
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Master Thesis
Uncertainty-Aware Neural Network for Data-Driven
Modeling of A Foam-Damped System

Lowie De Malsche

Master Thesis
Uncertainty-Aware Neural Network for

Data-Driven Modeling of A Foam-Damped
System

by

Lowie De Malsche

Responsible Supervisor: Dr. V. Yaghoubi Nasrabadi
External Supervisor: Ir. E. Lemmens
Project Duration: August, 2024 - June, 2025
Faculty: Faculty of Aerospace Engineering, Delft

Cover: Canadarm 2 Robotic Arm Grapples SpaceX Dragon by NASA
under CC BY-NC 2.0 (Modified)

Style: TU Delft Report Style, with modifications by Daan Zwaneveld [1]

Preface

This report was written as part of myMaster thesis at the Delft University of Technology. The project was
carried out in collaboration with Redwire Space NV., and builds on the work that was done during my
internship where I tried to find a method that could be used to simulate the response of a foam-packed
item to a shock. The results of the internship project were a promising proof of concept but lacked
accuracy due to the absence of a model that could accurately represent a foam packed system. In this
thesis, three models are evaluated for their viability as a surrogate model to represent the foam-damped
system.

While writing this report the reader was assumed to have basic engineering knowledge as well as basic
knowledge about machine learning and artificial-intelligence. A basic explanation of the concepts that
were used can be found in Chapter 2.

Readers that are interested in how the models were chosen can find the trade-off in Chapter 3. Readers
that are interested in how the data-set that was used to train the models as well as how the models
were trained can find the methodology in Chapter 4. The results as well as the discussion of the results
can be found in Chapters 5 and 6. These chapters have the same structure and are meant to be read
side-by-side. Recommendations for future work on this subject are made in Chapter 8.

I would like to thank the supervisor of this thesis, Vahid Yaghoubi Nasrabadi, for his close involvement
and guidance throughout the project. I would also like to thank my external supervisor, Els Lemmens at
Redwire Space, for her continued support during both my internship and this thesis. Finally, I would like
to thank Amalia Macali who helped me augment the models with a GP, making them uncertainty-aware.

Lowie De Malsche
Delft, June 2025

i

Contents

Preface i

Glossary vi

Acronyms vii

Symbols viii

1 Introduction 1

2 Literature Review 3

2.1 What Variables Characterise the Behaviour of Foam . 3

2.1.1 Foam Density . 3

2.1.2 Temperature . 3

2.1.3 Strain Rate . 3

2.1.4 Pre-Load and Pre-Strain . 4

2.1.5 Fatigue Behaviour of Foam . 4

2.2 How can a neural network based dynamic model be made 4

2.2.1 Simulation Methods . 4

2.2.2 Types of AI Model . 5

2.2.3 Model Performance Metrics . 5

3 Preliminary Evaluation and Model Selection 7

3.1 Synthetic Data . 7

3.1.1 The Used System . 7

3.1.2 The Synthesised Dataset . 8

3.2 Evaluated models . 9

3.2.1 NN Models . 9

3.2.2 RNN Models . 9

3.2.3 Models That Were Considered but Not Evaluated 10

3.3 Results From Preliminary Evaluation . 10

3.3.1 Second Derivative NN . 10

3.3.2 Direct RNN . 12

3.3.3 First Derivative RNN . 13

3.3.4 Second Derivative RNN . 15

3.3.5 Direct LSTM . 16

ii

Contents iii

3.3.6 Comparison . 18

4 Methodology 19

4.1 Obtaining The Dataset . 19

4.1.1 Test Set-Up . 19

4.1.2 Tests Performed . 20

4.1.3 Issues During Testing . 21

4.2 Model Structure . 23

4.2.1 Foam Variables . 23

4.2.2 Other Variables . 24

4.2.3 Model Structure With Respect to the Variables 24

4.2.4 Model Variants . 25

4.3 Training the Models . 26

4.3.1 Model Implementation . 26

4.3.2 Training Setup . 26

4.4 Different Models Trained . 27

4.4.1 Default Model . 27

4.4.2 Models Varying Number of Skipped Time Steps 27

4.4.3 Models Trained Without Noisy Data . 27

4.4.4 Models Trained With Varying GP Input Dimension 27

4.4.5 Models Trained With Early Stopping . 27

4.4.6 Models Trained for Half the Duration of the Training Data 28

5 Results 29

5.1 Default Model Accuracy . 29

5.2 Varying the Steps Skipped by GP Layer . 34

5.3 The Effect of Noisy Data . 35

5.4 Effect of GP Input Dimension . 36

5.5 Models Without Over-Fitting . 38

5.5.1 Results Without Over-Fitting . 38

5.5.2 Time-Domain Results . 43

5.5.3 The Effect of Noisy Data . 49

5.5.4 PSD Accuracy . 51

5.6 Model Extrapolation . 53

5.6.1 Percent Change in NRMSE . 53

5.6.2 Time Domain Results . 54

5.7 Model Performance . 57

6 Discussion 58

6.1 Default Model Accuracy . 58

Contents iv

6.1.1 Summarised Results . 58

6.1.2 Full Results . 58

6.1.3 Difference Between LSTM-FC-GP and LSTM-PCA-GP models 59

6.2 Varying the Steps Skipped by GP Layer . 60

6.3 The Effect of Noisy Data . 61

6.4 Effect of GP Input Dimension . 61

6.5 Model Performance Without Over-Fitting . 62

6.5.1 Model Accuracy . 62

6.5.2 Time-Domain Results . 63

6.5.3 The Effect of Noisy Data . 63

6.5.4 PSD Accuracy . 64

6.6 Model Extrapolation . 64

6.6.1 Percent Change in NRMSE . 64

6.6.2 Time Domain Results . 64

6.7 Model Performance . 65

6.8 Trade-Off Between Models . 65

7 Conclusion 67

8 Future Works 68

8.1 Test Articles . 68

8.1.1 Test Article Mass . 68

8.1.2 Test Article Foam . 68

8.1.3 Varying the Foam and Block Thickness . 69

8.2 Test Setup . 69

8.3 Test Sequence . 69

8.4 Training the Model . 69

References 71

A Time Domain Results of Preliminary Tests 74

A.1 Second Derivative NN . 75

A.1.1 Single Parameter Model . 75

A.1.2 Parameter-Conditioned Model . 76

A.2 Direct RNN . 77

A.2.1 Single Parameter Model . 77

A.2.2 Parameter-Conditioned Model . 78

A.3 First Derivative RNN . 79

A.3.1 Single Parameter Model . 79

A.3.2 Parameter-Conditioned Model . 80

Contents v

A.4 Second Derivative RNN . 81

A.4.1 Single Parameter Model . 81

A.4.2 Parameter-Conditioned Model . 82

A.5 Direct LSTM . 83

A.5.1 Single Parameter Model . 83

A.5.2 Parameter-Conditioned Model . 84

B Source Code 85

B.1 Model Container . 85

B.2 Models . 86

B.3 Model Executor . 88

C PSD Results 97

C.1 Fold 1 . 97

C.1.1 1 Foam sheet . 97

C.1.2 2 Foam sheets . 97

C.1.3 3 Foam sheets . 98

C.2 Fold 2 . 99

C.2.1 1 Foam sheet . 99

C.2.2 2 Foam sheets . 99

C.2.3 3 Foam sheets . 99

C.3 Fold 3 . 100

C.3.1 1 Foam sheet . 100

C.3.2 2 Foam sheets . 100

C.3.3 3 Foam sheets . 100

C.4 Fold 4 . 101

C.4.1 1 Foam sheet . 101

C.4.2 2 Foam sheets . 101

C.4.3 3 Foam sheets . 101

C.5 Fold 5 . 102

C.5.1 1 Foam sheet . 102

C.5.2 2 Foam sheets . 102

C.5.3 3 Foam sheets . 102

Glossary

back-propagation A method used to train a neural network by reducing the difference between the
predicted output and the actual output [2]

concatenated Chained together or appended
densification A state in which foam starts behaving like a solid
epoch A complete pass through the entire training dataset [3]
hysteresis A lag in response exhibited by a system reacting to change [4]
sandwich panel A panel consisting of two face plates that are spaced apart using a core material
surrogate model A simplified approximation of a more complex model or system

vi

Acronyms

CPU Central Processing Unit
ECSSMET European Conference On Spacecraft Structures, Materials And Environmental Testing
FC Fully-Connected
GP Gaussian Process
GPU Graphics Processing Unit
LSTM Long Short-Term Memory
MSE Mean Squared Error
NASA National Aeronautics and Space Administration
NMSE Normalised Mean Squared Error
NN Feed Forward Neural Network
NRMSE Normalised Root Mean Squared Error
PCA Principal Component Analysis
PSD Power Spectral Density
RMSE Root Mean Squared Error
RNN Recurrent Neural Network
SRS Shock Response Spectrum
SS State Space

vii

Symbols

β Non-Dimensional Non-Linear Spring Constant
c Damping Coefficient
f Frequency
F Non-Dimensional Force
Fa Applied Force
k Spring Constant
k3 Non-Linear Spring Constant
m Mass
ω Angular Velocity
ω0 Resonance Frequency of the System
r Non-Dimensional Damping Coefficient
R2 Coefficient of Determination
t Time
yi True Value at Point i
ȳi Average Value of yi
ŷi Predicted Value at Point i

viii

1
Introduction

Launching sensitive equipment into space poses a series of challenges that must be overcome. One of
these challenges is surviving in the harsh environment that can be found in the capsule on a launching
rocket. To protect sensitive equipment from this environment, it is often packed in foam. This foam
packaging is meant to isolate its contents from vibration, and shock loads that can be found in the launch
environment. In order to assess if the foam packaging is sufficient, tests need to be performed. These
tests take up time and resources, and are difficult to perform accurately according to the specification.
Therefore a method was proposed to simulate the response of an object packed in foam to shock, and
possibly vibration loads. The findings of this method can be found in a paper presented at ECSSMET
2024 [5]. The proposed method is to model the motion of the object packed in foam as a single degree
of freedommass-spring-damper system. A specified input shock or vibration can then be applied to this
model, and from the simulated response, a SRS or PSD can be taken to determine what the internal
loads on the object will be. Using this method, it can be determined what the expected loads inside the
packaging will be. This can be used to either determine if the packaging is sufficient or if the shock or
vibration loads are critical.

The results of this method were promising. However, the simple mass-spring-damper system was not
able to model the response of a foam-packed object accurately at high amplitudes due to the non-linear
nature of foam. To overcome this, a new model that accurately takes this non-linearity into account
needs to be made.

The aim of this thesis is to find a model that can accurately model the behaviour of an object packed
in foam through a wide range of amplitudes and for different amounts of foam. To achieve this a
complex model of the system could be made where the foam and the interaction between the foam
and the object is modelled in detail. However, this would require a solver that can solve for systems
with extremely large deformations and complex interactions between the object in the foam and the
foam itself. Moreover, to achieve this, a detailed model must be custom made for every object that is
packaged in foam. Doing this is impractical as it is both time-consuming and expensive.

To overcome this issue, this thesis proposes the creation of a surrogate model to model the damping of
foam packaging for a wide range of foam thicknesses and objects. The aim of this surrogate model is to
make it both easy and computationally inexpensive to model the behaviour of an object that is packed
in foam when subjected to a shock or vibration. While a range of methods to fit a model like this exist,
for this thesis an AI-based surrogate model is made. The rationale behind this choice is that it is difficult
to determine the underlying equations of motion as the system is highly non-linear and dependent on
a large range of variables as is described in further detail in Chapters 2 and 4. A sufficiently complex
AI-model is able to learn the way these variables are connected in a data-driven way. To achieve this,
a range of AI-models is used as a solver and finally, the performance of these solvers is compared for
both accuracy as well as the computational resources required.

The report is presented in the following structure. Chapter 2 contains the literature review. It contains
the required background information on the concepts that are discussed in this thesis. The preliminary

1

2

work that was done to determine what models would be used as solvers for the final comparison is
shown in Chapter 3. Chapter 4 details how the training dataset is obtained, what models are compared,
how these models are structured, how the models are trained, and how the results are compared. The
results of the different models are shown in Chapter 5. These results are discussed in more detail in
Chapter 6 where themodels are compared and a trade-off is made to evaluate what model is best suited.
The findings of this thesis are summarised the conclusion in Chapter 7. Finally, recommendations on
how these results should be used in future work are given in Chapter 8.

2
Literature Review

This chapter provides background information about what variables influence the dynamic behaviour
of foam as well as background information about what methods and models can be used to create
a surrogate model and how the performance can be evaluated. Background information about the
variables that influence the behaviour of foam can be found in Section 2.1. Background information on
how a neural network can be used to create a surrogate model can be found in Section 2.2.

2.1. What Variables Characterise the Behaviour of Foam
A shock test has a lot of variables which can influence the results of the test. To characterise the
behaviour of the foam, these variables must be examined to see which have a meaningful impact and
which can safely be ignored.

2.1.1. Foam Density
Foam Density varies a lot in different foams and has a large influence on the behaviour of the foam.
The main effect of changing the foam density is found in the stiffness of the foam. As the density of the
foam increases the stiffness of the foam increases with it as less of the volume of the foam is air [6, 7].
Additionally, the foam density has an influence on the deformation mechanics of the foam.

As foams compress their cells get loaded in compression and eventually buckle. In general, the lower
the foam density the larger the cell size. The larger cell size of the low density foams means the cells of
the foam will buckle at a lower strain. When the cells of a foam start to buckle, the apparent stiffness of
the foam decreases dramatically, and the stress plateaus as the cells lose their ability to resist further
compression until nearly all cells have buckled. A denser foam has smaller cells which can resist a
higher stress before buckling [6].

Additionally, increasing the density of the foam decreases the amount of empty volume inside of the
foam. This means that the densification strain, which is the strain at which the foam starts behaving
like a solid, decreases [7, 8].

2.1.2. Temperature
Temperature can have an influence on the behaviour of foam. Many polymer foams are made from
thermoplastic materials which can soften well below their melting temperature [9]. This has a large
influence on the compression behaviour. While the foam does get softer, the buckling strain of the
foam cells is not significantly altered given that the foam cells do not become brittle or degrade. As a
result, the stress plateau starts at the same strain, regardless of temperature [6].

2.1.3. Strain Rate
Many polymeric foams are sensitive to strain rate. Hence, the effect of strain rate must be considered.
When polymeric foams are exposed to a large sudden deformation, they become much stiffer. This
happens for several reasons. First, the deformation of the polymer itself is largely dependent on the

3

2.2. How can a neural network based dynamic model be made 4

strain rate. Secondly, the air inside of the foam acts as a cushion. When the foam is compressed, the
air is either pushed out or compressed depending on the type of foam. These effects not only influence
the stiffness but also cause hysteresis, which further increases the complexity of the system.

Although the stiffness increases with strain rate, the strain at which the stiffness plateaus remains
roughly constant. As the strain rate increases, the strain at which densification occurs starts to decrease
[8, 10].

2.1.4. Pre-Load and Pre-Strain
When objects are packed in foam, the foam is often pre-compressed, either from the object pressing
against the foam or the the foam being strapped down. This pre-load has an influence on the ability
of the foam to absorb shocks. When a foam is pre-strained, less energy is dissipated and more of the
shock is transmitted [11]. Additionally, the pre-strain can have an effect on the eigenfrequency of an
object that is packed in foam.

2.1.5. Fatigue Behaviour of Foam
The mechanical properties of polymer foam can vary significantly due to the effects of fatigue. As
described in the section about foam density, polymeric foam usually has a stress plateau where the
stress no longer increases due to increased strain. This plateau is caused by the foam cells buckling
when the strain increases. When a foam has been strained up to this point, the cells that have
buckled buckle at a lower strain the next compression cycle. Depending on the type of foam, this
can dramatically reduce the stiffness of the foam [12].

Depending on the type of foam, this effect can be more or less severe. Foams like polystyrene or
phenolic foam suffer severely from this fatigue effect, losing their stiffness even after the first compression.
Meanwhile, polyethylene foams barely suffer from this effect, showing only very subtle signs of degradation
[12].

2.2. How can a neural network based dynamic model be made
In recent years, machine learning has widely been used to model a multitude of complex processes in a
wide range of fields [13, 14, 15, 16]. This section provides background information on what simulation
methods are used, what types of AI-models can be used, and how their performance can be evaluated.

2.2.1. Simulation Methods
When it comes to modelling the behaviour of foam, two main methods show promise. The first method
is to train a neural network to directly calculate the output to a given input motion. This is called a
direct-solution model. The second method is to train a neural network to calculate the current motion
given the current state of the system for each time-step. This can either be the motion directly or a
derivative of the motion which is then integrated. This second method is called the time-stepper model
[16].

A direct-solution model has the advantage that it can directly calculate the output of system without the
need of running the model multiple times. This makes it relatively simple to implement and much faster
to run. However, this comes at the downside that the model has a fixed simulation length, and requires
constant initial conditions [16].

Time-stepper models are more versatile in the sense that they do not have a fixed length. This is an
advantage as model training can be done on shorter timespans. Furthermore, different solvers can be
used which can be favourable for different dynamical systems. For example, a direct solver can be
used to directly get the required output for each step. Alternatively, a neural network can be trained to
find the derivative of the desired output which can be integrated to find the output. Furthermore, if the
system that is to be modelled has a known linear part, the linear part can be combined with the neural
network to obtain a result that is based in part on a linear solution [16].

2.2. How can a neural network based dynamic model be made 5

2.2.2. Types of AI Model
There are a large number of AI models which are used for various tasks. This section describes the
models that were considered in this thesis.

The first type of AI model is the NN this is a basic form of neural network. In this form, the input is
passed through a layer of nodes. The output of each node is the sum of the product of the inputs of
the layer and a set of weights. Multiple layers can be combined in sequence to create a deep neural
network. Activation functions are often used between the layers of the neural network. These activation
functions are mathematical functions that are called on the output of each node in a layer. They are
often used to introduce non-linearities into the model which can improve model performance when
solving complex problems [17, 18].

The second type of AI model is the RNN this is a type of neural network that saves the output of a layer
and uses it as an input the next time the model is run. This makes it very well suited to simulate a time
domain function like a shock or vibration on foam [19].

The problem with training an RNN on a long time domain series is the vanishing gradient problem.
This is a phenomenon where the gradients which are used for back-propagation vanish for the early
samples in a long time domain series. A LSTM model can be used to overcome this issue [20]. An
LSTM achieves this by storing information outside of the neural network. This allows it to be used for
time domain series of over 1000 steps [21, 22].

The last type of AI model that is considered is the GP. This model works differently to both NN and
RNN models. Instead of using nodes, a GP is a probabilistic mapping from an input to an output. The
advantage of this for simulating a time domain series is that a GP is able to return a standard deviation.
Using this standard deviation, a confidence interval can be made where the output of the real value is
expected to be in. On the other hand, a GP is computationally very intensive. Calculating the variance
takes O(n2) time which makes it impractical for large datasets [23].

These proposed models can be used with different complexities. Special care should be taken when
selecting the correct model complexity. When the model complexity increases, the error rate of the
training data decreases. However, this may not be the same for the validation data. As the model
complexity increases, the model starts to model the error and noise from the training data and becomes
over-fitted. When an over-fitted neural network is used to model the validation data, an increase in the
error will be observed. Special care must be taken to find the model complexity which optimises both
the error rate of the training data, and the validation data [24].

2.2.3. Model Performance Metrics
Coefficient of determination (R²)
The coefficient of determination, R2, is a metric that can be interpreted as ”the proportion of total
variation about the mean that can be explained by regression” [25]. It is calculated using equation
2.1 [26]. The R2 score ranges from 1 for a perfect fit to −∞ for the worst fit. When R2 is 0, the fitted
model is not correlated with the data. When R2 is smaller than 0, the fitted model is worse at predicting
the data than a horizontal line [27, 28].

R2(y, ŷ) = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(2.1)

Mean Squared Error
The MSE is a metric that is used to assess the accuracy of the predicted value compared to the true
value. It is the average of the square of the error at every data point and can be calculated using
equation 2.2 [26, 29]. The MSE ranges for 0 for a perfect fit to +∞. Due to the square term of the MSE,
a single very bad prediction can influence the MSE to a very large degree [27].

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (2.2)

2.2. How can a neural network based dynamic model be made 6

A major downside to using the MSE is that it cannot be interpreted without context because it is
dependent on the magnitude of the data. The value of the MSE should always be interpreted in context
and cannot be used to directly compare the accuracy of two different predictions [27].

Root Mean Squared Error
The RMSE is obtained by taking the square root of the MSE as is shown in equation 2.3. The main
difference between the MSE and the RMSE is that the RMSE has the same unit as the data. This
makes the RMSE easier to interpret than the MSE [27]. The RMSE suffers from the same issue as the
MSE where it should always be interpreted in context.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (2.3)

Normalised Mean Squared and Root Mean Squared Error
Based on the MSE and RMSE, the NMSE and NRMSE solve the problem with the MSE and RMSE of
not being comparable without context by normalising the values [30]. There are multiple different ways
to normalise the MSE and RMSE. However, for this thesis they are normalised by the mean square
and root mean square of the real measurement respectively as is shown in equations 2.4 and 2.5.

NMSE =
MSE

MS
(2.4)

NRMSE =
RMSE

RMS
(2.5)

3
Preliminary Evaluation and Model

Selection

Before creating a dataset to train a model, it is important to know what this dataset must consist of.
To determine this, a range of models were trained on a synthetic dataset that could be created and
altered easily. Going through this process reveals what variables are required to make the models
before creating a dataset. Moreover, it reveals what types of model have the potential to serve as an
accurate surrogate model for a foam-damped system. The chapter is structured in the following way.
The synthetic dataset that is used to train the models is described in Section 3.1. What types of models
are used is shown in Section 3.2. Finally, the individual results of these models and a comparison
between them can be found in Section 3.3.

3.1. Synthetic Data
To train the preliminary models, a dataset that is representative of a non-linear foam-damped system
is required. The system that is used for this purpose is described in Section 3.1.1. The dataset that is
synthesised using this system is described in Section 3.1.2.

3.1.1. The Used System
In order to asses what models are best suited to model a non-linear systems a dataset of a non-linear
system is needed. The non-linear system used for this purpose was a Duffing-oscillator. A Duffing
oscillator was used for several reasons. Firstly, this is used by many other papers to compare the
performance of AI-models, making it easier to verify if a simulation works correctly as the performance
can be compared to other resources. Secondly, using a synthetic dataset with known parameters
allows for complete control of the parameters of the system. This way, the influence of parameters like
damping and non-linear damping on the model performance can be assessed.

A Duffing oscillator is a damped and driven oscillator that is represented by the second-order differential
equation shown in Equation 3.1 [31]. It differs from a more classical driven damped oscillator by adding
the non-linear term βx3 which introduces non-linearity into the system. As the β term relates to the
displacement of the system it serves the role as a non-linear spring constant. This non-linear term
makes the Duffing oscillator very suitable for evaluating the performance of an AI-model on a non-linear
system [32].

ẍ+ rẋ+ ω2
0x+ βx3 = F cosωt (3.1)

The force, F from equation 3.1 is a non-dimensional force. This means that it is normalised to be
massless, effectively making the force an acceleration. To return the dimensionality to the system, the
equation should be multiplied by the mass, m, resulting in Equation 3.2 where Fa is the applied force

7

3.1. Synthetic Data 8

and k3 is the non-linear spring constant where mβ = k3. Making the equation dimensional allows for a
synthetic dataset to be made with parameters that have a physical meaning.

mẍ+ cẋ+ kx+ k3x
3 = Fa cosωt (3.2)

A schematic representation of a Duffing oscillator with dimensional parameters is shown in Figure 3.1.
The figure shows a mass connected to two springs, k and k3, and a damper c. The applied force Fa is
supplied through an imposed ground motion, z.

Figure 3.1: Schematic representation of a Duffing oscillator [33]

An additional benefit of creating a synthetic dataset is that it is much faster and more flexible than
creating a real dataset. When the need arises to create a new dataset of a different size or with different
parameters, this can be done in minutes where performing real tests might take days to do the testing
and to process the data. Using a synthetic dataset before making a real world dataset ensures that
when the real world dataset is created, the required variables are measured at the correct frequency
for the correct amount of time.

3.1.2. The Synthesised Dataset
The synthetic data which was used to evaluate the performance of each model consists of a Duffing-
oscillator with a varying input signal. This input signal is chosen to be a linear chirp signal. This is a
frequency-swept cosine signal with a constant amplitude where the frequency, f(t) follows Equation
3.3 where f0 is the start frequency, f1 is the end frequency, and t1 is the end time.

f(t) = f0 +
f1 − f0

t1
t (3.3)

The reason that a chirp signal is used over the signal with a single frequency seen in Equations 3.1
and 3.2 is that the response of the system to a varying forcing frequency shows the transmissibility
of the system for each frequency. As a result, the AI models need to be able to model the behaviour
of the system across a range of frequencies instead of at a single frequency. Furthermore, if the
eigenfrequency of the system is within the sweep frequency range of the chirp signal, the chirp will
excite the system before and after resonance. This makes it easier to assess how well the models are
able to model the behaviour of the system around the resonance frequency of the system.

To create a full dataset, the amplitude of the applied force is incremented from 0.2N to 10N with 0.2N
increments. Then the non-linear spring constant is varied from a value of 0.0Nm−3 to 2.0Nm−3 with
0.2Nm−3 increments. This results in a total of 550 time domain signals. The parameters of the Duffing-
oscillator dataset are summarised in table 3.1. It shows the the mass, m, the damping coefficient, c,
the spring constant, k, the non-linear spring constant, k3, the range of the applied force, Fa, and the

3.2. Evaluated models 9

Frequency range of the chirp signal. This dataset is then used to train the AI models. The goal of these
models is to determine the displacement of this system.

Table 3.1: Duffing Oscillator Dataset Parameters

m c k k3 Fa Frequency Range
1 kg 0.2N sm−1 1Nm−1 0.0Nm−3-2.0Nm−3 0.2N-10N 0.05Hz-2.0Hz

3.2. Evaluated models
To determine what models should be used to make the final models, several models are evaluated and
their performance is compared qualitatively to determine what model should be used as the final model.
Each of the models are used as a solver for a time-stepper method. The goal of these time-steppers
is to find the displacement of the system based only on the input acceleration of the system. The used
models can be broadly sub-divided into two categories NNs and RNNs. The used NN models are
described in Section 3.2.1. The RNN models that are evaluated are described in Section 3.2.2. The
models that were considered but not evaluated for the purpose of this thesis are described in Section
3.2.3.

3.2.1. NN Models
NN models are considered as a model for the time stepper solvers. While the goal of these solvers is
to determine the displacement of the system, multiple approaches are possible. The first possibility is
to use the NN to directly solve for the displacement of the system. The advantage of using this method
is that no integrator is needed to solve the system. However, for a normal NN with no feedback this
is not feasible. Because the system has inertia, there is no way to determine directly from the input
acceleration what the displacement of the system is.

To solve this, the NN can be used to find the derivative of the system. With this approach an integrator
can be used to integrate the velocity to find the displacement of the system. However, this approach
suffers from inertia of the system as well as there is no way to find the velocity of a system using only
the acceleration of a single time step as an input.

Finally, the NN can be used to find the acceleration, or the second derivative of the system. This second
derivative can then be integrated using a double integral to obtain the displacement. This solves the
inertial problems completely and allows for the NN to be used to translate the input acceleration of the
system to the response acceleration of the system without having any information about the state of
the system.

The main benefit of using a NN instead of an RNN is that the entire system can be solved in parallel,
massively speeding up the required time to solve the model. The downside of using these models is
that they have no information about the state of the system. It is therefore expected that the results of
a time stepper using a NN as a model will be much less accurate than the results of a time stepper that
uses a RNN as a model.

3.2.2. RNN Models
Themain difference between a RNNmodel and a NN is that the RNN has information about the previous
time steps it has been run. In practice this means that the model has information about the state of the
system. Two forms of RNN are considered, a NN with the outputs of the previous time-step returned
as the input of the current time-step, and a LSTM model. This LSTM model does not require the input
of the previous time-step as it has an internal memory that learns through training what should be
remembered and what should be forgotten.

The RNNmodels can be used in similar time-stepper set-ups than were described for the NN. However,
in contrast to the NN models, the RNN models have information about the current state of the model.
This means that these models can be used to directly calculate the output of variables that require
information about the state of the system. Because of this a RNN can be used as a model for a direct
solver time-stepper, single integral time-steppers as well as double integral time-steppers.

3.3. Results From Preliminary Evaluation 10

3.2.3. Models That Were Considered but Not Evaluated
Other models that have been mentioned in the literature review in Chapter 2 but are not considered are
the direct-solution models as well as the SS+NN models. Direct-solution models can be a very good
way to model the behaviour of a system. However, their major disadvantage is that they are not able to
model the response of the system beyond the length of the direct-solution model. Furthermore, these
models must be trained with constant initial conditions. If a situation arises where the initial conditions
vary, a new model must be trained for the new initial conditions. This makes them not well suited for
the intended use-case of this thesis as the length of the input shock or vibration can vary depending
on the situation. Hence, direct-solution models are not used.

The other model, the SS+NN model, is a model that can be used as a model for a time-stepper solver.
These models would combine the linear part of the response of a system in a SS model with the non-
linear part of the response of the system represented by a NN model. This would reduce the amount of
information the NN needs to learn about the system, allowing it to be less complex. Furthermore, the
NN can be replaced by an RNN to improve the performance of the model further. While this method is
promising and could provide great results, the implementation is more complex. Therefore this model
is not used in the scope of this Thesis.

3.3. Results From Preliminary Evaluation
The results from the preliminary testing are shown in this section. Two types of results are considered.
First is the results of the models when they are used to model a single system. This system is a Duffing-
oscillator with a set value for k3 of 1Nm−3. Out of the validation results, a result with a low amplitude,
a middle high amplitude, and a high amplitude are shown. These amplitudes are chosen to show how
the accuracy of the model varies with a changing amplitude. The goal of this model for a system with
a single k3 parameter is to show how well each model performs at modelling the system. Separate
models are made for the system with a varying value of k3 to compare how the performance changes
when they are made to be parameter-conditioned. For the comparison of the performance of these
parameter-conditioned versions of the models, a result with a middle high amplitude is shown for a
system with a k3 value of 0, 1, and 2. The parameter-conditioned version of the models is important as
the intent of the thesis is to find one model that can be used to simulate foam of different thicknesses
and surface pressures.

To maintain clarity in this chapter, plots of the time-domain results are moved to Appendix A, and
the results for the middle amplitude of the model trained for a single value of k3, and the results for
the middle amplitude with a k3 value of 1.0 for the parameter-conditioned models are repeated in this
chapter. The results are shown per model in Sections A.1, A.2, A.3, A.4, and A.5 for the second
derivative NN, direct RNN, first derivative RNN, second derivative RNN, and direct LSTM models
respectively. As the difference in performance of the models is very large, the preliminary results
are compared qualitatively rather than quantitatively.

3.3.1. Second Derivative NN
The second derivative NNmodel is the both the simplest and the fastest model of themodels considered
in this chapter. It works by using the time-signal as an input for every time-step, and calculating the
second derivative, or in this case the acceleration, of the system as an output. This second derivative
can then be integrated twice to obtain the displacement of the system. As a result, the only input of
this model is the input signal. For the parameter-conditioned version of this model, the input signal
is concatenated with the non-linear stiffness, k3, for every time-step. A diagram of this model can
be seen in Figure 3.2. Because of the model’s structure, the second derivative for every time-step
is independent of the other time-steps. This means that every time-step can be calculated in parallel
making this model significantly faster than the other models seen in this chapter.

