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Aircraft Design Optimization Considering Network Demand and
Future Aviation Fuels

P. Proesmans∗ , F. Morlupo† , B. F. Santos‡ , and R. Vos§

Delft University of Technology, Kluyverweg 1 2629HS, Delft, The Netherlands

To reduce the climate impact of aviation, researchers are studying the replacement of fossil
kerosene with liquid hydrogen and/or drop-in sustainable aviation fuel (SAF). These fuels can
bring significant reductions in CO2 emissions and can offer savings in terms of non-CO2 climate
effects. In addition, tube-and-wing aircraft can be optimized to decrease the global-warming
impact by using a climate metric as a design objective rather than the operating costs. Previous
research has shown that airplanes designed for minimal climate impact have a reduced cruise
speed and fly at a lower altitude. This paper suggests a multidisciplinary, multi-level approach
the evaluate the consequences of such design and fuels choices at the network level. Following
the aircraft design step, a dynamic programming routine allocates the fleet and schedules the
flights to maximize the network profit. We consider a hub-and-spoke network operating from
Atlanta, with demand for domestic and international destinations. Compared to the reference
cost-optimal kerosene fleet, a fleet consisting of climate-optimized kerosene aircraft can reduce
the climate impact by 61% at a loss in network profit of approximately 21%. This design choice
requires allocating an additional five aircraft. A fleet operating climate-optimal, hydrogen
aircraft minimizes the climate impact. However, the high operating cost of long-range, hydrogen
aircraft lowers the achievable profit. Aircraft powered by drop-in SAF provides Pareto-optimal
solutions. These insights can be used to make decisions about the allocation of future aviation
fuels in a network and the payload-range requirements of future aircraft.

Nomenclature

Latin Symbols
𝐴 aspect ratio [-]
𝐶𝐷 drag coefficient [-]
𝐶 cost [USD per hour, km, or trip]
𝐸𝑖 emission of species 𝑖 [kg]
𝐹 objective function
𝑓PR payload-range envelope function
g constraint vector
ℎ altitude [m or ft]
𝑘 aircraft type index [-]
𝑀 Mach number [-]
𝑚 mass [kg]
𝑅 range [km]
𝑆 wing area [m2]
𝑇 temperature [K] or thrust [N]
𝑡 time [hours or years]
𝑣 velocity [m/s]
𝑊 weight [kN]
x aircraft design vector

Greek Symbols
Δ𝑇 surface temperature change [K]
𝜂ov overall propulsion efficiency [-]

Sub- and Superscripts
bl block mission parameter
cr cruise condition
eng engine
f flight index
L lower bound
ref reference scenario
U upper bound

Acronyms
ATR average temperature response
COC cash operating cost
LR long range
LHV lower heating value of fuel [J/kg]
LTOT landing and take-off time [hrs]
MTOM maximum take-off mass [kg]
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OEM operating empty mass [kg]
REG regional
RPK revenue passenger kilometer [km]
SMR small, medium range
TAT turn-around time [hrs]

TET turbine entry temperature [K]
TLAR top-level aircraft requirement
XDSM extended design structure matrix

I. Introduction

Reducing the climate impact of future aircraft is one of the top priorities in the commercial aviation industry at
the moment. With a rising demand for air transport [1, 2], drastic changes in aircraft technology and operations

are required to lower carbon dioxide (CO2) emissions and reduce non-CO2 effects. One way to reduce the impact of
non-CO2 effects, including the impact due to nitrogen oxide (NOx) emissions and contrail formation, with current
technology is to redesign the aircraft for a climate objective [3–6]. Such optimized aircraft fly at lower cruise altitudes
to mitigate the radiative effects of ozone formation, contrails, and contrail cirrus. As a consequence of this low-altitude
flight, the Mach number is reduced to remain at a near-optimal lift-to-drag ratio. However, this penalizes the mission
block time and therefore the aircraft’s productivity.

Combustion of novel fuels, such as liquid hydrogen or drop-in sustainable aviation fuels (SAF), can further reduce
the climate impact by eliminating the CO2 emissions in flight [7–9]. Additionally, the combustion of liquid hydrogen
or SAF can also reduce the non-CO2 climate effects. Since SAF has fewer soot particles than fossil kerosene and
liquid hydrogen has none, it is expected that fewer ice crystals will be formed behind the engines, resulting in different
contrail properties [10, 11]. A lower optical depth and a shorter lifetime can reduce the radiative forcing due to contrails.
However, these fuels also increase the operating costs [12]. Additionally, the integration of hydrogen tanks into the
aircraft adds to the empty operating mass (OEM) and increases the aircraft drag [13–15], which also leads to more
energy consumption.

The introduction of slow-flying, climate-optimal, kerosene-powered aircraft will likely require a different allocation
of the fleet. Additionally, replacing aircraft in the fleet with hydrogen- or SAF-powered alternatives may favor a different
allocation and/or require different top-level aircraft requirements (TLARs). Therefore, a system-of-systems approach
has to be taken to develop sustainable fleets where the aircraft and their operations are assessed simultaneously. Several
research projects have implemented multi-level approaches. Jansen and Perez [16–18] proposed a method to optimize
aircraft families and their allocation in different markets, showing that a reduction in fuel burn, operating and acquisition
costs can be achieved. This requires solving optimizations at multiple levels, typically a nonlinear aircraft design
optimization and a (mixed-integer) linear programming approach for fleet allocation. A similar approach was taken by
Moolchandani et al. [19] to assess the environmental impact of new technologies, mainly focusing on CO2 emissions.
Hwang et al. [20] proposed a modular adjoint approach to solve such combined problems, resulting in fleet profit gains.
Also, probabilities and uncertainties in aircraft technologies and forecasts can be taken into account [21]. Govindaraju
et al. [22] employed a multi-level approach to study potential fuel burn savings under operational uncertainty.

Although the problem of coupled aircraft design and fleet allocation has been studied in the literature, the challenge
of increased block time of climate-optimal aircraft and the effect on aircraft design and fleet allocation has not yet been
examined in detail. In addition, we would like to know how fuel selection plays a role in this and how to allocate novel
fuels optimally.

Therefore, this paper proposes a multidisciplinary, multi-level approach to address these two issues. The first
research question we address is: considering an available network demand, what is the optimal fleet diversity and
allocation of climate-minimal, kerosene aircraft in an airline network to maximize the profit? Once we have gained
insight into how these aircraft should be redesigned and allocated, we can extend the problem to examine how future
aviation fuels can further reduce the climate impact of the network. We will monitor the effects on total network profits
and energy consumption in this extended problem.

To answer these research questions and gain insight into the fleet-level impact of redesigned aircraft and multiple
fuels, we make use of a conceptual, multidisciplinary aircraft design framework and dynamic programming fleet
allocation model. A linearized temperature response model analyzes the climate impact of the fleet in terms of the
average temperature response (ATR100), which considers both CO2 and non-CO2 effects [4]. Note that this multi-level
problem considers a fixed weekly network demand and that we do not consider changes in demand or fleet composition
with time in the current study. Additionally, it is possible that network and airline markets may change depending on the
available aircraft in the future, while we assume the network demand to be the driving factor for new aircraft in this
study.
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This paper is structured as follows. In Section II, we introduce the approach to design and allocate aircraft.
Subsequently, we construct a cost-optimal reference case that only employs kerosene-powered aircraft in Section III.
By studying this reference case, we can verify the coupling between the two levels and evaluate the decision-making
process of the dynamic programming routine. In Section IV, we address the two research questions introduced above.
Finally, the method and results are summarized in Section V.

II. Multidisciplinary Setup and Methods
To address the research question formulated above, we propose to extend a multidisciplinary aircraft design and
optimization framework with a second level to perform fleet allocation and flight scheduling. This setup is employed to
design aircraft of different sizes, burning different fuels, and allocate these aircraft optimally on a chosen network. First,
we further clarify the overall problem of interest and the setup in Section II.A. Subsequently, Sections II.B and II.C
focus on the two levels, namely aircraft design and fleet allocation, respectively. The methods to evaluate the network
cost and climate impact are treated in Sections II.D and II.E

A. Multidisciplinary Problem Definition and Setup
The multidisciplinary design analysis and optimization (MDAO) setup tries to solve two problems: first, the optimization
of aircraft for given top-level aircraft requirements (TLARs) and selected objective functions. The aircraft design
objective functions considered in this study are the cash operating costs (COC) and the climate impact quantified by the
average temperature response over a period of 100 years (ATR100). This aircraft design optimization is done for three
sets of top-level aircraft requirements corresponding to different market segments (regional, medium-, and long-range).
The second goal of the MDAO framework is to consider this set of aircraft types, designed for the same objective, and to
allocate them on a given route network to maximize the profit on that network.

By taking this two-step approach, we can analyze how the aircraft types designed for a single objective function are
used together in a fleet, the overall achievable profit over a network, and the climate impact of the scheduled operations.
In particular, we can study how the fleet composition and schedule change with varying aircraft design objectives. The
aircraft design step can also design aircraft with the same top-level requirements and objectives but with different fuels,
such as drop-in sustainable aviation fuels (SAF) or liquid hydrogen. Hence, this setup allows assessing how the aircraft
designed for different objectives and fuels drive the fleet composition and schedule.

