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Samenvatting

Ontwerp optimalisatie is sterk afhankelijk van tijdrovende simulaties, vooral bij het
gebruik van gradintvrije methodes. Deze methoden vereisen een groot aantal simu-
laties om een merkbare verbetering te krijgen op bestaande ontwerpen, die tegenwo-
ordig op basis van de geaccumuleerde kennis over de jaren heen vaak reeds optimaal
zijn.

High Performance Computing (HPC) is essentieel om de uitvoeringstijd van sim-
ulaties te verminderen. Terwijl parallelle programmering met behulp van de CPU
gevestigd is sinds meer dan twee decennia, is het gebruik van andere technieken,
zoals de Graphics Processing Unit (GPU), relatief recent in het domein van ontwer-
poptimalisatie. De GPU heeft eigenlijk een enorme rekenkracht die vergelijkbaar is
met een cluster van verschillende CPUs maar geconcentreerd in slechts n apparaat.
Deze rekenkracht is evenwel niet gemakkelijk te gebruiken, aangezien volledige delen
van de broncode moeten herschreven worden in een GPU-programmeertaal. Hoewel
hoog-niveau programmeertalen (bijvoorbeeld openACC) een versnelling met een lage
ontwikkelingskost kunnen realiseren, is het niet eenvoudig om met deze methoden
grote snelheden te krijgen. Programma-talen op laag niveau zijn efficinter, maar er
worden verschillende versnellingen gemeld en er is behoefte aan een diepere anal-
yse om het GPU-potentieel transparanter te maken voor wetenschappers, vooral
niet-experts in HPC.

Om de GPU-versnelling voor stationaire CFD-simulaties te bestuderen, zijn twee
verschillende technieken binnen de GPU ingevoerd; n met expliciete en de tweede
met impliciete tijdsintegratie. Na de overdracht en de validatie van de CPU-code
naar de GPU, leidt de GPU-code optimalisatie tot het identificeren van een reeks
sleutelparameters die de GPU-efficintie benvloeden. Tegelijkertijd zijn beide metho-
den vergeleken, wat resulteert in een prestatiemodel en een classificatie van de GPU-
versnelling van sommige CFD-operaties. Het doel is om wetenschappers in staat te
stellen een beslissing te nemen over de GPU-overdracht van hun CPU-applicaties
door een GPU-versnelling te voorspellen.

Naast de twee GPU CFD-codes die nu gentegreerd zijn in het optimalisatie soft-
warepakket ontwikkeld in het VKI, verschafte dit onderzoek sleutelelementen om de
dubbelzinnigheid over het GPU-potentieel te verminderen, namelijk een kwalitatieve
analyse en een classificatie. Deze hulpmiddelen kunnen helpen bij het selecteren van
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de beste kandidaat voor een doorbraak in CFD-acceleratie. Tegelijkertijd identi-
ficeerde dit werk ernstige beperkingen bij de preconditioning van een lineair systeem
van vergelijkingen en de limiet van hedendaagse iteratieve matrixfactorisatiemeth-
oden met betrekking tot stabiliteit en convergentie. Er is nood aan een paradigma
verschuiving naar inherente parallelle preconditioners.

De ontwikkelde codes werden getest op het optimaliseren van een compressor en
een turbine cascade, dewelke resulteerden in een sneller optimalisatieproces op de
GPU.



Summary

Design optimization relies heavily on time-consuming simulations, especially when
using gradient-free optimization methods. These methods require a large number
of simulations in order to get a remarkable improvement over reference designs,
which are nowadays based on the accumulated engineering knowledge already quite
optimal.

High-Performance Computing (HPC) is essential to reduce the execution time
of the simulations. While parallel programming using the CPU is established since
more than two decades, the use of accelerators, such as the Graphics Processing Unit
(GPU), is relatively recent in design optimization. The GPU has actually a huge
computational power comparable to a many-core cluster but concentrated in one
device. This raw power is not easy to utilize as entire code parts have to be rewrit-
ten using a GPU programming language. Even though high-level standards (e.g.
openACC) are able to bring a basic acceleration with a low development effort, it is
not simple to get large speedups with these methods. Low-level programming lan-
guages are more efficient but different speedups are reported and there is a need for
a deep analysis to make the GPU potential more transparent to scientists especially
non-experts in HPC.

In order to study the GPU acceleration for CFD steady simulations, two in-house
CFD solvers have been ported to the GPU; one with explicit and the second with
implicit time-stepping. After the porting and the validation of the GPU solvers,
the GPU code optimization leads to the identification of a set of key parameters
affecting the GPU efficiency. At the same time, both methods have been compared
resulting into a performance model and a classification of the GPU acceleration
of some CFD operations. The purpose is to enable scientists to take an educated
decision concerning the GPU porting of their CPU applications by providing an
expected GPU speedup.

In addition to the two GPU CFD solvers that are now integrated into the in-
house design optimization software package, this research provided key elements to
reduce the ambiguity about the GPU potential, namely a qualitative analysis and a
classification. These tools can help selecting the best candidate for a breakthrough
in CFD acceleration. At the same time, this work identified serious limitations in
the preconditioning of a linear system of equations and the limit of today iterative
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matrix factorization methods in terms of stability and convergence. There is a need
for a paradigm shift toward inherently parallel preconditioners. The developed tools
have been used for the optimization of a compressor and a turbine cascade resulting
into a faster optimization process on the GPU.
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1
Introduction

Modern aircraft have a reduced CO2 emission and fuel consumption compared to
airplanes of last century. Figure 1.1 shows a threefold decrease of aircraft energy
usage per Available Seat Kilometer (ASK) from the fifties to the end of the twentieth
century. This is the result of a continuous optimization process of the whole aircraft
including the topology, the shape, and materials. It is worth to note also that
roughly 80% of the reduction in the specific fuel consumption is due to advances in
gas turbines and propulsion in general. This effort is expected to increase further
as a report by the European Commission † highlights the necessity of a stronger
reduction of the emissions for future airplanes in order to reduce the environmental
impact. The potential to further improve the efficiency of a design is decreasing with
years (e.g. in 1960 it was much easier to reduce 1% of the specific fuel consumption
(SFC)‡ than it is now), while the optimization effort increases dramatically. In
the last decades, two major developments are projected to become key enablers to
further improve modern designs: automated high-fidelity optimization and High-
Performance Computing (HPC). These two topics will be presented in this chapter
in addition to the research objectives and the outline of the thesis.

1.1 CFD and automated optimization

Over the past 3 decades, the design process for turbomachinery applications has
seen a large evolution. Nowadays, all components are evaluated through simula-
tions using Computational Fluid Dynamics (CFD) and Computational Structural
Mechanics (CSM) before being build. Unlike the traditional trial-and-error design
approach, which relies on an extensive testing phase [Vassberg and Jameson, 2006],
the process of virtual design allows for a large number of adaptations of the design
leading to a higher performance. The next evolution currently enrolling within this
process of virtual design is to rely on an automatic optimization algorithm to modify
the design. These optimization algorithms can find a better-performing design in

†http://ec.europa.eu/transport/sites/transport/files/modes/air/doc/flightpath2050.pdf
‡SFC is a measure for the efficiency
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2 Introduction Chapter 1

Figure 1.1: Aircraft energy usage per Available Seat Kilometer (ASK): historical
trends and projections (source:[Lee et al., 2001]).

a reduced time with minimal intervention of the designer. The algorithm actually
decides automatically on modifications to be made on the shape based on experi-
ence gradually build during the design process. The aim of the modifications is to
maximize (or minimize) a certain objective related, for instance, to the efficiency (or
to the losses).

While the existence of a better-performing design is case-dependent, reaching
this design depends on how “smart” the optimization algorithm is and how much
computational budget is available. First, more details are given of the optimization
algorithm and later in the next section, the computational budget will be addressed.

Optimization methods can be roughly classified by the information required by
the evaluation process. While zero-order methods require only the function evalu-
ation of the objective, first-order methods require additionally the gradients of the
objective function with respect to all design variables. First-order methods, such
as steepest descent and conjugate gradient, have a better convergence behavior at
the expense of computing the objective derivatives. The gradients can be computed
with a repeated function evaluation within a finite difference scheme or through
the adjoint state method. The gradient-based optimization improves, in general,
a single design using the gradients and exposes, therefore, a reduced parallelism.
Since this work studies mainly the effect of the massive parallelization on the design
optimization, it focuses only on gradient-free optimization methods.

Most of zero-order optimization methods are nature-inspired and based on meta-
heuristics. Some gradient-free methods improve a single design by exploiting its
neighborhood in the design space through a local search such as Tabu search [Glover,
1989] and simulated annealing [Talbi, 2009]. Other zero-order methods are population-
based such as evolutionary algorithms [Fonseca and Fleming, 1995] and swarm in-
telligence [Talbi, 2009]. These methods explore the design space with a multitude
of interacting and evolving designs. Explorative algorithms try to uncover within a
few iterations a wide region of the design space, while exploitative algorithms tend
to focus on a limited area of the design space (e.g. the neighborhood of a given
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design).

The optimization of an airplane wing, for instance, involves external flow aero-
dynamics and in general targets a higher lift and a lower drag, which results in a
better usage of the power delivered by the jet-engine. The delivered power itself can
be increased through an optimization of the engine using internal flow aerodynam-
ics. While more resistant materials and clever cooling methods brings the engine to
operate at higher temperatures and deliver thus more power with a higher efficiency,
the optimization of the shape of the turbine and compressor blades mainly reduces
the losses for the flow through the engine. In aerodynamic optimization, a design is
parameterized, in general, using some geometric parameters that control the shape
of a blade such as the thickness, the blade chord and the blade angles. Some of these
parameters can be chosen as design variables. All possible combinations for these
design variables, which are allowed to vary within a fixed interval, form the design
space. This space can be constrained by some conditions proper to the case such as
a minimum thickness.

The final design will be validated with wind tunnel experiments to check the
accuracy of the numerically delivered results. In order to reduce the gap between
the experimental results and the simulations, the discretization of the flow govern-
ing equations should incorporate most of the relevant physical phenomena. Euler
equations, for instance, are limited to inviscid flows [Anderson, 1995] neglecting all
shear stresses and heat conduction terms [Hirsch, 2007], while Navier-Stokes equa-
tions cover the viscosity and the flow turbulence as well. CFD solvers need also to
account for the turbulence, which is a complicated multiscale phenomenon. Some
methods, such as the Reynolds-Averaged Navier-Stokes approach, rely on models
to reproduce the effect of the turbulence. Other methods, such as the Large Eddy
Simulation (LES), resolve the largest turbulent scales, while modeling the smaller
scales [Pope, 2001] and the Direct Numerical Simulation (DNS) resolves all scales
of the turbulence. It would be tempting to use DNS in order to reach the best
possible numerical precision. For transonic conditions, this method remains out of
reach of current high-performance systems as the execution time on conventional
systems is proportional to Re3 [Pope, 2001]. As a result of its lower computational
cost and reasonable accuracy under attached flow conditions, RANS simulations are
nowadays widely established in academia and industry.

In a context of a gradient-free optimization where the search for the optimum
requires many evaluations, RANS simulations need to be accelerated to maintain
feasible turnaround times. Three types of algorithm optimizations [Thevenin and
Janiga, 2008, p.14] are possible to improve the convergence of gradient-free opti-
mization methods: mathematically, physically and computer science based opti-
mizations. The first two methods accelerate the convergence of the optimization
toward better designs with a given computational budget, while the last adapts
the optimization to a higher computational power. Physically-based optimization
reduces the complexity of the objective function evaluation by replacing it with a
less complicated model (metamodel) that generates a faster but less accurate design
evaluation. A mathematical-based optimization takes advantage of preconditioner
and multigrid techniques to accelerate the convergence while solving systems of lin-
ear equations. Finally, a computer-science motivated optimization consists of using
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high-performance computing to accelerate the execution of numerical simulations.
The latter type of optimization is the central focus of this work and will be further
discussed in the next subsection.

1.2 High-Performance Computing

Accelerating simulations within a design optimization can bring two advantages:
(1) more designs can be evaluated for the same time budget leading to a wider
exploration of the design space or alternatively, (2) higher-fidelity simulations are
accessible for the same time budget.

Getting an application to run faster can be done in different ways. Straightfor-
ward methods include, for instance, a hardware upgrade (e.g. a higher CPU rate) or
the use of a more advanced compiler, which does more automatic code optimization.
A more promising method consists of parallelizing the application. The latter is not
trivial but ensures a higher acceleration when adequately used. The parallelization,
in some cases, can require a simulation code to be partially or totally rewritten (e.g.
CUDA†, openCL‡). In other cases, few added lines could be enough to enable a
parallel execution of a portion of a code, in general for/while-loops (e.g. OpenMP§,
OpenACC¶). Accessing high accelerations using any of the above introduced meth-
ods requires definitely a sound knowledge of the used hardware and the specificities
of the application to port.

The high performance systems can be classified following the memory architec-
ture as depicted in Figure 1.2. The two main architectures are the shared-memory
and the distributed-memory systems. For the shared-memory architecture, a set
of processors shares the same memory contingent. Current popular architectures
such as dual-core and quad-core CPUs belong to this group. OpenMP [OpenMP,
2013], an Application Programming Interface (API), handles the parallelization in
these systems. Few simple compiler directives (#pragmas) surrounding sequential
for-loops divide automatically the work between available cores and every core pro-
cesses a part of the loop. The communication among processors is very simple since
they all share the same memory contingent. The maximum available number of cores
and the memory capacities for this system are, however, too low to cover large-scale
problems (maximum by Xeon Phi with 60 cores [Jeffers and Reinders, 2013]).

In the distributed-memory configuration, better known as clusters, every proces-
sor has its own memory. The communication between processors occurs through the
Message Passing Interface (MPI‖). A decomposition of the computational domain
is essential for the parallelization on distributed-memory systems. Every processor
contributes to the solution of the simulation by solving a part of the computational
domain. A high number of cores (e.g. cluster of CPUs) could speed up the whole pro-
cess significantly. But the parallelization increases also the programming burden,
since the designer has to distribute the computational work among the available

†http://docs.nvidia.com/cuda/cuda-c-programming-guide/
‡https://www.khronos.org/opencl/
§http://www.openmp.org/
¶https://www.openacc.org/
‖http://mpi-forum.org/

http://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://www.khronos.org/opencl/
http://www.openmp.org/
https://www.openacc.org/
http://mpi-forum.org/
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Figure 1.2: Difference between shared and distributed memory architecture.

CPU processors and regulate the communication. For a realistic application, a large
number of cores is essential and MPI is the most implemented paradigm on today
HPC systems. Hybrid systems, consisting of a cluster of shared-memory systems,
are getting more and more popular. The most powerful HPC systems nowadays are
hybrid [Strohmaier et al., 2016] while using in every cluster node not only standard
CPUs but also accelerators such as Field Programmable Gate Arrays (FPGAs) and
Graphics-Processing Units (GPUs).

The GPUs can be considered as a shared-memory system since a number of multi-
processors are connected to the same device memory as depicted in Figure 1.3. In
total, a GPU contains hundreds of cores mostly dedicated to arithmetic operations,
called Arithmetic Logic Units (ALUs). Compared to a CPU core, a GPU core is less
powerful. A GPU includes, however, a large number of these cores, which combined
result in a higher computational power. The second advantage is the specialization
of the GPU cores. While CPUs are inherently responsible for a wide spectrum of

Figure 1.3: Massively Parallel Architecture.
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tasks requiring a large cache capacity and an advanced flow control, a GPU is mostly
dedicated to floating-point arithmetic calculations. This is reflected in the achieved
high computation performance measured in float operations per second (FLOPs).

Today’s GPUs evolved from graphics cards installed in most computers starting
from the eighties. A graphics card is a complex electrical circuit that processes
graphical data sent from the CPU to render and visualize it on the monitor with
increasing quality and refreshing rates. A high pressure on graphics cards for fast
refreshing of pictures (mainly for video-gaming) caused the spectacular increase of
the computational power reflected by the large number of cores packed in one card.

The high computational power attracted scientists and engineers looking for low-
cost high-performance alternatives to speed up their applications. To use these first
graphics cards, scientists had to present their problems as graphical problem to the
card, which implied a change to the data storage and the programming language.
The term GPGPU, which stands for General Purpose Graphics Processing Unit, was
established for this type of use of the graphics card. In response to this emerging de-
mand, NVIDIA released in 2007 the first fully programmable open graphics process-
ing units [Lindholm et al., 2008] in a C-based programming language called CUDA.
At the same time, AMD released its programmable GPU with OpenCL. The pro-
gramming model CUDA is specialized for NVIDIA GPUs whereas OpenCL can be
run on AMD and NVIDIA GPUs. This portability has a price on the programming
overhead and the peak performance gain [Fang et al., 2011]. Programming GPUs
in a more generic way is possible with openACC, a similar approach to OpenMP.
However, accessing high speedups on OpenACC is not trivial [Christgau et al., 2014]
and the directive is open but the compiler for this directive is under commercial li-
cense, which reduces its impact on the scientific community compared to CUDA or
OpenCL. In addition to that, GPU Libraries can assist developers to speed up there
applications since many established CPU libraries have their equivalents for GPU
such as CUFFT †, CUBLAS ‡ and CUSPARSE §.

1.3 Research objectives

Many algorithms are nowadays already intended to run in parallel when devel-
oped [Dongarra, 2016] but running an algorithm efficiently in a massively parallel
device such as the GPU is still challenging. For CFD applications, speedups ranging
from one to two orders of magnitude or even beyond are reported in the litera-
ture [Niemeyer and Sung, 2014b]. Different speedups are also reported for design
optimization, which will be detailed in Chapter 3. At the same time, these accel-
erations are severely criticized by some researchers [Lee et al., 2010; Vuduc et al.,
2010] highlighting a set of limitations for the GPU and judging the reported large
speedups as artificially inflated by choosing an underoptimized CPU reference code.

Under these discordances of case-dependent and sometimes contradicting speedups,
it is difficult to estimate a plausible GPU acceleration for a new application. The
objective of this doctoral thesis is, therefore, to make the GPU potential more

†http://docs.nvidia.com/cuda/cufft,accessed 6/2017
‡http://docs.nvidia.com/cuda/cublas,accessed 6/2017
§http://docs.nvidia.com/cuda/cusparse,accessed 6/2017

http://docs.nvidia.com/cuda/cufft
http://docs.nvidia.com/cuda/cublas
http://docs.nvidia.com/cuda/cusparse
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Figure 1.4: Chart of the 2-level optimization in-house tool CADO [Verstraete, 2010].

transparent to the design optimization community and CFD users in general. A
clearer perception of the GPU potential can help to make an educated-decision about
whether porting a simulation or not to the GPU. The scope of the study is limited
to steady CFD simulations solving RANS equations on structured meshes within a
population-based design optimization framework for turbomachinery applications.

Research activities in design optimization at the Von Karman Institute (VKI)
have been started more than 15 years ago. Several innovative algorithms have been
developed since, and are currently being used within the design of turbomachinery
components in various applications grouped in a software package called CADO [Ver-
straete, 2010] with its algorithm sketched in Figure 1.4. A key feature of the de-
veloped multidisciplinary approach is the use of high fidelity CFD (fluid) and CSM
(solid) computations, which constitutes the largest cost of the methodology. A fast
interpolation method such as Kriging is extensively used in the 2nd level evaluation
to help explore the design space.

The main objective of having a more tangible GPU potential is tackled within 4
steps:

• First, a literature survey reported on the main use of the GPU in multi-
disciplinary design optimizations. The aim is to identify the type of opera-
tions delegated to the GPU and to answer the question whether the GPU is
used as a workhorse for single-field simulations or as a coordinator of entire
optimization algorithms.
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• Second, a detailed performance assessment of GPU CFD solvers is performed
with the aim of classifying operations based on exposed parallelism and reached
acceleration. For that purpose, two RANS solvers have been ported to the
GPU: the first with explicit time-stepping and the second with implicit time-
stepping. The profiler-guided code optimization led to the identification of few
speedup categories for some CFD operations differentiating between stencil-
based operation and other operations such as linear system solver iterations
and sparse matrix factorization.

• Motivated by the results of the second step, a third step consists of comparing
the explicit to the implicit solver. First a comparison for one flow iteration
has been delivered and then a generalization has been intended for a whole
simulation by introducing a convergence ratio relating the number of flow
iterations of both solvers (explicit and implicit) to reach a stationary solution
resulting into a performance model.

• The last objective concerns the proof-of-concept for a design optimization in a
high-end computer with a GPU accelerator. Two test cases are optimized,
a compressor and turbine cascade, with the application of the new intro-
duced performance model to identify the fastest alternative (explicit/implicit
on GPU/CPU).

1.4 Context and outline of the thesis

The work for the present PhD thesis has been started within the EU-funded Project:
AMEDEO † (Aerospace Multidisciplinarity Enabling DEsign Optimisation). The
overview of the research conducted in this work is summarized in Figure 1.5 with
the problem formulation, the research items and the outcome being linked to the
outline of the document.

The GPU has a large computational power which may be very useful for many
researchers working in MDO as they rely on time-consuming simulations. Chapter 2
brings the necessary details to situate the GPU within the established HPC archi-
tectures. Moreover, it shows the profiler-driven code optimization approach followed
in this work to increase the performance of the implemented GPU functions.

Chapter 3 presents a literature survey on the use of the GPU for design opti-
mization. The results of many researchers are reported while observing that the
GPU has been used mostly as an accelerator for a single-field simulation (e.g. CFD
or CSM) and not used to incorporate the complexity of MDO algorithms. For a
single discipline, the literature reports speedups of one to two orders of magnitude,
while speedups as a key measure of the GPU performance face some criticism [Lee
et al., 2010]. For structural analysis, the GPU has been used to solve the system
of equations created by the coupled Partial Differential Equations (PDEs) govern-
ing the structural analysis. For the computational fluid analysis, the GPU is very

†http://www.amedeo-itn.eu/

http://www.amedeo-itn.eu/
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Problem

Research Target

Make the GPU potential more transparent. 

Research Items

1) Literature Review 2) Parallel implementation

3) Results Analysis

- GPU: single field, no MDO

- Speedups are case-specific

- Porting and optimizing  a CFD 

solver with explicit time-stepping.

- Porting and optimizing  a CFD 

solver with implicit time-stepping.

- Classification of different CFD operations based on speedup.

- A qualitative model for the explicit/implicit comparison.

- Use of the model within a shape optmization.

Outcome

- Explicit solver experience large GPU acceleration (>90x).

- Implicit solver are less prone to the GPU acceleration  (<=10x).

- The presented model can deliver an  answer on the fastest combination.

- GPU is able to accelerate single-field simulations  within MDO.

Chapter 3

Chapter 5

Chapter 4

Chapter 6

Chapter 8

Problem Statement

Chapter 7

MDO problems need HPC solutions (e.g. GPU).

The GPU potential is case-dependent and controvertial. 

Figure 1.5: Structure of the work through the thesis.
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efficient in running particle-based algorithms [Rinaldi et al., 2012; Zhao, 2008], less
for structured meshes within the Finite Volume (FV) scheme and much less with
unstructured meshes [Niemeyer and Sung, 2014b].

In order to assess more closely the effect of the GPU on single disciplines such
as the CFD, an in-house CFD code is ported to run on the GPU. Chapter 4 and 5
present two GPU-based RANS solvers with different time-stepping methods. The
first has an explicit time-stepping and experiences two orders of magnitude accel-
eration on the GPU. The second has an implicit time-stepping and a one order of
magnitude acceleration is obtained. The numerical results have been verified against
the experimental ones revealing a fair matching that guarantees the accuracy of the
new solvers on subsonic and transonic conditions. The code optimization for both
solvers led to some key observations on the profiler-driven code optimization for the
GPU performance that are presented in Chapter 2. This latter chapter is intended
to introduce the concepts used in the analysis of the different implementations for
the functions used in both solvers.

Built in a modular way, the CADO optimization software allows to interact with
different CFD solvers. The GPU acceleration benefited CADO simply by replacing
the CPU-based solver by the new GPU-based one. Speed but also stability of CFD
solvers are relevant for the MDO optimization, therefore a comparison of both solvers
have been performed concerning speedup, stability, and convergence (see Chapter 6).
First, the acceleration per iteration has been observed to be clearly advantaging
explicit solvers. Secondly, the convergence rates, which are largely in favor of the
implicit solver, have been incorporated in the comparison. Both elements are used
to build a model, which selects the fastest alternative for a given convergence ratio.

In Chapter 7, the GPU-enhanced optimizer has been tested on a supersonic
compressor cascade achieving an improvement of 25% in the entropy generation and
the entire optimization process has been 90 times faster on the GPU than on a
single core CPU. Moreover, the performance of a 1-level and a 2-level optimization
algorithms has been compared for the shape optimization of a turbine cascade.
The 2-level method consists of a metamodel assisted optimization using Kriging
interpolation. The newly introduced performance model served on identifying the
fastest CFD solver to be used in the optimization.



2
Graphics Processing Units for High Performance

Computing

Graphics Processing Units (GPUs) originated from the performance-driven video
gaming industry and were used as rendering pipelines with the main task of creating
2D representations of 3D-scenes. This implies a large number of floating-point oper-
ations per second (FLOPS) for a single video frame. The GPU evolved consequently
to devote most of the device capacities to computing rather than sophisticated con-
trol logic and memory caching. This chapter treats first some key aspects of the GPU
programming, which are essential to understanding the strong and weak points of the
GPU and highlights then the performance-driven code optimization for the GPU.

2.1 Introduction

Current GPUs are multi-threaded processors which can be programmed with a C-
like language called CUDA †. They are built over a large number of scalar processors
provided by a large memory bandwidth. The common trend in the different NVIDIA
modern GPU generations (Fermi, Kepler Maxwell and Pascal) is the gradual increase
of the memory bandwidth and the computational power while keeping a similar
power consumption. Motivated by the large performance advantage of the Kepler
card compared to Fermi‡, this work is mainly based on the Kepler architecture using
the NVIDIA K40c and Geforce GTX 780.

A serial code can be parallelized to run on a GPU by rewriting it using a low-
level language (CUDA or OpenCL), using GPU libraries (e.g. thrust, cuSolver etc§)
or by using a compiler directive approach such as openACC. The openACC ap-
proach delivers easily small improvements but a substantial speedup requires a deep
understanding of the low-level workflow of the ported code and at the same time
an extensive knowledge of the openACC standard [Rueda et al., 2016]. Low-level

†https://docs.nvidia.com/cuda/cuda-c-programming-guide/, retrieved March 2017
‡Newer architectures were not available at the start of the PhD, 2013
§https://developer.nvidia.com/gpu-accelerated-libraries, last accessed June 2017
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changes are easier and more intuitive to implement with a low-level language rather
than through a standardized compiler directive-based alternative. This work, there-
fore, combines CUDA with some GPU libraries such as thrust [Bell and Hoberock,
2011], Paralution† and CUSP [Bell and Garland, 2015].

This chapter focuses on CUDA C as it reveals the low-level code transformation
essential to reach interesting speedups but the conclusions should also apply to
OpenCL since both languages are fairly comparable [Karimi et al., 2010; Fang et al.,
2011]. Section 2 presents some aspects of the history of GPUs in order to better
understand the architectural design of modern GPUs, which is presented in Section 3.
Then, the execution model of the programming language CUDA is shortly introduced
in Section 4. After these prerequisites, the last two sections present the memory-
related and the profiler-driven optimization of the GPU code.

2.2 From graphics pipelines to High Performance
Computing

The predecessors of today GPUs have been developed in the early 1980’s [Kirk and
Wen-mei, 2013]. The primary idea was to offload the CPU from rendering images
on the display and use a dedicated hardware instead. Image rendering is about
creating surfaces defined by vertices, which belong to a polygon (e.g triangles), and
use them to color the pixels of the final image that will be sent to the display. The
first GPU was called fixed-function graphics pipeline since it had the hardware to
rapidly compute vertices and pixel colors. Vertices have a color that is computed
by the vertex shader involving neighbor vertices and rather intensive memory oper-
ations. The next stage, the pixel shader, creates an image by giving a color to every
pixel based on its surrounding vertices. Features intended to improve the images
and make them look realistic and sophisticated are performed at this stage, which
performs thus many arithmetic computations using few vertices. Every stage has
its specialized hardware optimized for fast memory access for the vertex shader and
for fast arithmetic operations for the pixel shader. The graphics pipeline has many
more stages, which are detailed in dedicated textbooks such by Kirk and Wen-mei
[2013].

There has been a drive towards faster and more realistic rendering of 3D scenes
in the gaming industry, which obviously led to a high demand for computational
throughput. More sophisticated APIs ‡ were created to match the increased com-
plexity of the pipeline such as directX and openGL. Following the developers demand
for more flexibility required to cover a wider range of graphics algorithms, the ver-
tices and then the pixel shader have been exposed for programmers. Many other
stages (e.g rastering) from the graphics pipeline remained fixed functions.

A load-balancing problem occurs as small surfaces (e.g. triangles) require much
more vertex treatment than pixel treatment, while large surfaces offer the opposite
workload. The unification of both processors for vertex and pixels, first introduced

†PARALUTION Labs “PARALUTION v1.1.0”, 2016, http://www.paralution.com
‡Application Programming Interfaces are a standardized set of routines that enable an appli-

cation to use a hardware.

http://www.paralution.com
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by AMD in the Xbox360 [Andrews and Baker, 2006], solved this load-balancing prob-
lem. The unification of different stages processors had also the benefit of reducing
the development cost of 2 different processors.

General Purpose GPU computing (GPGPU) emerged from 2000 to 2006, when
scientists started using the raw computational power of GPUs for numerical prob-
lems in different fields. However, they had to adapt their algorithms to the partially
programmable GPU. The vertex shader accepts one input in form of a texture im-
age containing vertices coordinates and the only output is a pixel color from the
pixel shader. Some researchers managed to get a remarkable acceleration due to the
GPGPU as reported in the survey of Owens et al. [2007]. The speedup required,
however, an important programming effort as the developer had to use the graph-
ics algorithms and terminology, which appeared to be too restrictive for numeric
intensive algorithms.

The real start of GPU computing is related to the release of Tesla processors
in 2006 [Lindholm et al., 2008]. Tesla has fully programmable unified processors in
addition to the cache memory and load/store units enabling it to handle compiled
code. NVIDIA provided also the compiler, the library and the API to make the Tesla
card much easier to use for non-graphics applications. The following generation of
GPUs (Fermi) has almost no remaining heritage from the original graphics pipeline.

The Fermi card is built around an array of highly threaded streaming multi-
processors (SMs). Figure 2.1 depicts a Fermi SM with 32 CUDA cores (with its
arithmetic logic unit), 16 load/store units, 2 schedulers and dispatch units, 4 special
function units (responsible for the computation of sine, cosine, etc.), register files
and an L1 cache/shared memory. The number of load/store units determines the
number of threads that can be served concurrently per clock cycle, here half a warp
with a warp defined as a group of 32 parallel threads. With its 2 warp schedulers
the SM can execute up to 2 warps at the same time. The Fermi GPU contains 16
SMs, as depicted in figure 2.2, reaching a total of 512 CUDA cores and can run up to
32 warps concurrently. It has also 6 DRAM memory interfaces, which can connect
to at most 6 GB of global device memory. The GPU is connected to the host CPU
through a PCI express bus. The large number of threads is managed by the Gi-
gaThread engine that acts as a global scheduler. The shared-memory and L1-cache
are very important for a substantial performance gain for some applications.

The GPU Kepler generation, released in 2012, outperforms the Fermi architecture

16 x Load/store unit

4 x Special Function Unit (SFU)

Share-memory/ 

L1 Cache

32xCUDA core

Register files

2xWarp scheduler
2 x Dispatch Unit

Figure 2.1: Block diagram of one SM of a FERMI GPU card of NVIDIA.
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Figure 2.2: Block diagram of a FERMI GPU card of NVIDIA.

by increasing the number of CUDA cores up to 2880, doubling the precision units
and cache size and introducing some new features such as dynamic parallelism and
hyper-Q. Dynamic parallelism is about giving a thread the possibility to start a set of
sub-threads and is adapted to a multi-level parallelism such as recursive functions.
The Hyper-Q allows multiple kernels to run concurrently providing 32 hardware
channels for the host to place kernels. As it is a hardware feature no programming
is required to take advantage of Hyper-Q. The contribution of this feature can be
observed by the profiler as more kernels can overlap with Kepler cards than with the
Fermi cards. The card has 15 SMs (less than the Fermi card) but every streaming
multiprocessor has been enhanced to host 192 CUDA cores and 64 double precision
units. The register files have double size and Kepler has 4 warp schedulers.

