :

D̃Cε =

 8 9 9 9 10 10 12 12
18 18 19 20 20 19 22 22
28 29 29 29 31 29 29 32

 . (3.26)

From Eq. 3.26, we need to find a set with four columns (ci ∈ D̃Cε) that represent the
correct echo combination. By inspection, it is clearly seen that an independent set of
(c1, c3, c5, c8) is the required MIS since this is the only set with four columns that do
not have common elements. Figure 3.3 shows the graph representation of Eq. 3.26
where the blue nodes describe the independent set.

In graph theory, a set of nodes with no adjacency between all possible node pair
is called an independent set. There can be many independent sets in a graph. By
definition, each subset of an independent set is also an independent set. A maximal
independent set is a set such that adding any other node forces the set to have an edge
and makes the set unqualified as an independent set. The size of an independent set is
the number of nodes in that set. An independent set with the largest possible size in
a graph is called a maximum independent set (MIS). Thus, the graph based algorithm
tries to find the MIS (SG

max) from G(V,E). In general, there can be more than one
MIS (|SG

max| > 1) in a graph and we need to find all of them. One way to do this is by
listing all maximal independent sets which leads to an NP-hard problem. As a result,
an additional step is required to choose the correct set which corresponds to the correct
echoes combination.

3.4.2 Greedy with Rank Criterion

Coutino et al. in [7] came with the greedy strategy which adopts the rank test procedure

of the augmented EDM, Ẽ (Section 3.3.1) and the key observation that two columns
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from D must not share elements in common came with the greedy strategy. This
algorithm acts as a substitute for the graph based method to avoid the NP-hard problem
of an exhaustive search through all maximal independent sets.

Following the scheme in [7], the subspace pre-filtering step produces the truncated

D̃ matrix, i.e. D̃C which already sorted in an ascending fashion based on the functional
value (f(c)) defined in Eq.3.21. This matrix acts as an input for the greedy procedure.
Subsequently, the greedy procedure will do the rank test (Section 3.3.1) using the first

column of D̃C, if this column passes the test, then it will be kept and the algorithm
will continue to do the rank test using the second column. To avoid common elements,
an additional test which compares the elements of the second column with the column
that already kept is also applied. If the second column passes both tests, it will be
saved. If not, then the algorithm picks the next in line column of D̃C and redo the
same procedure. This process ends when the number of columns that are saved equals
to N (the number of walls). In this way, the greedy procedure always delivers a unique

set of the squared Euclidean distance D̂ ∈ RM×N .

3.5 Source Position Localization

The output of the graph based method is the maximum independent sets (SG
max). Each

maximum independent set contains echo combinations that do not have elements in
common. If SG

max consists of one set only, this set is the correct echo combination of
which we can infer the room geometry using simple least squares (Eq. 3.27). However,
if SG

max contains more than one independent set, an additional method to decide the
correct set is required. On the other hand, the output of the greedy procedure always
gives a unique set so we can apply the least squares to estimate the (image) sources
position, i.e.,

Ŝ = (RT )†D , (3.27)

† means the pseudoinverse. To choose the correct set in case |SG
max| > 1, Jager et al.

in [6] utilized the source localization algorithm proposed by Pollefeys [15]. Once the
image source positions are obtained, the room geometry can be reconstructed using
straightforward geometrical methods as explained in Chapter 2 (Section 2.1.3).

3.5.1 Pollefey’s method

The Pollefeys’ method is able to localize both microphones and sources position up to
unitary transforms (rotation, reflection) and the translation given the correct labeled
set of distance data. This method works based on the rank-5 factorization of D. The
detailed explanation of this method can be found in Appendix A. Holding the prior
knowledge of microphone location, we can use it as a tool to check whether the source
localization results are correct or not by comparing the estimated microphones’ location
with the true microphone location using Procrustes analysis [16].

Pollefeys’ method required at least ten sources and five microphones. Using the
image source method which models the reflections as virtual sources, we need to have
at least two real sources that yield 12 image sources in the case of a 3D shoe box room
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to fulfill the requirement. Thus, Pollefeys’ method forces us to provide at least two
non-collocated real sources (N ≥ 2). Given N = 2 , the input data for the Pollefeys’
method can be constructed as

∆ = [DS E1 E2] , (3.28)

where DS ∈ RM×N is the squared distance matrix between M microphones to the N
real sources, while E1 ∈ SG1

max and E2 ∈ SG2
max are a subset of the MIS from the first

real source and the second real source respectively. Both E1 and E2 are ∈ RM×6 which
represent the squared distance matrix between the M microphones and six virtual
sources with respect to the first and the second real sources. In case of N > 2, all
combinations from the sets in {SG1

max,SG2
max, · · · ,SGN

max} have to be created and acted as
the Pollefeys input

∆ = [DS Ei Ej] , (3.29)

where 1 ≤ i, j ≤ N , i 6= j, so in total we can make
(
N
2

)
combinations.

