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INTRODUCTION

1.1. BACKGROUND

HASED array radars that are used at the airport for bird and drone detection are not
P usually used for Doppler processing of signals received from weather targets. How-
ever, the signal processing of these radar systems can be upgraded to accommodate
Doppler processing for weather applications. This upgrade can help us determine the
wind velocity and direction as well as the turbulence intensity fields. This information
can help airport management to reduce the risk of crashing events of airplanes. The
radar under test for this thesis project is MAX3D radar from Robin Radar in the Nether-
lands [1]. With the introduction of Europees Fonds voor Regionale Ontwikkeling (EFRO)
project, new ways and means are explored to make use of this radar for extended weather
target detection as the original purpose was to detect point targets. Due to its original
purpose, this radar works at a very high rotation speed, 60[RP M], for a high refresh rate,
the reason why target tracking is performed using range migration [2], instead of Doppler
processing. Hence, this project concerns the development of a signal processing tool-
box meant to treat each step of the processing chain necessary to provide high accuracy
estimation of precipitation profiles and reconstruction of the three-dimensional (3D)
Doppler map. For this, radar data is recorded at the rotation speed of 1 [RPM], which
means about 285 sweeps per resolution cell. However, the final goal is to find technical
solutions to compensate for radar’s fast rotation and to apply this toolbox for data with
many limited sweeps per resolution cell, e.g. around five. This master project is a part
of the EFRO project which is running under the research partnership between TU Delft,
Robin Radar, and SkyEcho.

1.2. PROBLEM STATEMENT

Detection of the presence and location of precipitation, the wind speed, and direction
vertical profiles, and turbulence intensity estimation, are the important sensing tasks for
radar in an airport area. In such a dynamic area as an airfield, a multifunction radar has
to have a high update rate and, as a result, fast scan rate and rotation velocity.
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For radars with high antenna gain, it results in a very short time on target. As result, co-
herent Doppler processing can include only short bursts with a few only pulses/sweeps.
Finally, the classic Doppler processing can be done but only with very coarse resolu-
tion and quite low processing gain. Such low performances of the Doppler process-
ing strongly influence detectability and parameters estimation of atmospheric targets
as quite weak radar targets. This is the main reason why Doppler weather channels in
Air Traffic Control (ATC) radars are not implemented at all or have quite low operational
performances. Within the EFRO project, we would like to study possible approaches to
overcome this limitation.

1.3. RESEARCH OBJECTIVES

The preliminary goal of EFRO project, taken over in this thesis, is to understand to
what degree the available signal processing tools can help to upgrade MAX3D radar
with a second processing channel for wind field estimation, without jeopardizing per-
formances of its main mission, birds and drones tracking. Note that for this purpose
radar rotates at 60 [RPM], which on one hand means a high refresh rate for birds track-
ing, 1 [s], but on the other hand means very low-velocity resolution, Av = 3.69[m/s].

Hence, the first problem to cope with is the trade-off between refresh rate and veloc-
ity resolution. Before tackle this, a preliminary problem is posed. Performance study of
MAX3D radar for detection of weather (extended) targets. Based on this a list of research
objectives is considered for this thesis:

1. Reading and processing big data file from MAX3D radar.
This research is conducted using real radar data recorded with MAX3D radar. In
normal scanning mode, this radar rotates with 60 [RPM], however, for analysis of
performances in the Doppler domain, data used in this project was recorded at 1
[RPM], which implies a data file of 120 GB. This problem has been solved within
Extra Project carried out in period July 2020 - September 2020 under the supervi-
sion of Assistant Professor Dr. Oleg A. Krasnov.

2. Understanding the limitation imposed by the presence of artifacts due to the receiver
saturation.
The available system is installed on the top of a building located in an industrial
area. Because of the big objects close to the radar (up to 10 [m]), high reflected
power result in receiver saturation. Because MAX3D is an Frequency-modulated
Continuous-wave (FMCW) radar system, phase noise effect occurs. This effect cre-
ates undesired harmonics spread all over the spectra. As consequences noise level
increase very much, around 20 dB Signal to Noise Ratio (SNR) loss.

3. Beamforming algorithm dedicated for high estimation accuracy of precipitation
profiles.
Beamforming algorithm employed for weather applications has to fulfill a set of
requirements such as 1) sidelobes level suppression, 2) accurate estimation of true
amplitude and phase information and, 3) robustness to alimited number of Doppler
bins, [3] and [4].
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4. Target mask for estimation accuracy gain of precipitation profiles.
Assuming particles in the cloud follow wind velocity, after Doppler processing,
particle velocities are spread in a Doppler spectrum distribution. Thereby an ac-
curate estimation of precipitation profiles implies noise clipping and clutter sup-
pression present in the Doppler field, [5]. Note that this project does not treat the
estimation problem of true wind velocity, but only of the estimation of precipita-
tion profiles using radial Doppler velocity.

5. Velocity aliasing correction algorithm.
Velocity aliasing happens when wind velocity is greater than maximum unambigu-
ous velocity and as an effect Doppler spectrum distribution of the atmospheric
particles is folded. This means discontinuities in the measured Doppler field, [6]
that imply strong degradation of estimation of spectral width and mean Doppler
velocity.

6. Reconstruction of 3D Doppler map.
Representation of precipitation profiles for 3D coordinates is necessary to deter-
mine radar’s performances for weather applications, and the correctness of the
developed signal processing toolbox.

7. Formulation of a solution for compensation of radar’s fast rotation.

When radar rotates, there is available only a limited number of pulses within each
resolution cell, hence the fewer sweeps are available, the less is velocity resolution.
However, if we consider the case of homogeneous precipitation field, and assume
that in the area surveyed by radar, wind direction and velocity does not produce
much change in the horizontal field, then the radial velocity between successive
azimuth direction can be assumed to follow a cosine rule only, that, theoretically,
can be compensated.

1.4. LITERATURE REVIEW

Phased array radar used for weather detection becomes more and more popular due to
the presented advantages of high spatial and temporal resolution. This increases per-
formances for the detection of fast-forming weather phenomena, which requires early
detection and warning. The main topics discussed in the literature, regarding weather
radar systems, are beamforming techniques, ground clutter suppression, and filtering of
non-weather targets. Thus, the results after the literature review are as follows.

1.4.1. BEAMFORMING METHOD

Besides conventional Fourier (FR) beamforming (BF) method, known for high accu-
racy estimation of power reflectivity and phase information, but low efficiency of side-
lobes suppression, and Capon (CP) method, known to be highly efficient for sidelobes
suppression but present low performances in terms of amplitude and phase estima-
tion, there are other adaptive BF methods that have high performances for both these
characteristics, like one proposed in [4], called reiterative Minimum Mean Square Error
(rMMSE). This method was proposed in 2011 for point targets,[7], and reconsidered in
2013 for weather targets, when an upgrade for power constraint was included, [4]. Later
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on, more advanced BF techniques were proposed, nonlinear BF method and neural-
network-based BF method, [8] and [9], respectively.

Since the objectives of this thesis are spread over multiple subjects, the goal is not to
propose a new BF method, but to test the performances of an already existing method
for MAX3D radar data type. Since the conventional methods, FR and CP, do not fulfill all
the requirements stated above, our choice for the BF method is the rMMSE method, [4].

1.4.2. TARGET MASK FOR ESTIMATION ACCURACY GAIN OF PRECIPITATION

PROFILES

Target Mask term here represents a (two-dimensional) 2D binary image, where pixels
of one represent alternative hypothesis, the target is present and pixels of zero, null hy-
pothesis, the target is absent. For the creation of a target mask, a detection algorithm is
required. Two of the algorithms, found in the literature, for clutter suppression, [10] and
adaptive filtering noise, [11] use morphological methods for weather image processing.
The former is mainly based on the Gray-level Co-occurrence Matrix (GLCM) feature, and
the latter on pixels density. For both papers, the structural element (SE) involved in the
morphological operation has a fixed dimension. However, in other papers, not related
to radar weather, SE dimension is incremented until some criteria are reached, [12]. In
this paper, but also in others, [13], optimal algorithms are developed using the morpho-
logical method.

Thereby, in this thesis, we propose adaptive morphological filtering (AMF) algorithm,
that uses pixels density to determine the dimension of SE that provides the highest es-
timation accuracy of precipitation profiles and a priori range profiles of noise power,
estimated using noise data recorded with MAX3D radar.

1.5. RESEARCH LIMITATIONS

This project’s main objective is to obtain precipitation profiles with high estimation ac-
curacy. For this, here are treated problems like suppression of the sidelobes of ground
clutter, suppression of non-weather targets, and noise filtering. However, suppression of
ground clutter is not included in our objectives. Moreover, based on the analysis of final
results, a strong presence of ground clutter, that cannot be suppressed by the AMF al-
gorithm are present up to four [km] range only and this range becomes lower for higher
elevation angles. Secondly, the computational time is another constrain which we do
not take into account in this project.

1.6. CONTRIBUTIONS AND NOVELTY IN THIS PROJECT

To fulfill the research objective of this project, there are some contributions and novelty
included in the following list:

¢ Testing the performances for chosen BF method,rMMSE using real data recorded
with MAX3D radar.

* Conducting the whole process from raw data to the reconstruction of 3D map,
for high estimation accuracy of precipitation profiles, using a phased array radar
designed for point targets detection.



1.7. THESIS ROADMAP 5

* A novel approach for target mask creation that combines range profiles of noise
power and morphological methods to obtain an adaptive filtering algorithm of
noise and non-weather targets.

* Development of an iterative algorithm for Doppler aliasing correction, that mini-
mizes the error of the absolute value of the difference between the index of mean
Doppler velocity and index of the center of the spectra, this is 0 [m/s].

1.7. THESIS ROADMAP

Chapter 2 introduces MAX3D radar characteristics. It covers radar system parameters
where analysis of radar parameters is carried out from the perspective of weather tar-
get detection requirements. The analysis carries on for real data, where the problem of
artifacts is discussed from the point of view of limitation imposed by the saturation ef-
fect. Moreover, a noise data analysis is performed, where noise data is obtained when
the radar transmitter is switched off.

Chapter 3 introduces Weather Radar Signal Simulator, used for simulation of weather
spectra and time series signals used for performances study of beamforming and AME
Chapter 4 includes the general mathematical formulation of the beamforming method
and shows the results for simulated and real data. In this chapter we test an algorithm
proposed in [4].

Chapter 5 shows the performance of the AMF algorithm in terms of estimation error and
estimation accuracy of precipitation profiles for simulated and real data. Moreover, this
chapter includes read data simulation results for Doppler Aliasing correction (DAc) algo-
rithm.

Chapter 6 presents our approach for the transformation of Doppler moment values from
polar to Cartesian. A comparison over five different interpolations is carried on to find
the one that gives the best threshold between interpolation error, visual inspection, and
computational time. Results for constant height Plan Position Indicator (PPI) and con-
stant azimuth Range Height Indicator (RHI) of precipitation profiles are included for real
weather data.

Finally, conclusions and recommendations are drawn in Chapter 7.
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MAX3D RADAR CHARACTERISTICS

A preliminary analysis of the systems parameters, real data, and noise data concerning
the minimum requirements for a radar weather system is the main topic discussed in this
chapter. Hence, the advantages and disadvantages of this system parameters are discussed
concerning the ones required for weather target detection. The system of antennas is de-
scribed and the related antenna pattern footprint is shown at different elevation angles.
Next, real-time data simulation results are introduced, for both weather real-time data
and noise data. For real-time data are shown two constant elevation Plan Position Indi-
cator (PPI) plots. The first one is close to the ground, 0 = 2.5°, and the second one is shown
for the maximum elevation angle in the scanning range, 6 = 30°. Power artifacts due to the
receiver saturation are introduced and shown and explained together with its side effects.
Moreover, two-dimensional (2D) and one-dimensional (1D) plots of data after beamform-
ing processing, are shown for a comprehensive overview of the receiver’s saturation effect.
For noise data, estimation of range profiles of noise power shows the noise-range depen-
dency, due to the amplitude gain control attenuation of the amplifier located before Ana-
log to Digital Converter (ADC). A comparison performed between profiles of noise power
and real data ranges profiles shows that noise power profile is a good candidate for the es-
timation of noise floor for real data range profiles. However, this approach does not work
when saturation of the receiver occurs.

2.1. MAX3D RADAR PARAMETERS

M AX3D radar developed and produced by Robin Radar company, has been devel-
oped for the purpose of bird detection with regard to flight safety and bird colli-
sion avoidance. MAX is a rotating search radar with a phased array receive and transmit
antenna, that works with horizontal polarization. MAX is an FMCW radar that in nor-
mal scanning mode rotates with 60 [RPM] while on elevation is electronically scanning
in interval range of [0°,60°]. Radar used for data acquisition is installed on the top of a
building located in Den Haag, The Netherlands. Figure 2.1 shows radar surveying area
represented by a white color circle.
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Figure 2.1: MAX3D radar scanning area for the radar that provides data for this research.

2.1.1. ANTENNA PARAMETERS

Systems of antennas for MAX3D radar present two antennas for receiving, RX; and RX>
and one for transmission, TX. Figure 2.2 shows a sketch of MAX outside design and the
location of these antennas. First receive antenna, R X}, called Main-Array, has 40 slotted
waveguides lines, with a tilt angle of 15° and an electronic scanning interval [0.5°,30°],
on elevation. RX; is called Blindspot Array and has 8 elements, with a tilt angle of 45° and
elevation interval [30°,60°]. TX array forms a cosecant square pattern. Radar parameters
are shown in Table 2.1.

Figure 2.2: MAX3D radar configuration

Note that ratio between elements distance and lambda, % =0.66 > 0.5 which means
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Parameter Value Obs.
Range resolution (Ar) 2.27m -
Azimuth resolution (A¢) 1.8 deg -

RX1 elevation resolution (A8;) 1.97deg | for0.5deg
RX2 elevation resolution (A8>) 9.85deg | for30deg

Instrumented range 15 km -

Hits per scan 5 for 60 RPM
Maximum unambiguous velocity | 7.39 m/s -
Number of beams for RX; 15 beams -
Number of beams for RX, 4 beams -

Table 2.1: MAX 3D radar parameters

that maximum steering angle to prevent grating lobes is

=33.64° (2.1)

Qmax

- sin(Ald-1)

The reason for 15 beams for RX; is that this is the minimum number of beams which
respects the elevation resolution of = 2°.

2.1.2. ADVANTAGES AND DISADVANTAGES FOR WEATHER APPLICATIONS
The parameters of interest for weather applications are:

 Space resolutions;

— elevation resolution (A6°);
- azimuth resolution (A¢°);
— range resolution (Ar[m]).

* Time resolution (AT[s] = M- PRT) , where M is the total number of sweeps and
PRT is Pulse repetition interval. PRT for MAX3D is PRT = 1[ms];

* Velocity resolution (Av[m/s]);
° Maximum unambiguous Doppler velocity (v,,qx[m/s]).

MAX3D radar advantages with respect to weather application requirements are in-
cluded in the next list.

1. High range resolution Ar = 2.27 [m]. For weather radar purposes, MAX3D has a
very high range resolution, compared with those already existing in The Nether-
lands, like Parsax, IDRA, TARA, KNM’s radar, and Rijnmond Radar, which have the
range resolutions: 3[m], 30[m], 30[m], 1000[m] and 20[m], respectively.

2. Figure 2.3 shows antenna pattern footprint, computed at constant (maximum)
range, 15(km]. This gives an overview of the area that surrounds the space within
the radar volume resolution filled with atmospheric particles when the radar is
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Figure 2.3: MAX3D radar footprint for different elevations at constant (maximum) range: 15 [km], for both

RX; - Panel(a) and RX> - Panel(b)

surveying the sky. For weather radar systems that with scanning area described by
a radius of a few hundred kilometers, wind field over the horizontal range does
not change much, [1]. In the MAX radar case, the maximum range is 15 [km)].
Based on this statement and RX; small footprint area of about 5002[m?] we con-
sider that vertical wind profiles within this space do not change much. However,
for RX>, is difficult to make such an assumption, since the footprint area is about

200 x 1000[m2].

MAX3D radar disadvantages with respect to weather applications are the following:

1. MAX3D radar height scanning interval range is [0, 7.5][km] for RX; and [7.5,13][km]
for RX,. Because RX, has only 8 antenna elements, while RX;, 40 antenna ele-
ments, elevation resolution is much lower for RX; (by five times). This difference
is also visible in case of antenna pattern footprint, shown in Figure 2.3. In other
words this means, that above 7.5[km] height, resolution is much lower than be-
low this height, which can be critical for types of clouds that are forming above
this height, like is the case for cuamulonimbus, that start forming around 10[km]

height, [2].

2. For PRF =952[Hz], maximum unambiguous Doppler velocity is vy, 4 = 7.39[m/s],
i.e. Umax = 26.6[km/ h]. Transformed in Beaufort scale, which is a well known scale
for wind velocity, this is v,,4, =4 Beaufort. Any velocity that exceeds this threshold,
it is folded to the opposite side of Doppler velocity spectra.
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3. For rotation velocity of MAX in normal scanning mode, 1[rot/s], velocity resolu-
tion is Av = 3.69[m/ s], which means that there are about five sweeps available per
resolution cell.

2.2. REAL DATA ANALYSIS
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Figure 2.4: Examples of two constant elevation PPI plots are shown for 0 = {2.5°,0 = 30°}, Panel(a) and
Panel(b), respectively. Panel(a) shows a strong reflection of ground target clutter, white color circles, whereas
in Panel(b) sidelobes’ power level decreases. Panel(a) shows the presence of weather target, red color triangle,
and circle, whereas, in Panel(b), radial direction corresponds to height values above the center of the weather

object. Panel(a) and Panel(b) shows both, fixed azimuth position of power range profiles as the effect of
receiver saturation, black color triangle.

This section introduces the analysis of the data artifacts due to the receiver saturation
and sidelobes level effect due to the presence of ground clutter targets, in this case, tall
strong reflective buildings.

Figure 2.4 shows constant PPI plot for two, different, constant elevations,f = {2.5°,0 =
30°}. These results are shown for power reflectivity profiles after beamforming (BF),
where Fourier (FR) method is used for BF processing and simulation of this results.

The aim for PPI plot at 2.5° constant elevation, Figure 2.4 Panel(a), is to show the
effect of sidelobes level due to ground clutter targets, white color circles, and the strong
power reflectivity profiles of saturation effect, black color triangle. Additionally, we can
remark the presence of weather targets, red color triangles, and circles.

The scope for PPI plot at 30° constant elevation, Figure 2.4 Panel(b) is to show that the
sidelobe power level due to ground point target, becomes much lower, about 30[d B] less.
Moreover, artifacts are present at the range profiles with the same azimuth direction and
about the same power level. However, power reflectivity for azimuth direction interval
marked by a black color triangle, power reflectivity decreases by about 10[d B]. Note that
the range profiles of power reflectivity as the effect of receiver saturation are fixed in the
same azimuth interval for all elevation angles.
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The reason for saturation is due to the presence of close objects ( up to 10[m]) to
the radar position. Strong reflected power exceeds the 1[dB] compression point of the
amplifier, located on the hardware board before ADC. Due to this, nonlinearities are in-
cluded in the sinusoidal signal used for the FMCW receiver, which after Fourier Discrete
Transformation, performed by the Field-Programmable Gate Array (FPGA) boards, re-
sults in harmonics in all spectra. As effect Signal to Noise Ratio (SNR) decreases. For our
system, SNR decreases by about 20[d B]. Later on in this project is shown that this satu-
ration effect presents a broad spectral width, around 4[m/s], this is the second moment
of Doppler spectrum distribution. Hence, the presence of this saturation from precipita-
tion profiles can be filtered out based on a fixed threshold value for spectral width below
4[m/s].
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Figure 2.5: Examples of real data results for two constant azimuth: ¢ = 35° LHS column and ¢ = 45° RHS
column. Related with PPI plots, for ¢p = 35° there is not saturation visible, but for ¢p = 45° saturation is visible
while weather targets are present as well. Panel(c) and (e) are extracted from Panel(a) at fixed elevation,

={0°,30°}, while Panel(d) and (d), are extracted from Panel(b), at the same elevation angles.

Following discussion introduces results depicted in Figure 2.4. Here, range profiles

for each elevation angle, obtained after beamforming processing, using the Fourier method,

is depicted for two different constant azimuth directions, {¢ = 35°,0 = 45°}, first column,
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and second column, respectively.

These simulations provide a qualitative result of the values stated above. Figure rows
are organized as follows. The first row shows a 2D image plot of range power profiles ver-
sus elevation (vertical axis), the second row show one range power profile at a constant
elevation, in this case, close to the ground, 8 = 0°, and last row shows one range power
profile for the last elevation angle in the scanning interval, that is 8 = 30°. Note that for
each column 1D plots are extracted from the correspondent 2D image.

On the first column, an example when saturation effect does not occur is depicted,
whereas on the second column it occurs. Results from the first column show sidelobes
levels spread all over the elevation interval, where for lowest elevation angle power level
of sidelobes is about 40[d B], and for the highest is about 10[d B]. Second column results
show that the power level for the noise level introduced by the saturation effect is con-
stant for both elevation angles, and is about 20[d B]. Moreover, in the range power profile
for the lowest elevation angle, Panel(d) weather object is drawn under the noise floor.

2.3. NOISE DATA ANALYSIS

This section introduces noise data analysis. Since precipitation profiles are determined
in the Doppler domain, the analysis carried out in the following lines is performed for
range profiles at particular constant Doppler velocity. Noise data is recorded with MAX3D
radar when transmitted is switched off. For this operation, it was necessary only data
recorded for a rotation speed of the radar of 60 RPM. Resulted data has the dimension:
[40] x [6592] x [952], number of receiving channels, number of range bins, and num-
ber of sweeps, respectively. Since azimuth elevation is 1.8°, 200 radar cubes derive per
resolution cell, with about 5 sweeps per cube.

The goal of data analysis is to determine to what degree is this information useful
for future algorithms. The signal processing toolbox under development in this project
includes two algorithms that rely on noise power information. First is the beamform-
ing method that we opted for, rMMSE. This method uses noise covariance matrix, Ry,
computed for each ¢ time sample, after all, pulses that correspond to a resolution cell
are received. Hence this requires range profile noise power per channel, i.e. antenna
element. The second algorithm that requires noise power information is the algorithm
for target mask creation, the Adaptive Morphological Filtering (AMF) algorithm. For this
algorithm is necessary the knowledge of noise power spectrum per elevation.

