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A Lightweight Learning-based Visual-Inertial Odometry
Yingfu Xu and Guido C. H. E. de Croon *

Delft University of Technology

ABSTRACT

In this paper, we propose a learning-based
lightweight visual-inertial odometry (VIO)
based on an uncertainty-aware pose network
and an extended Kalman filter (EKF). The pose
network serving as the VIO vision front-end pre-
dicts the relative motion of the camera between
consecutive image frames and estimates the
prediction uncertainty. The training of the pose
network can be conducted without requiring
ground-truth labels. The distributions of visual
measurements are fused with inertial measure-
ments by an EKF that is the VIO back-end.
Evaluations show that the proposed VIO fails to
outperform a state-of-the-art feature-point-based
VIO solution in accuracy. But it has high time
efficiency, translational motion estimation with
metric scale, estimation of gravity direction, and
generalization to new environments. So, unlike
most works on learning-based visual ego-motion
estimation in the literature, the proposed VIO
can be directly deployed on an MAV. The
comparative studies of supervision signals and
forms of translational motion prediction provide
insights that can contribute to future research.

1 INTRODUCTION

Ego-motion estimation of micro air vehicles (MAVs) is
essential for autonomous flight and has been a major research
topic in the robotics domain. Monocular cameras are often
used for ego-motion estimation of lightweight MAVs in envi-
ronments without stable GPS signals, because of their small
size, lightweight, low energy consumption, and rich environ-
mental information captured. After years of research, ego-
motion estimation approaches that use vision in conjunction
with an inertial measurement unit (IMU), i.e., visual-inertial
odometry (VIO), are widely applied to MAVs. Many main-
stream VIO approaches, e.g. multi-state constraint Kalman
filter (MSCKF) [1], use visual feature points as the vision
processing front-end. Assuming the scene is stationary, infor-
mation about the camera motion can be obtained by tracking
the two-dimensional (2-d) pixel locations of the same fea-
ture point in multiple temporally consecutive images. There-
fore, extracting a sufficient number of feature points and then
tracking or matching them accurately across frames is the key

*Email addresses: yingfu.xu.94@gmail.com, g.c.h.e.decroon@tudelft.nl

to accurate ego-motion estimation. However, because of the
dependence on appearance consistency and image gradient,
visual feature points are susceptible to varying illumination
and image blur.

As an alternative to feature points, researchers have been
exploring deep learning for visual ego-motion estimation.
Learning-based approaches train one or multiple artificial
neural network(s) (ANN) to predict the relative pose [2, 3]
between temporally consecutive images or visual correspon-
dences that encode ego-motion, e.g., optical flow [4, 5] and
planar homography transformation [6]. A pose network can
be trained by the ground-truth relative pose in supervised
learning. But the acquisition of accurate camera position and
orientation in the real world often requires external sensors
such as motion capture systems. So the scenes of captured
images for training are restricted to the range of the station-
ary motion capture sensors. Thus it limits the size of the train-
ing dataset and deteriorates the generalization capacity of the
pose network. In contrast, self-supervised learning is an at-
tractive approach for relieving the need for ground truth. The
first self-supervised learning scheme of a pose network was
proposed in [2], where a monocular depth network is trained
simultaneously. It is sometimes referred to as self-supervised
structure-from-motion (SfM) in the literature. According to
the predicted dense depth and relative camera pose, a virtual
view can be synthesized by reprojecting the world points into
the image frame. The photometric error between the synthe-
sized view and the actually captured image is the main su-
pervision signal. This scheme has been further developed by
many follow-up works and is adopted in this paper. A more
detailed description is provided in Section 2.

It has been observed that ANNs show better robustness
towards unfavorable conditions such as illumination change,
motion blur, and dynamic scenes [3, 5]. There are learning-
based approaches [4, 5] achieving better accuracy on the
EuRoC MAV datasets [7] than a traditional approach [8].
But general challenges exist in learning-based approaches.
Firstly, many works train and test on the same dataset with-
out considering the network’s generalization capability. Sec-
ondly, achieving high accuracy requires a significant amount
of computational power, making such approaches unsuitable
for computationally constrained MAVs. Thirdly, many works
cannot be directly deployed on MAVs due to various limita-
tions. For example, translational motion lacks scale in [5].
The scale is ambiguous in the case of self-supervised learn-
ing with monocular videos [2, 9, 10]. The scale is also un-
known in the case of self-supervised VIO that processes IMU
measurements with an ANN [11]. Because the loss function
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has no constraint on the scale, the metric-scale accelerometer
measurements can be scaled arbitrarily by the ANN. Another
problem in using an IMU network is that, when the supervi-
sion signal only regularizes the relative pose [11], the grav-
ity information encoded in the accelerometer measurements
is not exploited. So the gravity direction remains unknown,
though it is observable for a monocular visual-inertial system
[12].