3.6 Comparison of The Graph Based Method and The
Subspace-Greedy Method

Recall Figure 3.1, Table 3.1 provides the comparison of the computational complexity
for the graph based and the subspace greedy method. It reveals that the graph based
method has a higher computational cost than the subspace-greedy approach. This
condition is mainly caused by the rank filtering step since we need to redo the SVD
NM times for each augmented EDM. The next contributor to the slowness of the graph
based method is the graph technique for finding the MIS. If the threshold (ε) in the

rank filtering step is quite loose, a lot of columns from D̃ are passed, and the graph
algorithm takes a long time for discovering the MIS. The last contributor comes from
the Pollefeys’ algorithm particularly when the cardinality of the MIS is large (more
pairs are needed to be checked).

Graph based Subspace - greedy

Step Complexity Step Complexity
Rank filter NMO((M + 1)3) Subspace filter NMO(M2)

graph (MIS) O(20.276|Cε|) greedy(rank) |C|O((M + 1)3)

Pollefeys + Procrustes
[ ∏N

i=1 |SGi
max

]
O(49MN2) least squares O(NM2)

Table 3.1: Computational complexity comparison of each step in the graph based and the
subspace greedy methods [1].

Table 3.2 summarizes the advantage(s) and disadvantage(s) of both the graph based
and the subspace greedy methods. In this chapter, we aim to improve the drawback
of the graph based method. First, we eliminate the minimum source requirement of
the graph based method by exchanging the Pollefeys’ algorithm with the least squares,
after that we compare the outcome of the Pollefeys and the least squares. Furthermore,
we want to avoid solving the graph problem of finding the MIS which is an NP-hard
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Method Plus Minus

Graph based -have the optimal accuracy -high computational cost
-must provide at least two real sources

Subspace-greedy -low computational cost -give a suboptimal performance

-gives a unique D̂
-works with a single source

Table 3.2: The plus and minus of graph based and subspace-greedy method.

problem in the refinement step of the echo labeling solver so we follow the greedy
procedure that was described in Section 3.4.2 but we remove the rank test part because
the graph based method has already applied the rank test in the pre-filtering stage.
The next section will provide the simulation results of these actions which demonstrate
the first contribution of this thesis.

3.7 Experimental Results

The results from a set of simulations are displayed to evaluate the proposed changes in
the graph based method. The performance of the result is assessed in terms of accuracy
and computational speed against the number of microphones, the number of sources,
and the noise standard deviation of the distance data. For each evaluation, a set of 100
simulations were performed using a synthetic distance data between the microphones
and the image sources that are perturbed with the white Gaussian noise ∼ N (0, σ2)
to simulate uncertainties in the TOA estimation. The sources and microphones are
randomly placed inside a shoe box shaped room with a constant dimension (8m×6m×
5m). The simulations were run in Matlab.

To quantify the accuracy of each method, the Frobenius norm of the difference
between the estimated and the true vertices position in 2D was used (Eq. 3.30),

Error(θ̂) =
1

N

∑
i

‖θ̂i − θi‖F , i = 1, 2, · · · , N , (3.30)

where θi and θ̂i represents the true room vertices position and the estimated vertices
position for the i-th experiment respectively.

3.7.1 Comparison between Pollefeys and the least squares as the image
source localization method of the graph based method

Figure 3.4 illustrated the block diagram of the experiment that will be done to compare
Pollefeys and the least square method which serve as the source localization procedure
of the graph based method. The outcome of the echo labeling solver block is an MIS
(SG

max) but as already stated earlier in Section 3.4.1, the graph technique does not
guarantee the uniqueness of the MIS (|SG

max| > 1). In the original version of the
graph based method [6], this non unique MIS problem is handled by always taking the
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Figure 3.4: The block diagram for the first experiment

best paired MIS (Ei ,Ej), i.e., the paired set that produces the smallest microphone
reconstruction error. However, for the least square method if |SG

max| > 1 we cannot
apply the same checking procedure since the least squares directly gives the source’s
position. Hence in the experiment, the least square method will always take the first
set of SG

max as its input. To make a fair comparison We also check the performance of
the Pollefeys method if the first MIS is employed as its input. Following Figure 3.4, we
will compare the performance of these three methods: Pollefey first (PoFirst), Pollefey
best (PoBest), and least squares in terms of accuracy and computational time. The
experiments were done with the following setup :

1. The number of microphones (N) is varied, N = 6, σ = 0.001m.

2. The number of sources (M)is varied, M = 6, σ = 0.001m.

3. The noise standard deviation (σ) is varied, M = 6, N = 6.

3.7.1.1 Variation in the number of microphones

For these simulations, we consider the case ofN = 6 sources distributed randomly inside
a room and the noise standard deviation (σ) = 1 mm. The number of microphones is
varied from five to eight. The minimum number of microphones is set to five to follow
the Pollefeys’ method requirement. In [6], the author stated that the computational
time of the graph based method become intractable when M > 7 due to the echo
labeling solver part. Since here we deal with the source localization procedure, we are
curious how it will perform in case M = 8.