2.3 GPUs: a throughput-oriented latency-tolerant
HPC device

There is a performance gap between CPUs and GPUs in terms of memory band-
width (amount of data transferred per second) and arithmetic throughput (FLOPS:
FLoating OPerations per Second). This is related to the architectural differences be-
tween both devices (see Figure 2.3). The conventional multi-core CPU relies mainly
on a large and fast memory cache, which serves a small number of cores, in order
to reduce the instructions execution time (latency) to a minimum. A significant
portion of the transistors is dedicated to the instruction flow control (instruction
pipelining, branch prediction † and similar tasks). The CPU cache has a spacial and
a temporal locality as data is more likely to be kept in the cache if it is often used
(temporal) and if it is close to an often used data (spatial). Neither the large cache
memory nor the sophisticated instruction control contributes to the computational
power [Kirk and Wen-mei, 2013]. For a CPU, the computational power is provided
by a high-speed processor optimized for serial operations and low latency. Moore’s
law predicted the doubling of the number of transistors in an integrated circuit every

†A digital circuit to predict the path that will be followed in a branching (e.g. if-else)
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2 years [Moore, 1998]. This trend has been carried on until the energy consumption
and the heat dissipation reached very high values, known as the power wall [Patter-
son and Hennessy, 2013, p. 40]. The increase of the clock frequency slowed down
also as it is related to the energy consumption and the heat dissipation of the CPU
too [Bergman et al., 2008, p.88]. These physical limits caused very powerful single
cores to be abandoned in favor of multi-core technology, in which multiple cores are
contributing to the computational power of a device.

The GPU, on the other hand, has been designed from the start on as a multi-core
technology and disposes of a large number of lightweight processors able to perform
single and double-precision computations. The GPU cache is, however, much smaller
and disposes only of spatial locality. The gap between CPUs and GPUs concerns
also the memory bandwidth. CPUs need in fact to “satisfy requirements from the
operating system and the I/O devices which make the memory bandwidth more
difficult to increase” [Kirk and Wen-mei, 2013, p.4].

2.4 CUDA: a programming language and an exe-
cution model

This section explains some concepts of the GPU programming related to the CUDA
execution model. An extensive and detailed treatment of the topic can be found
in the CUDA user manual† and some valuable textbooks [Kirk and Wen-mei, 2013;
Cheng et al., 2014; Sanders and Kandrot, 2010; Farber, 2011].

CUDA C is based on the C programming language with a minimal set of exten-
sions to handle the parallel execution and the memory organization. GPUs execute
as a device (an accelerator) for a host application on a host CPU, therefore, a CUDA
program contains host code and device code. The functions running on the GPU are
called kernels and are executed by threads, which are organized in grids of blocks
distributed among the streaming multiprocessors. CUDA kernels are launched as
follows:

kernel name<<<Nb, Nt>>>(var1 , var2 , . . ) ,

†https://docs.nvidia.com/cuda/cuda-c-programming-guide/, retrieved June 2017

DRAM

Cache

Control
ALU ALU

ALU ALU

CPU

DRAM

GPU

Figure 2.3: The architectural design difference between the CPU and the GPU use
of transistors.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/
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with Nb the number of thread blocks launched and Nt the number of threads per
block. A kernel is usually executed by thousands of threads (Nb × Nt); though a
run with one block of one thread (Nb = 1, Nt = 1) is equivalent to a serial run on
a CPU and can serve as a verification of a written kernel. The GPU starts threads
always as a multiple of the warp size. Therefore, the number of requested threads
per block should be a multiple of 32 otherwise, the last warp is not fully used and its
extra threads are inactive but consume, nevertheless, registers and shared memory
space.

Threads have a unique index accessed over threadIdx, a built-in† variable. Con-
secutive indices in threadIdx are handled in groups of 32 threads constituting warps.
In a very common CUDA programming pattern, the grid of threads replaces a se-
quential loop (see Listing 2.1) over a large set of elements. For every thread, the
index of its grid and its block are combined to create a unique global identifier as
seen in Listing 2.2. Every thread treats a small subset of elements and the program-
mer should take care of a proper use of the index inside a kernel. Kernel calls are
asynchronous since the control is returned to the host CPU immediately after the
call, which can then proceed to the next call. A synchronization or a memory copy
can force the CPU to wait for the completion of the last called kernel.

CUDA uses the SIMT (single instruction multiple threads) paradigm to execute
instructions within a warp. The same instruction is broadcasted to all threads of a
warp for execution but every thread has its own registers and instruction counters.
A data dependent conditional branching (e.g. IF-ELSE) can cause threads in the
same warp to face different execution paths. The execution is consequently serialized
by running first the instruction of the threads of the first path then the instruction
of the second path as depicted in Figure 2.4. The possibility of divergence within a
warp, called thread divergence, differentiates SIMT from SIMD (Single Instruction
Multiple data) processors, which impose strictly the same instruction on a vector
of data. Even though it is tolerated, thread divergence is very damaging to the
performance since GPUs do not offer the same level of complex branch prediction as
CPUs. A fully diverged warp can run up to 32 times slower than a divergence-free
warp. Therefore, it is crucial to measure the degree of warp divergence expressed as
Branch Efficiency (EB), which is defined as the ratio of the number of non-divergent
branches to total number of branches (NTotal

B ) [Cheng et al., 2014]:

†pre-initialized variable by the runtime system

Listing 2.1: C/C++ code for the loop of the matrix addition.

int i,j,idx;

for (i=0; i<N;i++){

for (j=0; j<N;j++){

idx=i+ j*N;

C[idx]=A[idx]+B[idx];

}

}
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Listing 2.2: CUDA code equivalent of the loop for the matrix addition.

int i=blockIdx.x*blockDim.x + threadIdx.x;

int j=blockIdx.y*blockDim.y + threadIdx.y;

int idx= i+j*N;

if(i<N && j<N){

C[idx]=A[idx]+B[idx];

}

if (condition) 

else

then

thread not satisfying the condition 

thread satisfying the condition 

disabled threads

Figure 2.4: Serial execution of diverged paths within a warp caused by a conditional
statement (if-else).
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EB = 100 ·
NTotal
B −Ndiverged

B

NTotal
B

. (2.1)

Multiple threads can access the same memory position in a non-controlled fash-
ion which causes an unpredictable program behavior known as race condition. The
threads execution order can be controlled by a threads synchronization within a block
( syncthreads()). The synchronization is about inserting a barrier that every
thread has to reach before the kernel executes the next instruction. The synchroniza-
tion of all threads of all blocks requires a call from the host (cudaThreadSynchronize()),
which is not possible within a kernel.

The fact that thread blocks are independent reduces the ability for inter-block
communication but it is essential to keep a transparent scalability between thread
blocks. Transparent scalability means, in this context, that doubling the number of
streaming processors will half the execution time as shown in the example depicted
in Figure 2.5.

The organization of threads in warps of 32 threads enables to dispatch an idling
warp (e.g. waiting for memory access) and schedule a new warp residing in the
same SM (see Figure 2.6). This thread swap, called context switch, increases the
instruction throughput and hides the waiting time for memory loads (memory la-
tency). Unlike the CPU context switch, the GPU context switch is not expensive.
The primary difference is that GPU warps have their resources already assigned
during the kernel launch and the switch is purely done by the hardware. A CPU
needs to copy the state of one thread before loading the state of the new one when
switching context. For the GPU, the gain of the context switch is done at the cost
of limiting the maximum number of active warps per SM, which cannot exceed the
SM resources divided by the single thread consumption. When launching a kernel
the threads in a block are sharing the registers (16k/SM for architecture 3.5) and
the shared-memory (up to 48kB/SM for architecture 3.5). These are, in general, the
limits dictating the number of warps active in the different SMs and is called the
theoretical occupancy, which is a measure for the level of thread parallelism.

Warps with secured resources from the SM are called active. But physically
active are only the selected warps by the warp scheduler. The non-selected warps
could be either stalled, waiting for an argument†, or eligible if they are ready for
execution but the hardware is busy. From the active warps, a maximum of 4 can
be selected concurrently per SM (for architecture 3.5) and if a warp is stalled the
scheduler picks up one of the eligible warps. If a kernel is very demanding of shared-
memory such that not even one single block of threads can be assigned to an SM,
the kernel execution fails without terminating the host program. CUDA provides
thus a function, cudaGetLastError(), to check the status of the last executed call.
In the development phase, it is recommended to check the status of every CUDA
command by calling the error check function or providing a macro as a safe call
wrapper (see CUDA SDK‡). A kernel can fail because of a lack of memory resources
or an inappropriate run configuration in terms of number of blocks and grids, while
a memory allocation can fail because of a lack of global memory.

†a memory transaction or a computation
‡https://developer.nvidia.com/cuda-downloads, retrieved June 2017

https://developer.nvidia.com/cuda-downloads
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Warp switching is used to hide the instruction latency, which is defined as the
required amount of time from dispatching an instruction until its completion. The
arithmetic latency lasting between 10 to 20 cycles is smaller than the memory latency
which can reach up to 800 cycles [Cheng et al., 2014]. The estimated number of
independent instructions N to hide the latency λ is defined according to Little’s law
as follows:

N = λ · throughput. (2.2)

In order to reach the required number of independent instructions N , it is possible to
increase the number of warps or/and increase the number of instructions per thread.
The first technique is called Thread-Level Parallelism (TLP) and the second is known
under Instruction-Level Parallelism (ILP). For memory operations, the throughput
is defined based on the clock rate and the memory bandwidth as follows:

bandwidth/Clock = throughput. (2.3)

The throughput, in general in kB, refers to the in-flight I/O memory operations
required to saturate the GPU. For a small N , only few memory operations are
started, which deteriorates the reached bandwidth (more in Section 4.2.1).

Until now only the fine-grained data parallelism through a grid of threads has
been addressed. The GPU offers also a coarse-grained kernel (or task) parallelism by
running multiple grids of threads concurrently using multistreams (see Listing 2.3)
increasing the number of active warps and consequently the GPU utilization. All
kernels and CUDA API calls, seen above, run in fact in a default stream with a
stream defined as a sequence of operations executing in the order as issued from the
host CPU. At the same time, multistreaming can be used to overlap data transfer
and computation.

If a stream synchronization occurs or a kernel is executed by the default stream,
the kernels overlapping is interrupted. Indeed, when the default stream executes a
kernel or a memory call, all other kernels are in a halt. The hardware resources can
also limit the number of concurrent kernels as depicted in Figure 2.7. The GPU
keeps running more streams until all resources are assigned to kernels from already
launched streams. No additional kernel is able to run from the rest of the streams
until the first set of kernels finishes executing.

Fermi cards have only one hardware work queue, through which all launched
kernels on all streams need to transit. Filling one stream after the other with kernels
and API calls (depth-first approach [Cheng et al., 2014, p. 282]) creates a false
dependency in Fermi processors. Only the last kernel of a stream and the first
kernel of the following stream are independent and thus can overlap (see Figure 2.8).
A software approach to solve the false-dependency problem is to make a breadth-
first filling of streaming: every stream should have received a command to execute

Listing 2.3: Example of a use of streams with kernels.

for(i=0;i<Nstreams;i++){

cudaStreamCreate(streamArray[i]);

kernel_name <<<threads ,blocks ,0, streamArray[i]>>>(varibales)

}



Section 2.5 Memory hierarchy of the GPU 21

before any stream gets a second command. This increases the kernels overlapping
on Fermi cards to its maximum. NVIDIA proposed a hardware fix for this issue
on the Kepler cards by a mechanism called HYPER-Q. Hyper-Q allows up to 32
hardware work queues† and thus any case with false-dependency on Fermi cards
runs with maximum overlapping on Kepler GPUs. However, breadth-first approach
is always advisable. The multistreaming feature is found to be crucial in order to
reach interesting performance gain on the GPU (Cf. Section 4.2)

2.5 Memory hierarchy of the GPU

The memory hierarchy for the CPU-GPU system proposes different levels of speed
and size for every type of memory (see Figure 2.9). The capacity increases from
register and cache memory to global and system memory but so does the latency.
An efficient use of the available memory levels can leverage the performance of a
program to reach a maximum, which is dictated by the hardware limitations. No
instruction can be executed, for instance, if a warp is stalled waiting for a variable
to be loaded while all load/store units are busy. Therefore, the instruction-level
parallelism can not be very beneficial if a kernel is not making good use of the
possible memory types.

In general, the system memory residing in the CPU contains the entire data of
the simulation. The data that will be needed by the GPU should then be moved to
the device global memory which is of the order of few GBs (e.g. Tesla K40 has 12
GB) for a single GPU. This implies that the GPU could solve a problem slice by slice
with every slice not exceeding the global memory capacities. Since the PCI bus is
relatively slow, the communication between the host CPU and the device GPU has
to be kept minimal and small data transfers are faster when grouped together and
moved in one shot. Moreover new technology such as NVlink‡ can further leverage
this issue. The data residing in the global memory has higher access latency than the
data residing in a cache or a register. Moreover, the access itself to the global memory

†The number of hardware queues can be accessed/changed in the environment variable
CUDA DEVICE MAX CONNECTIONS

‡more than 80Gb/s memory bandwidth http://www.nvidia.com/object/nvlink.html
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Figure 2.7: Illustrative time line for the execution of 16 kernels distributed over 8
streams with the SM resources limiting the concurrency to 4 kernels.
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should follow certain patterns to guarantee the best memory bandwidth. The GPU
loads an entire word†, when a thread accesses a memory position, and the loaded
word is broadcasted to all threads of the warp. If the next thread within a warp
accesses the next memory position, it is very likely that it is in the already loaded
word. The memory transactions of the two threads are grouped or coalesced into one
transaction. The line size of the L2-cache, by which all global memory accesses are
migrating, is 128 bytes, which is optimally used if every thread in a warp requests
consecutive 4 bytes. A second key technique is the alignment, which is guaranteed for
requested addresses being a multiple of the cache line size. Figure 2.11 depicts first
a case of an ideal access then two cases of misaligned and uncoalesced accesses. The
alignment makes sure that the minimum number of words is loaded per warp. The
misalignment can cause two words to be loaded for one access, while the uncoalesced
access can load up to 32 words for one access depending on the scattering of the
memory accesses within a warp.

The number of transactions required for a single memory load depends on the
coalescence of the access and the data alignment of the transactions [Cheng et al.,
2014]. The profiler can compute the average number of global memory load transac-
tions performed for each global memory load. A practical case of storage in global
memory is to transform a multi-dimensional array into one-dimensional long array.
In a case of a 3D array accessed by the indices i, j and k with maximum values set
to IMAX, JMAX and KMAX respectively, the index is as follows:

array[i+j*iMAX+k*iMAX*jMAX]=array[i][j][k];

The case of mapping the GPU threads to i, j and k is considered (see Listing 2.4).
In order to keep the coalesced access, the thread mapping should follow the 1D ar-
ray indexing with iMax, jMax and kMax set equal to IMAX, JMAX and KMAX
respectively. This means a kernel should alter an uninterrupted set of data. In case
a kernel is updating only selected parts of the data with some interruptions (see
Figure 2.10 for an example), the thread partitioning does not map fully the storage
layout and some warps will have uncoalesced access as a jump occurs in the memory
accesses. The fact that some data is not used can affect also the alignment since the
first accessed memory position is not guaranteed to be a multiple of the L2 cache line
size. In that case, the global memory storage/load efficiency decreases from the ideal
100% (for loading/storing a double precision variable). The number of instructions
per thread can improve the throughput, even if the added instruction provides un-
coalesced accesses. The weight of one code optimization technique against another

†A word is a piece of data with a fixed-size managed as a unit by processor

Listing 2.4: An example [Delbosc, 2014] of mapping of threads to 3 iterators i j and
k.

index1D=blockIdx.y * (gridDim.x * blockDim.x) + blockDim.x * blockIdx.x

+ threadIdx.x;

k= index1D /(IMAX*JMAX) // integer devision

j= (index1D -k(IMAX*JMAX))/IMAX

i= (index1D -k(IMAX*JMAX))-j*IMAX
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is thus case-dependent.
The use of registers is largely controlled by the compiler and the user can put a

limit on the maximum amount of registers in general or for a certain kernel. The rule
of thump is that all variables are stored in registers except large arrays. Registers
are a fast-access memory but they are also limited for an SM and their overuse by a
kernel limits its theoretical occupancy. If a kernel uses more registers than allowed
by the hardware (63 for Fermi and 255 for Kepler GPUs) the excess is moved to
the local memory, which is local to the thread but resides in the GPU slow global
memory. This is called spill-over and should be avoided in general. The data in
local memory is cached in L1 per SM and L2 per device. The L1 and L2 caches
are rather hidden from the user and the accessible caches are texture and constant
memory. Constant memory, for instance, is adapted to store read-only variables
that are required by all threads in a warp. From practical experience, it has been
observed in this work that the L1-cache combined with compiler optimization makes
the effect of the use of constant memory negligible for CFD applications.

The shared memory can be used to reduce the use of the global memory by
loading a subset of the data. The threads in a block can work on this sub-data and
load it back to the global memory at the end of the procedure. For more details to
shared memory, consider the CUDA user manual and some textbooks ([Cheng et al.,
2014, p. 203],[Kirk and Wen-mei, 2013, p. 95])

2.6 Profiler-Driven code optimization

Occupancy is a measure of the performance defined as the portion of active warps
from the maximum number of supported warps. The occupancy is linked to the
number of registers used per kernel, the amount of shared-memory and the run
configuration (number of threads per block). The more is a kernel demanding the
lower its theoretical occupancy. The achieved occupancy, on the other hand, depends
on the number of started threads. The number of threads per block can be very
important in some cases, as the maximum number of allowed blocks can keep the
SM resources underutilized if these blocks of threads are very small. On the other
hand, large blocks consume much more resources reducing the available resources
per thread [Cheng et al., 2014]. In case enough threads are started, the kernel
should reach its maximum occupancy unless a thread divergence is occurring or the
workload is not balanced between threads.

Occupancy is not the unique performance metric and in some cases maximizing
the occupancy is not improving or even damaging the GPU performance as it is
the case for loop unrolling [Volkov, 2010]. Loop unrolling is about changing a loop
content to increase the work done at every iteration and reduce the total number
of iterations (see Listing 2.5). The register consumption of an unrolled loop in-
creases affecting negatively the theoretical occupancy and inevitably the achieved
occupancy also. Surprisingly the performance of unrolled loops is improved. For
a serial execution, loop unrolling has no effect on the performance since the total
number of instructions is the same. Whereas for a vectorized or a massively parallel
execution, it improves the performance by creating more independent instructions.
Consequently, the instruction-level parallelism is improved leading to a better uti-
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Listing 2.5: Example of loop unrolling.

for (i=0; i<N; i+=2){

A[i] = ...;

A[i+1]= ..;

}
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lization of the compute and memory resources of the GPU by providing more eligible
warps for the scheduler. In many cases, the nvcc compiler can figure out automat-
ically how to unroll loops, if the instructions in every iteration are independent.
Loop unrolling as defined above is useful only if the instruction independence is not
explicit on compile time.

Rather than considering only the occupancy, the code optimization should take
into account the reached memory bandwidth and the instruction throughput. This is
done by using the profiler to check the memory access pattern, the thread divergence
and the compute and L2-cache utilization. Profiling is mainly about measuring the
execution time of functions. The NVIDIA profiler has the basic features of a common
profiler but can also compute a large set of performance parameters related to the
memory use, number of executed instructions and achieved occupancy in addition
to many other performance related measures defined in the profiler manual†. It is
an essential tool for understanding the time complexity of a program and rapidly
reach better performance by tackling directly expensive kernels related to a larger
overall effect. The profiler can help diagnose the source of a poor performance by
measuring the quality of a memory access, the thread divergence and the reached
memory bandwidth.

When targeting an improvement in a GPU program, the profiler should be used
to rank the kernels following their execution time. Time-consuming kernels are
identified as hotspots and an improvement on a hotspot has a more pronounced
impact on the global performance. A time-consuming kernel should be first analyzed
in order to identify the performance limiting factors. It could be limited by compute
utilization, memory bandwidth or latency. The profiler can measure the utilization
of the L2 cache (by which all load/stores are migrating) and the compute unit
utilization. If both are similarly high the kernel is quite optimized, nevertheless,
it is always recommended to further check thread divergence, global and shared-
memory use. If both memory and compute units are similarly low the kernel is
latency-bound and probably not launching enough warps to keep the SMs busy.
In that case, the whole algorithm needs to be rethought in order to expose more
parallelism and thus start more threads. It is always worthy to check if the run
configuration is appropriate by measuring the level of activity of the different SMs.
A small number of large blocks, for instance, could be not enough to have at least
one block of threads per SM which will bring some of the SMs to be inactive.

For a memory-bound kernel, few profiler metrics are essential such as the through-
put in [GB/s] for both the load and the store, which can be compared to the theoret-
ical peak. The comparison to the theoretical peak is reflected by the L2 usage. The
number of global transactions per load informs about the coalescence and the align-
ment of the memory access. The same information can be retrieved as a percentage
of efficiency in both load and store. The efficiency reflects directly the access pattern
as coalesced pattern for double precision load yields a 2 operations per load and an
efficiency of 100%. For a coalesced integer loading, the efficiency could exceed 100%.
The computational power is, on the other hand, important for compute-bound ker-
nels. For those kernels, the throughput can be measured in terms of FLOPS and

†http://docs.nvidia.com/cuda/profiler-users-guide/#metrics-reference-3x,retrieved
march 2017

http://docs.nvidia.com/cuda/profiler-users-guide/#metrics-reference-3x
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compared to the theoretical value.

2.7 Conclusion

Parallel computing is about using a large number of processors to run concurrent
computations. The GPU offers two types of parallelism: data and task parallelism.
The data parallelism is about partitioning the data among threads that will execute
ideally the same code. Task parallelism decomposes a large task in independent
subtasks and executes them concurrently over multistreams.

GPU code optimization is about increasing the number of eligible warps and
in-flight instructions and improving the coalescence of the memory access. A key
step to reaching a good performance for a kernel on the GPU is to understand the
mapping of threads into the GPU cores. Moreover, a GPU kernel should make good
use of the instruction throughput and memory throughput both possible only when
the low-level organization of the GPU is understood and assessed with a profiler.

In general, the data access starts in global memory with most HPC applications
being memory-bound. Consequently improving the use of the global memory band-
width is essential for performance tuning otherwise other optimization techniques
will have a negligible impact. Registers, shared, and constant memory are fast access
memories capable of accelerating an algorithm more effectively than global memory.
However, an overuse of their reduced capacities can be a limiting factor for the
occupancy in terms of the number of active threads.

This chapter made it clear that the GPU would not be able to accelerate every
algorithm. Some algorithms will be adapted to its architecture and experience a
large speedup while others can run even slower on the GPU. The next chapter, a
review, addresses this issue for the algorithms used in the design optimization.





3
Literature Review: Use of the GPU in Design

Optimization

Graphics Processing Units (GPUs) are a promising hardware for the acceleration of
computationally demanding applications. These applications span from data mining
to machine learning and life sciences. The field of design optimization benefited also
from this new hardware. After introducing the GPU in the previous chapter and
the way it works efficiently, this chapter reviews its use in design optimization.

The chapter provides an overview of the progress made in design optimization
using GPUs and the challenging limitations mainly in topology optimization, shape
optimization and multidisciplinary design optimization (MDO). It also identifies the
role of the GPU as an accelerator for single-field simulations.

3.1 Introduction

Design engineers are interested in identifying rapidly a design with an optimal perfor-
mance under specified constraints. This problem is easily formulated with the help
of one or more objective functions that depend on typically a large number of design
variables. The optimization process then requires finding a design from the design
space, which minimizes the objective function respecting the set of constraints. For
engineering problems, the design space is large and the objective function is relatively
complicated and this leads to a computationally intensive problem.

This chapter is based on the article:

M.H. Aissa, T. Verstraete, and C. Vuik. Use of modern GPUs in design optimization. In
The 10th ASMO UK / ISSMO conference on Engineering Design Optimization Product and
Process Improvement, pages 1–11, 2014 .
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The objective function itself is problem-specific. In topology optimization, ap-
proaches such as the general Solid Isotropic Microstructure with Penalization (SIMP)
[Bendsøe and Sigmund, 2013] help to formulate the objective function. In shape op-
timization, the design can be changed within a fixed topology (e.g. a fixed number
of holes). The objective function can be derived, for instance, from aerodynam-
ics, structural or heat transfer considerations. In MDO the objective functions are
originating from the interaction of different disciplines (e.g. structure mechanics,
aerodynamics), where different levels of interactions exist. The definition of the
objective function often depends on the solution of some partial differential state
equations (PDE).

For topology optimization, the function evaluation is in many cases delegated to
a method of Computational Structural Mechanics (CSM) for which Finite Element
discretization is the most popular. The evaluation of the objective function consists
then in solving a system of linear equations of the form Ax = b with x the result
from which the objective function depends, matrix A the problem specific system
matrix depending on the design variables and vector b a problem specific right-hand
side potentially depending on the design variables. In aerodynamic shape opti-
mization, a CFD method performs the evaluation solving the non-linear governing
equations (Navier-Stokes, Euler). In multidisciplinary design optimization (MDO),
CFD, CSM and eventually other methods can work in a segregated or interactive
manner to perform the function evaluation. The complexity of the optimization
problem, as described above, leads to complex algorithms with large demand on
computational resources. Thus high computational power and large memory re-
sources are required to solve repeatedly the CSM and CFD models responsible for
the objective evaluation.

The appearance of programmable graphics processing units (GPU) enabled at
relatively low price to access a new high computational power system. GPUs are in-
deed a shared-memory system with a larger number of specialized lightweight cores
than CPU shared-memory systems. The work of the design engineer is then to
successfully divide the global optimization problem into small work packages that
can be handled by a GPU core in a massively parallel manner. The problems that
are easily divided into small and independent work packages are called embarrass-
ingly parallel (e.g. simple image processing functions). If the work packages are
not independent and need intercommunication, the problem is called coarse-grained
parallel (e.g. low-order PDE solvers). Some problems do not show any simple form
of parallelism and are called inherently serial (e.g. scanning and sorting).

The aim of this chapter is to review the use of GPU highlighting its advantages
and limitations. The remainder of this chapter focuses on the use of GPUs to
accelerate optimization methods in topology optimization, shape optimization and
multidisciplinary design optimization.

3.2 Topology optimization

Many approaches have been developed to capture and guide the evolution of the
topology during the optimization process (see Figure 3.1). Two of the main meth-
ods are level-set [Allaire, 2004] and Solid Isotropic Microstructure with Penalization
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(SIMP) [Bendsøe and Kikuchi, 1988; Bendsøe and Sigmund, 2013]. While these two
methods have been widely ported to the GPU (as it will be shown in the coming
subsection), the GPU potential of other methods such as the bubble method [Es-
chenauer et al., 1994] and Evolutionary Structural Optimization (ESO) [Xie and
Steven, 1993] are still to be explored. This section introduces briefly the two first
methods and focuses on their adaptation to the GPU.

3.2.1 Solid Isotropic Microstructure with Penalization method
(SIMP)

The SIMP method is based on a homogenization approach, which describes a struc-
ture as a combination of solid-void micro-elements. A pseudo-density variable (ρ)
characterizes the material (solid ρ = 1, void ρ = 0) and is assumed to be constant
within each element of the structure. The optimization process is about finding the
optimal material distribution satisfying predefined constraints.

This type of integer-programming is highly computationally expensive and one
way to avoid it for large-scale problems is to undertake a relaxation. The relaxation
performs, indeed, an extension of the design space from two values 0 and 1 to the
entire range of values [0, 1]. The problem becomes thus, convex and can be con-
sequently optimized using a gradient-based method. Through the relaxation, the
methods tolerates, however, non-interpretable intermediate values for the pseudo
density. Penalization techniques are used to solve this issue by promoting the in-
teger values 0 and 1 for the pseudo-density (e.g. the power law ρp [Bendsøe and
Sigmund, 2013]). The contribution of elements with intermediate density is increas-
ingly discarded with a higher penalization factor p. The problem formulation with
penalization is, however, not convex and requires the application of a local filter on
the density distribution averaging neighbor elements inside a predefined radius. An
optimizer, such as the Optimality Criteria (OC) [Yin and Yang, 2001] or the Method
of Moving Asymptotes (MMA) [Svanberg, 1987], is then responsible for the update
of the design variables to locate the optimum solution. The linear elasticity state
equations are solved with the Finite Element Method (FEM) and the Finite Element
Analysis (FEA) is the central component of the optimization process in topology op-
timization. It generates the structure answer to loads (e.g. displacements), which is
essential to the evaluation of the objective function.

The application of SIMP methods for large-scale problems with millions of design
variables is computationally demanding and therefore requires a high performance
system. The work of Mahdavi et al. [2006] is an example of a CPU parallelization
for topology optimization. GPUs have been also tested for solving topology opti-
mization problems with the SIMP method. The implementation from Schmidt and
Schulz [2011] of SIMP on structured meshes with a matrix-free conjugate gradient
solver is faster on the GPU than on a 48-core CPU. The GPU implementation from
Wadbro and Berggren [2009] of the SIMP method using the Preconditioned Con-
jugate Gradient solver applied to a 2D plate with heat source yield a speedup of
20x against a single CPU and 3x against multi-threaded CPU. Zegard and Paulino
[2013] implemented the SIMP approach for unstructured meshes in GPU focusing
on the assembly.
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Figure 3.1: Chart of different topology optimization approaches and common tech-
niques for function evaluation such as CSM computation with FEM.
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3.2.2 Level-Set method

The level-set method (LSM) has been originally developed by Osher and Sethian
[1988] as a scheme to advance the motion of an interface and was applied later to
topology optimization. In topology optimization, the level-set method optimizes a
given structure by a sequence of guided motions of the structure boundaries. The
guided evolution converges to an optimum solution by minimizing the objective
function [Allaire, 2004]. The flexible boundaries can represent complex shapes with
the ability to create new topologies through inserting holes or through a structure
splitting and merging. The review of the founder author [Osher and Fedkiw, 2001]
presents a detailed insight into the level-set method and the work of Allaire [2004]
shows a set of CPU applications.

The method is built on two fundamental equations: the boundary evolution and
the state equations. The state equations are often discretized with FE methods,
while the boundary evolution is simpler and can be solved with a Finite Difference
method (FD). FD acts on a reduced group of elements of the mesh, which makes it
suitable for efficient GPU processing [Micikevicius, 2009]. A GPU interpretation of
this method is in the work of Herrero et al. [2013]. Challis et al. [2014] solved an
inverse homogenization problem with a GPU implementation of a level-set method
targeting high-resolution topology optimization. An increasing speedup with the
problem size is reported reaching 13x for a 3D problem with over 4 million design
variables [Challis et al., 2014]. For the parallelization of a parameterized LSM with
Isogeometric Analysis Xia et al. [2017] reported speedups ranging between one to
two orders of magnitude for the different steps of the optimization algorithm (e.g.
assembly, sensitivity analysis). The reported speedups for the assembly on the GPU
against the serial Matlab CPU implementation exceed 600x while the same GPU
implementation is 65x times faster than a serial C implementation. Matlab is rec-
ognized to have performance issues when dealing with large-scale problems because
of the inefficient memory allocation [Duarte et al., 2015]. The linear system of
equations has been solved, however, on the CPU while it is in general the most
time-consuming step in topology optimization [Duarte et al., 2015].

3.2.3 Underlying FEM

The methods used to solve the topology optimization problem present, in general,
few common steps: (1) the area of application dictates the objective function, (2) a
design evaluation is performed mostly by solving a linear system of equations Ax = f
and (3) an optimization scheme updates the design variable based on the evaluated
objective. The level-set method, however, advances also a boundary equation in
time. The solver of the FEM discretized state equations is the most time-consuming
part of the optimization and should be the focus during the adaptation to the GPU
architecture. The rest of the procedures such as the optimizer (e.g. OC, MMA) and
boundary evolution (for level-set method) are not time-consuming and thus, not
directly relevant for a high acceleration through the GPU. Georgescu et al. [2013]
provide a review on the use of the GPU in all FEM steps from preprocessing to
linear system solving and post-processing. This subsection focuses on the assembly,
the solver and the mesh.



34 Literature Review: Use of the GPU in Design Optimization Chapter 3

Linear solver

The system of equations discretized with FEM can be solved using a direct solver [Davis,
2006] such as the LU factorization or using an iterative solver. Direct solvers are
more appropriate for small and averagely sized problems since the memory con-
sumption scales thus with the number of variables [Wadbro and Berggren, 2009]
following O(3/2N). Moreover, the large amount of inter-processors communication
makes the direct solver challenging for parallelization [Mahdavi et al., 2006]. Sparse
direct solvers, on the other hand, can process large-scale problems as they handle
sparsely filled matrices. For some applications an approximation of the solution
can be enough such as in steady CFD simulations, in that case iterative solvers are
more appropriate. They require less memory (O(N)) and are faster than sparse
direct methods for large scale problems which explain their extended use on the
GPU [Challis et al., 2014; Bolz et al., 2003]. If the system matrix is symmetric
and positive definite, a preconditioned Conjugate Gradient solver (PCG) is favor-
able [Wadbro and Berggren, 2009]. Multigrid has been also implemented on the
GPU to accelerate the convergence of linear system solvers [Geveler et al., 2011,
2013]. Cevahir et al. [2010] accelerated a Conjugate Gradient solver for unstruc-
tured meshes in a multi-GPU cluster. He used hypergraph partitioning [Catalyurek
and Aykanat, 1999] to reach a fair load balancing and reduced the CPU-GPU com-
munication, which resulted in an implementation running on 32 GPUs to be faster
than 256 CPUs divided into 16 nodes of 16 CPUs per node. Duarte et al. [2015]
reached a speedup of 13x using an element-by-element PCG solver [Augarde et al.,
2006] on NVIDIA GTX Titan against Intel Core i7 CPU. The author used greedy
coloring algorithm [Gebremedhin et al., 2005] to avoid race-condition within the
used matrix-free iterative solver.