This paper aims to address the above-mentioned chal-
lenges by introducing a learning-based VIO. It can be directly
deployed on an MAV due to its notable characteristics, such
as high efficiency, translational motion estimation with met-
ric scale, estimating the direction of gravity, and generalizing
to new environments. The vision front-end is a pose network
that infers the relative rotation and translation of the camera
from an image pair. It is capable of estimating the prediction
uncertainty, as is useful for the EKF-based VIO back-end.
In addition, the network’s training can be conducted with or
without ground-truth labels. In the latter case, self-supervised
learning schemes for pose and depth [9, 10] are adopted to
first train “teacher” networks with high prediction accuracy.
The pose predictions of the teacher networks serve as the
learning target of the lightweight “student” pose network that
is the VIO vision front-end. The effects of three elements of
the pose network design are evaluated and analyzed. They
are the supervision signal (with vs. without ground truth), the
scale of translational motion prediction (with metric scale vs.
direction only), and with vs. without fine-tuning on the target
dataset.

2 TEACHER NETWORKS

2.1 Improved Self-Supervised SfM
The mission of the teacher networks is to perform self-

supervised learning and provide accurate relative pose pre-
dictions that serve as the learning targets in the training of a
lightweight pose network. We take Monodepth2 [9] and its
open-sourced code as the base of the teacher networks and
adopt two additional methods to achieve higher pose predic-
tion accuracy. The first is a loss term Lgeo that constrains the
depth predictions, proposed by [10]. It is based on the ge-
ometry consistency of the 3-d positions of the world points.
The second is to conduct the pose network inference multiple
times by iterative view synthesis that relies on the depth map
prediction, proposed by [13]. Instead of predicting the total
transformation by a single inference, the pose network incre-
mentally refines the relative pose prediction by inferring from
input images that are more and more similar.

The self-supervised learning loss function of the teacher
networks is shown in Eq. (1). V denotes the set of all pix-
els. Lphoto is referred to as the reprojection-based loss in
some works and in this paper. Lphoto combines the L1 loss
of pixel-wise photometric error and the structured similarity
index measure (SSIM) loss, with α = 0.85. N is the total
number of iterations of pose network inference. The geome-

try consistency loss Lgeo is computed only once using the fi-
nal pose prediction after all iterations. Hyperparameters λgeo
and λi are scalar weights of loss terms. Mauto(·) stands for
applying the auto-masking strategies of Monodepth2 to the
pixels. The smoothness loss for depth prediction is the edge-
aware smoothness implemented by the open-sourced code of
Monodepth2. We omit its expression in Eq. (1). An interested
reader can refer to [9, 10, 13] for details of the loss function.

L = λgeo · Lgeo +

N∑

i=1

λi · Lphoto,i

Lphoto,i =
1

|V |
∑

k∈V
Mauto(

α

2
(1− SSIM(It, Ĩs,i)k)

+ (1− α) · |It,k − Ĩs,i,k|)

(1)

Instead of predicting depth maps at four scales as Mon-
odepth2 does, we predict a single depth map at the full res-
olution. It results in higher accuracy in both depth and pose
predictions. To better learn how to handle fast motion, our
implementation uses a bigger temporal step in loading image
snippets. There is 25% possibility to load Ii−2, Ii, and Ii+2

and 75% possibility to load the neighboring images Ii−1, Ii,
and Ii+1.

2.2 Datasets and Network Training

TartanVO [5] and Droid-SLAM [4] are two of a few
works that achieve good performance of cross-dataset gen-
eralization. Both of them use TartanAir [14] dataset for train-
ing. We take most of the images (296,899) for training and a
small number (1,522) for in-domain testing. Testing images
are randomly sampled from all the sequences.