The graph in Fig. 3.5a suggests that the vertex estimation error decreases as the
number of microphones increases. This behavior is logical since adding more micro-
phones assures that both the matrix R and the EDM of microphone paired distance
(E) have rank 5. Consequently, the accuracy of the three methods is improved. More-
over, Fig. 3.5a clearly shows that the accuracy of PoFirst (red line) is slightly worse
than PoBest with the difference ±0.01m while the least square gives the lowest vertex
estimation error.
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Figure 3.5: The number of microphones varied, N = 6, σ = 0.001

In terms of computational cost, raising the number of microphones has no significant
effect for PoFirst and the least square (red and yellow line in Fig. 3.5b), whereas for
PoBest the increment of M increased the computational time by 0.86 second (from
M = 5 to M = 8). Fig.3.5b also supports the superiority of the least square method
against Pollefeys. Unfortunately, the reduced computational time that we gain by
substituting Pollefeys with the least squares in the source localization procedure did
not play an important role in minimizing the total computational time of the graph
based method because most of the computational time is occupied by the echo labeling
solver part (rank-graph) as illustrated by the purple line in Fig. 3.5b. The reason

behind this condition is the growth of the number of columns in D̃ that is needed to
be checked increases exponentially.

3.7.1.2 Variation in the number of Sources

The number of microphones (M) was set to 6 and the noise standard deviation (σ) =
1 mm. The results are depicted in Figure 3.6.

Figure 3.6a shows that both Pollefey and least square vertex estimation error de-
crease as the number of sources increases. The noticeable decrease occurs when N
goes from 2 to 4. For Pollefeys, the gradual decrement still happens as N grows. This
condition occurs because by adding more sources, the number of paired sources will
increase and will compensate the paired source which cannot work together. On the
other hand, after N = 4 the least squares has given a stable behavior since the least
square method does not depend on the paired combination, but on the pseudo inverse
of the microphone position matrix (R). The notable decrement for all methods when
N increases from 2 to 4 happens because the algorithm for estimating the vertex relies
on minimum two wall points. If the noise is very bad, then the estimation of image
source position corresponds to one of the sources will be wrong, then it will affect the
vertex estimation result. However, when N increases, the number of wall points will
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Figure 3.6: The number of sources varied

also increase. Thus, another wall points can remedy the bad point and help the vertex
estimation result.

Figure 3.6 displays the superiority of the least square method compared to Pollefeys
method in terms of accuracy and computational cost. Moreover, the accuracy that
achieved by PoBest and PoFirst is the same. It means that in most of the cases, the
first independent set corresponds to the true echo combination. The reason behind this
phenomenon is that the columns in D̃ have been sorted based on the sixth singular
value of the augmented inter-microphones EDM in an ascending order before entering
the graph method. This sorting makes the first MIS contains the squared distance
columns that produce smallest 6-th singular of the augmented EDM.

Fig. 3.6b provides the same conclusion as in the previous section, the computational
cost for least square always lower than the Pollefeys since the least square does not need
to build a pair input combination also it just involves the inversion of a matrix and
matrix multiplication. In this experiment, since most of the sources produce a unique
MIS then the computational time between PoFirst and PoBest is almost overlap.

3.7.1.3 Variation in The Distance Data Uncertainty

Intuitively, increasing the noise standard deviation will increase the vertex estimation
error of the algorithm as depicted in Fig. 3.7. Note that in this case the accuracy of
PoBest and PoFirst is diverged (the blue and red line in Fig. 3.7a) when the noise
standard deviation upsurge. An interesting behavior is shown in the computational
time curve (Figure 3.7b). The gap between the computational time of PoBest and the
rank-graph filtering becomes closer as the noise increases because the number of non
unique MIS from each source increases (|SGm

max| � 1,m = 1, 2, · · · ,M), then a lot of
paired source combinations have to be tested by PoBest.
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Figure 3.7: The noise standard deviation varied

3.7.2 Comparison of Graph vs Greedy as The Refinement Step of The
Graph Based Method

In this part, we exchange the refinement technique of finding the MIS in the graph based
method with the greedy approach. Furthermore, here we adopt the greedy procedure,
but leave the rank criterion since the pre-filtering step of the graph based method
already used the rank test to filter the column in D̃. Thus, all the filtered columns
(D̃Cε) have satisfied the rank criterion. Consequently, the greedy procedure just aims to

find a set of six columns from D̃Cε with no elements in common and produce a unique
set of D so there is no difference between PoBest and PoFirst. The block diagram
of the experiment that will be done is depicted in Fig. 3.8. It is obvious from Fig.
3.8 that we will have six lines in the final curve since we implement two echo labeling
solver technique and three source localization method. The same set up as described
in Section 3.7.1 was employed for the experiments.

Figure 3.8: Block diagram of the second experiment.
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In Fig. 3.9 the error and computation time of all methods are shown for the different
number of microphones. At M = 5, the greedy procedure cannot perform well (most
of the time it picks the wrong column) so we decided to start with M = 6.
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Figure 3.9: Comparison of the greedy and the graph technique as the refinement step of the
graph based method when M is varied, N = 6 , σ = 1mm.