The system matrix is sparse and the sparse matrix-vector multiplication (SpMV)
is a key feature. A first attempt to take advantage of the GPU regarding SpMV is
to write kernels for the GPU responsible for the multiplication. This approach offers
a large flexibility and the kernel can be adapted to specific needs of the problem to
be solved in regard of the data storage layout and assembly. Good performance of
SpMV kernels requires, however, an important development effort [Bolz et al., 2003;
Geveler et al., 2011]. Geveler et al. [2013] based all the solver computation on one
kernel for SpMV, which simplified the optimization. All the optimization effort was
focused on one kernel with advantages for the whole solver. This approach brings,
however, a programming overhead to turn all solver stages to SpMV functions. Many
efficient SpMV GPU implementations exist already provided for instance by CUDA
libraries (CUSPARSE†) or by PETSc [Minden et al., 2013]. Wadbro and Berggren
[2009] used the CUBLAS‡ library, the CUDA version of the linear algebra library
BLAS, for inner products in the PCG. The libraries OP2 [Mudalige et al., 2012]
and LISZT [DeVito et al., 2011] provide a high-order abstraction for matrix-vector
multiplication. The GPU global memory is relatively small for one GPU card (e.g.
12GB for the K40) and therefore an explicit building of the global system matrix
limits the maximum size of the problems that could be treated. FEM problems in
topology optimization are inherently local, thus a matrix-free solver of state equation

†http://docs.nvidia.com/cuda/cusparse/,retrieved March 2017
‡http://docs.nvidia.com/cuda/cublas/,retrieved March 2017

http://docs.nvidia.com/cuda/cusparse/
http://docs.nvidia.com/cuda/cublas/
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is feasible [Schmidt and Schulz, 2011] and can be even one order of magnitude faster
than a matrix storing solver [Reguly and Giles, 2015].

Assembly

Standard solvers build the system matrix by first computing node contributions
and then summing them up to central elements for a global assembly. The solver
is, in general, the most time-consuming part of a structure optimization method
but adapting the assembly part to the GPU reduces the need for a time-consuming
CPU-GPU transfer in every optimization iteration. During the assembly, a problem
occurs if nodes are contributing in a parallel manner to build the element stiffness
matrix. Two or more nodes could add their values to the same element at the same
time, which causes a race condition (Cf. section 2.4) associated with an informa-
tion loss. Zegard and Paulino [2013] used a graph coloring technique to avoid this
problem coloring a set of non-racing nodes with the same color. Different colors
cover the entire computational domain and all nodes of the same color can be run
safely in parallel. Another approach is to assemble the stiffness matrix element-wise,
which does not cause a race condition but results in a redundant calculation of same
node contribution for different adjacent elements. Cecka et al. [2011] focus more on
FEM assembly on GPU presenting low-level code optimization on CUDA targeting
a speedup of 30x with single precision GPU code against double precision CPU ver-
sion. The problem of race condition is peculiar to any parallel programming also
using the CPU (e.g. with OpenMP [Jarzebski et al., 2015]).

Mesh

The mesh has a major impact on the reached GPU acceleration in structure analysis
and optimization. Both size (number of cells) and type (structured/unstructured,
multi-block) of the mesh are important. An unstructured mesh provides certainly
more flexibility to mesh complex domains surrounding complex geometries but it
is more challenging to reach a high GPU speedup with such a mesh. The absence
of ordered indexing and regular neighboring (see Figure 3.2) make the memory
access for the node or the cell data irregular and thus uncoalesced. For unstructured
meshes, the cell-based approach presents at least more regularity compared to vertex-
based meshes since the number of neighbor cells is constant unlike neighbor nodes.
A vertex can have a different number of related vertices depending on its place in
the mesh. A cell with m edges, on the other hand, has either m neighbors when
situated in the interior of the computational domain or less when situated in the
boundaries (e.g. m − 1 or m − 2). For unstructured meshes and especially the
vertex-based scheme, node renumbering and an index list can help keep a partly
coalesced memory access. It is more difficult to implement an efficient application
for an unstructured mesh on the GPU than on the CPU. The CPU offers, indeed,
much more cache memory per processor, which can handle the irregularity of the
memory accesses for unstructured meshes.

It is obvious that structured meshes are better fitted to the GPU architecture.
In turbomachinery for instance multi-block structured meshes are widely used. A
multi-block mesh layout is intended to improve the mesh quality towards accurate
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Figure 3.2: On the left a structured mesh with a fixed number of neighbors for cells
and vertices. On the right an unstructured mesh with the same number of nodes.
The number of cell neighbors for the unstructured mesh is the same for all interior
elements (m = 3) but for interior vertices the number of neighbors varies from 5 to
7.

CFD results [Hirsch, 2007]. The layout for a body-fitted mesh around complicated
geometries presents blocks of different sizes and many interfaces between the mesh
blocks. Large blocks provide the GPU kernels with a high amount of independent
operations for processing at the same time, which maximizes the number of active
threads. The limiting factor, in this case, is the register usage. Since the kernels are
starting a large number of threads and computing large algorithms with many lines
of code, the total number of used registers is very high. The register consumption
limits the achieved occupancy (Cf. section 2.6). A way to improve the occupancy
for these memory-demanding kernels is to divide them when possible into small,
less memory demanding, sub-kernels. Blocks with few cells are, on the other hand,
in fact not limited by register usage but by the small number of started threads.
Small mesh blocks do not provide the GPU with enough active threads to hide the
memory latency. In this case, the multistream technique can improve the occupancy
by starting more than one kernel at the same time. The mesh block interfaces require
a cell update between blocks and this procedure involves few cells proportional to
the surface-to-volume ratio (rStoV ∗ NCells). A solution is to use a mesh generator
that takes into account the reduction of the number of blocks and neighboring blocks
along with the increase in the block size in terms of cells (e.g. hMETIS [Karypis and
Kumar, 1998]).

Finally, the process of meshing has been traditionally the responsibility of a CPU
with a large set of mesh optimization available on the CPU. D’Amato and Vénere
[2013] used however GPU for meshing.

3.3 Shape optimization

The shape optimization could be considered as a fine tuning for the topology deliv-
ered by the topology optimizer. The topology remains indeed untouched throughout
the shape optimization process (e.g the number of structure parts, the number of
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holes) and only the shape is changing to meet the problem specific constraints and
objectives.

The shape is, in general, parameterized through mathematical function (e.g.
Bezier splines). The design variables of the shape optimization problem are taken
from the set of parameters controlling the geometrical construct, such as the spline
control points or the curvature. For many shape optimization problems, the flow is
the driving factor through the optimization. For external flows over whole planes or
wings, the optimization reduces the drag and increase the lift, while for internal flows
through engines or channels, it increases mainly the engine efficiency by reducing
the losses.

Depending on the nature of the flow and the leading phenomena different equa-
tions have to be solved (see Figure 3.3). Lefebvre et al. [2012] optimized a 2D/3D
Euler solver for the GPU. Brandvik and Pullan [2011] implemented a source-to-
source compiler to execute a CPU Navier-Stokes solver on the GPU reaching a
speedup of one order of magnitude for turbomachinery applications. Kampolis et al.
[2010] used a Navier-Stokes solver with an evolutionary optimization algorithm for
both external (airfoil) and internal applications (compressor cascade airfoil) achiev-
ing a speedup of 27x. Shape optimization on the GPU raises similar issues as in
topology optimization regarding race condition and mesh-dependent performance.

In the CFD area, particle-based methods (e.g. Solvers for Lattice Boltzmann
equations) are reported to profit the most from GPUs [Rinaldi et al., 2012]. These
types of solvers provide a large number of independent simple arithmetic instruc-
tions that are proportional to the number of particles used. The Lattice-Boltzmann
method is, however, not adapted to transonic and supersonic compressible flows [Chen
and Doolen, 1998], which are standard flows in turbomachinery. He and Luo [1997]
evoked indeed a practical limit for the Mach number of M < 0.15 for Lattice-
Boltzmann methods. Finite Volume (FV) solvers, on the other hand, compute
fluxes on cell faces involving a number of neighbors that increases with the or-
der of the solver. Consequently, FV solvers run more arithmetic operations per cell
and present more data dependency achieving smaller speedups on the GPU than
particle based solvers. Nevertheless, a good management of the workflow and the
GPU features, such as multistreaming, can lead to speedups of one to two orders of
magnitude [Niemeyer and Sung, 2014b].

In some GPU-accelerated applications [Georgescu et al., 2013; Bell and Garland,
2008] with a major part of the execution time devoted to the linear solver, the
CPU is used for the calculation of the right-hand side and the system matrix, for
which the high porting effort is not worth the reduced performance gain. A linear
solver is in general implemented on a GPU using a low-level programming language.
The flexibility of the low-level approach makes it possible to adapt the data storage
and the algorithm to the sparsity pattern (non-zero elements distribution) of the
system matrix in order to enhance the performance. In this context, the effort
is concentrated on accelerating the sparse matrix-vector product (SpMV), which
constitutes the core of many linear solvers. Bell and Garland [2008] examined the
optimization possibilities for SpMV on GPU without reordering the system matrix.
He identified the diagonal format (DIA) as suitable for structured meshes and the
Hybrid matrix format (HYB) for unstructured ones. The optimization is part of
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Figure 3.3: Relation between optimizer and function evaluation in shape optimiza-
tion.

the CUSP library. Cecka et al. [2011] did similar work for problems based on Finite
Element Methods (FEM). They examined the effect of the memory optimization
on the overall performance comparing local, global and shared memory. Reguly
and Giles [2012] reviewed relevant research for SpMV on GPU and concentrated
on GPU tuning of SpMV operations for the Compressed Sparse Row (CSR) matrix
format making use of the L1-cache locality, shared memory, and thread cooperation.
The author presents a speedup of 1.4x over cuSparse and suggests that cache hit
maximization is the key method behind the observed performance gain. The SpMV
method was used, however, for a relatively simple Poisson problem which is not
representative for global performance gain in realistic FEM or CFD problems. The
work is also heavily based on the Fermi architecture with the hardware characteristic
hard-coded in the performance fine tuning algorithm.

The performance of iterative solvers on the GPU has been gradually increasing
but the bottleneck remains the inherently serial preconditioners such as the Incom-
plete LU factorization (ILU). These functions have been the subject of extended
research [Saad and Van Der Vorst, 2000]. In order to improve the performance,
the system matrix has to be reordered. This expose more fine-grained parallelism
and thus provide the GPU with more independent instructions. Level-scheduling
is one established alternative to elevate the parallelism of the factorization, where
independent rows of the system matrix are implicitly grouped in the same level.
Graph-coloring is another method where an explicit reordering is performed giving
independent matrix elements the same color, then every color is thread-safe for a
massively parallel linear solver. Naumov et al. [2015] showed a parallel graph col-
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oring method reaching a higher parallelism than in level-scheduling. His work is
included in the cuSparse NVIDIA library. Dutto [1993] examined the effect of many
reordering techniques on the GMRES solver convergence behavior. Another method
to extract more parallelism, introduced by Chow and Patel [2015], is to transform
the ILU factorization in a minimization problem of a set of equations that could
be computed in groups independently. Groups can be so small to contain only one
equation making it possible for every non-zero element of the incomplete L and U
matrices to be computed asynchronously and in parallel. This ILU version can be
found in ViennaCL† and MAGMA sparse [Anzt et al., 2014].

3.4 Multidisciplinary Design Optimization (MDO)

MDO methods consider a multitude of disciplines when optimizing a design. An
example of an MDO method is the bi-disciplinary optimization making use of struc-
ture analysis and flow analysis [Verstraete, 2010]. The general pattern seen in the
literature is that the CPU governs the MDO method and starts the GPU as an
accelerator to perform the bulk of the arithmetic operations. In general, a single-
discipline simulation is ported (e.g. CFD or CSM) to the GPU as seen above for
topology and shape optimization but not the whole MDO algorithm. The high
computational power of the hardware added to its limited memory make it more
adapted to accelerate single-field simulations rather than combining multiple sim-
ulations that could possibly not fit in the device memory for realistic test cases.
Consequently, GPUs have no tangible impact on the MDO methodology beside the
fact that they accelerate single-field simulations in a similar way traditional clusters
do and, to the knowledge of the author, no MDO technique has been created based
on the specificities of the GPU.

3.5 GPU in meta-heuristics

Metaheuristic methods can be classified as population-based or trajectory-based‡.
Population-based methods, such as Evolutionary algorithms; swarm intelligence and
particle swarm, manage a set of interacting individuum (solutions), that are evolving
in every optimization iteration. These methods focus more on the exploration of the
solution space rather than in the exploitation of the neighborhood of one solution.
Single solution-based methods such as advanced local search, simulated annealing
or Tabu search update continuously only one solution toward finding an optimum.
Some of the single solution-based methods keep track of all intermediate solutions
(e.g. Tabu search) others just replace the old with the new solution. All single
solution-based methods focus more on the refinement of a solution through the
exploitation of local neighborhood than a general global exploration of the solution
domain.

Some other methods are hybrid combining both exploration and exploitation
features. These methods start with a wide exploration of the solution space which

†Rupp, K. “ViennaCL.” http://viennacl.sourceforge.net
‡also referred to as single solution methods

http://viennacl.sourceforge.net


40 Literature Review: Use of the GPU in Design Optimization Chapter 3

is progressively refined. As seen in shape optimization some metaheuristic methods
are applied for design optimization in GPU [Asouti et al., 2011]. Many other meta-
heuristic methods have been already used in shape and topology optimization but
only implemented for CPU (e.g. Differential evolution [Verstraete, 2010]). The
GPU implementations of many meta-heuristic methods in other areas [Krömer et al.,
2014; Talbi, 2014] are encouraging for applying them in design optimization. Ant
colony optimization (ACO) is widely used [Cecilia et al., 2013] along with Genetic
Algorithm [Langdon, 2011], local search [Van Luong et al., 2013; Czapiński, 2013]
and Particle Swarm Optimization [Mussi et al., 2011]. Taillard et al. [2012] explored
the GPU potential for hybrid metaheuristic methods.

3.6 Discussion

The CUDA developer community is increasing and useful tools help designing well-
performing codes (debugger, profiler and memory checker). The prompt change in
the GPU hardware scene from generation to generation requires, however, a contin-
uous updating of developed applications. Whereas a set of optimization techniques
coming from tremendous work can be made insignificant with the next hardware
generation as for the computing precision for instance. First GPUs of 2007-2009
did not support double precision calculation and an important development effort
has been invested to mix GPU single-precision and double-precision to achieve fast
results without an important accuracy loss [Göddeke, 2010]. This work is of less
interest when using recent GPUs which support double precision†. Moreover, some
changes in the GPU memory layouts, such as a larger shared memory or a larger L1
cache, can require a code to be re-edited to keep an optimal performance.

CUDA itself was a relief from the graphics programming burden of early GPUs
and a further abstraction seems unavoidable. The hardware specific optimization
should be separated from the algorithm itself and the hardware-oriented code tun-
ing should be rather a responsibility of a low-level system. One solution is to use
a directive-based tool such as openACC or to apply toolbox libraries such as CUS-
PARSE and Thrust. A trade-off is inevitable between the higher performance of the
hardware specific tuned code and the portability of the easy maintained code. But
a high-level abstraction should not make from a GPU a black box for users. Learn-
ing the hardware in use helps always to design adapted algorithms and recognize
algorithms with high parallelism potential.

3.7 Conclusion

This chapter covered the use of the GPU in the acceleration of design optimiza-
tion problems focusing on topology optimization, shape optimization and multi-
disciplinary design optimization. Interesting speedups of one to two orders of mag-
nitude have been reported for topology optimization problems and aerodynamics
shape optimization. The core of the optimization process is often the simulation
of the governing equations in single fields (CFD, CSM). Porting an optimization

†Mixed-precision is still a hot topic for gaming GPUs
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application is then more about porting the CSM/CFD solver. In all reviewed work
the computational tasks are distributed among CPUs and GPUs taking advantage
of both systems.

The review of the literature suggested using the GPU to accelerate single-discipline
simulations instead of running an entire MDO algorithm on it. While the GPU has
been successful on accelerating data collection, assembly and linear system solving,
no change has been observed in the multidisciplinary optimization methods. In that
sense the GPU is not able to change massively the existing paradigms in MDO†.
The impact of the GPU is mainly the acceleration of single-discipline simulations in
the same way a cluster of CPUs does. Since the architecture of the GPU is differ-
ent from common CPU clusters, it requires some changes in the algorithms and the
implementation of single-discipline simulations.

In this work, the focus is on aerodynamic optimization, especially using the Finite
Volume discretization, as an example of single-field optimization. For that purpose,
the explicit then the implicit time-stepping are implemented and studied in details
and a comparison of both methods follows out of the use of this two tools.

†MDO paradigms as for example defined in the work of Martins [Martins and Lambe, 2013]





4
GPU-accelerated CFD Simulations with Explicit

Time-Stepping

CFD simulations are nowadays the cornerstone of design evaluations for a large
variety of components (aircraft, car, turbomachines, etc.). While the accuracy of
these simulations is proven and still improving, they are still very time consuming
which leads to a long design cycle. Modern High-Performance Computing systems,
especially Graphic Processing Units (GPUs), are able to alleviate this inconvenience
by accelerating the design evaluation itself.

This chapter presents a validated steady CFD solver with explicit time-stepping
running on the GPU. First, the Reynolds-averaged Navier-Stokes equations are in-
troduced then the software implementation of the GPU solver. The solver is vali-
dated on a turbine nozzle guide vane and a large benchmark on a set of 2D and 3D
test cases has been performed. An achieved speedup of about two orders of magni-
tude makes it possible for the design optimization algorithm to run on a high-end
computer instead of a costly large cluster.

4.1 Reynolds-Averaged Navier-Stokes Equations

The integral form of the Reynolds Averaged Navier-Stokes equations (RANS) using
conservative variables is listed below [Blazek, 2005, p.16]:

This chapter is based on the article:

M. H. Aissa, T. Verstraete, and C. Vuik. Aerodynamic optimization of supersonic com-
pressor cascade using differential evolution on GPU. In AIP Conference Proceedings. Eds.
Theodore Simos, and Charalambos Tsitouras., volume 1738, page 480077. AIP Publishing,
2016 .
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∂
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( ~Fc − ~Fv)dS =

∫
Ω

~QdΩ , (4.1)

where Ω is the cell volume, δΩ is the cell surface and ~W is the conservative variable
vector: ~W = [ρ, ρu, ρv, ρw, ρE]. Convective and viscous fluxes along with the source
term are defined as follows:

~Fc =
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and the viscous stress tensor τ after application of the Stokes’ hypothesis (λ+ 2
3µ = 0)

reads in tensor notation:

τii = 2µ(
∂vi
∂xi
− 1

3
div~v)

τij = τji = µ(
∂vi
∂xj

+
∂vj
∂xi

).

(4.6)

The Roe scheme [Roe, 1981] is used to discretize the convective flux and the central
scheme is used to discretize the viscous flux. The turbulence is modeled with Spalart-
Allmaras (SA) model [Allmaras and Johnson, 2012] in the Finite-Volume framework
using a first-order upwind scheme. The “method of lines” is used and thus space and
time integration are treated separately. After the space integration, which consists of
summing the fluxes and source term in a residual R, a time integration advances the
flow toward a stationary state. The equation (4.1) can be reformulated to highlight
the time integration as follows:

(ΩĪ)I
∆tI

∆ ~Wn
I = −β ~R(n+1)

I − (1− β)~RnI , (4.7)

with ∆ ~Wn
I = ~Wn+1

I − ~Wn
I the solution update, which depends on a combination of

the two residuals at time point n and n + 1. While the residual RnI at time point
n is available right after the space integration, the residual Rn+1

I depends on the
solution at time point n+ 1, which is not available before the time integration. For
β = 0, the right-hand side (RHS) of equation (4.7) contains only available quantities
and thus the solution update can be computed explicitly. In this work the explicit
time integration implements a Runge-Kutta scheme following Jameson et al. [1981]
for the time integration:
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While the classical Runge-Kutta scheme stores the intermediate stage values W
(k)
I ,

this formulation stores only the initial solution W
(0)
I and the current solution W

(k)
I

along with the residual. The memory footprint is consequently independent of the
number of stages m leading to a constant memory consumption of three arrays (of
a length N = NcellsNvar) instead of 2 +m arrays.

4.2 Implementation and discussion

The GPU version of the RANS solver is based on a CPU in-house code. The porting
procedure has been performed function by function guaranteeing the exact same
output between both versions after every porting step. At the end of the porting,
only the initialization and the post-processing remained on the host side and are
performed by the CPU. The entire flow computation has been delegated to the
GPU as depicted in Figure 4.1.

The explicit time-stepping is based on a set of embarrassingly parallel stencil-
based operations. A kernel computes the convective fluxes, a second computes the
viscous fluxes and a third computes the source terms. The three kernels add, in
turn, their contributions to the same residual. Another kernel performs the time
integration based on the old solution and the new computed residual. These kernels
proceed on all mesh cells (or faces) and have similar run configurations. Boundary
and interface updates are performed at the end of every Runge-Kutta stage. These
updates affect only a portion of the cells depending on the surface-area-to-volume
ratio, which depends on the number of mesh blocks within a multi-block body-fitted
mesh layout as depicted in Figure 4.2. The implementation of the main kernels will
be presented and different implementation strategies will be discussed focusing on
their relative performance on the GPU.

4.2.1 The convective flux evaluation

The convective flux evaluation will be treated in detail as an example of perfor-
mance analysis for a typical CFD kernel. First, the scheme is introduced in order
to clarify the algorithm behind the implementation. Then, a set of implementa-
tion possibilities will be analyzed using some performance parameters such as the
device utilization and the achieved memory bandwidth. Moreover, the influence of
the scheme order on the performance is assessed along with the effect of the GPU
multistreaming.
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Figure 4.1: The solver computes first the inviscid and viscous Residuals along with
the source term. Secondly the time integration takes place and finally boundaries
and mesh interfaces are updated.
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Figure 4.2: Plot of the multi-block mesh layout, which is used for all meshes in this
work, highlighting the boundaries and interfaces.
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Figure 4.3: Two mesh blocks showing the different type of cells in a computational
domain and the interface update (ghost cells swap).

Scheme

The convective flux is discretized by a flux-difference splitting scheme, which eval-
uates the flux at a cell face by solving a Riemann problem. The time-consuming
Godunov solution [Godunov, 1959] of the shock tube problem is avoided by solving
the linearized problem introduced by Roe [1981], which is known for solving shocks
accurately [Blazek, 2005] and reads as follows:

(~Fc)I+1/2 =
1

2
[~Fc( ~WR) + ~Fc( ~WL)− |ĀRoe|I+1/2( ~WR − ~WL)] , (4.9)

with ĀRoe the Roe matrix defined as a combination of the conservative variables ~WR

and ~WL [Roe and Pike, 1985]. ~Fc( ~WR) and ~Fc( ~WL) are evaluated following equation
(4.2). The subscripts L and R refer to the left and right state of the considered face

as depicted in Figure 4.4. The span of involved grid cells in order to compute ~WL and
~WR determines the degree of the space integration. When these states are simply
set respectively equal to the content of the right and left cells of the active face,
the scheme is first-order accurate. Second-order accuracy is achieved through the
combination of more than one neighbor to define the right and left states. In this
work, second-order accuracy is reached by using the Monotone Upstream-Centered
Schemes for Conservation Law (MUSCL [Van Leer, 1979]). Left and right state are
then defined as follows:

UR = Ui+1 −
1

2
ΨR(Ui+2 − Ui+1)

UL = Ui −
1

2
ΨL(Ui − Ui−1)

(4.10)

with Ψ a limiter function preventing the solution from spurious oscillations near
strong discontinuities [Blazek, 2005]:

ΨL/R =
1

2

[
(1 + κ̂)rL/R + (1− κ̂)

]
ΦL/R (4.11)
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Figure 4.4: Definition of the right and left states at a cell face for cell-centered Finite
Volume approach.

where rL/R is the ratio for consecutive solution variations (∆WL/∆WR), Φ a slope
limiter and κ̂ a parameter to determine the spatial accuracy of the interpolation. The
second-order upwind approximation is implemented in the MUSCL scheme by setting
κ̂ = 0 and using the Venkatakrishnan slope limiter function [Venkatakrishnan, 1991].
The final formulation of the left and the right states for this second-order accurate
scheme is the following:

UR = Ui+1 −
1

2
δR

UL = Ui −
1

2
δL

(4.12)

with

δR =
∆Wi+2(∆W 2

i+1 + ε) + ∆Wi+1(∆W 2
i+2 + ε)

∆W 2
i+2 + ∆W 2

i+1 + 2ε

δL =
∆Wi+1(∆W 2

i + ε) + ∆Wi(∆W
2
i+1 + ε)

∆W 2
i+1 + ∆W 2

i + 2ε

(4.13)

with ∆Wi = Wi −Wi−1 enlarging the requested stencil from 2 to 4 cells in every
space dimension. The above formulation is valid for interior cells as defined in Figure
4.3. For a face on a boundary cell and belonging to a non-slip wall or a symmetry
boundary, the flux is directly evaluated using equation (4.2) with an interpolated
value of the pressure. Consequently, every face on the boundary has to be checked
for belonging to a wall or a symmetry boundary.

The CPU has a powerful flow control unit able to optimize the cost of an extra
conditional statement. Unlike the CPU, an extra conditional statement creates pos-
sibly a thread divergence inside warps for the GPU kernel. The divergence can be
solved by making sure an entire warp computes the same flux whether the wall flux
(cf. Equation (4.2)) or the Roe flux (cf. Equation (4.9)). The different execution
paths, however, deteriorate the load balancing between the different streaming mul-
tiprocessors (MPs) on the GPU. In fact, some MPs will be performing the lengthily
standard flux calculation using the Roe scheme while others will be calculating the
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simplified version for wall cells. Therefore a separate kernel has been devoted only
for boundary faces. The latter kernel suffers, however, from the small number of
faces to treat which decreases its occupancy. Multistreaming is used at this level to
run concurrently many boundary flux updates.

Another formulation of the convective flux from Yee [1987] makes it possible to
treat all faces at the same time separating the flux to a central part and a dissipation
part. This scheme is used by commercial solvers and goes, however, beyond the scope
of this work.

Different implementation strategies

The convective flux computation exposes a relatively fine-grained parallelism en-
hanced by a good data locality, since every face flux depends only on two neighbors
for the first-order evaluation or four neighbors for the second-order evaluation. As
a throughput-oriented device, the GPU delivers better performance when kernels
start a large number of lightweight independent threads. The number of started
threads depends on the decomposition of the algorithm into small pieces of work.
The overall performance of the kernel is the product of an optimized distribution of
the work among the threads in a way that maximizes the number of started threads
while at the same time preserves the data locality and the threads independence.
Before detailing the different implementation strategies analyzed in this work, the
following paragraph addresses the question of why not to map threads to design
variables even if this mapping increases the amount of independent work pieces.

By mapping threads to flow variables the number of started threads is equal to
the number of cells multiplied by the number of variables. Three-dimensional flows
provide 5 flow variables and few turbulence-related variables. The one-equation
Spalart-Allmaras turbulence model adds only one variable namely the turbulent
eddy viscosity. Consequently, mapping the threads to these flow variables increases
the number of used threads by 6 times, which improves the thread level parallelism
and the achieved occupancy. At the same time, the dependency between the coupled
flow variables requires inter-threads communication, which is only possible within
the shared-memory and with a costly thread synchronization. The communication
harms the performance and increases the risk of memory misusage (e.g. race condi-
tion). Moreover, a load balancing problem can occur as the threads are performing
different computations for different flow variables. The small gain in thread-level-
parallelism through the mapping to flow variables is rather not able to outbalance the
reduction of the instruction-level-parallelism engendered by the coupled variables.
Therefore, it has been chosen to make every thread responsible for updating all flow
variables for the rest of the analysis. The workload is the same among threads and
no synchronization is needed during the flux evaluation.

The basic mappings treated in this work cover mapping threads to (1) cells, (2)
space directions or (3) cell faces. Figure 4.5 depicts the three cases and specifies
for each case the number of calls to the kernel in order to cover the entire mesh
and the number of updated faces per thread. Figure 4.6(a) shows the procedure to
follow to switch from a cell-based approach to a space direction-based approach and
finally to a face-based approach. For these three alternatives, the focus is on the
amount of redundant work and the number of started threads, which is depicted in
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Figure 4.5: Plot of some different threads mapping strategies.

Figure 4.6(b).
When mapping one thread to one cell, every thread is responsible for 6 faces.

One call to this kernel, which starts NThreads = NCells, is enough to update all cells.
Such a kernel is, however, very demanding in registers which lowers its theoretical
occupancy. Moreover, the contribution of faces common to two cells is computed
twice, once by every cell, which is a redundant work. Since a cell has six common
faces with neighbor cells †, the cell-based approach computes the same contribution
in total six times.

In order to limit the register consumption of a kernel and reduce the redundant
work, it is usual to split it into a set of sub-kernels. Splitting the computation into
a set of kernels enables also special code optimization for every kernel call fitting
its specific range of data. In the current case the threads can be mapped to space
directions and every kernel call is responsible only for one direction. In total, three
calls to such a kernel are needed to update the whole mesh and in every call two
faces are computed.

Even though the same amount of work is done for both approaches (cell and
direction-based mappings) and the same number of threads is started, splitting a
large kernel reduces the register consumption which boosts the occupancy of the
split kernel and provides a larger number of concurrently running threads. On the
other hand, running one large kernel as for the cell-based mapping decreases the
total calls to the local memory as variables are more often reused and stored in
registers.

Both kernels suffer from a redundant calculation of the contribution of common
faces, which are shared between two cells. Especially with compute-bound kernels,
such as the treated case of the inviscid flux evaluation, a redundant calculation could
be very harmful to the overall performance of the kernel.

In order to remove the redundancy, a third alternative maps threads to a faces.

†six common faces in case it is not a boundary cell
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Figure 4.6: (a) Relation between cell, direction and face-based approaches for the
convective flux computation, (b) the number of started threads and redundant calls
for the different approaches.

For 3D structured meshes, six faces contribute to the residual of the same cell. In
the CPU serial implementation, the residual computation is done face-wise as the
value of the flux generated by a face is added to one neighbor cell and subtracted
from the other cell. The flux calculation is based on a summation of the face contri-
butions to the central cell, which is however not thread-safe for parallel execution.
Multiple faces could add face contributions at the same time to the same cell and
consequently, some contributions could be discarded corrupting the flow solution
and the deterministic character of the simulation. Multi-coloring, which creates
groups (colors) of faces not sharing cells in common, is used to solve this issue. For
every color the computation is thread-safe but the number of started threads for
every kernel is reduced to the number of faces per color. For a structured mesh, the
colors have an equal number of faces and the number of threads is NFaces/NColors.
For a 3D flow, 6 colors are enough to run thread-safe computations with two colors
by flow direction, one color for odd-indexed faces and the other for even-indexed
faces. On the other hand, threads of the same color are not accessing consecutive
memory positions anymore, which reduces the overall memory coalescence to striped
access. The average number of memory transactions per memory request increases
thus from 3 for the redundant computation kernel (coalesced access) to 5† for the
multi-coloring kernel (striped access).

In the following, the direction-based mapping kernel with redundant calculation
is compared to the face-based mapping kernel with multi-coloring. The comparison
is not trivial as both have competing advantages. The memory coalescence is very
important for memory-bound kernels while a redundant computation is very harmful
to compute-bound kernels. Figure 4.7 shows an example of unit utilization for the
face-based mapping (Multi-coloring) and the direction-based mapping (No Multi-
coloring). Both kernels reach a higher utilization for the compute unit (up to 90%)

†The number of memory transactions has been retrieved using the NVIDIA profiler.
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Figure 4.7: The effect of the Multi-Coloring (MC) on the first-order convective flux
evaluation on the GeForce 780 for different mesh block sizes.

than for the memory unit (up to 40% for MC face-based mapping and up to 20% for
direction-based mapping). With the redundant calculation of the direction-based
mapping, the compute unit saturates for a smaller number of cells as the compu-
tations per thread are doubled. Consequently, the reached memory utilization level
is very low leading to a lower memory bandwidth (see Figure 4.8) and thus a lower
overall performance as depicted in Figure 4.9.

In summary, it is possible to switch from a cell-based to a direction-based ap-
proach through kernel splitting and from a direction-based to a face-based approach
through multi-coloring. The redundant work is reduced respectively but also the
number of started threads per kernel which is very important for the performance of
the kernel. Figure 4.9 compares the performance of the three versions (cell, direction
and face-based mappings) measured in updated cells per second for different mesh
sizes. The convective flux evaluation on the GPU using the multi-coloring version of
the code outperforms both the cell and the direction-based mapping. In essence, the
register consumption and the saturation of the compute unit govern the performance
of the convective flux evaluation.

Influence of the spatial accuracy on the GPU performance

In order to analyze the effect of the order of the convective flux discretization on the
performance of the kernels on the GPU, both evaluations the first and the second-
order have been compared. The key performance parameter for the GPU kernels, in
this work, is the number of updated cells per second as shown in Figure 4.9. More-
over, a study of some other performance parameters, such as the device utilization
(memory and compute units) and the global memory bandwidth, is performed in
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order to understand the cause of the performance difference.
Figure 4.10 shows the occupancy† and the SM efficiency‡ of the second-order

evaluation of the convective scheme. The GPU multistreaming feature has been de-
activated during the profiling to be able to measure the execution time of every mesh
block when having access to the full GPU resources. Small mesh blocks counting
512 cells can keep the SMs busy only for 20% of the time. This is caused by the
lack of warps to hide the important memory latency on the GPU. Large blocks of
thousands of cells, on the other hand, approach asymptotically 100% of active time
for the SMs. The implemented Roe scheme performs also an entropy correction to
better capture the flow shocks as the original Roe formulation does not recognize the
sonic point [Harten et al., 1997]. This correction creates possibly two different exe-
cution paths within one warp, which explains the remaining percentage of inactive
warps even for very large mesh blocks.