A pose network infers relative pose from raw images, so
camera intrinsics affect the prediction. Such a pose network
requires the input image to always have the specific image
resolution and camera intrinsics. Therefore, in cross-dataset
testing and real-world deployment, the images need to be pre-
processed to be the same as training images in terms of res-
olution and camera intrinsics. In this paper, input images to
a pose network are required to be grey-scale and have a res-
olution of 192 × 352 and intrinsics fx = 176, fy = 176,
cx = 176, cy = 96. This setting fits both the training set (Tar-
tanAir) and the testing set (EuRoC MAV dataset [7]). Images
of TartanAir lose pixels near the top and bottom edges after
being transformed to this setting. But if we transform the im-
ages of EuRoC to have the same resolution and camera intrin-
sics as TartanAir, the characteristics of the lens and optic sen-
sor of the camera used in collecting the EuRoC dataset lead
the images to have black curving edges. This phenomenon
reveals the lack of cross-camera generalization of pose net-
works. A solution based on preprocessing the input optical
flow map is proposed in [14], while the pose network in this
paper uses raw images as input. So the cross-camera general-
ization is not solved.
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The networks in this section are trained on the TartanAir
training set for 100 epochs. We utilized the 1 cycle learning
rate policy [15] with the maximum learning rate of 2.5e-4 in
self-supervised learning. The architectures of the pose and
depth networks are based on ResNet-18, the same as Mon-
odepth2. The number of iterations N = 3. The weights of
the loss for each iteration are λ0 = 0.25, λ1 = 0.5, and
λ2 = 1.0. The weight for geometry consistency λgeo = 0.2.
The batch size is 32.

We compare the pose prediction accuracy of the iterative
teacher networks trained by the loss function (Eq. (1)) with
the original Monodepth2 in Table 1. The accuracy metric is
the average of the norms of error vectors, e = 1

N

∑ ||vGT −
vPred.||2. The rotation is expressed by axis-angle and imple-
mented in the open-sourced code of Monodepth2. The pre-
dicted translation and the ground-truth translation are normal-
ized to 3-d unit vectors before calculating the error because
the scale of the translation prediction is ambiguous. When the
translation predictions are used as the learning targets of the
uncertainty-aware pose network, they are also normalized.

Network TartanAir
Rot.

TartanAir
Trans.

EuRoC
Rot.

EuRoC
Trans.

ours 1.99e-03 8.77e-02 3.09e-03 2.39e-01
ours-FT - - 1.73e-03 1.62e-01

Monodepth2 2.21e-03 1.23e-01 4.08e-03 2.89e-01
Monodepth2-

FT - - 3.18e-03 2.48e-01

Table 1: Average pose prediction errors on TartanAir testing
set and EuRoC testing set. “FT” indicates that the networks
are fine-tuned on the EuRoC training set based on the param-
eters trained on the TartanAir training set. Bold represents
the best.

As shown in Table 1, we perform an in-domain test on
the TartanAir testing set and an out-of-domain test on a part
of the EuRoC MAV dataset [7]. There are 11 sequences in
the EuRoC dataset. The EuRoC training set is made of all
sequences except for V103, V203, and MH05. These three
sequences are used for testing. From the first and third rows
of Table 1, we can see that our networks have smaller average
errors in pose predictions on both tests.

We finetune the networks trained on the TartanAir dataset
on the training set of EuRoC and test them on the three test-
ing sequences, as shown in the second and fourth rows of Ta-
ble 1. Although TartanAir is a large-size dataset with a wide
distribution, we still observe that fine-tuning brings obvious
improvement in pose prediction accuracy.

3 VIO BASED ON POSE NETWORK AND EKF
In the previous section, we introduce the methodology

to train the self-supervised teacher network. As already ex-
plained in the introduction, the teacher networks are not suit-

able for the ego-motion estimation of an MAV. Specifically,
the pose prediction of the teacher networks relies on one for-
ward pass of the depth network and multiple forward passes
of the pose network, which require considerable computa-
tional power. In addition, the translational predictions have
an ambiguous scale and the gravity direction is not estimated.