Starting with M = 6 the performance of both source localization methods after
the greedy procedure (the dotted line) is almost the same as after the graph based
procedure (the solid line).

2 3 4 5 6 7 8

Number of Sources

10
-2

10
-1

10
0

V
e
rt

e
x
 E

rr
o
r 

(m
)

R-Gra-PoBest

R-Gra-PoFirst

R-Gra-LS

R-Gree-PoBest

R-Gree-PoFirst

R-Gree-LS

(a) Vertex estimation error VS number of sources

2 3 4 5 6 7 8

Number of Sources

10
-3

10
-2

10
-1

10
0

10
1

T
im

e
 (

s)

R-Gra-PoBest

R-Gra-PoFirst

R-Gra-LS

R-Graph

R-Greedy

R-Gree-PoBest

R-Gree-PoFirst

R-Gree-LS

(b) Computational time VS number of sources

Figure 3.10: Comparison of the greedy and the graph technique as the refinement step of the
graph based method when N is varied, M = 6 , σ = 1mm.

For the computational time, the source localization techniques preceded by the
greedy procedure are faster than the source localization techniques preceded by the
graph method except for the least square method. The least square method gives the
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same computation time, regardless of which echo labeling solver was used. From Fig.
3.9b, we can see the time that is consumed for computing source localization method
is smaller than the time needed for the echo labeling solver. This statement is also
supported by Fig. 3.10b and 3.12.

Fig. 3.12 indicates that most of the total computational time is occupied by the
echo labeling solver part. As we can see that the curve in Fig. 3.12b has the same
shape as the curve in Fig. 3.12a.
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Figure 3.11: Comparison of the greedy and graph method as the refinement step of the graph
based method when σ is varied, M = 6 , N = 6.
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3.8 Summary

From the previous section, some important points are derived :

1. Based on Jager’s and Coutino’s methods we can develop more combination meth-
ods of echo labeling solver and source localization procedure:

(a) rank - graph - Pollefeys (the original version of graph based method)

(b) rank - graph - least square

(c) rank - greedy - Pollefeys

(d) rank - greedy - least square

(e) subspace - greedy - least square (the original version of the subspace greedy
method)

(f) subspace - greedy - Pollefeys

(g) subspace - graph - least square

(h) subspace - graph - Pollefeys

In this chapter, our experiments are focused on the first four combinations since
the last four combinations had been examined in [7].

2. From the first experiment which compares Pollefeys and the least squares (meth-
ods a and b), it can be concluded that the performance of the least square surpasses
Pollefeys in both accuracy and computational time.

3. The second experiment reveals that the fourth method (d) in point 1 is the best
combination which provides lower vertex estimation error although, in terms of
computational time, the improvement is insignificant. Table 3.3 shows the result
for the experiment in this chapter for M = 6, N = 6, σ = 0.001, and roomsize =
[8 6 5].

Method Vertex Estimation Error (m) Computational Time (s)

Rank-Graph-PoBest 0.022 6.25

Rank-Graph-PoFirst 0.032 6.035

Rank-Graph-LS 0.0095 6.009

Rank-Greedy-Pollefeys 0.033 4.522

Rank-Greedy-LS 0.0094 4.509

Table 3.3: The final result of both experiment for M = 6, N = 6, σ = 0.001, and roomsize =
[8 6 5]
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Implementation of the Hybrid
Methods on The Sphere’s
Surface Microphones
Constellation 4
The aim of this chapter is to check whether the earlier methods derived in Chapter 3
are feasible for estimating the room geometry with a new sphere’s surface microphones
constellation and to find a solution for problems that arise due to the close microphones
arrangement.

4.1 Microphones Constellation

As mentioned before in Chapter 1, measuring the room geometry with movable and
small microphones configurations is preferable especially for applications in robot nav-
igation and virtual reality games. Driven by these reasons, we choose to put the mi-
crophones randomly on the surface of a small sphere with a radius that resembles the
head of a person or a robot on average (±0.10m). Figure 4.1 displays one possible
realization of the microphones configuration that will be used throughout this chapter.
For the source position, we will place it randomly in the room. We will also stick with
a shoe box shaped room as the geometry that we will estimate.

Figure 4.1: A realization of microphones configuration on the surface of a sphere with radius
0.10 m

For clarity purpose, there are important pre-conditions that we assume:

1. Availability of the room impulse response.
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2. The microphones position is known a priori.

3. The sources are not collocated with the microphones.

4. The influence of the head and shoulders of a person or a robot on the RIR is
ignored.

5. There is no occlusion between the sources and microphones.

Based on these points, we did the simulation in this chapter. The next section will
introduce the problem that emerges due to the closed microphones configuration and
its solution.