3.3. Results From Preliminary Evaluation 11

NN

Inn-1 InnInn-2 Inn+1 Inn+2 Inn+3 Inn+6Inn+5Inn+4

d/dt

Outn-2

d/dt

Outn
- - - -- -

Outn-2 OutnOutn-1 - - - -- -

d/dt

Outn-1

Outn-1 + d/dtOutn · dt

d/dtOutn-1 +
dd/dtOutn · dt

Figure 3.2: Diagram of second derivative NN model

Time domain plots of the response of the second derivative NN model can be seen in Figure A.1. The
figure for the result with a middle amplitude is repeated in this section in Figure 3.3. The figures show
that the displacement of the system is unstable. Each amplitude shows the displacement rising to
a high positive amplitude, followed by a continuing decrease in the amplitude that shows no sign of
slowing down. This result is an indication that this model is not usable to model the behaviour of a
non-linear system.

0 5 10 15 20 25 30 35 40
Time

5

0

5

10

15

20

25

30

35

Di
sp

la
ce

m
en

t

Predicted Displacement
True Displacement

Figure 3.3: Middle amplitude time-domain result for second derivative NN model trained on a system with a single k3

It should be noted that these results were expected as the model has no information about the current
displacement or velocity of the model. This makes it impossible for the model to make corrections
based on the current state of the simulated system, or to reliably return to the neutral point when the
input acceleration is removed. The simplest way to solve this issue is to provide the NN with context
about the state of the system. However, this would turn the model into a RNN. This exact model setup
is discussed in Sections 3.3.2, 3.3.3, and 3.3.4. The downside to making this change is that it makes
the output of the NN dependent on the previous time-steps meaning the time-steps must be run in
sequence instead of in parallel, drastically slowing down the model.

The time domain plots of the parameter-conditioned second derivative NN model can be seen in Figure
A.2. The figure for the result with a k3 value of 1.0 is repeated in this section in Figure 3.4. The results
show a very similar behaviour to the single parameter version of the model where the displacement that
is predicted by the model first increases to a large positive amplitude and then decreases as time goes

3.3. Results From Preliminary Evaluation 12

on. While the model models the increasing resonance frequency of the system with an increasing value
of k3 to some extend by delaying the highest point of its displacement, showing that it does have some
parameter-conditioning capabilities, the bad model behaviour that was seen for the single parameter
model makes the model unusable for modelling a non-linear system.

0 5 10 15 20 25 30 35 40
Time

0

5

10

15

20

25
Di

sp
la

ce
m

en
t

Predicted Displacement
True Displacement

Figure 3.4: Time-domain results for parameter-conditioned second derivative NN model with k3: 1.0

3.3.2. Direct RNN
The direct RNN model is the simplest of the RNN models. For every time-step it combines the input
signal, that was used for the NN model, with the displacement of the previous time-step and uses those
inputs to directly calculate the output displacement. A diagram of this model setup is shown in Figure
3.5. In contrast to the NN model, the RNN model does have information about the current state of the
model. When used correctly this should solve the problem that was observed with the second derivative
NN model where the displacement does not oscillate around 0. The downside of this is that the RNN
model must be run in sequence per time step meaning the calculation cannot be parallelised.

RNN

Inn-1 InnInn-2 Inn+1 Inn+2 Inn+3 Inn+6Inn+5Inn+4

Outn-2 OutnOutn-1 - - - -- -

Figure 3.5: Diagram of direct RNN model

The results of the direct RNN model for the system with a single non-linear stiffness is shown in Figure
A.3. The figure for the result with amiddle amplitude is repeated in this section in Figure 3.6. The results
show that the model is not able to correctly model the response of the system for all amplitudes. The
model’s performance for the lowest amplitude is the worst, and improves as the amplitude increases.
It can be seen that the model performs best for the first few oscillations but quickly loses accuracy as
the frequency increases above the resonance frequency of the system.

3.3. Results From Preliminary Evaluation 13

0 5 10 15 20 25 30 35 40
Time

3

2

1

0

1

2

3

Di
sp

la
ce

m
en

t

Predicted Displacement
True Displacement

Figure 3.6: Middle amplitude time-domain result for direct RNN model trained on a system with a single k3

One of the issues the direct RNN still suffers from in this configuration is that it has no information
about the first derivative of the system. This makes it impossible for the model to know what direction
the system is currently oscillating in. When the frequency of the forced oscillation is lower than the
resonance frequency of the system, the system oscillates at the forcing frequency. This makes it easy
for the model to model the response of the system as the system is oscillating at the same frequency
the input signal is oscillating at. As the forcing frequency, and as a result the frequency of the input
signal, increases above the system’s resonance frequency, the oscillations of forcing frequency and the
system’s frequency diverge, and the model can no longer correctly model the oscillation of the system.
This issue can be mitigated by providing the model with the system’s velocity for every time-step which
is used in the first, and second derivative RNN models in Sections 3.3.3, and 3.3.4 respectively.

The results of the parameter-conditioned direct RNN model can be seen in Figure A.4. The figure for
the result with a k3 value of 1.0 is repeated in this section in Figure 3.7. The results show a similar
trend to the single parameter model which loses accuracy as the forcing frequency increases above
the resonance frequency of the system. While the parameter-conditioned version of the model shows
a slight change in amplitude between the response of the systems with different values of k3, there is
no major change in the system’s behaviour across different values of the non-linear stiffness.

0 5 10 15 20 25 30 35 40
Time

3

2

1

0

1

2

3

Di
sp

la
ce

m
en

t

Predicted Displacement
True Displacement

Figure 3.7: Time-domain results for parameter-conditioned direct RNN model with k3: 1.0

3.3.3. First Derivative RNN
The first derivative RNNmodel ismore complex than the direct RNNmodel. Instead of directly outputting
the displacement of the system as its result, it outputs the first derivative. The inputs of this model are
similar to the inputs of the direct RNN model with the addition of the first derivative, or velocity, to the
input, combining it with the displacement. A diagram of this setup can be seen in Figure 3.8. The
advantage of this approach is that the system’s inertia is directly factored into the model’s response.
This makes the first derivative RNN, in theory, very well suited for simulating a dynamic system.

3.3. Results From Preliminary Evaluation 14

RNN

Inn-1 InnInn-2 Inn+1 Inn+2 Inn+3 Inn+6Inn+5Inn+4

d/dt

Outn-2

d/dt

Outn

d/dt

Outn-1
- - - -- -

Outn-2 OutnOutn-1 - - - -- -

Outn-1 + d/dtOutn · dt

Figure 3.8: Diagram of first derivative RNN model

The time domain results of themodel for a systemwith a single non-linear stiffness can be seen in Figure
A.5. The figure for the result with amiddle amplitude is repeated in this section in Figure 3.9. The results
show that the system performs better than the direct RNN particularly with respect to the amplitude with
increasing frequency. Like the direct RNN the model’s accuracy improves with increasing amplitude.
However, contrary to expectation, the first derivative RNN is still unable to correctly model the behaviour
of the system as the forcing frequency increases above the resonance frequency.

0 5 10 15 20 25 30 35 40
Time

3

2

1

0

1

2

3

Di
sp

la
ce

m
en

t

Predicted Displacement
True Displacement

Figure 3.9: Middle amplitude time-domain result for first derivative RNN model trained on a system with a single k3

The reason for this might be due to a lack of samples beyond this frequency. Given the system’s
increasing resonance frequency with increasing amplitude and the model’s tendency to prioritise the
model’s accuracy for high-amplitude oscillations it is possible that there is not enough high amplitude
data with a forcing frequency higher than the resonance frequency of the system. Moreover, the
response of the system to an input signal with a forcing frequency that is higher than the resonance
frequency of the system happens towards the end of the time domain simulation because the forcing
frequency increases over time. The RNN that is used as a model is worse at optimising time-steps as
the simulation gets longer due to the vanishing gradient problem which makes it difficult for models to
find long-term dependencies. One of the solutions to make models more accurate over a longer time is
to make them physics informed. For a physics informed model, the model is not just optimised for the
data it represents but also to minimise residuals for the differential equation that represents the system.
This makes the model better suited for long time extrapolation.

The results of the parameter-conditioned version of the first derivative RNN model can be seen in
Figure A.6. The figure for the result with a k3 value of 1.0 is repeated in this section in Figure 3.10.
Similar to the results of the single parameter model, the model is more accurate for the cases where

3.3. Results From Preliminary Evaluation 15

the system has a higher resonance frequency. For the parameter-conditioned model this corresponds
to the systems with a higher non-linear stiffness, k3. For this model, the model not only changes the
average amplitude for the different systems but the model shows a transmissibility that changes slightly
as the forcing frequency increases for the system with the highest non-linear stiffness.

0 5 10 15 20 25 30 35 40
Time

3

2

1

0

1

2

3
Di

sp
la

ce
m

en
t

Predicted Displacement
True Displacement

Figure 3.10: Time-domain results for parameter-conditioned first derivative RNN model with k3: 1.0

3.3.4. Second Derivative RNN
The second derivative RNN goes one derivative lower than the first derivative RNN predicting the
second derivative of the system or in this case, the acceleration. The model integrates the second
derivative similarly to what was done with the first derivative RNN by adding the first derivative of the
previous time-step with the integral of the second derivative of the current time-step. The same method
is used to go from the first derivative to the displacement itself. The inputs of this model are the same
inputs used in the first derivative RNN, combining the input signal with the displacement and velocity
of the previous time-step as inputs to the model. A diagram of this set up is shown in Figure 3.11. It is
expected that this model, while being the most complex of the RNN models also performs the best as it
does not need to model the system’s inertia and instead can directly model the system’s acceleration.

RNN

Inn-1 InnInn-2 Inn+1 Inn+2 Inn+3 Inn+6Inn+5Inn+4

d/dt

Outn-2

d/dt

Outn
- - - -- -

Outn-2 OutnOutn-1 - - - -- -

d/dt

Outn-1

Outn-1 + d/dtOutn · dt

d/dtOutn-1 +
dd/dtOutn · dt

Figure 3.11: Diagram of second derivative RNN model

The time-domain results of the second derivative RNN for a system with a single non-linear stiffness,
k3 are shown in Figure A.7. The figure for the result with a middle amplitude is repeated in this section
in Figure 3.12. The results of this system do not show a clear improvement over the single derivative

3.3. Results From Preliminary Evaluation 16

RNN. The model is still unable to capture the response of the system at a forcing frequency above the
resonance frequency of the system. This is despite the fact that the model does not need to model the
system’s inertia which reduces the complexity of the information it needs to learn. A possible cause
for the lack of improvement is the step-size of the time domain data. As the step-size increases the
double integration of the second derivative becomes less accurate. It is possible that the model would
become more accurate if it was trained with a smaller step-size. Similar to the first derivative RNN the
model could be made more accurate over time by making it physics-informed.

0 5 10 15 20 25 30 35 40
Time

3

2

1

0

1

2

3

Di
sp

la
ce

m
en

t

Predicted Displacement
True Displacement

Figure 3.12: Middle amplitude time-domain result for second derivative RNN model trained on a system with a single k3

The time-domain result of the parameter-conditioned second derivative RNN can be seen in Figure A.8.
The figure for the result with a k3 value of 1.0 is repeated in this section in Figure 3.13. When compared
to the single parameter model, a notable difference can be found in the results of the parameter-
conditioned model. Where the amplitude of the displacement of the single parameter model decreases
as the forcing frequency increases, the amplitude of the displacement of the parameter-conditioned
model stays roughly constant throughout the time domain, reducing the accuracy of the model.

0 5 10 15 20 25 30 35 40
Time

3

2

1

0

1

2

3

Di
sp

la
ce

m
en

t

Predicted Displacement
True Displacement

Figure 3.13: Time-domain results for parameter-conditioned second derivative RNN model with k3: 1.0

3.3.5. Direct LSTM
The direct LSTM model is similar to the direct RNN model in the sense that it directly outputs the
system’s displacement, and that an LSTM model is a subtype of RNN. The LSTM’s memory comes
from the model’s internal memory terms. This is in contrast to the other models that were used as RNN
which get their memory from returning the output of the previous time step back as input for the current
time-step. The advantage of this internal memory of the LSTM is that it is trained with the model
meaning that the model learns what information is important and what information is not important.
Additionally the LSTM can store memory for longer allowing the model to find long term relations that
the other RNN models could not. This makes the LSTM model very well suited for simulating time-
domain series. The set-up for this model is relatively simple. The input signal is provided with every
time-step, and the output of the model is the displacement of the Duffing-oscillator. For the parameter-
conditioned version of this the non-linear stiffness, k3 is concatenated every time-step with the input
signal. A diagram of this setup is shown in Figure 3.14.

3.3. Results From Preliminary Evaluation 17

LSTM

Inn-1 InnInn-2 Inn+1 Inn+2 Inn+3 Inn+6Inn+5Inn+4

Outn-2 OutnOutn-1 - - - -- -

Figure 3.14: Diagram of direct LSTM model

The time-domain results of the direct LSTM model are shown in Figure A.9. The figure for the result
with a middle amplitude is repeated in this section in Figure 3.15. The results show that the LSTM
is able to capture the oscillation of the system at both low and high frequencies relatively accurately.
Furthermore, in contrast with the other models, the LSTM model is able to model the behaviour of
the system at forcing frequencies above the resonance frequency. Additionally, it correctly models the
reduction in the transmissibility as the difference between the forcing frequency and the resonance
frequency of the system becomes larger.

0 5 10 15 20 25 30 35 40
Time

4

3

2

1

0

1

2

3

Di
sp

la
ce

m
en

t

Predicted Displacement
True Displacement

Figure 3.15: Middle amplitude time-domain result for direct LSTM model trained on a system with a single k3

There are two large factors that contribute to the LSTM’s ability to model the system’s response at
forcing frequencies above the resonance frequency of the system. First, the LSTM has dedicated
memory terms which are trained with themodel. As themodel is trained these terms contain information
about the system that can last for multiple time-steps, allowing themodel to learn long-term dependencies.
Secondly, the LSTM suffers much less from the vanishing gradient problem which makes it better suited
at optimising longer time-domain simulations as well as variables that have long-term dependencies.
These factors contribute to the model’s ability to model the system very well.

The time-domain results of the parameter-conditioned direct LSTM model can be seen in Figure A.10.
The figure for the result with a k3 value of 1.0 is repeated in this section in Figure 3.16. The results
of this show that the ability of the LSTM to model the system has not significantly been altered by
the additional parameters. The LSTM is able to model the changing behaviour of the system with a
changing non-linear stiffness very accurately. This result shows that the direct LSTM model is very well
suited to be used as a parameter-conditioned model.

3.3. Results From Preliminary Evaluation 18

0 5 10 15 20 25 30 35 40
Time

4

3

2

1

0

1

2

3

Di
sp

la
ce

m
en

t

Predicted Displacement
True Displacement

Figure 3.16: Time-domain results for parameter-conditioned direct LSTM model with k3: 1.0

3.3.6. Comparison
When comparing the results of the different models it becomes clear that a simple NN is not suitable
to model the behaviour of a non-linear system. Among the four RNN models that are considered
the direct RNN performs the worst, often having large jumps and highly-irregular accelerations in the
displacement. Additionally it is unable to model the behaviour of the system when the forcing frequency
is higher than the resonance frequency. The first derivative RNN improves on the direct RNN by
having the system’s inertia built into the integrator. Furthermore, this model shows the transmissibility
of the system increasing before the resonance frequency of the system and decreasing after the
resonance frequency of the system. However, it is still unable to model the system’s behaviour when
the forcing frequency exceeds the resonance frequency of the system. Despite the expectations, the
second derivative RNN performs worse than the first derivative RNN, losing the ability to model the
transmissibility when the forcing frequency is around the system’s resonance frequency. Finally, the
direct LSTM performs the best by far, showing a continuous oscillation that has the correct amplitude
at every frequency, even when the forcing frequency exceeds the system’s resonance frequency.

The difference between direct LSTM and the other models becomes even more apparent with the
parameter-conditioned models. Where all the other models perform even worse when the system gets
another parameter, the LSTM model is able to model the system with a very high accuracy across all
different values of the non-linear stiffness.

While it is still possible to improve the first derivative RNN model, some of the biggest improvements
like making the model physics informed can also be applied to the LSTM model. Given the size of
the performance difference between the LSTM model and the other RNN models, especially for the
parameter-conditioned models, the increased accuracy of the LSTM model is well worth the slower
performance of the model. Therefore, the LSTM model is used as a basis for all other models for the
rest of the thesis.

4
Methodology

This chapter describes the methodology that is used to create the dataset used to train the models
as well as the methodology used to make and train the models. The methodology used to create the
dataset can be found in Section 4.1. How the models are structured with respect to the considered
variables as well as the variants that are trained can be found in Section 4.2. How these models were
implemented is described in Section 4.3. Different versions of these models were trained to determine
how they differ. These different versions can be found in Section 4.4.

4.1. Obtaining The Dataset
In order to train the models, a relevant dataset is required. As no relevant data relating to foam was
available, a series of tests had to be performed. This section describes the test set-up, what tests were
performed, and the problems encountered during the tests.

4.1.1. Test Set-Up
As the simulation model is meant to represent shock tests on foam-packed items, the tests must be
performed in a way that is representative of this case. In a real scenario, an object is typically mounted
vertically on a large shaker. This shaker then performs a half-sine shock with a period of 3ms with an
amplitude depending on the test scenario.

Performing a test like this requires a shaker with a large range of motion that is powerful enough to
produce these shocks. This typically requires a specialised testing facility with specialised equipment.
However, making use of these test facilities can be very expensive. Given that the thesis has no
budget, making use of a specialised facility like this is out of the question. As a result, all the tests were
performed at the TU Delft DASML Dynamics Lab.

The largest shaker that is available at the Dynamics Lab as of writing is the Model 2025E modal shaker
from The Modal Shop [34]. This shaker has a limited stroke length of 18mmmaking it unable to perform
high amplitude low frequency shock tests. Additionally, the shaker is not very large and is not suited to
carry a mass vertically.

To compensate for these shortcomings the test set-up is changed from a vertical orientation to a
horizontal orientation. Additionally, the test is changed from a half sine shock test to a vibration test.
While this means that the data is not entirely representative of the real test set-up, it allows for high
amplitudes to be tested due to the shorter required stroke length for a vibration test compared to a
shock test.

As tests on multiple foam thicknesses are required, the test sample is made as follows. Two steel
plates with a thickness of approximately 14mm are placed between foam plates with a thickness of
28mm each. To vary the total foam thickness, these foam plates can be added or removed. Tests were
performed on a configuration with one, two, and three foam plates on both sides of the steel plates.
To keep the foam and steel plates together, and to transfer a load, these plates are lightly pressed

19

4.1. Obtaining The Dataset 20

between two aramid-aramid sandwich panels. These two sandwich panels are connected with four
threaded rods. Two on the top side, and two on the bottom side. The rods on the bottom side are
placed closer towards the centre of the sandwich panels to support the foam and steel plates. This
bundle is suspended via a wire and aligned with the shaker. The shaker is connected to one of the
sandwich panels through a load-cell/accelerometer combination. To measure the response of the steel
plates in the foam, an accelerometer is placed at the centre of the steel plate closest to the shaker.
An additional accelerometer was also placed directly on the shaker to be used as a reference. This
described test set-up with a configuration with three foam plates is shown in Figure 4.1.

Figure 4.1: Test set-up in a configuration with three foam plates

4.1.2. Tests Performed
On this test setup, two types of tests were performed. The first is a chirp test. In this test, a sine motion
with an increasing frequency over a given range is supplied to the shaker. The advantage of this test
is that is excites all the frequencies in the sweep range ensuring the resonance frequency is found
and excited. The second test is a random burst test. In this test, a white noise signal is supplied to
the shaker with a given frequency range. The advantage of this test is that the noise is random. This
avoids the possibility that an AI model is able to learn and anticipate the input signal.

Because a time-stepper model must run through every time-step in sequence, these steps can for the
most part not be run in parallel. As a result, making tests longer has a very large influence on the
training time of the model. For this reason the tests are limited to a duration of 0.2 s and 500 time-steps.
In order to obtain desirable results from these short tests, the chirp signal is divided into two tests. One
test ranging between 20Hz and 200Hz, and one test ranging between 200Hz and 2000Hz. The random
vibration test is performed four times per amplitude in the range of 20Hz and 2000Hz. Both the chirp
and random burst tests were performed at increasing target maximum amplitudes ranging from 5 g to up
to 25 g with four steps in-between. Exact step sizes between these values are difficult to determine as
the shaker amplitude scales non-linearly with an increasing supplied voltage. These tests are repeated
for each of the tested foam thicknesses.

As a way to reduce the amount of data that is used in the GP layer of the model, a reduced dataset
was created where only two out of the four random burst tests per amplitude were kept. Furthermore,

4.1. Obtaining The Dataset 21

it was decided to only train the models on the random burst dataset as this input signal is completely
random and the risk of problems related to learning the input signal can be avoided.

4.1.3. Issues During Testing
While performing tests for the smallest foam thickness, a metallic noise was heard during testing. It
is unclear what caused this noise, however, it is observable in the measured input data as noise.
Figure 4.2 shows an example of this. Figure 4.2a shows a chirp signal at a low amplitude that has
no observable issues. Meanwhile, Figure 4.2b shows a chirp signal that was performed at a higher
amplitude. The shape of the high amplitude chirp signal is supposed to be identical to the shape of the
first signal.

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Time [s]

4

2

0

2

4

Ac
ce

le
ra

tio
n

[g
]

Input Acceleration
Response Acceleration

(a) Low-amplitude chirp with little noise

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Time [s]

30

20

10

0

10

20

30

Ac
ce

le
ra

tio
n

[g
]

Input Acceleration
Response Acceleration

(b) High-amplitude chirp with high amount of noise

Figure 4.2: Example of low- and high-amplitude chirp signal for the test sample with 1 foam plate

Not only is the signal of the high amplitude chirp signal heavily distorted, the acceleration is entirely
skewed towards an amplitude between −10 g and −5 g. Furthermore, the response acceleration of the
mass between the foam plates does not show this skew and seems to only be lightly affected by this
phenomenon. The applied acceleration is consistent with a measuring error. However, there seems to
be some effect on the response acceleration which is also distorted.

The frequency domain of the input acceleration of four of the chirp tests can be seen in Figure 4.3. This
input acceleration is supposed to scale linearly with in increasing amplitude, only being influenced by
the resonance of the shaker. Figure 4.3a shows the normalised amplitude of the frequency domain of
two chirp tests with 5 g and 15 g amplitudes for the test case with a single sheet of foam. Figure 4.3b
shows the normalised amplitude of the frequency domain of two chirp tests with 5 g and 15 g amplitudes
for the test case with three sheets of foam.

The figures show that the shape of the frequency stays roughly the same across amplitudes for the
test case with three sheets of foam. This means that for this test case the input scales linearly as
is expected. However, for the test case with only a single sheet of foam the shape of the frequency
spectrum of the inputs with two different amplitudes is drastically different. The lowest amplitude has

4.1. Obtaining The Dataset 22

0 500 1000 1500 2000 2500
Frequency

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ise

d
Am

pl
itu

de

5g Chirp
15g Chirp

(a) Frequency domain of test case with 28mm of foam

0 500 1000 1500 2000 2500
Frequency

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ise

d
Am

pl
itu

de

5g Chirp
15g Chirp

(b) Frequency domain of test case with 84mm of foam

Figure 4.3: Frequency domain of the measured input acceleration of the shaker during chirp tests with a maximum amplitude
of 5 g and 15 g

a shape that is comparable to the shape of the frequency domain of the input acceleration of the test
case with three sheets of foam. Furthermore, the amplitude of the frequency domain of input with the
lowest amplitude shows very few large jumps. Meanwhile, the amplitude of the frequency domain of
the input with the highest amplitude is spread across a wide range of frequencies with large jumps in
amplitudes between frequencies. This shows that the observed noise has a wide frequency range and
is not a tonal noise which would be visible as a large peak around a single frequency.

To complete the comparison, the frequency domain of the input acceleration of four of the random burst
input accelerations is shown in Figure 4.4. The input accelerations of a random burst with an amplitude
of 3 g and 10 g is shown for the test case with a single sheet of foam and three sheets of foam in Figures
4.4a and 4.4b respectively.

Unlike for the chirp signal, the shape of the low amplitude random burst an the high amplitude random
burst is very similar within the same foam thickness. However, there are still differences across the
test case with a single foam sheet and the test case with three foam sheets. While the amplitudes
of the frequency spectrum of the input acceleration for the test case with three sheets of foam has
large jumps in the amplitudes, they are smaller than the jumps that can be seen for the test case with
a single foam sheet. Moreover, for the test case with three foam sheets the relative amplitude of the
higher frequencies above 500Hz stays below 20% of the amplitude around the resonance frequency
of the shaker. Meanwhile, for the test case with a single sheet of foam, the amplitude in this same
frequency range reaches as high as 40% of the amplitude around the resonance frequency. This
shows that the noise that was observed in the chirp tests is also present in the random burst tests
across all amplitudes.

To solve this issue, the tests with the single sheet of foam were re-done. However, the same problem
was observed in the new test data, indicating that this issue was not random chance and has to do with
the test set-up. To mitigate this issue, chirp tests that show this issue were removed from the dataset.
However, random burst results are kept as the noise is present for all amplitudes. How this affects
model performance is discussed in more detail in chapters 5 and 6.

A possible cause of this error is that the pre-compression of the foam caused by the load-cell connected
to the sandwich panel and the accelerometer connected to themass clamped inside the foam, illustrated
in Figure 4.1, causes the foam to compress to a point approaching densification resulting in the load cell
and the accelerometer touching or almost touching. However, if the load-cell and the accelerometer

4.2. Model Structure 23

0 500 1000 1500 2000 2500
Frequency

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ise

d
Am

pl
itu

de

3g Random Burst
10g Random Burst

(a) Frequency domain of test case with 28mm of foam

0 500 1000 1500 2000 2500
Frequency

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ise

d
Am

pl
itu

de

3g Random Burst
10g Random Burst

(b) Frequency domain of test case with 84mm of foam

Figure 4.4: Frequency domain of the measured input acceleration of the shaker during random burst tests with a maximum
amplitude of 3 g and 10 g

on the mass inside the foam did indeed touch during the vibration a transient spike would be visible on
the response measurement which is not visible in Figure 4.2b. This is therefore unlikely to be the real
cause and the true cause is still unknown.

4.2. Model Structure
In Sections 3.2 and 3.3 a range of models are presented and their performance to simulate a non-linear
dynamic system evaluated. The results of these preliminary models show that an LSTM model should
preferably be used. In order to use the LSTM model to simulate the response of an object packed in
foam, what variables are considered and how they are considered must first be determined. In this
section, it is discussed if the variables from Section 2.1 are implemented in the model and how they
are considered.

4.2.1. Foam Variables
The first variable is the Density of the Foam. The foam density from Section 2.1.3 is an important
variable that is strategically used to tune the eigenmodes of foam-packed items. Therefore, it must be
considered. In practice, only a limited number of foam types and densities are used at Redwire Space
NV. Because the foam density is not continuously distributed, different models should be made for each
foam type. This reduces the required model complexity and training time per model while allowing for
larger variation in the foam types in case they have a different chemical composition.

The next Variable is the Environmental Temperature from Section 2.1.2. While temperature can
have an effect on the mechanical properties of the polymer the foam is made of, in the real world, foam
packed items are continuously kept in a controlled environment where the temperature should be within
a range of no more than 12K [35]. Because of this, the temperature can be assumed to be roughly
constant and the temperature must not be considered if the experimental data is obtained in a room
within the same temperature range as the launch environment.

The Strain Rate from Section 2.1.3 is a very important variable and cannot be assumed to have no
effect [5]. Therefore a model must be chosen that takes the effect of this strain rate into account. This
is discussed in further detail in section 4.2.3.

4.2. Model Structure 24

The Pre-Strain from Section 2.1.4 has a large effect on both how much of the applied shocks and
vibrations can be absorbed by the foam, and on the eigenfrequency of a foam packed item. While it
can’t be ignored, it is impractical to measure the pre-strain. Therefore, the pre-strain cannot be included
in themodel. To compensate for this oversight in themodel, it is vital that a foam packed item ismounted
in the test setup in a way that is consistent, and representative of the real world environment. If this is
not the case, the test cannot be considered valid.

Lastly, the FatigueBehaviour discussed in Section 2.1.5 can have a significant impact on the behaviour
of foam. However, as was discussed in Section 2.1.5, the effect of this fatigue is much lower or even
negligible in polyethylene foams. As NASA suggests the use of polyethylene foam in the requirements
for ISS payloads, the effect of fatigue can be ignored [35].

4.2.2. Other Variables
In addition to the variables discussed in Sections 2.1 and 4.2.1, The thickness of the foam packaging,
the mass of the object packed in the foam, and the surface area of the foam and the object must be
considered in the model as well.

As the thickness of the foam increases, the perceived stiffness of the foam packaging decreases. As
a result this makes the eigenfrequency of the foam packed item decrease. Furthermore, due to the
increased thickness, the relative strain for a given displacement decreases. This reduces the non-linear
effects related to strain and strain-rate that were discussed in sections 2.1 and 4.2.1.

As the mass of the object packed in foam increases, the inertia of the object increases. As a result,
the eigenfrequency decreases as well. However, because of this, the object has more energy which
must be damped which results in a higher strain, increasing non-linear effects. This means more foam
might be required to sufficiently damp the object.

The surface area of the foam plays an important role in damping. It is used in combination with the
mass of the object to determine the surface pressure. If for a constant object mass, the surface area
of the foam increases, the surface pressure of the object on the foam decreases and the foam will be
perceived as stiffer and will be able to damp more mass.

4.2.3. Model Structure With Respect to the Variables
The variables discussed in Sections 4.2.1 and 4.2.2 are used in the following way as shown in Figure
4.5. For every time step, the model receives the applied acceleration, the foam thickness, and the
surface pressure on the foam as an input. This surface pressure combines the object mass and the
surface area of the foam. It is a measure of how much mass is spread over the contact area of the foam.
While the applied acceleration varies for each time-step, the Foam thickness and surface pressure are
constant. As such, the foam thickness and surface pressure act as state parameters which provide
context for the model. This way the same model can be trained as a parameter-conditioned model and
used across a range of multiple thicknesses and surface pressures.

The strain rate of the foam is considered by the model itself. By training the LSTM it learns how to
correctly represent the strain rate of the system in its memory. The foam type is a combination of the
foam density and the material the foam is made of. As there are only a limited number of foam types
used by Redwire Space NV., the foam density cannot be considered a continuous variable and using
this as a parameter from the model is illogical and would only make the model more complex. Therefore
separate models should be trained for every foam type.

The environmental temperature and pre-strain of the foam are not considered in the model itself as
is discussed in Section 4.2.1. Instead, they are considered when selecting training data. During a
test to obtain training data, it must be ensured that the temperature and the pre-strain of the foam are
consistent for the environment the foam is expected to be used in.

Lastly, the acceleration of the object in the foam as a response to the applied acceleration is the output
of the model. Using this model structure, the model can be run without knowledge of the real packaging
or resonance frequency of the system that is to be analysed. The advantage of this method is that this
model could be used to determine if a proposed type of packaging will be sufficient or what type of
packaging should be used.

4.2. Model Structure 25

Test Environment and Set-up
Environmental Temperature
Pre-Strain

Model OutputsModelModel Inputs

Applied Acceleration
Foam Thickness
Surface Pressure

Strain Rate

Foam Type

Response Acceleration

Figure 4.5: The structure of the model with respect to the different variables that are considered

To reduce the model complexity for the purpose of this thesis, only the foam thickness is considered as
a state parameter. This was done because every additional state parameter increases the amount of
test data exponentially. For example, if for one surface pressure five foam thicknesses must be tested,
adding five surface pressures increases the required number of tests from five to 25. Having only one
state parameter instead of two reduces the complexity of the model drastically while still proving that
the model is able to determine the meaning of a state parameter within a single model.