The theoretical occupancy, which can be calculated by the profiler (nvprof) or
the GPU Occupancy Calculator [NVIDIA, 2017] as a function of used registers and
run configuration, is equal to 25%. The achieved occupancy starts by 5% for the
smallest mesh block and increases with the block size approaching the theoretical
value. Consequently, the performance increases with the mesh block size for the
first and the second-order accuracy. Both kernels achieve a very similar level of
occupancy. The number of eligible warps per cycle (2 to 3 warp/cycle§) for both
kernels confirms that these two kernels reach the same level of thread parallelism
(TLP). In fact, this is mainly regulated by the number of registers consumed by
every kernel and in this case, the register consumption is marginally different.

Figure 4.12 presents the performance related characteristics of the convective
flux kernel for the interior cells. Small mesh blocks are latency-bound as they have
low utilization (< 60%) of both memory and compute units of the GPU for the
first-order accuracy. The big mesh blocks starting a large number of threads are
compute-bound¶ which is related to the lengthy algorithm behind the Roe scheme.

The first-order kernel reaches a higher peak memory bandwidth both for reading
and writing to the global memory as depicted in Figure 4.11. However, the profiler
measured very similar values for the number of memory transactions per memory
request in both kernels as this parameter reflects solely the degree of coalescence of
the memory access. On the other hand, the level of utilization of the DRAM memory
and the compute unit (ALU) are significantly different for both kernels as shown in
Figure 4.12. Even though both kernels are compute-bound‖ reaching gradually a
level of utilization of 90%, the second-order accuracy kernel reaches saturation levels
of utilization for smaller mesh blocks than the first-order kernel. The second-order
kernel performs indeed a larger number of floating point operations originating from
the evaluation of the limiter function (see Equation (4.13)). The profiler measured
indeed 50% more floating point operations for the second-order kernel. Because of
the earlier saturation of the compute unit for the second-order kernel, it reaches also
a lower level of memory utilization. The latter improves gradually with the increase

†Occupancy is defined as the portion of active warps (Cf. Section 2.4)
‡portion of time being active performing computations at least for one warp
§4 warp per cycle ensure full activity of the SMs
¶Kernel compute-bound on the GeforceGTX780. It may differ on other cards.
‖The kernel is compute-bound on a Geforce 780. Other GPUs could show other behavior.
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of the number of cells until the compute saturation occurs. To conclude, the second-
order kernel has a higher compute utilization and a lower memory utilization.

Multistreaming

For the above-introduced performance analysis of the convective flux evaluation, the
kernels were all running in a default stream with thousands of threads but with no
possibility of kernels concurrency. It has been observed that the GPU performance
increases with the number of started threads. The mesh layout for multi-blocks
body-fitted meshes (see Figure 4.2) requires sometimes the use of small mesh blocks
in order to improve the mesh quality around complex bodies in terms of cell aspect
ratio and skewness. The mesh quality enhances, in general, the accuracy of the
produced CFD results. Therefore, the GPU should be able to efficiently run small
blocks.

Multistreaming, which consists of launching many kernels simultaneously, can
boost the achieved acceleration for small multi-block meshes. In this work, the
kernels processing different mesh blocks are sent to different streams. These streams
are independent and run concurrently. Small mesh blocks are consequently not the
only contributor to the GPU occupancy but other kernels of larger mesh blocks
are running at the same time. The streams overlapping during the execution is,
nevertheless, influenced by the number of streams and the available GPU resources.
If a stream treating a large mesh block is saturating the GPU capacity, other mesh
blocks on other streams will not be able to run until the resources are being freed.

The performance increase through multistreaming depends on the degree of over-
lapping of different kernels and the mesh size. In order to assess the effect of multi-
streaming on the GPU performance, a set of meshes is used with a different number
of cells but the same multi-block layout. The multistreaming gain, depicted in Figure
4.13, is more important for small meshes, as multiple mesh blocks are overlapping,
and it fades with the increase of the number of cells. Multistreaming does not offer
a linear scaling of the performance with the number of used streams mainly because
of two reasons: the limited GPU resources and the unpredictable cache behavior.
A kernel can access the GPU only when enough resources are available. Even if
multiple streams are started only as many kernels will run in parallel as the GPU
resources can afford. Moreover, the behavior of a set of thread grids (even of the
same kernel) is different from the behavior of one thread grid [Farber, 2011, p.169].
A set of grids of the same kernel is not guaranteed to have the same cache-hit success
as a single grid of threads for instance.

Benchmark

The fastest kernel for the convective flux evaluation, namely the face-based mapping
with multi-coloring, is used to run a set of relevant test cases in turbomachinery.
The test cases includes two cascades of turbine stators (t106c [Michálek et al., 2012]
and LS89 [Arts et al., 1990]) and two cascades of compressor stators (CC2D [Aissa
et al., 2016] and Turbolab†). All test cases follow the same mesh layout of 7 blocks of
cells depicted in Figure 4.2 and the multistreaming has been deactivated to assure

†http://aboutflow.sems.qmul.ac.uk/events/munich2016/benchmark/testcase3/

http://aboutflow.sems.qmul.ac.uk/events/munich2016/benchmark/testcase3/
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full resources for every mesh block. The performance of every mesh block from
these test cases is plotted in the double logarithmic Figures 4.14 for both first and
second-order accuracy.

The performance increase has two slopes: a large one for mesh blocks with
NCells < 400k and a smaller slope for mesh blocks with NCells > 400k. The same
tendency is observed for both first and second-order accuracy. The part until the
inflection point (change of the slope in the double logarithmic figure) can be labeled
the exponential growth part of the performance curve as depicted in Figure 4.15.
The second part until the next change in the slope can be called pre-saturation part
and the last part is then the saturation part. The saturation itself could be caused,
in general, by a full utilization of the compute power (for integer, single precision or
double precision operations) or by a full utilization of the memory bandwidth. For
this benchmarked kernel the saturation has been linked to the high compute-unit
utilization (see subsection 4.2.1).

4.2.2 Viscous flux

The performance analysis of the viscous flux evaluation covers the same three ap-
proaches for the thread mapping as the above analyzed convective flux evaluation;
namely the cell, direction and face-based mappings (see Figure 4.5). Unlike the
convective flux evaluation, the viscous flux evaluation does not require a flux recon-
struction. On the other hand, it uses velocities and temperature gradients, which
will be treated in this subsection.

Scheme

The viscous flux is discretized using the central scheme, for which the state at a cell
face is the average of both neighbor cells. The evaluation of the velocity derivative
and the temperature derivative, which are needed in equation (4.5) and (4.6), consti-
tute the bulk of the computation for the viscous flux evaluation. In general, Finite
Differences (FD) or Green’s theorem are used to evaluate these derivatives. The
second approach conforms with the Finite Volume (FV) method and is implemented
in both the CPU and the GPU versions of the code. Green’s theorem relates the
volume integral of a variable derivative to its surface integral. For that purpose, an
auxiliary control volume Ω

′
has to be created with the center at i+1/2 for the direc-

tion i and the same applies for the other directions as depicted in Figure 4.16. When
applied within the cell-centered finite volume scheme, the derivative in x direction
(equivalent to i index) for instance reads as follows [Blazek, 2005, p.120]:

∂U

∂x
=

1

Ω′

∫
δΩ′

UdS
′

x ≈
1

Ω′

NF∑
m=1

UmS
′

x,m, (4.14)

with NF the number of faces (6 for 3D flows) and Um an averaged value on the
auxiliary faces.
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Figure 4.14: Performance measured in updated cells per second for the evaluation of
the convective flux on a Geforce780 in four different test cases for both a) first-order
and b) second-order accuracy.
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Figure 4.15: Qualitative plot of the different phases of a GPU performance curve on
a normal and a double logarithmic scales.
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Figure 4.16: An auxiliary face for a cell-centered scheme in a 2D structured mesh.



60 GPU-accelerated Simulations with Explicit Time-Stepping Chapter 4

Viscous gradients

Since the gradients are used many times in the viscous flux evaluation, a separate
function should be computing and storing them for all cells at the beginning of every
Runge-Kutta stage. In the following, two implementation approaches are compared:
1) one kernel for all space directions and 2) one kernel per space direction. Many
memory requests are issued during the evaluation of Green’s theorem (see equation
(4.14)). The normal vectors of all faces of the auxiliary control volume have to
be computed based on the averaging of the value of the two neighbor faces. The
velocity at the active face is also averaged and in every averaging many variables
are read from the global memory and stored in registers. As a result the register
consumption is very high for those operations. If one kernel is responsible for all
three space directions (kernel fusion), it consumes 238 registers of the 255 available
for Kepler GPUs leading to a theoretical occupancy of 13%. Splitting the large kernel
into three kernels, one for every space direction, reduces the register consumption to
125 and boosts the theoretical occupancy to 25%. Figure 4.17 compares the memory
bandwidth of the fusion version and the split version both in reading and writing to
the global memory. The reduction of the register consumption explains the observed
performance gap in favor of the split version.

The reached peak memory bandwidth for the split version, shown in Figure 4.18,
accumulates to large values asymptotically approaching 250 GB/s. This memory
bandwidth is equivalent to 86% of the theoretical peak of 288 GB/s†.

Viscous flux evaluation

The same three approaches for thread mapping, used with the convective flux eval-
uation, have been benchmarked for the viscous flux evaluation. The face-based
mapping with multi-coloring uses fewer registers as the flux is computed only once.
Therefore, the theoretical occupancy increases from 18.6% (130 registers) for the cell
and direction-based mappings to 37.5% (78 registers) for the face-based mapping.
Figure 4.19(a) shows the level of memory and compute utilizations of the face-based
mapping kernel while Figure 4.19(b) shows the reached peak memory bandwidth
both in reading and writing to the global memory. The viscous flux evaluation does
not require a flux reconstruction, a very compute intensive operation compared to
the convective flux evaluation, and shows therefore well balanced high utilization for
both units memory and computation with a more pronounced compute utilization.

The face-based mapping version of the viscous flux evaluation reaches high values
of accumulated memory bandwidth reflecting the high instruction level parallelism of
the kernels (ILP), as many independent memory transactions are issued per thread.
The face-based mapping version outperforms the cell-based mapping version by more
than one order of magnitude as depicted in Figure 4.20. The cell and direction-
based mapping versions have similar performances since the occupancy has not been
significantly improved by the splitting (from 19% to 25%).

†http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-780/specifications

http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-780/specifications
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Figure 4.18: Gradient kernel: Achieved peak memory bandwidth both on reading and
writing to global memory for different mesh block sizes.
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Figure 4.19: Characteristics of the face-based mapping of the viscous flux evaluation
kernel: (top) utilization and (down) memory bandwidth.
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Figure 4.20: Performance of the viscous flux evaluation measured in updated cells
per second for both fusion and split versions using redundant calculation and a multi-
coloring version for different mesh block sizes.

4.2.3 Boundary conditions

The reference CPU code implements both subsonic and supersonic conditions in
the inlet and the outlet boundaries (see Figure 4.2). It provides also inviscid and
no-slip walls in addition to symmetry. The periodicity is treated in the interface
update in section 4.2.4. All boundaries act on a small set of cells and perform few
arithmetic and memory operations. These updates are fully independent and can run
in different streams, which enables these kernels to reach a similar performance as the
residual update kernels despite their latency-bound character. Figure 4.21 depicts
the performance of the boundary update function summing all active conditions for
both one stream and multiple streams. Surprisingly, the multistreaming does not
bring an acceleration for small meshes and starts delivering a speedup only for the
largest mesh. The explanation is related to the fact that the number of faces to
be updated for the boundary conditions kernel is very small. Consequently, the
different kernels on different streams are not overlapping since the one kernel in one
stream is finished before the kernel in the next kernel is started due to the overhead
of kernel launching†. The multistreaming causes a small overhead of launch and
synchronization which explains the performance degradation for small meshes.

4.2.4 Interface update

The RANS solver implements two types of interfaces between mesh blocks: 1to1 in-
terfaces and periodic interfaces. The first applies to a shared interface between two
neighboring blocks and the second applies to distant interfaces used to implement

†kernel launching takes few milliseconds
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Figure 4.21: Effect of multistreaming on the boundary update.

a flow periodicity as depicted in Figure 4.2. When using the ghost cells approach,
the interface update consists on swapping the content of two layers of ghost cells
of a mesh block with the content of two layers of a neighboring mesh block (see
Figures 4.3 and 4.22). The CPU implementation for the swapping uses a buffer
strategy. It fills first a buffer with values read from one block without corner cells
and then writes the buffer values to the ghost cells of the neighbor block. This
implementation is purely serial as the buffer is filled in an order that has to be
respected while writing. When naively ported to the GPU, this kernel was very
slow as a CUDA core is much less powerful than a CPU core. The first attempt to
improve the global performance of the GPU RANS solver was to copy the solution
to the CPU, which performs the update then copy the solution back to the GPU.
For the storage of the flow solution on the host, the page-locked† memory has been
used which improved the performance of the data transfer [Aissa et al., 2016]. A
substantial change in the method was, nevertheless, needed to adapt the interface
update to the GPU SIMT architecture. For this reason, a lookup table has been
implemented, which stores for every ghost cell the indices of the related physical cell
in the neighbor block. The storage requirement in a 3D case attains 3 times the
number of ghost cells (Nghost) and could be very important for meshes with a large
surface-area-to-volume coefficient. The use of the lookup table made the interface
update embarrassingly parallel since the dependencies between the ghost cells have
been completely decoupled. Consequently, all interface cells can be updated at the
same time except the corner cells, which are treated separately. The only perfor-
mance limitation of the new kernel is the small number of started threads that can
not bring the GPU to run in a very efficient regime. CUDA streams are able to solve
this issue since every interface update is independent of the other and can be done

†Page-locked memory is a faster type of host memory
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Figure 4.22: Plot of three types of interface updates using the ghost-cell approach:
Update of 1to1, periodic interfaces and corner cells.

concurrently.

The interface update of the corner cells depends on neighboring blocks and has a
different workflow as depicted in Figure 4.22. A separate kernel is thus implemented
for these cells. When using the method of ghost cells averaging to compute the
values of the corner cells as defined in [Blazek, 2005, p. 297], the ghost cells of the
same block are used to compute the state in the corner cells. A more accurate corner
cell update, involving an input from multiple neighboring blocks, would indeed im-
prove the convergence rate of the flow simulation but at the same time, it prevents
a concurrent update of the interfaces leading to a performance deterioration. A pri-
mary test on a supersonic compressor cascade (coarse mesh) converged after 19600
iterations taking 246 seconds when using the ghost cells averaging for the values of
the corner cells. A more accurate corner cells update, combining four ghost cells
layers of two different neighbor blocks, converges after only 16600 iterations but the
simulation took 260 seconds. The effect is expected to be amplified with the increase
of the mesh size.

4.2.5 Runge-Kutta stages

As shown in equation (4.8), the Runge-Kutta scheme computes in every stage the
solution update based on the available residual and adds it to the existing solution.
It performs 20 arithmetic operations and 10 memory calls per cell. Some operations
are related to the transformation of the solution update from the conservative to the
primitive form, since the residual has a conservative form while the solution should
have the primitive.

The theoretical occupancy is 50.0% and the achieved occupancy depends on the
solved mesh block size as it is shown in Figure 4.23(a). The achieved occupancy
is approaching asymptotically the theoretical one as it is the case for other shown
kernels. Both utilization levels are high on the GTX780 showing a balanced kernel
with a high level of thread parallelism. The compute utilization is caused by the
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transformation of the solution from the conservative to the primitive form. The
reached bandwidth of 200 GB/s, shown in Figure 4.23(b), constitutes 69% of the
theoretical peak bandwidth. The relatively high reached bandwidth is still limited
by the low number of memory instructions per thread, called instruction level par-
allelism (ILP), as every thread performs a small number of independent memory
operations. Figure 4.24 depicts the performance of the Runge-Kutta stages as a
function of the mesh size for the GPU compared to three different CPUs.

4.2.6 Convergence acceleration techniques

Convergence acceleration techniques such as Implicit Residual Smoothing (IRS) and
multigrid are nowadays standard operations in commercial explicit CFD solvers (e.g.
Numeca FINETM [NUMECA]). For a serial execution, the additional cost of these
methods is rather negligible compared to the convergence acceleration they are able
to achieve. In a parallel framework and especially massively parallel execution, the
overall improvement of the solver performance using these convergence acceleration
techniques is not obvious and rather case-dependent. Hence, these two techniques are
first introduced and the performance of different GPU implementations is analyzed.
Then, a benchmark is performed on different test cases to assess the performance
impact.

Multigrid

The multigrid technique was adapted first for Euler equations then for Navier-Stokes
equations by Jameson [1983]. Since then, the technique has been continuously ex-
tended and improved to tackle viscous and turbulent flows. The basic principle is
to solve the governing equations on a set of coarse meshes and then interpolate the
solution to the fine mesh in order to accelerate the solution convergence to steady-
state on the finest mesh. In addition to the basic solving of the governing equations
on the fine mesh, one extra run is counted per used coarse mesh along with two
interpolation functions for the solution transfer from/to the fine mesh. While the
additional memory cost is negligible as the coarse mesh is in general 1/8 of the size
of the fine one, the additional execution cost on the GPU is not as easy to assess.

The performance of the GPU improves with the mesh size to reach asymptotically
a saturation level from a certain mesh size as observed many times in the above-
introduced kernel benchmarks. Figure 4.14 showed a linear relation between the
number of cells and the performance with two different proportionality constants
for meshes smaller and larger than 400k. The performance penalization δP when
moving from a fine mesh with NF

cell to a coarser mesh with 1/8NF
cell is equal to

δP = 7/8αNF
cells with α the proportionality constant. The lower α the smaller the

penalization. When the GPU is saturated (α ≈ 0) the coarse mesh takes 1/8 of
the execution time of the fine one based on the number of cells to be updated. For
small meshes, the proportionality is larger and the penalization is consequently more
important. Moreover, both runs on the fine and the coarse meshes are interdependent
and can thus not overlap.

A test case has been run to assess the cost of coarse meshes on a 3D flow around
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for one Runge-Kutta stage, on a Geforce 780 to three other single CPUs for a RANS
simulation of 2D flow on a supersonic compressor cascade.

a compressor cascade (see Table 4.1). The cost of a two-grid-V-cycle† is between
120% and 180% more than a simple flow iteration without multigrid. The ideal case
(α ≈ 0 and Tc = 1/8TF ) produces theoretically a ratio of 9/8 equivalent to 125% of
the cost of a simple flow iteration without multigrid assuming the interpolation cost
are negligible. The ideal case is asymptotically approached in the shown test case.
The convergence acceleration itself is case dependent and ranges from 2 to 5 [Blazek,
2005]. Therefore, it is very promising to have a multigrid cycle running on the GPU
compared to the CPU performance.

Implicit residual smoothing

Low CFL numbers are a characteristic of the explicit time-stepping. The residual
smoothing, based on equation (4.15), improves the convergence by extending the
envelope of safe CFL numbers to higher values. A factor of 3 to 5 is common in
the literature for the increase of stable CFL numbers when using smoothed residuals
compared to the CFL of non-smoothed residuals as reported by Blazek [2005, p.307].
A change in the CFL number has no effect on the execution time of a single flow
iteration as it does not change the workflow of the algorithm. Consequently, the
extra execution time of the smoothing is spent solely on the smoothing function.

†The cycle contains a run on a fine mesh and another in a coarse mesh.
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Table 4.1: Effect of the multigrid on the execution time of 1000 iterations on a
pseudo 3D test case (cf. Appendix case 2).

NCells T1Grid T2Grids Ratio
[s] [s] T2G/T1G

25 k 12.1 22 1.81
46 k 16.1 27.7 1.72
57 k 18.7 30 1.61
75 k 22.4 35 1.58
110 k 30.2 45 1.49
126 k 34.3 50 1.46
394 k 95.5 129 1.35

The smoothing reads in 3D:

−εIR∗I−1,J,K + (1 + 2εI)R∗I,J,K − εIR∗I+1,J,K = ~RI,J,K

−εJR∗∗I,J−1,K + (1 + 2εJ)R∗∗I,J,K − εJR∗∗I,J+1,K = ~R∗I,J,K

−εKR∗∗∗I,J,K−1 + (1 + 2εK)R∗∗∗I,J,K − εKR∗∗∗I,J,K+1 = ~R∗∗I,J,K

(4.15)

where ~R∗,~R∗∗ and ~R∗∗∗ denote the smoothed residuals in the three flow directions
and εI , εJ and εK are the smoothing parameters. These smoothing parameters are
defined based on the viscous spectral radii [Liu and Jameson, 1993] and they control
the amount of smoothing (error damping) in every direction:

εIv = max(0, C(σ
∗

σ )
ΛI

v

ΛI
c+ΛJ

c +ΛK
c

)

εJv = max(0, C(σ
∗

σ )
ΛJ
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ΛI
c+ΛJ

c +ΛK
c

)

εKv = max(0, C(σ
∗

σ )
ΛK

v

ΛI
c+ΛJ

c +ΛK
c

)

(4.16)

with C ≈ 5/4 and σ∗

σ the maximum ratio of the CFL numbers before and after
smoothing. The convective and viscous spectral radii Λc and Λv are defined in
[Blazek, 2005, p.189] based on the work of Rizzi and Inouye [1973] and Müller and
Rizzi [1986].

The three smoothing equations (4.15) are interdependent and need to be solved
consecutively. First, the smoothing in the I direction has to be performed, which
computes the I-smoothed residual ~R∗ as a solution of the tridiagonal system of
equations with the non-smoothed residual ~R as a right-hand side (RHS). Then the
smoothing in the J direction uses the I-smoothed residual as a RHS and solves a
tridiagonal system to compute the ~R∗∗. Finally, the smoothing in the K direction
uses the J-smoothed residual as a RHS and solves a tridiagonal system to compute
the ~R∗∗∗. The three diagonal system of equations has the form Ax = B with:
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A =



(1 + 2ε) −ε
−ε (1 + 2ε) −ε 0

−ε (1 + 2ε) −ε
. . .

. . .
. . .

0
. . .

. . . −ε
−ε (1 + 2 ∗ ε)


and

B =


ρ1 ρ1u1 ρ1v1 ρ1w1 ρ1E1

ρ2 ρ2u2 ρ2v2 ρ2w2 ρ2E2

...
ρN ρNuN ρNvN ρNwN ρNEN

 .

The smoothing in one direction is done line by line in the mesh as depicted in
Figure 4.25 for a 2D case. Every line of cells produces a subsystem Ax = b. For
a 2D case, NJ subsystems have to be solved for the smoothing in the I direction
with NJ equal to the number of cells in the J direction. For the smoothing in the J
direction, NI subsystems have to be solved. The 3D case used in this work builds
on the same subsystems and makes use of the third direction. The smoothing in
the I direction solves as many subsystems as the number of cells in the J direction
multiplied by the number of cells in K directions (N = NiNj).

The smoothing itself is not embarrassingly parallel since it is based on solving
three tridiagonal systems of equations, for which the baseline CPU implementation
uses the Thomas algorithm [Thomas, 1949]. The Thomas algorithm is a simplified
version of the Gaussian elimination when applied to tridiagonal matrices. Since
the Gaussian elimination is inherently serial, other GPU-friendlier alternatives have
been studied such as cyclic reduction (CR), parallel cyclic reduction (PCR) and
Recursive Doubling [Chang and Wen-mei, 2014; Zhang et al., 2010; Stone et al.,
2011; Chang et al., 2012].

New GPU kernels have been implemented to prepare the tridiagonal matrix and
fill it following equation (4.16) and a tridiagonal solver is used to solve the system.
The approach is validated by comparing the flow residuals with the ones computed
by the reference CPU implementation that uses the Thomas algorithm also.

In the following, two different tridiagonal solvers from the CUSPARSE library
and the self-implemented GPU-based Thomas algorithm are presented and bench-
marked. First, the function gtsv of the CUSPARSE library †, which consists of a
combination of CR and PCR with pivoting, has been tested to solve the tridiagonal
systems of equations. The CUSPARSE tridiagonal solver gtsv is derived from the
work of Chang et al. [2012], who developed a high-performance tridiagonal solver
for GPUs based on the SPIKE algorithm [Polizzi and Sameh, 2006]. This function
is able to solve large systems of equations and not only a set of small systems. The
SPIKE algorithm divides the large system of equations with banded system matrix
into a set of smaller independent subsystems that can be solved simultaneously. In
the treated case a number of small independent subsystems - one for every line of
cells smoothed - is to be solved and not a large system of equations. These subsys-
tems have been concatenated, as depicted in Figure 4.25, to form a global system

†http://docs.nvidia.com/cuda/cusparse,retrieved March 2017

http://docs.nvidia.com/cuda/cusparse
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Figure 4.25: Example of the creation of the tridiagonal linear system for 2D smooth-
ing.

matrix for the gtsv function.

The implicit residual smoothing reduced the number of flow iterations required to
reach steady state by a factor of 2 to 3 but every flow iteration has been circa 4x times
slower. Detailed profiling showed that the majority of the execution time devoted
for the smoothing is caused by the call to the tridiagonal solver of CUSPARSE.
Unlike all self-written kernels showed in this work, there is no overlapping and thus
no positive effect of the multistreaming for CUSPARSE solvers, even though every
mesh block is running in a different CUDA stream. Mesh blocks are thus smoothed
one after the other. This implicit synchronization should not occur especially when
solving small mesh blocks, which are unlikely to saturate the GPU resources. The
profiler showed a frequent allocation of device memory. The CUSPARSE functions
allocate, indeed, a memory space for temporary objects which is freed right after
being used. While this is a proper use of the memory in order to limit the function
memory consumption, it prevents the host CPU from launching other stream kernels.
Memory allocation alters, in fact, the state of the memory in the device and the
host CPU does not perform any further operation until the memory allocation is
finished to prevent memory misusage and data corruption. Consequently, a single
memory allocation blocks the flow of operation in all streams provoking a large loss
of performance. Therefore all functions on other streams are blocked leading to the
observed absence of overlapping.

Another function of CUSPARSE (gtsv nopivot) has been therefore tested which
is able to solve a set of small subsystems based on cyclic reduction. This function is
faster than the SPIKE-based method especially for subsystem sizes equal to a power
of 2.
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Finally, the Thomas algorithm has been implemented on the GPU with every
CUDA thread solving a subsystem. The register usage of the function, not exceeding
40 register files, is not prohibitive compared to other kernels written for the RANS
solver. Nevertheless, there are two sequential loops for the forward sweep and the
backward substitution, which can not be unrolled because of the data dependency.
The parallelization granularity is at the subsystem level. The Thomas algorithm
showed a good level of overlapping with multistreaming but the low number of
launched threads makes the kernel latency-bound.

Figure 4.26(a) treats the case of running an entire mesh of 7 blocks with multi-
streaming activated without IRS and then with the three available methods. Figure
4.26(b) depicts the same setting with the multistreaming deactivated. The self im-
plemented Thomas methods have the smallest slowdown for most of the treated
meshes mainly due to a better use of multistreaming. The gain over CR and SPIKE
algorithms decreases a lot when the size of the mesh increases due to the longer
forward elimination and backward substitution loops in the Thomas kernel. Cyclic
reduction and SPIKE algorithm are getting more efficient with the increase of the
mesh size as the multistreaming effect is fading.

A suggested further optimization is to optimize the Thomas algorithm by using
the shared-memory for small meshes. For large meshes, it is useful to implement a
tridiagonal solver based on CR or parallel CR (PCR) while avoiding any memory
action that cancels the overlapping over the streams.

The residual smoothing is a very efficient tool for the convergence acceleration
of the explicit solver. Its implementation on the CPU is straightforward with a
negligible added execution cost. Implementing the same technique on the GPU is
much more delicate and causes a slow-down with all tested library implementations.
This confirms the idea that convergence acceleration techniques are hardware-specific
and for the GPU the available convergence acceleration techniques are still to be
optimized.

4.3 Validation and benchmark

For viscous turbulent flows, the nozzle guide vane LS89 [Arts et al., 1990] has been
used for validation. The inlet flow is subsonic but experiences an acceleration on
the suction side of the vane reaching supersonic conditions which leads to a normal
shock (Figure 4.27(a)). Figure 4.27(b) shows the isentropic Mach number profile of
the blade matching the experimental results. The shock occurring on X

X0
≈ 0.9 is

well resolved and accurately predicted.
The execution time of different kernels has been measured by the CUDA profiler

on a Kepler K40 card and plotted in Figure 4.28 for the full list of kernels and
Figure 4.29 for a reduced list of main kernels. The same profiling has been done
on different meshes with an increasing size. In general, GPU kernels are not very
efficient for small meshes but the performance increases rapidly with the mesh size.
In a second phase, the performance improvement is not as important and the kernel
is asymptotically saturating.

When a kernel has a constant ratio of execution time for an increasing mesh size,
it means the kernel has a linearly improving performance with the number of cells
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Figure 4.26: Slowdown caused by the IRS measured over 100 flow iterations with the
NO-IRS version as a reference for different meshes: a)multistreaming activated b)
no Multistreaming.

a) b)

Figure 4.27: a)Mach contours of the transonic LS89 [Arts et al., 1990] turbine guide
vane test case, b) Computed and experimental distributions of the isentropic Mach
number on the LS89 (M2is

= 1.02 P01 = 1.605bar).
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Table 4.2: Comparison of the execution time for 1000 iterations of the second-order
RANS solver on a pseudo 3D test case (cf. Appendix case 2).

NCells time on time on speedup
Xeon E5 [min] K40 [min]

25 k 9.10 0.26 35.0
46 k 16.96 0.34 49.8
57 k 21.00 0.38 54.9
75 k 28.09 0.45 61.6
110 k 40.91 0.59 68.4
126 k 47.59 0.66 71.2
394 k 159.75 1.77 90.0

Figure 4.28: Plot of the execution time of GPU kernels for different meshes with
second-order accuracy for the convective flux evaluation (Fc).

Figure 4.29: Plot of the execution time of the main GPU kernels for different meshes
with second-order accuracy for the convective flux evaluation (Fc).
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and probably near saturation. Kernels losing in importance for an increasing mesh
size are those that are still improving their performance with a fast pace and far
from saturating the GPU. Kernels gaining in importance with the increase of the
mesh size are already saturating the GPU and the more cells they treat the more
costly they are and earn in importance.

The viscous flux is developing into a hotspot for dense meshes driven by the
cost of the evaluation of the velocities and temperature derivatives using the Green
theorem. The part of the convective flux is, however, shrinking. This is induced by
the improved performance of the boundary flux update for large meshes. Boundary
flux evaluation and interface update are the hotspots for small meshes as the surface-
area-to-volume ratio is more important. The turbulent flux and the source term
are compute-bound kernels for averagely sized meshes. For large meshes they are
also earning in importance and could develop into a hotspot for very large meshes.
Other GPUs could give slightly different results as the memory bandwidth and the
computing power varies.

For an ultimate benchmark, the most efficient kernel implementations have been
combined in the final GPU RANS solver to run a set of meshes of a compressor
cascade with an increasing mesh size (Cf. Appendix A.2). The execution times of
the GPU solver are compared against the execution times of the serial CPU solver
on one core in Table 4.2 reaching a large speedup of two orders of magnitude.

4.4 Conclusion

This chapter presents the GPU implementation of an in-house RANS solver with
the explicit time-stepping. The GPU code had been gradually optimized by tuning
the code to best occupancy and register consumption first, then by finding the
right algorithm for the best memory bandwidth. A lookup table for the interface
update made it possible to have a full GPU solver without the need for a frequent
communication with the host CPU. The performance benchmark analyzed the major
kernels and different implementation strategies such as mapping threads to cells,
space directions and faces but also comparison between large kernels and equivalent
split into sub-kernels. Moreover, the execution costs on a GPU of two convergence
acceleration methods namely multigrid and implicit residual smoothing have been
presented. For the explicit solver the GPU achieved a speedup approaching 100x
making the GPU explicit solver, even though characterized by small CFL numbers,
a serious competitor to implicit solvers.





5
GPU-accelerated CFD Simulations with Implicit

Time-Stepping

The RANS solver with explicit time-stepping, presented in the previous chapter,
required only stencil-based operations, which are easily implemented in parallel
contexts. In some cases, however, explicit methods fail to converge or converge
very slowly and are consequently not able to provide valid CFD results in a decent
turnaround time. Therefore, this chapter studies the possibilities of accelerating a
CFD RANS solver with implicit time-stepping on the GPU.

Compared to the explicit solver, the implicit solver considers the entire compu-
tational domain for the time-stepping reducing thus the dependence on the CFL
number as a guarantee for stability. At the same time, it brings into focus another
aspect of parallel programming which is solving efficiently a linear system of equa-
tions in parallel. First, the theory behind the implicit time integration is explained
in detail and then the implementation approach is introduced. A benchmark of sev-
eral libraries for linear system solvers and preconditioners is performed to identify
the fastest solver on the GPU. Finally, the observations gained from the benchmark
inspired a discussion on the effect of some parameters, such as the number of RK
stages, the CFL number and the linear stop condition on the reached GPU speedup.
A validation of the solver along with a summary close the chapter.

