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ON THE ISOMORPHISM CLASS OF ¢-GAUSSIAN
C*-ALGEBRAS FOR INFINITE VARIABLES

MATTHIJS BORST, MARTIJN CASPERS, MARIO KLISSE, AND MATEUSZ WASILEWSKI

(Communicated by Adrian Ioana)

ABSTRACT. For a real Hilbert space Hg and —1 < g¢ < 1 Bozejko and Speicher
introduced the C*-algebra A4(Hg) and von Neumann algebra Mgy (Hg) of g-
Gaussian variables. We prove that if dim(Hg) = oo and —1 < ¢ < 1,¢ # 0
then My(Hg) does not have the Akemann-Ostrand property with respect to
Aq(Hg). It follows that Aq(Hg) is not isomorphic to Ag(Hg). This gives an
answer to the C*-algebraic part of Question 1.1 and Question 1.2 in raised by
Nelson and Zeng [Int. Math. Res. Not. IMRN 17 (2018), pp. 5486-5535].

1. INTRODUCTION

In [BoSp91] Bozejko and Speicher introduced a non-commutative version of
Brownian motion using a construction that is now commonly known as the g¢-
Gaussian algebra where —1 < ¢ < 1. These algebras range between the extreme
Bosonic case ¢ = 1 of fields of classical Gaussian random variables and the Fermionic
case ¢ = —1 of Clifford algebras. For ¢ = 0 one obtains Voiculescu’s free Gaussian
functor. ¢-Gaussians can be studied on the level of *-algebras A,(Hg), C*-algebras
Aq(Hg) and von Neumann algebras M, (Hg) starting from a real Hilbert space Hg
where dim(Hg) usually refers to the number of variables.

The dependence of ¢g-Gaussian algebras on the parameter ¢ has been an intriguing
problem ever since their introduction. The *-algebras A,(Hg) are easily seen to
be isomorphic for all —1 < ¢ < 1 (see [CIW21, Theorem 4.1, proof]). However,
the isomorphisms do not extend to the C*-algebras A,(Hr); one way to see this is
that this isomorphism maps generators Wy (&) to generators Wy (§) with £ € Hp
(see Section 2 for notation) which is easily seen to be non-isometric. In fact, the
isomorphism problem becomes notoriously difficult on the level of the C*-algebras
and von Neumann algebras.

A breakthrough result was obtained by Guionnet-Shlyakhtenko in [GuSh14]
where free transport techniques were developed to show that in case dim(Hg) < oo
one has that A,(Hg) ~ Ao(Hg) and M,(Hr) ~ My(Hg) for a range of ¢ close to 0.
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738 BORST, CASPERS, KLISSE, AND WASILEWSKI

The range becomes smaller as dim(Hg) increases. The proof is also based on the
existence and power series estimates of conjugate variables by Dabrowski [Dab14].

The infinite variable case dim(Hg) = oo was then pursued by Nelson-Zeng
[NeZel8] where they explicitly ask whether given a fixed Hilbert space Hg one can
have isomorphism of the ¢-Gaussian C*- and von Neumann algebras, see [NeZel8,
Questions 1.1 and 1.2]. They already note that the condition ¢* dim(Hg) < 1 is
required for the construction of conjugate variables to the free difference quotient
[Dab14]. However, by passing to mixed ¢-Gaussians with sufficient decay on the
cocfficient array @ = (g;;):,; they show that free transport techniques can still
be developed in order to extend the Guionnet-Shlyakhtenko result to this mixed
g-Gaussian setting. This approach is in some sense sufficiently close to the case
of finite dimensional Hg. The main merit of the current note is a rather definite
and negative answer to the C*-algebraic part of [NeZel8, Questions 1.1 and 1.2],
namely we show that we have Ag(Hgr) % Ay(Hr),—1 < ¢ < 1,q # 0 in case the
dimension of Hp is infinite.