4.2 A Problem due to The Sphere’s surface Microphones Con-
figuration

Both the graph based method[6] and the greedy subspace method[7] depends on the R
(microphones position) matrix in their source position localization technique. In [6], the
adopted Pollefeys method uses rank 5 approximation (in 3D) on the squared distance
estimation matrix (D) while the least square method in [7] multiplies the pseudoinverse
of the R matrix to the D matrix. These reliances indicate that if the R matrix is not
invertible, it will affect the accuracy of the sources’ position estimation result (Ŝ).

Unlike the previous chapter where microphones are randomly placed inside a room,
a close microphones arrangement increases the microphones position interdependence
and reduces the information that is contained in the R matrix. Basically, it will make
all singular values of R decrease. The largest decrement is experienced by the smallest
singular values of R. As a result, the rank of the R matrix will reduce. In a three-
dimensional case where the microphones are put on the surface of a sphere, the rank
of the R matrix and the squared EDM of the inter-microphones distance becomes 4.
This fact introduces a low rank dimension problem which is especially harmful to the
image source localization method because both Pollefeys and the least squares depend
on the R matrix.

The Pollefeys method is based on the rank 5 approximation, the rank deficiency in
the R matrix causes a failure in the Cholesky factorization step of the Pollefeys method
(see Appendix A) which leads to a wrong estimation of the source position matrix (Ŝ).
For the least squares, since the 5th singular value of R matrix is almost zero, its inverse
will blow up the solution and give incorrect (Ŝ) matrix. Although we face the same
problem in both methods, we choose to resolve the problem in the least squares because
the result in Chapter 3 clearly shows that the least squares has better accuracy than
the Pollefeys.
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4.3 Improving The Least Squares as The Image Sources Lo-
calization Technique

The original least square method results in a false estimation of the image sources
position because of non invertible R matrix. Recall the structure of R and S matrix,

RT =


rT1 r1 −2x1 −2y1 −2z1 1
rT2 r2 −2x2 −2y2 −2z2 1

...
...

...
...

...
rTmrm −2xm −2ym −2zm 1

 ∈ RM×5, (4.1)

S =


1 1 · · · · · · 1
x1 x2 · · · · · · xn
y1 y2 · · · · · · yn
z1 z2 · · · · · · zn

sT1 s1 sT2 s2 · · · · · · sTnsn

 ∈ R5×N , (4.2)

and their relation with the squared distance data matrix (D):

RTS = D ∈ RM×N . (4.3)

Thanks to the special structure that the matrix S (Eq.4.2) has, its first row is the all
ones vector (1 ∈ R1×N), we can modify the original least square problem to the equality
constraint least square problem by transforming that special structure into an equality
constraint. The equality constraint forces the first row of our estimated S matrix (Ŝ)
to be the all ones vector ([1 , 1 , · · · , 1]T ). The new formulated problem is given by

minimize
k̂

‖RT k̂− d̂‖22

subject to aT k̂ = 1,
(4.4)

where RT is the microphones position matrix, k̂ is a vector that we want to estimate,
k̂ = [1 x̂1 ŷ1 ẑ1 ŝTn ŝn]T , d̂ is a column from the estimated true echoes combination

matrix, D̂ (the output of the echo labeling solver block), and a is the [1 0 0 0 0]T

vector.
The minimization problem in Eq. 4.4 is a convex problem with an equality constraint

so it can be solved by applying Newton’s iteration as described in [17]. Although the
Newton iteration can solve the problem, the estimation result depends on the selected
starting point. If the chosen starting point is poor, the outcome might be imprecise.
To offer a good initial point for Newton’s iteration, we use an approximate solution of
the problem in Eq.4.4 based on the unconstrained least squares problem:

minimize
k̂

∥∥∥∥∥
(

RT

ωa

)
k̂−

(
d̂

ω1

)∥∥∥∥∥
2

2

, (4.5)

for large weight ω (ω � 1). This problem is equal to the weighted least squares (WLS)
problem [18],

minimize
k̂

∥∥∥Dω(Fk̂− g)
∥∥∥2
2
, (4.6)
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Figure 4.2: The true S matrix (the first square), its estimation result using WLS (the second
square), and the Newton iteration (the third square).

where

F =

(
R̂T

a

)
∈ R(M+p)×5, g =

(
d̂

1

)
∈ R(M+p),

and

Dω = diag(1, · · · , 1︸ ︷︷ ︸
M

, ω, · · · , ω︸ ︷︷ ︸
p

).

We just have one linear constraint so p is equal to one, but in general p ≥ 1.
When the output of Eq.4.5 serves as an initial point for the Newton iteration, the

point does not change anymore (Figure 4.2). In this case we set ω = 1000. This means
the approximated solution from the WLS already gave the optimum solution. These
results reveal that the WLS can be used as an alternative for the Newton iteration to
localize the image sources position and fix our low dimension problem that is caused
by the new microphones configuration. In the rest of this chapter, the WLS will be
utilized as the image sources position localization.