This chapter is based on the articles:

M.H. Aissa, L. Müller, T. Verstraete, and C. Vuik. Acceleration of turbomachinery steady
simulations on GPU. In Desprez F. et al., editor, Euro-Par 2016: Parallel Processing Work-
shops. Lecture Notes in Computer Science, vol 10104., pages 814–825. Springer, Cham, 2017a
,

M.H. Aissa, T. Verstraete, and C. Vuik. Toward a GPU-aware comparison of explicit and
implicit CFD simulations on structured meshes. Computers & Mathematics with Applications,
74(1):201–2017, 2017b .
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5.1 Introduction

Steady CFD simulations are widely used, amongst others, for design evaluation.
These simulations advance an initial flow solution based on an explicit or implicit
time integration scheme. Implicit schemes are more stable and faster to converge
due to a larger allowed time step. This property comes, however, at a high cost of
assembling and solving multiple linear systems of equations (Ax = b) at every flow
iteration. The system assembly comprises the computation of the system matrix A
and the right-hand side b. Since every mesh cell interacts only with few neighbor
cells, the unknowns are loosely coupled and the generated system matrix is thus
sparsely populated. Due to the sparsity character, iterative solvers are mostly used
to solve the sparse linear system of equations.

With the growth of the problem size, the use of High-Performance Computing
(HPC) becomes inevitable. In this field, Graphics Processing Units (GPUs) are gain-
ing in importance through the reported speedups of many CFD applications [Brand-
vik and Pullan, 2007; Fu et al., 2014; Niemeyer and Sung, 2014b]†. While dense
matrix-vector operations are very efficiently solved on the GPU [Barrachina et al.,
2008], solving a sparse linear system of equations is more challenging, since there are
fewer independent operations for the large GPU computational power. Moreover,
some linear systems require a factorization-based preconditioner to accelerate the
otherwise very slow converge, which enhances the serial aspect of the algorithm and
thus reduces drastically the GPU performance gain.

The reference CFD simulation is performed on the CPU using the library package
PETSc [Balay et al., 2014]. The CPU simulation spends 70% of the execution time on
the system assembly, while the rest is devoted for the linear solver. The same balance
is also found in some FEM applications: Wong et al. [2015] ported, for instance, a
CPU application based on PETSc with 80% of the execution time dedicated for
the system assembly. This observation was the motivation to port the assembly
part as well to the GPU in order to avoid any data transfer to the CPU during the
simulation and thus enhance the speedup.

The GPU-based version of the CFD simulation uses the preconditioned flexible
GMRES ( the Generalized Minimal Residual Algorithm for Solving Non-symmetric
Linear Systems (GMRES) [Saad and Schultz, 1986]) of the Paralution library‡, which
uses building blocks of the efficient cuSparse library. The Paralution library is
reported to allow a speedup of factor 5x for a neutron diffusion problem [Trost et al.,
2015]. Paralution performs, however, the assembly of the system matrix on the host,
which implies a data transfer from the GPU to the host CPU. To address this issue,
an interface is developed to connect the GPU-assembled system of equations to the
linear solver.

The preference for a library over a self-implementation of the linear solver is
motivated mainly by the maturity of today’s GPU-based linear solvers. Moreover,
the design of a fast linear solver is not part of the scope of this work but rather the
optimization of its frequent use in steady simulations. For this purpose, an algorithm
(on-demand LU factorization) is proposed, which is capable of reducing the number

†see literature review in chapter 3 for more details
‡PARALUTION Labs “PARALUTION v1.1.0”, 2016, http://www.paralution.com

http://www.paralution.com
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of times an ILU preconditioner matrix is built for the linear solver without altering
the flow accuracy. This technique enables the linear solver to re-use the previously
computed preconditioning matrix instead of computing a new one for every iteration.
When combined with standard ILU, the technique improves drastically the reached
speedups for coarse and fine meshes.

The rest of the chapter is structured as follow: section 2 introduces the numerical
scheme used by the CFD solver while section 3 describes the implementation of the
solver on the GPU. A discussion is presented in section 4 and the main findings are
summarized in section 5.

5.2 Numerical scheme

The flow solver uses a cell-centered finite volume discretization on multi-block struc-
tured grids. It solves the Reynolds-Averaged Navier-Stokes (RANS) equations in the
time-dependent integral form:

∂

∂t

∫
Ω

~WdΩ +

∮
∂Ω

( ~Fc − ~Fv)dS =

∫
Ω

~QdΩ , (5.1)

with ~W = {ρ, ρVx, ρVy, ρVz, ρE} the vector of conservative variables, Ω the cell

volume and ∂Ω the cell surface. The convective fluxes ~Fc are computed using a Roe
upwind approximation [Roe, 1981] of a Riemann Solver while second-order accuracy
is achieved through the Monotone Upstream-Centered Schemes for Conservation
Law (MUSCL [Van Leer, 1979]). The viscous fluxes ~Fv are approximated using a

central discretization scheme. The source term ~Q contains contributions from the
Spalart-Allmaras (SA) one-equation turbulence model [Allmaras and Johnson, 2012]
with an upwind first-order discretization within the Finite-Volume framework. The
space discretization is detailed in the previous chapter (see section 4.1).

Analogously to the explicit solver, the implicit solvers uses also the “method of
lines”, for which the space and the time integration are treated separately. Equation
(5.1) can be reformulated to highlight the time integration as follows:

ΩI

∆t
∆ ~Wn = −β ~R(n+1) − (1− β)~Rn , (5.2)

with ∆ ~W = ~Wn+1 − ~Wn the solution update, which depends on a combination
of residuals of time point n and n + 1. For β = 0, the right-hand side (RHS) of
equation 5.2 is known and updates can be computed explicitly, as treated in the
previous chapter. If however β 6= 0, the residual is linearized to allow to formulate

Rn+1 as a function of Rn and the Jacobian δ ~R

δ ~W
to first order accuracy:

~Rn+1 ≈ ~Rn +

(
δ ~R

δ ~W

)
∆ ~Wn . (5.3)

Substituting the linearization into the initial equation gives a linear system of equa-
tions of the form Ax = b: [

ΩI

∆t
+

(
δ ~R

δ ~W

)]
∆ ~Wn = ~Rn . (5.4)
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with ~R the residual containing the fluxes and the source term, ∆ ~W = ~Wn+1 − ~Wn

the solution change, I the identity matrix and δ ~R

δ ~W
an approximate Jacobian matrix

as formulated in [Blazek, 2005, p.450] including the most important feature of the
space discretization scheme. When equation (5.4) is applied to the entire mesh a
large linear system is built with the form Ax = b. Residuals and Jacobians are first
evaluated on cell surfaces and then summed up in a local assembly procedure (see
equation (5.2)). The global assembly concatenates the local items to a large global
matrix and a right-hand-side containing all the problem unknowns. A multistage
time-stepping method such as the Jacobian-Trained Krylov Implicit-Runge-Kutta
scheme (JT-KIRK [Xu et al., 2015]) solves then multiple successive linear systems
-one per stage- for every flow iteration, in which only the right-hand side is updated
then multiplied by a different stage coefficient α:

~W (0) = ~Wn

A(0)[ ~W (1) − ~W (0)] = −α1
~R( ~W (0))

A(0)[ ~W (2) − ~W (1)] = −α2
~R( ~W (1))

...

A(0)[ ~W (m) − ~W (m−1)] = −αm ~R( ~W (m−1))
~Wn+1 = ~W (m).

(5.5)

The high CFL numbers reached by the implicit time-stepping lead to large time steps
∆t, which decreases the diagonal dominance of the system matrix and increases
the condition number resulting in an ill-conditioned linear system. Such an ill-
conditioned system matrix requires further treatment to enhance the linear system
convergence. One of the efficient techniques used with ill-conditioned systems is
preconditioning, which is any form of modification to the original linear system able
to accelerate the convergence of an iterative method [Saad, 2003]. The next section
treats in detail the techniques used for solving the linear system.

5.3 Preconditioned Krylov solvers

This section presents few insights into the background of the GMRES method and
the ILU preconditioning. Elements shown in this section are crucial to understanding
the linear solver algorithm in the first place and the different tuning parameters
associated with it.

In the context of solving a linear system Ax = b, many iterative methods are
based on a projection, which is a way to extract an approximation xm ≈ A−1b of a
solution from a subspace Km [Saad, 2003, p.153]. The approximation has to satisfy
a set of m constraints b − Axm ⊥ Lm from the subspace Lm. A Krylov method
extracts the approximation from a Krylov subspace Km, which is spanned by m
independent vectors formed as a matrix-vector product of r0 and a polynomial of A:

Km(A, r0) = span{r0, Ar0, A
2r0, .., A

m−1r0} with r0 = b−Ax0 . (5.6)

The different Krylov methods make use of different subspaces Lm for the constraints
[Saad, 2003, p.177] and the GMRES uses the constraint space Lm = AKm. The dif-
ferent Krylov vectors are generated using the modified Gram-Schmidt method within
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the Arnoldi’s process [Arnoldi, 1951]. The Arnoldi process, shown in Algorithm 1,
starts with a vector ||v1||2 = 1 (line 1). It generates for every iteration j (lines 3-12
), a vector wj by multiplying the previous vector vj with the matrix A (line 3).
The vector wj is then orthonormalized against all previous base vectors following a
modified Gram-Schmidt procedure (lines 4-7). Once the base vectors are generated,

Algorithm 1 Arnoldi-Modified Gram-Schmidt[Saad, 2003, p. 162].

1: Choose v1 of norm 1
2: for j=1 to m do
3: wj := Avj
4: for i=1 to j do
5: hij =< wi, vi >
6: wj := wj − hijvi
7: end for
8: hj+1,j = ||wj ||2
9: if hj+1,j = 0 then

10: Stop
11: end if
12: vj+1 = wj/hj+1,j

13: end for

the approximate solution is then computed as follows [Barrett et al., 1994]:

x(j) = x0 + y1x
1 + ...+ yjx

j , (5.7)

with yj the coefficients which resulted from the minimization of the residual norm
||b−Ax(k)||2. The full algorithm of the basic GMRES is shown in Algorithm 2.

Algorithm 2 basic GMRES[Saad, 2003, p. 172].

1: r0 = b−Ax0, β := ||r0||2 and v1 := r0/β
2: for j=1 to m do
3: wj := Avj
4: for i=1 to j do
5: hij = (wi, vi)
6: wj := wj − hijvi
7: end for
8: hj+1,j = ||wj ||2
9: if hj+1,j = 0 then

10: m := j goto 14
11: end if
12: vj+1 = wj/hj+1,j

13: end for
14: Define (m+1)xm Hessenberg matrix H̄ = hij1≤i<m+1,1≤j<m
15: ym ← minimize(||βe1 − H̄my||) {wiht e1 a base vector}
16: xm = x0 + Vmym
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The approximate solution is explicitly formed only if the orthogonalization pro-
cess is finished after m steps or w disappears (lines 9-10). This condition applies to
exact arithmetic but computers have a finite precision and w can decrease without
reaching zero. The condition is therefore replaced by a mathematically equivalent
condition, which is adapted to the practical precision of a computer. This new stop-
ping condition monitors the norm of the residual r = b − Ax and the process is
stopped when the residual is below a certain limit. Instead of forming the approx-
imate solution in every iteration the residual is evaluated as follows ([Saad, 2003,
p.177] and [Kelley, 1995, p.38]):

||rk|| = ||V k+1(βe1 −Hky
k)||2 . (5.8)

During every step of the algorithm, a new vector is generated which increases the
computational and memory consumption. In order to limit the algorithm resources
consumption, a modified version of the method restarts after generating a set of m
vectors (see Algorithm 3). If the convergence, which is related to the stopping condi-
tion, is not reached the solution is constructed and a new cycle starts with x0 := xm.
Keeping m low (few iterations) reduces effectively the resource consumption but at
the same time can deteriorate the convergence property of the method [Barrett et al.,
1994, Ch.2] and increases the number of times the solution is explicitly constructed.
When associated with the incomplete LU factorization the number of GMRES it-
erations is low and the restart GMRES (30) or even GMRES (10) is converging
well.

Algorithm 3 restart GMRES (modified notation from [Saad, 2003, p. 179]).

1: r0 = b−Ax0, β := ||r0||2 and v1 := r0/β
2: while ||r||2 > ε||b||2 do
3: for j=1 to m do
4: wj := Avj
5: for i=1 to j do
6: hij = (wi, vi)
7: wj := wj − hijvi
8: end for
9: hj+1,j = ||wj ||2

10: if hj+1,j = 0 then
11: m := j goto 15
12: end if
13: vj+1 = wj/hj+1,j

14: end for
15: Define (m+1)xm Hessenberg matrix H̄ = hij1≤i<m+1,1≤j<m
16: ym ← minimize(||βe1 − H̄my||)
17: xm = x0 + Vmym
18: x0 := xm
19: end while

For the preconditioning, three versions are possible; namely the left, the right
and the split versions; but they are all similar in terms of convergence acceleration
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unless the preconditioning matrix M is ill-conditioned [Saad, 2003, p.287]. The less
intrusive version is the right preconditioning as only the system matrix and the
unknowns are concerned while the RHS is the same:

AM−1u = b, x ≡M−1u . (5.9)

Algorithm 4, showing the preconditioned GMRES(m), is slightly different from Al-
gorithm 3 of the unpreconditioned GMRES(m). The inverse of the preconditioning
matrix M is applied m + 1 times (see lines 4 and 13). The flexible version of GM-
RES [Saad, 2003, p 287] is slightly different from Algorithm 3 as it accepts a new
matrix M in every iteration (line 4).

Algorithm 4 preconditioned GMRES (modified notation from [Saad, 2003, p.
284]).

1: r0 = b−Ax0, β := ||r0||2 and v1 := r0/β
2: while ||r||2 > ε||b||2 do
3: for j=1 to m do
4: wj := AM−1vj
5: for i=1 to j do
6: hij = (wi, vi)
7: wj := wj − hijvi
8: end for
9: hj+1,j = ||wj ||2 and vj+1 = wj/hj+1,j

10: Vm := [v1, ..., vm], H̄ = hij1≤i<m+1,1≤j<m
11: end for
12: ym =argminy||βe1 − H̄my||)
13: xm = x0 + M−1Vmym
14: x0 := xm
15: end while

The next point is about choosing the way of generating the matrix M . Many
preconditioners of the Paralution library have been tested and only the incomplete
LU factorization has shown a good convergence for all considered test cases (see
Appendix). Therefore, a detailed analysis of the generation of the LU matrix is
given below focusing on the parallelization strategies. The LU factorization is the
Gaussian elimination for sparse matrices. The factorization generates however many
fill-ins, which are non-zero values in positions where the system matrix had zeros.
When considering only the Lij and Uij which have a counterpart in the system
matrix, many values are discarded and the factorization is said to be incomplete.
Such a factorization can not be used as a direct solver since M−1b is only a very
crude approximation of x. However, the incomplete LU is very efficient when used
as a preconditioner coupled with a Krylov iterative method. From a performance
point of view for the GPU, the ILU(0) with no fill-in is the fastest among the family
of ILU related methods. ILU(0) factorization forces the same sparsity pattern† of
the system matrix on the preconditioner matrix.

†A sparsity pattern is a set of matrix positions, which accepts non-zero elements
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Algorithm 5 ILU(0) with S the sparsity pattern of A [Saad, 2003, p. 307]).

1: for i=2 to n do
2: for k=1 to i-1 do
3: if (i, k) ∈ S then
4: aik = aik/akk
5: for j=k+1 to n do
6: if (i, j) ∈ S then
7: aij = aik/akj
8: end if
9: end for

10: end if
11: end for
12: end for

The ILU algorithm (see Algorithm 5) has many serial loops, which run much
faster on the CPU than on the GPU. In order to expose more parallelism during
the assembly of the ILU matrices, it is possible to identify independent rows that
can be updated concurrently [Saad, 2003]. Few options are available to improve the
performance of the ILU factorization on the GPU, among them multicoloring [Nau-
mov et al., 2015; Lukarski, 2012; Li and Saad, 2013] and level-scheduling [Naumov,
2011].

While the methods cited above increase slightly the parallelism of the factor-
ization, other methods such as the iterative ILU [Chow and Patel, 2015] propose a
novel algorithm. The factorization is replaced by a minimization problem able to
provide an approximate L and U with more fine-grained parallelism. The method
relies on a fixed point iteration xn+1 = G(xn) which is guaranteed to converge [Chow
and Patel, 2015; Frommer and Szyld, 2000] after a set of sweeps†. The GPU imple-
mentation of this method, presented in [Chow et al., 2015, p.5], evokes a trade-off
between the convergence and the parallelism as the fixed point iteration tends to
use less frequently updated values when more threads are used. While it could be a
promising research direction to overcome the serial Gaussian elimination in ILU, it
is still not stable for the cases treated in this work.

Another class of algorithms for preconditioning considers approximating the in-
verse of the matrix A by explicitly computing M−1 ≈ A. The inverse of the matrix
A can be approximated as the solution of the constrained minimization problem
min||I − AM ||F , with ||.||F referring to the Frobenius norm of a matrix. One of
these methods, proposed by Grote and Huckle [1997], is among the most successful
as reported by Benzi [2002] and is widely ported to the GPU [Lukash et al., 2012;
Anzt et al., 2016a].

To sum up, a preconditioner should be cheap to construct and to apply but at
the same time, the preconditioned system should be easier to solve [Benzi, 2002].
These two requirements are however conflicting. The more efficient is a precondi-
tioner in reducing the number of linear solver iterations, the more likely it is to
be time-consuming to compute. On the GPU, this effect is more pronounced es-

†a sweep is one full update of the L and U matrices
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pecially in building preconditioners through factorization. The ILU preconditioner,
for instance, has an important cost for the setup and a smaller extra cost for ev-
ery GMRES iteration. These costs have to be amortized over the gain in GMRES
iterations and more important over the use of the same preconditioner for multiple
consecutive systems.

5.4 Flow solver implementation

The novelty in the implementation of an implicit solver compared to an explicit solver
is the need to prepare and solve a linear system of equations. In the preparation of
the linear system, a residual has to be first computed and stand for the right-hand
side then, the Jacobians are evaluated in order to fill the system matrix.

The reference CPU-based implicit solver, written in C++, computes the residual
and the flux Jacobians serially by looping over all mesh faces before it solves the
linear system of equations using the PETSc package. For all coming benchmarks,
the CPU version was run on the Intel double quad-core Xeon(R) CPU E5-2640 with
a clock rate of 2.50 GHz and a 15MB cache size.

The GPU implicit solver, on the other hand, builds on the implementation of
the explicit solver presented in the previous chapter for the residual evaluation.
New kernels are written to compute the Jacobians and form the system matrix (see
Figure 5.1). Once the data for the linear system of equations is available, a linear
solver can be used to iteratively compute the solution. Solving a linear system of
equations is a generic operation with applications in many fields, consequently a
rich literature exists on the topic along with a multitude of libraries with few among
them operating on the GPU. For all coming benchmarks, the GPU code was run
on Tesla K40 GPU (Kepler architecture) with a memory bandwidth of 280GB/s,
a theoretical peak performance of 1,682 Gflops in double precision and 12 GB of
global memory. The GPU implementation is realized with CUDA 7.0.

The first subsection discusses some alternatives for the implementation of the
system assembly regarding both the Jacobian and the residual calculation. The
next subsection treats the solving of the linear system with a benchmark of multiple
preconditioners.

5.4.1 System assembly

Within the finite volume scheme, the global assembly of the linear system of equa-
tions is made by looping over the cell faces in the mesh. On every cell face, a
contribution to the cell local system matrix is computed. The global system matrix
is then a concatenation of local block matrices, which are divided into diagonal and
off-diagonal blocks. The dominance of the diagonal blocks, which contain a con-
tribution proportional to the inverse of the time step, improves the convergence of
the linear solver. The off-diagonal blocks contain solely the flux Jacobians defining
the bandwidth of the matrix, which is the number of rows separating the non-zero
elements from the matrix diagonal. Matrices arising from 3D flows, for instance,
have a larger bandwidth than matrices arising from 2D CFD applications. A larger
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Figure 5.1: Flow Solver algorithm showing the assembly and the linear solver with
on-demand factorization.
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Figure 5.2: Structure of the system matrix showing 7 diagonals filled with block
matrices of Nv ∗ Nv with Nv the number of flow variables. I, J and K are the
number of cells in the first, second and third directions, respectively.
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bandwidth increases, in general, the number of iterations to solve the related linear
system of equations.

Figure 5.2 shows the structure of the system matrix arising from the discretization
of a 3D flow on a structured mesh. The number of elements per row is not constant
and varies depending on the number of diagonals crossing the row. As detailed in
the previous chapter (see Section 4.2), each face computes a flux F (UL, UR) which
is then respectively added and subtracted from the residual of the left and right
cell (RL = +F,RR = −F ). These two face contributions to the residual lead to 4
contributions to the Jacobian matrix:

∂RL/∂UL = ∂F/∂UL,
∂RL/∂UR = ∂F/∂UR,
∂RR/∂UL = −∂F/∂UL,
∂RR/∂UR = −∂F/∂UR,

(5.10)

but only two values are computed: ∂F/∂UL, ∂F/∂UR. The 4 contributions are
depicted in Figure 5.3 with two diagonal (∂RL/∂UL, ∂RR/∂UR) and two off-diagonal
(∂RL/∂UR, ∂RR/∂UL) contributions.

The off-diagonal contributions are generated by faces common to two neighbors.
These contributions are set to null if no neighbor exists in that direction. A cell in the
interior of the computational domain, for instance, has neighbors in all directions and
the corresponding row has thus 7 non-zero blocks † for 3D problems. On the other
hand, a Jacobian of a face on the block boundary has fewer neighbors. Every missing
neighbor decreases by one the number of non-zero blocks per row. The number of
elements per row plays a role on the performance of sparse matrix-vector operations
on the GPU as many library implementations assign a row to a CUDA thread block.
It is thus more efficient to have a number of non-zero elements (Nvar × Nblocks)
proportional to the warp size ‡ (actually 32).

Since every cell receives the contributions of six faces, a risk of race condition is
eminent, in which up to 6 threads simultaneously update the same diagonal position
in the system matrix. To avoid race conditions, atomic add or graph-coloring are
generally used. Atomic add makes the hardware responsible for the serialization
of all threads when they reach the atomic operation. Although it is the simplest
method, it penalizes drastically the fine-grained parallelism. Graph coloring consists
of giving a face a different color from its neighbors. Consequently, independent faces
have the same color at the end of the coloring process and they can be processed
concurrently for the flux and the Jacobian calculation without creating a race condi-
tion. This approach disturbs, however, the global memory coalesced access leading
to performance losses.

For the convective flux evaluation in the explicit solver (see Section 4.2.1), three
thread-mapping methods have been discussed: mapping to cells, to space directions
and to faces. These mappings are not all as useful for the Jacobian evaluation, which
is different from the flux evaluation. Every face generates only one flux which acts
on two neighbor cells, while it generates two Jacobians, left and right, and acts on
4 positions in the system matrix, namely, the diagonal positions relative to the two

†a block here is a NvarxNvar dense matrix
‡Warp is the smallest unit of execution for the GPU
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Figure 5.3: Storage of the Jacobian contributions into the global system matrix.
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neighbor cells in addition to the two off-diagonal contributions (see Figure 5.5a). For
a cell-based approach or a direction-based approach, which have inherently redun-
dant computations of the Jacobian, the two opposed faces of a single cell contribute
to the same diagonal position in the system matrix. Therefore, these contribu-
tions should be serialized to solve the race condition, which deteriorates heavily the
performance by having every face Jacobian computed 4 times. For the Jacobian
evaluation, only the face-based approach is thus considered in this work.

In the generation of the approximate Jacobian some data is related to a face and
is reused for all 4 contributions. The face-based GPU kernel is thus responsible for
the computation of both the left and right† Jacobian of a face and its storage. The
approximate Jacobian involves a lengthy computation [Blazek, 2005, p.450] and the
GPU kernel is consequently very consuming in terms of registers (204-215 registers)
and its theoretical occupancy is thus very low (12.5%). The occupancy is, however,
not the only contributor to the performance especially for an implementation that
allows threads to perform multiple independent operations (Cf. [Volkov, 2010]).

This subsection discusses the race condition free evaluation of the Jacobian and
the storage of the Jacobian contributions in the system matrix. As shown in Fig-
ure 5.4, the storage can be coalesced in arrays following the COO format (see Fig-
ure 5.6) then sorted into the CSR format. Contributions can be also stored uncoa-
lesced directly in their final positions in the system matrix following the CSR format.
In the following, first three approaches for the Jacobian evaluation are benchmarked
namely multicoloring, redundant and all-store approaches. At this stage all three
approaches write the contributions in coalesced COO format. Afterward, two of the
three approaches - multicoloring and redundant- are benchmarked with uncoalesced
direct insertion of the Jacobian contributions into the CSR format. For all bench-
marks (see Table 5.1) two meshes are used (see Table 5.2) a coarse and a dense one
of the LS89 case (Cf. Appendix A.1).

Coalesced Jacobian storage with sorting

Since a face generates a contribution for the diagonal elements corresponding to two
neighbor cells, a serialization of the evaluation is needed to solve the race condition.
A first attempt is to make a redundant call to the Jacobian evaluation and the second
attempt is to use multicoloring as depicted in Figure 5.5(b) and 5.5(c), respectively.
For the redundant computation, every face is processed twice by the Jacobian kernel
to compute and store all contributions without race condition. In every run, the

†Left and right refer to cell, with respect to which the gradients of the flux are evaluated.

Table 5.1: Different Jacobian evaluation and storage methods. Those considered for
this work marked with (X).

Sorting Multicoloring Redundant All-store
yes X X X
No (Direct insertion) X X -
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Figure 5.4: Chart of the considered combinations of Jacobian evaluation and storage
pattern: (a) with Sorting and (b) direct insertion without sorting.

number of started threads is equal to Nfaces. The number of faces depends on
the considered computational domain. For every space direction, the number of
faces is equal to the number of cells plus one. For the I direction, for instance,
N I

faces = N I
cell + 1.

The multicoloring approach (see Figure 5.5c), on the other hand, colors differently
odd-indexed faces and even-index faces for every space direction which makes a total
of 6 colors for the entire 3D mesh. There is no redundancy, in the sense of processing
a face twice, since Jacobian contributions of faces from the same color are stored in
different positions in the system matrix but the number of started threads is halved
compared to the number of threads the redundant version starts. The execution
time of both methods is shown in table 5.3 averaged over 100 flow iterations for a
coarse mesh and in Table 5.4 for a dense mesh. The number of cells for the coarse
and dense meshes are given in Table 5.2. The version with redundant computations
shows a higher performance by 3.69% to 5.9% compared to the multicoloring (MC)
version.

A third alternative, labeled here all-store, stores all computed contributions in

Table 5.2: Characteristics of the used meshes to solve the flow around the LS89
turbine stator blade (Cf. Appendix A.1).

Name # cells
Coarse Mesh 38848
Dense Mesh 310784
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Figure 5.5: (a) Face contributions to the system matrix, (b) redundant work approach
and (c) multicoloring approach.

Table 5.3: Execution time on the Tesla-K40 of the three alternatives for a single
evaluation of the convective Jacobian on a small mesh of 38848 cells (averaged over
100 flow iterations of the 2-stage Runge-Kutta).

Convective Multicoloring Redundant All-store
Jacobian kernels computation kernel
I direction[ms] 2.29 1.92 1.66
J direction[ms] 1.12 1.28 1.09
K direction[ms] 1.90 1.80 1.54
Total[ms] 5.31 4.99 4.29
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Table 5.4: Execution time on the Tesla-K40 of the three alternatives for a single
evaluation of the convective Jacobian on a dense mesh of 310787 cells (averaged
over 100 flow iterations, 2-stage Runge-Kutta).

Convective Multicoloring Redundant All-store
Jacobian kernels computation kernel
I direction[ms] 11.97 10.63 9.4
J direction[ms] 10.2 9.93 8.78
K direction[ms] 8.86 9.34 8.19
Total[ms] 31.03 29.90 26.37

different positions in a large array following the Coordinate Format (COO) shown
in Figure 5.6. This alternative combines first, the advantage of the multicoloring
version as it has has no redundancy and second, it starts as many threads as the
redundant version. These two advantages come at the cost of sorting the data inside
the large “values” array into the CSR format in addition to the memory footprint
of these arrays.

Table 5.5 shows the profiling results of the 3 alternatives on a coarse mesh block.
It is obvious that the difference in the reached occupancy is at the origin of the
performance gap between the multicoloring version and the two other approaches.
The lower occupancy of the multicoloring approach is caused by the halved number
of started threads.

Even though the multicoloring kernel reaches comparable memory bandwidths
with the other alternatives both for reading and writing (L2 read/write), it is rather
an inflated bandwidth caused by the lack of coalescence. The effect of the data
coalescence is measured as the ratio of required bandwidth and actual bandwidth.
The closer the values of the two bandwidths the more coalesced is the access. Bad
memory access results into a much larger memory traffic than required, which is
counted as memory transactions per memory operation. Therefore, to satisfy a single
memory request generated by the code the multicoloring kernel performs multiple
memory transactions. The lack of coalescence is very visible for the evaluation of the
Jacobian in the i space direction as the threads are mapped directly to the i index.
Every variable is stored continuously for the whole mesh. The mesh is scanned in
the i direction for all indices of j ∈ [0..JMax]. The same occurs in all (i,j) planes
for k ∈ [0..KMax]. Therefore, two consecutive threads are mapped to i and i + 1
respectively, while moving in the j direction is related to a strided access with a
stride equal to the number of cells in the i direction. Moving in the k direction is
related to larger stride equal to the number of cells in i direction multiplied by the
number of cells in j direction. The coalesced access is almost guaranteed † when the
stride is equal to one which corresponds to the above-described storage scheme.

Multicoloring in the i direction breaks the coalescence and causes thus a strided
access with a step size equal to two. Such a strided access can easily half the memory

†Access should be also aligned, see Section 2.5
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Table 5.5: Profiling results on the Tesla-K40 of the three alternatives for the evalu-
ation of the convective Jacobian on a small mesh block (3584 cells).

Profiling Multicoloring Redundant All-store
variable kernels computation kernel
Requested store Throughput 22.17 GB/s 40.52 GB/s 44.04 GB/s
Global store Throughput 47.33 GB/s 49.46 GB/s 53.76 GB/s
Store efficiency 46.88% 81.91% 81.91%
Requested load Throughput 14.21 GB/s 27.41 GB/s 28.18 GB/s
Global load Throughput 28.95 GB/s 31.62 GB/s 32.24 GB/s
Load efficiency 49.07% 86.69% 87.42%
L2 read 40.77 GB/s 51.25 GB/s 53.81 GB/s
L2 write 53.25 GB/s 62.97 GB/s 64.78 GB/s
Occupancy 0.058 0.108 0.108
Multiprocessors activity 94.7 94.8 94.6
DRAM utilization 30% 40% 40%
Compute utilization 10% 10% 10%

bandwidth †. The evaluation of the convective Jacobian in j and k directions are
not suffering any deterioration of the coalescence for the multicoloring version. The
redundant version and the all-store versions request, consequently, a higher band-
width as both reach a better occupancy and show a higher coalescence (load/store
efficiency).

Table 5.6 shows the profiling results of the three alternatives on a dense mesh
block. The multicoloring kernels reach an occupancy very close to the occupancy
reached by the other two approaches, which can be explained referring to the general
trend observed with the explicit solver (see Figure 4.15) relating the GPU perfor-
mance to the number of started threads. First, an exponential growth phase occurs
when the number of threads increases then a pre-saturation precedes a saturation
phase ‡. Consequently, decreasing the number of threads damages the performance
only when it causes a kernel to start fewer threads than required to reach the sat-
uration phase of the used GPU. For the dense mesh, all kernels -including the MC
kernel- saturate the GPU. The coalescence is, on the other hand, related to the mem-
ory access pattern and is consequently not improved by the size of started threads
for the dense mesh. The multicoloring kernel shows thus a poor store/load efficiency.

For the convective flux evaluation (Cf Section 4.2.1), the multicoloring alternative
had a better performance than the redundant version. The difference with the
Jacobian evaluation is that the flux kernel was compute-bound and the redundant
computation caused the arithmetic activity to increase. This increase caused the
kernel to be slower as the computation units of the GPU used for the benchmark §

†https://www.karlrupp.net/2016/02/strided-memory-access-on-cpus-gpus-and-mic/
‡Saturation means in this context that the GPU reached a maximum performance that can not

be improved by starting more threads
§GTX780

https://www.karlrupp.net/2016/02/strided-memory-access-on-cpus-gpus-and-mic/
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Table 5.6: Profiling results on the Tesla-K40 of the three alternatives for the eval-
uation of the convective Jacobian (in I direction) on a dense mesh block (28672
cells).