Thereby, this section shows the methodology and results for averaging range profiles
of noise power for Doppler velocity. First, a spatial transformation of whole noise data
is applied using the Fourier beamforming method, followed by a Fourier transformation
applied for the sweeps within each resolution cell, which results in Doppler spectra. The
same operation is applied at each elevation angle. At this point, radar cube is charac-
terized by [elevation] x [range] x [Doppler spectra]. In the final step, the noise power is
averaged over Doppler frequencies for all 952 sweeps for each elevation angle. If N is the
number of elevation angles, N different range profiles noise power are derivated.

Figure 2.6 Panel(d) shows noise power profiles for 8 = 0°, 8 = 30° and averaged one
overall elevation angles, blue color line, yellow color line and black color line, respec-
tively. We notice that noise power is range-dependent since for each range bin there is
a different value of noise power. This is because noise respects the law imposed to the
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amplifier gain control, which has the role to attenuate power reflected from targets close
to the radar position.

Figure 2.6 Panel(a) shows the comparison between estimated noise power profile
and precipitation profiles. The latter is obtained for 8 = 10°, ¢ = 36° and Doppler velocity
—1.2[m/s]. The former is estimated for the elevation angle with the same value. We
indeed notice that the noise power profile level is comparable with the floor noise power
level. Panel(c) shows the same precipitation profile, in SNR scale, and thresholded for
SNR = 0[dB]. This last result is a promising one for using this approach for the AMF
algorithm since we notice that this method provides a good sensitivity. Finally, Panel(b)
shows the same comparison as in Panel(a), but for precipitation profile for a different
azimuth angle, ¢» = 45°. Here we noticed, that the noise power profile is underestimated.
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Figure 2.6: Example of noise power profiles and precipitation profiles at constant Doppler velocity —1.2[m/s].
Panel(d) shows noise power profiles for two elevation angles, 6 = {0°;30°}, and black color line the averaged
one overall elevations. Panel(a) shows both precipitation profile, blue color line, and noise power profile,
black color line. Based on that, Panel(b) shows the same result but in SNR scale, and thresholded at
SNR =0[dB]. Panel(b) shows a precipitation profile when the receiver is saturated. The noise power profile is
much lower, around 20 dB.

2.4. CONCLUSIONS

In this chapter MAX3D radar parameters, weather data, and noise data have been
studied, for the possibility to update the signal processing for this radar for weather ap-
plications. The disadvantages, but also advantages of this radar system parameters have
been analyzed. The footprint area for both receive antennas was calculated. The con-
clusion drawn for this is that for the Main Array receiver vertical direction of the wind
can be considered to not change much for the radar volume resolution filled with at-
mospheric particles and surveyed by radar. In this case, we can approximate that radial
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Doppler velocity for constant height provides true wind velocity up to a scalar, which is
dependent on the terminal velocity value of the wind. This is an important conclusion
for the success of this project, which final goal is to determine the capability for MAX to
perform weather targets detection and 3D wind field estimation.

Real radar data was analyzed for constant elevation PPI of radar power reflectivity
after beamforming processing and constant azimuth 2D range profiles for all elevation
angles: [elevation] x [range]. Results after beamforming show that it was applied cor-
rectly and this can be verified by the visual inspection of sidelobes level for ground tar-
get, which is expected to become lower to the high elevation values, which is true for our
results. In another train of thoughts, weather targets are visible as clouds shape in range
profiles of the PPI plot. Additionally, the behavior of receiver saturation is studied. PPI
plots show that high power range profiles due to the saturation effect are present at the
same azimuth interval for different elevation angles. 2D image plot of range profiles that
correspond with azimuth direction where saturation occurs, shows that this effect oc-
curs for all elevations. Moreover, we observe that the saturation effect implies a decrease
of SNR by 20[d B].

Noise data has been studied and range profiles at each elevation angle were esti-
mated for noise power, averaged over Doppler frequencies and all azimuth directions.
This result shows to be a good candidate to estimate noise-floor level for data at any
position in the processing chain. Here was shown only for precipitation profiles.
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WEATHER RADAR SIGNAL
SIMULATOR

This chapter includes a simulator technique developed under the objective of simulating
the performances of the beamforming technique for weather targets. Due to the goal of es-

timating Doppler spectra moments, that is total power reflectivity, mean Doppler velocity,

and spectral width, beamforming performances are studied concerning the estimation ac-

curacy of spectral moments. Thereby, a simulator for Doppler weather spectra is required.

This is developed based on the technique proposed by Dusan S. Zrnic, called Weatherlike
Doppler spectra and time signals. Since beamforming operation applies to signal received
by a phased array antenna system, this simulation techniques consider the simulation of
this signal as well, performed here using instantaneous data model for a phased antenna
array. In this chapter, Doppler weather spectra and their moments are introduced. For
the latter, physics of atmospheric particles are explained in a radar resolution volume and
mathematical derivations have been performed in relation to the radar forward model to
support the physics behind. Both components of the simulator are mathematically de-

rived and explained. An extensive explanation about the usage of noise when these two
parts of the simulator are combined is provided, followed by the results. Finally, the whole
simulator workflow based on the objective of beamforming performance analysis is pre-
sented and explained.

3.1. WEATHER DOPPLER SPECTRUM DISTRIBUTION

OPPLER spectra are used in radar weather applications for estimation of wind and
D precipitation field. This can be used for the estimation of wind velocity and rain
falling intensity. For this, estimation of Doppler weather spectra has to be performed
first. This spectra is characterized by three moments, zero moment:total power reflec-
tivity, first moment: mean Doppler velocity and second moment: spectral width(first
standard deviation). The first moment can be formulated as a result of the movement of
the atmospheric particles concerning the wind velocity in three-dimensional (3D) space,

17
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[1]:
U, = wsin(0) + ticos(@) cos(p) + Vcos@)sin(¢p) (3.1)

, where 7 and 7 represent the components of the horizontal wind velocity, and 0 rep-
resents the vertical motion of the particles, known as vertical draft. 0 and ¢ represent
elevation and azimuth angles, respectively, relative to the position of the radar. Estima-
tion of wind velocity based on atmospheric particle movement is possible based on the
echo signal reflected by the particle present in the radar resolution volume, [1]:

AVol = R*0¢pAr (3.2)

, where R[m] is range, and Ar[m] is range resolution. Since these particles have a dif-
ferent dimension that moves with different velocities, hence Doppler weather spectra
are characterized by a distribution, which can be approximated with a Gaussian shape
distribution, [1]. Finally, the first moment, mean Doppler velocity, 7, characterizes the
mean velocity of all the particles at each range position and height. The following lines
introduce the mathematical derivation of each spectra moment and their relation with
the atmospheric particles present in the radar resolution volume.

3.1.1. TOTAL POWER

Total power is the result of power integration along the Doppler spectrum for each range
profile, where each frequency (or Doppler velocity) is characterized by a complex value,
that here is denoted as A(k) € C. The number of Doppler pulses/bins: Np, which repre-
sents the number of hits per scan. Doppler spectrum is characterised by velocity resolu-
tion: dv, and maximum unambiguous velocity, |V, axl.

_ 2| Vmax!

dv 3.3)
Np
A-PRF
|Vmaxl = ——— (3.4)
4
UD=—Vmax:QV: Vmax—av (3.5)
Formula for total power for one single range bin in terms of Doppler velocity:
Umax
Pr :f |A()I*dv (3.6)
—Vmax

The physical meaning of total power is strictly related to the formulation of radar
equation for volume scattering.

_ P;GGA%0 o _C-oyg

= = 3.7
' (4m)3rt rt 5.7
Nyot N@m®)
Opol = Z or=Volume- Z o;i=Volume-n (3.8)
k i

Where, Volumerepresents the radar resolution volume [m?, 001 represents the radar
cross-section of volume [m?] and 7 represents the reflectivity [m~1], which is a summa-
tion over unit volume [m3].
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Thereby, if we assume that the radar beam position is fixed for Np number of scans,
and these scans are coherently integrated, then the total power reflectivity represents
the total received power from the radar volume at a specific range from radar. Received
power in this case is direct proportional with rain rate (mm/h), that is characterised by
different diameter values [mm] of the drop size and the total number of drops in unit of
volume. Thereby, the higher the rain rate, the higher the value of total power.

3.1.2. MEAN DOPPLER VELOCITY

As a general statement, wind velocity can be estimated using radar systems by integra-
tion of phase information provided from the signals reflected by the particles present ata
specific time range and in a specific radar volume resolution, when we assume that par-
ticles move in space as a consequence of blowing wind. Each radar volume is character-
ized by a drop size distribution, i.e. Doppler spectrum is characterized by various points
with different power and different radial velocity, which creates the so-called Doppler
spectrum distribution. The mean of this distribution represents Mean Doppler velocity,
and we consider this value as being the mean of all radial velocities present at a specific
range, azimuth, elevation and time in a radar volume resolution. These moments can be
computed as follows:

Umax

o v|A(w)>dv (3.9)

PT ~VUmax
3.1.3. SPECTRAL WIDTH
The spectral width is computed as the standard deviation of Doppler spectrum distri-
bution and is related to the width of the drop size distribution. When Doppler spectra
contain weather objects, this value is empirically around 2 m/s and can be computed
using the following formula:

Umax

o, = ¢if " = w2 Aw) Py 3.10)
PrJ-

3.2. ALGORITHM AND MATHEMATICAL DERIVATION

Unlike point target based applications, where the performance of beamforming tech-
nique is measured in time domain, in the case of weather applications, the performance
analysis of beamforming technique is done based on the estimation accuracy of Doppler
moments spectrum distribution. For this reason, a ground truth of the moments values
is necessary.

This simulator follows a procedure described by Zrnic, entitled Weatherlike Doppler
Spectra and Signals, [2] and it is suggested in [3]. The implementation is proposed by us.

This simulator permits the generation of any desired shape for the signal power spec-
trum. Assuming that Doppler spectrum distribution follows a Gaussian shape distribu-
tion, we can use this simulator to reach our objective. Briefly speaking, we generate the
first desired Doppler spectra and then the time-series signal is obtained using an Inverse
Discrete Fourier Transformation (IDFT).

Based on the simulator’s feature to generate any desired spectra, mentioned above,
first, a Doppler spectrum is generated. Each frequency value is characterised by power
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and phase, where power values are transformed to be exponentially distributed using
transformation equation from [2], and phase information if uniformly distributed. To
obtain a signal in I and Q components, baseband signal, an inverse discrete Fourier
transform of complex Doppler spectrum values are required.

In order to prove that the operations described above are possible from a mathemati-
cal point of view, we use the following methodology and formulae, described by Fourier
series.

Signal received by an antenna system, is a real signal, where the baseband complex sig-
nal, s(¢) is modulated on the modulation frequency, f:

u(t) = Re{s(t)e/ '} 3.11)

Based on Discrete Fourier Series theory, a signal can be described as a sum of expo-
nential signals, where each of them is characterized by specific frequency and power, as
follows:

r 1 .
u(t)=y Prel®r (3.12)
n=1
where I represents the number of complex signals summed together to obtain u(?), P,
represents power of each exponential signal and @ = 27 f;, ¢ is phase information, with
fx being the frequency.

Based on Fourier series derivation, amplitude spectrum coefficients, ci, which char-
acterise the amplitude of each frequency component in Fourier domain, can be written
in terms of I and Q components:

1.
ok =10k + jQUk) = P2 /% (3.13)

where Py, represent the power of each sample and is considered exponentially distributed,
O = arctan(Q(k)/I(k)) is phase information of each sample and is considered uniformly
distributed within the interval [-7, 7]. [ and Q components can be described as follows:

1(k) = a(k) cos(¢p(k)) + n(k) cos(w (k)
Q(k) = a(k)sin(¢p(k)) + n(k) sin(y (k))

Where, a(k) is a Rayleigh distributed signal envelope and ¢ (k) is a uniformly distributed
phase. Analog, for n(k) and v (k), radar noise. Fourier series equations for discrete signal
u(n) is:
1 N-1 s 21
ck=— Y u(me I"nk (3.14)
N n=0
where N is the number of samples for discrete signal u(n). Based on Eq.3.12 and Eq.3.13,
we can rewrite Eq.3.14 as follows:
1 N-1 1 i® 20 2T k
I(k)+jQk)== ) PZel®ne I (3.15)
N n=0
Finally, we notice that the time series signal that corresponds to any Doppler spectra
shape can be obtained based on the equation derived in Eq. 3.15, where the shape can be
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controlled by the values of P,. In this case, P, is exponentially distributed instantaneous
power of frequency-dependent signal power density, S, plus 02, which is the white noise
power per discrete frequency

Pp=S,+0% (3.16)

P, and @, are statistically independent.

In the following lines I introduce the equations to obtain a complex valued Doppler
spectra distribution from a real valued Gaussian one. Doppler spectra implies exponen-
tially distributed power and uniformly distributed phase information.

3.2.1. SIGNAL POWER DENSITY

Doppler spectrum distribution for weather objects is considered to respect the Gaussian
shape distribution and can be restored based on the moments values: M (total power
reflectivity), M; (mean Doppler velocity) and M, (first standard deviation). Based on
Gaussian formula for normal distribution and moments values we generate each signal
power density value, S,:

(vpm-Myp)?
My -z
Sp= e =My (3.17)
" \Y 27'[M2

Where, n = [1, N], N is the number of Doppler bins, and vp(k) represents the velocity
bin within the interval given by the maximum unambiguous velocity, |v,,4x| and velocity
resolution, d,, Eq. 3.3, vp(k) = (k—1)dy, — |Vmaxl-

3.2.2. DOPPLER SPECTRUM DISTRIBUTION

Complex values Doppler spectrum distribution are generated by adding the correspond-
ing noise power, o2 value to the signal power density, S(k), followed by a transforma-
tion of P, in exponentially distributed random variable. Finally, power signal frequency-
dependent values are multiplied by an exponential term for the phase information. For
the transformation we use the expression provided in [2]:

Pp=—(Sp+0%)-In(Xy) (3.18)

where X}y is a uniformly distributed random variable within the range 0 to 1. The final
equation for Doppler spectrum distribution is:

Pp=—(Sp+02)-In(X,)- e/ (3.19)
where 0, is a uniformly distributed random variable within [, 7] interval.
3.2.3. NOISE CHARACTERISTICS
For our simulator, we consider that the noise is White Gaussian Noise (WGN) with zero

mean and variance, o%. Hence, the autocovariance function, ¢, and the noise power
spectrum density P(e/%), respect the following equations:

cn(k) = 26 (k) (3.20)
) k=00 .
P/ = Y e *=o? (3.21)

k=-00




22 3. WEATHER RADAR SIGNAL SIMULATOR

where r;, represents the autocorrelation function, ¢, (k) = 0 for k # 0 and the power spec-
trum of zero-mean white noise is constant and equal with noise power, 2.

Since the goal of this simulator is to provide ground truth for all three moments val-
ues for data after beamforming, we have to consider that noise variance value, after
beamforming operations is reduced by the number of antenna elements, denoted here
by M

o
Tow =7 (3.22)
Hence, for our simulator Eq. 3.19 is first used with noise included, where noise respects
Eq. 3.22, stated above. This result is used only to generate moments ground truth. Sec-
ond time, Eq. 3.19 is used without noise factor, in order to generate noise-free time series
signals, that are later on plugged in the data model for phased array antenna. However,
noise power is added in data model as additive noise, where the variance is U%,. The
reason why noise variance is excluded for time series signal is that data model requires
noise free signals and noise is additive only.
Expected ground truth noise floor, obtained after computing total power moment

values, follows the next equation:
2

Uﬂ
Nﬁ -dv (3.23)

where N is the number of Doppler bins, M is the number of antenna elements and dv
represent velocity resolution. This formula is derived based on the formula for total
power, Eq. 3.6.

3.3. RESULTS

This section introduces the algorithm used to generate weatherlike Doppler spectra and
time signals, where moments: My, M;, M, and noise variance 0'%, represent the input
parameters and correspondent time series represent the output. Note that for beam-
forming performance analysis we are interested in elevation x Doppler velocity matri-
ces. Thus, each moment is a function of elevation. The algorithm to generate times

series signals is the following:

1. Generate My as superimposed Gaussian shapes, as function of number of tar-
gets, maximum power for each target, 8 value that correspond with the maximum
power of the target and width of each target. The result is shown in Figure 3.1,
Panel(a), M0 subplot. This results is obtained for:

° Maximum power for each target: [40; 60] dB;
* Elevation value that correspond with the maximum power: [10°; 25°];
 Standard deviation: o = 1.5m/s for both targets.
2. Generate M; and M, that corresponds with target mean Doppler velocity and
spectral width at each position in space, in terms of elevation. In Figure 3.1, Panel(a),

subplot entitled M1, respectively M2, is presented and example, where M1 is mono-
tonically increasing along elevation and M2 is only constant and is 1 m/s.
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3. Generate a Gaussian shape for each pair (My, M;, M) of input parameters, Figure
3.1, Panel(b), left hand side subplot, entitled Gaussian Distribution.

4. Generate a Doppler distribution as function of noise variance, o2/ M, where power
values respects an exponential distribution, Figure 3.1, Panel(b), right hand side
subplot, entitled Doppler Distribution.

5. Process IDFT for all the rows in the matrix: [elevation] x [Doppler frequency] of
Doppler spectra and generate time series signals.
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Figure 3.1: Examples of intermediary results obtained for the first part of the simulator.

In Figure 3.1, Panel(c) is shown the 2D image plot of the weather Doppler spectra,
generated according with the input values.

3.4. DATA MODEL

In this section data model for a uniform linear array (ULA) is introduced. In order to
explain this model, some preliminary concepts should be introduced, like complex en-
velope signal, denoted here as s(¢), how this signal is obtained in an I/Q receiver and
later, the narrow band assumption. This assumption implies that time delay difference
that occurs for the signal to be received by each antenna element is short enough to be
neglected, when signal’s bandwidth is much smaller than the inverse of this delay, 7.

3.4.1. PRELIMINARY THEORY

I/Q RECEIVER

Signal type used for signal processing operations is the baseband signal, thereby is signal
used for our simulator. Henceforth, this signal is denoted by s(¢), also known as complex

5
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envelope signal. Term envelope here refers to the fact that s(¢) is an analytic signal and
magnitude of it is called envelope of real component. Analytic signal means that s(t) is
an analytic representation of a real-valued function, x(#), containing original signal x(¢)
and its Hilbert transformation /#{x(¢)} = y(?),

s(=x+jy), (3.24)

where x(¢) and y(¢) are also known as I(t): in-phase and respectively Q(t): quadrature
components [4].

The advantage of this kind of fwo-channel receiver is that it gives us the possibility to
compute amplitude, A(t) and phase, ¢(¢) of the echo signal reflected by the target, based
on separate measurement of I/Q components. Moreover, the sign of the phase shift, ¢(#)
can be revealed by the quadrature component. This information gives us the possibility
to determine whether the target is approaching or receding to the radar. The processing
chain within a radar’s receiver is introduced in the following lines.

To begin with, we consider a single received sinusoidal signal at the radar’s carrier fre-
quency, f.. The antenna receives a real-valued bandpass signal with centre frequency.
Therefore, the following equation represents the echo signal received by radar, modu-
lated on carrier frequency:

u(t) = Re{s(t)e/""}. (3.25)

Based on Eq.3.24 and Eq.3.25, we obtain the following equation:
u(t) = I(t) cos(wt) — Q) sin(w,1t), (3.26)
where the equations for I/Q are the following:

I(1) = A(8) cos((1)),
Q(1) = A() sin(¢p(1)).

In order to extract s(t) out of the received signal u(?), i.e. to obtain I/Q components,
two steps are necessary: demodulation and filtration.

1. Multiply u(?) with 2cos(w, 1), respectively with 2sin(w,?);

2. Apply a LPF (Low Pass Filter) to each resulted component on each channel.

NARROW BAND ASSUMPTION
As stated in the introduction of this section, delay differences, denoted by 7, that occur
for the signal to reach out each of the antenna elements are considered small. Here we
prove that under this assumption, delayed complex signal, s(#—7) is approximately equal
with s(7).

We can represent delayed received signal, u(t), as follows [5]:

ur (1) == u(t—7) = Re{s(t —1)e /27 /eT g J2mlely 3.27)
The complex envelope of the delayed signal is:

sp () = s(t—1)e I27IeT (3.28)
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Let W be the bandwidth of s(¢). If e(j2r f,7) = 1 for all frequencies | f;| < %, then:

wi/2 wi/2
s(t—r):[ S(f)ez”f“‘”dfzf S(He?™ D af = s(r) (3.29)
—w/2 -w/2

Based on Eq. 3.29, we conclude that s, (¢) = s(£)e /%*/eT for W * T << 1. In other
words, for narrowband signals, small delays can be omitted. This does not mean we can
omit phase information provided by that delay.

»
>

xpg ()

xpr—1()

(M-1)d

= x2(8)

tl\ x1 ()

Figure 3.2: Reflected uniform plane wave toward a uniform linear array system of M antenna elements. Signal
so (1) represent signal with phase delay zero. T} represent distance to first element within array, and is the
biggest distance when 0 < 90°. Dashed red line represent the position in space where signal has the same

phase for any points and d represent distance between antenna elements and is constant for uniform linear
array (ULA).

3.4.2. DATA MODEL: MATHEMATICAL DERIVATION
Based on Fig. 3.2, we consider the model:

x; () = a®) Asy(t — T;)e 2 feTi (3.30)

where a(0) represents the antenna pattern coefficient as function of 0 value, 6 angle here
is defined as the angle between the target direction and vertical axis, A represent space
attenuation, T; represents the target time delay relative to each antenna element, thus
so(t — T;) represents delayed baseband signal, and f, represent the central frequency;,
where s (t — T;)e /27 feTi represents reflected modulated signal after receiver. We intro-
duce the following definitions:

s(t) = so(t—T1), 3.31)
;=1 =T, (3.32)
B=Ae ¥ (3.33)
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where T; < T7, T;-T1 <0, 7; <0, ifrom 1 to M, and 7; represent a small time delay
difference between different antenna elements, and it has a negative value here. Based
on this definitions we can rewrite Eq. 3.30 as follows:

xi (1) = a®)Bs(t—1;)e 127l (3.34)

Redefining so(f — T;) in this way we can take advantage of the narrowband assump-
tion. Next, 7; can be expressed as a function of § and A = %, as follows:

dicos(®) _ . U l)dcos(g) =-2m(i—1)Acos(6) (3.35)

2nf.Tti=-2m
fC 1 fC c A

where, d represent distance between each two antenna element, which is constant for
ULA, Fig. 3.2, c is the speed of light and A is the signal’s wavelength. Minus sign comes
from the fact that 7; < 0.