4.2.4. Model Variants
An additional benefit to using a LSTM model as solver is that the internal memory terms of the LSTM
means that the recurrence of the model is not dependent on obtaining the model’s final result. This
means that any step after the LSTM layer of the model can be run in parallel after the LSTM layer has
gone through every time-step. The benefit of this is that a GP layer can be used after the LSTM layer
to obtain the final acceleration. The effect of this is that the GP layer not only returns the acceleration
but a variance as well, giving an indication in what range the result is expected to be.

The reason why a GP is not considered as a solver by itself is because during training, the inputs and
outputs of the GP must all be fitted at the same time. This makes it impossible to use the GP layer as
a solver for a time-stepper model on its own. Instead the GP must be used for a direct-solution which
has the disadvantage that the length of the time domain cannot vary, and thus the model cannot be
used for extrapolation.

As was discussed in Section 2.2.2 using a GP is very computationally expensive. To mitigate this
problem the input dimension of the GP can be reduced. In this case, the output of the LSTM layer can
be reduced before being used as an input for the GP which in this case works as a layer. For this thesis,
two methods to reduce the dimension of the output of the LSTM layer were used. The first method is to
use a FC layer. This layer must be trained with the model in order to accurately reduce the dimension
of the output of the LSTM layer. The second method is the use a PCA as a layer on the output of the
LSTM layer to reduce the input of the GP layer. Unlike the FC layer, a PCA is not trained and is instead
fitted every epoch. In practice, the largest difference between using a FC layer and a PCA layer is that
the FC reduces the dimension in a way where potentially no information in the data is lost. Meanwhile
the PCA layer reduces the dimension by finding a new set of orthogonal vectors representing the data,
and then only maintaining the most important dimensions, discarding the least important dimensions.
This means that the PCA reduces the dimension in a way that reduces the amount of information in the
system.

The three variants of the model that result from this are the LSTMmodel which starts with a LSTM layer
followed by a FC layer that reduces the output of the LSTM to the output dimension. The second type
is the LSTM-FC-GP model which starts with an LSTM layer, followed by a FC layer which reduces the
output dimension of the LSTM layer to the input dimension of the GP layer which directly outputs the

4.3. Training the Models 26

output of the model. Finally, there is the LSTM-PCA-GP model which is similar to the LSTM-FC-GP
model but uses a PCA layer to reduce the output dimension of the LSTM instead of a FC layer.

4.3. Training the Models
To make the results form the trained models comparable, the models must be trained in a standardised
way. This section describes how the different models were implemented and how they were trained.

4.3.1. Model Implementation
To make training and running the models that were presented in Section 4.2.4 easier, the models are
stored in an object that stores the models, as well as the relevant parameters such such as dimensions
as well as input and output scalers. This makes it easier to store, load, and use the models. This is
structured as follows. Each model has a model container. This model container stores information
about the model itself such as input dimensions, output dimensions, input scale, and output scale. The
source code of this model container can be found in Appendix Section B.1.

This model container serves as a base class for each of the three model variants. The LSTM, LSTM-
FC-GP, and LSTM-PCA-GP models each add their own relevant variables well as a forward function
which is called every time the model runs. The source code for each of the model classes can be found
in Appendix Section B.2. Storing the models in this way ensures that when saved, everything needed
to run the model, including the scalers, can be found in one object.

Finally, every model variant has a corresponding model executor. The model executor contains the
instructions to train and run the models. Providing functions that directly train and run the models
ensures that a program used to train or run the models only needs to provide the data, reducing the
possibility for errors when training different models on the same data. Additionally, the model executor
has a save and a load function allowing for other programs to easily load the executor, and obtain
results from the models simply by providing the run function with the desired time domain input. The
source code of this model executor can be found in Appendix section B.3.

4.3.2. Training Setup
The models were trained and tested on a machine running windows 11 with an Intel i7-8700k, 64GB
of ddr4 memory and an NVIDIA GTX 1070Ti with 8GB of video memory.

In order to compare the models that are presented in Section 4.2.4 they must be trained on the same
dataset. This limits the use of the test data for all models to the reduced dataset described in Section
4.1.2. Due to this small dataset, a traditional train-test split in the data is not feasible and K-fold cross-
validation is used.

A K-fold cross validation is performed by splitting the dataset into k folds. Then, k iterations of training
and validation are performed where for each iteration 1 fold is used for validation and the other folds
are used for training [36]. This reduces the possibility that favourable or unfavourable results are due
to a favourable or unfavourable train-validation split of the dataset.

To train the models, the reduced test dataset is first loaded and split into 5 folds. These splits are done
per foam thickness to avoid an uneven distribution between different foam thicknesses across different
folds. Furthermore, the data is shuffled between every foam thickness to avoid folds having similar
amplitudes across the different foam thicknesses. The number of 5 folds was chosen because this
ensures a 20%-80% validation-train split for every time the model is trained.

The models are trained for every iteration using the model executors described in Section 4.3.1. As
the training progresses, the learning rate of the optimiser is reduced at a set interval. This interval is
carefully chosen to allow for the model to continue training at a reasonable pace without running the risk
of increasing the learning rate too soon. Using this approach ensures the model can train at a learning
rate small enough to get a high accuracy while also optimising at a fast rate at the start of training.

Unfortunately, training the GP models with the reduced dataset still exceeds the memory limit of the
available GPU. This means that the model must be trained on the the CPU instead. This drastically
increases the amount of time required to train the model. To overcome this issue, an optimisation is
used where only a smaller section of the outputs of the LSTM layer is used to train the GP layer. In this

4.4. Different Models Trained 27

case, one out of every four time steps is used during training for the GP layer. Which time step is used
is iterated in sequence every epoch. This optimisation drastically speeds up the training process while
maintaining a high accuracy.

4.4. Different Models Trained
To evaluate how the performance of the models changes with changing parameters, different models
were trained with changing parameters. The results of these models are then presented and compared
to the default model in Chapter 5.

4.4.1. Default Model
To compare the results with changing parameters, a baseline is required. The default models are
trained as follows, The LSTM model is trained over 4000 epochs. During this training the learning rate
starts at 0.0025 and is divided by

√
2 every 400 epochs.

The LSTM-FC-GP and LSTM-PCA-GP models are trained over 2000 epochs, which was chosen as
the training time at 2000 epochs is similar to 4000 epochs for an LSTM model. The input dimension of
the GP layer is chosen at 8 which during preliminary testing proved to be a good compromise between
model accuracy and complexity. The models were trained on 1/4 of the time steps, skipping 3/4 of the
outputs of the LSTM layer. This number was chosen because it allowed the models utilising a GP layer
to be trained on the system’s GPU.

4.4.2. Models Varying Number of Skipped Time Steps
To determine the influence of the amount of steps skipped by the GP layer, the amount of time steps
skipped was changed to 1/2 and the models with a GP layer were re-trained for the first fold. The
number 1/2 was chosen as it is expected that an increase in the number of time steps available to the
GP layer during training will allow the models to fit the data better. The results of this model will show if
this is true and how much better the models will be fitted. Training the models on this increased amount
of time steps increased the total training time by a factor of 5. Increasing the fraction of time steps used
further would result in training times that are unacceptable. Therefore, the models were not re-trained
with all the time-steps used as an input for the GP layer.

4.4.3. Models Trained Without Noisy Data
To determine if the noisy test data that was discussed in Section 4.1.3 has an impact on the accuracy
of the models, the models were re-trained excluding the data from the test case with a single sheet of
foam. As this data is not replaced a consequence of this is that the dataset is reduced in size and that
the models are trained with less training data. To maintain consistency between the results of different
models, the numbers used to label the validation data for each fold are kept the same. As a result, the
validation data for these models is numbered 3 to 6.

4.4.4. Models Trained With Varying GP Input Dimension
To determine the effect of the input dimension of the GP layer of the models, the models with a GP layer
were re-trained using a reduced GP input dimension of 6 and 4. These numbers are chosen because
they reduce the amount of memory required to run the model while showing the effect of reducing
the input dimension of the GP layer. Increasing the GP input dimension was not possible as it would
increase the required video memory to run the model by a too large amount.

4.4.5. Models Trained With Early Stopping
In order to get an accurate measure of the best potential performance of the model, and not just the
behaviour during training, the models were re-trained using early stopping. Here, the performance
of the models was evaluated using the validation loss. Each time the validation loss reaches a new
lowest value, the model weights are saved. If the validation loss does not decrease for 600 epochs for
the LSTM model or 100 epochs for the models with a GP layer, the training is stopped and the model
weights with the lowest validation loss are restored.

The reason these models are not used as the default model is to identify how the models behave
when they keep training. To compare the effects of the different variables on performance aspects

4.4. Different Models Trained 28

like over-fitting the default models are trained for often significantly longer than the models using early
stopping.

Finally, to determine the effect of the noisy data on the total accuracy of the models, the models are re-
trained with both early stopping and having the noisy test data removed, as was described in Section
4.4.3. The results of these models are then compared to the performance of the other models that
employ early stopping.

4.4.6. Models Trained for Half the Duration of the Training Data
The main reason for using a time-stepper method is that it can be used to simulate a system for a
varying duration. To determine if the models retain their accuracy when they are used to simulate a
time-domain response that is longer than the duration of the training data, the models are re-trained
for only half the duration of the training data. Then, the models are used to simulate the response of
the validation data for the full duration. The accuracy of the first half of the simulated response of the
validation data is then compared to the accuracy of the second half of the simulated response of the
validation data.

5
Results

This chapter includes the results produced by the different models introduced in Section 4.4. It shows
different metrics such as NRMSE, and the size and accuracy of the confidence interval for the models
utilising a GP layer. The results in this chapter are presented with a minimal amount of comparison,
and without a comment commenting on if the obtained results are good or bad. The discussion of the
results presented in this chapter can be found in Chapter 6 which follows the same structure. Readers
are advised to reach this chapter and Chapter 6 side by side.

The chapter is structured in the following way. The accuracy of the default models is shown in Section
5.1. The effects of varying the amount of output steps of the LSTM layer the GP layer skips during
training is shown in Section 5.2. The effect of the noise in the dataset that was observed in Section
4.1.3 is shown in Section 5.3. How varying the input dimension of the GP layer influences the models
is shown in Section 5.4. The accuracy of the models when over-fitting is prevented is shown in Section
5.5. How the models perform when they are used to extrapolate past the duration of the training data
is shown in Section 5.6. Finally, the computational performance of the models is shown in Section 5.7.

5.1. Default Model Accuracy
To establish a baseline for the accuracy of the models, the results of the default models described in
Section 4.4.1 are shown first. Table 5.1 shows the summarised results of the K-Fold cross validation
for each of the models. The NRMSE score of every model is shown for each fold in the columns of the
table. The last column shows the average for each model across all folds. The average score of the
LSTM model is the highest at 0.681. The LSTM-FC-GP model has the middle highest average at 0.643,
followed by the LSTM-PCA-GP model with a NRMSE of 0.607.

Table 5.1: NRMSE of the K-Fold Cross validation of the LSTM, LSTM-FC-GP, and LSTM-PCA-GP models

Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average
LSTM 0.604 0.782 0.684 0.689 0.647 0.681
LSTM-FC-GP 0.607 0.601 0.645 0.718 0.644 0.643
LSTM-PCA-GP 0.622 0.574 0.579 0.652 0.610 0.607

The full NRMSE results of the K-fold cross validation can be seen in table 5.3. The columns of the table
correspond to the validation data of each fold. Validation results 1 and 2 correspond to the case with
the least amount of foam. Validation results 3 and 4 correspond to the case where there are two sheets
of foam. Validation results 5 and 6 correspond to the case where there are three sheets of foam. With
each foam sheet having a thickness of 28mm this corresponds to a foam thickness of 28mm, 56mm,
and 84mm respectively. A summary of these thicknesses can be seen in table 5.2.

The results of the LSTM, LSTM-FC-GP, and LSTM-PCA-GPmodels are shown in sub-tables 5.3a, 5.3b,
and 5.3c respectively. These full results provide a notable nuance to the results shown in table 5.1. The
average NRMSE of validation results 1 and 2 is notably higher than the NRMSE of the other validation

29

5.1. Default Model Accuracy 30

Table 5.2: Foam thickness corresponding to the validation results

Result Corresponding Foam Thickness
Validation Result 1 28mm
Validation Result 2 28mm
Validation Result 3 56mm
Validation Result 4 56mm
Validation Result 5 84mm
Validation Result 6 84mm

results. This effect is more pronounced for the models that have a GP layer than for the model without
a GP layer. Moreover, the LSTM-PCA-GP model has a higher NRMSE than the LSTM-FC-GP model
for validation results 1 and 2 despite having a lower overall average NRMSE. As can be seen in table
5.2 validation results 1 and 2 correspond to the test case with only a single sheet of foam. This is
consistent with the noise that was noted in Section 4.1.3.

Taking the average NRMSE of the models without the case with only a single sheet of foam results
in a NRMSE of 0.656 for the LSTM model, 0.576 for the LSTM-FC-GP model, and 0.503 for the LSTM-
PCA-GP model. This is an indication that the different models respond to noise in the input signal in a
different way. How this noisy data effects the model accuracy is shown in more detail in Sections 5.3
and 5.5.3.

The confidence interval of the LSTM-FC-GP, and LSTM-PCA-GP is based on the output of the LSTM
layer during training. The confidence interval should contain 95% of the measured real data. However,
it can be observed visually that this is not the case. Figure 5.1 is an extract from validation data result
4 of fold 4 of the LSTM-FC-GP model. The measured acceleration is shown as a green line labelled
”true acceleration” it can be seen that this line is outside of the 95% confidence interval more frequently
than 5% of all data points.

0.060 0.065 0.070 0.075 0.080
Time [s]

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

Ac
ce

le
ra

tio
n

[g
]

95% Confidence Interval
predicted
true acceleration

Figure 5.1: Example from LSTM-FC-GP fold 4, validation data result 4

This effect is illustrated more clearly in table 5.4 which shows the percentage of the real data points
that are outside of the 95% confidence interval. The results for the LSTM-FC-GP and LSTM-PCA-GP
models are shown in sub-tables 5.4a and 5.4b respectively. In an ideal scenario this percentage should
be 5% for every fold.

The percentages outside the confidence show a similar trend to the NRMSE. The case with the lowest
foam thickness shown in validation results 1 and 2 show significantly worse performance than the two
cases with more foam. Furthermore, the model using PCA performs significantly better than the model
using a FC layer, showing both an average percentage that is closer to 5% and a lower standard
deviation. A notable difference between these results and the results from the NRMSE is that for the
percentage of the real measurements outside the 95% confidence interval is lower across all validation

5.1. Default Model Accuracy 31

Table 5.3: NRMSE result for every test data result for every model

(a) LSTM

Validation
Result 1

Validation
Result 2

Validation
Result 3

Validation
Result 4

Validation
Result 5

Validation
Result 6 Average Std

Fold 1 0.727 0.852 0.457 0.463 0.522 0.601 0.604 0.144
Fold 2 0.688 0.616 0.815 0.78 0.888 0.906 0.782 0.104
Fold 3 0.813 0.669 0.771 0.618 0.59 0.646 0.684 0.081
Fold 4 0.78 0.703 0.674 0.658 0.676 0.644 0.689 0.044
Fold 5 0.799 0.664 0.713 0.477 0.569 0.659 0.647 0.102
Average 0.762 0.701 0.686 0.599 0.649 0.691 0.681
Std 0.047 0.081 0.124 0.118 0.13 0.109 0.117

(b) LSTM-FC-GP

Validation
Result 1

Validation
Result 2

Validation
Result 3

Validation
Result 4

Validation
Result 5

Validation
Result 6 Average Std

Fold 1 0.758 0.827 0.442 0.543 0.522 0.547 0.607 0.137
Fold 2 0.768 0.634 0.45 0.514 0.642 0.6 0.601 0.101
Fold 3 0.801 0.699 0.713 0.554 0.546 0.555 0.645 0.098
Fold 4 0.807 0.844 0.586 0.643 0.727 0.703 0.718 0.089
Fold 5 0.84 0.798 0.569 0.48 0.554 0.625 0.644 0.131
Average 0.795 0.761 0.552 0.547 0.598 0.606 0.643
Std 0.029 0.081 0.1 0.054 0.076 0.056 0.12

(c) LSTM-PCA-GP

Validation
Result 1

Validation
Result 2

Validation
Result 3

Validation
Result 4

Validation
Result 5

Validation
Result 6 Average Std

Fold 1 0.739 1.011 0.491 0.478 0.502 0.51 0.622 0.195
Fold 2 0.796 0.737 0.447 0.453 0.512 0.5 0.574 0.139
Fold 3 0.773 0.745 0.59 0.461 0.422 0.482 0.579 0.137
Fold 4 0.83 0.869 0.479 0.645 0.55 0.537 0.652 0.149
Fold 5 0.847 0.82 0.463 0.442 0.511 0.577 0.61 0.164
Average 0.797 0.837 0.494 0.496 0.499 0.521 0.607
Std 0.039 0.1 0.05 0.076 0.042 0.033 0.161

results for the LSTM-PCA-GP model compared to the LSTM-FC-GP model. This points to a difference
in the width of the confidence interval.

The width of the confidence interval can be seen in table 5.5 with the interval for the LSTM-FC-GP
and LSTM-PCA-GP being shown in tables 5.5a and 5.5b. The results from this table show that the
average size of the confidence interval of the LSTM-FC-GP model is approximately half of the size
of the confidence interval of the LSTM-PCA-GP model. The smaller size of the confidence interval of
the LSTM-FC-GP model is consistent with a higher degree of over-fitting for the LSTM-FC-GP model
compared to the LSTM-PCA-GP model.

Figure 5.2 shows the negative marginal log likelihood of the training data of the LSTM-FC-GP and
LSTM-PCA-GP models that were used as a loss function while training. The figure shows the loss of
both models reducing at a similar rate up to epoch 370. At this point the loss of the LSTM-PCA-GP
model plateaus at a value of −1.2. Meanwhile the loss of the LSTM-FC-GP model keeps decreasing
until below a value of −2.5.

The much lower value of the negative marginal log likelihood of the LSTM-FC-GP model suggests that
it is more accurate at predicting the training data the the LSTM-PCA-GP model. However, the lower
accuracy proves this is not the case for the validation data. This is an indicator that the LSTM-FC-GP
model is over-fitted and thus has a reduced accuracy.

5.1. Default Model Accuracy 32

Table 5.4: The percentage of points that are outside of the 95% confidence interval

(a) LSTM-FC-GP

Validation
Result 1

Validation
Result 2

Validation
Result 3

Validation
Result 4

Validation
Result 5

Validation
Result 6 Average Std

Fold 1 66.0% 82.0% 1.4% 56.8% 33.2% 71.0% 51.73% 27.06%
Fold 2 79.6% 82.4% 29.2% 72.2% 73.6% 79.0% 69.33% 18.29%
Fold 3 77.4% 81.6% 8.0% 20.6% 37.0% 29.8% 42.4% 27.71%
Fold 4 13.4% 16.0% 47.4% 65.0% 1.2% 2.0% 24.17% 23.83%
Fold 5 59.0% 60.0% 48.8% 63.4% 66.2% 72.0% 61.57% 7.14%
Average 59.08% 64.4% 26.96% 55.6% 42.24% 50.76% 49.84%
Std 24.05% 25.66% 19.56% 18.17% 25.89% 29.92% 27.16%

(b) LSTM-PCA-GP

Validation
Result 1

Validation
Result 2

Validation
Result 3

Validation
Result 4

Validation
Result 5

Validation
Result 6 Average Std

Fold 1 45.0% 70.8% 0.4% 20.4% 9.6% 49.6% 32.63% 24.55%
Fold 2 21.4% 24.4% 0.0% 18.8% 16.2% 17.4% 16.37% 7.8%
Fold 3 39.2% 45.6% 0.0% 0.0% 0.2% 0.2% 14.2% 20.03%
Fold 4 7.2% 9.2% 25.8% 57.2% 0.0% 0.2% 16.6% 20.09%
Fold 5 48.2% 50.8% 24.2% 53.2% 47.8% 63.8% 48.0% 11.91%
Average 32.2% 40.16% 10.08% 29.92% 14.76% 26.24% 25.56%
Std 15.56% 21.39% 12.19% 21.89% 17.61% 26.04% 22.17%

0 250 500 750 1000 1250 1500 1750 2000
Epoch

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

- M
ar

gi
na

l L
og

 L
ike

lih
oo

d

Loss LSTM-FC-GP Model
Loss LSTM-PCA-GP Model

Figure 5.2: Marginal log likelihood of the LSTM-FC-GP and LSTM-PCA-GP models of fold 2 compared

5.1. Default Model Accuracy 33

Ta
bl
e
5.
5:

Th
e
av
er
ag
e
w
id
th
of
th
e
9
5
%
co
nf
id
en
ce

in
te
rv
al
of
ev
er
y
te
st
da
ta

(a
)L
ST

M
-F
C
-G
P

Va
lid

at
io
n

R
es
ul
t1

Va
lid

at
io
n

R
es
ul
t2

Va
lid

at
io
n

R
es
ul
t3

Va
lid

at
io
n

R
es
ul
t4

Va
lid

at
io
n

R
es
ul
t5

Va
lid

at
io
n

R
es
ul
t6

Av
er
ag

e
St
d

Fo
ld

1
7
.1
1
×
10

−
2
g

7
.2
3
×
10

−
2
g

6
.8
2
×
1
0
−
2
g

6
.8
7
×
1
0
−
2
g

6
.8
4
×
1
0
−
2
g

7
.0
2
×
1
0
−
2
g

6
.9
8
×
1
0
−
2
g

1
.5
1
×
1
0
−
3
g

Fo
ld

2
5
.0
2
×
10

−
2
g

5
.1
3
×
10

−
2
g

4
.8
4
×
1
0
−
2
g

4
.9
6
×
1
0
−
2
g

5
.0
1
×
1
0
−
2
g

5
.0
7
×
1
0
−
2
g

5
.0
0
×
1
0
−
2
g

9
.0
0
×
1
0
−
4
g

Fo
ld

3
5
.7
7
×
10

−
2
g

5
.8
3
×
10

−
2
g

5
.6
0
×
1
0
−
2
g

5
.6
0
×
1
0
−
2
g

5
.6
2
×
1
0
−
2
g

5
.6
1
×
1
0
−
2
g

5
.6
7
×
1
0
−
2
g

9
.1
1
×
1
0
−
4
g

Fo
ld

4
8
.6
6
×
10

−
2
g

8
.6
7
×
10

−
2
g

8
.7
1
×
1
0
−
2
g

8
.7
6
×
1
0
−
2
g

8
.6
3
×
1
0
−
2
g

8
.6
3
×
1
0
−
2
g

8
.6
8
×
1
0
−
2
g

4
.4
7
×
1
0
−
4
g

Fo
ld

5
5
.2
2
×
10

−
2
g

5
.2
2
×
10

−
2
g

5
.1
6
×
1
0
−
2
g

5
.2
6
×
1
0
−
2
g

5
.2
3
×
1
0
−
2
g

5
.3
5
×
1
0
−
2
g

5
.2
4
×
1
0
−
2
g

5
.8
3
×
1
0
−
4
g

Av
er
ag

e
6
.3
6
×
10

−
2
g

6
.4
1
×
10

−
2
g

6
.2
3
×
1
0
−
2
g

6
.2
9
×
1
0
−
2
g

6
.2
7
×
1
0
−
2
g

6
.3
4
×
1
0
−
2
g

6
.3
2
×
1
0
−
2
g

St
d

1
.3
6
×
10

−
2
g

1
.3
6
×
10

−
2
g

1
.4
1
×
1
0
−
2
g

1
.3
9
×
1
0
−
2
g

1
.3
4
×
1
0
−
2
g

1
.3
3
×
1
0
−
2
g

1
.3
7
×
1
0
−
2
g

(b
)L
ST

M
-P
C
A-
G
P

Va
lid

at
io
n

R
es
ul
t1

Va
lid

at
io
n

R
es
ul
t2

Va
lid

at
io
n

R
es
ul
t3

Va
lid

at
io
n

R
es
ul
t4

Va
lid

at
io
n

R
es
ul
t5

Va
lid

at
io
n

R
es
ul
t6

Av
er
ag

e
St
d

Fo
ld

1
1
.1
7
×
10

−
1
g

1
.2
9
×
10

−
1
g

1
.1
1
×
1
0
−
1
g

1
.1
1
×
1
0
−
1
g

1
.1
1
×
1
0
−
1
g

1
.1
3
×
1
0
−
1
g

1
.1
5
×
1
0
−
1
g

6
.3
0
×
1
0
−
3
g

Fo
ld

2
2
.5
8
×
10

−
1
g

3
.3
0
×
10

−
1
g

1
.7
0
×
1
0
−
1
g

1
.7
7
×
1
0
−
1
g

1
.7
2
×
1
0
−
1
g

1
.7
4
×
1
0
−
1
g

2
.1
4
×
1
0
−
1
g

6
.0
6
×
1
0
−
2
g

Fo
ld

3
1
.5
9
×
10

−
1
g

1
.7
9
×
10

−
1
g

1
.3
7
×
1
0
−
1
g

1
.3
7
×
1
0
−
1
g

1
.3
7
×
1
0
−
1
g

1
.3
7
×
1
0
−
1
g

1
.4
8
×
1
0
−
1
g

1
.6
3
×
1
0
−
2
g

Fo
ld

4
1
.1
1
×
10

−
1
g

1
.1
1
×
10

−
1
g

1
.1
1
×
1
0
−
1
g

1
.1
2
×
1
0
−
1
g

1
.1
1
×
1
0
−
1
g

1
.1
1
×
1
0
−
1
g

1
.1
1
×
1
0
−
1
g

2
.7
9
×
1
0
−
4
g

Fo
ld

5
7
.3
9
×
10

−
2
g

7
.4
1
×
10

−
2
g

7
.3
7
×
1
0
−
2
g

7
.4
1
×
1
0
−
2
g

7
.3
8
×
1
0
−
2
g

7
.4
1
×
1
0
−
2
g

7
.4
0
×
1
0
−
2
g

1
.7
7
×
1
0
−
4
g

Av
er
ag

e
1
.4
4
×
10

−
1
g

1
.6
5
×
10

−
1
g

1
.2
1
×
1
0
−
1
g

1
.2
2
×
1
0
−
1
g

1
.2
1
×
1
0
−
1
g

1
.2
2
×
1
0
−
1
g

1
.3
2
×
1
0
−
1
g

St
d

6
.3
1
×
10

−
2
g

8
.9
4
×
10

−
2
g

3
.2
0
×
1
0
−
2
g

3
.4
1
×
1
0
−
2
g

3
.2
5
×
1
0
−
2
g

3
.2
8
×
1
0
−
2
g

5
.4
7
×
1
0
−
2
g

5.2. Varying the Steps Skipped by GP Layer 34

5.2. Varying the Steps Skipped by GP Layer
To evaluate the effect of leaving out a large chunk of the outputs of the LSTM layer before providing
it to the GP layer during training, the first fold of both models was retrained with double the amount of
time steps provided to the GP layer, increasing the amount of inputs to the GP layer from one every
four time steps to one every two time steps. As was noted in Section 2.2.2, calculating the variance
takes O(n2) time meaning this doubling of the amount of data results in a quadrupling of computation
time. Additionally, the increased amount of memory exceeds the video memory of the system that was
used to train the model on. This meant that the GP layer could not be run on the GPU effectively and
had to be run on the CPU instead. This increased the overall training time of fold 1 to the same amount
of time it took to perform the entire k-fold cross-validation on the default model. Therefore the results
are only provided for fold 1.

The NRMSE of fold 1 of the newmodels that were trained with double the amount of time steps inputted
to the GP layer is shown in table 5.6. Comparing the average NRMSE of the results to those of the
default models, the average NRMSE is higher for both the LSTM-FC-GP and LSTM-PCA-GP models.
When excluding validation results 1 and 2 like was done for the default models, the average NRMSE
becomes 0.622 for the LSTM-FC-GP model and 0.581 for the LSTM-PCA-GP model which are both
higher than the results for the default models.

Table 5.6: NRMSE for each test result of fold 1 when doubling the amount of time steps supplied to the GP layer

Model Validation
Result 1

Validation
Result 2

Validation
Result 3

Validation
Result 4

Validation
Result 5

Validation
Result 6 Average Std

LSTM-
FC-GP 0.756 0.823 0.658 0.594 0.606 0.629 0.678 0.084

LSTM-
PCA-
GP

0.768 0.846 0.493 0.606 0.625 0.601 0.656 0.116

The percentage of real data points that are outside of the 95% confidence interval is shown in table
5.7. This percentage is higher not just on average but for every test result for both models, having an
average of over 60% for both models. This percentage should ideally be 5%.

Table 5.7: Percentage of real data points outside of the 95% confidence interval of fold 1 for models retrained with 1/2
time-steps as GP input

Model Validation
Result 1

Validation
Result 2

Validation
Result 3

Validation
Result 4

Validation
Result 5

Validation
Result 6 Average Std

LSTM-
FC-GP 70.0% 85.8% 15.0% 65.0% 55.2% 80.6% 61.93% 23.24%

LSTM-
PCA-
GP

79.4% 88.4% 8.6% 71.8% 57.8% 81.4% 64.57% 26.78%

Supporting the result from table 5.7, table 5.8 shows the average width of the 95% confidence interval
for every test result for both models. Comparing these results to the results of the default models, it
can be seen that the confidence interval is narrower for both models for all test results.

Table 5.8: Width of the 95% confidence interval of fold 1 for models retrained with 1/2 time-steps as GP input

Model Validation
Result 1

Validation
Result 2

Validation
Result 3

Validation
Result 4

Validation
Result 5

Validation
Result 6 Average Std

LSTM-
FC-GP

5.36 ×
10−2 g

5.48 ×
10−2 g

5.28 ×
10−2 g

5.29 ×
10−2 g

5.29 ×
10−2 g

5.41 ×
10−2 g

5.35 ×
10−2 g

7.34×
10−4 g

LSTM-
PCA-
GP

4.68 ×
10−2 g

4.70 ×
10−2 g

4.66 ×
10−2 g

4.67 ×
10−2 g

4.67 ×
10−2 g

4.70 ×
10−2 g

4.68 ×
10−2 g

1.62×
10−4 g

5.3. The Effect of Noisy Data 35

Figure 5.3 shows the training loss of the models that were trained with both one fourth and half the
time steps inputted into the GP layers. The losses for the LSTM-FC-GP and LSTM-PCA-GP models
are shown in Sub-Figures 5.3a and 5.3b respectively.

The training loss shows the loss was approximately equal until around epoch 400. After epoch 400,
the training loss decreases at a rate that is higher than it is for the other epochs. This effect is much
more pronounced in the LSTM-PCA-GP model. Furthermore, the models that were trained with a
higher number of time steps have a final negative marginal log likelihood that is lower than the models
that were trained with a smaller number of time steps. This is consistent with the smaller width of the
confidence interval shown in table 5.8.