Our main result is that if dim(Hgr) = oo then the von Neumann algebra M, (Hr)
does not have the Akemann-Ostrand property with respect to the natural C*-
subalgebra A4(Hg) for any —1 < ¢ < 1,q # 0. This will then distinguish Ay(Hg)
from A,(Hg). The idea of our proof is as follows. In [Con76, Theorem 5.1] Connes
proved that a finite von Neumann algebra M is amenable if and only if the map

M Qq1g M°P — B(Ly(M)) : a ® b°P — ab®?

i8S ®min-bounded. This characterisation — in combination with a Khintchine inequal-
ity — was used by Nou [Nou04] to show that M, (Hg) is not amenable for —1 < ¢ < 1
and dim(Hg) > 2. We show that if dim(Hg) = co and —1 < ¢ < 1,¢ # 0 then we
cannot even have that

Ay(Hg) a1g Ag(Hg) — B(La(My(Hg)))/K(Lo(My(Hg))) : a 2 b°P
— ab®® + K(La(M,(Hg)))

is ®min-bounded where we have taken a quotient by compact operators. This is
proved in Section 3. We then harvest the non-isomorphism results in Section 4.

2. PRELIMINARIES

2.1. Von Neumann algebras. In the following B(H) denotes the bounded oper-
ators on a Hilbert space H and K(H) denotes the compact operators on H. For a
von Neumann algebra M we denote by (M, Ly(M), J, Ly(M)™) the standard form.
For z € M we write 2°P := Jx*J which is the right multiplication with x on the
standard space. This way L2(M) becomes an M-M-bimodule called the trivial
bimodule.

The algebraic tensor product is denoted by ®a1e and @i, is the minimal tensor
product of C*-algebras which by Takesaki’s theorem [Tak02, Theorem IV.4.19] is
the spatial tensor product.

2.2. g-Gaussians. Let —1 < ¢ < 1. Now let Hr be a real Hilbert space with
complexification H := Hg @ iHg. We define the symmetrization operator Pf on

H®F by

(2.1) PP ®...®&)= Z 1) ® ... ® &),
oSk
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ON THE ISOMORPHISM CLASS OF ¢-GAUSSIAN C*-ALGEBRAS 739

where Sy is the symmetric group of permutations of k elements and i(c) :=
#{(a,b) | a < b,o(b) < o(a)} the number of inversions. The operator Py is
positive and invertible [BoSp91]. Define a new inner product on H®* by

(& m)q == (B, m),

and call the new Hilbert space H%. Set the Hilbert space F,(H) := CQ &
(DR HP%) where € is a unit vector called the vacuum vector. For & € H let

L M®.. . Qm) =@M ... RNk, 1) =&,

and then [;(§) = [4(£)*. These ‘creation’ and ‘annihilation’ operators are bounded
and extend to F,(H). We define a *-algebra, C*-algebra and von Neumann algebra
by

Aq(Hr) := x—alg{ly(§) +13() | € € Hr},
——= Il

Ay(Hg) == Ay(Hg)
M, (Hg) := Aq(Hr)",

where *-alg denotes the unital x-algebra in B(F,(H)) generated by the set. Then
To(z) = (29Q,Q) is a faithful tracial state on M,(Hgr) which is moreover normal.
Now F,(H) is the standard form Hilbert space of M,(Hg) and Jaz2 = 2*Q.

For Ky a closed subspace of Hg we have that A,(KR) is naturally a *-subalgebra
of A;(Hr). Further, if (K& ,;)ien is an increasing sequence of closed subspaces whose
span is dense in Hg then U; 4, (Kr ;) is dense in A,(Hg).

For vectors &1,...,&; € H there exists a unique operator Wy({; ® ... ® &) €
Aq(Hg) such that

W1 ®.. . 0&) Q=6 8...Q&.

These operators are called Wick operators. It follows that W, (£)°PQ = £. We shall
further need the constant

(1-¢")t>0.