For small 7; we assume that

Sg; = S(t— 7)e T & g(p)e I eTi = (1)@l i DACOSO) (3.36)

We define cos(@) = sin(90° — ) = sin(0), where 0}, represents elevation angle be-
tween signal’s direction and horizon. Moreover, due to the symmetry of the antenna
pattern radiation, we can consider that a(f) = a(@y,).

After collecting received signals into a vector x(¢), we obtain that

x1(1) 1
X2 (1) ejZnAsin(eh)

x(1) = . - . a(@p) Bs(t) :=a(0)Bs(t). (3.37)
XM‘(L‘) ej2ﬂ(M—i)Asin(6h)

Therefore, for our simulator we apply the following steps procedure:

1. Simulate signal s(f) = so(t — T1), where T represent time delay between 1% ele-
ment in the array and target position in 3D space;

2. Simulate phase information with respect to time delay 7, contained by  term:
’6 — e_JZ”fCTl;

3. Simulate phase information with respect to time delay between reflected signal
and each antenna element, contained by array response vector a(f). Here we con-
sider that antenna pattern coefficients are 1 for any 8}, angle.

It is important to mention, that for a radar signal, we take into consideration round-
trip time. Therefore, T; in final model has to be doubled. For multiple, K sources, we
can extend the model equation to a matrix form, as follows:

X=ABS+N, (3.38)

where each component is described as follows:
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* matrix A, of dimension M x K, where M is the total number of antenna elements
and K is the number of sources, contains all the array response vectors a(@y), k =
1:K;

» matrix B of dimension K x K, contains S, values on diagonal and in rest zero,
and contains phase information of the target position with respect to 1%/ antenna
element and also attenuation factor that correspond with for each source’s signal;

° matrix S, by dimension of M x N, where N is the total number of samples within
each signal, contains each st, () = so(¢ — Ty) signal samples;

* noise matrix N, of dimension M by N. We assume noise is spatially white, that
means covariance noise matrix R,, = o L.

3.5. SIMULATOR WORKFLOW
This sections shows the simulator workflow, Figure 3.3.

This flowchart has to be read from the left top corner to the right and stops at the
bottom center position. Simulator is initiated by plugging in input moments values, My,
M, and M. After time-series signals are generated, this is matrix S, we use a data model
to generate received ULA signals, stored in matrix X. After applying the beamforming
operation § is estimated for each elevation. After Doppler processing and estimation of
Doppler weather spectrum moments, the algorithm stops at the bottom center position,
where ground truth and estimated moments are compared to determine estimation ac-
curacy.

Weather like Dpppler Data Model Beam Forming (BF)
spectra and signals (generate raw data X) (generate ™)
simulator ‘ R . .
(generate time series Tl x, =As +n, . 5 =510
signal matrix S and n~N(0, 0-"2) i~ N(O,i
moments ground truth) M

<
ad

Doppler processing
(FFT(s))

_ | Compare BF results with | _
ground truth

Figure 3.3: Weather Radar Signal Simulator flowchart

3.6. CONCLUSIONS
In this chapter Weather Radar Signal Simulator was developed. Mathematical equa-
tions for Doppler spectrum moments have been introduced and also the relation be-
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tween Doppler weather spectrum and moments. Additionally, an explanation was in-
cluded about the meaning of each moment for the physics of atmospheric particles.

The simulator has two components: a component that generates Doppler weather
spectra and time series signals and another that generates weather data received by a
phased antenna array, data model. Algorithm and mathematical derivation for the first
components were introduced and exact details were provided for the simulation of ad-
ditive noise for this simulation technique. Physical meaning and the mathematical for-
mulation were discussed for the data model. In the end, a simulator flowchart was intro-
duced and explained.

This simulator is important because it is versatile and allows for the simulation of
any desired spectrum shape, in our case, Gaussian shape. Moreover, it allows simulating
either extended target or point targets. It provides a realistic behaviour of precipitation
profiles for a phased array radar weather. It also offers correct levels for ground truth
both for moments and noise level.
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BEAMFORMING TECHNIQUE

The beamforming (BF) technique is a signal processing technique used for sensor arrays
to steer the beam to a specific direction at transmission and to estimate the direction of
arrival at reception. In the weather realm, a phased array antenna improves time and
space resolution for 3D information retrieval of the weather situation, which can help
prevent consequences due to fast forming atmospheric phenomenon or to improve the
understanding of the internal structure of weather. The study of beamforming methods
for weather applications implies a more meticulous methodology, that includes the im-
plementation of a weather radar signal simulator. Besides point targets, for weather ob-
Jects beamforming algorithm has to provide an accurate estimation of precipitation pro-
files based on the performance criteria 1) sidelobes suppression, 2) accurate estimation of
true amplitude and phase information, and 3) robustness to a limited number of Doppler
bins, for high time-resolution. One special aspect of our study is to determine the effi-
ciency of the beamforming method when for high power level due to the receiver’s satu-
ration. Based on these requirements and aspects, an adaptive beamforming technique is
employed, called reiterative Minimum Mean Square Error(rMMSE), and compared with
two other beamforming methods; Fourier and Capon.

4.1. MATHEMATICAL DERIVATIONS

F OR this chapter we use data model described in Eq. 3.37. We consider that source
power is contained in signal sample, s(t).

4.1.1. SIGNAL MODEL

We assume a 1D uniform linear array (ULA), characterised by M equally-spaced identi-
cal elements, with //* time sample of complex signal x;, M x 1 vector received from the
antenna array. This vector can be mathematically described as a linear equation, Eq.
4.1. Matrix A (M x K) consists of spatial steering vectors a(8), s; (K x 1) is the associated
received complex vector at arbitrary range bin, and additional White Gaussian Noise
(WGN) vector n; [M x 1]. K represent the number of angular positions of independent

29
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precipitation profiles.
X;=As;+ny 4.1)
where,
T
X = [X7,0%01 -+ X1, m-1)
T
§; = [31,031,1"'31,1(71]
A=[a®)a(®))---al@k-1)]
a0 =1 e(—j2mAsin() ,,_e(—jzn(M—l)Asin(e))]
and
A= da
A

[¢]T is transpose operation, d is the spacing of the neighbouring antenna elements, A
is the wavelength. For our system, 0 represent elevation angle with respect to antenna
broadside.

The objective of the beamforming technique is to optimally construct the weights of
a filter, wy, called beamformer, such that to estimate the precipitation profiles as:

81=1{8108,1S,k-1] (4.2)

S1k= fol (4.3)

where wy. is [M x 1] weighting vector, computed for a specific elevation angle, 8. [] is
a complex conjugate transpose. The way how the beamformer is computed depends on
the optimality criterion, which is specific to each beamforming technique.

4.1.2. GENERAL MATHEMATICAL BACKGROUND FOR BEAMFORMING
Beamforming technique is a generalization of the linear algebra problem: X = AS+N,
where either A or S is unknown and we have to estimate it. Thereby, we only consider
that the array response is known as a function of the direction parameter 6 and we are
looking to determine S, estimation of precipitation profiles. Before introducing beam-
forming techniques of interest: Fourier, Capon and reiterative MMSE, a summary pre-
sentation of the elementary receiver schemes: matched filter and Wiener filter, is nec-
essary to understand the assumptions that we are working with and the mathematical
derivation of beamforming techniques under analysis.

According to the model, Eq.4.1, x; is a linear combination of K narrowband source
signals s; x and noise ng, where we assume that the noise covariance matrix

R, = Elnn}’] (4.4)

is known, up to a scalar that represents the noise power. In case of spatially white noise
covariance matrix is:

R, =0’1 (4.5)
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Starting from Eq.4.1, we can assume that we collect L number of sample vectors, x;, that
stored in an [M x L] matrix X = [Xy, - - -X7—1], we obtain the following decomposition of X:

X=AS+N (4.6)

where the rows of S contain the complex samples of source signals. Here we will assume
that signal powers, S, are absorbed in A = [a(6)) ---a(@k-1)]1diaglBo - - Px-1], and that
sources have unit powers. We consider sources are stochastic, with zero mean, indepen-
dent and hence uncorrelated,

Els;si'1=1 4.7

The approach to solve and understand this problem is the following. First start with
the purely deterministic case,
X=AS, (4.8)

where the object is to construct a linear beamforming matrix W such that
wHx =S8, (4.9)

We will focus only for the case when we know A, sources directions and the complex
gains of the sources. For this we set

wh =Af, s=whx (4.10)

In order for ATA = I to hold we have to respect the following conditions: 1) number of
antennas is larger than number of targets, this is M = K and columns of A to be linearly
independent, this is A to be full rank. If M < K then we cannot recover the sources ex-
actly, because A”A is not invertable. Thereby, if these conditions are met, then WHA =1
, which guarantees us a beamformer which cancels all interference, because we can es-
timate S exactly, without errors.

In the presence of additive noise we have: X = AS + N. Two types of linear least-square
(LS) minimization problems can now be considered: model fitting error and output error
minimization. For the former we take into account only the case when A is known, and
for the latter we consider the case when matrix § is known and based on that we derive
receiver expression for known A.

min |[X - AS||% (4.11)
A
min WX - 8|14 (4.12)
w
DETERMINISTIC MODEL FITTING ERROR
For Eq.4.11, with A known we obtain
$ = argmin|[X-AS||% =>$§=A"X (4.13)
S

This is known as the Zero-Forcing solution, because all interference sources are canceled,
i.e. WHA = I. ZF maximizes the Signal-to-Interference power Ratio (SIR) at the output.
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DETERMINISTIC OUTPUT ERROR MINIMIZATION
This optimization problem minimizes the difference between output signals and S. The
results for known S is
W = argmin [[WX - 8|2 = sX' (4.14)
w

Since X' =X# XxH)~1 we can rewrite Eq.4.14 as

1 1 L L
WH=ZSXH(EXXH)_1:RHR_1 W=R;'"Rys (4.15)

XSTTX 0
R, = %XXH is the sample covariance matrix (SCM), and R, = %XSH is the sample cross-
corelation matrix between sources and received data.

Now, for the beam former derivation when A is known, we have to put certain as-
sumptions on S and N, because otherwise we cannot solve the minimization problem,
since we can fit any S. This is that rows of S and N are statistically independent from each
other and hence for large L, we can put together all the assumptions presented so far:

1 1 1
—SN? —0 —ss -1 —NN¥ - %1
L L L
We assumed that the source powers are incorporated in A, thus asymptotically we can
write W as follows
W=R;'R,;; = AA" + 0’7 'A (4.16)

This is known as Linear Minimum Mean Square Error (LMMSE) or Wiener receiver. This
beam former maximixes the Signal-to-Interference-plus-Noise (SINR) ratio at the out-
put. One observation here is that it does not cancel all interference, WHA #1I. For the
stochastic approach both matched and wiener filters give the same final formulae when
noise is WGN.

For the previous derivations, we took into account some assumptions, that will be
valid for all next derivations:

1. White temporally and spatially noise, i.e.

R, = o’ 4.17)

2. Signals are stochastic, zero mean, independent and hence uncorrelated, for uni-
tary signals, this means

1
=88t =; (4.18)
L

3. Number of antennas has to be larger or equal than number of sources: M = K, in
order to recover the sources exactly;

4. This is not an assumption, but an important matter: in order to compute SCM,
R,, we have to take into account that each instance of a random variable Xm,1 of
matrix X, has to belong to the same random process. This means that for our case,
the beamforming technique that uses SCM has to be applied for data collected
over slow time from the same target, that is fixed range and slow time axis.
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4.2, METHODS UNDER ANALYSIS

In this section I present three beamforming techniques: Fourier, Capon and re-iterative
MMSE. The presented formulas follow the same concepts derived for ZF and Wiener,
except that we introduce a(0), where 0 represent the elevation angle value, employed for
space scanning and retrieval of precipitation profiles for the elevation interval of interest.

4.2.1. FOURIER - MF

Fourier beamforming, known also as Matched Filter (MF) beamformer can be derived
based on the receivers obtained in previous subsections: ZF and Wiener if we assume
only the case of one single target in noise

x;=a(@)s;+n; (4.19)

By recomputing formulas for both, ZF and Wiener receivers, where matrix A is replaced
by simply vector a(9) we notice that the difference between ZF and Wiener receiver is
only a scalar multiplication: ya(@), which does not change the output SNR. Hence the
optimal beamformer, when noise is spatially white is:

a(0y)
M

WFRk = (420)

This algorithm is known as Fourier (FR), because a precipitation profile estimated by
using the FR weights is equivalent to the result of a Fourier transformation ofx;.

4.2.2. LCMV - MVDR - CAPON

Another technique for beamforming, is called Linearly constrained Minimum Variance
(LCMV), also known as Minimum Variance Distortionless Response (MVDR) and Capon
beamforming. As for MF we assume the case of one single signal in noise. For known
a(0y), received power is minimized subject to a constraint, as follows:

mui}an R,w 4.21)
s.t. wa(fy) = 1, (4.22)

which implies having a fixed response towards a source coming from that specific direc-
tion. The solution can be found in closed form using Lagrange multipliers and is given

by

R;la(0;)
Wep, = ————————— 4.23
T all )R, a0 @
where for large L
| —"
R, = ZXX (4.24)

Since we work with small amount of samples, L small, then we consider that SCM is only
an approximation, denoted: R,.
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4.2.3. REITERATIVE MMSE

MMSE beamforming for adaptive phase array was proposed in [1], where its perfor-
mances were computed for point target, and thereafter it was proposed in [2], where
the algorithm is tested for precipitation profiles. In the latter, the authors upgraded the
algorithm with a gain constrain, similar with one applied for Capon beamformer. Hence
the MMSE beamformer is

w ___Ra@y (4.25)
MMSEe = H(9)R"Ta(0y) '
where
R=ARA" +R, (4.26)

As we can already notice, the main difference between Capon and MMSE is that we
descompose SCM, denoted here with R. In this way we have a structure that allows us
to control the noise covariance matrix, R,. Moreover, this opens the possibility to make
this algorithm reiterative, abbreviated from now as rMMSE, where for each iteration SCM
is upgraded. It is initialized using Fourier beamformer. For this algorithm we assume
that signals powers, B are absorbed in s, i.e. Ry =diag(fo- - Bx-11Ikxk, called spatial
covariance matrix.

The rMMSE weight and solution are calculated iteratively with the use of prior infor-
mation as follows.

1. Prior Information: Fourier beamformer is used to obtain an estimate of precipita-

tion profiles as prior information.

N 1. 4

RY = ZsFRsf?R olgxk 4.27)
where

Skr=1[80--8.1]

SFR = W?RX

Weg = [a6p) - a@k-1)]

Lis the number of time samples, and K is the number of different angles value that
are used to scan 0 along elevation interval.

2. Computation of weight vectors: For each i-iteration a new weight vector, wi

WMMSE;
is computed, based on the previous updated space covariance matrix, fl(s’).
: RO a(6,)
(i) k
w =—— K (4.28)
MMSEE aH (9,)RO™ a(6y)
where _ .
R? =ARVAH + R, (4.29)

3. Determination of rMMSE solutions: K new solutions are computed for each new
set of weight vectors in order to update space covariance matrix, R(S”.

g _ W(i)H X (4.30)
rMMSE rMMSE ‘

(i) — (D) (i)
Wivmse = Wainvse, " Wvmse ) (4.31)
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4. Reiteration: i+1 iterative space covariance matrix, Ry, calculated using i-iterative
rMMSE solutions.

L 1. ~(iVH
i+1 _ (i) (i)
R = 78 MmseSrmumse © Ioxk (4.32)
After this point algorithm continue from point number 2, with computation of new
weight vectors.
In order for the algorithm to stop, the iteration is terminated with a threshold of nor-
malized mean square errors (NMSEs) between i-iterative and i-1 iterative MMSE solu-

tions

JATNG Jli-1) 2
P 1 N Zl:l||SMMSE“C_SMMSE“C” 133
2 T VBT 4
n=1 1=1 "SMMSE,

where the NMSEs in each range bin are averaged. Hereafter, output result for IMMSE
that satisfies, Eq.4.33, it is called converged MMSE, with i number of iterations, denoted
henceforth cMMSEi. For avoiding any confusion, when we remember about algorithm
itself we call it rMMSE, but when we discuss about a specific results, where we have
available a number of iterations we will use cMMSE (i), and specific number of iterations
for that case.

4.3. NUMERICAL SIMULATION

This section evaluates the simulated performances of rMMSE beamforming method,
taking into account imposed requirements, mentioned in the abstract: 1) sidelobes sup-
pression, 2) accurate estimation of true amplitude and phase information and 3) robust-
ness to a limited number of Doppler bins. For this simulation we consider that antenna
elements are perfectly calibrated, this means same phase difference value for any two
successive antenna elements.

This beamforming method is proposed by Eiichi Yoshikawa and et al., where its per-
formances are demonstrated, for simulated data, in [2]. In [3] an upgrade for rMMSE
method is provided, in order to overcome phase and amplitude issues, which is likely to
happen for a phased array antenna. The role of this section is to test if our algorithm
is correctly implemented, which means that we try to reproduce the performances ob-
tained in [2]. For this we compare rMMSE results to Fourier(FR), not-adaptive method,
and to Capon(CP), adaptive method, for both point and extended (weather) targets. One
additional study result that we provide, compared with [2], is about the algorithm perfor-
mances for the case of underestimation or overestimation of noise variance, parameter
used to compute noise covariance matrix, R,.

Therefore, this section is split in three parts. In first part, we introduce the qualita-
tive differences between point target and extended target, with respect to total power,
that is My moment, and antenna spatial response results, where quantitative results are
provided for the point target results with respect to the total power error estimation.
The objective is to prove the following performances for ’IMMSE: 1) sidelobes suppres-
sion, 2) small errors for power estimation, 3) adaptive performances of the algorithm
and to understand the differences for an extended target compared with a point one
when beamforming is applied. In the second part, a study is carried out for two extended
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targets, where qualitative and quantitative results are provided with respect to all three
moments, for both 256 and 16 Doppler bins. The objective is to prove the performances
of rMMSE for 1) accurate estimation of precipitation profiles and 2) robustness to the
small number of Doppler bins. In the end, 2D image plots of the Doppler spectra are
provided, for visualization analysis of the performance of rMMSE with respect to ground
truth and other two employed beamforming methods. In the last part we provide the
results for ’IMMSE when noise variance is either overestimated or underestimated.

4.3.1. POINT AND EXTENDED TARGETS

In this subsection are introduced qualitative differences between point target and ex-
tended target, Figure 4.1 and quantitative results, Table 4.2 for point target only with
respect to power estimation error. For this, in Figure 4.1 are shown simulation results for
two-point target, LHS column of plots and one extended target, RHS column of plots.
The blue, green and red solid lines are FR, CP and cMMSE, respectively. Both total power
estimate and antenna spatial response are shown in this figure. For this simulation re-
sults we use Weather Radar Signals Simulator, thus input parameters values are depicted
in Table 4.1. Point targets are simulated with different power values, in order to observe
beamforming performances at different SNR’s. Ground truth noise floor computed for
My, denoted O'%MO is computed based on Eq. 3.23. Antenna spatial response provides
a spatial characterization of performances of the weight coefficients computed for each
beamforming method. This gives us an impression of the adaptive nature of CP and
rMMSE, compared with the non-adaptive FR method. For these simulation results, noise
variance, 02 is computed based on input SNR value, where SNR here is described by the
power ratio of the highest power in the spectra and noise power.

Point Targets
LHS target | RHS target | Extended Target
Parameter Value Value Value
Osteer [-5°;35°]
0:g 15° | 25° 20°
AB 0.1° 0.97°
P 20dB | 40dB 40 dB
SNR 30dB
a2 10 dB
T 5.7dB
Doppler bins 256 \ 256

Table 4.1: Input parameter values for point and extended targets comparison results

Some parameters shown in Table 4.1, require some additional explanations. Thus,
Osreer represents the interval of steering elevation angles used for beamforming algo-
rithm, where Af represents elevation resolution used for steering angles, the higher is
the resolution the more smoother are the results. This high resolution of A6 = 0.1° is
helpful to determine sidelobes level, especially for point targets results, and for antenna
spatial response. However, for extended target results, Panel(b), we used AQ = 0.97°. For
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Figure 4.1: Example of total power and antenna spatial response for two point targets, Panel(a), respectively
Panel(c) and one extended target Panel (b), respectively (d). Panel(a) shows the total power estimates for two
point targets placed at 15° and 25°, respectively, where blue solid, green solid and red solid lines indicate the
results for FR, CP and cMMSE, respectively. Black circles and horizontal dashed line indicate true (6,power)
and ground truth noise level, respectively. In Panel(c), antenna spatial response is computed at an grazing
angle of 15°. Panel(b) shows the total power estimate for one distributed target, black lines represent ground
truth for total power. In Panel (d), antenna spatial response is computed for a grazing angle of 5°.

the Doppler bins we used 256, because in this simulation we are not interested to test
if algorithm is robust to small number of Doppler bins. For SNR = 30 dB and maximum
power in the spectra 40 dB, we obtain a noise variance value of a% =10dB, and a ground
truth noise level for Mj of UiMO = 5.7 dB. Error estimation values of total power for the
two point targets case are depicted in Table 4.2.