Figure 1 presents the overall strategy and workflow. Block 0 in this diagram manages the aircraft design optimization
defined in Equation (1). The first level (steps 1 to 6) is the aircraft design loop which ensures that consistent and feasible
aircraft are created. The details of the aircraft design process are discussed in Section II.B. The aircraft design routine
passes on flight performance information, such as the drag polar and engine deck parameters, for fleet allocation and
fleet-level assessment of energy consumption, climate impact, and profit. This aircraft design loop covers three sets
of top-level requirements, covering three market segments. This multi-aircraft analysis is highlighted by the stacked
disciplines in Figure 1, in comparison to the network-level analysis considering all three aircraft simultaneously. The
information of all three aircraft is passed on to the second level since all three aircraft types are considered for allocation
simultaneously.

The second level (steps 7 to 11) allocates the synthesized aircraft on the network to maximize the profit, considering
the available network demands between origin-destination pairs, which are for example imposed by an airline. The
demand and airports to be included are gathered in the "Network Info" block in the top row of the XDSM. This
information is fixed for all considered cases. Section II.C elaborates upon the steps in the fleet allocation model. Once
an optimal allocation and schedule are created, the climate impact of this network is evaluated.

By running this workflow for different aircraft design objectives and fuels, the resulting schedules can be compared
regarding profit and climate impact. Additionally, since the allocation of passengers is an output of the fleet allocation,
updates to the initial top-level aircraft requirements, such as maximum structural payload mass and design range, can
be proposed, which are tailored to the design objective and/or fuel. However, the automated update of such top-level
parameters is considered outside the scope of this paper and is proposed as a recommendation.
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x0
TLAR

𝜂grav, (ℎ/𝑟)dome
Network Info 𝐶fuel,kg, 𝐶trip Network Info

x∗ 0: Optimizer x x 𝑊/𝑆 𝑀cr, ℎcr x

1: Converger MTOM MTOM MTOM MTOM

OEM, 𝑚fuel 2-4: Disciplines
𝐶𝐷 , 𝑆, 𝑇TO,

Engine
Deck

𝑏,Λ0.25

𝐶𝐿,max, 𝑇TO

𝐶𝐷 , 𝜂ov,cr,

OEM, 𝐶hour
𝑓PR

𝐶hour

𝐶acq

𝐶𝐷 , 𝑆, 𝑇TO,

Engine
Deck

ATR100,

COC
5: Aircraft
Objectives

g
6: Aircraft

Constraints

Schedule
7: Network
allocation

pax 𝑓 , 𝑟 𝑓 , pax 𝑓 , 𝑘 𝑓 Schedule Schedule

profit 𝑓
8: Flight

profit

𝑔 𝑓

9: Flight
constraints

Profit
10: Network

profit

ATR100 11: Climate

Fig. 1 Extended design structure matrix (XDSM) representing the multidisciplinary workflow

B. Aircraft Design Optimization
The aircraft design optimization is similar to the setup in previous research [6, 12]. This section provides a summary of
this multidisciplinary aircraft design framework. The optimization considers two objective functions, the cash operating
costs, and the climate impact, and controls the aircraft design by nine aircraft design variables targeting the airframe,
turbofan engines, and mission profile. The optimization problem, independent of top-level requirements and fuel choice,
is formulated as follows:

minimizex 𝐹 (x) = ATR100 (x) or COC (x)

subject to 𝑥𝐿𝑖 ≤ 𝑥𝑖 ≤ 𝑥𝑈𝑖 for 𝑖 = 1, 2, ..., 9,
𝑔 𝑗 ≤ 0 for 𝑗 = 1, 2, ..., 5

(1)

where 𝑥𝑖 are the nine design variables, collected in vector x, and 𝑔 𝑗 are five inequality constraints. The aircraft design
variables for the aircraft under consideration are presented in Tables 4, 16 and 17. The inequality constraints 𝑔 𝑗 impose
limits on the wing loading, wing span, lift cruise coefficient, and engine technology parameters such as turbine entry
temperature at take-off (TET) and maximum overall pressure ratio (OPR).

The aircraft design process is based on conceptual methods considering several disciplines. The setup of the
workflow is similar for all aircraft categories and fuel types, although different input values are used. The workflow
employed in this study is based on existing methods discussed in References [6] and [12]. The disciplinary analyses
(block 2-4 in Figure 1) are run sequentially until the maximum take-off mass (MTOM) and operating empty mass
(OEM) of the aircraft converge. Three main disciplines are collected in the disciplines block 2-4 in Figure 1, namely
the airframe design, propulsion, and mission analysis. The following paragraphs summarize the inputs, outputs, and
working principles of these disciplines.

Airframe Design The airframe design discipline includes four steps being the Class-I sizing, the geometry creation,
the aerodynamic analysis, and the Class-II mass estimation. These disciplines use the design variables selected by
the optimizer and the current MTOM estimate to conceptually size the fuselage, wing, and empennage, and assess
aerodynamic and structural properties required in subsequent disciplines. The size and mass of the engines are
determined separately in the propulsion module.

The Class-I sizing module uses the MTOM to determine the wing area and take-off thrust of the aircraft. These
two parameters are derived from the wing loading 𝑊/𝑆 and thrust-to-weight ratio 𝑇/𝑊 . The wing loading is a
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design variable, while the module selects the thrust-to-weight ratio automatically so that performance and regulatory
requirements are met. These requirements are related to the take-off distance, cruise speed and cruise altitude, and
climb gradients in one-engine-inoperative and balked-landing conditions.

All aircraft considered in this study have a tube-and-wing configuration with two turbofan engines mounted on the
wing. Based on the wing area and payload requirements, a conceptual geometry of the aircraft is generated according to
the design rules discussed in Appendix C of Reference [6]. The wing is sized according to the chosen wing loading and
the estimated MTOM of the aircraft. The discipline automatically updates the wing planform according to the selected
aspect ratio and cruise Mach number, which drives the wing sweep and taper ratio.

The fuselage cabin is sized according to a one-class layout, with four, six, and nine seats abreast for regional,
medium- and long-range aircraft, respectively. For hydrogen-powered aircraft, a liquid hydrogen tank is positioned aft
of the cabin in the fuselage. This tank is cylindrical with ellipsoidal end caps, fitted to the inner diameter of the fuselage.
The length is subsequently derived from this diameter and the total required volume. This volume follows from the
maximum fuel mass required and the density of liquid hydrogen (approximately 71 kg/m3). This tank elongates the
fuselage tail section increasing the fuselage structural mass and zero-lift drag component. This is reflected in the
following aerodynamic and mass disciplines.

The next step in the airframe design chain is to estimate the drag polar of the aircraft, abbreviated by 𝐶𝐷 in Figure 1.
We assume the drag polar to be quadratic, with a zero-lift drag term and a lift-dependent drag term. The first term is
computed by adding the contributions of individual aircraft components [6, 23]. The lift-induced component of the
quadratic polar scales with the effective aspect ratio of the wing and the Oswald factor, which is determined statistically
as a function of the chosen wing aspect ratio [23]. To account for drag-reducing wing tip devices, 5% is added to the
geometric aspect ratio to obtain the effective aspect ratio, which is used in the drag polar throughout the MDAO chain.

The final step in the airframe design is to assess the operating empty mass of the aircraft based on the geometry and
expected loads. We use the methods from Torenbeek [24] to analytically estimate the masses of component groups such
as the fuselage, wing, empennage, and undercarriage. The masses of operational items and fixed airframe systems
and equipment are set for each aircraft category and thus do not change with fuel. The assumed values are included in
Table 15. For the cryogenic hydrogen tank, a fixed gravimetric index 𝜂grav of 0.4 is assumed, which relates the tank
mass to the maximum fuel mass it can hold [12].

Propulsion All aircraft are powered by two turbofan engines mounted onto the wings. The propulsion model
determines the performance of these engines with physics-based, 1D thermodynamic on- and off-design models [25],
considering a variable-specific heat model [26]. The engine cycle is determined and the engine is sized according to
the required thrust levels in cruise and take-off. The performance output of this module consists of fuel and energy
consumption, as well as the emissions of various species, including CO2, NOx, soot, and sulfate (SO4). The 1D
thermodynamic model is required to compute the temperature and pressure at the combustor inlet and calculate the
emission index of NOx.

The engine performance depends on the exhaust gas composition, which varies between the different fuels. Therefore,
two gas models are implemented: one for fossil kerosene and SAF [26], and one for the combusted hydrogen mixture,
which contains more water vapor than the other two fuels but no carbon-based molecules [27]. Several types and
production pathways exist for drop-in SAF. In this paper, we assumed a 50-50 mixture of traditional kerosene with
hydro-processed esters and fatty acids (HEFA). Furthermore, the calorific values and emission indices are different for
each of the fuels. Table 1 summarizes the values used per fuel type.