4.4 Variance Filter

The new microphone configuration on the sphere’s surface raises the low dimension
problem which affects the image source localization method. On the other hand, it
also brings an advantage that is useful in reducing the computational cost for estimat-
ing the room geometry. Unlike in the random microphones configuration where the
squared distances between a particular image source to the microphones vary a lot,
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Figure 4.3: The squared distance (D) matrix between the microphones and the image
sources for the random and the sphere’s surface microphones configuration when M = 6,
N = 6, and room size = [8 6 5]m. The position of the true source is the same for both

microphones configurations.

the sphere’s surface microphones configuration with small radius shrinks this variabil-
ity of the squared distance. In other words, the new microphones constellation reduce
the variance between elements in each column of the squared distance matrix (D).
The squared distance matrix (D) for both random and sphere’s surface microphones
configuration with radius 10 cm are depicted in Fig.4.3. Note that, for the random mi-
crophones configuration, the difference between elements in a column of the D matrix
is very large while for the sphere’s surface microphones configuration the difference is
very small.

Using the above observation, we can determine roughly which columns in the can-
didate of the squared distance combination, D̃ that do not belong to the true echoes
combination beforehand. In this way, we can equip the echo labeling solver step with
an initial step called variance filter as illustrated in the second box of Fig.4.4. The
implementation of this variance filter is by introducing a variance threshold called v,
the output of this filter is all columns of D̃ that have variance smaller than v called D̃v.
The size of v depends on the radius of the sphere. The larger the radius, the larger v
will be.

4.5 Implementation

Recall from Chapter 3 about the echo labeling solver, Figure 4.5 displays all possible
techniques (original and combination) provided by Jager’s and Coutino’s methods for
estimating the room geometry. In the previous chapter, we already saw their perfor-
mance for the random microphones configuration. Now, holding the pre-conditions that
were mentioned in Section 4.1 we will test their performance for the new microphones
configuration on the sphere’s surface.

The room that will be used for this simulation is a shoe box shaped room with
dimension 8m× 6m× 5m. The performance of the five methods are assessed based on
the vertex estimation result and the computational cost of 100 experiments with the
following set up:

1. The number of sources (N) is varied, M = 6, σ = 0.001m, sphere radius (r =
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Figure 4.4: The block diagram of estimating the image source position for the random
microphones configuration (top box) and the sphere’s surface microphones configuration

(bottom box)

Figure 4.5: All possible combinations of the echo labeling solver that will be implemented
for estimating the room geometry with the sphere’s surface microphones configuration.

10cm).

2. The number of microphones (M)is varied, N = 6, σ = 0.001m, sphere radius
(r = 10cm).

3. The radius of the sphere (r) is varied, M = 6, N = 6, σ = 0.001m.

Close distance microphones arrangement makes the echo labeling solver algorithms
more sensitive towards the uncertainty in the distance data (σ). A small increment
in the noise standard deviation (σ) affects the squared distance data and leads the

algorithm to pick the wrong columns of D̃. This happens especially when the sphere
radius is smaller than 10 cm. Hence, in this experiment, we will fix the (σ) to 0.001m.
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Figure 4.6: The number of sources varied

4.5.1 The Number of Sources

Figure 4.6 depicts the performance of the five methods in terms of accuracy (Fig. 4.6a)
and computational time (Fig. 4.6b). The estimation accuracy improves as the number
of sources increases but the improvement is insignificant after N > 4. The abrupt
decrement of vertex estimation error takes place when N increases from 3 to 4. This
situation takes place because the vertex estimation method needs at least two wall
points from two sources. When N = 3, if the image sources estimation result from two
sources are bad, we are left with one valid wall point from one source. Thus, the vertex
estimation method gives a wrong result. If N = 4 we have more wall points that can
produce better vertex estimation result. The increment in the computational time is
linear with the number of sources due to the time needed for running the algorithm for
each source.

The five algorithms for solving echo labeling problem (Fig.4.5) have a similar
achievement in terms of accuracy as illustrated in Fig.4.6a. On the contrary, not all
combination methods have the same computational time. Fig. 4.6b shows that the
lowest computational time was held by the 5th algorithm (e) while the highest was the
3rd algorithm (c). We can infer that the algorithms which contain the graph method
as their refinement step have higher computational time than the algorithms with the
greedy procedure. This condition also happens for the algorithms that use rank filtering
as their pre-filtering step. These behaviors are in line with the result of Table 3.1.