Profiling Multicoloring Redundant All-store
variable kernels computation kernel
Requested store Throughput 37.30 GB/s 47.31 GB/s 49.98 GB/s
Global store Throughput 79.61 GB/s 57.75 GB/s 61.02 GB/s
Store efficiency 46.88% 81.91% 81.91%
Requested load Throughput 23.91 GB/s 32.01 GB/s 31.98 GB/s
Global load Throughput 48.71 GB/s 36.92 GB/s 36.59 GB/s
Load efficiency 49.07% 86.69% 87.42%
L2 read 67.84 GB/s 59.22 GB/s 60.52 GB/s
L2 write 89.56 GB/s 73.53 GB/s 73.51 GB/s
Occupancy 0.117 0.124 0.124
Multiprocessors activity 98.65 98.75 98.9
DRAM utilization 60% 50% 50%
Compute utilization 10% 10% 10%

were saturated reaching 90% of their compute utilization. The Jacobian kernel is
conversely memory-bound and the redundant computations increase the compute
utilization which is far from saturation.

From previous benchmarking, it has been observed that the all-store approach
is the fastest alternative among the coalesced storage approaches (see Figure 5.4).
Before opting for this alternative, which is greedy in terms of storage, the cost of
the sorting of the system matrix has to be assessed.

In order to store the contribution into the system matrix, it is possible to write
directly the Jacobian into the system matrix but following a scattered memory access
pattern, or first write them unsorted into large arrays following a coalesced access
pattern and then sort the arrays to get the global matrix. While the first approach
does not guarantee coalesced memory access, the second approach has a costly data
sorting from Coordinate format (possibly with redundant entries) into CSR format.
Figure 5.6 illustrates the difference between the Coordinate format (COO) and the
compressed sparse row format (CSR). Both methods will be analyzed and bench-
marked.

The contributions of the flux Jacobian are stored along with their row and col-
umn indices into the COO format. Computing and storing all face contributions lead
to three large arrays: two for indices (column array, row array) and a third array
for the contribution’s value. Contributions belonging to the same cell are identified
over identical index in column and row arrays then summed up using sort and reduce
functions of the THRUST library [Bell and Hoberock, 2011]. This library generates
three arrays free of repetition hosting the positions and values of all non-zero ele-
ments (nnz ) of the system matrix. This COO data arrangement stores nnz values
in double precision and 2 ∗ nnz integers. To reduce the storage size while keeping
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Figure 5.6: illustrative example of the Coordinate (COO) and compressed spare row
(CSR) formats for matrix storage.

the same information content, the row array can be transformed into the row off-
set array, in which the column offset of the first non-zero element in every row is
stored. This operation is performed by the CUSP library [Bell and Garland, 2015],
which provides the CSR arrays that constitute the input for the iterative solver of
Paralution. A similar but less complicated algorithm allows to sort and scan the
right-hand side for duplicate entries.

For the case of the LS89 coarse mesh shown in table 5.7, the sorting costs in
total 42.07 seconds for a converged simulation. The entire simulation takes 377.31
seconds with 317.8 seconds for the time integration. So the sorting costs almost 70%
of the assembly time (Jacobian and residual calculation). This value reaches 80%
for a dense mesh, which makes the cost of the sorting equal to a quarter of the cost
of the time integration. Recalling that the time integration contains solving a large
system of equations using a time-consuming ILU preconditioner, the sorting is really
prohibitive for dense meshes and should be avoided.

Uncoalesced Jacobian storage without Sorting

Since the sorting is a time-consuming operation on the GPU with a cost that
increases with the size of the array to sort, a sorting-free method labeled direct-
insertion of the Jacobian contributions in the system matrix is implemented. As the
method accesses directly the “values” array of the system matrix (see Figure 5.6),
the all-store alternative can not be used for the evaluation of the Jacobian as it is
not thread-safe. The remaining options are the multicoloring and the redundant
computation.

Table 5.7: Breakdown of the execution time on the Tesla-K40 of a converged simu-
lation with Jacobian sorting of 534 flow iterations both for coarse and dense mesh.

mesh Jacobian and Time Sorting Total
Residual [s] integration [s] kernel

LS89 coarse 17.43 317.8 42.07 377.31
LS89 dense 54.3 999.7 251 1305
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The direct-insertion method for the Jacobian storage computes the position of the
contribution in the “values” array used in the CSR format. The same kernels are used
to evaluate the Jacobian contributions (multi-coloring and redundant) but instead
of storing them unsorted in a huge array, the new function inserts the contribution
directly into its final position in the global system matrix. The writing function uses
the row number, which is related to the cell indexes (i,j,k), and reads the offset of
the row from the array of row offsets. With the read offset, the segment from the
“values” array is known, which should host the entries of this row (see Figure 5.7).
The difficulties rely on finding the exact offset in the row.

The algorithm takes then the cell position (i,j,k), the mesh block size (number of
cells in I, J and K directions) and the nature of the contribution, which is a number
inputID ∈ [-3 .. 3]. A contribution arising from a common face with a neighbor in
negative K direction has an inputID = −3. A contribution arising from a common
face with a neighbor in positive K direction has an inputID = 3. Analogously, the
J direction presents the inputID= ±2 and the I direction has an inputID= ±1.
The diagonal contribution has the inputID= 0. The value of the inputID obey
the convention on how the indices (i,j,k) are converted into a matrix index. The
algorithm computing the offset of the column is shown in Listing 5.1

The method of direct insertion of the Jacobian in the system matrix cuts the
costs of arranging the data at the expense of some added instructions to compute
the right position of each contribution in the CSR format. Another advantage of the
direct insertion is to reduce the memory cost by suppressing the need for very large
arrays for the different Jacobian contributions. This is crucial for very large meshes
as it increases the maximum size of accepted meshes for the limited GPU memory.

The direct insertion runs a short algorithm (see Listing 5.1) for every contribu-
tion to compute its column offset after reading the row offset from the row offset
array. This added arithmetic and memory operations to the kernels increase the
register usage which further decreases the occupancy. The performance of the mul-
ticoloring kernel and the “redundant” kernel are expected to decrease with the direct
insertion method. A benchmark is essential to compare the effect of the performance
decrease for realistic cases to the saved sorting cost. Therefore, the same test case
benchmarked above for the versions using sorting (see Table 5.3) is benchmarked
with direct insertion. The results, shown in Table 5.8, prove that the cost of the
direct insertion of the Jacobian increased the execution time of the flux evaluation
by 70 to 80% for the coarse mesh. The benchmark showed also that the redundant
computation have a slightly higher performance.

In order to identify the cause of the performance deterioration, key parameters
have been profiled and compared between the coalesced method with sorting and the
uncoalesced sorting-free method for both multicoloring and Redundant computation
(see Table 5.9). The number of memory transactions per request increases from
around 3 to 20 for the load and reached 30 for the storage which reflects a scattered
memory access. The store/load efficiency is almost halved causing the requested
memory bandwidth to decrease severely for the direct insertion methods. This is
expected since the direct method writes in a scattered way a dense block matrix of
Nvar ×Nvar elements per thread.

The ultimate benchmark includes the all-store alternative with sorting and the



Section 5.4 Flow solver implementation 97

ColO�et= ndColumnO set(ID)

RowO�set[Ni]

Row 

O sets

Value 

Array

0 1 2 3

1

2

3

a) b)

c)

Boundary cell:

Nneighbor     6

Interior cell:

Nneighbor     6

Figure 5.7: Identification of the position of a value in the array of value within the
CSR format.

Table 5.8: Execution time on the Tesla-K40 of the three alternatives for a single
evaluation of the convective Jacobian on a small mesh of 38848 cells (averaged over
100 flow iterations, 2-stage Runge-Kutta).

Convective Multicoloring Redundant
Jacobian kernels computation
I direction[ms] 3.68 3.41
J direction[ms] 2.00 2.16
K direction[ms] 3.8 3.45
Total[ms] 9.48 9.02
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Listing 5.1: Code of the direct insertion of a contribution into the system matrix.

int DirectEntryInsertion (int input_ID ){

columnOffset =0; // value valid for inputID =-3

switch(input_ID ){

case -2:

// check if neighbor exists in negative K direction .

if(k!=KMIN) columnOffset +=5; break;

case -1:

if(k!=KMIN) columnOffset +=5;

// check if neighbor exists in negative J direction .

if(j!=JMIN) columnOffset +=5; break;

case 0:

if(k!=KMIN) columnOffset +=5;

if(j!=JMIN) columnOffset +=5;

// neighbor exists in negative I direction.

if(i!=IMIN) columnOffset +=5; break;

case 1:

// offset for diagonal contribution

columnOffset =5;

if(k!=KMIN) columnOffset +=5;

if(j!=JMIN) columnOffset +=5;

if(i!=IMIN) columnOffset +=5; break;

case 2:

columnOffset =5;

if(k!=KMIN) columnOffset +=5;

if(j!=JMIN) columnOffset +=5;

if(i!=IMIN) columnOffset +=5;

// in case a neighbor exist in positive I direction.

if(i!=IMAX) columnOffset +=5; break;

case 3:

columnOffset =5;

if(k!=KMIN) columnOffset +=5;

if(j!=JMIN) columnOffset +=5;

if(i!=IMIN) columnOffset +=5;

if(i!=IMAX) columnOffset +=5;

// in case a neighbor exist in positive J direction.

if(i!=JMAX) columnOffset +=5; break;

}

return columnOffset;

}
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Table 5.9: Profiling results on the Tesla-K40 of the three alternatives for the evalu-
ation of the convective Jacobian on a small mesh block (3584 cells).

Profiling Multicoloring Redundant
variable kernels computation
Requested store Throughput 7.61 GB/s 10.96 GB/s
Global store Throughput 30.47 GB/s 43.87 GB/s
Store efficiency 25% 25%
Requested load Throughput 10.87 GB/s 16.45 GB/s
Global load Throughput 40.38 GB/s 54.29 GB/s
Load efficiency 26.92% 30.3%
L2 read 48.42 GB/s 64.76 GB/s
L2 write 34.55 GB/s 51.18 GB/s
Occupancy 0.058 0.108
Multiprocessors activity 95.7 96.8
DRAM utilization 20% 30%
Compute utilization 10% 10%

Table 5.10: Breakdown of the execution time on the Tesla-K40 of a converged sim-
ulation without Jacobian sorting of 534 flow iterations both for coarse and dense
mesh.

mesh Jacobian and Time Sorting Total
Residual [s] integration [s] kernel

LS89 coarse 25.55 322.43 10.25 358.234
LS89 dense 103.15 1007.5 31.35 1142
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redundant computation without sorting for a whole simulation. Table 5.10 shows the
breakdown of the execution time for a converged simulation into basic operations
including the time integration, the sorting and the assembly. The small value in
the execution time of the sorting is not related to the Jacobian but to the residual
sorting. The cost of the sorting shrunk, nevertheless, considerably especially for the
dense mesh and overcompensated the extra execution time for the assembly. To
conclude, the direct insertion with redundant computation is the fastest alternative
for the system assembly.

Separate kernels are implemented for the residual and the Jacobian calculation
and both need to store the results, the former in a vector, the latter in a sparse matrix
format. For both kernels, sorting can be applied to ensure a coalesced storage access.
Table 5.10 showed a small cost of sorting related to the sorting of the residual array.

Table 5.11 shows a benchmark of the version with direct insertion for the RHS.
Even though the sorting time is basically zero the saved turnaround time is marginal.
This is caused by the extra cost of the residual evaluation when using the direct
insertion.

For the system matrix, the sorting was too slow as it follows two indices, namely
the row and the column. In the case of the residual evaluation, the sorting is more
simple for two reasons. The arrays are shorter (5 variables per cell compared to 25
as for the system matrix) and the sorting is one dimensional following one index. For
the flux calculation, the cost of the sorting of the residual array is not prohibitive
while it keeps the coalescence, assures more threads per kernel and solves the race
condition. In contrast to the system assembly, the sorting for the RHS is better for
the performance than the multicoloring and direct insertion.

To conclude it is worth to highlight that coalescence and sorting are more efficient
for small data (residual or system matrix of small mesh). Redundant kernels and
direct entry are, on the other hand, the best choice to generate the system matrix
of (very) large meshes.

5.4.2 Linear solver with on-demand factorization

From the analysis of the execution time of the system assembly and the time in-
tegration introduced in the last subsection, it has been observed that the time
integration is the most time-demanding part of the simulation. This subsection,
therefore, analyses the reason behind the slow GPU time integration and proposes

Table 5.11: Breakdown of the execution time on the Tesla-K40 of a converged simu-
lation (534 flow iterations) with direct assembly (no sorting of the Jacobian and the
residual) both for coarse and dense mesh.

mesh Jacobian and Time Sorting Total
Residual [s] integration [s] kernel

LS89 coarse 33.32 320.65 0.0 353.98
LS89 dense 128.3551 995.73 0 1124.09
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some improvements.

First, a set of preconditioners will be studied toward finding the best one, recall-
ing that sometimes the preconditioner speed can be traded against Krylov iterations.
The next level includes the benchmarking of the whole simulation (run until flow
convergence). Finally, the optimization of the sequence of consecutive application
of the preconditioner is considered.

Table 5.12 shows the four libraries, which have been considered for solving the
linear system of equations on the GPU: PETSc (GPU version [Balay et al., 2015]),
ViennaCL [Rupp, 2017], MAGMA sparse [Anzt et al., 2014] and Paralution [PAR-
ALUTION Labs, 2016]. The first requirement for a GPU library to be efficient
within an implicit RANS solver is to be able to process data already residing in
the GPU. Many libraries provide wrappers to incorporate externally computed data
but some libraries do not. While PETSc requires only a small change on the data
type of the system matrix and the right-hand side to run the linear solver on the
GPU, the library does not accept external data computed on the GPU which reduces
the scope of the parallelization to the linear solver minimizing the expected global
speedup. Moreover, it does not provide a GPU implementation of the incomplete
LU factorization†. ViennaCL, an OpenCL-based library, can process data residing
in the GPU but it performs a costly data copy from CUDA to OpenCL type. The
third alternative is Paralution, which can process data residing in the GPU and
has no overhead on incorporating external data. It uses also many functions from
the cuSparse library. Like Paralution, the last alternative, MAGMA sparse, accepts
external data and wraps them very fast. It also proposes other ILU algorithms such
as iterative ILU [Chow and Patel, 2015] and Incomplete Sparse Approximate Inverse
(ISAI [Grote and Huckle, 1997]) for ILU application inside GMRES.

Since MAGMA sparse and PARALUTION provide wrappers to incorporate GPU
data with a negligible cost, a short interface is added to the implicit solver in order
to finalize the system assembly, launch the linear solver and retrieve the solution
update. Within the multistage Runge-Kutta scheme, the solution update is the
required data to move to the next Runge-Kutta stage and start the computation of
the next residual. The system assembly itself is done only on the fist Runge-Kutta
stage.

In order to benchmark the different preconditioners of different libraries, the

†Iterative ILU are being integrated into PETSc[Rupp]

Table 5.12: Four different GPU linear solver packages considered for this work.

Library Accept external Fast incorporation benchmarked
Data of external data in this work

PETSc-GPU [Balay et al., 2015] - - -
ViennaCL [Rupp, 2017] X - -
MAGMA sparse [Anzt et al., 2014] X X X
Paralution [PARALUTION Labs, 2016] X X X
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ratio of the cost of the preconditioner setup to the cost of one Krylov iteration is
compared for different mesh sizes both on the CPU and on the GPU. PETSc reports
on the performance when run with the flag -log view. Within the performance
related output of PETSc, there is the total execution time of the Krylov solver, the
execution time of the preconditioner setup and the Krylov iterations. For the GPU
version with Paralution, timings have been collected using the CPU std::clock

function.

The test case is the low-pressure turbine blade T106C [Michálek et al., 2012] de-
picted in Figure 5.8. For all coming benchmarks, the meshes presented in Table 5.13
have been used. Larger meshes for the test case have been created by keeping the
number of cells in the xy-plane constant while increasing the number of cells on the
z-direction. The T106C turbine stator experiences a 2D flow, therefore the same
flow phenomena are solved for all generated meshes. This ensures, that only the
amount of computational work is increasing which is the focus of the computational
performance study.

For different mesh sizes of the test case T106C, table 5.14 and Table 5.15 report
the execution time of the preconditioner setup and one single Krylov iteration on
the Xeon E5 CPU and on the Tesla K40 GPU, respectively. The ILU factorization
is an inherently serial operation as discussed in chapter 3 and is very slow on the
GPU, 15 to 40 times slower than a GPU Krylov iteration. The factorization is also
5 to 7 times slower than a Krylov iteration on the CPU. Therefore, any optimization
of the update rate for the ILU preconditioner should be benchmarked both on the
CPU and on the GPU.

Table 5.16 compares the execution time of the preconditioner setup and a single
Krylov iteration on the CPU and on the GPU. A Krylov iteration is performed
faster on a CPU for a small mesh while it can reach a speedup of almost 4x on
the K40 for a very large system matrix. A Krylov iteration is mainly based on
matrix-vector operations and such a speedup for large matrices is expected. The
preconditioner setup, on the other hand, is always faster on the CPU for conventional
ILU preconditioners.

Another type of preconditioner is based on the approximation of the inverse of the
system matrix. The most basic one is the Jacobi preconditioner which contains only
the inverse of the diagonal elements. On the GPU, the Jacobi preconditioner has
two advantages compared to the GPU ILU preconditioner. First, the preconditioner
setup cost is much shorter and second, the speedup per linear iteration is larger even

Table 5.13: Characteristics of used meshes and underlying linear systems to solve
the flow around the T106C turbine stator blade.

# cells #rows # non-zero # nnz/row
52928 52928 264640 [20 .. 30]

211712 211712 1058560 [20 .. 35]
449888 449888 2249440 [20 .. 35]
926240 926240 4631200 [20 .. 35]
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[m]

Figure 5.8: Mach number contours around the T106C nozzle guide vane.

Table 5.14: Execution time on the Xeon E5 CPU for the ILU setup and a single
Krylov FGMRES iteration using PETSc for different mesh sizes of the case T106C.

System Matrix 1 Krylov preconditioner Ratio
Nrow iteration Titr [s] setup TILU[s] TILU/Titr

264640 0.020 0.114 5.832
1058560 0.088 0.590 6.740
2249440 0.197 1.373 6.985
4631200 0.424 3.076 7.356

Table 5.15: Execution time on the Tesla K40 for the ILU setup and a single Krylov
FGMRES iteration using Paralution for different mesh sizes of the case T106C.

System Matrix 1 Krylov preconditioner Ratio
Nrow iteration Titr [s] setup TILU[s] TILU/Titr

264640 0.034 0.495 15.094
1058560 0.047 1.076 23.386
2249440 0.067 2.016 30.862
4631200 0.106 3.954 38.046
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Table 5.16: Speedup of the ILU setup and a single Krylov iteration for different mesh
sizes of the case T106C on the K40 GPU compared to the Xeon E5 CPU.

System Matrix speedup of 1 Krylov speedup of ILU
Nrow iteration TCPU

ITR /TGPU
ITR setup TCPU

ILU /TGPU
ILU

264640 0.584 0.230
1058560 1.856 0.548
2249440 2.944 0.681
4631200 3.980 0.778

Table 5.17: Execution time on the Xeon E5 CPU for the Jacobi setup and a single
Krylov iteration for different mesh sizes of the case T106C.

System Matrix 1 Krylov preconditioner Ratio
Nrow iteration Titr [s] setup TJacobi[s] TJacobi/Titr

264640 0.014 0.022 1.543
1058560 0.066 0.097 1.416
2249440 0.144 0.206 1.426
4631200 0.328 0.418 1.255

Table 5.18: Execution time on the Tesla K40 GPU using the preconditioned FGM-
RES of Paralution: the Jacobi setup and a single Krylov iteration for different mesh
sizes of the case T106C.

System Matrix 1 Krylov preconditioner Ratio
Nrow iteration Titr [s] setup TJacobi[s] TJacobi/Titr

264640 0.002 0.001 0.278
1058560 0.008 0.001 0.113
2249440 0.016 0.002 0.103
4631200 0.029 0.003 0.086

Table 5.19: Speedup of the Jacobi setup and a single Krylov iteration for different
mesh sizes of the case T106C on the K40 GPU compared to the Xeon E5 CPU.

System Matrix speedup of 1 Krylov speedup of preconditioner
Nrow iteration TCPU

ITR /TGPU
ITR setup TCPU

Jacobi/T
GPU
Jacobi

264640 6.52 34.60
1058560 8.63 107.15
2249440 8.84 118.19
4631200 11.34 156.16
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for small meshes as reported in Table 5.18 and 5.19. In order to assess the Jacobi
preconditioned FGMRES per flow iteration, the same case used for previous bench-
marking will be used with different but low CFL numbers ∈ (5, 10, 15, 20, 25, 50)
both on the CPU and the GPU.

Figure 5.9 shows the simulation speedup for different CFL numbers along with
the local assembly and linear solver speedup for different mesh sizes. With the
increase in the CFL number, the number of linear iterations per flow iteration in-
creases as the system matrix is more and more ill-conditioned. The highest speedup
is performed with the lowest CFL as the portion of the assembly is the highest. The
lower the CFL the closer is the global speedup to the assembly speedup. The global
speedup is then bounded by the assembly speedup as the highest value and the linear
solver speedup as the lowest value. The global speedup for all CFL numbers grows
with the increase in the number of cells influenced especially by the increase in the
assembly speedup.

While this preconditioner shows a cheaper setup time (see Table 5.17 and 5.18),
it can not handle very ill-conditioned matrices. Therefore, when small time steps are
used (see equation (5.2)) a Krylov solver converges with fast Jacobi preconditioner
without the need for a factorization-based preconditioner. However, large time steps
decrease the diagonal dominance and with it the condition number making thus the
incomplete LU factorization essential to the convergence of the linear solver. With
a lower limit on the CFL number than an ILU preconditioned flow solver, the flow
solver with Jacobi preconditioner performs more flow iterations while performing also
much more linear iterations per flow iteration compared to the ILU preconditioned
linear solver. Finally, per linear iteration the Jacobi version is very attractive on the
GPU (see Table 5.19) but for the whole simulation the Jacobi alternative is more
time-consuming than the ILU preconditioned one.

To further accelerate the preconditioned linear solver while preserving the accu-
racy of the solution, the LU matrix should be provided at a lower cost. As reported
by many authors [Chow and Patel, 2015; Saad, 2003], a low accuracy for the Lower
Upper matrices affects the conditioning of the system leading to a larger number of
linear system iterations. Since the GPU runs the iterations of the linear solver faster
than it performs the incomplete LU factorization, the cost of the additional inner
iterations can be traded against the ILU setup time. One possibility to get a faster
and lower quality ILU is to apply multicoloring in order to identify independent rows
that can be processed in parallel during the factorization. The multicoloring ILU
(MC-ILU) shows more parallelism than the standard ILU, which is reflected on the
faster setup (see Table 5.20 and Table 5.21). At the same time, the number of Krylov
iterations increases for the same CFL number compared to the ILU preconditioned
linear solver. The number of flow iterations, on the other hand, is the same as the
CFL number has not been changed, which makes the MC-ILU more interesting than
the Jacobi preconditioner.

The setup of the MC-ILU preconditioner is faster than the setup of the standard
ILU for a small mesh (see Table 5.22). This advantage becomes smaller when the
size of the matrix increases. Probably the coloring cost increases more than the
advantage of the coloring for the ILU setup for large matrices. Also for the Krylov
iterations, the multi-coloring acceleration fades with the increase in the matrix size.
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Figure 5.9: Effect of the CFL increase on the global speedup for a fixed number
of flow iterations of the RANS simulation on the case T106C with different mesh
resolutions using the Jacobi preconditioned FGMRES linear solver.

Table 5.20: Execution time on the Tesla K40 GPU using preconditioned FGMRES
of Paralution: the MC-ILU setup and a single Krylov iteration for different mesh
sizes of the case T106C.

System Matrix 1 Krylov preconditioner Ratio
Nrow iteration Titr [s] setup TMCILU[s] TMCILU/Titr

264640 0.004 0.279 65.137
1058560 0.014 1.030 71.990
2249440 0.030 2.114 71.645
4631200 0.059 4.292 72.280

Table 5.21: Speedup of the MC-ILU setup and a single Krylov iteration for different
mesh sizes of the case T106C on the K40 GPU compared to the Xeon E5 CPU.

System Matrix speedup of 1 Krylov speedup of preconditioner
Nrow iteration TCPU

ITR /TGPU
ITR setup TCPU

ILU /TGPU
MCILU

264640 3.341 0.079
1058560 6.104 0.573
2249440 6.680 0.649
4631200 7.135 0.717
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Table 5.22: Speedup of the MC-ILU setup and a single Krylov iteration for different
mesh sizes of the case T106C on the K40 GPU compared to the ILU on k40.

System Matrix speedup of 1 Krylov speedup of preconditioner
Nrow iteration TGPU

ITR /TGPU
MC−ITR setup TGPU

ILU /TGPU
MCILU

264640 7.802 1.771
1058560 3.288 1.045
2249440 2.269 0.953
4631200 1.793 0.921

While the choice of the solver is not very relevant as most Krylov solvers have
a comparable performance, the choice of the preconditioner is very decisive for the
studied test case. The performance of some preconditioners from a prominent library
namely Magma sparse have been benchmarked (see Table 5.23). Magma sparse relies
on the cuSparse† implementation of the ILU factorization with level-scheduling. For
the application of the preconditioner within the linear solver iteration, the library
proposes also an Incomplete Sparse Approximate Inverse method (ISAI [Anzt et al.,
2016a]). All methods use the flexible GMRES algorithm. For small meshes on the
GPU, an ILU with ISAI triangular solver of Magma sparse could be competitive
but for large meshes, the Paralution library provides the best GPU performance.
Based on the results of the benchmark, the chosen linear solver is the preconditioned
GMRES of the Paralution library [PARALUTION Labs, 2016] with a restart Krylov
subspace of 10 to 30 vectors.

As a reaction to the high execution time of the ILU, an attempt is made to
lower the required number of recomputations or updates of the preconditioner. It
is not a new topic as many researchers tried to reduce the execution time spent
for the preconditioning in a context of a set of consecutive linear systems such as a
steady CFD simulation [Birken et al., 2008; Tebbens and Tuma, 2007]. It is possible
to recalculate the ILU only periodically with a period that can be set from the
beginning or dynamically changing based on some parameters such as the number
of linear solver iterations. Some methods [Birken et al., 2008; Tebbens and Tuma,
2007] update the ILU preconditioner using former factorization in a way which is
lighter than a recalculation and should result in fewer linear solver iterations than
the periodic recalculation. Anzt et al. [Anzt et al., 2016b] use an iterative ILU on
the GPU for which the preconditioner of one system is the first guess for the next
system. They show that updating a the preconditioner of a previous time step could
be fast and effective.

Since the preconditioner setup is very costly and the system matrix is only slightly
changing from one flow iteration to the next, it is possible to recycle the precon-
ditioner from previous iterations without altering the flow convergence. Table 5.24
and Table 5.25 show the effect of the preconditioner freezing both on the CPU and
on the GPU for the LS89 test case. For both hardware, the cost of solving the linear
system has decreased and with it the portion of the system solving from the total

†http://docs.nvidia.com/cuda/cusparse/
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Table 5.23: Execution time on the Tesla K40 GPU using preconditioned FGMRES
of Paralution: the ILU setup and a single Krylov iteration for different mesh sizes
of the case T106C.

System Matrix Triangular 1 Krylov preconditioner Ratio
Nrow Solver iteration Titr [s] setup TPC[s] TPC/Titr

264640 CUSPARSE 0.049 0.61 12.50
1058560 CUSPARSE 0.072 2.63 36.27
2249440 CUSPARSE 0.107 5.66 52.71
4631200 CUSPARSE 0.174 11.59 66.61
264640 ISAI 0.013 0.77 56.75

1058560 ISAI 0.056 3.64 64.76
2249440 ISAI 0.121 8.08 66.83
4631200 ISAI 0.250 16.89 67.56

execution time. The striking fact is that the portion of the linear solver is less than
15% for the CPU while more than 80% for the GPU. This is related mainly to the
cost of the preconditioner setup on the GPU.

Simply skipping the factorization for a preset number of flow iterations improves,
indeed, the performance as observed above. Having a very low update rate, however,
can make the linear solver struggle to converge especially during the early flow
iterations.

To decrease the time spent in the factorization while guaranteeing the conver-
gence of the linear solver in a decent number of linear iterations, a mechanism is
implemented to decide when an update of the ILU is necessary. The factorization is
performed thus only on-demand when the LU quality is so decreased that the linear
solver needs more iterations to converge than a user defined threshold:

Pseudo-code of the on-demand LU factorization

if (itr> MAX_ITR ) M <-LU_Factorization (A)

(x, itr) <- FGMRES (A,M,b)

Table 5.24: Different preconditioner update rates for LS89 simulation on the Xeon
E5 CPU.

preconditioner Mean flow Total Time integration
update rate integration [s] time [s] portion

100.0% 91.15 618.59 14.74%
50.0% 69.75 592.23 11.78%
25.0% 62.81 560.22 11.21%
12.5% 56.89 527.95 10.78%
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Table 5.25: Different preconditioner update rates for LS89 simulation on the Tesla
K40 GPU.

preconditioner Mean flow Total Time integration
update rate integration [s] time [s] portion

100.0% 294.87 352.76 90.65%
50.0% 200.91 258.65 87.30%
25.0% 170.74 228.75 85.52%
12.5% 155.13 213.14 84.46%

where A,M and b are defined in equation (5.9). The maximum number of iterations
MAX ITR depends on the condition number and thus on the time step. As the time
step depends on the CFL and the mesh cell size a relation between MAX ITR and
CFL number can be found for a given mesh:

MAX ITR = a + b ∗ CFL , (5.11)

with a and b two tuning parameters. Parameter a plays an important role for
applications with a low CFL number and b increases with the mesh refinement. The
on-demand factorization changes only the entries of L and U matrices, and not the
ordering of the non-zero elements.

For the 2-stage Runge-Kutta solver, the flow required 637 flow iterations to
converge with a 6 orders of magnitude decrease in the relative flow residual. The
standard ILU performs one factorization per flow iteration, while the on-demand
ILU (ILU-OD) performs a factorization only every 20 flow iterations and if the
number of linear iterations required for the last linear solver call exceeds 8 †. A
global speedup of 2.26x is reached between the OD-ILU and the ILU both on the
GPU (see Table 5.26). Figure 5.10a shows the growing difference in the execution
time for the mean flow integration responsible for the performance improvement of
the OD-ILU. Figure 5.10b shows the number of linear solver iterations per call for
both solvers (with ILU and with OD-ILU as preconditioner). At the beginning of the
simulation, the OD-ILU performs more linear iterations because of the outdated ILU
within a fast-changing flow and related system matrix. But after 200 flow iterations,
the simulation is close to the stationary state and both preconditioners almost do
the same number of linear iterations per call to the linear solver, which reflects
the small difference between the up-to-date and the outdated ILU preconditioner.
Indeed, after the initial phase the ILU is updated only every 20 flow iterations as
the number of GMRES linear iterations never exceeds 8, which is the threshold
value set for a preconditioner update. In total, the OD-ILU performs 50 calls to
the ILU factorization, which corresponds to a decrease of 92%. The effect of the
OD-ILU is expected to be more pronounced the higher is the required decrease in
the flow residual as for low residuals the solution is only slightly changing and the
preconditioner can be reused for a large number of flow iterations.

†Based on Equation (5.11) with CFL = 50, b = 0.15 and a = 0.5.
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stage.
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Table 5.26: Execution time of a converged simulation on the K40 using the ILU
and the OD-ILU preconditioned FGMRES of Paralution for the case T106C with
CFL = 100, no-sorting assembly and mesh 4.

PC periodic Threshold Time Total
name update value Integration[s] [s]
OD-ILU 20 8 1177.72 1768.66
ILU 1 - 3412.43 3991.39

In the next step, the same OD-ILU mechanism is implemented in the CPU version
with an ILU update every 20 flow iterations and an update based on the number of
linear iterations not exceeding 8 per call to the linear solver (see Table 5.27). The
GPU OD-ILU simulation reaches a speedup of 11.47x over the OD-ILU on the CPU
mainly boosted by the increase in the linear solver speedup.

5.5 Results

After analyzing the cost of the preconditioner setup and a single Krylov iteration
for a set of preconditioners, it has been observed that the MC-ILU is interesting for
small meshes while ILU is the best choice for large meshes. In order to generate
the ultimate speedup, an implicit RANS simulation on the turbine stator T106C is
run on different meshes with increasing size. The stopping criterion for the linear
solver is a 10−1 reduction of the relative residual and the flow solver stops when the
minimization of the L2 norm of the residual reaches 10−6. The 2-stage Runge-Kutta
(RK) time-stepping method is chosen for the benchmark. Tables 5.28, 5.29, 5.30
and 5.31 report on the execution time of the CPU ILU, the GPU MC-ILU and the
GPU ILU. The reached speedup of the GPU ILU solver against the CPU ILU is
reported in Table 5.32 for different mesh sizes.

Figure 5.11 compares the three GPU alternatives for the total execution time,
the execution time of the system solving and the assembly. For small meshes, the
MC-ILU preconditioned FGMRES is the fastest solver preceding the Jacobi and
the ILU preconditioned FGMRES (see Figure 5.11a). The Jacobi preconditioned

Table 5.27: Execution time of a converged simulation on the Xeon E5 CPU OD-ILU
preconditioner with FGMRES of PETSc for the case T106C with CFL = 100 and
mesh 4.