Table 1 Overview of calorific values and emission indices for fuel types under consideration [4, 12]

Kerosene SAF 50% Hydrogen

LHV [MJ/kg] 43.0 43.6 120
EI CO2 [kgCO2

/kgfuel] 3.16 1.58 0.
EI H2O [kgH2O/kgfuel] 1.26 1.32 8.93
EI Soot [kgSoot/kgfuel] 4.0 × 10−5 2.0 × 10−5 0.
EI SO4 [kgSO4

/kgfuel] 2.0 × 10−4 1.0 × 10−4 0.
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Mission Based on the aircraft mass, aerodynamic characteristics, and engine performance obtained in the previous
disciplines, the mission module updates the mission fuel mass required. Together with OEM estimation from the
Class-II mass calculation and the payload mass, this fuel mass allows the converger to update the MTOM of the aircraft.
The mission module computes the mission fuel according to the methods laid out by Torenbeek [28]. These methods
are largely independent of the fuel type (kerosene, SAF, or liquid hydrogen) except for the statistical coefficients used for
the maneuvering, diversion, and loiter phases. Therefore, the methods are augmented for hydrogen with the Breguet
equations for diversion and loiter [29].

C. Fleet Allocation
Steps 7 to 11 of Figure 1 allocate the aircraft designed in steps 1 to 4 on a given network to maximize the profit while
considering operational constraints. The network profit is defined as the sum of all profits collected over all allocated
flights minus the ownership costs of all assigned aircraft. The dynamic programming method was chosen to model the
fleet assignment problem. Dynamic programming is an optimization method that breaks down a complex problem
into smaller, simpler sub-problems and solves each sub-problem only once, storing the solution to avoid redundant
calculations. This approach allows for efficient solutions to otherwise computationally infeasible problems. Dynamic
programming has been widely used in aviation to optimize operational problems. The methodology adopted in this study
was inspired by the work of Seaone Álvarez [30] and Noorafza et al. [31]. Figure 2 shows how the algorithm works.

Dynamic Programming 
Routine

Passenger 
demand

Solve a flight 
scheduling problem 

for each aircraft 
type

Select the most 
profitable aircraft 

type

profitable?

Assign the aircraft 
to the network and 
calculate its total 

profit

Stop Dynamic 
Programming 

Loop

Insert the aircraft in 
the fleet and 

update the input 
passenger demand

available 
demand=0?

Stop Dynamic 
Programming 

Loop

Yes

No

Network and 
aircraft input

is it 
the last ac 

type?

Yes

No

Select the 
next-best aircraft 

type

No

Yes

I1

I2

Fig. 2 Dynamic programming approach employed to solve the fleet allocation problem (adapted
from [30])

The approach requires two distinct types of input data, which are labeled with different numbers. In block I1, there is all
the network-related information, such as the network type, operated routes, airport data, and fleet-related data, such
as aircraft types, seating capacity, range, and fuel consumption. More information on this input data can be found in
Section III.A. Block I2 consists of passenger demand data, which is elaborated upon later in this section. This block is
subject to a condition that must be verified before initiating the dynamic programming routine: passenger demand must
exist (or must be greater than a certain value chosen by the airlines).

Once the passenger demand condition is verified, the dynamic programming routine is initiated. Within this block, a
flight scheduling problem is solved for each aircraft type in the fleet, with the objective of identifying the aircraft type
that yields the highest operational profit. The most profitable aircraft is then virtually assigned to the network, its flight
schedule is built, and its overall profit is determined, including the aircraft ownership costs. If the total profit is greater
than zero (or greater than a benchmark chosen by the airline), the aircraft is added to the fleet. Otherwise, the procedure
is repeated for the next-best aircraft type, and so on until a profitable aircraft type is found.

If none of the aircraft types are profitable or no demand is left, the algorithm stops. However, if a profitable aircraft
type is identified, the aircraft is added to the fleet, and the passenger demand assigned to its schedule is removed from
the input data. The cycle repeats iteratively until one of the two stopping criteria is met. Ultimately, the algorithm
output is the best aircraft fleet for the airline (i.e., how many aircraft instances of each aircraft type), along with the
weekly schedule for each aircraft.
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Flight Scheduling Problem The idea behind dynamic programming is the possibility of solving one sub-problem
at a time. Each time the dynamic programming routine is accessed, as many sub-problems are solved as there are
aircraft types available. Each sub-problem is a flight scheduling problem with only one aircraft and it is solved using the
Bellman-Ford algorithm [32, 33]. The Bellman-Ford algorithm is a shortest path algorithm that can be used to find the
shortest path between two nodes in a graph. In this case, the graph is built on a space-time network, where the spatial
coordinates are the airports and the temporal coordinates are the time bands (whose width is the resolution of the model).
The algorithm works by repeatedly relaxing all edges in the graph until the shortest path distances converge. In this study,
it is used to find the best route for each aircraft with the goal of maximizing operational profit. The output consists of the
best schedule for the aircraft under consideration. The problem is subject to the following three operational constraints:

1) the number of passengers carried and the distance to be flown must fall within the aircraft’s range-payload
diagram. The payload-range envelope is modeled as a function ( 𝑓PR in Figure 1) which returns the maximum
allowed payload mass for a certain aircraft type at a certain range;

2) a flight cannot depart after the airport closure for curfew and cannot land before the airport opening at the end of
curfew;

3) a flight cannot depart if the departure airport’s runway is shorter than the aircraft’s required runway or if the
arrival airport’s runway is shorter than the aircraft’s required runway.

This dynamic programming approach offers increased flexibility and reduces computational time compared to exact
optimization methods, but provides a sub-optimal solution. However, the optimality of the resulting schedule is not the
primary focus of this research and does not affect the validity of the results obtained. These results mainly focus on the
differences in the allocation of fleets with aircraft fueled by different fuels or designed for different objectives.

Demand Input Modeling and Passenger Selection In this problem formulation, we are considering the period of
one week. Therefore, the passenger demand per origin-destination (OD) pair is an input to the model. Nevertheless, the
demand throughout the week is not constant. The required input is a demand schedule per OD pair where the weekly
demand is divided into discrete demand peaks throughout the peak, around which the demand is normally distributed.
For each OD pair, this results in an array of 504 elements of 20-minute intervals. Each interval has either no demand (0)
or a positive integer indicating the number of passengers willing to travel a specific route at that time. This approach
ensures that it will be more attractive to keep flying at certain high-demand periods, no matter what the design objective
of the aircraft is. Hence, we can assume that in general passenger preferences will still be regarded when defining the
flight schedules and that the airline remains competitive. Visual representations of such demand schedules are provided
in Figures 3 and 8a.

This demand schedule influences how many passengers can be transported between an origin-destination pair at
the departure time under consideration by the algorithm. As discussed above, the input to the allocation problem is a
demanding schedule where each demand peak is spread out over multiple time slots of 20 minutes. When the algorithm
considers a possible flight at a given departure time slot, the maximum passenger number that can be taken on board is
the minimum value of either

• the demand available in that 20-minute time slot plus the demand available in the surrounding 𝑛attr time slots, or
• the maximum amount of seats the aircraft type under consideration, multiplied by a given load factor.

The parameter 𝑛attr is the attraction band. In the current study, the attraction band is set to nine, meaning that the
algorithm can pick up any available demand from the three hours prior and three hours after the considered departure
time. This simulates the willingness of a subset of the passengers to take a slightly earlier or later flight. This passenger
selection at a departure time 𝑡 for route 𝑖 can be formulated as follows:

pax𝑖,𝑡 = min

(
seat𝑘 · LF𝑘 ,

𝑡+𝑛attr∑︁
𝑥=𝑡−𝑛attr

demand𝑖,𝑥

)
(2)

Model Considerations The approach presented and adopted in this research is based on some model considerations,
both methodological and numerical. The most significant considerations are listed below:

• The objective is to maximize profit. Also when aircraft which are optimized for a climate objective are used, we
assume that the operator would still prefer to maximize its profits;

• The model simulates an average week of operations, thus it produces the flight schedules for 7 days;
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• Time resolution of the model is 20 minutes. The resolution of the model indicates the width of the time intervals in
which time is discretized. This concept is used to represent the airline flight network on which the Bellman-Ford
algorithm is applied.

Furthermore, when developing the schedule for a particular aircraft, the algorithm considers a turn-around time (TAT)
between two consecutive flights. We consider this turn-around time to be particular to a certain aircraft type and
independent of the number of passengers onboard. The turn-around time (in hours) is approximated using the relation
proposed by Perez and Jansen [18]:

TAT𝑘 =

(
2.0 +

𝑛seats,𝑘

𝑐1 · 𝑛doors,𝑘
+
𝑛seats,𝑘

𝑐2
+ 𝑛seats

𝑐3 · 𝑛doors,𝑘
+ 3.0

)
/ 60 (3)

where 𝑛seats,𝑘 and 𝑛doors,𝑘 are the number of seats and opened doors for aircraft type 𝑘 , respectively. In practice, the
TAT may vary depending on how many passengers are carried on board a specific flight. However, in this study, we
assume a constant, conservative turn-around time with the maximum number of seats occupied and only one open door
at the gate for all flights.