0 250 500 750 1000 1250 1500 1750 2000
Epochs

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

- M
ar

gi
na

l L
og

 L
ike

lih
oo

d

Loss Model 1/4 Time Steps
Loss Model 1/2 Time Steps

(a) LSTM-FC-GP model

0 250 500 750 1000 1250 1500 1750 2000
Epochs

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

- M
ar

gi
na

l L
og

 L
ike

lih
oo

d

Loss Model 1/4 Time Steps
Loss Model 1/2 Time Steps

(b) LSTM-PCA-GP model

Figure 5.3: Comparison between the training loss of the LSTM-FC-GP and LSTM-PCA-GP models using 1/4 time steps and
1/2 time steps for the GP layer during training

5.3. The Effect of Noisy Data
To determine to what degree the noisy data associated with the test case with only a single sheet of
foam, which was discussed in Section 4.1.3, influences the accuracy of the model, all three models for
were re-trained for fold 1 with only the data from the test case with two and three sheets of foam. This
test data corresponds to validation results 3 to 6 from the previous sections. To remain consistent the
validation results in this section are numbered 3 to 6.

The NRMSE of the validation results is shown in table 5.9. The results show that removing the test data
with a single sheet of foam does not have an exclusively positive effect on the test results. While the
average NRMSE of the LSTM-FC-GP and LSTM-PCA-GP reduces compared to fold 1, the NRMSE
for the LSTM model increases. Furthermore, when taking the average NRMSE of fold 1 excluding
validation results 1 and 2, the NRMSE increases by 0.095, 0.030, and 0.046 for the LSTM, LSTM-FC-
GP, and LSTM-PCA-GP model respectively.

Table 5.9: NRMSE of the models retrained on the dataset excluding the data from the case with a single sheet of foam for fold 1

Model Validation
Result 3

Validation
Result 4

Validation
Result 5

Validation
Result 6 Average Std

LSTM 0.553 0.507 0.745 0.621 0.606 0.09
LSTM-
FC-GP 0.467 0.557 0.542 0.608 0.543 0.05

LSTM-
PCA-
GP

0.57 0.526 0.548 0.518 0.541 0.02

5.4. Effect of GP Input Dimension 36

The percentage of real data points that fall outside of the 95% confidence interval is shown in table 5.10.
Here, a similar trend can be observed to the NRMSE where the results improve for the LSTM-FC-GP
model but become worse for the LSTM-PCA-GP model.

Table 5.10: Percentage of real data points that fall outside of the 95% confidence interval for the models that were trained
without the data from the test-case with a single sheet of foam

Model Validation
Result 3

Validation
Result 4

Validation
Result 5

Validation
Result 6 Average Std

LSTM-
FC-GP 0.4% 49.2% 26.6% 65.8% 35.5% 24.58%

LSTM-
PCA-
GP

0.6% 27.2% 14.2% 48.0% 22.5% 17.47%

The decreasing percentage of the LSTM-FC-GP and increasing percentage for the LSTM-PCA-GP
model is consistent with the width of the confidence interval which is shown in table 5.11. The width
of this confidence interval increases for the LSTM-FC-GP model but decreases for the LSTM-PCA-GP
model.

Table 5.11: Width of the 95% confidence interval for the models trained without the data from the test-case with a single sheet
of foam

Model Validation
Result 3

Validation
Result 4

Validation
Result 5

Validation
Result 6 Average Std

LSTM-
FC-GP

7.79 ×
10−2 g

7.82 ×
10−2 g

7.80 ×
10−2 g

8.03 ×
10−2 g

7.86 ×
10−2 g

9.63×
10−4 g

LSTM-
PCA-
GP

1.06 ×
10−1 g

1.07 ×
10−1 g

1.06 ×
10−1 g

1.08 ×
10−1 g

1.07 ×
10−1 g

6.97×
10−4 g

5.4. Effect of GP Input Dimension
To determine the effect of varying the input dimension of the GP layer the models were re-trained for
fold 1 with the input dimension of the GP layer reduced from 8 to 6 and 4 inputs.

The NRMSE of the models with an input dimension of 6 can be seen in table 5.12. The results show
that the NRMSE is similar to the results with a higher input dimension. For the LSTM-FC-GP model,
the NRMSE is reduced by1%. Meanwhile, the NRMSE of the LSTM-FC-GP model is reduced by 1.3%.

Table 5.12: NRMSE for each test result of fold 1 when reducing the input dimension of the GP layer to 6

Model Validation
Result 1

Validation
Result 2

Validation
Result 3

Validation
Result 4

Validation
Result 5

Validation
Result 6 Average Std

LSTM-
FC-GP 0.712 0.788 0.445 0.538 0.542 0.584 0.601 0.115

LSTM-
PCA-
GP

0.739 0.797 0.474 0.528 0.535 0.611 0.614 0.117

The NRMSE of the models with a GP input dimension of 4 can be seen in table 5.13. The results show
that the NRMSE of the LSTM-FC-GP model are higher than the NRMSE of the model with a GP input
dimension of 6 and than the default model. Meanwhile, the NRMSE of the LSTM-PCA-GP model with
a GP input dimension of 4 is nearly identical to the NRMSE of the model with a GP input dimension of
6. However, the standard deviation of the model with a GP input dimension of 4 is somewhat higher.

The training and validation loss of the models with a GP input dimension of 6 is shown in figure 5.4.
The training and validation loss of the LSTM-FC-GP and LSTM-PCA-GP models can be seen in Sub-
figures 5.4a and 5.4b respectively. The results show the training and validation loss decreasing at the

5.4. Effect of GP Input Dimension 37

Table 5.13: NRMSE for each test result of fold 1 when reducing the input dimension of the GP layer to 4

Model Validation
Result 1

Validation
Result 2

Validation
Result 3

Validation
Result 4

Validation
Result 5

Validation
Result 6 Average Std

LSTM-
FC-GP 0.808 0.865 0.489 0.588 0.545 0.57 0.644 0.14

LSTM-
PCA-
GP

0.772 0.794 0.471 0.5 0.52 0.621 0.613 0.129

same rate until approximately epoch 200. After epoch 200, the validation loss decreases slower than
the training loss up to epoch 500 where the validation loss starts to increase again.

0 250 500 750 1000 1250 1500 1750 2000
Epoch

2

1

0

1

2

3

4

5

- M
ar

gi
na

l L
og

 L
ike

lih
oo

d

Loss
Validation Loss

(a) LSTM-FC-GP

0 250 500 750 1000 1250 1500 1750 2000
Epoch

2

1

0

1

2

3

4

5

- M
ar

gi
na

l L
og

 L
ike

lih
oo

d

Loss
Validation Loss

(b) LSTM-PCA-GP

Figure 5.4: Training and validation loss of models trained with a GP input dimension of 6

The training and validation loss of the models with a GP input dimension of 4 is shown in figure 5.5. The
training loss and validation of the LSTM-FC-GP and LSTM-PCA-GP models is shown in Sub-figures
5.5a and 5.5b respectively. The results show a similar trend to the results of the models with a larger
GP input dimension. Here, the training loss and validation loss decrease together up to epoch 200
where the validation loss plateaus while the training loss keeps decreasing. The difference between
the models with a GP input dimension of 4 and 6 is that the training loss for the models with a GP input
dimension of 4 does not decrease to the same level as it does for the models that were trained with a
GP input dimension of 6. Furthermore, the validation loss increases to a lower negative marginal log
likelihood for both models.

A comparison is made between the validation loss of the models with and without a reduced GP layer
input dimension. This comparison can be seen in Figure 5.6 which shows the validation loss of the
models with a GP input dimension of 8, 6, and 4. The comparison for the LSTM-FC-GP and LSTM-
PCA-GP models can be seen in Sub-figures 5.6a and 5.6b respectively.

For the LSTM-FC-GP model, the comparison shows that the validation loss is nearly indistinguishable
up to epoch 750. After epoch 750, the validation loss for the model with a an input dimension of 6
increases faster than the validation loss of the model with the original input dimension while the model
with a GP input dimension of 4 increases slower.

The LSTM-PCA-GP model shows the validation loss is nearly indistinguishable up to epoch 600. After
epoch 600 the loss of the models with a reduced input dimension increases slower than the model with
the original input dimension. After epoch 1000, the model with a GP input dimension of 6 increases
at nearly the same rate as the model with an input dimension of 8 while the model with a GP input
dimension of 4 keeps increasing at a slower speed.

5.5. Models Without Over-Fitting 38

0 250 500 750 1000 1250 1500 1750 2000
Epoch

2

1

0

1

2

3
- M

ar
gi

na
l L

og
 L

ike
lih

oo
d

Loss
Validation Loss

(a) LSTM-FC-GP

0 250 500 750 1000 1250 1500 1750 2000
Epoch

1

0

1

2

3

- M
ar

gi
na

l L
og

 L
ike

lih
oo

d

Loss
Validation Loss

(b) LSTM-PCA-GP

Figure 5.5: Training and validation loss of models trained with a GP input dimension of 4

0 250 500 750 1000 1250 1500 1750 2000
Epoch

1

0

1

2

3

4

5

- M
ar

gi
na

l L
og

 li
ke

lih
oo

d

Input Dimension 8
Input Dimension 6
Input Dimension 4

(a) LSTM-FC-GP

0 250 500 750 1000 1250 1500 1750 2000
Epoch

1

0

1

2

3

4

5

6

- M
ar

gi
na

l L
og

 li
ke

lih
oo

d
Input Dimension 8
Input Dimension 6
Input Dimension 4

(b) LSTM-PCA-GP

Figure 5.6: Comparison between validation loss of models trained with a reduced GP input dimension and models trained
without a reduced GP input dimension

5.5. Models Without Over-Fitting
To compare the real performance of the models, the models were re-trained with early stopping to
ensure the models are not over-fitted. The results of the default models are shown in Section 5.5.1.
Time-domain plots of these results are shown in Section 5.5.2. The results of the models trained without
data from the test case with a single sheet of foam can be seen in section 5.5.3. Finally, a comparison
between the PSD of the measured response and the simulated response can be found in Section 5.5.4.

5.5.1. Results Without Over-Fitting
To find out to what extend and from what point each model is over-fitted, the training loss and validation
loss for each of the models are shown in Figure 5.7. The losses of the LSTM, LSTM-FC-GP, and
LSTM-PCA-GP models are shown in Figures 5.7a, 5.7b, and 5.7c respectively.

The results shown in Figure 5.7 show that for the LSTMmodel the validation loss decreases proportional
to the training loss up to the last epoch. Furthermore, it can be seen that neither training loss nor
validation loss change in a meaningful way beyond epoch 3000. The LSTM-FC-GP and LSTM-PCA-
GP models show results that are very similar to each other. The training and validation loss are roughly
equal up to epoch 250. Beyond this point, the training loss continues to decrease while the validation
loss stops decreasing and starts to increase again beyond epoch 600.

5.5. Models Without Over-Fitting 39

0 500 1000 1500 2000 2500 3000 3500 4000
Epoch

10 2

10 1

M
ea

n
Sq

ua
re

 E
rro

r Loss
Validation Loss

(a) LSTM

0 250 500 750 1000 1250 1500 1750 2000
Epoch

2

0

2

4

- M
ar

gi
na

l L
og

 L
ike

lih
oo

d

Loss
Validation Loss

(b) LSTM-FC-GP

0 250 500 750 1000 1250 1500 1750 2000
Epoch

2

0

2

4

6

- M
ar

gi
na

l L
og

 L
ike

lih
oo

d

Loss
Validation Loss

(c) LSTM-PCA-GP

Figure 5.7: Training and validation loss for Fold 1 of all Models

These results point to little to no over-fitting for the LSTM model, and significant over-fitting beyond
epoch 600 for the LSTM-FC-GP and LSTM-PCA-GP models. A more detailed discussion about these
results can be found in Section 6.5. To evaluate the performance of the models without over-fitting, the
LSTM-FC-GP and LSTM-PCA-GP models are re-trained up to epoch 600. The results of these models
are shown alongside the original results from section 5.1 for the LSTM model to make comparison
easier.

The NRMSE of the re-trained models can be seen in table 5.14. The results for the LSTM, LSTM-FC-
GP, and LSTM-PCA-GPmodels can be seen in tables 5.14a, 5.14b, and 5.14c respectively. The results
show that the LSTM-PCA-GP model has the lowest average NRMSE, followed by the LSTM-FC-GP,
and the LSTM model.

The percentage of real data points that are outside of the 95% confidence interval for the re-trained
models can be seen in table 5.15. The percentages for the LSTM-FC-GP and LSTM-PCA-GP models
can be found in tables 5.15a, and 5.15b respectively. The results show that the average percentage
of real data points outside of the 95% confidence interval is 11.44% for the LSTM-FC-GP model, and
9.62% for the LSTM-PCA-GP model. Factoring the percentages of the test results of the case with only
a single sheet of foam out of the average results in an average percentage of 6.59% for the LSTM-FC-
GP model and 5.8% for the LSTM-PCA-GP model.

The width of the confidence interval of the re-trained models is shown for every fold in table 5.16.
The results for the LSTM-FC-GP and LSTM-PCA-GP models are shown in tables 5.16a and 5.16b
respectively. The results show that the width of the confidence interval of the LSTM-FC-GP model is
nearly three times larger the width of the confidence interval of the default model. The width of the
confidence interval of the LSTM-PCA-GP model is wider by less than half.

5.5. Models Without Over-Fitting 40

Table 5.14: NRMSE result for every test data result for every model

(a) LSTM

Validation
Result 1

Validation
Result 2

Validation
Result 3

Validation
Result 4

Validation
Result 5

Validation
Result 6 Average Std

Fold 1 0.727 0.852 0.457 0.463 0.522 0.601 0.604 0.144
Fold 2 0.688 0.616 0.815 0.78 0.888 0.906 0.782 0.104
Fold 3 0.813 0.669 0.771 0.618 0.59 0.646 0.684 0.081
Fold 4 0.78 0.703 0.674 0.658 0.676 0.644 0.689 0.044
Fold 5 0.799 0.664 0.713 0.477 0.569 0.659 0.647 0.102
Average 0.762 0.701 0.686 0.599 0.649 0.691 0.681
Std 0.047 0.081 0.124 0.118 0.13 0.109 0.117

(b) LSTM-FC-GP

Validation
Result 1

Validation
Result 2

Validation
Result 3

Validation
Result 4

Validation
Result 5

Validation
Result 6 Average Std

Fold 1 0.577 0.824 0.458 0.425 0.498 0.43 0.535 0.139
Fold 2 0.776 0.715 0.409 0.436 0.533 0.478 0.558 0.139
Fold 3 0.777 0.697 0.626 0.491 0.455 0.467 0.586 0.123
Fold 4 0.746 0.687 0.464 0.491 0.581 0.556 0.587 0.101
Fold 5 0.776 0.663 0.472 0.405 0.415 0.466 0.533 0.138
Average 0.73 0.717 0.486 0.45 0.496 0.479 0.56
Std 0.077 0.056 0.073 0.035 0.058 0.042 0.131

(c) LSTM-PCA-GP

Validation
Result 1

Validation
Result 2

Validation
Result 3

Validation
Result 4

Validation
Result 5

Validation
Result 6 Average Std

Fold 1 0.58 0.758 0.492 0.426 0.514 0.44 0.535 0.112
Fold 2 0.762 0.699 0.417 0.41 0.517 0.484 0.548 0.135
Fold 3 0.783 0.637 0.644 0.519 0.427 0.484 0.582 0.119
Fold 4 0.716 0.683 0.454 0.525 0.612 0.581 0.595 0.089
Fold 5 0.751 0.643 0.456 0.382 0.449 0.475 0.526 0.128
Average 0.718 0.684 0.493 0.452 0.504 0.493 0.557
Std 0.072 0.044 0.079 0.059 0.065 0.047 0.121

5.5. Models Without Over-Fitting 41

Table 5.15: The percentage of points that are outside of the 95% confidence interval

(a) LSTM-FC-GP

Validation
Result 1

Validation
Result 2

Validation
Result 3

Validation
Result 4

Validation
Result 5

Validation
Result 6 Average Std

Fold 1 15.6% 41.0% 0.0% 3.8% 0.6% 19.0% 13.33% 14.34%
Fold 2 46.2% 52.0% 0.0% 26.0% 22.2% 24.8% 28.53% 17.02%
Fold 3 21.8% 32.0% 0.0% 0.0% 0.0% 0.0% 8.97% 13.02%
Fold 4 0.0% 0.0% 4.4% 13.0% 0.0% 0.0% 2.9% 4.79%
Fold 5 1.6% 1.2% 0.4% 6.2% 2.4% 9.0% 3.47% 3.09%
Average 17.04% 25.24% 0.96% 9.8% 5.04% 10.56% 11.44%
Std 16.76% 21.1% 1.73% 9.14% 8.62% 9.99% 15.07%

(b) LSTM-PCA-GP

Validation
Result 1

Validation
Result 2

Validation
Result 3

Validation
Result 4

Validation
Result 5

Validation
Result 6 Average Std

Fold 1 8.6% 31.8% 0.0% 1.0% 0.4% 13.0% 9.13% 11.22%
Fold 2 36.0% 45.8% 0.0% 19.6% 19.2% 21.4% 23.67% 14.4%
Fold 3 19.0% 26.2% 0.0% 0.4% 0.0% 0.0% 7.6% 10.81%
Fold 4 0.0% 0.0% 2.8% 12.2% 0.0% 0.0% 2.5% 4.46%
Fold 5 3.0% 2.2% 0.4% 7.2% 6.0% 12.4% 5.2% 3.94%
Average 13.32% 21.2% 0.64% 8.08% 5.12% 9.36% 9.62%
Std 13.06% 17.62% 1.09% 7.21% 7.4% 8.28% 12.31%

5.5. Models Without Over-Fitting 42

Ta
bl
e
5.
16
:T

he
av
er
ag
e
w
id
th
of
th
e
9
5
%
co
nf
id
en
ce

in
te
rv
al
of
ev
er
y
te
st
da
ta

(a
)L
ST

M
-F
C
-G
P

Va
lid

at
io
n

R
es
ul
t1

Va
lid

at
io
n

R
es
ul
t2

Va
lid

at
io
n

R
es
ul
t3

Va
lid

at
io
n

R
es
ul
t4

Va
lid

at
io
n

R
es
ul
t5

Va
lid

at
io
n

R
es
ul
t6

Av
er
ag

e
St
d

Fo
ld

1
1
.8
7
×
10

−
1
g

2
.3
3
×
10

−
1
g

1
.7
0
×
1
0
−
1
g

1
.7
0
×
1
0
−
1
g

1
.7
0
×
1
0
−
1
g

1
.7
2
×
1
0
−
1
g

1
.8
4
×
1
0
−
1
g

2
.3
0
×
1
0
−
2
g

Fo
ld

2
1
.5
9
×
10

−
1
g

1
.6
6
×
10

−
1
g

1
.4
5
×
1
0
−
1
g

1
.4
6
×
1
0
−
1
g

1
.4
5
×
1
0
−
1
g

1
.4
6
×
1
0
−
1
g

1
.5
1
×
1
0
−
1
g

8
.2
9
×
1
0
−
3
g

Fo
ld

3
1
.9
3
×
10

−
1
g

2
.0
8
×
10

−
1
g

1
.8
7
×
1
0
−
1
g

1
.8
8
×
1
0
−
1
g

1
.8
8
×
1
0
−
1
g

1
.8
8
×
1
0
−
1
g

1
.9
2
×
1
0
−
1
g

7
.5
8
×
1
0
−
3
g

Fo
ld

4
1
.9
4
×
10

−
1
g

1
.9
4
×
10

−
1
g

1
.9
5
×
1
0
−
1
g

1
.9
5
×
1
0
−
1
g

1
.9
4
×
1
0
−
1
g

1
.9
4
×
1
0
−
1
g

1
.9
4
×
1
0
−
1
g

3
.7
2
×
1
0
−
4
g

Fo
ld

5
1
.9
0
×
10

−
1
g

1
.9
0
×
10

−
1
g

1
.9
0
×
1
0
−
1
g

1
.9
1
×
1
0
−
1
g

1
.9
0
×
1
0
−
1
g

1
.9
0
×
1
0
−
1
g

1
.9
0
×
1
0
−
1
g

2
.8
6
×
1
0
−
4
g

Av
er
ag

e
1
.8
4
×
10

−
1
g

1
.9
8
×
10

−
1
g

1
.7
7
×
1
0
−
1
g

1
.7
8
×
1
0
−
1
g

1
.7
7
×
1
0
−
1
g

1
.7
8
×
1
0
−
1
g

1
.8
2
×
1
0
−
1
g

St
d

1
.3
2
×
10

−
2
g

2
.2
1
×
10

−
2
g

1
.8
3
×
1
0
−
2
g

1
.7
9
×
1
0
−
2
g

1
.8
0
×
1
0
−
2
g

1
.7
7
×
1
0
−
2
g

1
.9
6
×
1
0
−
2
g

(b
)L
ST

M
-P
C
A-
G
P

Va
lid

at
io
n

R
es
ul
t1

Va
lid

at
io
n

R
es
ul
t2

Va
lid

at
io
n

R
es
ul
t3

Va
lid

at
io
n

R
es
ul
t4

Va
lid

at
io
n

R
es
ul
t5

Va
lid

at
io
n

R
es
ul
t6

Av
er
ag

e
St
d

Fo
ld

1
2
.0
4
×
10

−
1
g

2
.4
9
×
10

−
1
g

1
.9
8
×
1
0
−
1
g

1
.9
9
×
1
0
−
1
g

1
.9
8
×
1
0
−
1
g

2
.0
4
×
1
0
−
1
g

2
.0
9
×
1
0
−
1
g

1
.8
3
×
1
0
−
2
g

Fo
ld

2
1
.7
7
×
10

−
1
g

1
.9
9
×
10

−
1
g

1
.5
3
×
1
0
−
1
g

1
.5
6
×
1
0
−
1
g

1
.5
4
×
1
0
−
1
g

1
.5
5
×
1
0
−
1
g

1
.6
6
×
1
0
−
1
g

1
.7
0
×
1
0
−
2
g

Fo
ld

3
2
.0
0
×
10

−
1
g

2
.0
4
×
10

−
1
g

1
.9
8
×
1
0
−
1
g

1
.9
8
×
1
0
−
1
g

1
.9
8
×
1
0
−
1
g

1
.9
8
×
1
0
−
1
g

1
.9
9
×
1
0
−
1
g

2
.2
6
×
1
0
−
3
g

Fo
ld

4
2
.1
3
×
10

−
1
g

2
.1
3
×
10

−
1
g

2
.1
4
×
1
0
−
1
g

2
.1
4
×
1
0
−
1
g

2
.1
3
×
1
0
−
1
g

2
.1
3
×
1
0
−
1
g

2
.1
3
×
1
0
−
1
g

4
.8
5
×
1
0
−
4
g

Fo
ld

5
1
.7
5
×
10

−
1
g

1
.7
7
×
10

−
1
g

1
.7
0
×
1
0
−
1
g

1
.7
2
×
1
0
−
1
g

1
.7
1
×
1
0
−
1
g

1
.7
2
×
1
0
−
1
g

1
.7
3
×
1
0
−
1
g

2
.4
4
×
1
0
−
3
g

Av
er
ag

e
1
.9
4
×
10

−
1
g

2
.0
8
×
10

−
1
g

1
.8
6
×
1
0
−
1
g

1
.8
8
×
1
0
−
1
g

1
.8
7
×
1
0
−
1
g

1
.8
8
×
1
0
−
1
g

1
.9
2
×
1
0
−
1
g

St
d

1
.5
0
×
10

−
2
g

2
.3
6
×
10

−
2
g

2
.1
7
×
1
0
−
2
g

2
.1
1
×
1
0
−
2
g

2
.1
3
×
1
0
−
2
g

2
.1
4
×
1
0
−
2
g

2
.2
3
×
1
0
−
2
g

5.5. Models Without Over-Fitting 43

5.5.2. Time-Domain Results

0.00 0.02 0.04 0.06 0.08 0.10
Time [s]

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Ac
ce

le
ra

tio
n

[g
]

predicted
true acceleration

(a) LSTM

0.00 0.02 0.04 0.06 0.08 0.10
Time [s]

0.6

0.4

0.2

0.0

0.2

0.4

Ac
ce

le
ra

tio
n

[g
]

95% Confidence Interval
predicted
true acceleration

(b) LSTM-FC-GP

0.00 0.02 0.04 0.06 0.08 0.10
Time [s]

0.6

0.4

0.2

0.0

0.2

0.4

Ac
ce

le
ra

tio
n

[g
]

95% Confidence Interval
predicted
true acceleration

(c) LSTM-PCA-GP

Figure 5.8: Time domain of Validation Result 1 of Fold 1

5.5. Models Without Over-Fitting 44

0.00 0.02 0.04 0.06 0.08 0.10
Time [s]

0.4

0.2

0.0

0.2

0.4
Ac

ce
le

ra
tio

n
[g

]
predicted
true acceleration

(a) LSTM

0.00 0.02 0.04 0.06 0.08 0.10
Time [s]

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Ac
ce

le
ra

tio
n

[g
]

95% Confidence Interval
predicted
true acceleration

(b) LSTM-FC-GP

0.00 0.02 0.04 0.06 0.08 0.10
Time [s]

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Ac
ce

le
ra

tio
n

[g
]

95% Confidence Interval
predicted
true acceleration

(c) LSTM-PCA-GP

Figure 5.9: Time domain of Validation Result 2 of Fold 1

5.5. Models Without Over-Fitting 45

0.00 0.02 0.04 0.06 0.08 0.10
Time [s]

0.075

0.050

0.025

0.000

0.025

0.050

0.075
Ac

ce
le

ra
tio

n
[g

]
predicted
true acceleration

(a) LSTM

0.00 0.02 0.04 0.06 0.08 0.10
Time [s]

0.15

0.10

0.05

0.00

0.05

0.10

0.15

Ac
ce

le
ra

tio
n

[g
]

95% Confidence Interval
predicted
true acceleration

(b) LSTM-FC-GP

0.00 0.02 0.04 0.06 0.08 0.10
Time [s]

0.6

0.4

0.2

0.0

0.2

0.4

Ac
ce

le
ra

tio
n

[g
]

95% Confidence Interval
predicted
true acceleration

(c) LSTM-PCA-GP

Figure 5.10: Time domain of Validation Result 3 of Fold 1

5.5. Models Without Over-Fitting 46

0.00 0.02 0.04 0.06 0.08 0.10
Time [s]

0.3

0.2

0.1

0.0

0.1

0.2

0.3
Ac

ce
le

ra
tio

n
[g

]
predicted
true acceleration

(a) LSTM

0.00 0.02 0.04 0.06 0.08 0.10
Time [s]

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Ac
ce

le
ra

tio
n

[g
]

95% Confidence Interval
predicted
true acceleration

(b) LSTM-FC-GP

0.00 0.02 0.04 0.06 0.08 0.10
Time [s]

0.6

0.4

0.2

0.0

0.2

0.4

Ac
ce

le
ra

tio
n

[g
]

95% Confidence Interval
predicted
true acceleration

(c) LSTM-PCA-GP

Figure 5.11: Time domain of Validation Result 4 of Fold 1

5.5. Models Without Over-Fitting 47

0.00 0.02 0.04 0.06 0.08 0.10
Time [s]

0.2

0.1

0.0

0.1

0.2
Ac

ce
le

ra
tio

n
[g

]

predicted
predicted
true acceleration

(a) LSTM

0.00 0.02 0.04 0.06 0.08 0.10
Time [s]

0.3

0.2

0.1

0.0

0.1

0.2

Ac
ce

le
ra

tio
n

[g
]

95% Confidence Interval
predicted
true acceleration

(b) LSTM-FC-GP

0.00 0.02 0.04 0.06 0.08 0.10
Time [s]

0.6

0.4

0.2

0.0

0.2

0.4

Ac
ce

le
ra

tio
n

[g
]

95% Confidence Interval
predicted
true acceleration

(c) LSTM-PCA-GP

Figure 5.12: Time domain of Validation Result 5 of Fold 1

5.5. Models Without Over-Fitting 48

0.00 0.02 0.04 0.06 0.08 0.10
Time [s]

0.4

0.2

0.0

0.2

0.4
Ac

ce
le

ra
tio

n
[g

]
predicted
true acceleration

(a) LSTM

0.00 0.02 0.04 0.06 0.08 0.10
Time [s]

0.4

0.2

0.0

0.2

0.4

Ac
ce

le
ra

tio
n

[g
]

95% Confidence Interval
predicted
true acceleration

(b) LSTM-FC-GP

0.00 0.02 0.04 0.06 0.08 0.10
Time [s]

0.6

0.4

0.2

0.0

0.2

0.4

Ac
ce

le
ra

tio
n

[g
]

95% Confidence Interval
predicted
true acceleration

(c) LSTM-PCA-GP

Figure 5.13: Time domain of Validation Result 6 of Fold 1

5.5. Models Without Over-Fitting 49

5.5.3. The Effect of Noisy Data
To compare the effect of the noisy data on the optimal model results, the models were re-trained on the
dataset excluding the test sample with a single sheet of foam. The models were re-trained using early
stopping ensuring the model with the lowest validation loss is used for the results.

the NRMSE of the models can be seen in table 5.17. The results for the LSTM, LSTM-FC-GP, and
LSTM-PCA-GP models can be seen in tables 5.17a, 5.17b, and 5.17c respectively. The results show
that for the LSTM and LSTM-FC-GP models the average NRMSE is lower than the average NRMSE
of the default models that were trained without over-fitting the data. However, the results are still worse
compared to the average of the default models that where trained without over-fitting the data when
validation results 1 and 2 are not included in the average. Meanwhile, the average result of the LSTM-
PCA-GP model is less accurate than the average result of the default model that is trained without
over-fitting the data.

Table 5.17: NRMSE result for every test data result for every model

(a) LSTM

Validation
Result 3

Validation
Result 4

Validation
Result 5

Validation
Result 6 Average Std

Fold 1 0.536 0.525 0.749 0.649 0.615 0.091
Fold 2 0.551 0.499 0.662 0.633 0.586 0.065
Fold 3 0.73 0.599 0.621 0.641 0.648 0.05
Fold 4 0.596 0.679 0.683 0.66 0.655 0.035
Fold 5 0.656 0.46 0.541 0.624 0.57 0.076
Average 0.614 0.552 0.651 0.641 0.615
Std 0.072 0.078 0.069 0.012 0.074

(b) LSTM-FC-GP

Validation
Result 3

Validation
Result 4

Validation
Result 5

Validation
Result 6 Average Std

Fold 1 0.484 0.491 0.467 0.427 0.467 0.025
Fold 2 0.58 0.519 0.714 0.658 0.618 0.074
Fold 3 0.754 0.615 0.561 0.625 0.639 0.071
Fold 4 0.444 0.492 0.796 0.74 0.618 0.152
Fold 5 0.654 0.43 0.519 0.599 0.551 0.085
Average 0.583 0.51 0.611 0.61 0.578
Std 0.113 0.06 0.124 0.103 0.111

(c) LSTM-PCA-GP

Validation
Result 3

Validation
Result 4

Validation
Result 5

Validation
Result 6 Average Std

Fold 1 0.567 0.543 0.749 0.62 0.62 0.08
Fold 2 0.815 0.754 0.976 0.974 0.88 0.098
Fold 3 0.62 0.486 0.457 0.465 0.507 0.066
Fold 4 0.544 0.574 0.693 0.659 0.618 0.061
Fold 5 0.863 0.694 0.69 0.736 0.746 0.07
Average 0.682 0.61 0.713 0.691 0.674
Std 0.131 0.099 0.166 0.167 0.148

The percentage of data points that fall outside of the 95% confidence interval is shown in table 5.18.
The results for the LSTM-FC-GP, and LSTM-PCA-GP models is shown in tables 5.18a and 5.18b
respectively. The results show that the percentage of data points that are out of bounds of the confidence
interval is almost exactly 5% which is the desired target.

The width of the confidence interval of the models retrained without the data from the test sample with
a single sheet of foam is shown in table 5.19. The results from the LSTM-FC-GP and LSTM-PCA-GP
models can be seen in tables 5.19a and 5.19b respectively.