Observations about results are provided in the following lines. Firstly we start with
results regarding point targets. For these observations we relate power error estimation
results from Table 4.2 with qualitative results from Figure 4.1, Panel(a) and (c). Hence,
FR estimates correctly the total power for the target on the RHS, but has the poorest
resolution and the highest level of sidelobes, compared with CP or cMMSE(10). LHS tar-
get is hidden under the sidelobes, and power estimation is overestimated by about 1.33
dB. Even if CP algorithm correctly detects both targets with high resolution and low side-
lobes level, both received power are underestimated about -0.48 dB and -0.76, for the left
and right target, respectively. The reason for underestimation is the correlation between
signals originated from targets and signals and noise. cMMSE(10) shows high resolu-
tion with low sidelobes level and provide the best estimation for both targets. Based on
Panel(c) we notice that both cMMSE(10) and CP forms a null at elevation angle 25°. Nev-
ertheless, cMMSE(10) has the same beamwidth as FR, which means that rMMSE tech-
nique does not sharpen main lobes, but only suppress sidelobes in an adaptive way.
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LHS target | RHS target
Beamforming
Method Value[dB] | Value[dB]
FR -1.33 0.001
CP 0.48 0.76
cMMSE -0.18 -0.02

Table 4.2: Total Power Error Estimation For The Two Point Targets

Regarding weather target, results for total power and antenna spatial response are
shown in Figure 4.1, Panel(b) and (d), respectively. Solid black line represent the ground
truth for the total power and dashed horizontal line represent U%MO. Hence, FR shows
sidelobes under 12° and above 26° elevation. Although CP does not present sidelobes, it
underestimates total power, because of the correlation between signals coming from all
elevations. In this case, cMMSE(5) correctly estimates total power, solving the problem
of underestimation and sidelobes. In Panel(c), the antenna spatial response for an arbi-
trary elevation angle, 5° is shown. We notice that the beamforming weights for both CP
and cMMSE(5) are computed according with the total power for each elevation, Panel(d).

4.3.2. ESTIMATION ACCURACY FOR DISTRIBUTED TARGETS

In this subsection we study rMMSE performances for extended targets only. Thus, per-
formance analysis of rMMSE compared with FR and CP is carried out with respect to all
three moments and for different Doppler bins, 16 and 256. Qualitative and quantitative
results are provided, Figure 4.2 and Table 4.4, respectively. Figure 4.2 structure contains
three rows: 1) total power reflectivity, 2) Mean Doppler velocity and 3) spectral width and
two columns: 1) analysis for 16 Doppler bins, and 2) for 256 Doppler bins. Blue, green
and red solid lines correspond with results for FR, CP and rMMSE, respectively.

Table 4.4 contains mean bias and standard deviation values, parameters derived in
Eq.4.34, that are computed per each beamforming method, per each Doppler bins, de-
noted here by L, L = 16 and L = 256, and per each area of interest, highlighted in Figure 4.2
with light yellow and blue light. Light yellow area represents the main lobes, with respect
to FR method, and light blue area represent the sidelobes, with respect to FR method.
Note that light blue area does not contain elevation angles where only noise is present.

K M;(n)- M;
ubms=2"=1 Z(IZ) i (4.34)

¢ YK, (M;(n) = B3 (1) - ias)?
Odev =

X (4.35)
For this study we simulate two extended target, whose input parameters are shown
in Table 4.3. SNR is described here by the power ratio of the highest power in the spectra
and noise power. SNR = 50 dB, gives us a noise variance value of 02 = 10dB, and a
ground truth noise level of 5.7 dB. 4 represents the location of the maximum power of
each target, A represent beamforming resolution, o p represent each target width, and
Doppler bins are different in order to analyse the robustness to low number of bins.
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Extended Targets
LHS target | RHS target
Parameter Value Value
Osteer (-0.5°%;35°]
6:g 100 [ 25°
AB 0.97°
P 40dB | 60dB
SNR 50 dB
a2 10 dB
T 5.7dB
Doppler bins 16 and 256
op 1.5m/s

Table 4.3: Input parameters values for extended targets

. beyond noise level
beyond noise level .
between intervals [8.7,10.7] deg
between 2.8 and 32.4 deg
and [22.6,26.5] deg
(blue colored area)
(yellow colored areas)
L=16 L=256 L=16 L=256
mean | standard | mean | standard | mean | standard | mean | standard
bias | deviation | bias | deviation | bias | deviation | bias | deviation
FR total power [dB] -13.93 13.51 -13.65 13.09 -0.19 1.32 0.11 0.82
mean Doppler velocity [m/s] | 1.98 1.59 1.95 1.51 0.72 0.91 0.55 0.74
spectral width [m/s] 0.98 0.90 1 1.06 0.79 0.94 0.59 0.77
CP total power [dB] 224.8 9.58 0.83 2.29 224.77 8.47 2.15 0.30
mean Doppler velocity [m/s] 1.84 1.69 0.31 0.20 1.05 1.59 0.32 0.09
spectral width [m/s] 3.29 1.19 0.81 0.30 3.55 0.88 1.09 0.13
cMMSE total power [dB] -0.74 1.94 -0.77 2.12 0.005 0.04 0.003 0.015
mean Doppler velocity [m/s] 0.26 0.50 0.11 0.19 0.004 0.003 0.0006 0.0004
spectral width [m/s] 0.17 0.28 0.14 0.26 0.005 0.006 0.001 0.0008

Table 4.4: Estimation of the accuracy for distributed targets

Observations about results are provided in the following lines. FR results are char-
acterized by sidelobes and errors in terms of power estimation. FR provides the less
amount of errors for elevation ranges: [8.7°,10.7°] and [22.6°,26.5°], which corresponds
with the main lobes for LHS and RHS target, respectively. Mean Doppler velocity and
spectral width results, for FR, are closer to the truth values only within intervals where
total power is correctly estimated. Similar results are shown for both cases, L=16and L =
256, which means FR is independent on the number of Doppler bins. On the other hand,
CP shows dependency regarding Doppler bins, where for L = 16, total power estimation
for CP is not visible in captured interval, Panel(a). Next we can notice that cMMSE(6)
performances are more superior compared with FR and CP.

A qualitative evaluation of estimation accuracies is provided in Table 4.4. As we can
see, based on the results presented in this table, CP cannot provide valid results when L =
16. FR and cMMSE provide similar mean bias and standard deviation for both values of
Doppler bins (L), when we analyse data for yellow area. cMMSE errors for all moments
are under 1 dB, in terms of My and 1 m/s, for M; and M, for both regions of analysis.

To understand the reason for biased results in case of FR or CP, Fig.4.3 shows the spec-
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Figure 4.2: Example of estimation performances for three beamforming techniques, cMMSE, FR and CB, red
line, blue line and green line respectively. Figure is split in three rows and two columns. First column results
corresponds with 16 Doppler bins and second column results with 256 Doppler bins. First, second and third
row shows My, M7 and My, respectively. Light yellow area represent the main lobe area and blue light
sidelobes for FR, where the difference is that power error estimation for yellow area is much smaller,
compared with the blue area. Ground truth for My, M; and M> are the same as those presented in Figure 3.1.

trographs, this is the elevation-Doppler 2D image plots, for all three methods and truth.
To emphasize the difference between algorithms, a threshold is applied, equal with the
theoretical noise power after beamforming: U—A; Additionally, spectrographs were com-
puted for both L = 16 and L = 256, left and right column, respectively. For L = 16 CP
results were meaningless, so image plot is dropped. Based on Panel(d), FR methods cre-
ates sidelobes that interfere with other elevation angles, which creates overestimation
errors. However, these sidelobes are cancelled for cMMSE(6) case. Even if CP creates
sidelobes along Doppler spectrum, i.e. multiples harmonics, this effect is only visible
for spectral width estimation case, Fig.4.4, Panel(f), where CP we notice CP suffers of
overestimation. Comparing cMMSE results, Panel(f) and (g) with ground truth results,
Panel(a) and (b) we can remark close similarities.
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Figure 4.3: Examples of spectrographs for all three methods: FR, CP and cMMSE compared with result for true
values. Two different sets of results:left for L=16 and right for L=256. CP’s results for L=16 are meaningless, so
they are not shown. A threshold is applied, which corresponds with theretical noise level for noise power after
beamforming: 02,/ M, where 02, is additive noise power and M are the number of antenna elements. Based on
these results we can understand the characteristics of each method and explain the estimated accuracies
results, from both Fig.4.2 and Tabel 4.4.

4.3.3. REITERATIVE MMSE ESTIMATION ACCURACY WHEN NOISE VARIANCE

IS NOT CORRECTLY ESTIMATED
In this subsection we study the rMMSE estimation accuracy when noise variance varies
from true value, with -10 dB and +10 dB,respectively. For this, we are using Weather radar
signals simulator and input parameter values shown in Table 4.3. For this, we repeat
same simulation with two different values for noise variance: 1) 62 = 0dB, 2) 02 = 20dB
and we compute mean bias and standard deviation of the rIMMSE method results within
blue area only, Figure 4.2, in the same fashion as we did in Table 4.4, for both deviated
noise variance values and true noise variance results. Moreover, we focus also on the
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number of iterations necessary for each simulation type. Results are shown in Table 4.5.

7 _
02 =0dB ((tfr'il . ‘1,2132) 02 =20 dB
Parameters mean | standard | mean | standard | mean | standard
bias | deviation | bias | deviation | bias | deviation
total power [dB] -1.8 3.5 -0.85 2.3 -0.99 2.75
mean Doppler velocity [m/s] | 0.24 0.54 0.16 0.38 0.17 0.32
spectral width [m/s] 0.32 0.48 0.13 0.27 0.20 0.49
Number of iterations (i) 8 6 5

Table 4.5: Estimation accuracies for ’IMMSE when noise variance deviates from true value

Based on the quantitative results shown in Table 4.5, we notice first that the number
of iterations varies, where there are necessary two more iterations when noise is under-
estimated, 8 in this case, and 1 fewer iteration when noise is overestimated, 5 in this case.
However, we notice that for underestimated case total power varies from the true value
in average with one more dB than in the case of true noise variance. Nevertheless, for M;
and M, accuracy errors are around 0.15 m/s only. On the other hand, for overestimated
case, we notice much fewer errors than in other cases, where mean bias and standard
deviation are very close to the true noise variance case.

To conclude, this result helps us to understand to what degree an incorrect estima-
tion of noise variance, and therefore of the noise covariance matrix can decrease rMMSE
performances in terms of estimation accuracy. Based on the results shown in this sub-
section, we can conclude that rMMSE provides more accuracy errors for the underesti-
mation case than for the overestimation case. Therefore, a solution to be sure that we
are not underestimating this value is to add 10 dB extra to the actual estimated value of
noise variance.

4.4. MAX3D DATA SIMULATION

In this section, we introduce the rMMSE beamforming performances for radar data re-
ceived with MAX3D using data received by Main Array only. This data is called in this
report real data. Based on [3], rIMMSE results converge to FR ones if the variance of
amplitude and phase difference errors between successive antenna elements are more
than a specific threshold. Hence, for our real data, we expect that rIMMSE results can
converge to FR, thus we use FR results for comparison. Moreover, CP results are also
used as a reference, since we use 256 Doppler bins data, the value that for simulated
results CP showed similar performances as rMMSE, up to a scalar error.

In this section we focus on the requirements set for the choice of beamforming algo-
rithm and for two other aspects, listed as follows:

1. Sidelobes suppression. For this, we select a specific azimuth and range position
where we find a ground target and we process Elevation-Doppler map for that
fixed range, for data provided from all three beamforming techniques. Then we
compare all three moments for all three beamforming methods.
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2. Accurate estimation of true amplitude and phase information. For true amplitude,
we compare main lobes results for total power between rMMSE and FR. For phase
information, we already saw for simulated data that rMMSE provides better accu-
racy estimation than FR, thus for M; and M, we are just analyzing the differences
between rMMSE and FR, respectively CP.

3. Robustness for a small number of Doppler bins. This was already proved for simu-
lated data, hence we do not have to prove it for real data.

4. Saturation sidelobes suppression. This is not a requirement, but only an important
aspect that we consider in this project, thus we compare rMMSE results with FR,
respectively cMMSE for this matter.

5. Finally, we analyze Elevation-Doppler and Range-Doppler map results for all three
methods, to determine the differences, when there is a weather target present in
scanned space.

Values for input parameters used in this simulation are shown in Table 4.6.

Real data parameters
Parameter Value
RX Main Array
0 [0°;30°]
AO 2.5°
DBF beams 13
Rotatl'on 1 RPM
velocity
Doppler
bins 256

Table 4.6: Real data parameters of interest

An important aspect, before simulation results, is to mention that for noise covari-
ance matrix, used for rMMSE we consider that noise is independent, but not identical,
thus noise variance is different for each element on diagonal. In order to compute R,
we use the results obtained in Chapter 3, Figure 2.6, for raw data. Thus, diagonal values
for R, varies along channels, and R, is recomputed for each correspondent range bin
since noise variance is varying along the range. In order to stop reiterative process of
rMMSE, we use the same threshold value as used for simulated data, an proposed in [2],
th=0.001.

4.4.1. SIDELOBES SUPPRESSION

In this subsection, we analyse rMMSE performances for sidelobe suppression of ground
clutter targets. For this, we consider the same azimuth direction used in Figure 2.5,
Panel(a) ¢ = 35°. In Panel(b) of the same figure, we remark there is a strong ground
target around 3.5 km. Thereby, we analyse here Elevation-Doppler map for that range
position and azimuth direction. In Figure 4.4 are shown four rows and two columns of
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results, wherefrom along rows SNR value is varying from low to high, and column one
corresponds with 2D elevation-Doppler image plot for each beamforming method: FR,
CP and rMMSE, respectively, and columns two corresponds with all three moments: My,
M, and Ms, respectively.
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Figure 4.4: Examples of data results for sidelobes suppression performance analysis.

Based on results shown in Figure 4.4, we first remark that the CP method underesti-
mates the total power for 0° elevation, but sidelobes are strongly suppressed. Based on

2
Figure 2.6, Panel(b), we can estimate noise power value ( U—M") at 3.5 km, which is around -8
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dB, thus we can compute expected noise floor level for total power using Eq. 3.23, and we
obtain that U%m =2.34dB, for N = 256 and dv = 0.0578 m/s. We see that for total power,
CP method obtains almost this value at higher elevation angles. Thus we can consider CP
results as a benchmark in terms of sidelobe suppression. For cMMSE algorithm, we no-
tice that the total power of the ground clutter is estimated without errors, with respect to
total power estimated by FR, and that cMMSE is suppressing sidelobes to the higher el-
evation angles, converging to the CP result, but not in all situations. However, we notice
that there are some unexpected results, in the second row, where we notice that cMMSE
does not suppress sidelobes and provides close performance as FR. For M; estimation
we notice that for this examples is constant: around zero. For My, on the other hand, we
notice that is sidelobes are well suppressed, it has to converge to 4, which in the case of
cMMSE, it happens only for the first and third row. Another unexpected result is for the
fourth row, high elevations, range 13° to 30°, where cMMSE gives worse results than FR
in terms of sidelobes suppression.

Based on the results for this subsection we can conclude that rMMSE perform sup-
pressing the sidelobes for ground clutter, for the first row and third-row case, but seems
to present unexpected results, as is the case for the third and fourth row.

4.4.2. SATURATION SUPPRESSION

In this subsection, we analyse the possibility to suppress saturation using adaptive beam-
forming algorithms. For this, we consider that saturation is coming from a ground object
and that artefacts present at higher elevation angles are only sidelobes effect. For this we
use data from the azimuth direction used in Figure 2.5, Panel(b) ¢ = 45°, for the same
range interval used for the previous study, 3 to 4 km, and we select only a representative
result for our objective. We plot the elevation-Doppler map for all three beamforming
methods and compare moments results in Figure 4.5.
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Figure 4.5: Example of case when saturation is present in spectrum and adaptive beamforming is applied, CP
and rMMSE.

Based on results from Figure 4.5, we notice that neither of the adaptive algorithms
suppresses sidelobes from higher elevation angles. Even if in the case of CP total power is
lower, it does not decrease under 25 dB, and the difference between CP and rMMSE/FR,
is about 8 dB only. However, for CP saturation effect is much more spread in Doppler
spectra, results that can be observed in Figure 4.5, Panel(b), for M,, where CP is ap-
proaching the value of 4 for spectral width, which corresponds with noise. In this case,
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cMMSE, does not provide higher improvement, compared with FR.

To conclude, based on the results obtained for saturated data, we understand that
whenever is a weather target present in the spectrum, precipitation profiles are biased
by the presence of this effect for all elevations, since its effect is present with almost
the same power in all spectra, and adaptive beamforming methods is not a solution to
filter this effect out. One more important result is that we notice that for this specific
elevation-Doppler map, this saturation effect compresses around 0 m/s Doppler velocity
with constant width of about 1.2 m/s, which represents a useful information if we decide
to filter this out.

4.4.3. ELEVATION-DOPPLER RESULTS
Based on other subsections, Sidelobes suppression and Saturation suppression, we no-
ticed that rMMSE works to suppress sidelobes of flutter echo, but we indeed proved,
using an example, that when saturation happens, this affect all the antenna element re-
ceivers, thus is present for all elevations. However, we noticed that for the Doppler do-
main, this saturation is considered as being 0 m/s, which means is concentrated mostly
at the centre of spectra. In this subsection, we analyse a situation that implies weather
target presence in Doppler spectra. For this study, we focus on the performances of
rMMSE to suppress clutter echo and on the differences between rMMSE and the other
two methods: FR and CP, in terms of estimation accuracy of all three moments.
Thereby, Figure 4.6 shows results of elevation-Doppler map and moments estima-
tion, for azimuth direction, ¢ = 35°, with range within interval 10 to 11 km. For this, we
pick up the most relevant result.
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Figure 4.6: Example of elevation-Doppler 2D image plot when weather target is present.

Based on the quantitative analysis, Figure 4.6, Panel(a) we do not remark much dif-
ference between cMMSE and FR. However, for cMMSE method, we observe that side-
lobes are suppressed around the target, but performances of cMMSE converges to FR
to the higher elevation angles. This result can also be checked based on the qualitative
results, Panel(b), for total power, where sidelobes are suppressed by cMMSE, red line, by
almost 3 dB, compared with FR, blue line. Due to this performance, we remark a more
accurate estimation of M, if we compare cMMSE with CP, green line, within interval
14° to 20°. In terms of spectral width, we do not notice too much difference between
cMMSE and FR, but we remark that within elevation interval 11° to 20°, cMMSE follows
CP results with fewer errors, where FR is jumping around CP results.
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To conclude with, this study shows us that indeed rMMSE algorithm improves the
accuracy of precipitation profiles estimation if we compare it with both FR and CP, but
also if we correlate that with qualitative results. Thus, due to the sidelobe suppression
of about 3 dB, measured at 20° elevation for total power estimation result, Panel(b), we
gain higher accuracy of estimation of about 2 m/s, within elevation interval 14° to 20°,
measured for mean Doppler velocity estimation result in Panel(b). However, sidelobes
effect for higher elevation angles, after 21°, IMMSE converges to FR, instead of following
a decay pattern, as we notice in the case of CP. Nevertheless, high elevation sidelobes
will not be an issue anymore when we filter out the area around the target, the operation
described in Chapter 5.

4.4.4. RANGE-DOPPLER RESULTS

In this final subsection of the fourth section, we study the range-Doppler domain, which
represents our domain of interest for the following processes, like noise clipping and
errors correction. Thereby, we are interested to understand to what degree performances
remarked in the elevation-Doppler domain are affecting the results in the range-Doppler
domain.

For this study, we opt for the same azimuth angle, ¢ = 35°, and for elevation angle
of 12.5° and 17.5°. We chose only the most relevant results. By opting for same azimuth
angle as for elevation-Doppler map study, Figure 4.6, we can correlate the results be-
tween that figure and Figure 4.7, shown in this subsection for range-Doppler map. This
figure shows two sets of results, two rows and two columns, where the first row corre-
sponds with 12.5° elevation and high SNR, and the second row with 17.5° and low SNR.
For these results, we set dynamic power range to fix interval of [-20¢050] dB, for a more
appropriate comparison. The first column shows range-Doppler map, and the second
column shows all three moments computed over the range axis: [0.229; 14.971] km. In-
put parameters value are the same depicted in Table 4.6.

For this study, we focus on both the qualitative, first column and quantitative, sec-
ond column results. Qualitative differences between rMMSE and FR method can be ex-
plained based on previous results. For instance, in Figure 4.7, Panel(c), around 10 km
range, we can notice some important differences, which are expressed, from a quantita-
tive point of view, in Panel(d), where total power estimation for cMMSE, red line, is about
5 dB lower than FR estimation, blue line. This phenomenon can be explained based on
Figure 4.6, Panel(b), which is obtained for the same approximate range value of 10 km. In
Panel(b) within interval 17° to 18° elevation we notice that sidelobes are suppressed by
about 2 dB. Even if this is a small improvement in elevation-Doppler domain, for range-
Doppler domain represent 5 dB.

Another advantage of sidelobes suppression using rMMSE, can be noticed for the
first row of Figure 4.7, Panel(a), within range interval 11 to 14 [km], from 0 to 5 [m/s],
where we can notice two different clusters for FR, but only one for cMMSE, as result of
sidelobes suppression. From a quantitative point of view, this result can be noticed in
Panel(b), for both M; and M,, where in the mentioned interval for range [km], we notice
that M, for FR is closer to zero than estimated one by cMMSE. In terms of M, the result
for cMMSE is narrower in that range interval, than is for FR, with a difference of about
0.4 [m/s].
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Figure 4.7: Example of range-Doppler 2D image plot when weather target is present. ¢ = 35°

To conclude, in this subsection we analyzed the magnitude of differences between
cMMSE and FR, when studied in range-Doppler map. We noticed that small estimation
accuracy differences observed in the elevation-Doppler map, provides much larger dif-
ferences in the range-Doppler map, where the most significant one is to avoid bimodal-
ity, this is the presence of two separated Doppler spectra distributions, with different
mean Doppler velocities, which has as effect broader spectral width and biased mean
Doppler velocity, which is estimated somewhere between distributions. For the obser-
vation we tried to relate both domains, elevation-Doppler and range-Doppler, which
provides a stronger basis to our explanations.

4.5. CONCLUSIONS

In this chapter rMMSE beamforming algorithm performances for estimation accuracy
of precipitation, profiles were studied. Analytical expressions were derived for the signal
model, conditions that beamforming works, and for the most well-known receivers ZE
Wiener, and ME Three different beamforming methods were studied: Fourier, Capon,
and rMMSE, and their mathematical expressions were derived, too. IMMSE technique
was explained based on Wiener receiver and Capon beamforming. An algorithm work-
flow for ’IMMSE was introduced. A numerical simulation was performed for all three
studied methods. Based on qualitative and quantitative results IMMSE showed the best
performances among other beamforming methods concerning performance criteria set
for high estimation accuracy of precipitation profiles, 1) sidelobes suppression, 2) ac-
curate estimation of amplitude and phase information, and 3) robustness to a limited
number of Doppler pulses. Conclusions about the stability of rMMSE when noise vari-
ance is underestimated, respectively overestimated are drawn, when the range interval
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of errors for noise variance estimation is from —10[d B] to 10[d B].