D. Operating Cost Analysis
In the dynamic programming routine, the operating costs for each potential flight have to be calculated to assess the
achievable operational profit. In this study, we only consider the direct operating costs (DOC), which are mostly driven
by the aircraft design, and neglect the indirect operating costs which are strongly dependent on airline strategic decisions.
The direct operating costs are dependent on fuel consumption, oil usage, crew costs, maintenance costs, insurance, and
landing fees. The cost to execute a flight, 𝐶 𝑓 , is defined as follows:

𝐶 𝑓 = 𝐶fuel + 𝐶oil + 𝐶crew + 𝐶maint + 𝐶ins + 𝐶landing (4)
= 𝐶fuel/kg · 𝑚fuel,bl + 𝐶hour · 𝑡bl + 𝐶landing (5)

The fuel costs are calculated from the fuel mass consumed on that particular flight. This fuel mass is estimated using the
analytic relations from Torenbeek’s lost-range method [28] where the cruise range is set to the great circle distance
between the origin and destination of the considered flight. The payload mass is dependent on the number of passengers
assigned to this flight by the allocation algorithm. The lost-range method also includes fuel spent during take-off and
climb as a function of the initial cruise altitude and velocity and adds a fraction to account for maneuvering. Additionally,
reserve mission fuel is considered in the mass estimation, but this part is not added to the cost estimation since it is
unlikely that this fuel is used on every flight.

The landing fee 𝐶landing is a fixed fee per flight. In the current model, this fee is assumed to be the same for every
airport in the network. We assume that the other cost elements in Equation (5) scale with the block time 𝑡bl of the flight.
The block time is the sum of four terms: 1) the cruise time, 2) the time spent in take-off, climb, descent, and landing, 3)
the time covered by ground maneuvers such as taxiing to and from the runway, and 4) the time covered in the air for
maneuvering. The cruise time is equal to the great circle distance between the origin and destination divided by the
cruise speed. We estimate the flight time before and after cruise by performing a numeric mission of the aircraft. We
determine the ground maneuvering time 𝑡gm the relation suggested by Roskam [34]:

𝑡gm = 0.51 · 10−6 · MTOM + 0.125 (6)

where MTOM is the aircraft’s maximum take-off mass in kilograms. Ten minutes are added to account for airborne
maneuvers. All non-cruise time components are collected in the landing and take-off time parameter (LTOT). This time
is also taken into account in the scheduling algorithm. The time spent on ground operations while the aircraft is parked,
such as the unloading and loading of passengers, is not added to the block time but is considered in the turn-around
time between flights, as discussed above. This time-dependent cost term 𝐶hour is based on the methods introduced by
Roskam [34] and uses cost estimates from 2022 [12].

As discussed in the fleet allocation algorithm section, once the most profitable aircraft is selected, the net profit has
to be computed by subtracting the weekly ownership costs from the profits obtained from the flights throughout the
week. This ownership cost is modeled as an annual fee for acquiring the aircraft, either through purchase or leasing.
The annual leasing cost is assumed as a fraction of the aircraft purchasing price [17]:

𝐶acq,week,𝑘 = 0.0835 · APP𝑘/52 = 0.0835 ·
(
AFP𝑘 + 𝑛eng · EPP𝑘

)
/ 52 (7)
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where AFP is the airframe purchase price and EPP is the engine purchase price. These prices are estimated from
relations based on aircraft operating empty mass and engine take-off thrust, respectively [35]. The daily ownership cost
for aircraft type 𝑘 is equal to 𝐶acq,week,𝑘 divided by seven in the current setup. This approach may underestimate the
daily or weekly ownership costs since an aircraft does not operate every day because of maintenance tasks, for example.

E. Climate Impact Assessment
Once the fleet has been allocated and the schedule is known, the climate impact of the network can be evaluated.
The climate impact cannot be calculated during the fleet allocation iterations since the computation is nonlinear and
requires a multi-year emission scenario as input which is not known when the objective function is evaluated due to
the backward-solving procedure of the dynamic programming routine. An alternative approach would be to consider
the emission and contrail length during the schedule creation as metrics for climate impact. However, this would not
capture differences in the short- versus long-term effects of the different species. In this research, the climate impact
is measured by the average temperature response over a period of 100 years (ATR100). This metric is defined as the
averaged integral of the temperature response Δ𝑇 over a period 𝐻:

ATR𝐻 =
1
𝐻

∫ 𝐻

0
Δ𝑇 (𝑡) 𝑑𝑡 (8)

where the unit of variable 𝑡 is one year. The temperature response is calculated using a linearized temperature response
model [4, 12]. This parameter considers the effects due to carbon dioxide (CO2) emissions, nitrogen oxides (NOx)
emissions, contrail formation, and emissions of soot and sulfate (SO4). While the effects of NOx and contrails on Δ𝑇 (𝑡)
are typically short-lived (from hours to decades), the warming effect due to CO2 emissions can span over centuries.
Therefore, we select a period of 100 years which provides a balance between the short- and long-lived effects [36].

The time horizon under consideration starts in 2023 and continues until 2123. We assume that the fleet operates for
35 years, approximately the lifespan of an aircraft, and that the network schedule is repeated 52 times per year. This
leads to an operational scenario where the annual emissions and contrail formation are constant, but non-zero, for the
first 35 years and then abruptly fall to zero from 2058 onward. In reality, it is likely that network demand will increase in
the future [1, 2] and that the fleet composition will change due to this growth, new technologies, and potential policies.
This growth effect is not captured in the approach since we assume a steady demand. However, this approach allows us
to answer the research questions posed in Section I which focus on the comparison of fleets and aircraft designs, rather
than accurately computing the actual climate impact of a future scenario.

To create the 35-year emission scenario, the emissions for all flights in the weekly schedule have to be computed and
added. The carbon dioxide emissions follow directly from fuel consumption. However, the NOx emissions and contrail
formation have to be evaluated at discrete steps in the mission since these effects are altitude dependent. Therefore, a
numeric mission analysis is carried out for each unique flight performed in the weekly schedule. A unique flight is
defined by the route, the aircraft type, and the number of passengers carried, since this will affect the flight performance.

The data per flight obtained through this mission analysis are the CO2 emissions, NOx emission distribution per flight
level, and contrail length distribution per flight level. For each of these climate species, these values and distributions
are multiplied by the frequency of this particular flight and subsequently added to achieve the total value or distributions
of the one-week period. Finally, the data is multiplied by 52 to model the contribution of one year. The emission indices,
contrail formation criteria, and contrail properties are different for each considered fuel. In this study, we assume the
data collected in Table 1.

The linearized temperature response model [4, 6] first translates the emission scenario into radiative forcing, then
normalized radiative forcing, and finally into the temperature response. This model considers the warming effects due
to changes in atmospheric concentrations due CO2, short-term ozone (as a result of NOx emissions at altitude), as well
as the warming effects due to contrails. The effect of contrails is currently studied and may consist of warming and
cooling effects [37], depending on the time and location. However, in this study, we assume that the net effect results in
global warming. The temperature response calculations also consider the cooling effects due to long-term methane and
ozone depletion as a result of NOx emissions.
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III. Cost-Optimal Reference Case and Verification
This section introduces the reference network on which the different aircraft sets will be allocated. In this section, we
focus on the allocation of cost-optimal, kerosene aircraft, which allows us to verify the dynamic programming approach
and provides a reference case for the solutions in Section IV. The aircraft design methods have been verified in earlier
research for the three aircraft categories [6, 12], but the connection to the network level is new in this paper. Therefore,
the verification step here targets the connection between the aircraft design, the fleet allocation, and the fleet allocation
model itself. Note that the fleet allocation algorithm requires inputs and assumptions, such as airport landing fees and
ownership costs, which are not made publicly available for all airports or operators. Therefore, the verification in this
section aims at reproducing the realistic decision-making of an operator rather than obtaining 100% accurate cost or
profit measures.

A. Reference Network Demand Data and Cost-Optimized Aircraft
The reference network we consider is based upon the North American network operated by Delta Airlines, as introduced
by Jansen and Perez [38]. The hub of this network is Atlanta Airport (ATL). From this hub, we consider passenger
demand towards nineteen domestic and eleven international airports. The passenger demand introduced in the work
by Jansen and Perez is translated into a weekly demand and gathered in Table 2. The demand for the five additional
transatlantic routes is taken from the Bureau of Transport Statistics (BTS) Air Carriers: T-100 International Segment
(US Carriers Only) ∗ database. We assume that the network demand in Table 2 is symmetric, meaning that there is an
equal weekly demand from each destination airport to Atlanta.

The weekly passenger demand is transformed into a demand schedule, as introduced in Section II.C. This proposed
schedule assumes demand peaks at discrete times throughout the week. The demand at a particular time is subsequently
distributed over a three-hour interval, with the peak time at the center of the interval. If an aircraft cannot depart at the
time of the peak due to surrounding flights, for example, it can still capture a fraction of the demand because of this
distribution. We assume that for each demand peak, a six-hour window exists in which passengers are willing to depart.

Figure 3 shows examples of the demand schedules for the Atlanta-Boston and Atlanta-Amsterdam connections. The
demand schedule for domestic routes is set up such that multiple demand peaks are present each day, representing an
expected daily frequency of 6 or 7. For transatlantic routes, the demand is modeled after the current flight departure
times in the late afternoon or early morning. The heatmap in Figure 8a shows how the demand for each route in the
network is spread throughout the week, per time step of 20 minutes, for the considered network. The dark green regions
indicate the highest demand, while the light yellow regions indicate moments of zero demand. The demand schedule is
arranged so that each route’s highest demand occurs during the day. For each airport, departures have to occur between
five o’clock in the morning and eleven in the evening, representing a curfew of six hours each day.