5.5. Models Without Over-Fitting 50

Table 5.18: The percentage of points that are outside of the 95% confidence interval

(a) LSTM-FC-GP

Validation
Result 3

Validation
Result 4

Validation
Result 5

Validation
Result 6 Average Std

Fold 1 0.0% 6.8% 1.2% 21.0% 7.25% 8.34%
Fold 2 0.0% 8.8% 10.8% 12.8% 8.1% 4.89%
Fold 3 0.0% 0.2% 0.0% 0.0% 0.05% 0.09%
Fold 4 6.0% 19.0% 0.8% 0.6% 6.6% 7.48%
Fold 5 0.8% 6.4% 3.4% 14.8% 6.35% 5.27%
Average 1.36% 8.24% 3.24% 9.84% 5.67%
Std 2.34% 6.1% 3.94% 8.25% 6.61%

(b) LSTM-PCA-GP

Validation
Result 3

Validation
Result 4

Validation
Result 5

Validation
Result 6 Average Std

Fold 1 0.0% 2.8% 1.0% 21.8% 6.4% 8.95%
Fold 2 0.0% 4.8% 4.6% 8.0% 4.35% 2.85%
Fold 3 0.0% 0.4% 0.4% 0.0% 0.2% 0.2%
Fold 4 5.2% 13.0% 0.0% 0.0% 4.55% 5.32%
Fold 5 0.8% 11.4% 4.0% 11.4% 6.9% 4.64%
Average 1.2% 6.48% 2.0% 8.24% 4.48%
Std 2.02% 4.9% 1.91% 8.12% 5.76%

Comparing the results from the models that were re-trained without the data from the test sample with
a single sheet of foam with the results from the models that were trained on all the test samples, it can
be seen that the width of the confidence interval of the models that were trained on the dataset without
the test sample with a single sheet of foam is wider than that of the other models. This is consistent
with the reduced number of real data points that are outside of the confidence interval.

5.5. Models Without Over-Fitting 51

Table 5.19: The average width of the 95% confidence interval of every test data

(a) LSTM-FC-GP

Validation
Result 3

Validation
Result 4

Validation
Result 5

Validation
Result 6 Average Std

Fold 1 1.57 ×
10−1 g

1.58 ×
10−1 g

1.57 ×
10−1 g

1.59 ×
10−1 g

1.58 ×
10−1 g

8.51×
10−4 g

Fold 2 2.40 ×
10−1 g

2.45 ×
10−1 g

2.42 ×
10−1 g

2.44 ×
10−1 g

2.43 ×
10−1 g

1.82×
10−3 g

Fold 3 2.06 ×
10−1 g

2.06 ×
10−1 g

2.07 ×
10−1 g

2.07 ×
10−1 g

2.06 ×
10−1 g

4.65×
10−5 g

Fold 4 1.71 ×
10−1 g

1.71 ×
10−1 g

1.70 ×
10−1 g

1.70 ×
10−1 g

1.71 ×
10−1 g

5.21×
10−4 g

Fold 5 2.02 ×
10−1 g

2.03 ×
10−1 g

2.02 ×
10−1 g

2.03 ×
10−1 g

2.03 ×
10−1 g

5.44×
10−4 g

Average 1.95 ×
10−1 g

1.97 ×
10−1 g

1.96 ×
10−1 g

1.97 ×
10−1 g

1.96 ×
10−1 g

Std 2.92 ×
10−2 g

3.03 ×
10−2 g

2.99 ×
10−2 g

3.01 ×
10−2 g

2.99×
10−2 g

(b) LSTM-PCA-GP

Validation
Result 3

Validation
Result 4

Validation
Result 5

Validation
Result 6 Average Std

Fold 1 2.07 ×
10−1 g

2.08 ×
10−1 g

2.07 ×
10−1 g

2.10 ×
10−1 g

2.08 ×
10−1 g

1.16×
10−3 g

Fold 2 3.51 ×
10−1 g

3.54 ×
10−1 g

3.53 ×
10−1 g

3.54 ×
10−1 g

3.53 ×
10−1 g

1.06×
10−3 g

Fold 3 1.57 ×
10−1 g

1.58 ×
10−1 g

1.58 ×
10−1 g

1.58 ×
10−1 g

1.58 ×
10−1 g

7.52×
10−5 g

Fold 4 2.12 ×
10−1 g

2.13 ×
10−1 g

2.10 ×
10−1 g

2.10 ×
10−1 g

2.11 ×
10−1 g

1.51×
10−3 g

Fold 5 2.45 ×
10−1 g

2.46 ×
10−1 g

2.46 ×
10−1 g

2.47 ×
10−1 g

2.46 ×
10−1 g

6.74×
10−4 g

Average 2.34 ×
10−1 g

2.36 ×
10−1 g

2.35 ×
10−1 g

2.36 ×
10−1 g

2.35 ×
10−1 g

Std 6.49 ×
10−2 g

6.56 ×
10−2 g

6.55 ×
10−2 g

6.56 ×
10−2 g

6.54×
10−2 g

5.5.4. PSD Accuracy
An important property of a vibration is its frequency spectrum. A PSD is often used to determine in
what frequency range the vibration is most energetic. As another metric of comparison, the PSD of the
measured response and the result of the default models that were trained not to over-fit the data are
plotted together. This plot can be seen for every validation result in Appendix C. Moreover, the plots
for fold 1 are repeated in Figures 5.14 to 5.19.

The results provide several insights. First, it can be seen that the general trend of all models is to very
accurately model the PSD of the real system up to 500Hz. For folds 2 to 5 the LSTM model has a PSD
that is up to two magnitudes lower than the measured PSD above 500Hz while the LSTM-FC-GP and
LSTM-PCA-GP models accurately show the amplitude of the PSD up to 700Hz to 800Hz.

For the other validation results, the LSTM-FC-GP and LSTM-PCA-GP models provide an accurate
result up to 700Hz to 800Hz. Between 800Hz and 1000Hz there is a pronounced decrease in the
accuracy of the models’ PSD. For these same validation results, the LSTMmodel loses accuracy above
600Hz and can be up to two magnitudes below the measured PSD. The exception to this observation
is fold 1 where the LSTM model does not have a reduced accuracy compared to the LSTM-FC-GP or
LSTM-PCA-GP models.

5.5. Models Without Over-Fitting 52

1 Foam sheet

0 200 400 600 800 1000 1200
Frequency (Hz)

10 8

10 6

10 4

PS
D

Measured PSD
LSTM
LSTM-FC-GP
LSTM-PCA-GP

Figure 5.14: Comparison between the PSD of the real measurement and the results of the LSTM, LSTM-FC-GP, and
LSTM-PCA-GP models for validation result 1 of fold 1

0 200 400 600 800 1000 1200
Frequency (Hz)

10 7

10 6

10 5

10 4

PS
D

Measured PSD
LSTM
LSTM-FC-GP
LSTM-PCA-GP

Figure 5.15: Comparison between the PSD of the real measurement and the results of the LSTM, LSTM-FC-GP, and
LSTM-PCA-GP models for validation result 2 of fold 12 Foam sheets

0 200 400 600 800 1000 1200
Frequency (Hz)

10 9

10 7

10 5

PS
D

Measured PSD
LSTM
LSTM-FC-GP
LSTM-PCA-GP

Figure 5.16: Comparison between the PSD of the real measurement and the results of the LSTM, LSTM-FC-GP, and
LSTM-PCA-GP models for validation result 3 of fold 1

0 200 400 600 800 1000 1200
Frequency (Hz)

10 8

10 6

10 4

PS
D

Measured PSD
LSTM
LSTM-FC-GP
LSTM-PCA-GP

Figure 5.17: Comparison between the PSD of the real measurement and the results of the LSTM, LSTM-FC-GP, and
LSTM-PCA-GP models for validation result 4 of fold 13 Foam sheets

0 200 400 600 800 1000 1200
Frequency (Hz)

10 9

10 8

10 7

10 6

10 5

PS
D

Measured PSD
LSTM
LSTM-FC-GP
LSTM-PCA-GP

Figure 5.18: Comparison between the PSD of the real measurement and the results of the LSTM, LSTM-FC-GP, and
LSTM-PCA-GP models for validation result 5 of fold 1

0 200 400 600 800 1000 1200
Frequency (Hz)

10 7

10 5

10 3

PS
D

Measured PSD
LSTM
LSTM-FC-GP
LSTM-PCA-GP

Figure 5.19: Comparison between the PSD of the real measurement and the results of the LSTM, LSTM-FC-GP, and
LSTM-PCA-GP models for validation result 6 of fold 1

5.6. Model Extrapolation 53

5.6. Model Extrapolation
One of the main reasons a time-stepper solver was chosen is because a time-stepper is able to
extrapolate beyond the duration of the training data. To determine the performance of the models
when extrapolating the data beyond the training duration, the models were re-trained up to time-step
250. Afterwards, the models were used to simulate the response of the validation data up to time-step
500. The accuracy of the first 250 time-steps of the validation data is then compared to the accuracy
of the last 250 time-steps of the validation data. This change in accuracy can be seen in Section 5.6.1.
To make a qualitative comparison between the first and second half of the validation results, the time-
domain plots can be found in Section 5.6.2.
5.6.1. Percent Change in NRMSE
To compare the performance of the models, the NRMSE of the first part and the part that is extrapolated
beyond the training length of the model of the validation results is taken. The percent change of the
NRMSE of the extrapolated part with respect to the first part is then taken. This serves as an indication
of how much the accuracy of the models changes as the time domain simulation is run longer than the
training duration. These results can be found in table 5.20 with the results of the LSTM, LSTM-FC-GP,
and LSTM-PCA-GP models in sub-tables 5.20a, 5.20b, and 5.20c respectively.

Table 5.20: Percent change in NRMSE between trained duration and extrapolated duration of validation results

(a) LSTM

Validation
Result 1

Validation
Result 2

Validation
Result 3

Validation
Result 4

Validation
Result 5

Validation
Result 6 Average Std

Fold 1 5.7% −10.1% 1.8% −20.7% −21.0% 24.3% −3.3% 16.0%
Fold 2 0.4% 33.8% −8.6% 65.2% −20.0% 1.3% 12.0% 28.9%
Fold 3 −6.7% −4.6% 14.4% −45.1% 4.6% −2.2% −6.6% 18.6%
Fold 4 5.2% −18.6% −27.9% −1.3% 22.7% 8.5% −1.9% 16.9%
Fold 5 −23.9% 19.7% 8.4% 2.3% 27.7% −14.9% 3.2% 18.1%
Average −3.9% 4.1% −2.4% 0.1% 2.8% 3.4% 0.7%
Std 11.0% 19.6% 14.9% 36.7% 20.5% 12.9% 21.3%

(b) LSTM-FC-GP

Validation
Result 1

Validation
Result 2

Validation
Result 3

Validation
Result 4

Validation
Result 5

Validation
Result 6 Average Std

Fold 1 −24.3% −6.4% −1.6% −27.3% −25.0% 61.5% −3.8% 30.8%
Fold 2 0.5% 27.1% −10.8% 24.6% −23.0% −1.3% 2.8% 18.0%
Fold 3 −15.0% −8.5% 11.5% −40.0% −5.2% −3.4% −10.1% 15.6%
Fold 4 20.9% −14.3% −23.3% −3.8% −12.9% −27.1% −10.1% 15.7%
Fold 5 −14.6% 18.8% 5.8% −15.6% 26.6% 5.7% 4.4% 15.6%
Average −6.5% 3.4% −3.7% −12.4% −7.9% 7.1% −3.3%
Std 15.8% 16.4% 12.3% 22.1% 18.7% 29.4% 21.0%

(c) LSTM-PCA-GP

Validation
Result 1

Validation
Result 2

Validation
Result 3

Validation
Result 4

Validation
Result 5

Validation
Result 6 Average Std

Fold 1 −27.5% −5.3% −3.7% −23.9% −22.5% 48.8% −5.7% 26.0%
Fold 2 8.6% 23.4% −9.4% 22.2% −20.7% 0.6% 4.1% 16.0%
Fold 3 −13.0% −14.9% 11.7% −36.9% −1.7% −1.8% −9.4% 15.0%
Fold 4 22.9% −17.8% −9.1% −17.5% −14.7% −21.9% −9.7% 15.1%
Fold 5 −19.3% 11.9% 4.1% −15.6% 19.0% −2.7% −0.4% 13.8%
Average −5.7% −0.5% −1.3% −14.3% −8.1% 4.6% −4.2%
Std 18.6% 15.9% 8.1% 19.7% 15.4% 23.5% 18.5%

The results show that the the LSTM model has an increase in the average NRMSE of less than 1%.
The LSTM-FC-GP and LSTM-PCA-GP models show a reduced average NRMSE with the LSTM-PCA-
GP model having the highest decrease. Furthermore, the models with a GP layer have a lower overall
standard deviation with the LSTM-PCA-GP model having the lowest value.

5.6. Model Extrapolation 54

5.6.2. Time Domain Results
To find out any qualitative differences between the first half and the second half of the simulation, the
time-domain plots are shown here. To make the comparison easier, the shown time domain plots are
all validation results from fold 1 which are also shown for the default models in Section 5.5.2.

1 Foam Sheet

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Time [s]

0.4

0.2

0.0

0.2

Ac
ce

le
ra

tio
n

[g
] Predicted

True Acceleration

(a) LSTM

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Time [s]

0.4

0.2

0.0

0.2

0.4

Ac
ce

le
ra

tio
n

[g
] 95% Confidence Interval

Predicted
True Acceleration

(b) LSTM-FC-GP

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Time [s]

0.4

0.2

0.0

0.2

0.4

Ac
ce

le
ra

tio
n

[g
] 95% Confidence Interval

Predicted
True Acceleration

(c) LSTM-PCA-GP

Figure 5.20: Time domain of Validation Result 1 of Fold 1 of the models trained for half the duration

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Time [s]

0.50

0.25

0.00

0.25

0.50

Ac
ce

le
ra

tio
n

[g
] Predicted

True Acceleration

(a) LSTM

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Time [s]

0.5

0.0

0.5

Ac
ce

le
ra

tio
n

[g
] 95% Confidence Interval

Predicted
True Acceleration

(b) LSTM-FC-GP

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Time [s]

0.5

0.0

0.5

Ac
ce

le
ra

tio
n

[g
] 95% Confidence Interval

Predicted
True Acceleration

(c) LSTM-PCA-GP

Figure 5.21: Time domain of Validation Result 2 of Fold 1 of the models trained for half the duration

5.6. Model Extrapolation 55

2 Foam Sheets

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Time [s]

0.05

0.00

0.05

Ac
ce

le
ra

tio
n

[g
] Predicted

True Acceleration

(a) LSTM

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Time [s]

0.2

0.1

0.0

0.1

0.2

Ac
ce

le
ra

tio
n

[g
] 95% Confidence Interval

Predicted
True Acceleration

(b) LSTM-FC-GP

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Time [s]

0.2

0.1

0.0

0.1

0.2

Ac
ce

le
ra

tio
n

[g
] 95% Confidence Interval

Predicted
True Acceleration

(c) LSTM-PCA-GP

Figure 5.22: Time domain of Validation Result 3 of Fold 1 of the models trained for half the duration

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Time [s]

0.2

0.0

0.2

Ac
ce

le
ra

tio
n

[g
] Predicted

True Acceleration

(a) LSTM

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Time [s]

0.4

0.2

0.0

0.2

0.4

Ac
ce

le
ra

tio
n

[g
] 95% Confidence Interval

Predicted
True Acceleration

(b) LSTM-FC-GP

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Time [s]

0.4

0.2

0.0

0.2

0.4

Ac
ce

le
ra

tio
n

[g
] 95% Confidence Interval

Predicted
True Acceleration

(c) LSTM-PCA-GP

Figure 5.23: Time domain of Validation Result 4 of Fold 1 of the models trained for half the duration

5.6. Model Extrapolation 56

3 Foam Sheets

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Time [s]

0.2

0.0

0.2

Ac
ce

le
ra

tio
n

[g
] Predicted

True Acceleration

(a) LSTM

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Time [s]

0.2

0.0

0.2

Ac
ce

le
ra

tio
n

[g
] 95% Confidence Interval

Predicted
True Acceleration

(b) LSTM-FC-GP

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Time [s]

0.2

0.0

0.2

Ac
ce

le
ra

tio
n

[g
] 95% Confidence Interval

Predicted
True Acceleration

(c) LSTM-PCA-GP

Figure 5.24: Time domain of Validation Result 5 of Fold 1 of the models trained for half the duration

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Time [s]

0.4

0.2

0.0

0.2

0.4

Ac
ce

le
ra

tio
n

[g
] Predicted

True Acceleration

(a) LSTM

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Time [s]

0.50

0.25

0.00

0.25

0.50

Ac
ce

le
ra

tio
n

[g
] 95% Confidence Interval

Predicted
True Acceleration

(b) LSTM-FC-GP

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Time [s]

0.50

0.25

0.00

0.25

0.50

Ac
ce

le
ra

tio
n

[g
] 95% Confidence Interval

Predicted
True Acceleration

(c) LSTM-PCA-GP

Figure 5.25: Time domain of Validation Result 6 of Fold 1 of the models trained for half the duration

5.7. Model Performance 57

5.7. Model Performance
To make a fair trade-off between the models a benchmark was performed to see how much resources
each model uses in order to run. This benchmark was done on the default models on a windows
machine with all but the critical background processes and task manager closed. Both the training and
run test were performed on time domain signals with 500 time-steps. The average time per epoch was
measured after 50 epochs while the time to run was averaged over 10 runs. During this test, the total
memory usage as well as the video memory usage were measured during the run test and reported. As
the training memory usage depends on the training dataset size, this memory usage was not included.

The results of the benchmark can be seen in table 5.21. The results show that the LSTMmodel has the
lowest time per epoch, time to run, and memory usage of all the models. Furthermore, as it does not
utilise CUDA, the model does not require any video memory to run. Meanwhile the LSTM-FC-GP and
LSTM-PCA-GP models perform nearly identically. Both the training time and the time to run are several
times longer than the LSTM while the required memory is over 80% larger. Meanwhile the models use
more than1500MiB of video memory to run.

Table 5.21: Benchmark results of all models

Model Time per Epoch Time to Run Memory Usage Video Memory Usage
LSTM 2.36 s 1.054 s 366MiB Not Applicable
LSTM-FC-GP 7.26 s 2.484 s 668MiB 1538MiB
LSTM-PCA-GP 7.24 s 2.342 s 668MiB 1559MiB

Because the models using a GP layer can also be run on the CPU instead of on CUDA, the models were
re-run on the CPU. Training the models using a CPU instead of a GPU has proven to take impractically
long. Therefore, the Time per epoch results are omitted. The results of this benchmark are shown
in table 5.22. The results show that the time to run increases to over 3 s. While the video memory
usage has shifted to system memory, the total value is lower than video memory and system memory
combined of the models run on a GPU

Table 5.22: Benchmark results of models with a GP layer run on CPU

Model Time to run Memory usage
LSTM-FC-GP 3.05 s 1873MiB
LSTM-PCA-GP 3.03 s 1605MiB

6
Discussion

The results that are presented in Chapter 5 are discussed in this chapter. The chapter follows the same
structure that is found in Chapter 5. Readers are advised to read Chapter 6 and this chapter side by
side. In addition to discussing the results from Chapter 5, a trade-off between the different models is
made in Section 6.8.

6.1. Default Model Accuracy
This section discusses the results of the default models shown in Section 5.1. The summarised results
are discussed in Section 6.1.1. More context is given to the summarised results by discussing the full
results in 6.1.2. Finally, the difference between the results of the LSTM-FC-GP and LSTM-PCA-GP
models is discussed in Section 6.1.3.

6.1.1. Summarised Results
The NRMSE shown in table 5.1 shows that the LSTM-PCA-GP model has the lowest NRMSE, followed
by the LSTM-FC-GP, and LSTM models. Because the models using a GP layer use the LSTM model
as a basis, it is expected that the models that use a GP layer perform better at the downside of being
computationally more expensive. As is expected, the LSTM model performs the worst of the models.
However, the LSTM-PCA-GP has a lower NRMSE than the LSTM-FC-GPmodel. This is an unexpected
result as the PCA layer reduces the input dimension of the GP layer in a way that reduces the amount
of information available to the GP layer while the FC layer reduces the input dimension of the GP in a
way that can potentially maintain all the information that the LSTM layer has in its output. This leads
to the expectation that the LSTM-FC-GP provides better results than the LSTM-PCA-GP which is the
opposite of what is seen.

6.1.2. Full Results
To give more context to the summarised results discussed in Section 6.1.1, the full results of each
validation result for each fold are evaluated. Examining the full results for the NRMSE shown in table
5.3 shows that despite the lower average NRMSE the average standard deviation of the LSTM-FC-GP
and LSTM-PCA-GP is higher than the standard deviation of the NRMSE of the LSTMmodel. Moreover,
the NRMSE is noticeably higher for validation results 1 and 2. This effect is even stronger with the
models that have a GP layer where validation results 1 and 2 have an even higher NRMSE despite the
lower overall average NRMSE. This effect is likely the cause of the higher standard deviation seen in
the LSTM-FC-GP and LSTM-PCA-GP models.

Validation results 1 and 2 correspond to the test case with only a single sheet of foam. Considering
this, the phenomenon of the worse performance can be explained by noting the issues that were
encountered while performing tests to create the dataset noted in Section 4.1.3. Here, a high amount
of noise was observed when performing chirp tests at low frequency and high amplitude. Examining
the frequency domain of the random vibration tests reveals that the noise that is clearly visible in the

58

6.1. Default Model Accuracy 59

chirp tests is also present in the random vibration tests. The NRMSE results presented in table 5.3
show that this noise has a significant impact on the accuracy of the model.

The finding that the difference in the NRMSE between noisy test data and less noisy test data is greater
for models using a GP layer suggests that the models with a GP layer are better at distinguishing
between noise and data during training. However, it makes them less suited for simulations with a
noisy input signal. Given that the goal of the models is to predict the vibration and shock response
before doing a real test, distinguishing between noise and data during training is a more beneficial trait
as the simulation’s input is meant to be a synthetic signal without input noise.

A summary of the average NRMSE of the models when removing validation results 1 and 2 from the
average is shown in table 6.1. Examining these results reveals how the noise affects the accuracy of
the different models. The LSTM model only sees a small decrease in the NRMSE of 0.025. Meanwhile
the LSTM-FC-GPmodel has amuch larger decrease of 0.067. Finally, despite already having the lowest
NRMSE the LSTM-PCA-GP model has the largest decrease of 0.104. This suggests that the models
with a GP layer not only provide better overall results but are better at distinguishing between noise
and real data during training, resulting in better performance for the models with a GP layer.

Table 6.1: Average results of the K-fold cross validation without considering the score of the test data from the case with only a
single sheet of foam

LSTM LSTM-FC-GP LSTM-PCA-GP
NRMSE 0.656 0.576 0.503

While the scores of both the LSTM-FC-GP model, and the LSTM-PCA-GP model improve drastically
when leaving out the scores from test data 1 and 2, the LSTM-PCA-GP still performs better than the
LSTM-FC-GP model despite the expectation being the opposite. The reason to why this happens is
discussed in Section 6.1.3.

6.1.3. Difference Between LSTM-FC-GP and LSTM-PCA-GP models
Comparing the accuracy of the LSTM-FC-GP and LSTM-PCA-GP models reveals a number of key
insights. First, when comparing the NRMSE results of the K-fold cross-validation there is a key difference
in the way the two models are influenced by the effect of the noisy data. While the overall accuracy
of the LSTM-PCA-GP model is better than the accuracy of the LSTM-FC-GP model, the accuracy of
the LSTM-FC-GP model is higher for validation results 1 and 2. This implies that the LSTM-FC-GP
model was optimised in a way that balances the accuracy of the model for the noisy training data and
the training data with less noise.

In contrast, the LSTM-PCA-GP model has a lower accuracy for validation results 1 and 2 but has
a comparatively higher accuracy for the other validation results. This means that this model was
optimised in a way that considers the noisy data to a much lesser extend and instead focusses on
getting a high accuracy for the other test results. This makes the LSTM-PCA-GP model score much
higher when the first two test results are left out of the average scores.

While the PCA layer filtering out the noise explains why the the LSTM-PCA-GP performs this way, it
does not explain entirely why the LSTM-FC-GP model scores lower on average than the LSTM-PCA-
GP model despite having more information available to the GP layer. To explain this behaviour the
training loss of both models for fold 2, which is shown in Figure 5.2 should be compared. This figure
shows the LSTM-FC-GP model scoring a much lower negative log likelihood score compared to the
LSTM-PCA-GP model. This lower training loss combined with the lower accuracy very strongly implies
that the LSTM-FC-GP model is over-fitting the data, at least to a higher extend than the LSTM-PCA-GP
model.

This observation is confirmed when evaluating the confidence interval of these two models. As noted
in Section 5.1 and shown visualised in Figure 5.1, the amount of real data points that are outside of
the 95% confidence interval is much higher than 5%. Table 5.4 shows a precise breakdown of the
percentage, showing that for the LSTM-FC-GP model almost 50% of the real data points fall outside of
the confidence interval while for the LSTM-PCA-GP model only 25% of the real data points are outside
of the confidence interval. Furthermore, the LSTM-PCA-GP model has a lower percentage of data

6.2. Varying the Steps Skipped by GP Layer 60

points outside of the confidence interval across all validation results suggesting the confidence interval
is more accurate even for the cases with only a single sheet of foam.

This result is only possible if the width of the confidence interval is larger for the LSTM-PCA-GP
model than it is for the LSTM-FC-GP model. This is confirmed in table 5.5. This table shows the
confidence interval for each validation result for both models. It shows that the average width of
the confidence interval of the LSTM-PCA-GP model is approximately double that of the LSTM-FC-GP
model. Furthermore, it shows that the average confidence interval of each test result is approximately
the same for every fold for both models, showing that the GP layer has difficulty distinguishing between
the data points it can accurately predict and the data points it cannot accurately predict. This effect
is particularly visible when looking at the percentage of points outside of the confidence interval for
the LSTM-PCA-GP model as some of the test results have a percentage of points of almost 0% while
ideally this should be 5%. This implies that the performance of the models can be improved drastically
if the GP layers were given a measure with which they could evaluate the quality of the data points.

Comparing all the information presented in this section the conclusion can bemade that the LSTM-PCA-
GP model performs better than the LSTM-FC-GP model because the PCA layer reduces the amount of
information presented to the GP layer, effectively filtering the noise, and preventing the model from over-
fitting the training data. Meanwhile the LSTM-FC-GP model reduces the data size without reducing the
information in the model, allowing the GP layer to over-fit the data, reducing the accuracy of the model.

6.2. Varying the Steps Skipped by GP Layer
To determine how leaving out a large portion of the training time steps during training influences
performance, the models using a GP layer were re-trained on fold 1 with double the amount of time
steps used during training, going from one in four to one in two time steps. This change significantly
impacted the models’ performance, increasing both the training time and the required memory by a
substantial amount. This increase raised the required amount of video memory to run the model above
the 8GB available, forcing the model to be run on the system’s CPU. As a result, training this single
fold took approximately the same amount of time as the entire k-fold cross validation with one in four
time steps used as input for the GP layer. Because of this, the models were only re-trained for the first
fold to evaluate the effect of skipping time steps during training.

Comparing the NRMSE values of the models with more and fewer time steps, shown in table 5.6, shows
that considering more time steps during training does not favourably influence the over-fitting problem
that was seen in the case with fewer time steps as the NRMSE is higher for both models compared
to fold 1 of the default models. Looking at the individual validation results shows that the accuracy
for validation results 1 and 2 is practically unchanged or even slightly improved while the accuracy of
validation results 3 to 6 is significantly worse. While the standard deviation of the models with more
time steps is lower, this likely only due to the fact that the NRMSE of validation results 3 to 6 is closer
to the accuracy of validation results 1 to 2 due to the decreased overall accuracy of the models.

These results imply that the additional information that is supplied to the GP layer worsens the over
fitting problem by a considerable amount. This is confirmed by evaluating the training loss that is shown
in Figure 5.3 which shows the the models with a higher number of time steps decreasing at a higher
rate to a lower negative marginal log likelihood.

This is is also visible in the percentage of points that are outside of the 95% confidence interval, as
well as the width of the confidence interval which can be seen in tables 5.7 and 5.8. Adding a larger
number of time steps during training increases the percentage of real data points that are outside of
the confidence interval by a large amount. This combined with the decreasing width of the confidence
interval, which by itself is a good thing, clearly indicates that the model is severely over-fitted.

This over-fitting problem has a much larger impact on the LSTM-PCA-GP than it has on the LSTM-
FC-GP model. The loss of information caused by the PCA layer which prevented the model from
over-fitting to the same degree as the LSTM-FC-GP model no longer has the same effect. As a result,
the LSTM-PCA-GP model is able to over-fit the training data to the same degree that was seen in the
LSTM-FC-GP model.

6.3. The Effect of Noisy Data 61

6.3. The Effect of Noisy Data
To determine the effect of the noisy data from the casewith only a single sheet of foam on the performance
of the models, the models were re-trained for fold 1 without the data from the testcase with only a single
sheet of foam. The results of this can be seen in Section 5.3.

Comparing the NRMSE of the models that are re-trained without the data from test case with a single
sheet of foam to the results of the default models the results are mixed. The average results for
the LSTM-FC-GP and LSTM-PCA-GP improve. However, the average NRMSE of the LSTM model
is higher than the average NRMSE of the default LSTM model. Furthermore, when comparing the
average results of the models that are trained without the data from the test case with a single sheet
of foam to the average of the default models when excluding the results from validation results 1 and
2, the NRMSE of all models becomes significantly worse.

Examining the average width of the 95% confidence interval, it can be seen that the width of the
confidence interval of the LSTM-FC-GP model increases. Meanwhile the width of the confidence
interval of the LSTM-PCA-GP is slightly reduced. For the LSTM-FC-GP model this directly translates
into an improvement to the accuracy of the confidence interval. Moreover, despite the decrease in the
width, the accuracy of the confidence interval of the LSTM-PCA-GP model is also increased.

When calculating the average percentage of real data points outside the 95% confidence interval of the
default models when excluding validation results 1 and 2 the average becomes 40.6% for the LSTM-
FC-GP model, and 20.0% for the LSTM-PCA-GP model. Comparing this result to the result of the
models trained without data from test case 1, the LSTM-FC-GP still has a percentage that is closer to
the target 5%. However, the LSTM-PCA-GP model now has a percentage that is further away from the
5% target which is consistent with the smaller width of its 95% confidence interval. These results point
to the LSTM-FC-GP and LSTM-PCA-GP models still over-fitting the training data.

These results show that removing the noisy data from the test case with a single sheet of foam did
not prevent the models with a GP layer from over-fitting the data. Instead the model performance is
worse on average for the LSTM model and worse when only considering validation results 3 to 6 for
the LSTM-FC-GP and LSTM-PCA-GP models. How the noisy data influences model accuracy when
over-fitting is prevented is discussed in more detail in section 5.5.3

6.4. Effect of GP Input Dimension
To determine the effect of changing the input dimension of the GP layer of the LSTM-FC-GP and LSTM-
PCA-GP models, the input dimension of the GP layer was reduced from 8 to 6, and 4, and the models
were re-trained. The result of this can be seen in Section 5.4.