PC periodic Threshold Time Total
name update value Integration[s] [s]
CPU OD-ILU 20 8 3586.7 20276.9 (5.6h)
CPU ILU 1 - 5602.14 22169.84 (6.48h)



112 GPU-accelerated Simulations with Implicit Time-Stepping Chapter 5

Table 5.28: Execution time on the K40 using MC-ILU preconditioned FGMRES
of Paralution for different mesh sizes of the case T106C with CFL = 100 and no
sorting assembly.

Mesh # flow Assembly Time Total
Size iterations [s] Integration[s] [s]

52928 770 57.16 412.57 469.73
211712 777 150.39 1575.11 1725.51
449888 755 270.51 3190.74 3461.26
926240 756 509.33 6346.10 6855.44

Table 5.29: Execution time on the K40 using the ILU preconditioned FGMRES of
Paralution for different mesh sizes of the case T106C with CFL = 100 and no
sorting assembly.

Mesh # flow Assembly Time Total
Size iterations [s] Integration[s] [s]

52928 771 56.36 724.2075 780.566
211712 770 142.12 1345.5491 1487.67
449888 746 257.76 2235.921 2493.68
926240 746 497.95 4099.955 4597.91

Table 5.30: Execution time on the K40 using Jacobi preconditioned FGMRES of
Paralution for different mesh sizes on the case T106C with CFL = 100 and no
sorting assembly.

Mesh # flow Assembly Time Total
Size iterations [s] Integration[s] [s]

52928 3611 266.10 495.09 761.19
211712 4111 773.07 1971.67 2744.74
449888 4031 1423.55 4127.36 5550.91
926240 4095 2810.00 8441.50 11251.50
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Figure 5.11: Execution time of the T106C case for different mesh sizes: (a) to-
tal execution time, (b) execution time of the time-stepping of mean flow variables,
(c)execution time of the time-stepping of the turbulence and (d) execution time of
the assembly.
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Table 5.31: Execution time on the Xeon E5 CPU using the ILU preconditioned
FGMRES of PETSc for different mesh sizes of the case T106C with CFL = 100.

Mesh # flow Assembly Time Total
Size iterations [s] Integration[s] [s]

52928 764 1037.05 235.35 1276.79
211712 770 4247.95 1211.75 5469.51
449888 746 9093.07 2969.08 12085.20
926240 746 19870.87 6883.08 26827.65

Table 5.32: Speedup of the ILU preconditioned FGMRES of Paralution for different
mesh sizes of the case T106C with CFL = 100 over PETSc on the Xeon E5 CPU.

Mesh Assembly Time integration Total
Size Speedup[-] speedup[-] speedup[-]

52928 18.40 0.32 1.64
211712 29.89 0.90 3.68
449888 35.28 1.33 4.85
926240 39.91 1.68 5.83

version performs more linear iterations per flow iteration, nevertheless, it is faster
on the time integration (see Figure 5.11(b-c)) since it has a very fast setup and
linear iteration on the GPU. It has, however, a poor performance on the assembly
as it is the same procedure run by all solvers and the Jacobi version requires more
flow iterations because of the lower CFL number (see Figure 5.11d).

For large meshes, the ILU preconditioned solver is the fastest in the assembly
and the mean flow time integration. For the turbulence time-stepping, it performs
as good as the MC-ILU alternative.

5.6 Discussion

The global speedup reached in this work is a combination of the high assembly
speedup and the low linear solver speedup. Applications spending more time on the
assembly phase rather than the linear solver benefit more from the GPU acceleration
since looping over faces or cells in a large mesh could be easily adapted to the GPU
hardware.

To sum up, three types of operations on the GPU are here present: (1) slow pre-
conditioner setup, (2) fast linear solver iterations and (3) very fast system assembly.
The final speedup is a linear combination of the speedup of these three operations
as follows:

S = αPCSPC + αitrSitr + αassemblySassembly, (5.12)
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with S the global speedup, SPC the preconditioner speedup (actually slowdown), Sitr

the linear iteration speedup, Sassemly the assembly speedup. αPC, αitr and αassembly

are the portions of the execution time of the preconditioner, the linear iteration and
the assembly, respectively. The best speedup is reached when the portion of the
assembly is at its maximum while the portion of the preconditioner setup is at its
minimum. In light of these facts, a discussion is presented, for which the Paralution
library is used, and the effect of the CFL number, the number of RK stages and the
linear stop condition are analyzed.

5.6.1 Effect of the CFL number on the GPU speedup

A higher CFL number is generally related to a faster convergence and a shorter
execution time. The general recommendation is then to chose the largest possible
CFL that still guarantees a stable simulation. This subsection treats solely the effect
of increasing the CFL number on the GPU speedup. The CFL number reduces the
number of flow iterations required to reach a stationary solution at the cost of an
increase in the number of linear solver iterations per flow iteration. In total, the
steady simulation requires fewer factorization while the cost of the ILU precondi-
tioning is independent of the CFL number. On the other hand, the portion of the
linear solver from the execution time of the flow iteration increases at the expense
of the system assembly which has a better GPU acceleration. Table 5.33 shows a
small decrease of the global speedup for higher CFL numbers. For very high CFL
numbers the simulation can be largely dominated by the linear solver resulting in a
small GPU speedup or even a slowdown.

5.6.2 Effect of the RK stages number on the GPU speedup

In general the higher the number of Runge-Kutta stages is, the higher the CFL
number could be. The ideal number of RK stages for a faster simulation on the
GPU is case-dependent. In this subsection, the effect of the number of stages is
analyzed for a fixed number of flow iterations not taking into account the expected

Table 5.33: Speedup for different CFL numbers of the ILU preconditioned FGMRES
of Paralution for the case T106C on the K40 GPU compared to the Xeon E5 for
mesh 1.

CFL linear solver Assembly Global
Number speedup speedup speedup

100 0.34 18.43 1.61
200 0.36 18.73 1.58
300 0.37 18.91 1.56
400 0.37 18.93 1.53
500 0.38 19.51 1.55

1000 0.37 18.58 1.42
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higher stable CFL number with more RK stages.

As indicated in the solver algorithm, the system matrix is computed only on
the first stage and for all further stages, only the RHS is changing. When the
system matrix does not change so does the preconditioning matrix. Consequently,
having more stages adds more residual computation and linear system iterations both
advantaging the GPU. Table 5.34 confirms that the linear solver speedup increased
because of the reuse of the same preconditioner for more stages. Moreover, the
speedup of the assembly improved since the second stage and higher need only the
well-accelerated space integration and no Jacobian calculation. Both improvements
are combined to increase the global speedup the more RK stages a simulation has.

5.6.3 Effect of the linear solver stop condition on the GPU
speedup

The linear stop condition is the condition that has to be fulfilled by the linear solver,
here the FGMRES, in order to consider the linear system as solved (see Algorithm 4).
Higher levels of convergence of the linear solver lead therefore to a large number of
linear iterations without substantially altering the number of flow iterations.

Equation (5.12) breaks the global speedup into three types of operations: the
preconditioner, the linear iterations and the assembly. The increase of the level of
convergence for the linear solver increases the portion of execution time devoted
to the linear iteration at the cost of the assembly and the preconditioning. As a
results the global speedup decreased as shown in Table 5.35. In general the mildest
possible stop condition should be chosen, which however should not deteriorate the
convergence of the flow solver.

5.7 Validation

The test case is a transonic flow over the LS89 inlet guide vane cascade [Arts et al.,
1990], which experiences a turning of 74 degree through the NGV geometry and a
passage shock with a peak Mach number of 1.15. Figure 5.12 shows the validation
of the method on the LS89 case.

Table 5.34: Speedup for different numbers of Runge-Kutta stages of the ILU precon-
ditioned FGMRES of Paralution for the case T106C on the K40 GPU compared to
the Xeon E5 for a mesh size of almost 1M cells.

Nbr RK linear solver Assembly Global
Stages speedup speedup speedup
3 1.70 37.41 5.50
4 1.92 36.96 5.66
5 3.18 41.43 7.24
6 3.45 41.28 7.47
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Table 5.35: Speedup for different linear solver stopping conditions of the ILU pre-
conditioned FGMRES of Paralution for the case T106C on the K40 GPU compared
to the Xeon E5 for a mesh size of almost 1M cells.

relative Stop linear solver Assembly Global
Condition ||ri||/||r1|| speedup speedup speedup
1 1.51 39.22 5.50
2 2.04 39.19 5.11
3 2.41 38.70 4.81

a) b)

Figure 5.12: (a) Mach contours of the transonic LS89 [Arts et al., 1990] turbine
guide vane test case and (b) Computed and experimental distributions of isentropic
Mach number on LS89 inlet guidance vane surface (M2is

= 1.02 P01 = 1.605bar).
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5.8 Summary

The operations required by an implicit solver belong to three groups based on the
reached speedup on the GPU: very fast (assembly), fast (linear iteration) and slow
operations (factorization). The assembly reached a speedup of almost 40x which is
lower than the two orders of magnitude reached for the explicit solver, even though
both are embarrassingly parallel. Indeed, the assembly includes the same space
integration as for the explicit solver but at the same time computes the Jacobian
and form the system matrix. The Jacobian are slower to be computed than the
fluxes as the Jacobian kernel is more resource consuming and thus fewer cells are
computed concurrently. Moreover, the direct insertion or the sorting are also time-
consuming which results in the speedup gap between the space integration and the
assembly. The effect of the Jacobian decreases when more Runge-Kutta stages are
used since they are computed only for the first stage.

The slow factorization has the major influence on the global implicit solver
speedup, which hardly exceeds one order of magnitudes. At the time of writing
the promising iterative factorization has not been stable in this work and the only
optimization is the reduction of the number of performed standard factorizations for
flow convergence. A lot of potential is in these techniques as sometimes 90% of the
execution time of a RANS simulation is spent solving the linear system with most
of this time spent in the incomplete factorization of the system matrix.

5.9 Conclusion

This chapter presented an implicit RANS CFD solver fully running on the GPU
with the benefit of avoiding any CPU-GPU penalizing communication. The flexible
GMRES implementation of the Paralution package is used to solve the linear system
of equations along with the incomplete LU factorization for the preconditioning. A
proposed control mechanism is capable of accelerating the linear solver without
altering the flow convergence by reducing the number of times an incomplete LU
factorization is performed. Speedups of 11.47x compared to a single-core CPU is
measured for 3-D flow predictions in turbine applications.

In addition to the reached final acceleration results, the chapter analyzed thor-
oughly the performance of multiple implementations for the assembly and the system
solving. The benchmark demonstrated that implicit time-stepping in CFD applica-
tions can profit from the GPU computational power, provided an appropriate GPU
occupancy is reached and a good mesh in terms of surface-area-to-volume ratio is
used. As the bottleneck of the GPU flow solver is the incomplete LU factorization
used as preconditioner, the on-demand ILU factorization presented in this chapter
improved the overall speedup by 60% to 80%.



6
Explicit versus Implicit CFD Simulations, the GPU

dimension

A Computational Fluid Dynamics (CFD) code for steady simulations solves a set
of non-linear partial differential equations using an iterative time-stepping process,
which could follow an explicit or an implicit scheme. On the CPU, the difference
between both time-stepping methods with respect to stability and performance has
been well covered in the literature. However, it has not been extended to consider
modern high-performance computing systems such as Graphics Processing Units
(GPU). In this chapter, the GPU implementations of the two time-stepping methods,
presented in chapter 4 and 5, are used to study the difference between the two
methods on the GPU. A classification of basic CFD operations is introduced, which
is based on the degree of parallelism they expose and is used to study the potential
of GPU acceleration for every class. The classification provides local speedups of
the basic operations, which are finally used to compare the performance of both
methods on the GPU. The target is to enable an informed-decision on the most
efficient combination of hardware and method when facing a new application.

6.1 Introduction

CFD is commonplace in engineering activities, as many products are nowadays de-
signed by relying heavily on numerical preconditions with reduced wind tunnel test-
ing in order to cut down the product development cost. Computations are, neverthe-

This chapter is based on the article:

M.H. Aissa, T. Verstraete, and C. Vuik. Toward a GPU-aware comparison of explicit and
implicit CFD simulations on structured meshes. Computers & Mathematics with Applications,
74(1):201–2017, 2017b .
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less, still expensive and a trade-off is continuously sought between fast turnaround
time and high accuracy. New hardware with a high computational power, such as
the GPU, can be effectively employed to target fast computations without compro-
mising the accuracy. The GPU, originally developed from graphics pipelines, excels
on processing a large amount of independent data with a very regular and simple
memory access pattern. Not all CFD solvers offer the required workflow to profit
from the high GPU performance.

The basic task of CFD solvers is indeed to advance iteratively an initial solution
by performing a space and a time integrations of the governing equations. In order
to update the solution, the solver requires a memory access to the neighboring cells.
For the explicit time integration, the update depends only on few neighbor cells,
while for the implicit time integration, the update depends on all cells and can be
formulated as a solution of a linear system of equations.

The locality of explicit solvers reflects on the memory usage, which is very low
compared to the implicit solver memory footprint (apart from special cases of matrix-
free implicit solvers [Johan and Hughes, 1991]). The computations performed within
this scheme have a stencil-based character, for which neighbor cells are used to up-
date a central cell following a regular pattern. As the operations are repeated for all
mesh cells, it generates a large number of independent operations. Due to this simple
regular workflow, explicit solvers are suited to the GPU massively parallel architec-
ture and can benefit largely from its computational power. Interesting speedups of
one to two orders of magnitudes have been reported in the literature [Brandvik and
Pullan, 2011; Brock et al., 2015; Karantasis et al., 2014; Elsen et al., 2008; Lefebvre
et al., 2012]. In general, explicit solvers are stable only with a small time step, as
the latter is controlled by relatively low Courant-Friedrichs-Lewy (CFL) conditions
(e.g. CFL=0.92 [Van Leer et al., 1992]). This method requires, thus, a large num-
ber of iterations to converge. When combining the GPU acceleration with some flow
convergence acceleration techniques, such as residual smoothing, multigrid and local
time-stepping, the explicit method can be very efficient.

Implicit solvers have less stringent stability limits, allowing to speed up the tran-
sient process with an increased CFL number. The acceleration reaches, however,
asymptotically a limit, due to the inherent nonlinearity of the equations, as depicted
in Figure 6.1. Implicit solvers benefit less from the GPU acceleration especially when
factorization based preconditioners are used that rely on the Gaussian elimination
such as the incomplete LU factorization (ILU). New algorithms are, nevertheless,
trying to expose more parallelism and improve the performance of linear solvers on
the GPU by accelerating the incomplete factorization [Chow et al., 2015] and its use
in the linear solver [Anzt et al., 2015, 2016a]. Reported speedups for implicit solvers
are of one order of magnitude [Luo et al., 2015; Fu et al., 2014; Aissa et al., 2017].

The studied combinations cover the explicit and the implicit time-stepping both
on the CPU and on the GPU, which results in four different approaches. Few authors
compared the explicit to the implicit performance. Niemeyer and Sung [2014a] im-
plemented a Finite Volume flow solver for chemical reactions on a GPU with explicit
time-stepping. He compared the performance on a CPU and a GPU of the explicit
time integration to a commercial implicit solver on a CPU. He showed, however,
no results on the GPU version of the implicit solver. Brock et al. [2015] developed
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Figure 6.1: Saturation of the iterations number with the increase of CFL number
(case: turbine T106C [Michálek et al., 2012]).

an explicit solver for an astrophysics application and compared the execution time
of one iteration with estimations of the implicit performance on the CPU as the
memory requirement for the solved case were prohibitive for the implicit integra-
tion. He showed a peak speedup of 2.5x for the GPU explicit over the CPU explicit
and expected a speedup of 15x for the GPU explicit over the CPU implicit. He has
not considered the possible faster convergence of the implicit method.

To bring the comparison forward a classification is introduced, which considers
basic CFD operations following their suitability to the GPU architecture and studies
their speedups. The classification of different CFD operations is inspired by the
major differences of both hardware (see Table 6.1). The CPU is a general purpose
processor able to handle different type of tasks. The large cache for a reduced
number of CPU cores (e.g. Xeon E5-2640 has 15 MB of cache memory for 8 cores)
is an efficient cure to the non regular data flow of some algorithms. In fact, it
minimizes the cache misses defined as calls to variables relocated from the cache
memory due to overuse [Hartstein et al., 2008]. The processor high clock rate of
the CPU is an indicator for the speed, at which computations are executed and
the memory is accessed. The GPU, on the other hand, is very specialized with
a large computational power coming from the high number of GPU cores. The
clock rate and cache capacities are in general lower than what CPUs offer and time-
consuming cache misses can not be avoided for dispersed memory accesses. Under
these circumstances, a regular data flow pattern is essential in order to achieve a
good performance. As the computation power exceeds by far the GPU memory
bandwidth, algorithms need to balance the slow memory access with a large number
of computations. The large number of cores with a reduced power for each core are
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efficiently used when a large number of independent data is available with a relatively
simple and regular calculation for every piece of data. These specificities of the GPU
motivated a classification of the CFD operations regarding three criteria: (1) the
amount of data to process, (2) the data dependency level and (3) the regularity of
the access pattern. The amount of data is used to maximize the possibilities for the
GPU to hide the slow memory access with computations. A low data dependency
provides a large number of independent instructions ideal for the large number of
GPU cores. For a regular access pattern, the GPU can combine multiple expensive
memory loads into one single load. The only condition is that consecutive threads
of half a warp access consecutive memory positions (Cf. Section 2.5).

The entire explicit/implicit comparison is based on the proportion in execution
time of each class in every scheme, which is used to estimate the GPU speedup.
Similar classification has been introduced by Elsen et al. [2008] for vehicle aerody-
namics. He classified kernels based only on memory access pattern and neglected
the amount of data to be processed.

The performance estimation for the GPU is an active domain. Some authors
analyze the GPU code ([Hong and Kim, 2009; Baghsorkhi et al., 2010]) to build an
estimate of the GPU performance. Li et al. [2015] predicts the performance of Sparse
Matrix-Vector operations (SpMV) using a trained probabilistic model. Baghsorkhi
et al. [2010] interprets a GPU kernel as a workflow graph and estimates its execution
time. The CPU and the GPU solvers -presented in the two last chapters- are used
to accumulate enough benchmark data of basic operations to correlate it with the
global performance of CFD simulations on the GPU. The covered simulations are
steady CFD simulations on turbomachinery with structured meshes. The knowledge
over the underlying CFD operations is used to match the performance bottlenecks
on a GPU with their sources from the basic CFD operations. In that way, the use
of automated methods to analyze applications code or executable is avoided.

The classification is used also to empower readers for a better appreciation of
reported speedups in the literature. As discussed by Lee et al. [2010], reported GPU
speedups are not to be taken as raw numbers. The reference CPU code optimization
is important along with the used GPU. At the same time, some reported accelerations
are only local and specific to a certain operation with sometimes little influence on
the global speedup. The followed qualitative approach focuses on transmitting key
know-how on CFD operations on the GPU. The aim is to help the developer to
estimate the expected speedup of steady CFD simulations on GPUs using only the
profiling results of the CFD application on a single CPU.

6.2 The classification

In computer science, problems which easily run in parallel, are called embarrassingly
parallel. For those type of problems, it is clear how to divide the algorithm into small
independent pieces of calculations, which are performed on different data. The al-
gorithm shows a low level of data dependency peculiar to this type of operations.
An inherently sequential problem, on the other hand, has highly interdependent
operations, which have to be executed in a given order to get accurate results. A
practical approach to classify CFD operations as embarrassingly parallel or inher-
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ently sequential is to follow the GPU utilization of the operation given by the GPU
profiler. The NVIDIA Visual Profiler (NVVP) can deliver information about the
utilization of the memory and the computation units of the GPU for every kernel.
A kernel with a high utilization of both units is suited to the GPU architecture and
very efficiently written and executed. Figure 6.2 depicts this ideal case in addition to
three realistic cases of performance limitations for GPU kernels: a latency-limited,
a compute-limited and a memory-limited kernels. Kernels with a low memory and a
low computation utilization are latency-limited. Such a low utilization can be caused
by a non-efficient code (memory non-coalesced, important thread divergence) or by
the use of a low number of threads. Indeed, when a kernel starts only a few threads,
these are unable to hide the memory latency. When warps of threads are waiting for
memory loads, not enough warps are available to fill the waiting time efficiently with
computations. Kernels with a high compute utilization and a poor memory utiliza-
tion are said to be compute-bound. For such a kernel, the performance optimization
should first target the reduction of the number of computations per memory load.
Kernels with a high memory utilization and a low compute utilization are said to be
bandwidth-bound. For such a kernel, few computations are performed per memory
load. In that case, improving the memory coalescence and using the shared-memory
could improve the performance of the kernel.

In this section, elementary functions used by the explicit or the implicit CFD
solver are first classified into three classes: compute-bound, memory-bound and
latency-bound kernels. The classification reflects the differentiation between embar-
rassingly parallel and inherently sequential algorithms using the GPU utilization as
a measure of the GPU suitability of studied CFD operations. Every class is analyzed
regarding solely its performance on the GPU.

Compute-Bound Embarrassingly Parallel operations are suited to the GPU
architecture and make an intensive use of arithmetic operations boosting the com-
pute utilization of the GPU (see Figure 6.2 ). This class contains explicit time-
stepping methods (e.g. Runge-Kutta scheme used in this work), convective and
viscous flux calculation and turbulence calculation. These operations are stencil-
based, they involve few neighbor cells for the computations related to a central
cell. This class of functions is able to provide a large amount of independent data,
which increases with the mesh size. The data dependency is relatively low as only a
second-order scheme is used for the space integration (requiring access to 17 neigh-
bors). Most of these functions involve an intensive use of arithmetic operations for a
reduced stencil leading to a set of compute-bound functions. As the access pattern
is regular on all data, it is very rare to have a thread divergence. Even though some
algorithms can still impose divergence through a conditional statement. The Roe
scheme, for instance, performs an entropy correction to better capture flow shocks
as the original formulation does not recognize the sonic point [Harten et al., 1997].
This could lead to different execution paths within a warp. These kernels can have
a high performance in terms of updated cells per second, which leads to a relatively
high speedup of two orders of magnitude (See Figures 6.3 and 6.4).

The convective flux calculation is a compute-bound kernel, as the Roe scheme (see
equation (4.9)) has to be evaluated at the cell face involving a lengthy computation
with a large number of arithmetic operations. The flux calculation is based on a
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summation of surface contributions and thus not thread-safe as two or more faces
could add face contributions at the same time to the same cell. One possibility to
avoid this race condition is to compute the flux cell-wise which is thread-safe but
requires a redundant calculation of the flux. Recalling that the kernel is compute-
bound, redundant computation has to be avoided. The second approach called the
multi-coloring consists of creating groups (colors) of faces, which do not share cells
in common. For every color, the computation is thread-safe at the expense of less
coalesced access. The second approach is proven to be more efficient (see Figure 6.3
and the extended benchmarking of Section 4.2).

Memory-Bound Embarrassingly Parallel operations provide well defined
independent work units for the GPU but make few computations per loaded byte
of memory. This class includes the Jacobian calculation and Sparse Matrix-Vector
operations (SpMV). Compared to the flux calculation which generates a vector of
Nv values per cell †, the Jacobian calculation updates a matrix of Nv × Nv values
and performs thus many memory operations. Within the SpMV, a dot product is
computed for every row of the sparse matrix. In CFD time integration, the rows
correspond to mesh cells. Even though they can be reordered to favor a better per-
formance, SpMV operations are known for being memory bound [Bell and Garland,
2009] and benefit averagely from the GPU. It is very important here to specify the
data storage layout, as it can improve the data dependency and the memory access.
Linear solvers, such as GMRES, are based on SpMV operations and belong thus to
the same class.

Latency-Bound Inherently Sequential operations provide a very limited
fine-grained parallelism, insufficient to run the GPU in a profitable regime. This
third class deals with functions operating on a small amount of data with a high
dependency and a non-regular memory access. Classical factorization algorithms,
used for instance in implicit solvers as a preconditioner, belong to this class since they
are based on the Gaussian elimination [Saad, 2003; Li and Saad, 2013; Chow et al.,
2015] and handle sparsely populated matrices. The peculiar aspect of factorization
is that the algorithm, in general, is recursive and the entries are computed serially.

Some linear solvers, such as the GPU version of PETSc [Minden et al., 2013],
perform the ILU factorization on the CPU as a response to its difficult adaptation
to massively parallel hardware. In this case, the entire system matrix needs to be
transferred to the host and back. The communication through the PCI bus between
host and GPU is not encouraged for optimized performance. For large systems, this
alternative has no benefits as the fast CPU ILU factorization is not compensating
the expensive communication costs. The other approach is to optimize the ILU
factorization on the GPU. In order to expose more parallelism during the assembly
of the ILU matrices, it is possible to identify independent rows that can be updated
concurrently [Saad, 2003]. Few options are available to improve the performance of
the ILU factorization on the GPU among them multi-coloring [Naumov et al., 2015;
Lukarski, 2012; Li and Saad, 2013] and level-scheduling [Naumov, 2011].

While the methods cited above increase slightly the parallelism of the factoriza-
tion, other methods such as the iterative ILU [Chow and Patel, 2015] propose a novel
algorithm. The factorization is replaced by a minimization problem able to provide

†Nv is the number of flow variables
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an approximate L and U with more fine-grained parallelism. The method relies on
a fixed point iteration xn+1 = G(xn) which is guaranteed to converge [Chow and
Patel, 2015; Frommer and Szyld, 2000] after a set of sweeps†. The GPU implementa-
tion of this method, presented in [Chow et al., 2015, p.5], evokes a trade-off between
convergence and parallelism as the fixed point iteration tends to use less frequently
updated values when more threads are used.

Within this work, the iterative ILU factorization was not stable and the multi-
coloring version of ILU had no performance gain for large scale problems. The ILU
factorization remains therefore in the latency-bound category of kernels.

Figure 6.5 summarizes the benchmark data collected on four different CFD op-
erations belonging to the three categories mentioned above. The level of utilization
of the memory and the compute units can be related to a degree of parallelism and
consequently to a speedup. For 2D/3D RANS simulations on structured meshes,
the sparse matrix factorization experiences a slowdown, while the GMRES itera-
tions can be up to 10x times faster on the GPU ‡. The Jacobian calculation and the
flux calculation belong to different kernel types (the first is memory-bound while the
second is compute-bound) but to the same speedup category [10x .. 100x]. Some
of the operations, such as the flux calculation, are used in the space integration in
the explicit and the implicit solvers. Other operations related to the linear system
solving are proper to the implicit solver. The speedup categories identified for these
different operations will be the start material for a performance comparison of the

†a sweep is one full update of the L and U matrices
‡ K40 GPU compared to single core Xeon E5.
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explicit solvers first qualitatively in the next subsection and then quantitatively in
Section 6.4.

The trends in the classification can be generalized over the different hardware
of similar computational power. The quantitative aspect of the classification is,
however, hardware-dependent. A compute-bound kernel in a GPU card with a high
memory bandwidth, for instance, can be memory-bound in another GPU card with a
lower memory-bandwidth. Moreover, A well-balanced kernel in a weak GPU can be
latency-bound in a powerful GPU card. The classification introduced in this work is
based on benchmark data collected on Tesla K40 and Geforce GTX780 of NVIDIA.
Both cards have a relatively high memory bandwidth of 280 Gb/s, while the K40
provides also 1.2 Tflops in double precision. In short, the classification holds for
quite recent GPUs and can be probably challenged by Pascal generation of NVIDIA
cards. The principles used to generate the classification remain, however, the same
and it depends upon new benchmark data to update it.

6.3 Acceleration of the time integration method: a
qualitative analysis

This section presents a qualitative model able to give some insights into the perfor-
mance of the two integration methods on the GPU and on the CPU. It is based on
the classification introduced in the previous subsection and makes use of the perfor-
mance of all methods for one flow iteration which can be then extrapolated to cover
realistic test cases. For that purpose, this section introduces a set of ratios, which
will be used to link the performance of different methods.

For the explicit solver, the time integration and the space integration present
similar stencil-based operations. Both are embarrassingly parallel and only few
memory loads and few arithmetic operations are done per cell for the explicit time
integration compared to the space integration. The execution time of this operation
(tExpT ) can be thus neglected in the definition of the execution time ratio relating
the implicit solver to the explicit solver duration for a single flow iteration on the
CPU:

RITRCPU ≈
tS + tImpT

tS
= 1 +

tImpT

tS
, (6.1)

with tS the duration of the space integration for both solvers. The approxima-
tion (see Equation (6.1)) guarantees a faster explicit flow iteration on the CPU
(RITRCPU > 1). Theoretically, very high values of RITRCPU are possible but in prac-
tice researchers [Cecka et al., 2011; Aissa et al., 2017] report a 30% to 80% of the
global execution time spent on the time integration. Consequently, RITRCPU could
reach values of 5 and possibly one order of magnitude for a dominant implicit time
integration of 90% of the total execution time. The analysis of the different exe-
cution times of both methods on the CPU revealed the well-known fact: Explicit
solvers can not compete with implicit solvers unless the convergence rates are similar
(NExp

itr ≈ N
Imp
itr ) which is rather unusual.

In the following, the execution times ratio relating the implicit to the explicit
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Figure 6.5: Classification of four different CFD operations based on the compute and
the memory utilizations leading to different speedup categories.

solver for a flow iteration on a GPU is considered. Equation (6.2) relates RITRGPU to
the same ratio on the CPU (RITRCPU ) as follows:

RITRGPU = RITRCPU ∗
aGPUExp

aGPUImp

, (6.2)

with aGPUExp and aGPUImp the speedups of the explicit and the implicit solvers on the
GPU. Explicit solvers profit more from the GPU as they have only compute-bound
embarrassingly parallel operations. Implicit solvers on the GPU profit averagely
from the GPU as they contain memory-bound embarrassingly parallel operations for
the linear solver and latency-bound inherently sequential operations when standard†

factorization-based preconditioners are used. The more an implicit solver is domi-
nated by the time integration the less it benefits from the GPU favoring the explicit
solver on the GPU. A single explicit flow iteration (RC = 1) is already faster than
an implicit flow iteration on the CPU (RITRCPU > 1) and the GPU increases the ratio
by one to two orders of magnitude (aGPUExp /a

GPU
Imp >> 1). The decisive aspect in the

performance comparison is the portion of the linear solver from the total execution
time of the implicit solver.

The speedup of one single flow iteration is, however, not determinant for the
global performance as both methods have different convergence rates. The final
comparison depends more on the ratio of convergence of both methods defined as :

RC =
NExp
ITR

N Imp
ITR

, (6.3)

†Iterative incomplete factorization are not included
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with NExp
ITR and N Imp

ITR the number of flow iterations required to reach a converged
solution for an explicit and an implicit solver, respectively. This ratio is in practice
large as explicit solvers are severely restricted in terms of CFL condition. If results
are available for the two solvers both on the CPU and on the GPU for one flow
iteration, different conclusions can be drawn depending on the ratio of convergence.

The application of the above-introduced model on a case of a turbine nozzle
guide vane is depicted in Figure 6.6. It shows that one flow iteration of the GPU
explicit solver is the fastest followed by the CPU explicit solver, the GPU implicit
solver and finally the CPU implicit solver. When the convergence ratio RC increases
reflecting a faster converging implicit solver, the normalized execution time † of the
implicit solver remains of course equal to one but the normalized execution time of
the explicit solver is linearly increasing.

The GPU explicit solver is the fastest alternative within a certain range of val-
ues for RC (RC < 20). For RC >= 20, the implicit GPU version is the fastest
alternative. The maximum value of RC , for which the GPU explicit solver is still
the fastest choice is equal to its acceleration for one flow iteration compared to the
direct competitor, here the GPU implicit solver.

Even though the current work does not provide results for the CPU paralleliza-
tion nor for the effect of the convergence acceleration (e.g. residual smoothing and
multigrid), the model shown in Figure 6.6 can handle these cases. The parallelization
for the explicit and the implicit solvers on both the GPU and the many/multi-core

†normalized by the execution time of the CPU implicit solver.
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CPU corresponds, indeed, to a translation of the performance curve† to regions of
shorter execution times. Depending on the degree of acceleration the fastest com-
bination of method and hardware can change. On the other hand, a convergence
acceleration of the explicit or the implicit solver will change the convergence ratio
RC , defined in Equation (6.3). A faster converging explicit solver, for instance, will
have a lower RC and a different value is read from the same performance curve in
Figure 6.6.

6.4 Numerical experiments: the subsonic turbine
cascade T106C

For the benchmark, two Intel Xeon CPUs are used with different clock rates and
two different GPUs are used with different local memory capacities (see Table 6.1).
The Geforce GTX 780 with only 3GB of local memory is running the GPU explicit
solver and the Kepler K40 card with 12 GB of local memory is running the GPU
implicit solver.

T106C is a very high-lift, mid-loaded low-pressure turbine blade [Michálek et al.,
2012]. The blade turns an incoming flow and reduces its pressure as depicted in
Figure 6.7. Different mesh sizes are used for the benchmark. In a first step, an
average execution time for one flow iteration has been averaged over 20 iterations.
The explicit solver uses a 4-stage Runge-Kutta scheme with a CFL number of 2.5
and the implicit solver uses a 2-stage of Jacobian-Trained Krylov Implicit-Runge-
Kutta scheme (JT-KIRK) with a CFL number of 50. The execution time of one flow
iteration for different mesh sizes is depicted in Figure 6.8.