Since the objective of the fleet allocation is to maximize the network’s profit, the allocation needs cost and yield
estimates as input. Table 3 provides an overview of the assumptions for the reference network. The remaining overnight
parking cost applies whenever an aircraft has to spend the night at an airport other than the hub, which is Atlanta Airport.
Because of airport curfews, sometimes the aircraft cannot return to the hub on the same day and has to be parked at the
destination airport. Typically, this period is less than eight hours long. A landing fee is added to the operating costs for
each flight. The remaining overnight and landing fees are assumed to be the same for all considered airports, although,
in practice, these numbers will be different for each airport or country. The yield per passenger-kilometer in Table 3 is
an average value based on economy-class ticket prices over the considered routes in 2023 †.

The baseline set of aircraft consists of three aircraft types which are all optimized to minimize the cash operations
costs at the aircraft level. Table 15 summarizes the top-level of these three aircraft categories, targeting the regional,
medium-, and long-range market segments. In the upcoming sections, these three aircraft types are referred to using
the acronyms "REG", "SMR", and "LR". The top-level requirements are based on existing aircraft [40–42], and these
requirements are the same for all considered aircraft design objectives and fuels in this research.

The design variables and performance data for the kerosene-powered aircraft types are presented in Table 4. The
chosen design variables result from the optimization defined in Equation (1) and are based on the work performed
in previous research [12]. We use the data of the aircraft designed for the minimal operating cost (COC columns in
Table 4) to define the reference scenario and to complete the verification step in Section III.B. The provided mass and
performance metrics are inputs to the fleet allocation model.

∗URL https://www.transtats.bts.gov/Fields.asp?gnoyr_VQ=GDK accessed on 19 April 20223
†URL https://www.delta.com/flight-search/book-a-flight accessed on 19 April 2023
‡URL https://www.iata.org/en/publications/economics/fuel-monitor/ accessed on 2 April 2023
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Table 2 Reference network weekly passenger demand data

Origin Airport Destination Airport Destination Country Demand

Atlanta (ATL) Los Angeles (LAX) USA 6442
Atlanta (ATL) Minneapolis (MSP) USA 5849
Atlanta (ATL) Boston (BOS) USA 5280
Atlanta (ATL) Dallas-Fort Worth (DFW) USA 4908
Atlanta (ATL) Miami (MIA) USA 4760
Atlanta (ATL) Salt Lake City (SLC) USA 4611
Atlanta (ATL) San Francisco (SFO) USA 4212
Atlanta (ATL) New Orleans (MSY) USA 4193
Atlanta (ATL) Detroit (DTW) USA 3932
Atlanta (ATL) Denver (DEN) USA 3658
Atlanta (ATL) Seattle (SEA) USA 3528
Atlanta (ATL) Paris (CDG) France 3438
Atlanta (ATL) Phoenix (PHX) USA 3406
Atlanta (ATL) London (LHR) UK 2896
Atlanta (ATL) Columbus (CMH) USA 2508
Atlanta (ATL) Savannah (SAV) USA 2273
Atlanta (ATL) Cancun (CUN) Mexico 2136
Atlanta (ATL) Dublin (DUB) Ireland 2084
Atlanta (ATL) Buffalo (BUF) USA 1943
Atlanta (ATL) Amsterdam (AMS) The Netherlands 1860
Atlanta (ATL) Rome (FCO) Italy 1689
Atlanta (ATL) Portland (PDX) USA 1577
Atlanta (ATL) Albuquerque (ABQ) USA 1327
Atlanta (ATL) Munich (MUC) Germany 1289
Atlanta (ATL) Tucson (TUS) USA 984
Atlanta (ATL) Manchester NH (MHT) USA 625
Atlanta (ATL) Guadalajara (GDL) Mexico 589
Atlanta (ATL) Caracas (CCS) Venezuela 455
Atlanta (ATL) Georgetown (GCM) Cayman Islands 422
Atlanta (ATL) Quito (UIO) Ecuador 392

B. Verification
By performing the allocation routine for the network and the three cost-optimal, kerosene aircraft introduced in the
previous section, we find that the profit is maximized by allocating 36 aircraft. This fleet consists of eight regional
aircraft, 21 medium-range aircraft, and seven long-range aircraft. The total network profit in one week is approximately
23.4 million USD, including operating and ownership costs according to Section II.D. However, this figure does not
include any indirect operating costs or taxes related to emissions or noise. The profit margin for these aircraft on this
network is approximately 3.4%.

Figure 4 shows the convergence of the network profit and transported revenue passenger versus the aircraft added
to the operational fleet. The aircraft added correspond to the iterations carried out by the allocation algorithm (see
Figure 2). As can be seen in Figure 4, first large passenger aircraft are added, which offer large profits on long-range,
intercontinental flights. The corresponding routes are shown in Figure 5c. However, the long-range aircraft do not
cover the most RPKs, as can be seen from the distribution in Table 5. Subsequently, small, medium-range aircraft
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(a) Atlanta - Boston route
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(b) Atlanta - Amsterdam route

Fig. 3 Examples of demand schedules on routes in the reference network

Table 3 Cost and yield assumptions for the reference network, applicable to all airports or flights

Parameter Value

Remain overnight parking cost (stay cost) [USD/hr] 48
Landing fee [USD/landing] 7.8
Kerosene cost [USD/kg] 0.81 ‡

SAF cost [USD/kg] 1.16 [9]
Liquid hydrogen cost [USD/kg] 4.4 [39]
CO2 tax [USD/kg] 0
Revenue per passenger-kilometer [USD/(pax km)] 0.148

are allocated. These aircraft cover most of the revenue passenger kilometers (65%) by capturing the high demand on
domestic routes. Finally, regional aircraft are operated to pick up the remaining profitable demand relatively cheaply and
flexibly. However, this aircraft type covers the least amount of RPKs (9%) and contributes only 3% to the overall profit.

Figure 5 presents the routes operated by each aircraft type. The long-range aircraft transfer passengers to transatlantic
destinations, except for Dublin, and to high-demand routes to the west coast of the United States of America. The
Dublin route is not included in the schedule since it could not be operated profitably considering the assumptions.
Although long-range aircraft, in theory, can also operate shorter domestic routes profitably, this option is prevented by
the minimum distance constraint discussed below. The medium-range aircraft focuses on domestic routes. This aircraft
type is preferred over the other two types since it can operate these routes at a lower cost than the long-range aircraft
while being able to carry more passengers than the regional aircraft. Finally, the regional aircraft aims to transport the
remaining domestic demand and serve the Central and South American routes, which have a low weekly demand.

Based on this fleet allocation, we conclude that the current dynamic programming approach converges and can
realistically model the profit-seeking decision-making process. Nevertheless, we recommend addressing the following
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Table 4 Design variables and performance data of kerosene aircraft, partially based on Reference [12]

REG SMR LR
Variable [Unit] COC ATR100 COC ATR100 COC ATR100

𝐴 [-] 7.95 11.8 7.95 10.9 8.00 12.0
𝑊/𝑆 [kN/m2] 5315 5557 5506 6201 6612 7396
BPR [-] 7.50 9.80 8.17 8.23 10.1 11.0
Πfan [-] 1.80 1.48 1.80 1.48 1.72 1.38
Πlpc [-] 1.48 1.61 1.40 1.72 1.80 1.70
Πhpc [-] 22.4 23.7 23.9 23.3 19.1 25.0
TET [103 K] 1516 1481 1548 1443 1605 1454
ℎcr [km] 9.75 6.00 10.1 6.00 10.8 6.11
𝑀cr [-] 0.78 0.60 0.81 0.60 0.90 0.60

MTOM [-] 35.3 34.2 68.9 65.5 276 264
OEM [-] 20.8 19.8 39.9 36.4 140 127
𝐿/𝐷cr [-] 15.6 16 17.3 17.7 20.4 21.6
TSFCcr [10−5kg/(N s)] 1.41 1.24 1.42 1.26 1.46 1.2
𝜂ov,cr 39% 36% 40% 35% 42% 37%
LTOT 0h19m 0h19m 0h20m 0h20m 0h26m 0h26m
TAT 0h16m 0h16m 0h41m 0h41m 1h26m 1h26m
𝐶hour [103 USD/hr] 2.85 2.78 4.19 3.98 10.5 10.4
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Fig. 4 Convergence of network profit (objective) and allocated RPKs with aircraft allocation. The
profit and RPK values are normalized with the total network values.

two characteristics of the current dynamic programming implementation in the future: First, for the considered network,
there is a leftover demand from the hub to locations in Europe on the last day of the week and from the same locations
in Europe to the hub on the first day of the week. This demand cannot be captured because an aircraft would have to
leave at the overseas location on the first day and stay overnight at this location on the last day. However, the current
approach imposes that any aircraft should depart from the hub on the first day and end operations at the hub on the last
day. The algorithm should be updated to reflect this periodic continuity across the boundaries of the considered period.
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(a) Regional aircraft

(b) Medium-range aircraft

(c) Long-range aircraft

Fig. 5 Routes operated by the three aircraft types considered in the cost-optimal, kerosene case. The
square marker indicates the hub (Atlanta International Airport).
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Although these missing flights do affect the total revenue and profit, we are mostly interested in the differences between
allocating different types of fleets for the same network demand. Hence, all fleets studied in this research experience a
similar deficit in uncaptured demand, revenue passenger kilometers, and profit.