The two different models respond to a decrease in the GP input dimension in a slightly different way.
When decreasing the GP input dimension from 8 to 6, both models have a slight reduction in their
NRMSE and standard deviation. However, when the GP input dimension is further reduced to 4,
the NRMSE increases above the level of the default model with a higher standard deviation for the
LSTM-FC-GP model. However, for the LSTM-PCA-GP model, the average NRMSE decreases further
slightly. This slight decrease in NRMSE is accompanied by a moderate increase in the standard
deviation suggesting that the overall result could be considered worse than for the model with a GP
input dimension of 6.

The difference in the behaviour of the two models to the reduction in the GP input dimension can be
explained by evaluating how they reduce the GP input dimension. The LSTM-FC-GP model reduces
the GP input dimension by means of a fully connected layer. While this layer needs to be trained in
order to accurately reduce the dimension of the system, it is connected to all output nodes of the LSTM
layer, reducing the GP input dimension in a way that can potentially retain all the information in LSTM
output. This means that reducing the GP input dimension does not prevent the model from over-fitting
the training data.

Meanwhile, the LSTM-PCA-GPmodel uses principal component analysis to reduce the output dimension
of the LSTM model. principal component analysis finds a new coordinate system where all axes are
orthogonal. These axes are ranked for how much they correlate with the desired output. Principal
component analysis reduces the dimension by only keeping the most important axes and discarding the

6.5. Model Performance Without Over-Fitting 62

remaining axes. This means that information is lost when using principal component analysis. When
the input dimension of the GP layer is reduced, the PCA layer discards more axes of its coordinate
system, further reducing the amount of information that is retained in the output. This reduction in
information hinders the GP layer’s ability to over-fit the training data, reducing the degree to which the
model over-fits the training data.

The difference between this behaviour can be observed by examining the validation loss of both models
for different input dimensions shown in Figure 5.6. For the LSTM-FC-GP model, the negative marginal
log likelihood of the validation data coincides until epoch 1000. After this epoch the negative marginal
log likelihood of the model with a GP input dimension of 4 increases slower than the negative marginal
log likelihood of the models with a larger GP input dimension. In contrast, the negative marginal log
likelihood of validation data of the LSTM-PCA-GP models diverges after epoch 500. After this point,
the negative marginal log likelihood increases at a slower rate as the GP input dimension of the model
suggesting the smaller GP input dimension prevents the model from over-fitting by forcing the PCA to
discard more data.

For all the models it can be observed that before epoch 500 all negative marginal log likelihoods are
roughly identical implying the peak accuracy of the models is expected to be nearly identical regardless
of the GP input dimension. This means that there is some margin to reduce the GP input dimension,
reducing the amount of memory and time required to run and train the models.

6.5. Model Performance Without Over-Fitting
In the results discussed in the previous sections, over-fitting was observed. To determine the degree of
this over-fitting as well as from what epoch over-fitting negatively affects the results, the validation loss
during training was measured for fold 1 and shown in Figure 5.7. This figure shows the LSTM model
was not over-fitted to a degree that significantly impacts the performance of the model. Meanwhile, the
LSTM-FC-GP and LSTM-PCA-GP models are severely over-fitted beyond epoch 600. To determine
the real performance of the LSTM-FC-GP and LSTM-PCA-GP models, the models were re-trained up
to epoch 600 for every fold. The detailed results of this can be found in Section 5.5.

6.5.1. Model Accuracy
Comparing the results of the NRMSE between the three models shows that the LSTM-PCA-GP model
has the lowest NRMSE of the three models. The LSTM-FC-GP model has a NRMSE that is less than
1% higher than the LSTM-PCA-GP model. Meanwhile the NRMSE of the LSTM model is over 22%
higher than that of the LSTM-PCA-GP model. Moreover the LSTM-PCA-GP model has a standard
deviation that is lower than the standard deviation of the LSTM-FC-GP model.

Comparing the results from the test cases with a single sheet of foam to the results from the test cases
with more foam, the trend that was observed when over-fitting the model where the NRMSE is higher
for the models using a GP layer compared to the LSTM model is no longer clearly present. However,
it is still the case that the NRMSE of validation results 1 and 2 is higher than the NRMSE of validation
results 3 to 6 for every model.

The improvement in the NRMSE of the models with a GP layer is accompanied by a corresponding in
the improvement of the accuracy of the 95% confidence interval. While there are still more than 5%
of real data points outside of the confidence interval, the amount of data points outside the confidence
interval has dropped by 38.40% for the LSTM-FC-GP model and by 15.94% for the LSTM-PCA-GP
model to 11.44% for the LSTM-FC-GP model, and 9.62% for the LSTM-PCA-GP model. Furthermore,
the standard deviation of these percentages has significantly decreased to 15.07% for the LSTM-FC-GP
model and 12.31%.

The percentages of the individual validation results are unevenly distributed among the validation
results, being much higher for validation results 1 and 2. Factoring these percentages out of the total
average results in an average of 6.59% for the LSTM-FC-GP model and 5.8% for the LSTM-PCA-
GP model. These percentages are both very close to the target value of 5%. However good these
percentages are, it should be noted that the model was trained including the data from the test case
with a single sheet of foam. As a consequence, leaving out validation results 1 and 2 is not entirely

6.5. Model Performance Without Over-Fitting 63

representative in this case as the confidence interval was intended to match the total percentage of all
data.

While the values of 11.44% and 9.62% are both higher than the 5% target, the model is expected to
perform worse on the validation data than on the training data. Considering this fact these results are
quite good and the confidence interval serves as a good indicator for in what range the real results can
be expected to be which is entirely absent for the LSTM model.

A consequence of not over-fitting the models utilising a GP layer is that the confidence interval has a
much larger size. The size of this confidence interval is shown in table 5.16. While the confidence
interval of the LSTM-PCA-GP model is only 45% larger than the confidence interval of the over-fitted
model, this increase is much larger for the LSTM-FC-GP model for which the size of the confidence
interval has increased with nearly 200%. This serves as a very good indicator to how much more the
LSTM-FC-GP model was over-fitting compared to the LSTM-PCA-GP model. For the models that were
not over-fitted, the width of the confidence interval is within 6% of each other, leading to similar results
for the two models.

6.5.2. Time-Domain Results
The time-domain results for fold 1 of the models that were trained not to over-fit the data are shown in
section 5.5.2. To make the figures more readable, only the first half of the validation results is shown.
In these figures, the LSTM model is shown in figure a, the LSTM-FC-GP model is shown in figure b,
and the LSTM-PCA-GP model is shown in figure c. Looking at the qualitative aspects of the figures,
several observations are made.

The first observation is that the models tend to under-estimate the maximum amplitude of the oscillation
shown in figures 5.8 and 5.9 which correspond to validation results 1 and 2 respectively. For many
applications this has implications for the validity of the results where higher amplitudes tend to be
conservative. This same issue is not visible in figures 5.10 to 5.13 which correspond to validation
results 3 to 6.

Another observation is that the models tend to be much less accurate in the first few data points. This
can be attributed to the LSTM layer of the model still needs to initialise its memory. To address this is
possible to discard the first few data points. This would allow the LSTM layer to provide better outputs
but it would also prevent the model from trying to over-fit the start of the training data accelerations.

Next, as was shown before in the tables showing the confidence intervals of the models, there is very
little variation in the variance of the output of the GP layer across the time domain and across samples.
This means that irrespective of the amplitude of the oscillation the GPmodel will provide a similar result.
Looking at Figure 5.10, it can be seen that the oscillation has a very low amplitude. However, the 95%
confidence interval is still the same size resulting in a model that despite very accurately modelling the
time domain response, still has a confidence interval that is approximately as wide as the maximum
amplitude of the oscillation itself.

This implies that the models lack the context to determine across the time domain how much individual
data points should vary. If this context was provided to the model it is possible that the accuracy of the
models could be further improved.

6.5.3. The Effect of Noisy Data
To determine the effect of the noisy data on the optimal model results, the models were re-trained with
early stopping on the dataset excluding the noisy input data associated with the test case with a single
sheet of foam.

The results show that the average NRMSE is only lower for the LSTM model. While the NRMSE of the
LSTM-FC-GP model is only slightly higher, the NRMSE of the LSTM-PCA-GP model is more than 21%
higher than the average NRMSE of the models that were trained without over-fitting, including the data
from the test case with a single sheet of foam. Comparing the models among each other, the LSTM
model now performs better than the LSTM-PCA-GP model.

As the LSTM-PCA-GP model suffers the least from the noisy test data, it is expected that the LSTM
model and LSTM-FC-GP models benefit more from removing the data from the test case with a single

6.6. Model Extrapolation 64

sheet of foam. However, the expectation is that the average NRMSE improves for all models which in
reality is not the case.

The cause of this phenomenon is not clear. However, there are multiple possibilities. First is the fact
that there is less training data available. This makes it easier for complex models to over-fit the training
data. However, given the use of early stopping this is unlikely the root cause. Another possibility is that
the early stopping erroneously stopped training the models prematurely resulting in a higher NRMSE.
While this is possible, the percentage of the points that are outside of the 95% confidence interval
suggests that the models were correctly fitted as both confidence intervals have an effective average
of very close to 5%. Another possibility is that the learning rate or other hyper-parameters are not
correctly tuned for the model to converge on this different data set. To determine what the cause of the
reduced accuracy is, these possibilities must be tested to determine the cause of the reduced accuracy.

6.5.4. PSD Accuracy
At Redwire Space NV. vibration tests are evaluated based on their PSD. Therefore the models must
have a high accuracy when comparing the PSD of the real measurement with the PSD of the model
results. This comparison can be seen in the plots shown in Appendix C. Across all models the PSD
of the results is very accurate up to a frequency of 500Hz. Above this frequency in general the LSTM
model performs the worst of all models.

The PSD of most validation results has a peak between 600Hz and 900Hz. For all folds except for
fold 1, the LSTM model does not model this frequency range accurately. However, the LSTM-FC-GP
and LSTM-PCA-GP models do model this frequency range accurately. At a frequency range between
800Hz and 1000Hz the LSTM-FC-GP and LSTM-PCA-GP models lose their accuracy and quickly drop
to the same level as the LSTM model.

These findings imply that the higher accuracy of the models with a GP layer can at least in part be found
in the model’s ability to model oscillations in the frequency range of 600Hz to 900Hz. The frequency
response of the models can potentially be used to improve the accuracy of the models. Using a metric
like the PSD as a loss function combined with the error in the time domain can be a possible way to
improve the model’s performance.

6.6. Model Extrapolation
To determine how well every model performed when extrapolating beyond the amount of time steps
used in the training data, the models were re-trained up to time-step 250. These models were then
used to simulate the validation data up to time-step 500. To determine the accuracy of the models
when extrapolating beyond the amount of time-steps used in the training data, the percent change in
the last 250 time-steps when compared to the first 250 time-steps is shown in table 5.20. In addition to
this, the time domain results of fold 1 are shown in Figures 5.20 to 5.25 to determine any qualitative
changes between the first half and the second half of the validation results.

6.6.1. Percent Change in NRMSE
The results show that none of themodels show a significant overall reduction in the accuracy. Furthermore,
an improvement in the average accuracy of the LSTM-FC-GP and LSTM-PCA-GPmodels was observed
with the LSTM-PCA-GPmodel showing the highest improvement. A possible reason for this improvement
is the observation noted in Section 6.5.2 where the first few time-steps show a high inaccuracy while
the memory terms of the LSTM layer do not yet have a large amount of information.

While the models with a GP layer have both a higher overall accuracy and a lower standard deviation,
The difference in relative accuracy is not very large and all models can be said to perform well at
simulating the data beyond the duration of the training data. Based on this finding, extrapolation
performance is not a major consideration for the model trade-off.

6.6.2. Time Domain Results
Examining the time-domain results shows that there is no obvious visual difference between the first
half of the validation results and the second half of the validation results. Overall, there is no obvious
change in the accuracy which is confirmed by the percentual change in NRMSE.

6.7. Model Performance 65

Moreover, examining the results of the models with a GP layer shows that the confidence interval does
not get wider when the model is simulating beyond the duration of the training data. While this sounds
unintuitive, it should be noted that according to the NRMSE the accuracy of the model is not reduced
beyond the duration of the training data. Therefore the confidence interval should not be wider as the
accuracy is not lower.

6.7. Model Performance
In order to make a fair comparison between the models, the performance of the default models was
benchmarked. The results of this benchmark can be seen in Section 5.7. The performance of the
models with a GP layer are tested in two ways. First, they were tested using a GPU that utilises CUDA
to run the model. Next, these models were run on the system’s CPU.

Comparing the results, it can be seen that the LSTM model performs much better than the LSTM-
FC-GP and LSTM-PCA-GP models in all metrics. This is to be expected as the LSTM model is a
sub-component of the LSTM-FC-GP and LSTM-PCA-GP models. Meanwhile, the performance of the
LSTM-FC-GP and LSTM-PCA-GP models is nearly identical in every test.

Comparing the training time it can be seen that the time per epoch of the LSTM model is approximately
3 times lower than the time per epoch of the LSTM-FC-GP and LSTM-PCA-GPmodels. This lower time
per epoch does however not translate directly into faster training times. When using early stopping on
the models using a GP layer it was found that the longest training fold lasted for 900 epochs. Meanwhile,
the LSTM model was trained over 4000 epochs. This results in a total training time of 2 h37min for the
LSTM model, and 1 h48min for the models with a GP layer. However, most folds for the LSTM-FC-GP
and LSTM-PCA-GP models trained for only 500 epochs which corresponds to a training time of just
over 1 h. While this training time is much lower than the training time for the LSTM model, it should
be noted that these results can only be obtained when utilising a GPU for the GP layer. Training the
models on a CPU results in significantly longer training times.

The difference between the runtime of the models is smaller than the relative difference between the
time per epoch. The models with a GP layer take less than 2.5 times longer to run compared to the
LSTM model. While this increase is still significant the total time to run a time domain simulation with
500 time-steps is under 2.5 s. This time is short enough for the time to run to not be a large obstacle
during use.

The difference between the total memory usage is much larger. The total memory usage of the LSTM
model when running the model is only 366MiB. This is very low and does not pose an issue for any
modern computer. Meanwhile the LSTM-FC-GP and LSTM-PCA-GP models use 668MiB of memory
and more than 1500MiB of system memory. While this is substantially more than the LSTM model, this
could still be run on any modern system with a modern discrete GPU that supports CUDA and thus
shows that memory usage is not a large obstacle to running the models on a modern system.

Because not every computer has a discrete graphics card that supports CUDA the models using a GP
layer were re-run on CPU only. While this is impractical during training, running the model is far less
computationally intensive and possible on a CPU. The results of this show that running these models
on a CPU only increases the runtime to an average of 3 s. For the intended application this is not a
restrictive amount of time. Meanwhile the memory that was previously stored in the system’s video
memory shifts to the system memory increasing the total system memory usage to close to 1900MiB.
This is more than five times higher than the LSTM model. While by itself this is not a restrictive amount
this can be a substantial restriction on a system that is running other software alongside the model or
when the model is used as part of a larger program.

6.8. Trade-Off Between Models
To determinewhatmodel should be used a final comparison ismade that considers all aspects discussed
in this chapter. When comparing the LSTM model to the models using a GP layer, the behaviour of the
two models using a GP layer is often very similar when contrasted to the LSTM model. Therefore they
are compared together unless they are individually specified.

6.8. Trade-Off Between Models 66

When compared to the original models used in the internship leading up to the thesis, all models
achieve extremely accurate results. All models are able to follow the main oscillation of the system they
are modelling with a very high accuracy showing little to no phase shift across every foam thickness.
However when the models are compared among each other, the models that utilise a GP layer provide
a noticeably higher accuracy when early stopping is used. Furthermore, the accuracy of the models
with a GP layer are influenced to a much lower degree by noisy input data. This behaviour is present
more strongly in the LSTM-PCA-GP model than in the LSTM-FC-GP model.

Moreover, the models with a GP layer provide a confidence interval that, when the models are trained
correctly on representative data, is accurately able to predict in what range the simulated data will
be. Knowing this confidence interval is an enormous advantage considering the goal is to simulate a
physical system. In order to make the simulation conservative the models must either over-estimate
the real oscillation or provide another way to determine what the maximum expected amplitude of
the oscillation can be. The confidence interval provides the models using a GP layer with a way
to determine this maximum expected amplitude. Meanwhile, the LSTM model has been shown to
systematically under-estimate the maximum amplitude. Furthermore, the frequency response of the
LSTM model shows that it is less accurate at modelling the response of higher frequency oscillations.
This means that in its current form, the LSTM model could not be used and a way to determine its
accuracy on real tests must be found.

This, combined with the shorter training times of the models with a GP layer makes the models with a
GP layer a very good choice for the model. However, there are exceptions to this. The computational
resources required to train and run the models with a GP layer can be a very limiting factor and increase
with an increasing number of data points to train the model. As the dataset gets larger a model with a
GP layer may no longer be viable and an LSTM model must be used. For the simplicity of this thesis,
only a single variable was used as an input for the LSTM layer. when more variables are added the
amount of data required to train the model increases exponentially. This could very quickly increase
the resource requirements beyond anything that is practical. However, when the available hardware is
able to train a model with a GP layer on the training dataset, a model with a GP layer is very strongly
recommended.

Another aspect that needs to be considered is that the LSTM model is much easier to train. Something
that is very clear from training the models is that the models with a GP layer have room for improvement.
In order to train the models with a GP layer to a desirable level, many hyper-parameters must be
evaluated and tuned. This might require a considerable amount of time and effort which in a commercial
setting might not make sense.

Comparing the LSTM-PCA-GP model and the LSTM-FC-GP model, the differences become very small
for both the model performance and accuracy. Both models react in a similar way to the effect of input
dimension, leaving out the noisy test data, and varying the amount of steps skipped when training the
GP layer. Furthermore, both models have a frequency response that is very similar. However, the
LSTM-PCA-GP model suffers less from noise in the test data. Therefore, the LSTM-PCA-GP model
is recommended based on its better performance with noisy test data. However, the LSTM-PCA-GP
model was only made possible by the torch-pca python package which allows gradients to be stored
through the PCA layer. [37] As this package is maintained by a single person it is possible that it will
loose support in the future. While the package is very simple and can easily be modified, as was
done for this thesis, this may not be worth the risk and effort for a production environment and the
LSTM-FC-GP model which relies only on PyTorch could be a better alternative based on this.

The conclusions of this section are summarised in Table 6.2.

Table 6.2: Summary of Best Use Cases for Models

Model Use Case
LSTM Best for use with large datasets
LSTM-FC-GP Best for long term support
LSTM-PCA-GP Best performance for noisy data

7
Conclusion

The aim of this thesis was to find a surrogate model that can accurately model the behaviour of an
object packed in foam packaging of varying thickness when it is subjected to shocks and vibrations of
both high and low amplitudes. To achieve this, a dataset was made by performing tests on a mass
that is clamped between a varying number of foam plates which were used to achieve varying foam
thicknesses. This test setup is shown in figure 7.1. The test setup was then subjected to random
vibration bursts of varying amplitudes. Both the applied acceleration as well as the response of the
mass packed between the foam plates was measured to create the dataset. This dataset was then
used to train AI models in a data-driven way to act as a surrogate model to simulate the response of
this foam-damped mass.

Figure 7.1: The test-setup used to create the dataset in a
configuration with three foam sheets on either side of the mass.

The proposed LSTM, LSTM-FC-GP, and LSTM-
PCA-GP AI-models were then trained on this
dataset using a k-fold cross-validation with 5
folds. The models were compared based
on their overall accuracy, their sensitivity to
input noise, their accuracy in the frequency
domain, their ability to run simulations that
exceed the duration of the training data, and
the computational resources required to run
the models. Additionally, the effect of several
parameters influencing theGP layer was evaluated.

The comparison between these models shows
that the two models with a GP layer performed
nearly identically to each other and significantly
out-performed the LSTM model at the cost of
more computational resources. Furthermore, the
models using a GP layer provide a confidence
interval which gives an indication of how much
the results are expected to vary. Despite the
larger amount of computational resources required, the models with a GP layer trained in both fewer
epochs, and less time than the LSTM model. However, the models with a GP layer were more prone
to over-fitting necessitating the use of early stopping during training.

Based on the comparison made between the AI-models the LSTM-PCA-GP model is recommended to
be used based on its superior accuracy when using noisy test data. However, as this model depends
on a package maintained by a single person, the LSTM-FC-GP model is a very competitive alternative
when long term support is preferred. Finally, as the required computational resources for the GP layer
increase with an increasing dataset size, the use of a model using this GP layer can become impossible.
In that case an LSTM model should be used instead. The biggest downside to this is model is the
absence of a confidence interval. As a result, there is no indication how much the output of the model
can vary, and the accuracy of the result becomes difficult to determine.

67

8
Future Works

In this thesis, a set of models that can be used to model the behaviour of a foam-packed item to a shock
or vibration is found. Thesemodels were trained on a dataset consisting of vibration data obtained in the
TU Delft DASML Dynamics Lab. While the models trained on these datasets show promising results,
the test setup, and the reduced number of variables makes this data, and as a consequence themodels,
not representative of the real response of a foam-packed item to a shock. This chapter describes the
steps that would need to be taken to develop these models to make them able to accurately model a
shock test on a foam-packed item.

8.1. Test Articles
In order tomake amodel representative, a representative datasetmust bemade. Making this representative
dataset starts with a representative test article. The mass, foam thickness, and variation of this test
article are described in Sections 8.1.1, 8.1.2, and 8.1.3 respectively.

8.1.1. Test Article Mass
To meet the requirements set by NASA, the surface pressure the test object exerts on the foam at a
loading of 1 g shall be between 0.2 psi and 0.7 psi. [35]

Using a density of 7850 kgm−3 and 2700 kgm−3 for steel and aluminium [38, 39] respectively, this
minimum and maximum thickness can be converted to the thickness of a block. For the steel block this
thickness would range between approximately 17.9mm and 62.7mm while for the aluminium block this
thickness should range between approximately 52.1mm and 182mm.

In this thesis a contact area of 15 cm by 15 cm was used to perform the tests. To avoid possible
unexpected effects from having a small foam area, it is recommended to not go below this surface
area.

8.1.2. Test Article Foam
In order to make a representative dataset, the foam packaging of the test article must be representative
of the real scenario. To achieve this, foam bags similar to the bags used during a real flight must be
made. These bags must have a varying thickness. Allowing for sufficient tests to be performed with
foam of increasing thickness.

The exact thickness range of the foam in the bags must be determined by an expert and is dependent
on what the thickness range of foam in real foam bags is. This thickness range determines in what
range of thicknesses the model will be valid.

68

8.2. Test Setup 69

8.1.3. Varying the Foam and Block Thickness
To obtain a reliable model, the thickness of the aluminium or steel block, and the thickness of the foam
in the foam bag must be varied with a sufficiently small increment. If the increment is too large, there
is a risk that the model will not be able to model the effect of a varying thickness accurately.

The exact maximum increment size is difficult to determine in advance. However, more increments will
result in a more accurate model. The downside of increasing the number of increments between the
minimum and maximum thickness is that the training dataset will become much larger. The larger this
dataset is, the more resources the model will need during the training phase, and possibly during the
evaluation phase if a model with a GP layer is used.

To combat this issue, the exact increments can be varied within the dataset. For example, if a thickness
between 5 cm and 20 cm is required, one block thickness could have foam thicknesses of 5 cm and 15 cm
while another block thickness could have a foam thickness of 10 cm and 20 cm. In this way, a larger
number of increments can be achieved without increasing the amount of collected data.

8.2. Test Setup
The test setup to acquire the dataset is as follows. An accelerometer is placed on the mass that is
described in section 8.1.1. The test mass is placed in the foam bag that is described in Section 8.1.2.
The foam bag is closed, and placed onto the shaker. The foam bag must be secured to the shaker
surface without pre-compressing the foam. The acceleration of the shaker surface must be measured.

When the foam bag is secured on the shaker, the desired tests shall be performed. These tests depend
on the desired type of model and are described in Section 8.3. After the tests have been performed,
the mass shall be placed in a bag with a different thickness and the tests shall be repeated until the
tests have been performed with each foam thickness. This shall be done with every mass until all
combinations have been tested.

8.3. Test Sequence
The tests that shall be performed on the test articles depend on the desired results of the model. For
a model that is meant to model a shock, a shock test must be performed. In order to ensure that
the model does not learn to anticipate the input shock, a large variation of amplitudes must be used.
Furthermore, the shock duration, the type of shock, and the amount of time before the shock can all be
varied to avoid the model over fitting.

If the model is intended to represent random vibration behaviour, the test should be a vibration test. As
vibration tests can be very long it is preferable to do a larger number of short vibration tests instead of
a long vibration test. In this thesis a random burst test was used to achieve this goal. Additionally, a
large number of amplitudes is preferred to more tests at the same amplitude.

The number of samples taken during the test is directly proportional to the training duration. The more
samples taken, the longer the training will last. Therefore the number of time steps used must be
minimised. The two factors to consider are the duration of the test, and the sampling frequency.
The duration of the test is dependent on the type of model that is being created. For example, if
the performed test is a shock test, a shorter duration with a higher sampling frequency can be used.
However, if a model is created with a vibration test data, lower frequency longer duration data can be
used.

It is important to consider that the step size of the model must be consistent between the training
datasets. As a direct solution model was chosen, the LSTM has no way to know the step size of the
model. Therefore, a consistent step size must be used and the model cannot be used to do simulations
at higher frequencies. It may be possible to use the step size as an input to the model, however this
was not tested.

8.4. Training the Model
The model shall be trained on the dataset described in Section 8.3. In order to ensure accuracy, the
training should be done over a sufficient number of epochs. Furthermore, special care should be taken

8.4. Training the Model 70

when selecting hyper-parameters for the model. If the learning rate is chosen too low, the model may
not converge fast enough. However, if the learning rate is chosen too high, the model may not be
able to achieve a high accuracy. Additionally, the dataset must be split into a training and validation
dataset. After the model has been trained on the training dataset, the accuracy must be evaluated on
the validation dataset to determine the model’s accuracy. Special care must be taken when training
the models to prevent over-fitting. It is advised to use early stopping to prevent over-fitting the model.

References

[1] Report/Thesis Template | LaTeX × TU Delft. URL: https://dzwaneveld.github.io/report/.
[2] Backpropagation in Neural Network - GeeksforGeeks. URL: https://www.geeksforgeeks.org/

machine-learning/backpropagation-in-neural-network/.
[3] Epoch in Machine Learning - GeeksforGeeks. URL: https://www.geeksforgeeks.org/epoch-

in-machine-learning/.
[4] HYSTERESIS Definition & Meaning | Dictionary.com. URL: https://www.dictionary.com/

browse/hysteresis.
[5] Lowie DeMalsche and Els Lemmens.Usefulness of Shock Tests on FoamPacked Items: Standardized

Simulation Tool for Verification Approach. Tech. rep. Kruibeke: Redwire Space NV, Sept. 2024.
[6] K. C. Rusch. “Load–compression behavior of flexible foams”. In: Journal of Applied Polymer

Science 13.11 (Nov. 1969), pp. 2297–2311. ISSN: 1097-4628. DOI: 10.1002/APP.1969.070131
106. URL: https://onlinelibrary.wiley.com/doi/10.1002/app.1969.070131106.

[7] E Linul et al. “Study of factors influencing the mechanical properties of polyurethane foams under
dynamic compression”. In: Journal of Physics: Conference Series (2013). DOI: 10.1088/1742-
6596/451/1/012002.

[8] Zhiying Zhao et al. “Study on the Mechanical Properties and Energy Absorbing Capability of
Polyurethane Microcellular Elastomers under Different Compressive Strain Rates”. In: Polymers
2023, Vol. 15, Page 778 15.3 (Feb. 2023), p. 778. ISSN: 2073-4360. DOI: 10.3390/POLYM150307
78. URL: https://www.mdpi.com/2073-4360/15/3/778/htm%20https://www.mdpi.com/2073-
4360/15/3/778.

[9] M. F. Ashby, Hugh Shercliff, and David Cebon. Materials: engineering, science, processing and
design. Third Edition. Oxford: Butterworth-Heinemann, 2014.

[10] Ying Li et al. “Molecular simulation guided constitutive modeling on finite strain viscoelasticity of
elastomers”. In: Journal of the Mechanics and Physics of Solids 88 (Mar. 2016), pp. 204–226.
ISSN: 0022-5096. DOI: 10.1016/J.JMPS.2015.12.007.

[11] Brett Sanborn, Bo Song, and Scott Smith. “Pre-strain Effect on Frequency-Based Impact Energy
Dissipation through a Silicone Foam Pad for Shock Mitigation”. In: Journal of Dynamic Behavior
of Materials 2.1 (Mar. 2016), pp. 138–145. ISSN: 21997454. DOI: 10.1007/S40870-015-0043-
1/FIGURES/14. URL: https://link.springer.com/article/10.1007/s40870-015-0043-1.

[12] M. H. Ozkul and J. E. Mark. “The effect of preloading on the mechanical properties of polymeric
foams”. In: Polymer Engineering & Science 34.10 (May 1994), pp. 794–798. ISSN: 1548-2634.
DOI: 10.1002/PEN.760341003. URL: https://onlinelibrary.wiley.com/doi/full/10.1002/
pen.760341003.

[13] Alvaro Sanchez-Gonzalez et al. “Learning to Simulate Complex Physics with Graph Networks”.
In: 37th International Conference on Machine Learning, ICML 2020 PartF168147-11 (Feb. 2020),
pp. 8428–8437. URL: https://arxiv.org/abs/2002.09405v2.

[14] Keith T. Butler et al. “Machine learning for molecular and materials science”. In: Nature 2018
559:7715 559.7715 (July 2018), pp. 547–555. ISSN: 1476-4687. DOI: 10.1038/s41586-018-
0337-2. URL: https://www.nature.com/articles/s41586-018-0337-2.

[15] Steven L. Brunton, Bernd R. Noack, and Petros Koumoutsakos. “Machine Learning for Fluid
Mechanics”. In: Annual Review of Fluid Mechanics 52.Volume 52, 2020 (Jan. 2020), pp. 477–
508. ISSN: 00664189. DOI: 10.1146/ANNUREV-FLUID-010719-060214/CITE/REFWORKS. URL:
https://www.annualreviews.org/content/journals/10.1146/annurev- fluid- 010719-
060214.

71

https://dzwaneveld.github.io/report/
https://www.geeksforgeeks.org/machine-learning/backpropagation-in-neural-network/
https://www.geeksforgeeks.org/machine-learning/backpropagation-in-neural-network/
https://www.geeksforgeeks.org/epoch-in-machine-learning/
https://www.geeksforgeeks.org/epoch-in-machine-learning/
https://www.dictionary.com/browse/hysteresis
https://www.dictionary.com/browse/hysteresis
https://doi.org/10.1002/APP.1969.070131106
https://doi.org/10.1002/APP.1969.070131106
https://onlinelibrary.wiley.com/doi/10.1002/app.1969.070131106
https://doi.org/10.1088/1742-6596/451/1/012002
https://doi.org/10.1088/1742-6596/451/1/012002
https://doi.org/10.3390/POLYM15030778
https://doi.org/10.3390/POLYM15030778
https://www.mdpi.com/2073-4360/15/3/778/htm%20https://www.mdpi.com/2073-4360/15/3/778
https://www.mdpi.com/2073-4360/15/3/778/htm%20https://www.mdpi.com/2073-4360/15/3/778
https://doi.org/10.1016/J.JMPS.2015.12.007
https://doi.org/10.1007/S40870-015-0043-1/FIGURES/14
https://doi.org/10.1007/S40870-015-0043-1/FIGURES/14
https://link.springer.com/article/10.1007/s40870-015-0043-1
https://doi.org/10.1002/PEN.760341003
https://onlinelibrary.wiley.com/doi/full/10.1002/pen.760341003
https://onlinelibrary.wiley.com/doi/full/10.1002/pen.760341003
https://arxiv.org/abs/2002.09405v2
https://doi.org/10.1038/s41586-018-0337-2
https://doi.org/10.1038/s41586-018-0337-2
https://www.nature.com/articles/s41586-018-0337-2
https://doi.org/10.1146/ANNUREV-FLUID-010719-060214/CITE/REFWORKS
https://www.annualreviews.org/content/journals/10.1146/annurev-fluid-010719-060214
https://www.annualreviews.org/content/journals/10.1146/annurev-fluid-010719-060214

References 72

[16] Christian Legaard et al. “Constructing Neural Network Based Models for Simulating Dynamical
Systems”. In: ACM Computing Surveys 55.11 (Feb. 2023). ISSN: 15577341. DOI: 10 . 1145 /
3567591/ASSET/1B6B98D6- 9E2E- 4FCA- 9AF6- 37A9AD05E2F8/ASSETS/GRAPHIC/CSUR- 2021-
0704-F23.JPG. URL: https://dl-acm-org.tudelft.idm.oclc.org/doi/10.1145/3567591.