—

@
Il
-

(2.2) Cq =

3. MAIN THEOREM: FAILURE OF THE AKEMANN-OSTRAND PROPERTY

3.1. Failure of AO. We will work with Definition 3.1 of the Akemann-Ostrand
property [BrOz08].

Definition 3.1. A finite von Neumann algebra M has the Akemann-Ostrand prop-
erty (or AO) if there exists a o-weakly dense unital C*-subalgebra A C M such
that A is locally reflexive (see [BrOz08]) and such that the multiplication map
0: Aug AP — B(La(M))/K(L2(M)) : a @ b°P — ab®® + K(Lo(M)) is continuous
with respect to the minimal tensor norm. We also say that M has AO with respect
to A.

We assumed local reflexivity of the C*-algebra A in Definition 3.1 as part of the
usual definition of AO. However, in the current paper local reflexivity does not play
a crucial role and all our results hold if we consider Definition 3.1 without the local
reflexivity assumption on A.

Note that 6 in Definition 3.1 is a *-homomorphism, so if it is continuous it is
automatically a contraction.
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740 BORST, CASPERS, KLISSE, AND WASILEWSKI

Theorem 3.2. Let M be a finite von Neumann algebra with a o-weakly dense
unital C*-subalgebra A. Suppose there exists a unital C*-subalgebra B C A and
infinitely many mutually orthogonal closed subspaces H; C Lo(M),i € N that are
left and right B-invariant. Suppose moreover that there exist & > 0 and finitely
many operators b;,c; € B such that for every i € N we have

(3.1) 1D b5 sy = (140 Y_b; @ ¢ B per
J J
Then M does not have AO with respect to A.

Proof. Since there are infinitely many B-B-invariant spaces H; we have for any
finite rank operator = € B(Ly(M)) that

132656 + sy = 1+ 6)1 b @ Pl e oo

J J
Taking the infimum over all such z we obtain that
(3.2) | Z b;c” + K(La(M))| B(La(ar)) /i (La(ary) = (140 Db @ Pl Bopinnor

J
But the deﬁnltlon of AO entails the existence of a contraction 0 : A ®mpin AP —
B(La(M))/K(Lo(M)) such that 8(b ® c°P) = bc°P + K(Lo(M)) for all bc € A.
Hence
[ Zbgcop + K(La(M) | B(Laary /Lo < Y b5 @ Pl Boonpor,
J

which contradlcts (3.2). O

3.2. The case of ¢-Gaussians.

Theorem 3.3. Assume dim(Hg) = oo and —1 < ¢ < 1,q # 0. Then the von
Neumann algebra M,(Hg) does not have AO with respect to Aq(Hg).

Proof. Let d > 2 be so large that ¢?d > 1. Let

M := My(RY® Hg), A:= A, R*® Hg), B:=A,(R®D0).
We shall prove that M does not have AO with respect to A; since R¢ @ Hr ~ Hp
this suffices to conclude the proof.

Let {f;}; be an orthonormal basis of 0 & Hg. Let H,; := Bf; BH I as a closed
subspace of the Fock space F, (Rd @ Hg). Then H,; L Hq_,j if ¢ # j which can be
seen straight from the deﬁnition of (-,-)q. For k € N let

B(k) = {W,(&) | € € R? ©0)*"}.

Let &, € (RT©0)2F and write ¢ = ¢ ® ... ® & with & € R? We have
Wo(&)* = Wy(E") where £ =&, ® ... ® & . We have that (see [EfPo03])

(We(&) FiWe(m), fi)q=(fiWq(n), Wo(©)* fi)q={fi@n. £ ® f;)q=(PFT fi@n, & ® f;).
We examine the right hand side of this expression. The g-symmetrization operator
Pi+1 s defined as a sum of permutations o € Sy11 (see (2.1)) and it follows from

the fact that f; € 0® Hy and &, € (R? @ 0)®% that the only summands that
contribute a possibly non-zero term are the ones where o(k+ 1) = 1. Note that for
such a permutation o we have

o) =#{(a,k+1)[1<a<k}U{(a,b)|1<a<b<Ek o) <o(a)}).
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ON THE ISOMORPHISM CLASS OF ¢-GAUSSIAN C*-ALGEBRAS 741

Therefore we find

(Wy(&) fiW. Z ¢"t ) (n No(1) @+ @ No(k) Ek @ - .. ®&1)
(33) o€Sk

=¢"(Pfn.&") = ¢"(n,£")q = ¢" (W4 () QW (n), Q)q.