Second, when studying the allocation of the cost-optimal aircraft, we observed that the large passenger aircraft
were allocated to the transatlantic flights since these routes are the most profitable ones. To fill the weekly schedule of
these large passenger aircraft, the algorithm added flights to domestic destinations, which are profitable. Nevertheless,
regional or medium-range aircraft may make more profit on these shorter routes since they are less expensive to operate
and acquire. But since the demand on these short routes was already partially covered by the large aircraft, the smaller
aircraft did not have the chance to transport these passengers in later iterations steps. This led to a sub-optimal allocation
of the aircraft. To circumvent this issue, a minimum route distance was imposed on the operations of the large passenger
aircraft of 3000 km (1620 nmi). This constraint leads to an increase in overall fleet profit and a reduction in total fuel
burn. Although this range is set arbitrarily at the moment, such that only high-demand operations on the West Coast and
transatlantic flights can be operated by the large passenger aircraft, it is recommended to choose the constraint value
strategically in the future based on relative aircraft operating and ownership costs. Alternatively, longer turn-around
times and/or higher operating costs on these routes can penalize domestic operations with the LR type.

IV. Results and Discussion
Using the reference, cost-optimal case introduced in Section III as a starting point, we now employ the method defined
in Section II to examine how the aircraft sets designed for a climate objective and powered by different fuels should be
allocated to maximize the profit while monitoring the effect on climate impact. First, we only consider the aircraft
redesign for the climate objective, using fossil-based kerosene. This is discussed in Section IV.A. Subsequently, the
impact of introducing liquid hydrogen- or SAF-powered aircraft concepts is studied in Section IV.B. Throughout
this section, the input network demand and the associated demand schedule throughout the week, as described in
Section III.A, remain equal, irrespective of the considered design objective or fuel.

A. Allocation of Climate-Optimal, Kerosene-Powered Aircraft
This section studies how climate-optimal, kerosene-powered aircraft should be allocated on the network to maximize
profit. These aircraft’s design variables and performance metrics are presented in Table 4. Compared to the cost-optimal
reference case, a crucial change in the design of these aircraft is the lower cruise altitude to minimize non-CO2 effects
[6]. A reduced cruise Mach number accompanies this lower cruise altitude to maintain a near-optimal lift-to-drag ratio
in cruise. However, these changes lead to a lower cruise velocity and a longer mission block time. Therefore, it is
hypothesized that these climate-optimal aircraft cannot reach the same productivity level (RPK / unit of time) as the
cost-optimal counterparts unless more aircraft of the same capacity are operated.

The changes in fleet composition (i.e., number and types of aircraft) and operations as a result of climate design
objective can be found in Tables 5 to 14. The overall network profit is reduced by 21%, while the climate impact
decreases by 61%. The reduction in profit is due to the increased operating costs per flight, the reduced cruise speed and
longer block time, and the 22% less revenue passenger kilometers covered overall. The latter is expected to be caused by
the longer flight time, which limits the consecutive flights per aircraft instance in a given period (day or week).

Similarly, the reason for the reduction in climate impact is twofold. First, the redesigned aircraft feature a lower
cruise altitude which targets the contribution due to NOx emissions and contrail formation. The impact of contrails is
eliminated for the climate-optimal kerosene network since the aircraft are flying lower, in conditions where persistent
contrails cannot form. Second, we observe a decrease in climate impact due to the reduction in profitable RPKs. This
observation is supported by the reduction in energy consumption, and linearly-related CO2 emissions, in Table 8. At
the single-mission level, the CO2 emissions of the climate-optimal aircraft are equal to or even larger than for the
cost-optimal aircraft. Hence, since the emissions are greater or equal at the aircraft level but reduced at the network
level, we can deduce that the climate impact is partially reduced because of the decrease in passenger mileage.

In the cost-optimal fleet, the medium-range category contributes most to the climate impact, as shown in Table 7.
This corresponds to the highest share of revenue passenger kilometers. When switching to the climate objective, the
long-range category becomes relatively more important, while the relative contribution to the network RPKs reduces.
We expect that the reason for this is that the maximum achievable climate impact reduction, by changing the design
objective, for long-range aircraft is lower than for medium-range aircraft.

To maximize the profit, the climate-optimal fleet requires 41 aircraft, five more than in the case of the cost-optimal
fleet. Four medium-range and one long-range aircraft are added to the fleet. In terms of relative profit, RPK, and
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departures, we observe the contribution of regional and long-range aircraft to these parameters shifts towards the
medium-range category when moving from the cost to the climate objective. Nevertheless, despite the increase in
number of SMR aircraft and relative RPK coverage, the number of departures by SMR aircraft stays approximately
the same (see Table 13). Although one long-range aircraft is added to the fleet, the total departures among long-range
aircraft decrease from 92 to 76, and one destination is removed (Table 14). The weekly flights to Munich (MUC) are
stopped since the relatively low demand on this long-range route cannot be captured profitably anymore, while the route
to Rome (FCO) with higher demand and similar range is still operated. Similarly, the departures by regional aircraft
decreased by 22%, and three designations (Portland, Phoenix, and San Francisco) are no longer operated by regional
aircraft.

Previous research indicated that 11, 18, or 36% more aircraft would be required when switching from a cost objective
to a climate objective [6], for the regional, medium- and long-range categories, respectively. The current analysis
shows that 13% (41 versus 36) more aircraft are allocated, of which none are extra-regional aircraft. This difference
exists because of the constant productivity assumption made in previous research, where it was assumed that the same
productivity level had to be achieved by the climate-optimal aircraft. However, in this research, we do not impose a
constraint on the productivity level or flight frequency but let the profit drive the fleet selection instead. The current
analysis shows that the increase in aircraft number is less than previously expected because adding more aircraft would
not be profitable. Hence, it would be irrational to acquire 18% or 36% more aircraft if a subset of these cannot be
allocated profitably. This aspect makes the current approach more realistic. Additionally, the current approach allows
the routes flown and demand captured to vary between objectives and fuels. Nonetheless, the validity of this conclusion
is only tested for the reference network considered in this study.

When comparing the average load factor in Table 12, a slight increase in load factor for all aircraft types is present.
This indicates that the algorithm tries to have full aircraft, which is now required to ensure that a flight becomes
profitable. Nevertheless, the increase in load factor is only marginal since the difference varies between 1 and 4%.

Table 5 Comparison of network profit [Million USD]

Kerosene SAF Hydrogen

C
os

t

REG 0.7 (3%) 0.6 (3%) 0.4 (3%)
SMR 12.8 (55%) 10.9 (52%) 12.1 (77%)
LR 9.9 (42%) 9.3 (45%) 3.2 (20%)

Total 23.5 20.8 15.7

C
lim

at
e

REG 0.5 (2%) 0.4 (3%) 0.4 (3%)
SMR 11.5 (62%) 10.4 (62%) 9.4 (73%)
LR 6.6 (36%) 6.0 (36%) 3.0 (24%)

Total 18.6 16.9 12.7

Table 6 Comparison of RPK [109 km]

Kerosene SAF Hydrogen

C
os

t

REG 0.41 (9%) 0.34 (8%) 0.30 (8%)
SMR 3.01 (65%) 2.81 (64%) 3.12 (78%)
LR 1.19 (26%) 1.24 (28%) 0.57 (14%)

Total 4.62 4.39 3.99

C
lim

at
e

REG 0.27 (8%) 0.25 (7%) 0.22 (7%)
SMR 2.54 (71%) 2.50 (71%) 2.54 (78%)
LR 0.79 (22%) 0.77 (22%) 0.48 (15%)

Total 3.60 3.52 3.25

B. Introduction of Future Aviation Fuels into the Fleet
As discussed in the previous section, redesigning the aircraft for a climate-focused objective such as ATR100 can
significantly reduce the climate impact of the network by 61%. Nevertheless, introducing future aviation fuels, such as
drop-in sustainable aviation fuels and liquid hydrogen, can reduce the climate impact even further, especially when
combined with ATR100 as the design objective. In this section, we consider aircraft powered by different fuels and how
they should be allocated to maximize profit. The aircraft design variables and performance indicators for the LH2- and
SAF-powered aircraft sets are summarized in Tables 16 and 17 in Appendix B.