[17] Mohaiminul Islam, Guorong Chen, and Shangzhu Jin. “An Overview of Neural Network”. In:
American Journal of Neural Networks and Applications 5.1 (2019), pp. 7–11. ISSN: 2469-7419.
DOI: 10.11648/j.ajnna.20190501.12. URL: http://www.sciencepublishinggroup.com/j/
ajnna.

[18] Serhat Kılıçarslan and Kemal Adem. “An overview of the activation functions used in deep learning
algorithms”. In: Journal of New Results in Science 10.3 (2021), pp. 75–88. DOI: 10.54187/jnrs.
1011739. URL: https://doi.org/10.54187/jnrs.1011739.

[19] Robin M. Schmidt. “Recurrent Neural Networks (RNNs): A gentle Introduction and Overview”. In:
(Nov. 2019). URL: http://arxiv.org/abs/1912.05911.

[20] Yuhuang Hu et al. “Overcoming the vanishing gradient problem in plain recurrent networks”. In:
(July 2019). URL: http://arxiv.org/abs/1801.06105.

[21] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In: Neural Computation
9.8 (Nov. 1997), pp. 1735–1780. ISSN: 08997667. DOI: 10.1162/NECO.1997.9.8.1735.

[22] Sepp Hochreiter. “The Vanishing Gradient Problem During Learning Recurrent Neural Nets and
Problem Solutions”. In: International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems 06.02 (1998), pp. 107–116. ISSN: 0218-4885. DOI: S0218488598000094.

[23] Kalvik Jakkala. “Deep Gaussian Processes: A Survey”. In: ().
[24] Deep Ray, Orazio Pinti, and Assad A. Oberai. “Deep Learning and Computational Physics”. In:

Deep Learning and Computational Physics (2024). DOI: 10.1007/978-3-031-59345-1.
[25] Norman Richard Draper and Harry Smith. Applied regression analysis. New York : Wiley, 1998,

xvii, 706 pages : ISBN: 0471170828. URL: http://www.citeulike.org/group/450/article/
155094.

[26] 3.4. Metrics and scoring: quantifying the quality of predictions— scikit-learn 1.7.0 documentation.
URL: https://scikit-learn.org/stable/modules/model_evaluation.html#mean-squared-
error.

[27] Davide Chicco, Matthijs J. Warrens, and Giuseppe Jurman. “The coefficient of determination R-
squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis
evaluation”. In: PeerJ Computer Science 7 (July 2021), pp. 1–24. ISSN: 23765992. DOI: 10 .
7717/PEERJ-CS.623/SUPP-1. URL: https://peerj.com/articles/cs-623.

[28] Alessandro Di Bucchianico. Coefficient of Determination (R2) - Knovel. 2007. DOI: 10.1002/
9780470061572 . eqr173. URL: https: / / app . knovel . com /hotlink / pdf / id : kt007NTF9C /
encyclopedia-statistics/structure-coherent-system.

[29] Hossein Pishro-Nik. Introduction to probability, statistics, and randomprocesses. KappaResearch,
LLC, 2014.

[30] Alexei Botchkarev. “Performance Metrics (Error Measures) in Machine Learning Regression,
Forecasting and Prognostics: Properties and Typology”. In: Interdisciplinary Journal of Information,
Knowledge, and Management 14 (Sept. 2018), pp. 45–76. DOI: 10.28945/4184. URL: http:
//arxiv.org/abs/1809.03006%20http://dx.doi.org/10.28945/4184.

[31] Georg. Duffing.Erzwungene schwingungen bei veränderlicher eigenfrequenz und ihre technische
bedeutung. Braunschweig, F. Vieweg & Sohn, 1918, vi, 134 pages.

[32] Alvaro H. Salas. “An Elementary Solution to a Duffing Equation”. In: Scientific World Journal 2022
(2022). ISSN: 1537744X. DOI: 10.1155/2022/2357258.

[33] Saeideh Khatiry Goharoodi et al. “Evolutionary-Based Sparse Regression for the Experimental
Identification of Duffing Oscillator”. In:Mathematical Problems in Engineering 2020.1 (Jan. 2020),
p. 7286575. ISSN: 1563-5147. DOI: 10.1155/2020/7286575. URL: /doi/pdf/10.1155/2020/
7286575%20https://onlinelibrary.wiley.com/doi/abs/10.1155/2020/7286575%20https:
//onlinelibrary.wiley.com/doi/10.1155/2020/7286575.

https://doi.org/10.1145/3567591/ASSET/1B6B98D6-9E2E-4FCA-9AF6-37A9AD05E2F8/ASSETS/GRAPHIC/CSUR-2021-0704-F23.JPG
https://doi.org/10.1145/3567591/ASSET/1B6B98D6-9E2E-4FCA-9AF6-37A9AD05E2F8/ASSETS/GRAPHIC/CSUR-2021-0704-F23.JPG
https://doi.org/10.1145/3567591/ASSET/1B6B98D6-9E2E-4FCA-9AF6-37A9AD05E2F8/ASSETS/GRAPHIC/CSUR-2021-0704-F23.JPG
https://dl-acm-org.tudelft.idm.oclc.org/doi/10.1145/3567591
https://doi.org/10.11648/j.ajnna.20190501.12
http://www.sciencepublishinggroup.com/j/ajnna
http://www.sciencepublishinggroup.com/j/ajnna
https://doi.org/10.54187/jnrs.1011739
https://doi.org/10.54187/jnrs.1011739
https://doi.org/10.54187/jnrs.1011739
http://arxiv.org/abs/1912.05911
http://arxiv.org/abs/1801.06105
https://doi.org/10.1162/NECO.1997.9.8.1735
https://doi.org/S0218488598000094
https://doi.org/10.1007/978-3-031-59345-1
http://www.citeulike.org/group/450/article/155094
http://www.citeulike.org/group/450/article/155094
https://scikit-learn.org/stable/modules/model_evaluation.html#mean-squared-error
https://scikit-learn.org/stable/modules/model_evaluation.html#mean-squared-error
https://doi.org/10.7717/PEERJ-CS.623/SUPP-1
https://doi.org/10.7717/PEERJ-CS.623/SUPP-1
https://peerj.com/articles/cs-623
https://doi.org/10.1002/9780470061572.eqr173
https://doi.org/10.1002/9780470061572.eqr173
https://app.knovel.com/hotlink/pdf/id:kt007NTF9C/encyclopedia-statistics/structure-coherent-system
https://app.knovel.com/hotlink/pdf/id:kt007NTF9C/encyclopedia-statistics/structure-coherent-system
https://doi.org/10.28945/4184
http://arxiv.org/abs/1809.03006%20http://dx.doi.org/10.28945/4184
http://arxiv.org/abs/1809.03006%20http://dx.doi.org/10.28945/4184
https://doi.org/10.1155/2022/2357258
https://doi.org/10.1155/2020/7286575
/doi/pdf/10.1155/2020/7286575%20https://onlinelibrary.wiley.com/doi/abs/10.1155/2020/7286575%20https://onlinelibrary.wiley.com/doi/10.1155/2020/7286575
/doi/pdf/10.1155/2020/7286575%20https://onlinelibrary.wiley.com/doi/abs/10.1155/2020/7286575%20https://onlinelibrary.wiley.com/doi/10.1155/2020/7286575
/doi/pdf/10.1155/2020/7286575%20https://onlinelibrary.wiley.com/doi/abs/10.1155/2020/7286575%20https://onlinelibrary.wiley.com/doi/10.1155/2020/7286575

References 73

[34] Modal Shaker 13 lbf. URL: https://www.modalshop.com/vibration-test/products/modal-
shakers/13-lbf-exciter.

[35] NASA. Pressurized Payloads Interface Requirements Document International Space Station
Program Revision R. English. Tech. rep. Houston,Texas: NASA, Oct. 2015.

[36] Payam Refaeilzadeh, Lei Tang, and Huan Liu. “Cross-Validation”. In: Encyclopedia of Database
Systems (2009), pp. 532–538. DOI: 10 . 1007 / 978 - 0 - 387 - 39940 - 9{\ _ }565. URL: https :
//link.springer.com/rwe/10.1007/978-0-387-39940-9_565.

[37] valentingol/torch_pca: Principal Component Anlaysis (PCA) in PyTorch. URL: https://github.
com/valentingol/torch_pca.

[38] Density of Steel - Mild and Carbon Steel Density lb/in3 or kg/m3. URL: https://www.amardeep
steel.com/blog/density-of-steel.html.

[39] The Density of Aluminium and its Alloys - thyssenkrupp Materials (UK). URL: https://www.
thyssenkrupp-materials.co.uk/density-of-aluminium.html.

https://www.modalshop.com/vibration-test/products/modal-shakers/13-lbf-exciter
https://www.modalshop.com/vibration-test/products/modal-shakers/13-lbf-exciter
https://doi.org/10.1007/978-0-387-39940-9{_}565
https://link.springer.com/rwe/10.1007/978-0-387-39940-9_565
https://link.springer.com/rwe/10.1007/978-0-387-39940-9_565
https://github.com/valentingol/torch_pca
https://github.com/valentingol/torch_pca
https://www.amardeepsteel.com/blog/density-of-steel.html
https://www.amardeepsteel.com/blog/density-of-steel.html
https://www.thyssenkrupp-materials.co.uk/density-of-aluminium.html
https://www.thyssenkrupp-materials.co.uk/density-of-aluminium.html

74

A.1. Second Derivative NN 75

A
Time Domain Results of Preliminary

Tests
A.1. Second Derivative NN
A.1.1. Single Parameter Model

0 5 10 15 20 25 30 35 40
Time

50

40

30

20

10

0

Di
sp

la
ce

m
en

t

Predicted Displacement
True Displacement

(a) Result for signal with amplitude: 0.6

0 5 10 15 20 25 30 35 40
Time

5

0

5

10

15

20

25

30

35

Di
sp

la
ce

m
en

t

Predicted Displacement
True Displacement

(b) Result for signal with amplitude: 3.0

0 5 10 15 20 25 30 35 40
Time

0

20

40

60

80

Di
sp

la
ce

m
en

t

Predicted Displacement
True Displacement

(c) Result for signal with amplitude: 9.4

Figure A.1: Time-domain results for second derivative NN model on single system with k3: 1.0

A.1. Second Derivative NN 76

A.1.2. Parameter-Conditioned Model

0 5 10 15 20 25 30 35 40
Time

10

0

10

20

30

40

50

Di
sp

la
ce

m
en

t

Predicted Displacement
True Displacement

(a) Result with k3=0

0 5 10 15 20 25 30 35 40
Time

0

5

10

15

20

25

Di
sp

la
ce

m
en

t

Predicted Displacement
True Displacement

(b) Result with k3=1

0 5 10 15 20 25 30 35 40
Time

0

10

20

30

40

50

60

70

Di
sp

la
ce

m
en

t

Predicted Displacement
True Displacement

(c) Result with k3=2

Figure A.2: Time-domain results for second derivative parameter-conditioned NN model

A.2. Direct RNN 77

A.2. Direct RNN
A.2.1. Single Parameter Model

0 5 10 15 20 25 30 35 40
Time

1.0

0.5

0.0

0.5

1.0

Di
sp

la
ce

m
en

t

Predicted Displacement
True Displacement

(a) Result for signal with amplitude: 0.6

0 5 10 15 20 25 30 35 40
Time

3

2

1

0

1

2

3

Di
sp

la
ce

m
en

t

Predicted Displacement
True Displacement

(b) Result for signal with amplitude: 3.0

0 5 10 15 20 25 30 35 40
Time

6

4

2

0

2

4

6

Di
sp

la
ce

m
en

t

Predicted Displacement
True Displacement

(c) Result for signal with amplitude: 9.4

Figure A.3: Time-domain results for direct RNN model on single system with k3: 1.0

A.2. Direct RNN 78

A.2.2. Parameter-Conditioned Model

0 5 10 15 20 25 30 35 40
Time

10

5

0

5

10

Di
sp

la
ce

m
en

t

Predicted Displacement
True Displacement

(a) Result with k3=0

0 5 10 15 20 25 30 35 40
Time

3

2

1

0

1

2

3

Di
sp

la
ce

m
en

t

Predicted Displacement
True Displacement

(b) Result with k3=1

0 5 10 15 20 25 30 35 40
Time

3

2

1

0

1

2

3

Di
sp

la
ce

m
en

t

Predicted Displacement
True Displacement

(c) Result with k3=2

Figure A.4: Time-domain results for direct parameter-conditioned RNN model

A.3. First Derivative RNN 79

A.3. First Derivative RNN
A.3.1. Single Parameter Model

0 5 10 15 20 25 30 35 40
Time

1.0

0.5

0.0

0.5

1.0

Di
sp

la
ce

m
en

t

Predicted Displacement
True Displacement

(a) Result for signal with amplitude: 0.6

0 5 10 15 20 25 30 35 40
Time

3

2

1

0

1

2

3

Di
sp

la
ce

m
en

t

Predicted Displacement
True Displacement

(b) Result for signal with amplitude: 3.0

0 5 10 15 20 25 30 35 40
Time

6

4

2

0

2

4

6

Di
sp

la
ce

m
en

t

Predicted Displacement
True Displacement

(c) Result for signal with amplitude: 9.4

Figure A.5: Time-domain results for first derivative RNN model on single system with k3: 1.0

A.3. First Derivative RNN 80

A.3.2. Parameter-Conditioned Model

0 5 10 15 20 25 30 35 40
Time

10

5

0

5

10

Di
sp

la
ce

m
en

t

Predicted Displacement
True Displacement

(a) Result with k3=0

0 5 10 15 20 25 30 35 40
Time

3

2

1

0

1

2

3

Di
sp

la
ce

m
en

t

Predicted Displacement
True Displacement

(b) Result with k3=1

0 5 10 15 20 25 30 35 40
Time

3

2

1

0

1

2

3

Di
sp

la
ce

m
en

t

Predicted Displacement
True Displacement

(c) Result with k3=2

Figure A.6: Time-domain results for first derivative parameter-conditioned RNN model

A.4. Second Derivative RNN 81

A.4. Second Derivative RNN
A.4.1. Single Parameter Model

0 5 10 15 20 25 30 35 40
Time

1.0

0.5

0.0

0.5

1.0

Di
sp

la
ce

m
en

t

Predicted Displacement
True Displacement

(a) Result for signal with amplitude: 0.6

0 5 10 15 20 25 30 35 40
Time

3

2

1

0

1

2

3

Di
sp

la
ce

m
en

t

Predicted Displacement
True Displacement

(b) Result for signal with amplitude: 3.0

0 5 10 15 20 25 30 35 40
Time

6

4

2

0

2

4

6

Di
sp

la
ce

m
en

t

Predicted Displacement
True Displacement

(c) Result for signal with amplitude: 9.4

Figure A.7: Time-domain results for second derivative RNN model on single system with k3: 1.0

A.4. Second Derivative RNN 82

A.4.2. Parameter-Conditioned Model

0 5 10 15 20 25 30 35 40
Time

10

5

0

5

10

Di
sp

la
ce

m
en

t

Predicted Displacement
True Displacement

(a) Result with k3=0

0 5 10 15 20 25 30 35 40
Time

3

2

1

0

1

2

3

Di
sp

la
ce

m
en

t

Predicted Displacement
True Displacement

(b) Result with k3=1

0 5 10 15 20 25 30 35 40
Time

3

2

1

0

1

2

3

Di
sp

la
ce

m
en

t

Predicted Displacmenet
True Displacement

(c) Result with k3=2

Figure A.8: Time-domain results for second derivative parameter-conditioned RNN model

A.5. Direct LSTM 83

A.5. Direct LSTM
A.5.1. Single Parameter Model

0 5 10 15 20 25 30 35 40
Time

1.0

0.5

0.0

0.5

1.0

Di
sp

la
ce

m
en

t

Predicted Displacement
True Displacement

(a) Result for signal with amplitude: 0.6

0 5 10 15 20 25 30 35 40
Time

4

3

2

1

0

1

2

3

Di
sp

la
ce

m
en

t

Predicted Displacement
True Displacement

(b) Result for signal with amplitude: 3.0

0 5 10 15 20 25 30 35 40
Time

6

4

2

0

2

4

6

Di
sp

la
ce

m
en

t

Predicted Displacement
True Displacement

(c) Result for signal with amplitude: 9.4

Figure A.9: Time-domain results for direct LSTM model on single system with k3: 1.0

A.5. Direct LSTM 84

A.5.2. Parameter-Conditioned Model

0 5 10 15 20 25 30 35 40
Time

10

5

0

5

10

Di
sp

la
ce

m
en

t

Predicted Displacement
True Displacement

(a) Result with k3=0

0 5 10 15 20 25 30 35 40
Time

4

3

2

1

0

1

2

3

Di
sp

la
ce

m
en

t

Predicted Displacement
True Displacement

(b) Result with k3=1

0 5 10 15 20 25 30 35 40
Time

3

2

1

0

1

2

3

4

Di
sp

la
ce

m
en

t

Predicted Displacement
True Displacement

(c) Result with k3=2

Figure A.10: Time-domain results for direct parameter-conditioned LSTM model

B
Source Code

B.1. Model Container
1 import copy
2 from sklearn.preprocessing import MaxAbsScaler, MinMaxScaler
3 import torch
4 from torch import nn
5

6

7 class ModelContainer(nn.Module):
8 __input_scaler: MinMaxScaler
9 __output_scaler: MinMaxScaler
10 __input_dim: int
11 __output_dim: int
12

13 def __init__(self, input_dim = None, output_dim = None, device="cpu"):
14 super().__init__()
15 self.__input_dim = input_dim
16 self.__output_dim = output_dim
17 scaler_range = (-1,1)
18 self.__input_scaler = MaxAbsScaler()
19 self.__output_scaler = MaxAbsScaler()
20 self.__device = device
21

22 @property
23 def input_dim(self):
24 return self.__input_dim
25

26 @property
27 def output_dim(self):
28 return self.__output_dim
29

30 @property
31 def scale_input(self):
32 return self.__input_scaler.scale_[0]
33

34 @property
35 def scale_output(self):
36 return self.__output_scaler.scale_[0]
37

38 @property
39 def device(self):
40 return self.__device
41

42 @device.setter
43 def device(self, device):
44 self.__device = device
45 self.to(self.device)
46

47 def apply_input_scaler(self, x, fit=False, inverse=False):

85

B.2. Models 86

48 x = apply_scaler(self.__input_scaler, x, fit=fit, inverse=inverse, dtype=torch.
float32)

49 return x
50

51 def apply_output_scaler(self, x, fit=False, inverse=False):
52 x = apply_scaler(self.__output_scaler, x, fit=fit, inverse=inverse, dtype=torch.

float32)
53 return x
54

55

56 def apply_scaler(scaler: MaxAbsScaler, data: torch.Tensor, inverse=False, fit=False,
57 dtype=None) -> torch.tensor:
58 #data = copy.deepcopy(data)
59 datashape = data.shape
60 if len(datashape) > 1:
61 data = data.reshape((datashape[0] * datashape[1], 1))
62 else:
63 data = data.reshape((datashape[0], 1))
64 if inverse:
65 if type(data) is torch.Tensor:
66 data = data.cpu().detach().numpy()
67 data = scaler.inverse_transform(data)
68 else:
69 if fit:
70 data = scaler.fit_transform(data)
71 else:
72 data = scaler.transform(data)
73

74 data = data.reshape(datashape)
75

76 if dtype is not None:
77 data = torch.tensor(data, dtype=dtype)
78 else:
79 data = torch.tensor(data)
80

81 return data

B.2. Models
1 import torch
2 from linear_operator import LinearOperator
3 from torch import nn, Tensor
4 import gpytorch
5 from torch_pca import PCA
6 from torch.distributions import Distribution
7

8 from AI_Models import ModelContainer
9

10 class LSTMModel(ModelContainer):
11 def __init__(self, input_dim, hidden_dim, layer_dim, output_dim):
12 super(LSTMModel, self).__init__(input_dim, output_dim)
13 self.hidden_dim = hidden_dim
14 self.layer_dim = layer_dim
15 self.lstm = nn.LSTM(input_dim, hidden_dim, layer_dim, batch_first=True)
16 self.fc = nn.Linear(hidden_dim, output_dim)
17

18 def forward(self, x, h0=None, c0=None):
19 # If hidden and cell states are not provided, initialize them as zeros
20 if h0 is None or c0 is None:
21 h0 = torch.zeros(self.layer_dim, x.size(0), self.hidden_dim).to(x.device)
22 c0 = torch.zeros(self.layer_dim, x.size(0), self.hidden_dim).to(x.device)
23

24 # Forward pass through LSTM
25 out, (hn, cn) = self.lstm(x, (h0, c0))
26 out = self.fc(out[:, -1, :]) # Selecting the last output
27 return out, hn, cn
28

29 class GPModel(gpytorch.models.ExactGP):
30 def __init__(self, input_size, output_size, likelihood, num_tasks, nu=2.5):
31 super(GPModel, self).__init__(None,None, likelihood)

B.2. Models 87

32 self.mean_module = gpytorch.means.ZeroMean()
33 self.covar_module = gpytorch.kernels.MultitaskKernel(
34 gpytorch.kernels.SpectralMixtureKernel(num_mixtures=1, ard_num_dims=input_size),
35 num_tasks=num_tasks, rank=1)
36

37 self.input_size = input_size
38 self.output_size = output_size
39

40 def forward(self, x):
41 if x is None or not x.shape[0] > 0:
42 raise ValueError("The␣input␣`x`␣for␣the␣GP␣is␣invalid␣or␣empty.")
43

44 mean_x = self.mean_module(x)
45 if mean_x.dim() == 1:
46 mean_x = mean_x.unsqueeze(-1)
47 covar_x = self.covar_module(x)
48 return gpytorch.distributions.MultitaskMultivariateNormal(mean_x, covar_x)
49

50 class GP_LSTMModel(ModelContainer):
51 def __init__(self, input_dim, hidden_dim, layer_dim, gp_input_size, output_dim, device="

cpu"):
52 super(GP_LSTMModel, self).__init__(input_dim, output_dim, device=device)
53 self.hidden_dim = hidden_dim
54 self.layer_dim = layer_dim
55 self.lstm = nn.LSTM(input_dim, hidden_dim, layer_dim, batch_first=True)
56 self.fc = nn.Linear(hidden_dim, gp_input_size)
57

58 self.__gp_likelihood = gpytorch.likelihoods.MultitaskGaussianLikelihood(num_tasks=
output_dim)

59 self.__gp_model = GPModel(gp_input_size, output_dim, self.__gp_likelihood, num_tasks=
output_dim)

60

61 def forward(self, x, h0=None, c0=None):
62 # If hidden and cell states are not provided, initialize them as zeros
63 if h0 is None or c0 is None:
64 h0 = torch.zeros(self.layer_dim, x.size(0), self.hidden_dim).to(x.device)
65 c0 = torch.zeros(self.layer_dim, x.size(0), self.hidden_dim).to(x.device)
66

67 # Forward pass through LSTM
68 out, (hn, cn) = self.lstm(x, (h0, c0))
69 out = self.fc(out[:, -1, :]) # Selecting the last output
70 return out, hn, cn
71

72 def set_train_data(self, **kwargs):
73 self.__gp_model.set_train_data(strict=False, **kwargs)
74

75 @property
76 def gp_model(self):
77 return self.__gp_model
78

79 @property
80 def gp_input_dim(self):
81 return self.gp_model.input_size
82

83 @property
84 def gp_likelihood(self):
85 return self.__gp_likelihood
86

87 def to(self, device):
88 if device == "cpu":
89 self.lstm.to(device)
90 self.fc.to(device)
91 self.gp_model.to(device)
92 if device == "cuda":
93 self.lstm.to("cpu")
94 self.fc.to("cpu")
95 self.gp_model.to(device)
96

97 class GP_PCA_LSTMModel(GP_LSTMModel):
98 def __init__(self, input_dim:int, hidden_dim:int, layer_dim:int, gp_input_size:int,

output_dim:int, device:str="cpu"):

B.3. Model Executor 88

99 super().__init__(input_dim, hidden_dim, layer_dim, gp_input_size, output_dim, device=
device)

100 delattr(self, "fc")
101 self.pca = PCA(n_components=gp_input_size, svd_solver="full")
102

103 def forward(self, x, h0=None, c0=None):
104 # If hidden and cell states are not provided, initialize them as zeros
105 if h0 is None or c0 is None:
106 h0 = torch.zeros(self.layer_dim, x.size(0), self.hidden_dim).to(x.device)
107 c0 = torch.zeros(self.layer_dim, x.size(0), self.hidden_dim).to(x.device)
108

109 # Forward pass through LSTM
110 out, (hn, cn) = self.lstm(x, (h0, c0))
111 out=out[:, -1, :]
112 return out, hn, cn
113

114 def to(self, device):
115 if device == "cpu":
116 self.lstm.to(device)
117 try:
118 self.pca.to(device)
119 except ValueError as error:
120 print(f"pca␣not␣fitted␣to␣device␣due␣to␣error:␣{error}")
121 self.gp_model.to(device)
122 if device == "cuda":
123 self.lstm.to("cpu")
124 try:
125 self.pca.to(device)
126 except ValueError as error:
127 print(f"pca␣not␣fitted␣to␣device␣due␣to␣error:␣{error}")
128 self.gp_model.to(device)

B.3. Model Executor
1 import copy
2 import warnings
3 from sklearn.preprocessing import MaxAbsScaler
4 import matplotlib.pyplot as plt
5 from tqdm import tqdm
6 import torch
7 from torch.optim import Adam
8 from torchdyn.numerics import odeint
9 from torch.nn.functional import mse_loss
10 import gpytorch
11 from AI_Models import LSTMModel, GP_LSTMModel, GP_PCA_LSTMModel, apply_scaler
12

13

14 class EarlyStopping:
15 """Provided By Amalia Macali"""
16 def __init__(self, patience=30, min_delta=1e-4):
17 self.patience = patience
18 self.min_delta = min_delta
19 self.best_loss = float('inf')
20 self.counter = 0
21 self.best_state_dict = None
22

23 def step(self, current_loss:float, model) -> bool:
24 if self.best_loss - current_loss > self.min_delta:
25 self.best_loss = current_loss
26 self.counter = 0
27 self.best_state_dict = {k: v.clone() for k, v in model.state_dict().items()}
28 else:
29 self.counter += 1
30

31 return self.counter >= self.patience
32

33 def restore_best_weights(self, model):
34 if self.best_state_dict is not None:
35 model.load_state_dict(self.best_state_dict)
36

B.3. Model Executor 89

37 class NNExecutorTemplate():
38 def __init__(self, solver, model, device:str="cpu"):
39 self.__solver = solver
40 self.__model = model
41 self.__device = device
42 self.model.device = self.device
43 @property
44 def solver(self):
45 return self.__solver
46

47 @property
48 def model(self):
49 return self.__model
50

51 @property
52 def device(self):
53 return self.__device
54

55 @device.setter
56 def device(self, device):
57 assert device in ["cpu", "cuda"]
58 self.__device = device
59 self.model.device = self.__device
60

61 def train_model(self, *args, **kwargs):
62 return NotImplemented
63

64 def run_model(self, *args, **kwargs):
65 return NotImplemented
66

67 def solve(self, *args, **kwargs):
68 raise NotImplemented
69

70 def save(self, path):
71 torch.save(self, path)
72

73 class NNExecutorStateVarTemplate(NNExecutorTemplate):
74 def __init__(self, solver, model, state_var_names: list[str], device:str="cpu"):
75 super().__init__(solver, model, device=device)
76 self.__state_variable_names = state_var_names
77

78 @property
79 def state_variable_names(self):
80 return self.__state_variable_names
81

82

83

84 @staticmethod
85 def load(path):
86 model = torch.load(path, weights_only=False)
87 model.eval()
88 return model
89

90

91

92 class LSTM_StateVar(NNExecutorStateVarTemplate):
93 __model: LSTMModel
94 def __init__(self, solver, model, state_var_names: list[str], device:str="cpu",):
95 super().__init__(solver, model, state_var_names, device=device)
96

97

98 def train_model(self,
99 data_train,
100 input_train,
101 xpoints_train,
102 state_variables_train ,
103 epochs,
104 lr,
105 lr_scale,
106 lr_scale_step,
107 data_val=None,

B.3. Model Executor 90

108 input_val=None,
109 xpoints_val=None,
110 state_variables_val=None,
111 patience=None,
112 min_delta=None):
113

114 if data_val is not None and input_val is not None and xpoints_val is not None and
state_variables_val is not None:

115 val = True
116 else:
117 val = False
118

119 if patience is None and min_delta is None:
120 # neither patience nor min delta defined
121 early_stopper = None
122 elif patience is None:
123 # only min_delta defined
124 early_stopper = EarlyStopping(min_delta=min_delta)
125 elif min_delta is None:
126 # only patience defined
127 early_stopper = EarlyStopping(patience=patience)
128 else:
129 #both min_delta and patience defined
130 early_stopper = EarlyStopping(patience=patience, min_delta=min_delta)
131

132 model = self.model
133 model.train()
134

135 opt = Adam(model.parameters(), lr=lr)
136 scheduler = torch.optim.lr_scheduler.StepLR(opt, step_size=lr_scale_step, gamma=

lr_scale)
137

138 losses = list()
139 losses_val = list()
140

141 input_train = model.apply_input_scaler(input_train, fit=True).to(self.device)
142 data_train = model.apply_output_scaler(data_train, fit=True).to(self.device)
143

144 xpoints_train = torch.tensor(xpoints_train, dtype=torch.float32).to(self.device)
145 state_variables_train = torch.tensor(state_variables_train , dtype=torch.float32).to(

self.device)
146

147 if val:
148 input_val = model.apply_input_scaler(input_val).to(self.device)
149 data_val = model.apply_output_scaler(data_val).to(self.device)
150

151 xpoints_val = torch.tensor(xpoints_val, dtype=torch.float32).to(self.device)
152 state_variables_val = torch.tensor(state_variables_val, dtype=torch.float32).to(

self.device)
153

154 if not val and early_stopper is not None:
155 warnings.warn("Early␣stopper␣is␣defined␣but␣validation␣data␣not␣provided.␣Early␣

stopping␣will␣be␣ignored.")
156

157 model.train()
158 pbar = tqdm(range(epochs))
159

160 i_epoch = 0
161 for _ in pbar:
162 opt.zero_grad()
163 idx_train = 0
164

165 x_pred_train = self.solve(input_train, xpoints_train, state_variables_train)
166 loss = mse_loss(x_pred_train[:,:,0], data_train)
167 loss.backward()
168 losses.append(loss.item())
169