Real data simulations were studied for the performances of each criterion mentioned
above. Moreover, a study for the possibility to suppress high power reflectivity as an ef-
fect of receiver’s saturation was carried out, assuming that for high elevations are present
only sidelobes level of this effect. This study proved that this is not true and that this ef-
fect occurs for all elevation angles with about the same power level. However, for the
suppression of sidelobes level due to the ground targets, rMMSE was compared with
FR and showed higher performances, especially for Doppler weather spectra, where we
concluded that using rMMSE, the presence of false weather targets due to the effect of
sidelobes level can be avoided. This result brings high improvements for the estimation
accuracy of precipitation profiles.
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TARGET MASK FOR ESTIMATION
ACCURACY GAIN OF PRECIPITATION
PROFILES

An adaptive approach to compute target mask is developed in this chapter based upon
morphological filtering techniques, to improve the estimation accuracy for precipitation
profiles (total power reflectivity, mean Doppler velocity, and Doppler spectral width). A
target mask is a 2D binary image where ones and zeros represent if the target is present or
absent at (x,y) coordinates of the pixel. For this, a detection test is employed where test
statistics and a threshold are necessary. In our case, we propose a simple solution where
the power of spectral components is compared with a priori estimated noise power profile,
while the trade-off between false alarms and sensitivity, triggered by the threshold value,
is solved using morphological filtering operations. This family of filters uses set theory and
provides two mechanisms known as erosion and dilation that work based on a small set,
called structural element (SE). Employing these mechanism image objects can shrink or
extend up to area values dependent on the SE dimension. If we consider that weather tar-
gets and false alarms are set of pixels in an image, which can create image objects, then
we assume that weather objects are larger than false alarm objects, for white noise. Hence,
the latter objects can be eliminated with the right choice for the SE dimension. Thereby, in
this chapter, we propose an adaptive algorithm for the SE dimension, tuned to the criteria
of the minimum false alarm error and the highest estimation accuracy for precipitation
profiles. Herein we call this Adaptive Morphological Filtering (AMF) algorithm. Bene-
fits of this algorithm include robustness to elevated noise-floor level up to 10 dB from the
threshold value, as can occur for saturation phenomenon, control of details for weather
target edges while maintaining high estimation accuracy of precipitation profiles, and the
possibility to suppress the effects of sidelobes when their level is comparable with threshold
level. From an implementation perspective, AMF is an iterative algorithm that compares
the squared difference of each two successive RMSE values with an experimentally verified
threshold. This method proves stability in terms of estimation accuracy, for a large range
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of SNR values from 10 to 40 dB and for a large range of false alarm rates for about 100% to
0%.

5.1. INTRODUCTION

ENERATING a 2D target mask means detecting for each pixel whether a target is
G present or not. For weather applications a correct detection of target objects de-
termines a higher estimation accuracy of Doppler spectrum moments: total power re-
flectivity, mean Doppler velocity, and spectral width. This implies that processed results
are more reliable and easier to explain the weather phenomenon that is going on while
radar is scanning the sky. Because of the similar statistics between noise and weather
targets, the decision process becomes more complicated. Thus, in this project, we con-
sider that any value above the noise floor is a target, either point or extended target. This
is

Hy:(Sg+N)<N-Th (56.1)
Hy:(Sx+N)>=N-Th, (5.2)

where S is frequency-dependent signal power density, N is white noise power per dis-
crete frequency, and Th is threshold value. H) represent alternative hypothesis, that tar-
get is present and Hy is null hypothesis that target is absent. Henceforth, the binary
image obtained after detection is called raw binary image.

For the estimation of floor noise level, we propose to use noise data, this is data
recorded with the transmitter off and to estimate averaged noise power profiles out of
it. In Chapter 3 we verified that this noise power profile is an accurate estimate of noise
floor level. However, this simple method raises a trade-off between false alarms and the
sensitivity of weather targets. The smaller the threshold the higher the sensitivity but
also false-alarms-errors, and vice versa. In this chapter, an adaptive algorithm based on
morphological operations is proposed. This algorithm is supposed to compensate for
the dynamic values of false alarm rate in order to clean the Doppler map image out of
false alarm errors and to estimate, with high accuracy, precipitation profiles (weather
object). This family of filters uses mathematical set theory, where image objects are con-
sidered a set of points in Z? for binary image characterized by (x, y) coordinates. With
a small set, called structural element (SE) and two main operations, objects from the
image can shrink or extend. SE can be defined in terms of shape and dimension, and
morphological operations are erosion and dilation. For instance, an object smaller than
SE can be eliminated by employing an erosion operation. Assuming that atmospheric
objects are much larger than false alarm objects, we can use this technique for the de-
tection of weather objects with a low false alarm error. Because false alarm objects di-
mension is varying we estimate it by trying a range of SE dimensions. When the right
dimension has been found, the iterative algorithm stops. This is an adaptive algorithm
and we call it here Adaptive Morphological Filtering (AMF).

Thereby, in this chapter, we develop an iterative adaptive algorithm to find the di-
mension of SE that for opening and dilation morphological operations can the false
alarm errors, while weather target is prevented from filtering and the pixels at the edges
are restored. For this, we develop a hypothesis test and find an experimental threshold



5.1. INTRODUCTION 53

value. Hence, the hypothesis test is the square of the difference between successive Root
Mean Square Error (RMSE) parameters values, where RMSE is computed between an es-
timated probability density function and a U-quadratic function, which is a general well
known probability distribution function. The former is estimated based on pixels den-
sities computed in a fixed-size sliding window, this is the total number of pixels of one
divided by the area of the window, where values are between 0 and 1. Hypothesis testing
function:

H; : (RMSE(i) — RMSE(i — 1))?> <= thamF (5.3)
Hy: (RMSE(i) - RMSE(i — 1)) > thamr, (5.4)

where iis the i*" iteration, and thyr, represent experimentally found threshold value.
H, represent alternative hypothesis, when the rate of false alarm converges to zero, and
Hy is null hypothesis when there are false alarm points present in the image. U-quadratic
density function is defined by f(x):

fx)=alx-p),
we 12
-3
b+a

B= 5

where interval [a, b] is the same as interval for pixels densities, [0, 1].

This chapter is organized as follows. Section 2 contains four subsections wherein
first introduces the theory for operations used in morphological filtering, erosion, di-
lation but also opening and closing, followed by the second subsection that introduces
the literature review to motivate the novelty and sources of inspiration. The third one
continues with a brief explanation of the mathematical framework meant to describe
morphological operations used in our algorithm, based on the same approach described
in [1]. The last subsection includes explanations of the choice for hypothesis test func-
tion, supported by simulated results. Moreover, we propose a threshold value and some
algorithm settings based on experimental results. Section 3 is made of two subsections
and introduces simulator parameters and estimation errors for precipitation profiles due
to the presence of noise. Section 4 introduces the performances of the proposed algo-
rithm in terms of estimation accuracy, wherein first subsection performances are tested
for the ideal case when moments’ ground truth values are known, while in the second
subsection performances are analyzed for the AMF algorithm. Section 5 introduces re-
sults of AMF performances for MAX3D radar data, wherein two cases are analyzed when
the threshold is 0 dB, 10 dB respectively. Moreover, an iterative algorithm to solve the
Doppler aliasing phenomenon is proposed and tested based on real data simulation.
This chapter ends up with a Conclusions section.
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5.2. METHODOLOGY

5.2.1. MORPHOLOGICAL IMAGE PROCESSING

The name for this family of filters denotes a branch of biology that deals with the form
and structure of animals and plants, [2]. The same word is used here for mathematical
morphology as a tool for extracting specific objects from the image that we are interested
in, for instance, whether target. This filter uses set theory and provides two mechanismes,
known as erosion and dilation, that are used to shrink and expand respectively, the ob-
jects within an image. Image objects represent a set in mathematical morphology. In
binary images, a set belongs to 2D integer space, Z2, where each element of the set rep-
resents (x, y) coordinates of a pixel in the image. Before introducing erosion and dilation
operations, we explain first the concept of set reflection and translation. The reflection
of a set B, is defined as, [2]:

B={w|lw=-b,forbe B}, (5.5)

which means that if B is the set of pixels representing an object in an image, whose co-
ordinates are (x, ), then B is the set of pixels with coordinates (- x, —y).
Translation of a set B, by point z = (z1, z2), denoted (B) , is defined as, [2]:

(B);={clc=b+z forbe B}, (5.6)

which means that if B is the set of pixels representing an object in an image, whose co-
ordinates are (x, y), then for (B), they are replaced by (x + z;, y + z2).

Set reflection and translation are used to describe the erosion and dilation operation
that uses structural elements (SEs): small set used to probe the image of interest, that
can have different shapes: square, line, diamond, circle, random, etc., and different di-
mension. One rule for SE is that it requires to be rectangular arrays, this means to add a
minimum number of background elements, i.e. zero pixels. Let us consider A, the raw
binary image.

EROSION
With A and B as sets in Z2, the erosion of A by B, denoted A e B, is defined as

AeB={z|(B);c A}, (6.7

where set A represents a binary image as a result of the detection process and B the SE.
This equation means that the set of all points z is the result of set B contained by set
A at positions z. In other words, if B is larger than an object present in image A, then
that object is cleaned out, otherwise, if B is smaller, then only the contour of that object
is affected, and as results object shrinks. If holes are present in object A, then they are
enlarged after erosion.

DILATION
With A and B sets in Z?, the dilation of A by B denoted A @ B, is defined as

A®B=1{z|(B);nA# ¢} (5.8)
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Hence, the dilation of A by B is the set of all points z such that B reflected about its
origin and translated over A by z, intersect with A in at least one single point. This means
that the object’s contour is extended and object holes are filled if the SE dimension is
larger than the hole.

OPENING AND CLOSING

Opening and closing are two other morphological operations, where both consist in a
combination of erosion and dilation, but in a different sequence. Opening is a combina-
tion of erosion followed by dilation which in general smoothens the contour of objects,
breaks narrow holes, and fills thin ones. Closing also smoothes the contour of objects,
but different than the opening, it tends to fill small holes and gaps in contour, [2].

5.2.2. LITERATURE REVIEW AND NOVELTY

Morphological filtering method proves to provide promising results for different approaches

enumerated here as, adaptive scenario for weather applications, [3], optimal scenario for
medical imaging applications, [4], and iterative detection scenario, [1]. The last article
provides a comprehensive derivation for the mathematical framework for error correc-
tion using morphological filtering. Here, the set of false alarms and missed detection are
separated sets that have to be estimated individually, such that the set of the true image
can be estimated by using morphological operation. Based on this, the choice of opera-
tions (opening followed by dilation) and the dimension of SE are strongly motivated.

On the one hand, in [4], authors use CNR (Contrast to Noise Ratio) to find the optimal
size of the SE, while in [1] this is done using a priori knowledge regarding the statistics
of the target and noise, which is more convenient for the radar data type. Regarding, [3]
they use a sliding fixed-size window to estimate the density of pixels of one at each posi-
tion of this window and based on the value of density they apply either dilation, for tar-
get, or erosion for noise, which provides an adaptive algorithm kind, while their choice
for SE’s size is fixed. Our method combines the mathematical framework provided in [1]
and adaptive mechanism for the choice of the best dimension of SE, wherein in their case
they can find the optimal dimension since they have a priori knowledge about probabil-
ity density function of noise and target. Because in our case non-parametric density and
U-quadratic density are not perfectly matching we use as metric squared of the differ-
ence between each successive RMSE value, computed between these two density func-
tions. When the number of false alarms converges to zero, this difference converges to
zero as well. Thus, we use a small threshold value, that in the last subsection of this sec-
tion we experimentally demonstrated that 0.001 (ARMSE) is a good approximation of
this threshold. The choice for space of density of pixels of one per fixed-size window to
compute parametric density function and the choice of U-quadratic density function as
parametric function represents the novelty for our method.

5.2.3. MATHEMATICAL FRAMEWORK FOR MORPHOLOGICAL OPERATIONS

Raw binary image is the result after detection process: {0; 1}, performed for each instan-
taneous power of the signal plus noise: P,(Ci) = (Sg) + N%), in which the signal, S;Ci) is
frequency dependent and noise is white. Notations for k and i represent k‘" Doppler
frequency and i’" range bin. For noise we consider that noise power is range depen-
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dent, but constant over frequency spectra. Thus, detection process can be formulated
as:

Ho: (SY+ Ny < N®.Th, (5.9)
Hy: (8P +ND)y>=N®.Th, (5.10)

where H; represents alternative hypothesis, that target is present and Hy is null hypoth-
esis that target is absent.

If the process to obtain raw binary image has been defined, next the mathematical
morphology can be introduced. For this binary image is considered as a set of points,
characterized by (x, y) coordinates. Thereby, range binary image is denoted henceforth
with B€ and target mask by B . Binary image which contains the set of points that cor-
responds with weather target only is denoted with B and sets that contain false alarm
points and miss detection ones are denoted by, B4 and B ;p, respectively. This can be
mathematically expressed as follows,[1]:

B =B+Brs-Buyp (5.11)

In order to estimate B, we are using the morphological erosion and dilation opera-
tions Be E and B&E, respectively, where E in this case is the SE. In order to eliminate Bg 4
an opening operation is performed, this is defined as: (B e E) & E, erosion followed by
dilation. In order to add Bjp a dilation is employed. The reason for choice of an open-
ing operation is that erosion operation eliminates false alarm objects, and dilation fills
back gaps created by erosion and smoothes target’s contour. Mathematical expression
for this is the following:

éZBC—éFA+1§MD. (5.12)

We denote by Er4 the SE that eliminates false alarms and by Ej;p, the SE used to cor-
rect missed detection errors. Operations used for each SE are expressed in next equations,[1]:

BCoEpys= (B ©Eps) ®Epy (5.13)
~B°-Bp, (5.14)
(B —~Bpy)®Eyp~B=8 (5.15)

For the sake of using morphology and to describe the characteristics of SE dimen-
sion, the set of false alarms points, Br4 and the set of target objects, B can be described
as sum of image objects:

N .
Bpa=) 0%, (5.16)
i=1

N .
B=) Oy (5.17)
i=1
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Thus, the number of false alarms points gathered in the same close area make an
object image. Same for the case of weather objects. Using this insight and Eq. 5.13,
and Eq. 5.16 the rule for the SE dimension when erosion operation is employed, can be
determined. The effect for this rule has to clean all the false alarms object, but prevent
filtering of weather object. Hence, based on properties of erosion, SE dimension has to
be larger than the largest false alarm object, and smaller than the smallest weather ob-
ject. Using this result, our assumption that morphological operations can be employed
for the detection of weather targets is mathematically proven, based on the set theory
and characteristics of erosion operation. In [1] dimension of Ey;p is considered fixed
and is 1. The authors considered that is sufficient to encompass the target pixels located
at the edges of the object. However, in our case, we observed that one single pixel is not
enough to accurately estimate the correct values of the edges of the target object. There-
fore, in the second subsection of Section 4, a discussion is carried out for the choice of
the best solution. Based on that result, for our algorithm we propose that Ey;p to be
adaptive and Epp = Epa.

5.2.4. ITERATIVE ALGORITHM SETUP

The iterative algorithm for AMF has been initialized for SE dimension equal to one and
the raw binary image, obtained after target detection operation. For every new iteration,
the SE dimension is incremented by one and the target mask is computed using the new
incremented value of SE. The iterative algorithm stops when the alternative hypothesis,
H, is true. Hypothesis testing function is:

Hy: (RMSE(i) — RMSE(i — 1)) <= thamr (5.18)
Hp: (RMSE(i) — RMSE(i —1))* > thamr, (5.19)

where iis the i iteration, and thpr, represent experimentally found threshold value.
H, represent alternative hypothesis, when SE dimension is larger or equal with the largest
false alarm object and Hy is null hypothesis when SE dimension is smaller than the
largest false alarm object.

As already mentioned in introduction, RMSE is computed between estimated den-
sity function using pixels density values and U-quadratic density function, Figure 5.1,
Panel(b) and (d), blue line colour for the former and orange line colour for the latter.
Panel(b) shows an example after the second iteration and Panel(d) after the fifth itera-
tion when false alarm error starts to converges to zero. For the estimate of the probability
density function, we use a Kernel estimator, with Gaussian kernel and adaptive width.

Based on results shown in Panel(b) and (d) we notice that when false alarms objects
are cleaned values at the center of the estimated probability density function approaches
zero. If the SE dimension increases more than the value necessary to reduce false alarm
error to zero, this interval of (0.4, 0.6) stays constant, and only the amplitude of the edges
changes slowly which provides a small difference between successive RMSE values. This
result is shown in Figure 5.1 Panel(e), depicted for dimension of SE larger than four.

Pseudo-code for the iterative algorithm is introduced in the following lines:
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Figure 5.1: Examples of raw binary image and target mask, Panel(a) and (c), respectively and estimated
distribution function for pixels density that correspond with each image, Panel(b) and (d). This density is
depicted with blue line color, and probability density function with orange line color is U-quadratic function.
Panel(e) shows squared difference between RM. SE@ and RMSE"~D values:

ARMSEY = (RMSE®W - RMSEU~1)2 where RMSE" is computed between estimated density function and

U-quadratic function at each value of di mg% Panel(e) shows ARMSE (i), where i = [1,10]. Results computed
for SNR = 20 dB and threshold = 0 dB, where for Panel (f), theshold = -10 dB. Panel (f) shows overshooting

event.

INITIALIZATION
1. Threshold variable for minimum false alarm error initiated by £4p/r = 0.001
2. Overshooting variable initiated by zero, u(0) = 0;
3. Admitted overshooting times variable initiated by three, counter = 3;

4. Raw Binary Image (RWB) is computed based on detection process described in
Eq.5.9;

5. Algorithm is initialized for SE dimension equal one, di mg =1
WHILE LOOP

6. Opening and dilation operations are applied over RWB using di mgfg,
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7. Pixels density, 6 is computed for the minimum possible window, in our case
Wilgjze =2 %2;

8. RMSE? = \/1 ¥ .(fo(0) - fiy(x))? is computed

9. ifi>1, then ARMSE® = (RMSE(i) - RMSE(i — 1))?

(a) if H{i) true and H{i_l) true as well
Lu@=ul@-1+1;
ii. if u(i) > counter,

A. Return dimé‘%’m = dimfs?F —(counter —1);
BREAK
iii. else
iv. u(i)=0

10. i=i+1

11. dim{) =dim{; " +1

Figure 5.1, Panel(f) shows an overshooting example, where the event happens two
times before converging to zero. This result is obtained for a false alarm rate of about
100%. Thus, this overshooting condition, shown in the pseudo-code algorithm is meant
to avoid this special event. In our case, we use counter = 3, which means that the algo-
rithm breaks only in the case when more than three consecutive values are smaller than
thaMF.

Parameters settings for simulation results provided in Figure 5.1 are provided in Table
5.1. For simplicity, henceforth false alarm rate is quantified by threshold value used for
detection of target, denoted Th. Hence, Th = —10d B means false alarm rate of about
100% and Th = +10d B means false alarm rate of about 0%. Th = —10d B represent the
event when noise floor has higher power than a priori noise power profile, as can occur
for saturation phenomenon.

Parameter Value
SNR 20dB
thapmr 0.001
Th 0dB and -10 dB
counter 3

Table 5.1: Parameters settings for simulation results shown in Figure 5.1. Description of SNR formula is
provided in Eq. 5.20, thgpsF represent threshold value to stop the iterative process and is compared with a
square difference of two successive RMSE values, ARMSE D p represent threshold value for target
detection, and apart Panel(f), where Th = 10 dB, rest of the results are obtained for Th =0 dB. Th =-10 dB is
used to characterize false alarm rate of about 100%.

In order to demonstrate performances for the choice of initialization variable thapr =
0.001 and counter = 3, Table 5.2 shows ground truth values of SE dimension for each
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moment compared with estimated ones, when false alarm rate varies within interval
(100%, 0%), that is Th = —10,0,+10 dB. Moreover, this experiment is performed for
seven discrete values of SNR, within interval [10,40] dB with a step of 5 dB.

Th=-10dB Th=0dB Th=10dB
SNR [dB] | SEaim(MO) | SEgim(M1) | SEqim(M2) | SEgim | SEaim(MO) | SEaim(M1) | SEgim(M2) | SEaim | SEaim(MO) | SEagim(M1) | SEaim(M2) | SEaim
10 11 11 11 9 3 3 4 4 1 1 1 2
15 12 11 12 9 3 3 4 4 1 1 1 2
20 12 11 12 10 4 3 4 4 1 1 1 2
25 12 11 11 10 4 3 4 4 1 1 1 2
30 11 10 13 10 4 3 4 4 1 1 1 2
35 11 11 12 9 4 3 4 4 1 1 1 2
40 12 12 12 8 4 3 4 4 1 1 1 2

Table 5.2: AMF performances as comparison between estimated dimension of SE, SE4;,,, and ground truth
one computed for each Doppler moment: SE;,,(MO0), SE;,,,(M1) and SE;;,,(M2). Performance analysis is
carried out for different SNR values, SNR = [10, 40] dB, with a step of 5 dB, and different threshold values,
Th=-10,0,10dB.

Ground truth values for SE dimension are obtained here employing RMSE for the val-
ues of each moment, when dimgg = [1,15], with step one. Index position of minimum
RMSE value indicates ground truth for SE dimension. Here is important to mention that
for 2D areas where an object is missing, moments values are initialized by zero. This rule
applies only to this simulation, otherwise for the rest of the chapter values are initialized
with a number in Matlab wich is NaN (Not a Number).

Based on the results shown in Table 5.2, we notice that AMF performance for estima-
tion of SE dimension is independent of SNR, but is dependent on the threshold value.
The highest error of estimation for SE dimension is of 4, for Th = —10dB and SNR = 40
dB. Note that for our algorithm, estimation criteria for dimgE estimation is computed as
a function of the error of false alarm within the image, which provides one scalar value
of dimgg for all three moments.