Bringing all design objectives and fuels together results in a total of six case studies. Figure 6a presents the resulting
fleet performance of each of these fleets, where the point (1,1) corresponds to the reference cost-optimal, kerosene fleet
discussed in Section III. This plot shows that the hydrogen, climate-optimal fleet has the lowest climate impact, but this
gain comes at a 46% decrease in the network profit. The large reduction in ATR100 is facilitated by the lack of CO2
emissions and persistent contrails, as well as a reduction in NOx emission index and reduced radiative forcing due to the
lower cruise altitude.
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Table 7 Comparison of climate impact [10−3 mK]

Kerosene SAF Hydrogen

C
os

t

REG 12.5 (12%) 6.1 (11%) 3.0 (13%)
SMR 55.1 (51%) 27.5 (50%) 15.5 (69%)
LR 40.8 (38%) 21.7 (39%) 3.9 (17%)

Total 108.5 55.3 22.4

C
lim

at
e

REG 2.9 (7%) 1.2 (6%) 0.0 (5%)
SMR 20.6 (48%) 9.4 (47%) 0.4 (55%)
LR 19.3 (45%) 9.3 (46%) 0.3 (40%)

Total 42.9 19.9 0.7

Table 8 Comparison of energy consumption [108 MJ]

Kerosene SAF Hydrogen

C
os

t

REG 0.23 (8%) 0.21 (8%) 0.17 (7%)
SMR 1.34 (46%) 1.24 (45%) 1.37 (59%)
LR 1.34 (46%) 1.32 (48%) 0.79 (34%)

Total 2.91 2.76 2.33

C
lim

at
e

REG 0.18 (7%) 0.16 (7%) 0.15 (7%)
SMR 1.29 (51%) 1.26 (51%) 1.40 (63%)
LR 1.08 (42%) 1.05 (42%) 0.68 (31%)

Total 2.55 2.47 2.24

Table 9 Comparison of pax transported [103]

Kerosene SAF Hydrogen

C
os

t

REG 17 (11%) 14 (10%) 13 (10%)
SMR 104 (69%) 100 (69%) 109 (80%)
LR 29 (20%) 32 (22%) 14 (10%)

Total 150 146 137

C
lim

at
e

REG 14 (9%) 12 (9%) 10 (8%)
SMR 105 (73%) 102 (73%) 102 (80%)
LR 26 (18%) 25 (18%) 15 (12%)

Total 145 139 127

Table 10 Comparison of distance flown [106 km]

Kerosene SAF Hydrogen

C
os

t
REG 0.35 (17%) 0.33 (17%) 0.28 (15%)
SMR 1.19 (57%) 1.11 (57%) 1.28 (69%)
LR 0.54 (26%) 0.52 (27%) 0.28 (15%)

Total 2.09 1.96 1.84

C
lim

at
e

REG 0.28 (15%) 0.25 (14%) 0.24 (15%)
SMR 1.15 (62%) 1.14 (63%) 1.15 (71%)
LR 0.43 (23%) 0.42 (23%) 0.23 (14%)

Total 1.86 1.81 1.62

Table 11 Comparison of number aircraft
allocated to the fleet

Kerosene SAF Hydrogen

C
os

t

REG 8 8 7
SMR 21 20 23
LR 7 7 4

Total 36 35 34

C
lim

at
e

REG 8 7 6
SMR 25 25 24
LR 8 8 4

Total 41 40 34

Table 12 Comparison of average load factor
per flight

Kerosene SAF Hydrogen

C
os

t REG 88% 89% 94%
SMR 91% 91% 95%
LR 73% 75% 76%

C
lim

at
e REG 92% 94% 96%

SMR 92% 93% 96%
LR 77% 78% 83%

Between the two extreme solutions, i.e., the kerosene, cost-optimal fleet and the hydrogen, climate-optimal fleet, the
SAF-powered counterparts appear to be Pareto optimal. Aircraft using a 50-50 SAF mixture can reduce the climate
impact of the fleet between 49 and 82%. The cost-optimal SAF fleet is the closest option to the reference kerosene case.
These aircraft are similar in design, except for the small difference in the selected cruise Mach number. Therefore, the
reduction in network profit and RPKs is mostly driven by the higher fuel cost of drop-in SAF.
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Table 13 Comparison of number of departures

Kerosene SAF Hydrogen
C

os
t

REG 226 (24%) 192 (21%) 168 (20%)
SMR 636 (67%) 610 (68%) 642 (75%)
LR 92 (10%) 96 (11%) 42 (5%)

Total 954 898 852

C
lim

at
e

REG 176 (20%) 154 (18%) 128 (17%)
SMR 634 (72%) 608 (73%) 594 (78%)
LR 76 (9%) 74 (9%) 40 (5%)

Total 886 836 762

Table 14 Comparison of number of destinations

Kerosene SAF Hydrogen

C
os

t

REG 21 20 19
SMR 19 19 18
LR 8 8 5

Total 29 30 26

C
lim

at
e

REG 18 17 22
SMR 19 19 18
LR 7 6 5

Total 28 28 26

0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

Relative network profit [-]

Re
la

tiv
e

cl
im

at
e

im
pa

ct
[-

]

Objective Ker SAF LH2
COC
ATR

(a) Network profit versus Climate Impact

0.7 0.8 0.9 1
Relative RPK transported [-]

(b) RPK transported versus Climate Impact

Fig. 6 Comparison between network key performance indicators for different aircraft design objectives
and different fuels

In Figure 6b, the revenue passenger kilometers covered by each fleet solution are plotted versus the climate impact.
Similar to the observation made in comparing the design objectives in Section IV.A, the SAF- and LH2-powered aircraft
reduce the transported RPKs. This results from the different fuel costs and the resulting cruise velocity. SAF and
hydrogen have a higher fuel cost per flight since the cost per unit of energy is higher than for kerosene. This makes
all flights less profitable. Additionally, the aircraft in the kerosene, cost-optimal fleet are designed to have the highest
cruise velocities and shortest block times. The cost-optimized SAF and LH2 aircraft cruise at lower speeds than the
kerosene alternative since the fuel-related operating cost becomes relatively more important than the time-bound cost in
the design process. Therefore, the LH2 and SAF cost-optimal aircraft designs are closer to an energy-optimal design.

By inspecting the fleet composition and schedule parameters in Tables 9 to 14, we can conclude that the operations
do not differ significantly between the kerosene- and SAF-powered fleets. Although the overall amount of passengers
transported, flown distance, and number of departures are smaller for the SAF fleet in absolute terms, the relative
contribution of each of the three aircraft types is nearly identical to that of the kerosene fleet, for both design objectives.
The trends observed in the previous section, such as the increased number of aircraft when the climate objective is
selected, also hold for the SAF-powered fleet.

The fleet composition and scheduling choices of the hydrogen aircraft are quite different. The relative contribution
of the hydrogen, long-range aircraft to the network profit and RPKs is significantly smaller than for the other two fuels.
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Only four long-range aircraft are allocated instead of seven or eight, as shown in Table 11, and only five destinations are
operated. Of the set of transatlantic destinations, four are operated, namely Amsterdam, London, Paris, and Rome.
The routes to Munich and Dublin are not profitable. Also, the domestic routes to Seattle and San Francisco cannot be
operated by hydrogen, long-range aircraft profitably. This difference in operations can also be observed by comparing
the allocation shown in Figure 9i to the allocation of the long-range, kerosene counterpart (Figure 9g).

The hydrogen, long-range aircraft, independent of the chosen design objective, is allocated less because of the
energy and cost penalties due to the hydrogen tank installation and the higher fuel price. In the current study, this tank is
installed aft of the cabin inside the fuselage. The tank itself adds mass to the operating empty mass but also elongates
the fuselage. The elongated fuselage structure is heavier and also results in more friction drag. For the considered
transatlantic flights, the energy consumption of the hydrogen aircraft is on average 11% higher than for the kerosene
alternative, depending on the passenger number and route. Additionally, the hydrogen aircraft cruises at Mach 0.73,
instead of 0.88 or 0.90, to have a lower energy consumption. However, this leads to a penalty in mission block time,
making it less profitable and making the network allocation more difficult.

The long-range penalties are caused by the long cylindrical tank inside the fuselage. This tank is sized according
to the energy and fuel mass needed to match approximately the payload-range capabilities of the Airbus A350-900.
However, in this case study, the allocated routes have a shorter range than the design range of a long-range aircraft,
as shown in Figure 9i. Therefore, one can conclude that the hydrogen tank is oversized for the routes considered in
this network. If we only consider the current network, a logical design decision would be to reduce the design range
such that the maximum fuel mass decreases, leading to lower tank volume and a shorter cylindrical tank. This, in
turn, reduces the mass and drag penalties at the aircraft level. Potentially, this can also increase the cost-optimal cruise
velocity of the aircraft.

Since the loss in overall network profit is mainly caused by the long-range, hydrogen aircraft, the profit figures
in Figure 6a are broken down into the three aircraft categories in Figure 7. From these figures, it is clear that the
long-range hydrogen aircraft leads to the largest reduction in profit, which cause the overall network profit to decrease.
Nevertheless, hydrogen provides a competitive solution in the medium-range category (Figure 7b). In this category, a
loss of 5% in profits at a 71% decrease in ATR100, making it a Pareto-optimal solution. Note however that this marginal
reduction in network profits is also because now the medium-range aircraft captures a part of the demand to West Coast
destinations (LAX, SFO, and SEA) which is captured by long-range aircraft for the kerosene and SAF fleets. For the
long-range market, SAF provides Pareto-optimal solutions. The benefit of the cost-optimal SAF aircraft is that its
cost-optimal cruise speed is only 2% lower than the kerosene reference aircraft. This minimizes the time penalty which
is, in particular, active on long-range flights.

While the payload-range capability of the long-range hydrogen aircraft results in a large tank which makes the
aircraft less profitable, the regional hydrogen aircraft appears to have one advantage compared to the kerosene and
SAF counterparts. When exchanging payload mass for fuel mass to achieve more range, the hydrogen achieves a larger
increase in range for a given reduction in payload mass, compared to the other fuels, due to the high energy density of
hydrogen. Therefore, the payload-range diagram features a more gradual slope, as shown in Figure 9c, allowing more
payload between 2200 and 3600 km of range. The allocation algorithm makes use of this extra capability and operates
flights to Los Angeles, Seattle, and Portland which cannot be captured by the regional kerosene and SAF aircraft.