A difference of one to two orders of magnitudes is observed between the execution
time of the explicit solver on the GPU and the implicit solver on the CPU. This
is due to the combination of two facts: first, explicit solvers are inherently faster
per iteration and second, they benefit largely from the GPU acceleration as they
include mostly operation very suited to the GPU architecture. The performance of
the implicit solver on the CPU can be improved with a higher clock frequency (e.g.
Xeon E3 slightly outperforms the Xeon E5).

In order to compare all alternatives from different hardware, the slowest combi-

†Curve relating the execution time of a simulation to a its flow convergence

Table 6.1: Hardware used in the benchmark.

Reference Clock rate Cache Size Memory Global
[GHz] [MB] Bandwidth[GB/sec] Memory [GB]

E3-1240 3.4 8 21 -
E5-2640 2.5 15 42.6 -
GTX 780 0.863 0.064 288.4 3
Tesla K40 0.745 0.064 288 12
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Figure 6.7: Mach number contours around the T106C nozzle guide vane.
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nation is chosen as a common reference, which is in this case the implicit solver on
the CPU with the lower clock rate (Xeon E5). This approach leads to high speedups
which do not reflect a GPU acceleration only, as usual speedups do. It reflects also
the fact that an explicit flow iteration is lighter by nature while the implicit flow
iteration solves a linear system of equations. Regardless of how efficiently the linear
system is solved, an explicit Runge-Kutta stage is much lighter with its very few op-
erations. Table 6.2 summarizes the performance of the combinations highlighting the
growing gap between the explicit solver on the GPU and the other alternatives with
the increase of the mesh size. The GPU, as a throughput-oriented device, is used
more efficiently when the workload of embarrassingly parallel operations increases.
The CPU, on the other hand, has rather a constant performance independent of the
mesh size.

Explicit solvers are faster since they perform fewer operations per flow iteration
than the implicit solvers and the GPU version of both methods is faster, even though
the explicit solver takes more advantage from the GPU. The execution times of
one flow iteration are used to extrapolate a performance comparison for different
convergence ratios (see Figure 6.9). The convergence ratio is used to cover a wider
range of applications as in some areas implicit solvers converge much faster than the
explicit and in other areas the difference is not very pronounced. The initial ranking
based on one flow iteration is valid for the unrealistic convergence ratios of one for
which the explicit solver and the implicit solver converge after the same amount of
flow iterations. Realistic ratios are in general between 20 to 100 for turbomachinery
simulations. A common pattern is repeated for all mesh sizes predicting the explicit
GPU solver to be the fastest alternative for low convergence ratios and the implicit
GPU solver for large convergence ratios.

In the next step, the flow around T106C is solved for a relative residual drop
of six orders of magnitude. Depending on the mesh size, the implicit solver re-
quired between 1328 and 1366 flow iterations for a CFL of 50. The explicit solver
required between 22900 and 23400 flow iterations, which leads to a convergence ra-
tio† RC = 17. For this RC value, the extrapolation based on the execution time of
one flow iteration (see Figure 6.9) predicts the explicit solver on the GPU to be the
fastest solver followed by the GPU implicit solver for all mesh sizes. This approxima-

†defined in Equation (6.3)

Table 6.2: Speedup of the explicit and the implicit solvers on the GPU and on the
CPU over the implicit solver on the Xeon E5-2640 CPU for one flow iteration.

NCells[-] Implicit Implicit Explicit Implicit Explicit
E5-2640 E3-1240 E5-2640 Tesla K40 Geforce 780

116k 1 1.37 1.87 3.41 62.0
290k 1 1.32 2.23 4.67 108.5
552k 1 1.32 2.33 6.09 123.6
1070k 1 1.32 2.42 7.44 136.4
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Figure 6.9: Case T106C: Execution time of the implicit solver for one flow iteration
and the explicit solver for equivalent flow iterations both on the CPU(dashes line)
and the GPU (full line) as a function of the convergence ratio for increasing mesh
resolution (a: smallest mesh, d: largest mesh).
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tion does not cover, however, the on-demand factorization (cf. section 5.4.2). This
technique acts on reducing the global execution time of implicit solvers on the GPU
by skipping most of the ILU factorization used for the preconditioner. It does not
change the number of flow iterations and thus the convergence ratio is untouched.
Figure 6.10a depicts the speedup (with reference to the explicit solver on E5-2640) of
an entire flow simulation around the T106C blade including the performance of GPU
solvers with the on-demand factorization (ODILU). The CPU delivers similar per-
formance independently from the mesh size while the GPU has a better performance
for larger meshes.

For a higher CFL number, every single implicit flow iteration is slower on both
the GPU and the CPU but the convergence ratio (See Equation (6.3)) is larger
favoring the implicit solver. For a CFL = 100, the implicit solver requires between
756 and 781 flow iterations which corresponds to a drop of 42% in the number of
flow iterations compared with the number of flow iterations of the implicit solver
with CFL = 50. Figure 6.10b summarizes the execution time until convergence of
the used solvers scaled by the execution time of the explicit solver on the CPU for a
CFL = 100. Depending on the mesh size the fastest combination is changing. The
convergence ratio contributed largely to the improved GPU Implicit performance
compared to the explicit CPU solver, which is used as a reference, as reflected by
the increase of the speedup for the GPU implicit solver in Figures 6.10b compared to
Figure 6.10a. Higher CFL values indeed reduce the total number of flow iterations
required for the flow convergence, which entails fewer ILU builds. At the same time,
the linear solver requires more linear iterations to converge, since the linear system
is more ill-conditioned but this does not outweigh the reduction in time achieved by
avoiding more ILU builds. As a result, the increase of the CFL number improved
also the acceleration of the CPU implicit solver compared to the reference CPU
explicit solver.

(a) CFLImp. = 50 (b) CFLImp. = 100

Figure 6.10: Speedup of all solvers with reference to the explicit solver on E5-2640
for two different CFL numbers for the implicit solver and the same CFL number for
the explicit solvers (CFLExp. = 2.5).
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6.5 Discussion

Explicit solvers on a single core CPU are the slowest alternative in all studied test
cases since stencil-based operations have a great potential of parallelization that the
serial implementation is not using. The GPU parallelization enables the explicit
solver to still compete with implicit solver, even though the explicit convergence
rates are not good. Explicit solvers are so efficient in memory usage that very
heavy meshes of millions of cells still fit in the GPU global memory. An interesting
research direction is then, to work on improving the convergence rates of explicit
solvers without dramatically penalizing the execution time of one flow iteration.
Figure 4.26 in Subsection 4.2.6 showed a case of a 4x times slowdown in the explicit
solver performance for a doubling of the convergence rate. The multigrid technique
could be more promising as its additional cost is normally a portion of the execution
time of the fine mesh (Cf. Subsection 4.2.6).

When the mesh fits in the GPU memory, the GPU implicit solver is the fastest
in the two cases since it combines the accelerated stencil operation for the residual
and the Jacobian calculation while not suffering very much from the preconditioning
due to the on-demand factorization. Optimizing the preconditioner update within
a large sequence of flow iterations within the steady CFD simulation is a promising
research direction to further enhance the performance of the GPU implicit solver.
Hartmann et al. [2009] assessed the impact of using a periodically updated precon-
ditioner on the number of linear solver iterations on the CPU. Tebbens and Tuma
[2007] introduced a similar performance assessment for a proposed method of ap-
proximate preconditioner update on the CPU.

The memory usage of implicit solvers limits, however, the mesh size to about
one million cells for Tesla K40 and 0.25 million for GeForce 780 with the actual
solver memory footprint. This number can fluctuate based on the memory usage
optimization but unless no matrix storage is done it should remain in the same
order of magnitude. Therefore, for large meshes the GPU device memory could
be not enough and then the explicit GPU and the implicit CPU have comparable
performance. For some applications (e.g. the adjoint method), the flow should be
resolved to machine accuracy (a residual drop of 10−16). In that case, the ratio of
convergence between the explicit and the implicit schemes is much larger. At the
same time, meshes are for other applications (e.g. chemical kinetics in reactive-
flow simulations) very large for actual CPUs capacities to use an implicit solver,
consequently for that case the explicit solver is the only alternative available.

The order of the space integration has an impact on the amount of computation
for every flow iteration. This might change the ratio between the space and the time
integration for the implicit solver. Nevertheless, as the same space integration is to
be found in both the implicit and the explicit solvers, the order of the discretization
scheme has no impact on the choice of the best combination between time integration
method and hardware. The finding of this work apply mostly to Finite Volume
discretized flows in turbomachinery. The convergence ratio, which is very important
in the comparison depends also on acceleration techniques of both methods.
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6.6 Conclusion

Different combinations of time integration methods and computational hardware
have been presented. A classification has been introduced based on the suitability
of CFD operations to the GPU hardware. The comparison highlighted the high pos-
sible acceleration of explicit solvers as based on embarrassingly parallel functions.
Difficulties in accelerating implicit solvers have been discussed including inherently
sequential incomplete factorization used as a preconditioner for ill-conditioned lin-
ear systems in the implicit time integration. It has been observed that the GPU is
able to extend the range of usability of explicit solvers to averagely good converg-
ing solvers. The findings prove, that the choice between explicit and implicit time
integration relies mainly on the convergence of explicit solvers and the efficiency of
preconditioners on the GPU for the implicit solver.



7
Applications: GPU CFD solvers in Design

Optimization

The previous chapter compared the two CFD solvers - ported in this work - both for
one flow iteration and for a converged simulation. In this chapter, these solvers are
used in an aerodynamic shape optimization of a compressor and a turbine cascades.
For both optimization test cases, the convergence of the explicit and the implicit
RANS solvers is compared and used with the model shown in the previous chapter
to decide which CFD simulation is faster and will be chosen for the aerodynamic
shape optimization. In a second phase, the chapter analyses the GPU potential of
the Kriging interpolation method used in this work as a surrogate model for the
optimization of a turbine cascade.

7.1 One-level optimization of a supersonic com-
pressor cascade

The GPU-accelerated CFD solvers with explicit and implicit time-stepping have
been integrated in the in-house optimizer CADO [Verstraete, 2010], which uses the
differential evolution algorithm. The test case is a supersonic compressor cascade
designed initially for an inlet Mach number of 1.3 and a pressure ratio of 1.67. Total
pressure and temperature are imposed at the inlet in addition to the flow angle while
static pressure is imposed at the outlet.

This chapter is based on the article:

M. H. Aissa, T. Verstraete, and C. Vuik. Aerodynamic optimization of supersonic com-
pressor cascade using differential evolution on GPU. In AIP Conference Proceedings. Eds.
Theodore Simos, and Charalambos Tsitouras., volume 1738, page 480077. AIP Publishing,
2016 .
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Before setting the optimization case, the performance of both CFD solvers has
been compared. The convergence ratio, defined in this work as the ratio of the
number of iterations until convergence for both solvers, is equal to 14.38. This
relatively low ratio resulted from the low maximum allowed CFL number (CFL =
15) for the implicit solver due to convergence problems compared to a CFL = 2.0
for the explicit solver. Figure 7.1 shows the performance model corresponding to
the compressor cascade case based on the execution time of one flow iteration as
explained in Chapter 6. For a convergence ratio smaller than 100 the explicit GPU
solver is the fastest choice followed by the explicit solver on the CPU, the implicit
solver on the GPU and the implicit solver on the CPU.

Therefore, the explicit CFD solver on the GPU is chosen for the aerodynamic
shape optimization of the compressor cascade.

The flow around the pre-compression baseline design (Figure 7.3a) experiences a
bow shock ahead of the profile leading edge, which propagates toward the adjacent
blade to form a passage shock. The passage shock interacts with the adjacent blade
boundary layer and induces a boundary layer separation. The achieved flow turning
is 4 degrees and the static pressure ratio is 1.67, which is mainly achieved through
the normal passage shock.

The optimization objective is to minimize the losses in terms of mass averaged
entropy generation (∆S = SOUT−SIN

SREF
) at the outlet for the same flow conditions. The

optimization problem has one constraint, which is to keep the flow turning equal or
greater than the baseline case. The blade geometry is defined by superimposing a
parametric thickness profile to a parametric camberline as sketched in Figure 7.2.
The optimization variables are the y-coordinate of 5 control points of the blade
angle distribution B-spline. The thickness distribution remains on the other hand
fixed during the optimization. A population of 40 individuals has been evolved for
9 generations through the differential evolution method to reach at the end a total
improvement of 20% in terms of entropy generation.

A comparison of the flow around the baseline and around the optimized blade
shows two main differences: the normal shock turned into a partially oblique one and
the passage shock moved downstream approaching the trailing edge. The change in
the flow is due to a reduction in the incidence angle on the leading edge (LE) area
which reduces the losses by bringing the bow shock next to the LE and decreasing the
expansion at the suction side responsible for the flow acceleration before it reaches
the passage chock. Starting from the stagnation point on the LE area the flow is
first accelerated on the original blade suction side due to an inappropriate incidence
reaching a peak Mach number as high as 1.7. Contrary, on the optimized blade the
incidence has been adjusted to the flow direction reducing the peak Mach number
to 1.5 only. Further downstream both profiles decelerate the flow on the suction side
through a curvature opposed to classical subsonic profiles, achieving a pre-shock
Mach number of 1.6 to 1.3 for the original and optimized blade respectively by
Prandl-Meyer compression waves (Figure 7.3).

While this optimization, which required a total of 360 flow evaluations, would
run 32 days on a single CPU, it took only 2 days on 2xK40 GPUs.
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Figure 7.1: Execution time of converged simulations normalized by the execution
time of the implicit simulation on the CPU for the compressor cascade test case.

Figure 7.2: Parameterization using Bezier splines for the camberline and the thick-
ness of the compressor blade.
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Figure 7.3: Mach contours of the baseline and optimized design of the supersonic
compressor cascade (P01 = 1bar T01 = 300K and α1 = −64.5).

7.2 Metamodel-assisted optimization using Krig-
ing

This section introduces shortly the Kriging interpolation method and the way it
is used within CADO. The exposed parallelism of this method is discussed before
the 2-level optimization case of the inlet guidance vane LS82 [FOTTNER, 1990] is
presented.

7.2.1 Kriging

Interpolation methods are widely used to build surrogate models capable of em-
ulating the response of an expensive simulation. Kriging is a powerful interpola-
tion method praised for being capable of exactly predicting provided samples. The
method offers also a possibility to estimate the error and the expected improve-
ments [Jones, 2001] of a prediction. Figure 7.4 shows the algorithm of the ordinary
Kriging method as used in this work. The method builds first a correlation matrix to
map available data, which in this work cover the different design variables (thickness
distribution, camber line, sweep ...).

Rij = exp(−
d∑
l=1

10θ
(l)

||~xli − ~xlj ||p
l

) (7.1)
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with d the number of dimensions and θ and p two hyper-parameters controlling the
range of the correlation and its smoothness. In general the case p = 2 is used to
guarantee an indefinitely differentiable response [Sacks et al., 1989]. The diagonal
elements of the correlation matrix are equal to one and the closer two points are the
larger is the entry.

This correlation, more precisely its inverse (R−1), is the base to compute a
variance (σ̂2) and a mean (µ̂) both used to formulate a prediction y(x∗):

µ̂ =
1TR−1y

1TR−11
(7.2)

σ̂2 =
1

n
(y − 1µ̂)TR−1(y − 1µ̂) (7.3)

y(x∗) = µ̂+ rTR−1(y − 1µ̂) (7.4)

The quality of the prediction can be assessed by cross-validation (CR) or Max-
imum Likelihood Estimation (MLE) and this work implements the MLE using the
following likelihood formulation:

φ = −n
2
ln(σ̂2)− 1

2
ln(|R|) (7.5)

Independently of the method used to train the hyper-parameters some variables
are always needed such as the mean, the variance, the correlation matrix and its
inverse. Toal [2016] compares the performance of 5 formulations of Kriging on the
CPU and on the GPU. The author found that GPUs outperform CPUs for high
dimensional problems when the problem size is relatively large, while small problems
suffer from the slow matrix inversion on the GPU. The parallelization is, however,
done with Matlab with no access to low-level code optimization relying solely on
the GPU and CPU optimization of Matlab. The authors suggested an automated
hardware choice based on the performance of both the GPU and the CPU on a small
set of data. The algorithm chooses the fastest hardware to perform the preliminary
test.

As shown in Figure 7.4 ordinary Kriging requires a set of samples (input x)
and related output y in addition to a start value for θ, which is altered within an
optimization process. Within the optimization loop, first the correlation matrix is
built and its inverse is computed using, for instance, the LU factorization. The
inverted correlation matrix and the output vector are essential to compute the mean
µ̂, which is used to compute the variance σ̂2 (see Equations (7.2) and (7.3)). Once
the variance σ̂ is available the likelihood function can be calculated as it requires
only the variance and the determinant of the correlation matrix R. An optimization
algorithm can be used to maximize iteratively the likelihood. In this work the finite
difference method is used. When an optimal value of θ is reached the training phase
of the Kriging model is finished and the condensed data inside the model is ready
to be used to search for the best design.

The most time consuming operation in Kriging is the inversion of the correlation
matrix, for which the CPU version of CADO uses the LU factorization. The LU
decomposition (A = LU) is also used to compute the determinant of the correlation
matrix, which is needed for the prediction through Kriging (see Equation (7.4)). The
benchmark showed in Table 7.1 covers the LU inversion on a single core CPU (in-
house implementation) and the GPU LU factorization of CUSOLVER for different
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Figure 7.4: Chart of the ordinary Kriging algorithm.
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sizes of the correlation matrix. The correlation matrices have been filled with realistic
data samples extracted from 5D Dejong case [Jong, 1975].

The factorization of a matrix is, however, an inherently serial procedure and
important speedups are measured only for matrices of NRow >= 400. Toal [2016]
found similar results for a Cholesky decomposition, as the Tesla K20C GPU is faster
than the i7-2860 CPU only for data sets of more than 700 elements. The profiling
of the GPU version showed that the GPU is having low compute and memory
utilization for n < 400.

7.2.2 The LS82 cascade

The LS82 turbine inlet vane is a very high turning blade design for Mach numbers
ranging from 0.7 to 1.4. The blade turns an incoming flow with 1.9 degree to an
outflow angle of -80. Different outlet static pressures result into different test cases
from subsonic to supersonic. In this work, the subsonic case with Mis2 = 0.85 is
considered. The subsonic flow is accelerated in the blades passage with no supersonic
pockets and therefore no shocks. The trailing edge (TE) wake is then responsible
for the total pressure loss.

The parameterization is similar to the previous optimization case with a combi-
nation of a thickness distribution and a camber angle distribution. The optimization
has 9 design variables controlling the blade thickness and an objective of a loss min-
imization. The loss is quantified with the mass-averaged entropy increase. The only
constraint is to keep the outflow angle smaller than -80 (α2 <= −80).

The first step is about choosing the appropriate time integration for the CFD
evaluation. Figure 7.5 shows the performance model of the LS82 case †. For a
convergence ratio (NExp

itr /N Imp
itr ) larger than 36, the implicit solver on the GPU is

the fastest alternative. For the LS82 case the convergence ratio has been calculated
and is equal to 457.5 favoring obviously the implicit solver‡. Therefore, the GPU
implicit solver is used for the CFD evaluation.

The 1-level optimization algorithm of CADO has been run in addition to the
metamodel-assisted algorithm using Kriging. Both optimizers, running indepen-
dently, reduced the losses by decreasing the flow turning drifting, however, into
regions of non-allowed outflow angles (see Figure 7.6).

The 1-level optimization with 20 CFD evaluations per optimization iteration
required 29 iterations (582 CFD evaluations in total) to reach similar regions on the

†Defined in last chapter as the execution time of converged simulations (Explicit/Implicit on
the CPU/GPU) normalized by the execution time of the implicit solver on the CPU.

‡The explicit solver require 457.5 times more iterations to converge than the implicit one.

Table 7.1: Speedup SLU = TCADO/TCUSOLVER of the LU factorization on the K40
over Xeon E5 for different matrix sizes.

NRow 100 200 400 800 1000
SLU 0.63 2.25 7.17 25.05 52.43
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Figure 7.5: Execution time of converged simulations normalized by the execution
time of the implicit simulation on the CPU for the LS82 test case.
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objective space the Kriging reached within few iterations and using only one CFD
evaluation per iteration (see Figure 7.7). After few optimization iterations, the 1-
level optimizer lost all accepted designs from the population and the mutation, as a
diversity enabler in the differential evolution algorithm [Storn and Price, 1997], was
not enough to recover those designs. Moreover, the Kriging is more explorative and
even if it drifted into the region of non-accepted outflow angles, it delivered in 42
iterations an accepted design with 17.4% of improvement in the loss minimization
compared to the baseline design. Figure 7.8 shows also that Kriging has been well
approximating the outflow angle and to a smaller extend the entropy increase.

The optimized blade delivered by the metamodel-assisted optimizer at iteration
42 shows larger Mach numbers on the suction side (see Figure 7.9). The same effect
is observed on the isentropic Mach number at the blade surface (see Figure 7.10)
with a delayed but more pronounced acceleration on the suction side and a following
smoother deceleration. This is caused by the decrease of the volume of the leading
edge which reduces the converging nozzle effect. This had an effect on the TE wake
which is less turbulent for the optimized case generating less entropy as shown in
Figure 7.11. Figure 7.12 shows the total pressure for the optimized case and the total
pressure at some locations extracted following the axial direction from the passage
until the outlet. The total pressure experiences a decrease when crossing the wakes
generated by the cascade blades with the first wake being the most important while
the rest are less pronounced.

7.3 Final remarks

The GPU simulations experience a speedup ranging from one to two orders of mag-
nitude. The comparison of all 4 alternatives in the previous chapter showed that for
a fast converging explicit solver, the GPU explicit solver is the fastest alternative. In
general the difference in convergence rates is outbalancing the GPU speedup making
the GPU implicit solver the most convenient for use in design optimization. With
this kind of solver a limit of around one million cells for the mesh is present.

As the speedup for implicit solvers is less than one order of magnitude, it can be
outbalanced when a set of few CPUs is used. Especially in population based design
optimization, an entire generation of designs needs to be evaluated not forgetting
the initial database. In that case, running on every CPU core the slower implicit
CPU evaluation is more advantageous since as many designs will be analyzed as
the CPU has cores. The scaling is not perfect when using shared memory as all
simulation share the same cache and RAM. These scalability issues disappear when
using clusters of nodes.

Therefore, it is not recommended to let the GPU evaluate one by one a large set of
designs, within a 1-level generation or a database, while an actual CPU can evaluate
multiple designs at the same time. On the other hand, the two level optimization
making use of meta-models uses only very few evaluations for every iteration after
it builds the database. In that configuration it is possible to make a good use of
the GPU as these few individuals can run faster on the GPU than on the multi or
many-cores CPU systems.
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Figure 7.9: Plot of the Mach number contours of the baseline and optimized design
(Kriging assisted Iteration 42).
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Figure 7.11: Plot of the Spalart-Allmaras transport variable ν̃ contours (proportional
to the turbulent eddy viscosity) of the baseline and optimized design (Kriging assisted
Iteration 42).
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8
Conclusions

The throughput-oriented latency-tolerant GPU is different from the cache-based
CPU architecture. Some algorithms (e.g. flux computation) are inherently parallel
and suited to the execution on the GPU, while others need to be optimized follow-
ing the profiler guidance to get an average acceleration. Some other algorithms (e.g.
matrix factorization) are inherently serial and can not get accelerated unless the al-
gorithm is substantially changed. Large scale problems run the GPU more efficiently
and stencil-based option emanating from large-scale problems are the best suit for
the GPU architecture.

The general pattern seen in the literature is that the CPU governs the MDO
method and starts the GPU as a workhorse to perform the bulk of the arithmetic
operations. Consequently, GPUs have no tangible impact on the MDO methods
themselves beside the fact that they accelerate single-field simulations in a simi-
lar way traditional clusters do. The limited use of GPUs as co-processors for the
acceleration of special parts of an established algorithm is thus self-explanatory.

The CFD solver with explicit time-stepping provided the GPU with the stencil-
based operations needed to boost the compute and memory utilization and reach
large speedups. Moreover, the lookup table for the interface update made it possible
to have a GPU resident solver, which is mandatory to avoid the costly CPU-GPU
data transfer. An additional code optimization concerned the solving of the race con-
dition, for which multi-coloring showed better results than redundant computation
as most of the explicit kernels are compute-bound. Explicit solvers are consequently
the candidate for a substantial GPU speedup, while the flow convergence is the
bottleneck. Multigrid and IRS showed an improve of the flow convergence at the
expense of a reduced fine-grained parallelism. A GPU-friendly convergence accepta-
tion method has the potential of creating a super fast method, a serious competitor
for the implicit time-stepping.

The CFD solver with implicit time-stepping experienced smaller speedups be-
cause of the factorization based preconditioning. Even the assembly part which
offers stencil-based operations expressed less speedup than the explicit solver since
the memory consumption per stencil is much larger (e.g. Jacobian computation).
Unlike the explicit space and time integration, the assembly was faster using redun-

149



150 Conclusions Chapter 8

dant computation than multi-coloring in solving the race-condition as the occupancy
was the main bottleneck. The sorting of the data into CSR format was a bottleneck
for the assembly and has to be replaced by a direct insertion algorithm. For the sys-
tem solving, an on-demand option improved the performance but a GPU-friendly
and efficient preconditioner should be available to reach interesting speedups with
the GPU. Boosted by the assembly speedup the implicit solver can be beneficial for
an application having a large portion of the execution time on the assembly.

Comparing both solvers resulted into a classification of CFD operations based
on the exposed parallelism. The more a solver relies on a well-accelerated operation
the larger is the expected speedup while it can not exceed the one of the operation
itself. In this work, a limit of 2 orders of magnitude has been observed. Very
large speedups reported in the literature would reflect rather an unusually slow
CPU reference code (e.g. performance of Matlab large scale code in general). For
one flow iteration every solver makes use of some of the classified CFD operations
and having the explicit solver on the GPU to run the fastest flow iteration is a
direct result of the classification. For a whole simulation the performance ranking
depends on the convergence of the explicit solver. If they converge well they should
be used otherwise the implicit time-stepping remains the fastest choice. However
very large meshes could exceed the GPU memory and then the explicit GPU solver
would have to be compared with the implicit solver on the CPU. The concept of the
classification can be used for other disciplines and applications in order to examine
the potential acceleration an emergent hardware can bring. It gives an operation-
specific acceleration that brings more insights than a simple overall speedup, which
hides performance bottlenecks. Both the classification and the performance model
help pick the fastest combination of hardware and algorithm.

The application of these tools to two optimization cases showed that the explicit
solver was best suited for the compressor cascade while the implicit solver was best
suited for the turbine cascade. It required a full run to get the convergence behavior
of both solvers and a run for one flow iteration to build the performance model. In
general, some heuristics would help estimate the convergence behavior. In this work,
the explicit solver was better performing for transonic compressors and struggling
to converge for turbine cascades in general. The contrary is true for the implicit
solver.

Finally for the GPU accelerated optimization, the GPU is a serious alternative
for the acceleration of high-fidelity evaluations within a metamodel-assisted opti-
mization. In that case, a cooperation is essential between both systems. Therefore
a directive-based method for the porting of a code which could run on multiple sys-
tems is a promising research direction. OpenACC and similar software are maturing
and probably at one point, they will reach the maturity of similar systems for the
CPU such as openMP. The low-level programming similar to CPU would be proba-
bly only the topic of a reduced community and their output will flow into a better
high-level compiler. Like CUDA was a relieve from the use of graphical languages
other concepts will emerge to translate CPU code to the GPU. Nevertheless, similar
to the need to master the assembly language to get the last drop of performance of
a CPU code the same will remain true for the GPU with the CUDA language.
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8.1 Future work

The work on the deployment of the GPU computational power in aerodynamic shape
optimization accumulated enough evidence to identify future promising research
directions:

8.1.1 Convergence acceleration of explicit solver

The explicit solver showed the best acceleration among all the methods ported to
the GPU. It has been discussed in chapter 6 that it belongs to a class of stencil-
based operations best fitted to the GPU. Moreover, their low memory consumption
compared to the implicit counterpart, make it possible to run realistic test cases
with millions of cells in one GPU card. The implicit solver on the GPU can be
faster propelled by its high CFL number. Therefore, the interesting research path is
about improving the explicit solver convergence, while at the same time not limiting
its fine-grained parallelism. This thesis presented a basic study on that direction
benchmarking both IRS and MG and coming to the conclusion that IRS is damaging
the GPU performance more than it increases the CFL. There is a need to find a GPU-
friendly implementation for the IRS and at the same time look for other convergence
acceleration methods, which have an embarrassingly parallel algorithm. A method
by Swanson et al. Swanson et al. [2007] is able to reach a CFL number of 1000
with a multistage Runge-Kutta scheme through a preconditioning with fully implicit
operator used as a smoother within a multigrid scheme. It could be interesting to
see its performance on the GPU as it is used in many industrial CFD packages (e.g
Numeca Fine)

8.1.2 Metamodeling on the GPU

The benchmarking of Kriging interpolation methods for the use as meta-models
showed that the GPU can deliver interesting speedup exceeding two orders of mag-
nitudes given a large scale correlation matrix. As the matrix has the size of the
number of samples for Kriging, Kriging can not be substantially accelerated by the
GPU unless multiple matrix inversions are done at the same time. Multi-fidelity
Kriging also known as Co-Kriging could show a better GPU acceleration as the cor-
relation matrix contains sample originating from a fast low fidelity simulation and
therefore a large number of them could be generated in short time to build large
scale correlation matrix. The most promising direction is to use gradient-enhanced
Kriging which operates a correlation matrix of the size of the number of samples mul-
tiplied by the number of dimensions (equal to design variables). At the same time,
the inversion should be implemented manually in order to avoid any time-consuming
synchronization present now in used GPU linear algebra packages.





A
Appendix: Used Test cases

The test cases used throughout this work includes two cascades of turbine stators
(t106c [Michálek et al., 2012] and LS89 [Arts et al., 1990]) and two cascades of
compressor stators (CC2D [Aissa et al., 2016] and Turbolab†).

A.1 Turbine inlet guide vane: LS89

The experimental investigation for the transonic turbine guide vane cascade LS89
have been carried out in the von Karman Institute Isentropic Light Piston Compres-
sion Tube facility (CT-2) [Arts et al., 1990]. The blade shape has been optimized for
an isentropic Mach number of 0.9 using an inverse method [Van den Braembussche
et al., 1990]. Table A.1 gives few geometrical characteristics of the blade while the
full documentation along with the manufacturing coordinates are found in the work
of Arts et al. [1990]. Figure A.1 shows the blade cascade and Figure A.2 shows the
meshing of the flow domain with more details on the leading and trailing edges.

†http://aboutflow.sems.qmul.ac.uk/events/munich2016/benchmark/testcase3/

Table A.1: Geometrical characteristic of the LS89 blade

Chord c [mm] 67.647
Pitch g [mm] 57.49995
Solidity c/g [-] 1.17647
Stagger angle γ 55.0 deg (from axial direction)

153

http://aboutflow.sems.qmul.ac.uk/events/munich2016/benchmark/testcase3/


154 Appendix: Used Test cases Appendix A

Figure A.1: The LS89 blade cascade

Figure A.2: Meshing of the LS89 cascade
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A.2 Compressor stator cascade: CC2D

The test case is a supersonic compressor cascade designed initially for an inlet Mach
number of 1.3 and a pressure ratio of 1.67. Total pressure and temperature are
imposed at the inlet in addition to the flow angle while static pressure is imposed
at the outlet. Table A.2 shows the set of used meshes with increasing mesh sizes.
Figure A.3 the mesh number 2 with emphasis on the leading and trailing edge part.

A.3 Turbine stator cascade: T106C

The T106C is a very high lift, mid-loaded low pressure turbine blade. It has been
studied at the VKI S1/C high-speed wind tunnel [Michálek et al., 2012]. The mesh-
ing kept the number of cells in the xy-plane constant while increasing the number
of cells on the z-direction. The T106C turbine stator experiences a 2D flow, there-
fore the same flow phenomena are solved for all generated meshes. This ensures,
that only the amount of computational work is increasing which is the focus of the
computational performance study.

A.4 3D Compressor stator blade: Turbolab

The “TurboLab Stator” is a stator in a measurement rig at the TU Berlin in the
TurboLab at the Chair for Aero Engines. The stator geometry has been designed
based on a representative stator geometry as used in modern jet engine compressors†.
As shown in Figure A.4, the flow entering the stator has an inlet angle of 42 degrees
from the axial direction. The blade is required to turn the flow to the axial direction
with a minimum loss.

†http://aboutflow.sems.qmul.ac.uk/events/munich2016/benchmark/testcase3/

Table A.2: Mesh sizes for the CC2D case

Grid number NCells

1 25 k
2 46 k
3 57 k
4 75 k
5 110 k
6 126 k
7 394 k

http://aboutflow.sems.qmul.ac.uk/events/munich2016/benchmark/testcase3/
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Figure A.3: Meshing of the compressor cascade CC2D (mesh number 2)

Inlet P0: 102713.0 Pa

Inlet T0: 294.314 K 

Inlet whirl angle: 42° 

Inlet pitch angle: 0 °

Massflow: 9 kg/s 

Figure A.4: Turbolab turbine blade
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