5.3. NUMERICAL SIMULATION

This section introduces background information about simulator and developed met-
rics, estimation error and estimation accuracy used to characterize following results.

5.3.1. SIMULATOR PARAMETERS

For numerical simulation we use Weather Radar Signal Simulator developed in chapter
3. For this four input vector variable are of interest: My, M;, M» and noise variance
profile.

First, My array is generated as a Gaussian shape, for what we have to specify SNR, the
position of maximum power, this is with respect to range axis, and width of the weather
target along the range axis. The SNR in this case provides the maximum power, this is
max(Mp), and has the following definition:

M
snR = 1ax o) (5.20)
U'n(kmax)

where 02 (k;,4x) Tepresents noise variance at the k*” range bin that corresponds with
max(Mp). Hence, for a given SNR value and a priori averaged noise power profile, we
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first obtain max(Mp). Output result for My is shown in Fig. 5.2(b). Input parameter
values used to generate max(Mp) are shown in Table 5.3. For SNR = 30 dB results that
max(Mp) =28.23 dB.

Parameter | Value

Hrange 7 km
O M, 0.5 km
SNR 30dB

02 (kmax) | -1.768 dB

Table 5.3: Input values used to simulate vector My
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Figure 5.2: Example of simulator components, used to analyse performances of target mask method.
Range-Doppler map, Panel(c) is generated based on input My array, Panel(b), My and My, where similar
trends are shown in Fig. 3.1, but for different values, and range profile of noise power, Panel(a). In Panel(d) is
shown a range profile for 0 m/s Doppler cut, for both additive noise and noise-free Doppler spectra, with blue
line colour and red line colour respectively.

Second, M; and M, are necessary in order to generate 2D range-Doppler map. Hence,
for M) we consider that maximum unambiguous velocity, v,y = 7.39m/s, has the same
value as the one derived from parameters of the radar. In this simulation M; follows a
monotonically increasing trend with respect to range axis, within interval [—6.89, 6.89]
m/s. For M, we consider it fixed for all range bins, M> = 1m/s. Number of range bins
used for this simulation is 6592.

Thus, Figure 5.2(c) shows the 2D range-Doppler map with additive noise. Note that
the power of noise is increasing proportionally with range value, as it is shown in Fig.5.2(a).
Figure 5.2(d) shows the range profile for Doppler cut 0 [m/s], where both noise and
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noise-free profiles are included, with a blue color line and the red color line, respectively.
Moreover, a priori noise power profile is included with a yellow color line.

Ground truth for this chapter is computed for noise-free Doppler spectra. However,
for this, we have to compute the target mask as well. In this case threshold value is zero
and morphological operations imply a simple dilation with dimgE = 2 x 2 square shape,
to solve missed detection errors. The reason why the threshold value is zero, in this case,
is because we are interested in all targets above the noise floor level. Range Doppler map
for ground truth is shown in Figure 5.3.

5.3.2. ESTIMATION ERRORS AS EFFECT OF ADDITIVE NOISE

To calculate the importance of the target mask we have to introduce two metrics. The
first one is estimation errors and is directly related to the errors between estimated mo-
ments and ground truth moments values, and the second one is estimation accuracy
and represents averaged difference between estimation errors. The latter is used to de-
termine, for instance, improvement of moments estimation accuracy before and after
target mask. Mathematical formulation and interpretation of these metrics are intro-
duced in the following lines.

A. ESTIMATION ERRORS
Estimation errorsrepresent the error between estimated moments and ground truth mo-
ments. This is computed as follows:

e; = logio\/ (M, — M;)? (5.21)

where vector e; represent the error for each moment, i = 0,1,2. Vector M,-gt represent
ground truth moment values and vector M; represents estimated moment values.

This unit is represented on a logarithmic scale. Hence, if the error is zero this value
converges to —oo. Some references are provided in order to understand these results
shown on a logarithmic scale:

1. Zero error means that there is a difference of one decimal between estimated and
ground-truth moments values;

2. Unity error means that there is a difference of tens decimals;

3. For error below zero, any error increasing with one negative unit means tenths,
hundredths, etc.;

4. For error converging to —oo means zero error at all.

B. ESTIMATION ACCURACY
Estimation accuracy represent averaged difference between relative estimation errors, e;
and estimation errors, €;. This is defined as follows:

e;—e;
N

, where N is the number of elements for the range profile. In our case, e; is defined
as estimation errors between moments estimated before target mask and ground truth

en, = (5.22)
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moments. The reason why this difference is not represented in absolute values is that
both e; and €; are in logarithmic scale.

Some references are provided as well in order to understand the meaning of this met-
ric:

1. Zero estimation accuracy means that applied target mask does not improve esti-
mation errors;

2. Positive infinite value means that &; = —inf which means zero estimation errors;

3. Positive unity estimation accuracy means that estimation errors were improved in
average by one decimal;

4. Negative unity estimation accuracy means that estimation errors are worse after
the target mask has been applied than before.

After introduction of estimation error metric, a study is carried out based on compar-
ison between raw estimated moments and ground truth moments. Figure 5.3, Panel(d)
shows quantitative result of estimation errors for two SNR values, thatis SNR = 20;30 dB.
Dashed lines are for SNR = 30 dB, and pointed lines are for SNR = 20 dB, where estimation
errors for My, M; and M, are depicted with black, blue and red color line, respectively.
Figure 5.3, Panel(b) shows raw and ground truth moments results for SNR = 30 dB, blue
color line and orange color line, respectively.

Hence, based on results shown in Panel(d) we first remark that estimation errors are
inversely proportional with the SNR, with fewer errors for high SNR values. First, we an-
alyze estimation errors at the edges of the target. For SNR = 30 dB results, we notice that
the most relevant errors, above -1, are for intervals: [5.2;5.6] km, and [8.3;8.7] km. For
this, estimation errors intervals are [-1; —0.4][log;o] for M; and M, and [-0.2;0][log10]
for My. In other words, this means that we have errors of tenths (—1[/og1¢]) to ones
(0[logi0]) for all three moments. Using Panel(b) and Panel(c) results, the width profile of
the target is getting broader at the edges for the results presented for raw data, than for
ground truth data.

Second, we notice that errors for M; and M, converge to zero for the peak, but for M,
increases up to 0.6[/og10], which means almost by ten times. Therefore, based on these
results we conclude that for M; and M>, the most relevant errors happen at the edges
perpendicular with 0 [m/s] Doppler line, where for My are increasing for the edges par-
allel with 0 [m/s] Doppler line and. We consider that these results motivate the necessity
of a target mask algorithm.

5.4. ALGORITHM PERFORMANCES

This section includes two main subjects. First, that there is one single value for dimgg
that provides maximum estimation accuracy, and second, what are the maximum values
of estimation accuracy for different rates of false alarm. Input parameters for simulation
results are the same as those introduced in the previous section.
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Figure 5.3: Simulation of moments estimation error for two SNR values, that is SNR = 20;30 dB, shown in
Panel(d). Dashed lines are for SNR = 30 dB, and pointed lines are for SNR = 20 dB, where estimation errors for
My, M7 and M, are depicted with black, blue and red color line, respectively. Panel(b) shows raw moments
values, blue color line and ground truth moments, orange color line. Panel(c) is the smoothed version of the
range profile cut at 0 m/s Doppler velocity. Panel(a) shows the 2D range-Doppler map for ground truth after
the target mask is applied.

5.4.1. NUMERICAL SIMULATION
Figure 5.4 shows simulated results when ground truth for moments values is available.
For a visual understanding of the meaning of estimation accuracy, e, Panel(b) shows
an example of estimation error computed for the raw moments, called here Before target
mask, and for the moments estimated using the proposed approach, called here After
target mask, where the dimension of SE for this case, is selected to provide maximum
accuracy. We notice that indeed estimation accuracy is about 1 for all three moments.
As stated at the beginning of this section, Panel(a) shows that indeed exists a unique
value of dimgg that provides the maximum accuracy, and that this is different for each
moment: 1.1[log1o] for My and M; and 2[logo] for M. For this result, the threshold
value used for target detection operation varies from - 10 dB to 10 dB with a step of 1 dB,
while dimgg is fixed. Estimation accuracy, e, is computed based on estimation error
values. For the latter, we used ground truth moments values presented in the previous
section. For a more general overview of the span of accuracy values, Panel(c) shows
maximum accuracy values computed for different SE dimensions: [1,10], with a step
of one. Mean and standard deviation for e, values depicted in Panel(c) are shown in
Table 5.4. We remark that for the right value of dimgg estimation accuracy stays almost
constant when threshold values are varying.

In Panel(c) red numbers show the threshold value [dB], which corresponds with the
SE dimension located at the maximum accuracy. Note that (dimgg(i), Th(i)) pairs are
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Figure 5.4: Maximum estimation accuracy results when the rate of false alarm is varying for fixed SE
dimension values. In Panel(a) this experiment is carried out for one single value of dimgg, while in Panel(c)
for dimgg = [1,10], with step of one. Panel(a) represent estimation accuracy values versus threshold for each
Doppler moment: My, M; and M>: blue line color, red line color and green line color, respectively. Red
numbers represented on each subplot represent threshold value where maximum e 4 value is estimated for
fixed SE dimension. Panel(b) shows an example of two different estimation error results, before and after
target mask, black color line, and the red color line, respectively.

My | My | My
ullogiol | 1.02 | 1.18 | 2.04
ollogip] | 0.10 | 0.06 | 0.01

Table 5.4: Mean and standard deviation for maximum estimation accuracy obtained for a range interval of
threshold values from -10 dB to 10 dB.

not the same for all three moments, for this experiment, where the criteria are maxi-
mum e 4. This strengthens the conclusion that the criterion for the estimation of the SE
dimension has to be related to each moment. Hence, estimation accuracy has improved
by about tens for My, and ones for M; and M». Moreover, the proposed algorithm shows
constant accuracy gain for a large range of false alarm rates from about 100% to 0%.
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5.4.2. PERFORMANCES USING ADAPTIVE ALGORITHM

For this subsection, we compute estimation accuracy based on dimgg values estimated
with the AMF algorithm. For this, we are interested in accuracy gain when one single SE
is estimated for all three moments.

This study is carried out for SNR = 30 dB, when Th varies from -10 dB to 10 dB, with a
step of one for two different scenarios, Figure 5.5 : SE dimension for dilation operation is
1) fixed square shape, Ej/p = 2x2, Panel(a) and 2) adaptive and equal with SE dimension
for opening operation Ey;p = Epa, Panel(b). Scenario with best results is obtain based
on a comparison matrix in terms of estimation accuracy, Table 5.5. In the end, a general
experiment is performed for SNR varying from 10 dB to 40 dB, with a step of 5 dB, while
threshold varies in the same range mentioned before, for each SNR value. Thus, mean
and standard deviation that correspond with estimation accuracies for each SNR value
are computed, Figure 5.5 Panel(c).

Figure 5.5, Panel (a) and (b) shows estimation accuracies versus threshold, for SNR =
30 dB, when dimgg is estimated using AME In Table 5.5 a comparison matrix is depicted
for scenarios mentioned above, in order to decide what solution is better for our case. For
this, we consider estimation accuracy values in only three points of threshold value: -2,
0 and 2 dB. This range is considered large enough since a priori noise power match with
a posteriori noise floor for real data. In Table 5.5 are depicted estimation accuracy values
for each moment and each study case, for all three values mentioned for threshold.

eallogiol
My | My | Mi | My | Mo | M,
Elp | Biup | Bl | B | Eyyp | B
-2 0.98 0.84 1 1.22 2 1.88
0 1.02 | 0.96 | 0.92 1.1 1.95 | 2.15
2 1.02 1 0.7 0.9 1.8 1.88

Th [dB]

Table 5.5: Comparison matrix for estimation accuracy between case when SE dimension for dilation
operation is fixed square shape, Ep;p = 2 x 2 and adaptive and equal with SE dimension for opening
operation Ep;p = Erp4. Values are extracted from Figure and depicted for each moment and for each case

f a .
where Ey ) represent fixed case and Ej;, adaptive case.

To select one of the cases we compare values between them for each moment. We
find that the fixed SE dimension case is better with a score of four and the adaptive SE
dimension with a score of five. Hence, we consider that for Ey;p adaptive and equal with
Er4 we obtain better results than in case when Ejsp fixed and equal with a = 2 x 2 square
shape.

Next, we analyze mean and standard deviation for estimation accuracy when SE di-
mension is adaptive and estimated using proposed algorithm, AME Figure 5.5, Panel(c)
shows mean and standard deviation of estimation accuracy versus SNR = [0, 40] dB,
blue line colour and red line colour, respectively, for each moment. Based on this we
observe that mean for M) is almost constant and around 0.9 [log1¢], where for M; and
M, is directly proportional with SNR, where the minimum value of averaged accuracy is
0.45 for M) and 1.25 for M, when SNR = 10 dB and maximum averaged accuracy is 1.1
for M; and 1.8 for M,. Based on standard deviation we can infer how much accuracy is
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Figure 5.5: Estimation accuracy gain after target mask computed with AME Results are shown for Th range
[-10,10] dB, with step one. Panel(a) and Panel(b) shows e 4 values for a study case performed for fixed and
adaptive, respectively dimension of SE in charge of dilation operation, Eysp, for SNR = 30 dB. Panel(c) shows
an overview of the mean and standard deviation of estimation accuracies computed at different SNR values:
[10,40] dB, with a step of 5 dB.
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varying for different threshold values. Hence, we notice some variation for M, from 0.4
to 0.1, and almost constant, around 0.2 and 0.3 for M; and M>, respectively. Compari-
son matrix of mean and standard deviation for estimation accuracy when SE dimension
is computed for maximum accuracy, Table 5.4 versus when SE dimension is estimated
using AME for SNR = 30 dB, is depicted in Table 5.6.

SNR =30dB
M, M, M,
Simulated | Using AMF | Simulated | Using AMF | Simulated | Using AMF
ullogiol 1.02 0.9 1.18 1 2.04 1.8
ollogiol 0.10 0.2 0.06 0.2 0.01 0.3

Table 5.6: Comparison matrix of mean and standard deviation for estimation accuracy when SE dimension is
computed for maximum accuracy using simulated ground truth versus when SE dimension is estimated
using AME for SNR =30 dB.

Based on results depicted in Table 5.6 we notice that the accuracies are comparable
for all three moments, with differences of 0.12 [logj], 0.18 [log10] and 0.23 [log] for
My, My and M, respectively. Regarding to the standard deviation values such differ-
ences are 0.1 [log1o], 0.14 [log1o] and 0.29 [logyo] for My, M; and M>, respectively.

Based on this study of the AMF performances on simulated data we can continue
studying its performances for MAX3D radar data. The next chapter includes results for
real data processing.

5.5. MAX3D DATA RESULTS

For this chapter we apply the proposed AMF algorithm on real data, recorded using the
MAX3D radar. For this, we use the same settings of AMF algorithm as we derived from
simulation: thapr = 0.001, wingiz. =2x2, counter =3 and hypothesis test criteria that
the first SE dimension for which ARMSE <= thayr is true, is selected for target mask
creation. For threshold value we study two cases, 1) Th = 0 dB, Figure 5.6, Panel(a) to
(d) and 2) Th =10 dB, Figure 5.6, Panel(e) and (f). In these figures two types of results
are shown: the range-Doppler map for the fixed elevation, and the elevation-Doppler
map for the fixed range. For each types in figures also are included the signal processing
results before target mask application, for comparison. Moreover, for Th = 0 dB case, we
plot moments for each of two results before and after target mask application, with blue
and orange line colours, respectively.

To obtain these results, the AMF is applied over one single radar cube: [elevation] x
[range] x [Doppler], and, as we mentioned in the previous chapter, a target masks are
created for range-Doppler maps at each elevation. To obtain this radar cube, we first
apply the rMMSE beamforming algorithm for raw data, and then we applied fast Fourier
Transform (FFT) over each vector along the slow time axis. In case of range-Doppler
map we opted for elevation and azimuth angles 8 = 12.5° and ¢ = 35°, respectively, and
for elevation-Doppler map we opted for range = 10.5 km and the same azimuth direction
¢ =35°, since they belongs to the same radar cube.

These results demonstrate the performances of the proposed algorithm when ap-
plied to real data. To analyze these results we are simply making a visual investigating.
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Firstly, we notice that indeed noise is clipped with a high performance of the trade-off
between the sensitivity level and the amount of false alarms errors. Based on a com-
parison between these two cases of 1) Th =0 dB and 2) Th = 10 dB, we notice that the
trade-off mentioned before can be controlled by adjusting the threshold Tk value. Thus,
for Th =10 dB, edges of weather target are strongly filtered out, which may cause a loss
of estimation accuracy much higher than e.g. 0.5[l/ogi0l, as we obtained for SNR = 30
dB, as results of difference between accuracy when Th =0 dB and Th = 10 dB. On the
other hand, a Th = 10 dB may help for sidelobes suppression. For instance, for Figure
5.6 Panel(f), if we consider that targets of about 20 dB and located above 10° elevation
are sidelobes, then for Th = 10 dB, we will clean more than 50% of them. However, to
claim that those targets are sidelobes, this has to be strongly demonstrated beforehand.

Regarding the interior of the object, we notice that for both 7/ = 0 dB and 10 dB, it
does not present the miss-detection errors.

For moment estimation, the biggest differences are noticed for M; and M, from 10
km to 15 km, where the spectral width of the weather target is smaller than half of the
spectrum length. Hence, the effect of noise becomes more important in this case for
estimation accuracy. For moments computed for the elevation-Doppler map, we notice
that the most important differences are above 11° up to 20° elevation, where for the same
reason as for the range-Doppler map, the noise effect is much stronger when weather
spectral width is smaller than half of the spectrum.

One last observation points out the Doppler aliasing phenomenon, which is visible
in the range-Doppler map from 8 km to 15 km range. Due to this effect, we notice mul-
tiple spikes in Panel (c) and (g) as well for M, results, if we consider that for weather
targets spectral width has to be up to 2 [m/s]. The reason for this assumption is that
Doppler spectrum distribution for a weather target is considered to have a Gaussian
shape. Based on the theory for the probability distribution function of Gaussian dis-
tribution, 20 contains 68.2% of the total energy. For our Doppler spectra, one standard
deviation, 10 = 1.08[m/s]. Since we compute spectral width as the first standard devia-
tion, 2 [m/s] spectral widths represent 74% of the spectra energy.

5.5.1. DOPPLER ALIASING CORRECTION ALGORITHM

For the last observation based on real data, Figure 5.6, Panel(a) and also Panel(e) show
Doppler aliasing effect. This is when target’s velocity exceed maximum unambiguous
velocity, |Vmax| = 7.39[m/s]. Because of this, same figure, Panel(c) and also Panel(g),
shows strong peaks for spectral width, M>, within range interval [9, 15][km]. These peaks
present abnormal values, since the maximum spectral width value for the weather target
has to be around 2 [m/s], and the reason for this has been described above. Therefore,
a Doppler Aliasing correction (DAc) is necessary. This is not a trivial problem for the
radar field, mainly because there are multiple unknown variables, like for instance if the
spectrum has to be shifted to the right, or the left. Another, more difficult problem is
the number of foldings that occurred. To make this decision, the proposed algorithm
considers the side of the spectrum that has the greatest “weight”. In other words, be-
cause the spectrum is discontinued after aliasing, the position of mean Doppler velocity
is estimated on the side where the power of the spectrum is considerable. Thus, for the
situation shown in Figure 5.6, Panel(a) we consider that spectrum was shifted to the left,




70 5. TARGET MASK FOR ESTIMATION ACCURACY GAIN OF PRECIPITATION PROFILES

Range-Doppler Before Noise Clipping  Range-Doppler After Noise cnppmg
Elevation: 12.5 deg 5 Elevation: 12.5 de

Elevation-Doppler Before Nouse Clipping

Elevation-Doppler After Noise Clipping

Range: 10 5722 [km!

L
Al ||” M
m‘n d M i

Range: 10.5722 [km]

5 i
E g s 208 g
g’ 5 §1s 5 5
g 2 ¥ g
5 K s 108 H
u:e Q
10

-

20

) 5 0
Velocity [m/s] Velocity [m/s]

5 0
Ve\acvly [m/s] Velocity (m/s]
(@ (b)

M1 M2 Mo M1
, Elevation: 12.5 deg o Elevation: 12.5 deg o5 Range: 10.5722 [km] Range: 10.5722 [km]

Mo
Elevation: 12.5 deg

M2
. Range: 10.5722 [km]

After Noise clipping Alter Noise clpping Afer Noise clpping —Afer Noise clipping

e * "N
‘ ° My af \

—fer Noise cliping —Afer Noise clipping

Power [d8]
Power [dB]
Doppler velocity [mis]

=
Doppler velocity [m/s]
i
Doppler velocity [m/s]
-
e
Doppler velocity [mis]

0 [ 15 \/\/
W |
10 5 0 2 1
() 5 w1 % s s % s 01 o 10 2 3 ‘o 0 20 3 o 10 20 3
Range [km] Range [km] Range [km] Elevation [deg] Elevation [deg] Elevation [deg]
() (d)

Range-Doppler Before Noise Cllpplng Range-Doppler After Noise cnppmg
Elevation: 12.5 deg Elevation: 12.5 deg

Elevation-Doppler Before Noise Clipping Elevation-Doppler After Noise Clipping
inge 1o 5722 [km] Range: 10.5722 [km]

9

50

40

30

Range [km]
Elevation [deg]
Power (48]

Elevation [deg]

II H
J" \H II\”“ ‘IHM

>

20

1 |
5

0 0 -5 0
Velocity [m/s] Velocity [m/s] Ve\uclly [m/s] Velocity [m/s]
(e) ()
Mo M1 M2 Mo M1 M2
50 Elevation: 12.5 deg 2 Elevation: 12.5 deg 6 Elevation: 12.5 deg 55 Range: 10.5722 [km] , Range: 10.5722 [km] 4 Range: 10.5722 [km]
After Noise cipping Ater Noise clipping Ater Noise clipping || — After Noise clipping — After Noise clipping Afer Noise clipping
1 | sl f 2 55 i
40 M‘l H 1 \\
| o 1 o o S “
3 Eaf Za { a0 Lo | g |
7 > \ > g R > |
B 22 £ ‘ | 835 R € |
R W g 1% 3 H 2. w
H | A\ o | z 230 s z |
° F £ £ b H 815 |
10 .4 & 2 g3 g
V 8 | 8 | 8 8 < | “‘
B 2 " ' |E==2]
0 ESs
n | 15 V s \ 05 \ V
| | ~
-10 -7 ol 10, 6 0,
o s 1w 15 o 5 10 1 % 5 10 1 0w o2 % 0 2w % 10w
Range [km] Range (km] Range [km] Elevation [deg] Elevation [deg] Elevation [deg]

Figure 5.6: MAX3D real data results after target mask computed using AMF algorithm. For the first two rows,
thapr = 0dB, while for the last two rows th 4psr = 10d B. The first column shows Range-Doppler map and
correspondent moments estimation, where for 2D image plots, LHS image is before target mask, and RHS
image is after target mask. For moment values, blue line color is before target mask and orange line color after
target mask. The second column shows the Elevation-Doppler map where the same positions mentioned
above are respected for results before and after the target mask. Results shown here are from the same radar
cube, that corresponds with ¢ = 35°, 8 = 12.5° and range = 10.57 km.

this means that tails of the spectrum are folded, and the rest of the spectrum, located on
the negative side of the spectrum is not folded. On the other hand, Panel(b) shows a case
where the distribution of weather spectrum is not constant along with the range, hence
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the proposed algorithm creates ambiguities.