Table 12 indicates that, when moving from kerosene to SAF and LH2, the average load factors increase marginally.
This trend does not necessarily mean that SAF or LH2 aircraft always take more passengers on board than the kerosene
alternative. The passenger number on a kerosene flight is also maximized wherever possible due to the equality in
Equation (2). This trend in load factor is caused by the fact that kerosene aircraft have a larger profit margin per flight,
and can therefore also make profitable flights with fewer passengers on board. When adding flights in the dynamic
programming routine throughout the week, the routine can add profitable flights with kerosene without requiring a high
load factor. This is for example useful when only little demand is remaining on a given route and there is enough time in
the schedule to carry out the flight to add a marginal profit. This leads to a lower average load factor. On the contrary,
the higher fuel costs of SAF and LH2 often require a higher load factor before a flight is added to the schedule.
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(c) Long-range aircraft

Fig. 7 Comparison between network key performance indicators for different aircraft categories. The
values are normalized with the reference metrics of the kerosene, the cost-optimal value for each category.

V. Conclusion
This research aimed to examine how climate-optimal aircraft, considering different fuels, should be allocated on
an international network and to monitor the effect on key performance indicators such as total network and climate
impact, considering both CO2 and non-CO2 effects. We extended a multidisciplinary design analysis and optimization
framework to achieve this objective with a fleet allocation and flight scheduling level. This allocation approach employs
a dynamic programming routine to find the most profitable allocation of a given set of aircraft types on a US-based
network with domestic and international demand. The reference fleet is a set of three cost-optimized, kerosene aircraft
targeting different market segments.

We first considered the allocation of climate-optimal, kerosene aircraft, which are characterized by a lower cruise
altitude (6 km) and reduced cruise Mach number (0.6). Compared to cost-optimal reference allocation, we observe a 61%
reduction in total network ATR100, while the total network profit is reduced by 21%. The reduction in climate impact is
caused by a change in aircraft design and a reduction of 22% in revenue passenger kilometers covered. Similarly, the
profit reduces because of the lower amount of revenue passenger kilometers operated and an increase in direct flight
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operating costs. In particular, the time-related costs increase due to the reduced cruise velocity. The reduced profit
margin on flights and lower productivity lead to a lower amount of RPKs covered. We estimate that 41 climate-optimal
aircraft are required instead of 36 cost-optimal aircraft.

When aircraft powered by liquid hydrogen or drop-in sustainable aviation fuels are considered, the climate impact
can be further reduced. The hydrogen-fueled fleet offers the largest reduction in climate impact up to 99% for the
ATR100 design objective. However, the network profit is reduced by 45%. We identified that the reason for this is, in
particular, the operation of long-range, hydrogen aircraft, which suffer from a significant penalty in operating costs and
flight time. The long-range, hydrogen aircraft covers up to 51% less RPKs than its kerosene counterpart. This highlights
the need for aircraft solutions for tailored payload-range capabilities. Nevertheless, the medium-range, hydrogen aircraft
offer more competitive solutions with a climate impact reduction between 72 and 99%, while only reducing the profit of
mid-range operations between 5 and 27%. The fleets fueled by drop-in SAF offer Pareto-optimal solutions. Overall, this
analysis highlights that the current coupled approach between aircraft design and network operations can yield useful
insights regarding the profitability and composition of climate-optimal fleets.

The conclusions drawn in this study are specific to the type of network considered. We did not consider transfer
passengers or the demand between destination airports. Additionally, a fixed demand schedule and constant attraction
bands were assumed. Therefore, a first recommendation is to conduct a sensitivity analysis to establish the sensitivity
of the results and conclusions to these assumptions. Secondly, the current study analyzes the allocation of optimized
aircraft in a network but does not yet feed the information back to the aircraft design loop. Hence, we recommend
establishing this link to determine the optimal payload-range requirements and possibly a design objective function that
combines the cost and climate impact metrics.

Appendix

A. Top-level Aircraft Requirements
This appendix introduces the TLARs used in the fleet design.

Table 15 Top-level aircraft requirements employed for the aircraft design [12, 40–42] in the
benchmark case

Requirement [Unit] Regional Medium-Range Long-Range

Maximum structural payload 𝑚pl,max [metric tons] 10.1 18.2 54.0
Harmonic range 𝑟harm [km (nm)] 2410 (1300) 3200 (1730) 10800 (5830)
Ferry range 𝑟ferry [km (nm)] 4630 (2500) 6750 (3645) 18000 (9720)
Approach speed 𝑣app [m/s (kts)] 69.0 (134) 70.0 (136) 72.0 (140)
Take-off length (ISA conditions) [m (ft)] 1700 (5580) 2100 (6890) 2700 (8860)
ICAO Reference Code 3C 4C 4E
Maximum span 𝑏max [m] 36.0 36.0 65.0
Diversion range 𝑟div [km (nm)] 185 (100) 463 (250) 463 (250)
Loiter time 𝑡hold [min] 45 35 35
Landing mass factor 𝑓W kerosene and SAF [-] 0.91 0.88 0.73
Landing mass factor 𝑓W hydrogen [-] 0.97 0.94 0.87
Mass of operational items 𝑚ops [t] 2.42 4.77 15.4
Mass of airframe systems and equipment 𝑚afse [t] 4.46 8.81 22.5
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B. Demand and Allocation of Reference Network
Figures 8a and 8b present the initial and final, remaining demand of the reference network case, employing cost-optimal,
kerosene aircraft. In Figure 9, the allocation of the different cost-optimized, kerosene and hydrogen aircraft is shown.
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Fig. 8 Passenger demand schedules between origin-destination pairs (y-axis) at all 20-minute time
intervals (x-axis) throughout one week
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Fig. 9 Payload-range diagram and operated payload-range combinations for each aircraft type. The
colorbar indicates the flight frequency of a payload-range combination in one week.
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C. Design Data of Aircraft Powered by Liquid Hydrogen or SAF
This appendix presents the aircraft design data of the fleets powered by liquid hydrogen or drop-in SAF.

Table 16 Design variables and performance data of liquid-hydrogen aircraft, partially based on Reference [12]

REG SMR LR
Variable [Unit] COC ATR100 COC ATR100 COC ATR100

𝐴 [-] 12.0 10.9 11.4 11.1 11.1 12.0
𝑊/𝑆 [kN/m2] 5329 5545 5570 5310 6391 6780
BPR [-] 8.00 9.35 9.57 8.33 11.0 11.0
Πfan [-] 1.80 1.59 1.76 1.55 1.65 1.47
Πlpc [-] 1.68 1.79 1.37 1.56 1.66 1.76
Πhpc [-] 19.8 21.1 25.0 24.6 21.9 23.1
TET [103 K] 1450 1504 1520 1450 1556 1484
ℎcr [km] 10.4 6.00 10.4 6.00 9.35 6.00
𝑀cr [-] 0.71 0.60 0.73 0.60 0.73 0.60

MTOM [t] 33.1 32.2 64.5 63.6 248 244
OEM [t] 21.5 20.5 42.6 41.2 163 156
𝐿/𝐷cr [-] 17.4 15 18.5 16.5 20.4 19.7
TSFCcr [10−5kg/(N s)] 0.468 0.445 0.468 0.451 0.465 0.43
𝜂ov,cr 38% 36% 39% 35% 40% 37%
LTOT 0h19m 0h19m 0h20m 0h20m 0h25m 0h26m
TAT 0h16m 0h16m 0h41m 0h41m 1h26m 1h26m
𝐶hour [103 USD/hr] 2.85 2.79 4.31 4.17 11.4 11.5

Table 17 Design variables and performance data of SAF aircraft [12], partially based on Reference [12]

REG SMR LR
Variable [Unit] COC ATR100 COC ATR100 COC ATR100

𝐴 [-] 8.31 11.4 8.58 11.9 8.00 12.0
𝑊/𝑆 [kN/m2] 5431 5637 5620 6030 6652 7646
BPR [-] 5.89 8.45 8.04 8.72 8.82 11.0
Πfan [-] 1.80 1.53 1.80 1.43 1.65 1.37
Πlpc [-] 1.33 1.56 1.58 1.67 1.27 1.62
Πhpc [-] 25.0 25.0 20.9 25.0 23.0 25.0
TET [103 K] 1425 1489 1540 1420 1459 1436
ℎcr [km] 9.77 6.00 9.95 6.00 10.4 6.00
𝑀cr [-] 0.77 0.60 0.79 0.60 0.88 0.60

MTOM [t] 34.7 33.8 68.1 66 275 262
OEM [t] 20.3 19.4 39.3 37.1 138 126
𝐿/𝐷cr [-] 15.8 15.9 17.7 18 20.3 21.4
TSFCcr [10−5kg/(N s)] 1.41 1.25 1.39 1.23 1.45 1.2
𝜂ov,cr 38% 35% 39% 35% 41% 36%
LTOT 0h19m 0h19m 0h20m 0h20m 0h26m 0h26m
TAT 0h16m 0h16m 0h41m 0h41m 1h26m 1h26m
𝐶hour [103 USD/hr] 2.83 2.75 4.22 4.05 10.3 10.3
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