Now from (3.3) we conclude that for b;,c; € B(k),
(3.4)

”ijcngB(Hm) > |( Zb]c Pfis fidal = |Z (bj ficj, fi)el = |Zq (bjQcj, Q)ql.

Now let {e;,...,eq} be an orthonormal basis of R? ©0 and for j = (j1,...,jx) €
{1,...,d} let ej = ¢j, ®... @ e;,. Let J be the set of all such multi-indices of
length k. So #.Ji, = d*. Set &; = (Pf)_%ej so that (£,&)q = (PF&;, &) = 1.

Now (3.4) yields that for all £ > 1 and all i,

1D Wal&) Wal&) P s, > Y € (Wa(&) QW,(&5), Qg

JjEIk g€
= 3 QW (&), Wa()9),
j€Jk
=3 Mg &) = gt
JjE€Jk

On the other hand from [Nou04, Proof of Theorem 2] we find

1Y Wal)” @ Wy(&) Pl Bsuner < Co(k+1)%d"?,
JE€Jk

where the constant C; > 0 was defined in (2.2). Therefore, as ¢?d > 1 there exists
0 > 0 such that for k large enough we have for every 1,

1D Wal&) Wal&) N, = L+ 0 Y Wal&s)™ © Wol&) |l B e

JE€Jk jEJk

Hence the assumptions of Theorem 3.2 are witnessed which shows that AO does
not hold. (]

4. A NON-ISOMORPHISM RESULT FOR ¢-GAUSSIAN C*-ALGEBRAS

We now turn to the isomorphism question of A,(Hg) for ¢ close to 0. We first
need a result of independent interest which seems not to be proved in the literature.
By [Ric05] we know that the von Neumann algebra M,(Hg) with dim(Hg) > 2
is a factor of type IIy. This was proven already in the case dim(Hgr) = oo in
[BKS97, Theorem 2.10]. In this section we need a strengthening of the latter result,
namely that A,(Hg) has a unique tracial state. The proof is based again on Nou’s
Khintchine inequality [Nou04].

Theorem 4.1. Let dim(Hg) = co. Then Ay(Hwr) has a unique tracial state and is
a simple C*-algebra.

We will prove the theorem after first proving a lemma. Assume for simplicity
that Hg is separable. Let {e;}°; be an orthonormal basis of Hg and identify R4
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742 BORST, CASPERS, KLISSE, AND WASILEWSKI

with the span of {e;}¢ ;. For m € N consider the map A,(Hg) — Aq(Hg) given
by

B(X) = — ST W, () XWi(er)

Then ®,,, extends to a bounded map A,(Hr) — Aq(Hr) with bound uniform in m.

Lemma 4.2 is stronger than [BKS97, Theorem 2.10, proof] where only weak
convergence was established; the result is used in the proof of [BKS97, Theorem
2.14] but its proof is not given. Therefore we give it here.

Lemma 4.2. For X = W,(€).§ € H®™ we have ®,,(X) — ¢"X as m — 0o in the
norm of Aq(Hg).

Proof. First assume that there exists d € N such that ¢ € (C4)%" C H®". By
density and uniform boundedness of ®,, in m this suffices to conclude the lemma.
Then, for m > d, by [EfPo03, Theorem 3.3],

(4.1)
d m m

D (W (€)= S Wy WO Wylet— > q' W) +— D Wyleiwtoe).
i=1 i=d+1 i=d+1

The first term converges to 0 as m — oo, whereas the second term converges to
q"W,(€). Tt thus remains to show that the last term converges to 0 in norm. We
have by [Nou04, Lemma 2] (see also [Boz99] where a weaker but sufficient estimate
was obtained)

m 3 m
1) Weles@é@e)|| < (n+3)Cill D e @E@ e gonsa.
i=d+1 i=d+1

The vectors {e; ® £ @ e;}; are orthogonal in H¥"™"? and have the same norm which
we denote by C. Therefore,