Proposed algorithm is an iterative one which goal is to minimize the error, ep 4., for-
mulated as the difference between position of mean Doppler velocity and center of the
spectra, this corresponds with 0 [m/s] Doppler velocity.

epac = lindyy —(N/2-1)| (5.23)
eh o= (NI2—=1)—indp,, (5.24)

where indy, represents index of M; position with respect to Doppler velocity spectra,
and N is the total number of Doppler bins. e;') ¢ is the same error in real values and
recomputed for each iteration.

Thus, for each iteration, we recompute mean Doppler velocity, shift the spectrum
regarding e([;)A .~ We found experimentally that the threshold value to stop the iterative
algorithm has to be two. We remarked that for very narrow spectral width values, e;') Ac 18

jumping between -1 and 1. Algorithms steps are described in the following lines.

1. Read the input Doppler power spectra, P'”, for correspondent range position;

2. Compute the mean Doppler velocity, M{" = ﬁ YN v@.pig,;
0

3. Find index of M{i) position in Doppler spectra, i ndl(\f[)1 ;

: (@)
4. Find epap

epac=le?|;

between i nd](\f}l and N/2 -1; eg)A . can be positive, negative or zero,

5. Using a circular shift, recompute power spectra, P%) — P(tle)m p

shifted to right if eg)Ac < 0 or to the left if eg)AC >0;

where spectrum is

6. Recompute velocity grid, v® — v ,,,,, where v® ;,,,, has M\ value in the cen-
(1)

O] ; ; .
ter of spectra. Edges of v* are changed with respect with e}, ;

7. Recompute the total power reflectivity M(()i) =yN, Pg’e)m pau;

8. Start a new iterationi—>i+1;

9. Iterative algorithm STOP when ep . < 2.

Figure 5.7, Panel(c) shows an example of the Doppler moments estimation for data
before and after DAc, when DAc algorithm performed well. This figure shows that in-
deed spectral width becomes significantly smaller, about 2.91 [m/s], for the range bins
interval, [9,15] km, where a folding event occurs. Differences can be remarked for mean
Doppler velocity as well, of about 4 [m/s] computed at a range of 9 [km]. However, in
Panel(a), we notice a drawback of our algorithm, where right-hand-side (RHS) tails of
the weather target are shifted to the left-hand-side (LHS) now. This phenomenon oc-
curs when mean Doppler velocity is very close to the maximum unambiguous velocity,
lvmax| = 7.39[m/s]. This event can be observed between 8 [km] to 12 [km]. Indeed,
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Figure 5.7: Examples of Range-Doppler map and Doppler moments, first row and second row, respectively.
For first column, LHS 2D image of each panel represent Doppler spectra after DAc, and RHS of each panel
before applying DAc. For second column, My, M and My is estimated, where blue line colour represents

results before and orange line colour represent results after DAc.

for moment estimation values of Mj, these values reaches almost 6 [m/s]. However, the
estimation error of mean Doppler velocity for values before and after DAc, are about 3
[m/s] for the exact area where DAc algorithms drawback occurs.

Figure 5.7, Panel(b) shows a more difficult example of aliasing. We notice in this case
that DAc cannot retrieve the true error and spectra at some ranges are estimated to have
the incorrect velocity. However, for this kind of situation and also for the number of
foldings that occur, a more sophisticated algorithm is necessary.

5.6. CONCLUSIONS

In this chapter, the accuracy gain of precipitation profiles estimation was studied after
the removal of additive noise from Doppler spectra. A weather targets detection method
was derived, called AMF. This method uses a priori averaged range profiles of the noise
power and morphological operations, opening, and dilation with an adaptive approach
for the dimension of SE. The verification of this approach was done using simulated and
real data.

For simulated data, the maximum accuracy for a fixed rate of the false alarm es-
timated by trying a range of multiple dimensions for SE. Based on this, it was proved
that there is one unique SE dimension that gives maximum accuracy, different for each
Doppler moment. For a more general overview, this was proved for a large range of false
alarm rates, from about 100% to 0%.

Next, AMF proved to provide accuracy gain close to the previous experiment, around
88%, even if for previous we noticed that for the same false alarm rate accuracy takes
maximum value at slightly different dimensions of SE for each Doppler moment, wherein
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our case at fixed false alarm rate we adaptively estimate only one dimension of SE.

Stability and robustness of the AMF algorithm were proved based on a large experi-
ment, SNR = [10, 40] dB, where mean and standard deviation was computed for accuracy
gain values obtained at constant SNR and varying false alarm rate, within the same in-
terval mentioned before.

In the end, performances of AMF and its benefits were proved for MAX3D real radar
data, where was tested for two different threshold values for target detection, T/ = {0, 10}
dB. We notice that the target’s interior does not contain any missed detection for both
threshold values and that only edges are slightly eroded for Th = 10 dB. However, we
notice that the higher is Th the better sidelobes, and noise is suppressed around the
weather target without jeopardizing the accuracy of precipitation profiles. Additionally,
an iterative algorithm to correct for the Doppler aliasing phenomenon was introduced,
and its performances were proved based on real data simulation. However, we noticed
that for MAX3D there are situations more complicated of aliasing which requires a more
sophisticated algorithm for correction.
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RECONSTRUCTION OF 3D
DOPPLER MAP

This chapter’s objective is the reconstruction of 3D Doppler map. 3D representation of
precipitation profiles in terms of total power reflectivity, mean Doppler velocity or spectral
width implies a polar to Cartesian transformation since beamforming operation is a spa-
tial transformation that results in mapping the targets in terms of elevation and range,
this is polar coordinates. Because of this, the single possible 3D representation is for con-
stant elevation Plan Position Indicator (PPI). In general, precipitation profiles are repre-
sented for constant height PPI for the reason that wind direction and velocity’s magnitude
are considered to be constant at a constant height, which provide to the user a better un-
derstanding of natural phenomenon. Data can be transformed from polar to Cartesian
coordinates using an interpolation operation. Thereby, this chapter introduces our pro-
posed approach for 3D reconstruction of precipitation profiles, where polar to Cartesian
transformation is applied for the components of radial mean Doppler velocity and spec-
tral width, that are elements of the vector space, while for total power reflectivity this trans-
formation is applied directly since these values are scalar elements. Then a study of the in-
terpolation problem is carried out, to determine the complexity in this case. Knowing this,
the study is carried on by a comparison of different interpolation methods, linear, cubic,
spline and modified Akima, to determine which methods give the smallest interpolation
errors. For this study, the Franke’s test function is used. To the end, the proposed method-
ology is applied to real radar data, and a collection of results are displayed. Here are in-
cluded a set of eight constant height PPI for each moment at four different heights, where
for mean Doppler velocity are shown both horizontal and vertical components. Next, a
set of four constant azimuth Range Height Indicator (RHI) plots are presented for all mo-
ments, where for mean Doppler velocity are displayed both components, as well.

75
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6.1. INTRODUCTION

HIS chapter opens with a derivation for vector components of mean Doppler veloc-
T ity and spectral width. Their formulation is done using integral equations stated in
Chapter 3. For this case, we use discrete expressions. Vector components, as a function
of elevation angle, 8, for radial mean Doppler velocity are:

1 i=Np/2 .
o =25 2 vh@IAG)Pdv= 6.1)
Pr i=—Np/2

i=Np/2
_ £SO TSR AR 6.2)

Pr i=—Np/2
My, = cos@) uy (6.3)
My, = Sin@) puy (6.4)

, where u,, and u,, are horizontal and vertical components of radial mean Doppler ve-
locity, uy.
Follower, by vector components for spectral width:

1 i=Np/2 R
Ov,=1| 5 Z (vip (D) —ﬂuh)zlA(i)Isz = (6.5)
\ PT i=—Npl2
i=Np/2 N
== > Wcos® —p,cos0)?A0)|>dv = (6.6)
\ PT i=—Npl2
oy, =cos@)oy (6.7)
oy, =sin@)o, (6.8)

, where o, and o, are horizontal and vertical components of Doppler spectral width,
o ,.Total power reflectivity is a scalar and does not depend on the elevation angle, 0.

The structure of this chapter is the following. Section 1 introduces the interpola-
tion process involved in polar to Cartesian transformation, supported by scatter plots for
both systems of coordinates, followed by an analysis of the complexity of the interpola-
tion problem. In Section 2, five different interpolation methods are introduced: nearest
neighbor, linear, cube, spline and modified Akima'’s method, both theoretical but also with
correspondent simulation performances for 1D and 2D problems. For the 2D case, the
bivariate Franke’s test functions is introduced and used to perform interpolation error
estimation. Comparison results are performed based on three characteristics: accuracy,
visualisation aspect and computational time. Results are provided for one single test
function, but three different data sample points: 51, 26, and 5, out of 101, using a regular
step.
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6.2. INTERPOLATION PROBLEM FOR POLAR TO CARTESIAN TRANS-

FORMATION

The processing chain involved in the estimation of precipitation profiles for a phased
antenna array starts with beamforming processing of raw data. Hence, for raw data
radar cube, described by three coordinates, [channels] x [range] x [slow-time], beam-
forming processing implies a spatial transformation of the input signal, which result in
a mapping of detected targets in terms of elevation [0] and range [km]. The next step is
Doppler processing along the slow time axis, which maps weather targets in polar coor-
dinates, (0,1), and radial Doppler velocity. Assuming that Doppler spectrum distribution
for weather objects follows approximately a Gaussian distribution, all three moments
can be estimated: total power reflectivity, mean Doppler velocity, and standard devia-
tion (spectral width). At this stage, the only possibility for the reconstruction of the 3D
Doppler map is using constant elevation PPI. This is a 2D image at constant elevation of
precipitation profiles for all azimuth direction [¢ = [0°,360°]]. In other words, this means
a radial cross-section of the space surrounding the radar position. This situation is de-
picted in Figure 6.1 for representation in Cartesian coordinates of two different radial
direction for elevation angles, 8; and 8, and constant azimuth direction.

Height
A
@)

>
>
Distance
)

Figure 6.1: Example of points mapped in Cartesian coordinates. The vertical axis represents height or Z and
horizontal one distance or Y. Blue points represent position (y, z) of a target and arrows represent radial
velocity and its components, horizontal and vertical, drawn with a red color arrow, green color arrow, and
blue color arrow, respectively. Radial direction, Ry and Ry are characterized by elevation angles, 61 and 65,
respectively. Yellow color dashed line represent a constant height section, for height, h;

A general assumption about wind field is that wind direction and velocity are con-
stant for a fixed height. In this case, a constant height PPI representation of precipitation
profiles provides a better overview of the weather situation. For the main goal of this
project, this means a clearer examination of the capabilities for MAX3D radar to per-
form estimation of the wind field. A schematic drawing for the constant height PPI rep-
resentation is depicted in Figure 6.1, represented by a yellow dashed line, at height h;.
This example is considered for the first moment only, this is radial mean Doppler veloc-
ity, drawn as a vector with a red arrow. Then, constant height representation includes
horizontal components of radial Doppler velocity, drawn as a vector with a green arrow
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for two different points positioned at different elevations and ranges. Now, for the RHI
representation, this provides a similar aspect as the one depicted in Figure 6.1. Hence,
after derivation of vector components, followed by a mapping of values to the Cartesian
coordinates, possible by interpolation operation, one can represent either PPI or RHI
plots.

Let us consider that targets are mapped in a 2D polar system of coordinates, called
polar grid, characterized by (0; ;,r; ;) coordinates and one want to map the targets in a
Cartesian system grid, characterized by (x;,, y;,j) coordinates. If we call transformation
grid, the grid of polar coordinates values obtained as results of Cartesian to the polar
transformation of the coordinates of the Cartesian grid where one intends to map the
targets, then interpolation process involved in this process is a bilinear interpolation
and is performed between transformation grid and actual polar grid obtained as a result
of spatial transformation through beamforming algorithm. Bilinear interpolation is an
extension of linear interpolation and is employed for interpolation of two-variable func-
tions, f(x, y), on arectilinear 2D grid. Figure 6.2, Panel(b) for a zoomed-in aspect, shows
both polar grid and transformation grid, black color circles and multi-colors “x” points,
respectively.

By comparing these two grids, polar and transformation grid we can determine the
complexity of the interpolation problem. Even if the transformation grid is irregular,
and the reason is due to the Cartesian to polar non-linear equations, Eq. 6.9, this is not
a problem as long as the polar grid, black color circles, is regular and represent the basis
grid for interpolation.

0 =tan " = (6.9)

r=y/x2+y? (6.10)

Hence, interpolation error is fixed and known for any values within data and is de-
pendent only on the interpolation accuracy of chosen interpolation method. For in-
stance, linear interpolation error is the biggest one and is proportional to the square of
the distance between data points, where for polynomial interpolation the error is pro-
portional to the distance between data points to the power n, where the polynomial’s
degree is n-1, for n data points. Thereby, the next section shows estimation errors for
five different interpolation methods.

6.3. STUDY CASE FOR BILINEAR INTERPOLATION ERROR

Interpolation methods involved in our study case are: nearest neighbor, linear, cube,
spline and modified Akima’s method. They are briefly described in Table 6.1.

Figure 6.3 shows simulation results for 1D interpolation. Only ten points are given
and are interpolated for one hundred. This result gives us an overview of the perfor-
mances of each interpolation method. The theoretical background and results can be
compared for each method using their independent performance within this figure

Based on Figure 6.3 we can notice that there is a big difference between spline and
other two first-derivative continuous interpolation methods, cube and makima. In the
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Figure 6.2: Example of polar and transformation grid, black color circles and multi-colors “x” points,
respectively. Transformation grid is the polar coordinates grid obtained after transformation of Cartesian
coordinates in polar coordinates. Panel(b) shows a zoomed in version of Panel(a).

case of spine, it tends to overestimate local maxima and minima, being out of the range
of samples, but also computing a wrong position of the local maxima for the point lo-
cated at (0.2,0.9). Based on this we can conclude that the spline method is not appropri-
ate for abrupt changes in the function. Much more impression about these methods is
discussed for the bivariate case.

For the study of interpolation operation, of any dimension, there is necessary a test
function. For this study case we opted for Franke’s test function [1], represented in Figure
6.5, Panel(a). This function has two Gaussian peaks of different heights, and a smaller
dip. The function is evaluated on the square x; € [0, 1]. In our case we opted that original
function has 101 x 101 points. In order to test the interpolation methods, there were
used three different number of points for sampling : 5 x 5 points, 26 x 26 points and
51 x 51 points, which later in the chapter are refered as undersampling ratios: 0.0025,
0.0676 and 0.26, respectively. The undersampling ratio formula that we used is:

_ Ny

=N, (6.11)

UR
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Method Description Continuity Comments
Nearest Neighbor The interpolated value at the query point is . Discontinuous Requires only two points in each dimension.
the value present at the nearest sample on the grid
The interpolated value at the query point (y,x) is Quick and easy, but not very precise - error is
computed using linear equations between the left proportional with square the distance between two
Linear and right points, (y4, x4) and (y, X;) respectively, c interpolation points;
where the slope between left point and query Requires two points for each dimension;
point is the same as the one between left and right points. Interpolant is not differentiable at the point x;
If the values of a function f(x) and its derivatives are
known at two different points x, and xj,
then the function can be interpolated on the interval
S usmg a l.h“d degree p oly{mmlal_ Requires at least four points in each dimension;
. Because derivatives has to be estimated, 1 . . . X .
Cubic . X C Uniform spacing between points in each dimension;
there are required 4 points, xo, X1, X2 and x3, where N . [ ,
. N Requires more time than 'Linear’.
the interpolation performed between x; and x,,
but derivatives for x; and x, are estimated
based on the slope values between (xo, x1)
and (x1, ) respectively.
Called also cubic spline, it computes a third degree . Lo . .
— L . Requires four points in each dimension;
. polynomial with the additional constraint that 2 . . X
Spline R C Requires more memory and computational time than
the first and second derivative at the Cubic.
query points are continuous. )
Performs cubic interpolation to produce piece-wise Requires at least 2 points in each dimension;
polynomials with continuous first-order derivatives. Computational time is smaller than ’spline’;
. . Compared with cubic or spline algorithms, in Akima’s 1 Compared to the spline algorithm, the Akima algorithm
Modified Akima N A R . C X
method estimated derivative of each interval point, produces fewer undulations;
(xq, xp) is computed as weighted average between It is better suited to deal with quick changes between
slopes of three points. flat regions.
Table 6.1: Interpolation methods - Description and Observations
g Comparison
T T

000;

° nearest
——linear
——makima
——spline
—T—cube

"o 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2

Figure 6.3: Example of interpolation results between five different methods: nearest neighbour, linear,
makima, spline and cube, represented by blue dots, black dashed line, green dashed line, red dashed line and
pink dashed line, respectively.

,where N, represent number of points before interpolation: 5%, 262, 512, and N, num-
ber of points after interpolation: 1012. Nearest neighbouring method is not considered
for 2D study case because it is discontinuous.

The characteristics used for the comparison of different interpolation methods are:
interpolation error, visualisation aspect and computational time.

Hence, in terms of interpolation error, Figure 6.4 shows three different examples for
all three undersampling ratios. Figure 6.4shows that the smaller is the undersampling
ratio the higher is the RMSE value. What it is important to notice here is that for a high
undersampling ratio, higher than 0.0025, the spline method, yellow color line, gives the
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best results. As a result Panel(a) and Panel(b) shows that RMS for the spline method
has the lowest value. However, we notice that for the undersampling ratio of 0.0025,
the spline method presents worse results than the linear method. This effect can be
explained based on the overestimation effect that the spline method shows for 1D results
as well in Figure 6.3.

Interpolation error Interpolation error
%1073 Undersampling ratio: 0.2601 5% 103 Undersampling ratio: 0.0676
—linear
makima
spline
—cubic

—
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T
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(@) (b)
Interpolation error
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@ spline
S o1 - —cubic
w / \\/ N
%} Y, \/ N\
2005 / N ~\
Y \ p 2 W\ o~
// > \// ] \
0
0 0.2 0.4 0.6 0.8 1
<X
(©
Figure 6.4

For visual inspection, Figure 6.5 shows interpolation results at undersampling ratio,
0.0025, for cubic, spline and modified Akima, Panel(b), (c) and (d), respectively, com-
pared with original Franke’s bivariate test function, Panel(a). Based on values on the
Z-axis, it can be remarked the overestimation effect that occurs for the spline method.
There are no visual differences between cubic and modified Akima, but there can be
noticed between these two and test functions. Thus, the kurtosis of the smaller bell is
smaller after interpolation, and for the same reason, the peak of the dip cannot be no-
ticed anymore.

Regarding the computational time, Table 6.2 includes computational times for each
method, at each undersampling ratio. These results are obtained for a Monte Carlo test
of 500 runs. Thus we can notice that linear, cubic, and spline gives similar results for this
study, compared with modified Akima which is almost two times more time-consuming
than the other methods.

To conclude, based on all three results for accuracy, visual inspection, and compu-
tational time, we consider that cubic method gives the best results for the test function
that we chose, Franke’s test function. Since this function is complex with similar charac-
teristics meet also for weather objects, we consider to use cubic method for the real data
simulation, presented in following section.
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Test Function cubic

(@) (b)

spline makima

() (d)

Figure 6.5

Computational Time [ms] ‘

Over;:gl: ling Linear | Cubic | Spline M:k(ﬁgzd
0.0025 0.4180 | 0.5944 | 0.4158 0.9395
0.0676 0.4449 | 0.5820 | 0.4848 1.0398

0.26 0.4736 | 0.6162 | 0.6652 1.3914

Table 6.2: Interpolation - Computational Time comparison

6.4. MAX3D DATA RESULTS

6.4.1. DATA QUALITY MASK - PRELIMINARY FILTERING STEP

This section shows results for the reconstruction of the 3D Doppler map. For this,
three different sets of results are included. Data presented here was recorded on 12" of
May 2021 at time 16 : 04 : 28 CEST. Rotation speed 1 RPM. The total number of sweeps
is around 285. Doppler processing is used without zero padding, and are used only 256
sweeps out of 285 available at this rotation speed. For beamforming processing cMMSE
is used, and for high estimation accuracy of precipitation profiles, AMF is employed.
Correction for Doppler aliasing is not performed, due to the low performances acquired
for this data set. For the interpolation process, involved for polar to Cartesian transfor-
mation of data values, are used [Z] x [Y] = [100] x [100] points. The reason for this choice
is due to the fast computation time and the sufficient level of details obtained.

The first results show the performance results for Data Quality Mask DQM algorithm.
The DQM implies precipitation profiles thresholding based on two parameters, M, and
M>. This mask is a 2D binary image. This mask is initialized with value one, for all pixels,
and based on the results obtained after thresholding, pixels that present the null hypoth-



6.4. MAX3D DATA RESULTS 83

esis becomes zero. After formation of the mask DQM matrix, it is applied over the matrix
of moments values: My, M; and M>, total power reflectivity, mean Doppler velocity and
spectral width. Operation used to apply DQM is Hadamard product, [ k.