4.5.2 The Number of Microphones

Figure 4.7a illustrates that the vertex estimation error decreases as the number of
microphones increases. Intuitively, adding the number of microphones will improve the
vertex estimation error. unfortunately, due to the exponential increment in the number
of columns in the squared distance matrix (D̃), we face a memory limitation problem
in Matlab to perform the simulation. We can overcome this problem by dividing the
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D̃ matrix into smaller matrices with fewer columns, then pass it to the next algorithm
block by block. However, this process still consumes a lot of time. To prove our first
guess about the behavior of the vertex estimation curve when M increase, we did a
simulation which bypasses the echo labeling solver block and assumed that we have the
correct echoes combination (the D matrix), then directly use it to estimate the room
geometry. The simulation result is displayed in Fig. 4.8. This curve does not only
support our intuition but also provides another fact that the estimation error does not
have much improvement after M = 8.
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Figure 4.8: The vertex estimation error VS the number of microphones when
N = 6, σ = 0.001m, r = 10cm with the apriori knowledge of the squared distance data

matrix.
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The vertex estimation error for the five algorithms is the same while the compu-
tational time curve gives a steep increase especially for algorithm b,c,e. However, as
the number of microphones reaches 8, the computational time curve for all algorithms
are met because the number of columns in D̃ is very large (in this case 68 columns).
Therefore, most of the time is consumed in the variance filter step and the time for
other steps become negligible.

4.5.3 The Radius of The Sphere

Intuitively, as the radius of the sphere becomes large, the inter-dependency between the
microphones decreases and the condition of R matrix is better (the smallest singular
value climb up so the R matrix is close to a full rank matrix). As a result, the vertex
estimation error declines(Fig.4.9a). For the computational time, it grows slowly (Fig.
4.9b). The large increment takes place when the radius goes up from 5cm to 10 cm. This
occurs because the initial threshold for the variance filter (v) and the rank filter (ε) at r
= 5cm are quite small. When r changes to 10cm, the previous initial threshold becomes
too small and cannot produce the expected result, so the algorithm adaptively increases
the threshold until it reaches the expected result and costs more time to complete.

0.05 0.1 0.15 0.2

Sphere Radius(m)

0

0.1

0.2

0.3

0.4

0.5

V
er

te
x

 E
rr

o
r 

(m
)

R-Graph

R-Greedy

SS-Graph

SS-GreedyR

SS-Greedy

(a) Vertex estimation error VS sphere radius

0.05 0.1 0.15 0.2

Sphere Radius(m)

10
-2

10
-1

10
0

T
im

e 
(s

)

R-Graph

R-Greedy

SS-Graph

SS-GreedyR

SS-Greedy

(b) Computational Time VS sphere radius
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4.6 Summary

From the experiments that have been done, some important points can be inferred:

• The WLS solves the low dimension problem in the sphere’s surface microphones
constellation.

• The five algorithms in Fig.4.5 for solving the echo labeling problem share the same
performance in terms of the vertex estimation error.

• In terms of the computational cost, the fastest algorithm is held by algorithms
(d) and (e) of Fig.4.5.
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• For a sphere with radius 10 cm, the smallest error that can be achieved is 6 cm
with 8 microphones and computational time of 1 second.
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Conclusions 5
The work presented in this thesis focused on improving the two current methods; the
graph-based and the subspace-greedy method for estimating the room geometry. We
also construct hybrid methods by interchanging the intermediate step of the two meth-
ods. Moreover, we verify the feasibility of the hybrid methods for: (i) the random
microphones configuration and (ii) the sphere’s surface microphones configuration with
a small radius. The performance of all methods is assessed through their accuracy and
computational cost.

In Chapter 3, we modify the graph based method by replacing its source localization
step from Pollefeys to the least squares, then we substitute the graph procedure of
finding a maximum independent set with the greedy procedure in the refinement step.
In this way, we end up with the following combination methods:

a. rank - graph - Pollefeys (the original graph based method)

b. rank - graph - LS

c. rank - greedy - Pollefeys

d. rank - greedy - LS

The experimental results with the random microphones configuration showed that the
least squares outperform the Pollefeys method for localizing image sources position
which leads to lower vertex estimation error and computational cost. The least squares
also alleviate the minimum source requirement of the Pollefeys method. Furthermore,
the fourth method (d) attained comparable accuracy with respect to the second method
(b) but restrict the minimum number of microphones to 6 (M ≥ 6).

In Chapter 4, we fully implemented the hybrid techniques which are derived from
the graph and the greedy subspace method for estimating the room geometry with
microphones located on the sphere’s surface. The new microphones constellation rises
a low dimensional problem which caused the output of the source localization step
inaccurate. To handle this problem we substitute the original least squares method with
the equality constrained least squares (approximated by the weighted least squares).
Moreover, the insertion of the variance filter as the preliminary step of the echo labeling
solver attains a great reduction in the total computational time for all techniques. The
sequence of the derived techniques are:

a. variance - rank - graph - weighted least squares

b. variance - rank - greedy - weighted least squares

c. variance - subspace - graph - weighted least squares

d. variance - subspace - greedy(rank) - weighted least squares

e. variance - subspace - greedy - weighted least squares
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Finally, the experimental results proved that all techniques (a-e) are feasible to estimate
the vertex of the room with centimeter precision within seconds.

5.1 Future Directions

The following points are the ideas that can benefit further research on this topic:

• All the experiments in this thesis used the synthetic squared distance data, so
we skipped the room impulse response acquisition procedure and the time of
arrival (TOA) estimation step. In the future, for the sphere’s surface microphone
configuration, it will be nice to check the performance of the derived algorithms
if the squared distance data are extracted from the room impulse response since
the TOA estimation procedure plays an important role on the final accuracy of
the room geometry estimation.