1 s 3 1
— W, (e; 2 e < 3C2Cm™=.
m”i:zd;l glei g e < (n+3)C7Cm™2

We conclude that the third term in (4.1) converges to 0 as m — oo in norm. (]

Proof of Theorem 4.1. By Lemma 4.2 for X € A,(Hg) set the norm limit &(X) :=
limy,, o0 ®,,,(X). Let 7 be any tracial state on A,(Hg). Then, for X € A,(Hg),

m

F(@(X) = lim_ (@ (X)) = Tm S (W (e) XTW,(e)
=1
= tim S (X (e W (e0) = (X (1)) = 7(X).
i=1

Therefore, by Lemma 4.2, 7(W,(€)) = 7(®F(W,(€))) = ¢*"r(W,(€)) for £ € H*".
For k — oo the expression converges to 0 for n > 1. It follows that for X € A,(Hg)
we have 7(X) = 7(X) and by continuity this actually holds for X € A,(Hgr). So
T is the unique tracial state on A,(Hg).

Simplicity was already obtained in [BKS97, Theorem 2.14]; it is also based on
Lemma 4.2. (]
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ON THE ISOMORPHISM CLASS OF ¢-GAUSSIAN C*-ALGEBRAS 743

Proposition 4.3 was also proved in [Hou07, Chapter 4]; the proof uses the same
method as [Shl04] where this result was also obtained for finite dimensional Hg.

Proposition 4.3. For any real Hilbert space Hg the von Neumann algebra My(Hg)
satisfies AO with respect to Ao(Hg).

Theorem 4.4. Let Hr be a real Hilbert space with dim(Hg) = co. Then Aq(Hr)
with —1 < q < 1,q # 0 is not isomorphic to Ao(Hg) and neither to Ay (RY) with
| <V2Z—1or|f|<d %

Proof. If A,(Hg) were to be isomorphic to A, (R?) then the unique trace prop-
erty of Theorem 4.1 shows that the pair (My(Hr), Aq(Hr)) is isomorphic to
(M, (R?), A, (RY)), see [CKL21, Lemma 1.1] for the standard argument. How-
ever this is not the case by Theorem 3.3 and the fact that (M, (R?), Ay, (R?)) has
AO by [CTW21], [Sh104] (the property AO™ in these references directly implies AO).
The argument for the non-isomorphism of A,(Hr) and Ag(Hg) is the same where
we use Theorem 3.3 and Proposition 4.3 instead. O

Remark 4.5. Fix a real Hilbert space Hr with dim(Hg) < oo and complexification
H as before. We call the C*-subalgebra of B(F,(H)) generated by 1,(€),& € H the
g-CCR algebra. Shortly after completion of this paper it was announced in [Kuz22]
that, for Hg fixed, all g-CCR algebras for —1 < ¢ < 1 are isomorphic. In particular
these C*-algebras are nuclear. Following the proof of [Shl04, Theorem 4.2] while
using that Hp is finite dimensional, it follows that (M, (Hwr), Ay (Hr)) has AO for
all —1 < ¢’ < 1. Consequently, Theorem 4.4 holds for any —1 < ¢’ < 1. This also
completely classifies when ¢-Gaussian von Neumann algebras have AO with respect
to the underlying ¢g-Gaussian C*-algebra.

Remark 4.6. In principle it is possible to give a purely C*-algebraic proof of
Theorem 4.4 as well by considering the following version of AO. We say that
a C*-algebra has C*AQO if it has a unique faithful tracial state 7 and the map
A Qaig AP — B(La(A, 7))/ K(L2(A, 7)) : a ® 6P — ab®? + K(L2(A, 7)) is continu-
ous for the minimal tensor norm. Here Ly(A, 7) is the GNS-space for 7 and b°P the
right multiplication with b. This property distinguishes the algebras then.

Remark 4.7. The question stays open whether for a real infinite dimensional Hilbert
space Hg one can distinguish the von Neumann algebra My(Hg) from M,(Hg) with
—-1<g<1,q#0.
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