Hypothesis test functions are:
For My:

Hy : My;,j <10[dB] (6.12)
Hj : My;,j > 10[dB] (6.13)

, where Hj is null hypothesis and means that for any value of total power reflectivity
moment, that is under 10[d B] return zero, otherwise return 1. For Mj:

Hy: Ma; j>2[m/s] (6.14)
Hl:Mg,-,j<2[m/s] (6.15)

, where Hj is null hypothesis and means that for any value of spectral width moment,
that is over 2[m/ s] return zero otherwise is 1.

These two conditions are applied over the same matrix DQM. Final DQM is applied
over all matrices that corresponds with each moment values:

DQMo M,
DQMo M,
DQMo M,

The scope of the first condition is to filter out moments values computed for the
edges of the target and the second condition is to filter out any other artifacts that are a
non-weather target since we noticed that for weather targets, spectral width is up to M, =
2[m/ s]. Moreover, this condition for spectral width, clean spectra out of high power level
due to the receiver’s saturation. Figure 6.6, Panel(a) shows the results before DQM, and
Panel(b) after DQM. On one hand, the receiver’s saturation effect, around 4[m/s] with
yellow-green color, is filtered out, but on the other hand, because of velocity aliasing, an
important area of the cloud is eliminated. These areas are shown with red color, around
6[m/s].
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Figure 6.6: Constant elevation PPI plots for spectral width before and after Data Quality Mask. Panel(a) before
DQM, Panel(b) after DQM.

6.4.2. CONSTANT HEIGHT PPI

The second set of results shows constant height PPI plots. These results are presented
for height values: {300[m],370[m],450[m],520[m]}, Figure 6.7, Figure 6.8, Figure6.9 and
Figure 6.10. Each figure presents results after DQM and for each moment as follows:

1. (a) total power reflectivity;
(b) horizontal projection of radial mean Doppler velocity;
(c) vertical projection of radial mean Doppler velocity;

(d) and horizontal projection of spectral width.

Considering that negative velocity means approaching target and positive velocity
receding target, these Panel(b) for each height show the estimation of wind velocity
based on a cloud close to the radar, which is approaching from around ¢ = 50° azimuth
direction and is receding on about ¢ = 230° azimuth direction. We can also see the po-
sition where wind velocity is perpendicular with the position of the radar, at ¢ = 320¢"¢,
Panel(a) shows the distribution of power in the weather target, and Panel(d) shows the
spectral width, of the weather target which is below 2[dB]. Looking over these results
over different heights, we notice that with a step of 70 [m], and over a height range of
200 [m] direction of the wind is not changing. Based on this result we checked the good
functionality of the weather signal toolbox developed in this project.
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Figure 6.7: ]

Constant height PPI plot for all three moments: total power reflectivity (a), horizontal
projection of radial mean Doppler velocity (b), vertical projection of radial mean
Doppler velocity (c) and horizontal projection of spectral width (d), for height 300([m].
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Constant height PPI plot for all three moments: total power reflectivity(a), horizontal

projection of radial mean Doppler velocity(b), vertical projection of radial mean

Doppler velocity(c) and horizontal projection of spectral width(d), for 520[m]

6.4.3. CONSTANT AZIMUTH RHI
The third set of results present constant azimuth RHI, for the same set of weather data
after using DQM, at two different azimuth angles: ¢ = 264° and ¢ = 282, Figure 6.11,
Figure 6.12, respectively. Each Panel present the results for:

1.

(a) total power reflectivity;

(b) horizontal projection of radial mean Doppler velocity;

(c) vertical projection of radial mean Doppler velocity;
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(d) and horizontal projection of spectral width.

These results show a perpendicular cross-section through the weather object, where
we can notice with high resolution the distribution of the power in this cloud, Panel(a),
and the radial means Doppler velocity, that corresponds with different layers obtained
after radar’s scanning. Thus, close to the ground, around 250[m] we can notice the melt-
ing layer, which is the layer when the droplets start to leave the cloud.
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Figure 6.11: Constant azimuth RHI plots for all three moments: total power reflectivity (a), horizontal
projection of radial mean Doppler velocity (b), vertical projection of radial mean Doppler velocity (c) and
horizontal projection of spectral width (d), for ¢ = 264°

6.5. CONCLUSION

In this chapter, a methodology for the reconstruction of the 3D Doppler map was intro-
duced. For this, the bilinear interpolation process involved in the transformation from
polar to Cartesian coordinates of precipitation profiles was studied. Different interpola-
tion methods were studied: linear, cubic, spline, and modified Akima, for both 1D and
2D test functions. The study included a comparison of these methods concerning three
criteria: interpolation error, visual inspection, and computational time. The best candi-
date was a cubic interpolation, which is chosen for following real data results.

Target mask for data quality, DQM is introduced and the result shows that precipita-
tion profiles with high power level due to the receiver saturation effect are removed.

Real data results have been presented for constant height PPI and constant azimuth
RHI plots. Constant height PPI plots are shown for total power reflectivity, the horizon-
tal and vertical component of mean Doppler velocity, and the horizontal component of
spectral width. Constant azimuth RHI plots are introduced for the same moments of
Doppler weather spectra, as was introduced for PPI plot.
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CONCLUSIONS AND
RECOMMENDATIONS

7.1. CONCLUSIONS

HIS thesis project has been formulated as a part of the EFRO project, “4D weather

mapping for vortex prediction, wind fields, and precipitation now-casting” for the
development of a signal processing toolbox to support the required processing adapta-
tions of phased array antenna radar, MAX3D, for the reconstruction of 3D Doppler map
at high estimation accuracy. MAX3D is a phased array radar developed and produced
by Robin Radar and has been developed for bird detection. Due to the demanding re-
quirements for a radar system for early detection and warning of fast forming weather
phenomena, conventional weather radar with parabolic antenna does not have enough
time-resolution and elevation resolution. Since this is possible for the phased array radar
systems due to the fast electronically elevation scanning and high refresh rate and these
systems are already developed and proved to provide high performances for point tar-
gets, an upgrade for a weather target detection processing channel should be imple-
mented. Therefore, the main objective was to determine if the actual configuration
of MAX3D radar is suitable for weather applications and to develop a signal process-
ing toolbox for the high estimation of precipitation profiles and reconstruction of 3D
Doppler maps.

The requirement for the signal processing toolbox, called MAX3D-Weather-PhAA,
was to provide all the algorithms along the data processing chain, from raw data reading
to the final 3D Doppler map creation and visualization. Signal processing algorithms
already existing were studied and compared to determine the performances for MAX3D
radar data and new algorithms were proposed for cases when the existing ones were not
compatible with our project requirements. MAX3D-Weather-PhAA has nine main algo-
rithms and those are:

* Reading data algorithm
Based on this algorithm, the recorded multichannel signals can be read from any

91
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position of the data file. The input value of this position is the azimuth direction
or its interval.

RMMSE beamforming algorithm

This algorithm was implemented based on the approach suggested in one of the
articles included in the literature review and was tested in terms of estimation ac-
curacy for precipitation profiles.

For the performance study of this algorithm, a simulator was developed, Weather
Radar Signal simulator. The first part of it, the Doppler weather spectra and time
signals was implemented based on the approach proposed in 1975 by Zrnic in one
of the papers included in the literature review, and the second part, data model
based on the lessons studied for Signal Processing and Communication. This sim-
ulator can be used for a large scale of applications that require the knowledge of
the "ground truth" of Doppler spectrum moments. Being versatile, this simula-
tor allows any kind of values for input spectra moments, even experimentally ob-
tained values. For this reason, the implementation of this simulator was one of my
contributions to this project.

Regarding the RMMSE algorithm, it shows high performances for the estimation
accuracy of the precipitation profiles, based on data recorded with MAX3D radar.
This conclusion was drawn based on the performances for sidelobes level sup-
pression and accurate estimation of spectra moments. When the beam-forming
sidelobes are well suppressed, the algorithm avoids the creation of processing ar-
tifacts in estimated Doppler spectrum like e.g. spectrum bimodality, and provide
the possibility to detect the real cases when two different layers of precipitation
with different mean Doppler velocities are present at the same resolution volume
and form one bimodal Doppler spectrum. To study this performance of beam-
forming algorithms, the RMMSE algorithm was compared with results for Fourier
and Capon methods.

The application of the RMMSE algorithm to real data raised some implementa-
tion difficulties, especially because it requires an apriori knowledge of the noise
covariance matrix. The method to obtain this information is not mentioned in
the literature and has been developed. For this reason, the implementation of the
RMMSE algorithm to real data with much better performances than conventional
Fourier or Capon algorithms is an element of my project’s novelty and was one of
my contributions to this project.

Doppler processing
This operation implies a fast Fourier transformation (FFT), which is already well
known and is mentioned here only for the workflow of the processing chain.

The Target Mask algorithm, AMF

After beamforming and Doppler processing, the resulting range-Doppler map con-
tains weather targets, noise, and non-weather targets. To keep only weather targets
and to filter out the rest of the elements from the spectra enhances the estimation
accuracy by ten times for power reflectivity and by the order of tenths times for
the mean Doppler velocity and spectral width. For this reason, an iterative and
adaptive algorithm was proposed, called Adaptive Morphological Filtering (AMF).
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This algorithm utilizes a priori known (measured) profile of noise power for the
noise signals clipping and further uses morphological operations, opening, and
dilation, for further filtering out the false alarm signals. This algorithm was exten-
sively tested during this project on simulated data, using the simulator developed
in this project, and also for real data. The results show that this algorithm pro-
vides a high estimation accuracy of the range-Doppler map. This algorithm brings
elements of novelty due to the proposed hypothesis testing function used for the
iterative algorithm and for the entire framework, where a priori profile of noise
power and morphological operations are used. This can be considered a personal
contribution to this project, as well.

Doppler Aliasing correction algorithm

In this project it has been shown that discontinuities due to Doppler aliasing ef-
fect, can imply strong limitation concerning estimation accuracy of precipitation
profiles. There are simple methods suggested to correct this effect, that rely on the
estimation of the position of mean or maximum of Doppler spectra, followed by
a circular shift of spectrum until the position of one of these reaches the center
of the spectrum. However, under the conditions given by the discontinue spectra,
these methods are biased. The one that proposes to use mean is biased because
spectra are discontinued, and the second that consider maximum is not the best
solution when sometimes there are two weather objects present in the spectra.
Our proposed algorithm overcomes this problem by recalculating in an iterative
way the mean value and difference between its position and center of spectra, and
shift the spectrum to that difference until this difference converges to zero. This
process is considered here error minimization, where error the difference that has
been defined before.

However, in Chapter 5 it was shown that this algorithm works for simple cases
of aliasing, when one of the sides of the spectrum contains a considerable power
spectrum and for weather data recorded with MAX3D, situations much more com-
plex have been found. Nevertheless, this algorithm can be considered a personal
contribution as well to this project, even is requires considerable upgrades to cope
with the difficult task of aliasing correction. Furthermore, the idea to minimize er-
rors defined above within an iteration algorithm is considered an element of nov-
elty.

Data Quality Mask, DQM

At this step of the processing chain, it is considered that if there is a weather target
in the Doppler spectra, the correspondent Doppler moments are estimated with
high accuracy. However, the processed Doppler spectra still can contain artifacts
related to the effect of signal saturation, which could not be filtered so far with
standard processing steps. Based on constant elevation/height PPI plots for spec-
tral width, we notice that this artifact’s spectral width is, in general, wider than
4[m/s]. Therefore, the DQM algorithm has been proposed that uses this infor-
mation to eliminate from consideration signals at PPI locations where saturation
is present, from each Doppler moment’s map. For this, a threshold of 2[m/s] is
applied, which protect weather targets and filter out non-weather targets and arti-
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facts. However, if the Doppler velocity aliasing is not corrected before the Doppler
spectral moments estimation, spectral width can exceed 2[m/s], and as result, the
final precipitation map can include some discontinuities. Finding that the satu-
ration artifacts have a spectral width of around 4[m/s] can be considered a novel
contribution to this project.

Vector components derivation for the first and second Doppler spectral moments
This algorithm and the next two ones are part of the reconstruction of 3D Doppler
map packet of algorithms. This algorithm applies the simple transformation to
the first and second Doppler spectral moments, which are related to a specific
elevation angle, for their conversion to horizontal and vertical Doppler velocity
components. This transformation uses the trigonometric functions and is quite
trivial, but the understanding of the meaning of these two velocity components
implied an extensive discussion. These vector components are necessary for the
next step, for the 3D interpolation of resulting Doppler spectral moments. Because
Main Array footprint scanning area has a small dimension, vertical wind direction
does not change much. Thus we can consider that the horizontal component of
the radial mean Doppler velocity provides direct information about the real rate
of change and value of horizontal wind velocity, up to a scalar. This scalar is the
product between the real terminal velocity of the particles and the sinus of the el-
evation range. For small elevation angles, the effect of terminal velocity can be
neglected. This assumption was used to generate results given in Chapter 6 and
to perform a preliminary test for the MAX3D capability to perform estimation of
wind direction.

Polar to Cartesian transformation - interpolation algorithm

This transformation implies a 2D interpolation algorithm between the transfor-
mation grid and the original polar grid. The former is a grid in polar coordinates
obtained based on the Cartesian coordinates grid where the final targets have to
be displayed. Even if interpolation can be applied straightforwardly, the under-
standing of the locations where to apply it in the processing chain was one of this
project’s contributions. However, another question that was not addressed in this
thesis is the dimension of the transformation grid. In this study, we used a 100
by 100 grid to minimize the computation time. Have been doing the study of 2D
interpolation errors carried out for the special case of weather targets, and also
the justification of the location of this algorithm in the whole processing chain.
The achieved results and optimized processing chain structure can be considered
a novel contribution to this project.

Constant height PPI and constant azimuth RHI

Representation of results after reconstruction of 3D Doppler maps is performed
for fixed height range-azimuth (PPI) and fixed azimuth range-height (RHI) plots.
The RHI plot can be displayed using a 2D image plot, whereas, for the PPI plot, a vi-
sualization/representation algorithm was developed. This algorithm uses (mesh)
function from Matlab and includes values of the azimuth angles, the values of the
range, and a 3D grid plot to show the dimension of each resolution cell and the
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exact location of the targets. However, this algorithm posed some challenges be-
cause function mesh, from Matlab, centers the image only if there are cells filled
in each quadrant. This is not all the time the case, and the center of the plot is
wrongly computed, and, as result, the image drifts. A solution to overcome this
problem has been proposed - to use the interpolation of a few doom values at the
edges of the PPI circle. This is considered a novel personal contribution to the
project, too.

Therefore, after extensive testing and performance studies, the signal processing tool-
box MAX3D-Weather-PhAAimplements the developed and studied processing algorithms
and can provide the 3D range-Doppler map images using data recorded with the MAX3D
radar. This toolbox is novel by its premise of finding technical solutions and compro-
mises to show the efficiency and capability of using the MAX3D radar for weather target
detection and estimation of horizontal wind direction. In the end, based on the results
obtained and the proof of the performance of the algorithms used, we can conclude that
this signal processing toolbox it is an big step to the final objective to use MAX3D radar
for weather applications.

7.2. RECOMMENDATIONS FOR FUTURE

* For further development of the AMF algorithm it is necessary to be mentioned
that it was tested for real data when weather targets were further than the 4[km]
range. Within the first 4[km], the effect of ground clutter is much stronger. In this
case, if ground clutter and weather target are present in the same spectra, thus this
decreases the estimation accuracy of spectral moments. In this case, it is recom-
mended to test the estimation accuracy in the scenario mentioned above. How-
ever, an algorithm that can clean point targets when present in weather spectra,
e.g. ground target, birds, is important of high importance to be implemented. In
this case, for flying objects, MAX3D has already implemented a tracking system
of these targets, thus information of weather targets/flying targets can be merged
to increase estimation accuracy of parameters of interest for both classes. For the
ground truth, a priori knowledge of the position of the buildings can be used as a
solution. Using the developed simulator, Radar Weather Signal simulator, a sim-
ulation of the ground truth can be obtained, based on known position, and sub-
tracted from the real image of Doppler weather spectra.

* The performance study of the AMF algorithm has been shown that maximum es-
timation accuracy for each spectral moment requires a different SE dimension for
the same rate of false alarm. Therefore, to increase the performances of this al-
gorithm, implementation of this adaptive algorithm using three different criteria
based on each spectra moment, and estimation of three different SE dimensions
can increase the accuracy. On the other hand, this can also increase computation
time in this case.

* AMF algorithm requires a more robust and extensive simulation. For this, it is
recommended to use real values of the spectra moments obtained from weather
radar. This can be done using a weather simulator developed in this project.
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* RMMSE beamforming algorithms performance is dependent on the amplitude
and phase errors from the phased antenna array elements. The error that influ-
ences the performance the most is phase error. This error can be computed as the
variance of the phase differences between each antenna element. In one of the
papers included in the literature review [1], the authors showed that if this error
is corrected up to a given threshold RMMSE performances are comparable with
those for simulated data. Hence, one recommendation is to implement a more ef-
ficient calibration algorithm for MAX3D and to try to minimize phase error. This
calibration can be done directly on existing data if the final calibration coefficient
is computed using much more strong reflective points nearby the radar. The actual
calibration coefficients are computed using only one object.

* Implemented algorithm for Doppler Aliasing correction (DAc) can correct only
slight effects of velocity aliasing, when one of the sides of spectra contains the most
considerable power spectrum. Hence, in Chapter 5, last subsection, is pointed out
a case when aliasing situation is too difficult to be solved with DAc. Since this cor-
rection is a very critical issue, it is recommended to develop a robust algorithm.

* The signal processing toolbox developed in this thesis was tested only for data
recorded at 1[RPM], with the Doppler processing burst of 256 pulses. Therefore,
it is recommended to record weather data at different rotation velocities in a short
interval of time and to compare the performances of MAX3D-Weather-PhAA for
each 3D Doppler map, estimated at the correspondent rotation velocities.

* Related to the previous recommendations, if it is proved that MAX3D-Weather-
PhAA works for any rotation velocities, then to be proven which is the smallest
possible one, e.g. 18.75[RPM] for 16 pulses, that can provide a comparable level
of estimation accuracy as in case proved in this project. Hence, a trade-off may
be found between the rotation velocity required for bird detection and weather
detection, or a time division management strategy can be developed, e.g. every
five minutes radar rotates slower, e.g. 1.17[RP M], 256 Doppler pulses, to refresh
the weather situation.

* At this point, reconstruction of 3D Doppler map was performed based on pre-
cipitation profiles derived from radial Doppler velocity. This was used, as a pre-
liminary step, to determine the capability of this radar to perform estimation of
wind direction. However, this was performed based on two assumptions. First,
that wind field at constant height does not change much, thus wind direction and
velocity are constant, and second, vertical wind direction motion is not changing
much within the area described by the footprint of MAX3D’s Main Array. Hence,
a recommendation to rest the real capability of this radar to make wind field es-
timation is to plug the resulted estimated precipitation profiles in the linear wind
model and to reconstruct the 3D wind model. Then, to compare these results with
another weather radar from The Netherlands, for the same space where their scan-
ning beams are overlapping.



REFERENCES 97

REFERENCES

[1]1 H.Kikuchi, E. Yoshikawa, and T. Ushio, Application of Adaptive Digital Beamforming
to Osaka University Phased Array Weather Radar, IEEE Transactions on Geoscience
and Remote Sensing 55, 3875 (2017).



http://dx.doi.org/10.1109/TGRS.2017.2682886
http://dx.doi.org/10.1109/TGRS.2017.2682886




COMPENSATION FOR
RANGE-DEPENDENT ATTENUATION

Radar equation can be written in most general form as:

PthGr/lzo'vol
=— ' Al
rx @m3r (A.D
where for the case of of 3D precipitation as radar target
N
Oyo1=Volume-n= VolumeZUi (A.2)
i

where n[m™!] represents the radar cross section of the unit volume, and the radar reso-
lution volume Volume defined as

Volume = r>A¢pAOAT (A3)

If we denote the radar constant

_ PiG;G A*APAOAT

CV
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(A.4)

which include all constant parameters of the radar system, then we can rewrite the re-
ceived power as follows
Cc"n
P, = 5 (A.5)
Now if we extrapolate this formula for discrete case of fixed range grid, which is spe-

cific for the FMCW radars, each i’ sample of the received power will be characterized
by

@ _ C'nG)
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(A.6)
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If we assume that the radar system measures, actually, the SNR (or it is possible to
convert received signal to the SNR), we can rewrite this equation as follows

CcVn(i)

SNR(i) = m

(A7)

where N (i) represents the average noise power in i’k range resolution bin, and is equal
to some constant value for every specific radar system, defined as

N = kTyysBF (A.8)

where k - the Boltzman constant, T,s represent the system temperature in K, F is re-
ceiver noise factor, B is the receiver bandwidth, which for an FMCW radar equals to the
PRF/SRE If we apply the general assumptions, then is Tsys = 290K, B can be considered
1kHz in this case, and finally receiver noise figure, F = 4d B. Finally noise power in dB is
N = -169.98dB. Finally we can find out reflectivity, (i)

. SNR()r?(i))N
n(i) = v (A.9)
In this case, CY could be computed as follows

CVIdB] = P, + Gy + Gy + 100gyo( . 2v0l, (A.10)

r t r 810 (@m)3 .
CV[dB] =13 +36.5+39.0—53.03 = 35.46 (A.11)

Finally, reflectivity n[dB] is

n(i)[dB] :SNR(i)+ZOlog10(r(i))+N—CV, (A.12)
n(i)[dB] = SNR(i) + 20log1(r(i)) —205.44. (A.13)

Let us consider r = 15km only to understand the weight of range in this equation.
n(i)[dB] = SNR(i) + 83.52 — 205.44 = SNR(i) — 121.92 (A.14)

Due to the exponential increasing characteristic of range contribution to the func-
tion 7(i), we will consider areference range, rg, and then instead of r (i) we will have an
attenuation factor %) In this way, equation stated above becomes

n(i)[dB) = SNR(i) +20l0g10(r (i)) — 2010g10(ro) — 205.44 (A.15)

This reference range can be minimum 1, which means that will not be accounted any-
more, or maximum the maximum range value, which will vanishes the effect of compen-
sation at all.
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