• Since the final goal of this research is to check the feasibility of the available
methods for gaming application and robot navigation, considering the presence of
objects and people inside the room are important matters that can provide more
details in the room geometry reconstruction.

• Of further interest is also including the head transfer function for placing the
microphones on the helmet because, in the real situation, the reflection from
the head and shoulder of a person or a robot affects the signal that is received
by the microphone. Moreover, since the people or a robot will always move,
leaving the assumption of knowing the microphones’ position is preferable. Thus,
instead of the microphones’ position, we just consider the pairwise distance of the
microphones.

• Our approach in estimating the room geometry is considered as an image-source
reversion method. In the future, it would be beneficial if we can compare our
approach with a direct reflector localization method as proposed in [9].

40



Pollefeys Method for Sources
and Microphones Localization A
This appendix contains a brief explanation of the adapted Pollefeys method which is
used in the graph based method [6]. For the complete derivation of this method, the
readers are referred to [15].

A.1 Preliminary Equations

Consider M microphones (indexed by m) and N sources (indexed by n) with their

spatial coordinates defined by rm = [xm, ym, zm]T ∈ R3 and sn = [Xn, Yn, Zn]T ∈ R3

respectively. The squared distance between the (m,n)-th microphone and source pair
can be formulated as :

dm,n = (xm −Xn)2 + (ym − Yn)2 + (zm − Zn)2 . (A.1)

Expressed in vector notation, Eq. A.1 becomes

dm,n = RT
mSn , (A.2)

where

Rm = [rTmrm − 2xm − 2ym − 2zm 1]T ∈ R5×1 , (A.3)

Sn = [1 Xn Yn Zn sTnsn] ∈ R5×1 . (A.4)

Stacking up all the (m,n) pair squared distance dm,n yields a squared distance matrix
D ∈ RM×N and Eq. A.2 can be expressed in a matrix form as

RTS = D ∈ RM×N , (A.5)

where R = [R1, ...,RM ] and S = [S1, ...,SN ] are the microphone and source position
matrices according to Eq. A.3 and A.4.

A.2 Sources and Microphones Localization

Pollefeys method used rank 5 approximation of the D matrix in Eq.A.5 to recover
the R and S matrices. The approximation is started by computing the singular value
decomposition (SVD) of D,

D = UΣVT . (A.6)

Defining R̂ = UT and Ŝ = ΣVT , we have

R̂T Ŝ = D, (A.7)
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where R̂ and Ŝ are related to R and S by a transformation matrix H,

RTS = R̂H−1HŜ . (A.8)

The transformation matrix H is consisted of three concatenate transformation matrices,
i.e.,

H = HQHRHS. (A.9)

Each transformation matrix corresponds to preserve the special structures that are
possessed by R and S matrices. The first transformation, HS will ensure that the first
row of S is all ones vector. HS can be written as

HS =

[
hT
S

0 I

]
, (A.10)

hT
S can be found by solving the linear system of equations hT

S Ŝ = 1. this step requires
at least 5 microphones. In the same manner, the second transformation HR preserves
the all ones vector structure in the last row of R. HR can be formulated as

HR =

[
I

hT
R0

]−1
. (A.11)

By solving R̂TH−1S hR = 1 hR can be computed. The last transformation HQ imposes
the quadratic consistency constraints on R and S. We can derive the constrain on Sn

as

ST
n B Sn = 0 with B =


0 0 0 0 −1

2
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
−1

2
0 0 0 0

 . (A.12)

Therefore,

ŜT
n HT B H Ŝm = 0 . (A.13)

Now, we define Ŝ
′
n = HR HS Ŝn and Q = HT

Q B HQ to obtain the following linear
equation:

Ŝ
′

n Q Ŝ
′

n = 0 , (A.14)

for determining the coefficients of the symmetric matrix Q. Since we have to keep the
first row of Ŝn and the last row of R̂m unchanged, the transformation HQ must have
the following form:

HQ =


1 0 0 0 0
. . . . 0
. . . . 0
. . . . 0
. . . . 1

 and Q =


. . . . −1

2
. . . . 0
. . . . 0
. . . . 0
−1

2
0 0 0 0

 . (A.15)
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Considering that Q is symmetric, it has ten degrees of freedom. These ten coeffi-
cients can be computed linearly with at least ten sources using Eq.A.14. Then, HQ can
be formed using the entries of Q,

HQ =


1 0 0 0 0
0 0
0 K 0
0 0
−Q11 −2Q12 −2Q13 −2Q14 1

 , (A.16)

where K is the Cholesky factorization of the middle part (3 × 3) of Q. Since all
transformations have been derived, we can find:

R = (R̂T H−1S H−1R H−1Q )T , (A.17)

S = HQ HR HS Ŝ , (A.18)

from which the position of the microphones and the sources can be extracted.
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