170 if val:
171 model.eval()
172 x_pred_val = self.solve(input_val, xpoints_val, state_variables_val)
173 loss_val = mse_loss(x_pred_val[:,:,0], data_val)

B.3. Model Executor 91

174 losses_val.append(loss_val.item())
175

176 if early_stopper is not None:
177 if early_stopper.step(loss.item(), self.model):
178 print(f"Early␣stopping␣at␣epoch␣{i_epoch}␣with␣loss␣{loss_val.item()}

")
179 break
180

181

182 model.train()
183

184 opt.step()
185 scheduler.step()
186 if not val:
187 pbar.set_postfix(loss = loss.item(),
188 lr = round(scheduler.get_last_lr()[0],6))
189 else:
190 pbar.set_postfix(loss = loss.item(),
191 val_loss = loss_val.item(),
192 lr = round(scheduler.get_last_lr()[0],6))
193

194 i_epoch += 1
195

196 if early_stopper is not None:
197 early_stopper.restore_best_weights(self.model)
198

199 model.eval()
200 x_pred_train = self.solve(input_train, xpoints_train, state_variables_train)
201 features = x_pred_train.reshape((x_pred_train.shape[0]*x_pred_train.shape[1],

x_pred_train.shape[2]))
202

203

204 if val:
205 return losses, losses_val
206 else:
207 return losses, losses_val
208

209 def run_model(self, input_data, xpoints, state_variables):
210 model = self.model
211 model.eval()
212

213 input_data = model.apply_input_scaler(input_data).to(self.device)
214

215 xpoints = torch.tensor(xpoints, dtype=torch.float32).to(self.device)
216 state_variables = torch.tensor(state_variables, dtype=torch.float32).to(self.device)
217

218 x_pred = self.solve(input_data, xpoints, state_variables)
219

220 return model.apply_output_scaler(x_pred, inverse=True)
221

222 def solve(self, data, xpoints, state_variables):
223 """runs time domain, requires scaled inputs, returns scaled outputs"""
224 if len(data.shape) == 2:
225 data = data.reshape(data.shape[0], data.shape[1], 1)
226 assert data.shape[:2] == xpoints.shape[:2], "data␣and␣xpoints␣must␣have␣the␣same␣

shape"
227 assert state_variables.shape[0] == data.shape[0], "state␣variables␣must␣be␣defined␣

for␣each␣time-domain-sample"
228 assert state_variables.shape[1] == len(self.state_variable_names), "every␣state␣

variable␣must␣be␣defined"
229

230 assert data.dtype == torch.float32, "data␣type␣must␣be␣torch␣float32"
231 assert xpoints.dtype == torch.float32, "xpoints␣type␣must␣be␣torch␣float32"
232 assert state_variables.dtype == torch.float32, "state_variables␣type␣must␣be␣torch␣

float32"
233

234 assert data.shape[2] + state_variables.shape[1] == self.model.input_dim, f"dimension␣
of␣inputs␣must␣equal␣input␣dimension.␣data␣dimension␣is␣{data.shape[3]}␣state␣
dimension␣is␣{state_variables.shape[1]}␣input␣dimension␣is␣{self.model.input_dim}
"

235

B.3. Model Executor 92

236 _, x_pred = odeint(self.f, torch.zeros((data.shape[0], self.model.output_dim), dtype=
torch.float32), xpoints[0,:], solver=self.solver, args={"h0": None, "c0": None, "
data":data, "xpoints":xpoints, "state":state_variables})

237 x_pred = x_pred.permute(1, 0, 2)
238 return x_pred
239

240 def f(self, t, x, h0, c0, input_data, xpoints, state_variables):
241 # set tpoints (xpoints must be identical for all inputs)
242 tpoints = xpoints[0,:]
243 global inpoints
244 dt = tpoints[1]-tpoints[0]
245 # find the index of the input
246 default_index = len(tpoints) - 1
247 idxt = default_index # set the index of the tpoint in case t is outside the range of

tpoints
248 for i, tpoint in enumerate(tpoints):
249 if tpoint >= t: # check if te tpoint is higher than t
250 idxt = i # save the index of tpoint
251 break
252

253 # get the value of the input acceleration
254 if idxt == default_index: # in case the index is the default index
255 inpoints = input_data[:, idxt]
256 else: # linear interpolate between two indexes
257 deltat = t - tpoints[idxt]
258 inpoints = input_data[:, idxt] + (input_data[:, idxt + 1] - input_data[:, idxt])

* deltat /dt
259

260 #reshape the input data
261 inpoints_reshaped = inpoints.reshape(inpoints.shape[0], 1, inpoints.shape[1])
262 #concatenate inputs with state variables to get the network input
263 inputs = torch.cat((inpoints_reshaped, state_variables.reshape(state_variables.shape

[0], 1, state_variables.shape[1])), 2)
264

265 # run the model
266 x_new, h0, c0 = self.model.forward(inputs, h0, c0)
267

268 return x_new, h0, c0
269

270

271 class GP_LSTM_StateVar(NNExecutorStateVarTemplate):
272 __model: GP_LSTMModel
273 def __init__(self, solver, model, state_var_names: list[str], device:str="cpu"):
274 super().__init__(solver, model, state_var_names, device=device)
275 self.state_scalers = list()
276

277 def solve(self, data, xpoints, state_variables, idx_start_gp=0, gp_data_stepsize=1,
output_dim=None):

278 """runs time domain, requires scaled inputs, returns scaled outputs"""
279 if len(data.shape) == 2:
280 data = data.reshape(data.shape[0], data.shape[1], 1)
281 assert data.shape[:2] == xpoints.shape[:2], "data␣and␣xpoints␣must␣have␣the␣same␣

shape"
282 assert state_variables.shape[0] == data.shape[0], "state␣variables␣must␣be␣defined␣

for␣each␣time-domain-sample"
283 assert state_variables.shape[1] == len(self.state_variable_names), "every␣state␣

variable␣must␣be␣defined"
284

285 assert data.dtype == torch.float32, "data␣type␣must␣be␣torch␣float32"
286 assert xpoints.dtype == torch.float32, "xpoints␣type␣must␣be␣torch␣float32"
287 assert state_variables.dtype == torch.float32, "state_variables␣type␣must␣be␣torch␣

float32"
288

289 assert data.shape[2] + state_variables.shape[
290 1] == self.model.input_dim, f"dimension␣of␣inputs␣must␣equal␣input␣dimension.␣

data␣dimension␣is␣{data.shape[3]}␣state␣dimension␣is␣{state_variables.shape
[1]}␣input␣dimension␣is␣{self.model.input_dim}"

291

292 if output_dim is None:
293 output_dim = self.model.gp_input_dim
294

B.3. Model Executor 93

295 _, x_pred = odeint(self.f, torch.zeros((data.shape[0], output_dim), dtype=torch.
float32),

296 xpoints[0, :], solver=self.solver,
297 args={"h0": None, "c0": None, "data": data, "xpoints": xpoints, "

state": state_variables})
298 x_pred = x_pred.permute(1,0,2)
299

300 features = x_pred.reshape((x_pred.shape[0] * x_pred.shape[1], x_pred.shape[2]))
301

302 if self.device == "cuda":
303 features = features[idx_start_gp::gp_data_stepsize].to(device="cuda")
304 else:
305 features = features[idx_start_gp::gp_data_stepsize].to(device="cpu")
306

307 return features
308

309 def train_model(self,
310 data_train,
311 input_train,
312 xpoints_train,
313 state_variables_train ,
314 epochs,
315 lr,
316 lr_scale,
317 lr_scale_step,
318 gp_data_stepsize=1,
319 data_val=None,
320 input_val=None,
321 xpoints_val=None,
322 state_variables_val=None,
323 patience=None,
324 min_delta=None):
325

326 if data_val is not None and input_val is not None and xpoints_val is not None and
state_variables_val is not None:

327 val = True
328 else:
329 val = False
330

331 if patience is None and min_delta is None:
332 # neither patience nor min delta defined
333 early_stopper = None
334 elif patience is None:
335 # only min_delta defined
336 early_stopper = EarlyStopping(min_delta=min_delta)
337 elif min_delta is None:
338 # only patience defined
339 early_stopper = EarlyStopping(patience=patience)
340 else:
341 #both min_delta and patience defined
342 early_stopper = EarlyStopping(patience=patience, min_delta=min_delta)
343

344 state_variables_train = copy.deepcopy(state_variables_train)
345

346 if val:
347 assert state_variables_train.shape[1] == state_variables_val.shape[1], f"training

␣and␣validation␣data␣must␣have␣the␣same␣number␣of␣state␣variables␣currently␣{
state_variables_train.shape[1]}␣and␣{state_variables_val.shape[1]}"

348 state_variables_val = copy.deepcopy(state_variables_val)
349 self.model.train()
350

351 opt = Adam(self.model.parameters(), lr=lr)
352 scheduler = torch.optim.lr_scheduler.StepLR(opt, step_size=lr_scale_step, gamma=

lr_scale)
353

354 losses = list()
355 losses_val = list()
356 input_train = self.model.apply_input_scaler(input_train.cpu(), fit=True).to("cpu")
357 data_train = self.model.apply_output_scaler(data_train.cpu(), fit=True).to(self.

device)
358

B.3. Model Executor 94

359 data_train = data_train.reshape((data_train.shape[0]*data_train.shape[1], 1))
360

361 xpoints_train = torch.tensor(xpoints_train, dtype=torch.float32).to("cpu")
362

363 for i in range(state_variables_train.shape[1]):
364 self.state_scalers.append(MaxAbsScaler())
365 scaler = self.state_scalers[i]
366 state_variables_train[:,i] = apply_scaler(scaler, state_variables_train[:,i], fit

=True, dtype=torch.float32)
367

368 state_variables_train = torch.tensor(state_variables_train , dtype=torch.float32).to("
cpu")

369

370 if val:
371 input_val = self.model.apply_input_scaler(input_val).to("cpu")
372 data_val = self.model.apply_output_scaler(data_val).to(self.device)
373

374 data_val = data_val.reshape((data_val.shape[0]*data_val.shape[1], 1))
375

376 xpoints_val = torch.tensor(xpoints_val, dtype=torch.float32).to("cpu")
377

378 for i in range(state_variables_val.shape[1]):
379 scaler = self.state_scalers[i]
380 state_variables_val[:,i] = apply_scaler(scaler, state_variables_val[:,i],

dtype=torch.float32)
381

382 state_variables_val = torch.tensor(state_variables_val, dtype=torch.float32).to("
cpu")

383

384 mll = gpytorch.mlls.ExactMarginalLogLikelihood(self.model.gp_model.likelihood, self.
model.gp_model)

385

386 self.model.train()
387 pbar = tqdm(range(epochs))
388

389 if not val and early_stopper is not None:
390 warnings.warn("Early␣stopper␣is␣defined␣but␣validation␣data␣not␣provided.␣Early␣

stopping␣will␣be␣ignored.")
391

392 i_epoch = 0
393 for _ in pbar:
394 opt.zero_grad()
395 idx_train = 0
396

397 idx_start_gp = i_epoch % gp_data_stepsize
398

399 features = self.solve(input_train, xpoints_train, state_variables_train ,
idx_start_gp=idx_start_gp, gp_data_stepsize=gp_data_stepsize)

400

401 self.model.set_train_data(inputs = features, targets = data_train[idx_start_gp::
gp_data_stepsize])

402

403 output = self.model.gp_model(features)
404

405 loss = -mll(output, data_train[idx_start_gp::gp_data_stepsize])
406 loss.backward()
407 losses.append(loss.item())
408

409 if val:
410 self.model.eval()
411 features = self.solve(input_val, xpoints_val, state_variables_val,

idx_start_gp=idx_start_gp, gp_data_stepsize=gp_data_stepsize)
412

413 output = self.model.gp_model(features)
414

415 loss_val = -mll(output, data_val[idx_start_gp::gp_data_stepsize])
416 losses_val.append(loss_val.item())
417

418 if early_stopper is not None:
419 if early_stopper.step(loss_val.item(), self.model):

B.3. Model Executor 95

420 print(f"Early␣stopping␣at␣epoch␣{i_epoch}␣with␣loss␣{loss_val.item()}
")

421 break
422

423 self.model.train()
424

425

426 opt.step()
427 scheduler.step()
428 if not val:
429 pbar.set_postfix(loss = loss.item(),
430 lr = round(scheduler.get_last_lr()[0],6))
431 else:
432 pbar.set_postfix(loss = loss.item(),
433 val_loss = loss_val.item(),
434 lr = round(scheduler.get_last_lr()[0],6))
435 i_epoch += 1
436 if early_stopper is not None:
437 early_stopper.restore_best_weights(self.model)
438

439 self.model.eval()
440 features = self.solve(input_train, xpoints_train, state_variables_train ,

gp_data_stepsize=gp_data_stepsize)
441

442 self.model.set_train_data(inputs=features, targets=data_train[::gp_data_stepsize])
443

444 return losses, losses_val
445

446 def run_model(self, input_data, xpoints, state_variables):
447 state_variables = copy.deepcopy(state_variables)
448 model = self.model
449 model.eval()
450 with torch.no_grad():
451 input_data = model.apply_input_scaler(input_data.cpu()).to("cpu")
452

453 xpoints = torch.tensor(xpoints, dtype=torch.float32).to("cpu")
454

455 for i in range(state_variables.shape[1]):
456 scaler = self.state_scalers[i]
457 state_variables[:,i] = apply_scaler(scaler, state_variables[:,i], dtype=torch

.float32)
458

459 state_variables = torch.tensor(state_variables, dtype=torch.float32).to("cpu")
460

461 features = self.solve(input_data, xpoints, state_variables)
462

463 out_gp = model.gp_model(features)
464 out_gp = model.gp_likelihood(out_gp)
465

466 out_shape = (input_data.shape[0], input_data.shape[1], model.output_dim)
467

468 pred = out_gp.mean
469 pred = model.apply_output_scaler(pred.cpu(), inverse=True)
470

471 stddev = out_gp.stddev.cpu() * model.scale_output
472

473 lower_bound = pred - stddev*2
474 upper_bound = pred + stddev*2
475

476 pred = pred.reshape(out_shape)
477 lower_bound = lower_bound.reshape(out_shape)
478 upper_bound = upper_bound.reshape(out_shape)
479

480 pred = pred.cpu().detach().numpy()
481 lower_bound = lower_bound.cpu().detach().numpy()
482 upper_bound = upper_bound.cpu().detach().numpy()
483

484 return pred, lower_bound, upper_bound
485

486 def f(self, t, x, h0, c0, input_data, xpoints, state_variables):
487 # set tpoints (xpoints must be identical for all inputs)

B.3. Model Executor 96

488 tpoints = xpoints[0,:]
489 global inpoints
490 dt = tpoints[1]-tpoints[0]
491 # find the index of the input
492 default_index = len(tpoints) - 1
493 idxt = default_index # set the index of the tpoint in case t is outside the range of

tpoints
494 for i, tpoint in enumerate(tpoints):
495 if tpoint >= t: # check if te tpoint is higher than t
496 idxt = i # save the index of tpoint
497 break
498

499 # get the value of the input acceleration
500 if idxt == default_index: # in case the index is the default index
501 inpoints = input_data[:, idxt]
502 else: # linear interpolate between two indexes
503 deltat = t - tpoints[idxt]
504 inpoints = input_data[:, idxt] + (input_data[:, idxt + 1] - input_data[:, idxt])

* deltat /dt
505

506 #reshape the input data
507 inpoints_reshaped = inpoints.reshape(inpoints.shape[0], 1, inpoints.shape[1])
508 #concatenate inputs with state variables to get the network input
509 inputs = torch.cat((inpoints_reshaped, state_variables.reshape(state_variables.shape

[0], 1, state_variables.shape[1])), 2)
510

511 # run the model
512 x_new, h0, c0 = self.model.forward(inputs, h0, c0)
513

514 return x_new, h0, c0
515

516 class GP_PCA_LSTM_StateVar(GP_LSTM_StateVar):
517 __model: GP_PCA_LSTMModel
518 def __init__(self, solver, model, state_var_names: list[str], device:str="cpu"):
519 super().__init__(solver, model, state_var_names, device=device)
520

521 def solve(self, data, xpoints, state_variables, idx_start_gp=0, gp_data_stepsize=1):
522 features = super().solve(data, xpoints, state_variables, idx_start_gp=idx_start_gp,

gp_data_stepsize=gp_data_stepsize, output_dim=self.model.hidden_dim)
523

524 if self.model.training:
525 features = self.model.pca.fit_transform(features, determinist=False)
526 else:
527 features = self.model.pca.transform(features)
528

529 return features
530

531

532 def load(path):
533 executor = torch.load(path, weights_only=False)
534 executor.model.eval()
535 return executor

C
PSD Results

C.1. Fold 1
C.1.1. 1 Foam sheet

0 200 400 600 800 1000 1200
Frequency (Hz)

10 8

10 6

10 4

PS
D

Measured PSD
LSTM
LSTM-FC-GP
LSTM-PCA-GP

Figure C.1: Comparison between the PSD of the real measurement and the results of the LSTM, LSTM-FC-GP, and
LSTM-PCA-GP models for validation result 1 of fold 1

0 200 400 600 800 1000 1200
Frequency (Hz)

10 7

10 6

10 5

10 4

PS
D

Measured PSD
LSTM
LSTM-FC-GP
LSTM-PCA-GP

Figure C.2: Comparison between the PSD of the real measurement and the results of the LSTM, LSTM-FC-GP, and
LSTM-PCA-GP models for validation result 2 of fold 1C.1.2. 2 Foam sheets

0 200 400 600 800 1000 1200
Frequency (Hz)

10 9

10 7

10 5

PS
D

Measured PSD
LSTM
LSTM-FC-GP
LSTM-PCA-GP

Figure C.3: Comparison between the PSD of the real measurement and the results of the LSTM, LSTM-FC-GP, and
LSTM-PCA-GP models for validation result 3 of fold 1

0 200 400 600 800 1000 1200
Frequency (Hz)

10 8

10 6

10 4

PS
D

Measured PSD
LSTM
LSTM-FC-GP
LSTM-PCA-GP

Figure C.4: Comparison between the PSD of the real measurement and the results of the LSTM, LSTM-FC-GP, and
LSTM-PCA-GP models for validation result 4 of fold 1

97

C.1. Fold 1 98

C.1.3. 3 Foam sheets

0 200 400 600 800 1000 1200
Frequency (Hz)

10 9

10 8

10 7

10 6

10 5

PS
D

Measured PSD
LSTM
LSTM-FC-GP
LSTM-PCA-GP

Figure C.5: Comparison between the PSD of the real measurement and the results of the LSTM, LSTM-FC-GP, and
LSTM-PCA-GP models for validation result 5 of fold 1

0 200 400 600 800 1000 1200
Frequency (Hz)

10 7

10 5

10 3

PS
D

Measured PSD
LSTM
LSTM-FC-GP
LSTM-PCA-GP

Figure C.6: Comparison between the PSD of the real measurement and the results of the LSTM, LSTM-FC-GP, and
LSTM-PCA-GP models for validation result 6 of fold 1

C.2. Fold 2 99

C.2. Fold 2
C.2.1. 1 Foam sheet

0 200 400 600 800 1000 1200
Frequency (Hz)

10 8

10 6

10 4

PS
D

Measured PSD
LSTM
LSTM-FC-GP
LSTM-PCA-GP

Figure C.7: Comparison between the PSD of the real measurement and the results of the LSTM, LSTM-FC-GP, and
LSTM-PCA-GP models for validation result 1 of fold 2

0 200 400 600 800 1000 1200
Frequency (Hz)

10 8

10 6

10 4

PS
D

Measured PSD
LSTM
LSTM-FC-GP
LSTM-PCA-GP

Figure C.8: Comparison between the PSD of the real measurement and the results of the LSTM, LSTM-FC-GP, and
LSTM-PCA-GP models for validation result 2 of fold 2C.2.2. 2 Foam sheets

0 200 400 600 800 1000 1200
Frequency (Hz)

10 9

10 7

10 5

PS
D

Measured PSD
LSTM
LSTM-FC-GP
LSTM-PCA-GP

Figure C.9: Comparison between the PSD of the real measurement and the results of the LSTM, LSTM-FC-GP, and
LSTM-PCA-GP models for validation result 3 of fold 2

0 200 400 600 800 1000 1200
Frequency (Hz)

10 8

10 7

10 6

10 5

10 4

PS
D

Measured PSD
LSTM
LSTM-FC-GP
LSTM-PCA-GP

Figure C.10: Comparison between the PSD of the real measurement and the results of the LSTM, LSTM-FC-GP, and
LSTM-PCA-GP models for validation result 4 of fold 2C.2.3. 3 Foam sheets

0 200 400 600 800 1000 1200
Frequency (Hz)

10 8

10 6

10 4

PS
D

Measured PSD
LSTM
LSTM-FC-GP
LSTM-PCA-GP

Figure C.11: Comparison between the PSD of the real measurement and the results of the LSTM, LSTM-FC-GP, and
LSTM-PCA-GP models for validation result 5 of fold 2

0 200 400 600 800 1000 1200
Frequency (Hz)

10 7

10 5

10 3

PS
D

Measured PSD
LSTM
LSTM-FC-GP
LSTM-PCA-GP

Figure C.12: Comparison between the PSD of the real measurement and the results of the LSTM, LSTM-FC-GP, and
LSTM-PCA-GP models for validation result 6 of fold 2

C.3. Fold 3 100

C.3. Fold 3
C.3.1. 1 Foam sheet

0 200 400 600 800 1000 1200
Frequency (Hz)

10 8

10 6

10 4

PS
D

Measured PSD
LSTM
LSTM-FC-GP
LSTM-PCA-GP

Figure C.13: Comparison between the PSD of the real measurement and the results of the LSTM, LSTM-FC-GP, and
LSTM-PCA-GP models for validation result 1 of fold 3

0 200 400 600 800 1000 1200
Frequency (Hz)

10 8
10 7

10 6
10 5
10 4

PS
D

Measured PSD
LSTM
LSTM-FC-GP
LSTM-PCA-GP

Figure C.14: Comparison between the PSD of the real measurement and the results of the LSTM, LSTM-FC-GP, and
LSTM-PCA-GP models for validation result 2 of fold 3C.3.2. 2 Foam sheets

0 200 400 600 800 1000 1200
Frequency (Hz)

10 10

10 8

10 6

PS
D

Measured PSD
LSTM
LSTM-FC-GP
LSTM-PCA-GP

Figure C.15: Comparison between the PSD of the real measurement and the results of the LSTM, LSTM-FC-GP, and
LSTM-PCA-GP models for validation result 3 of fold 3

0 200 400 600 800 1000 1200
Frequency (Hz)

10 10

10 8

10 6

PS
D

Measured PSD
LSTM
LSTM-FC-GP
LSTM-PCA-GP

Figure C.16: Comparison between the PSD of the real measurement and the results of the LSTM, LSTM-FC-GP, and
LSTM-PCA-GP models for validation result 4 of fold 3C.3.3. 3 Foam sheets

0 200 400 600 800 1000 1200
Frequency (Hz)

10 10

10 8

10 6

10 4

PS
D

Measured PSD
LSTM
LSTM-FC-GP
LSTM-PCA-GP

Figure C.17: Comparison between the PSD of the real measurement and the results of the LSTM, LSTM-FC-GP, and
LSTM-PCA-GP models for validation result 5 of fold 3

0 200 400 600 800 1000 1200
Frequency (Hz)

10 9

10 7

10 5

PS
D

Measured PSD
LSTM
LSTM-FC-GP
LSTM-PCA-GP

Figure C.18: Comparison between the PSD of the real measurement and the results of the LSTM, LSTM-FC-GP, and
LSTM-PCA-GP models for validation result 6 of fold 3

C.4. Fold 4 101

C.4. Fold 4
C.4.1. 1 Foam sheet

0 200 400 600 800 1000 1200
Frequency (Hz)

10 11

10 9

10 7

10 5

PS
D

Measured PSD
LSTM
LSTM-FC-GP
LSTM-PCA-GP

Figure C.19: Comparison between the PSD of the real measurement and the results of the LSTM, LSTM-FC-GP, and
LSTM-PCA-GP models for validation result 1 of fold 4

0 200 400 600 800 1000 1200
Frequency (Hz)

10 11

10 9

10 7

10 5

PS
D

Measured PSD
LSTM
LSTM-FC-GP
LSTM-PCA-GP

Figure C.20: Comparison between the PSD of the real measurement and the results of the LSTM, LSTM-FC-GP, and
LSTM-PCA-GP models for validation result 2 of fold 4C.4.2. 2 Foam sheets

0 200 400 600 800 1000 1200
Frequency (Hz)

10 8

10 7

10 6

10 5

10 4

PS
D

Measured PSD
LSTM
LSTM-FC-GP
LSTM-PCA-GP

Figure C.21: Comparison between the PSD of the real measurement and the results of the LSTM, LSTM-FC-GP, and
LSTM-PCA-GP models for validation result 3 of fold 4

0 200 400 600 800 1000 1200
Frequency (Hz)

10 8

10 7

10 6

10 5

10 4

PS
D

Measured PSD
LSTM
LSTM-FC-GP
LSTM-PCA-GP

Figure C.22: Comparison between the PSD of the real measurement and the results of the LSTM, LSTM-FC-GP, and
LSTM-PCA-GP models for validation result 4 of fold 4C.4.3. 3 Foam sheets

0 200 400 600 800 1000 1200
Frequency (Hz)

10 9

10 7

10 5

PS
D

Measured PSD
LSTM
LSTM-FC-GP
LSTM-PCA-GP

Figure C.23: Comparison between the PSD of the real measurement and the results of the LSTM, LSTM-FC-GP, and
LSTM-PCA-GP models for validation result 5 of fold 4

0 200 400 600 800 1000 1200
Frequency (Hz)

10 9

10 7

10 5

PS
D

Measured PSD
LSTM
LSTM-FC-GP
LSTM-PCA-GP

Figure C.24: Comparison between the PSD of the real measurement and the results of the LSTM, LSTM-FC-GP, and
LSTM-PCA-GP models for validation result 6 of fold 4

C.5. Fold 5 102

C.5. Fold 5
C.5.1. 1 Foam sheet

0 200 400 600 800 1000 1200
Frequency (Hz)

10 9

10 7

10 5

PS
D

Measured PSD
LSTM
LSTM-FC-GP
LSTM-PCA-GP

Figure C.25: Comparison between the PSD of the real measurement and the results of the LSTM, LSTM-FC-GP, and
LSTM-PCA-GP models for validation result 1 of fold 5

0 200 400 600 800 1000 1200
Frequency (Hz)

10 9

10 7

10 5

PS
D

Measured PSD
LSTM
LSTM-FC-GP
LSTM-PCA-GP

Figure C.26: Comparison between the PSD of the real measurement and the results of the LSTM, LSTM-FC-GP, and
LSTM-PCA-GP models for validation result 2 of fold 5C.5.2. 2 Foam sheets

0 200 400 600 800 1000 1200
Frequency (Hz)

10 9

10 8

10 7

10 6

10 5

PS
D

Measured PSD
LSTM
LSTM-FC-GP
LSTM-PCA-GP

Figure C.27: Comparison between the PSD of the real measurement and the results of the LSTM, LSTM-FC-GP, and
LSTM-PCA-GP models for validation result 3 of fold 5

0 200 400 600 800 1000 1200
Frequency (Hz)

10 8

10 6

10 4

PS
D

Measured PSD
LSTM
LSTM-FC-GP
LSTM-PCA-GP

Figure C.28: Comparison between the PSD of the real measurement and the results of the LSTM, LSTM-FC-GP, and
LSTM-PCA-GP models for validation result 4 of fold 5C.5.3. 3 Foam sheets

0 200 400 600 800 1000 1200
Frequency (Hz)

10 8

10 6

10 4

PS
D

Measured PSD
LSTM
LSTM-FC-GP
LSTM-PCA-GP

Figure C.29: Comparison between the PSD of the real measurement and the results of the LSTM, LSTM-FC-GP, and
LSTM-PCA-GP models for validation result 5 of fold 5

0 200 400 600 800 1000 1200
Frequency (Hz)

10 8

10 6

10 4

PS
D

Measured PSD
LSTM
LSTM-FC-GP
LSTM-PCA-GP

Figure C.30: Comparison between the PSD of the real measurement and the results of the LSTM, LSTM-FC-GP, and
LSTM-PCA-GP models for validation result 6 of fold 5

	Preface
	Glossary
	Acronyms
	Symbols
	Introduction
	Literature Review
	What Variables Characterise the Behaviour of Foam
	Foam Density
	Temperature
	Strain Rate
	Pre-Load and Pre-Strain
	Fatigue Behaviour of Foam

	How can a neural network based dynamic model be made
	Simulation Methods
	Types of AI Model
	Model Performance Metrics

	Preliminary Evaluation and Model Selection
	Synthetic Data
	The Used System
	The Synthesised Dataset

	Evaluated models
	NN Models
	RNN Models
	Models That Were Considered but Not Evaluated

	Results From Preliminary Evaluation
	Second Derivative NN
	Direct RNN
	First Derivative RNN
	Second Derivative RNN
	Direct LSTM
	Comparison

	Methodology
	Obtaining The Dataset
	Test Set-Up
	Tests Performed
	Issues During Testing

	Model Structure
	Foam Variables
	Other Variables
	Model Structure With Respect to the Variables
	Model Variants

	Training the Models
	Model Implementation
	Training Setup

	Different Models Trained
	Default Model
	Models Varying Number of Skipped Time Steps
	Models Trained Without Noisy Data
	Models Trained With Varying GP Input Dimension
	Models Trained With Early Stopping
	Models Trained for Half the Duration of the Training Data

	Results
	Default Model Accuracy
	Varying the Steps Skipped by GP Layer
	The Effect of Noisy Data
	Effect of GP Input Dimension
	Models Without Over-Fitting
	Results Without Over-Fitting
	Time-Domain Results
	The Effect of Noisy Data
	PSD Accuracy

	Model Extrapolation
	Percent Change in NRMSE
	Time Domain Results

	Model Performance

	Discussion
	Default Model Accuracy
	Summarised Results
	Full Results
	Difference Between LSTM-FC-GP and LSTM-PCA-GP models

	Varying the Steps Skipped by GP Layer
	The Effect of Noisy Data
	Effect of GP Input Dimension
	Model Performance Without Over-Fitting
	Model Accuracy
	Time-Domain Results
	The Effect of Noisy Data
	PSD Accuracy

	Model Extrapolation
	Percent Change in NRMSE
	Time Domain Results

	Model Performance
	Trade-Off Between Models

	Conclusion
	Future Works
	Test Articles
	Test Article Mass
	Test Article Foam
	Varying the Foam and Block Thickness

	Test Setup
	Test Sequence
	Training the Model

	References
	Time Domain Results of Preliminary Tests
	Second Derivative NN
	Single Parameter Model
	Parameter-Conditioned Model

	Direct RNN
	Single Parameter Model
	Parameter-Conditioned Model

	First Derivative RNN
	Single Parameter Model
	Parameter-Conditioned Model

	Second Derivative RNN
	Single Parameter Model
	Parameter-Conditioned Model

	Direct LSTM
	Single Parameter Model
	Parameter-Conditioned Model

	Source Code
	Model Container
	Models
	Model Executor

	PSD Results
	Fold 1
	1 Foam sheet
	2 Foam sheets
	3 Foam sheets

	Fold 2
	1 Foam sheet
	2 Foam sheets
	3 Foam sheets

	Fold 3
	1 Foam sheet
	2 Foam sheets
	3 Foam sheets

	Fold 4
	1 Foam sheet
	2 Foam sheets
	3 Foam sheets

	Fold 5
	1 Foam sheet
	2 Foam sheets
	3 Foam sheets