In this section, we introduce a computationally efficient
VIO that can estimate metric-scale translational motion and
the gravity direction. Its vision front-end is a pose network.
It performs a single forward pass for a pose prediction. The
back-end is a simple EKF. We train several pose networks us-
ing two supervision signals and compare the resulting VIO
accuracy. They are, respectively, the ground-truth poses and
the teacher networks’ pose predictions. When using the pose
predictions of teacher networks for training, the front-end
pose network is a student network, and the whole learning
pipeline does not require ground-truth labels of the pose. Dif-
ferent from the teacher networks, the front-end pose network
not only predicts the relative pose but also estimates the un-
certainty of its prediction. So it is called an uncertainty-aware
pose network.

3.1 Uncertainty-Aware Pose Network
The architecture of the pose network is based on the pose

network used by Monodepth2. It has an encoder based on
ResNet-18. We modify the architecture of the decoder part
to enable it for uncertainty estimation. The output tensor of
the last convolutional layer is the input to two fully connected
(FC) subnetworks. One FC network predicts the mean value,
and the other predicts the aleatoric uncertainty that reflects
the noise inherent in the network input. It is referred to as
predictive uncertainty in [6] and this paper. The two FC net-
works have the same architecture of two FC layers. There is
a 5% dropout for the input of each FC layer, to estimate the
epistemic uncertainty using MC-Dropout [16]. Epistemic un-
certainty captures the ignorance about the ideal network that
maps noiseless input to the desired output. It is called em-
pirical uncertainty in [6] and this paper. The total uncertainty
is the sum of predictive uncertainty and empirical uncertainty.
The uncertainty estimation of the front-end uncertainty-aware
pose network follows the same methodologies as in [6]. An
interested reader can read [6] for more details. We introduce
the most important steps in the following.

Treating the observed pose as a sample from a Gaussian
distribution, the loss function for learning predictive uncer-
tainty is the negative log-likelihood (NLL) loss, as shown in
Eq. (2). This loss function is used for the same purpose in
[17].

LNLL =

6∑

n=1

1

2σ2
n,pred.

∥Tn − µn∥2 +
1

2
log(σ2

n,pred.) (2)

µn is the prediction of the mean value of the relative pose
vector. σ2

n,pred. is the variance prediction corresponding to the
predictive uncertainty. n indexes over the six dimensions of
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relative pose (3-d rotation and 3-d translation). Tn denotes
the learning target of the mean prediction µn. Tn can be the
ground-truth relative pose or the pose prediction of the trained
teacher networks. The pose network can be trained to pre-
dict translational motion with the metric scale. It can also be
trained to predict normalized translation expressed by a unit
vector that indicates the motion direction without scale. We
implement both of them and compare them in Subsection 3.3.
When the pose network is trained to predict translational di-
rection, its prediction of the mean translation is normalized.
The translational part of Tn is normalized accordingly.

MC-Dropout [16] requires multiple forward passes to
sample from the distributions of network parameters. m in-
dexes over the forward passes. We set the number of MC-
Dropout sampling M=8. After each forward pass, a mean
prediction µn,m is obtained, as well as a variance prediction
of predictive uncertainty σ2

pred.,n,m. As Eq. (3) shows, the
variance of empirical uncertainty σ2

emp.,n is calculated empir-
ically from the multiple mean predictions µn,m. The total
variance σ2

n is the sum of the empirical variance σ2
emp.,n and

the average of predictive variances σ2
Avg., pred.,n.

σ2
n = σ2

Avg., pred.,n + σ2
emp.,n

σ2
Avg., pred.,n =

1

M

M∑

m=1

σ2
pred.,n,m

σ2
emp.,n =

1

M

M∑

m=1

(µn,m − µn)2, µn =
1

M

M∑

m=1

µn,m

(3)

3.2 EKF-based Back-end
The VIO back-end is an EKF. It is a simplified vari-

ant of the EKF-based back-end of the robocentric VIO [18].
The robocentric VIO keeps a window of the previous camera
poses in the state vector. Our simplified variant only estimates
the relative pose between the current IMU frame and the local
frame of reference. The EKF state vector is defined as

x := [RkpG,
Rk
G q, gRk ,

ItpRk ,
It
Rk

q, vIt , ba, bg].
(4)

It is the current IMU frame at time t. When a new image
has been captured, the new reference frame R is set to be the
same as the It at the time. Rk is the current reference frame.
It is the kth reference frame since the VIO is initialized. G
stands for the global frame. It is the first reference frame R0,
i.e., the IMU frame when the first image is captured after the
initialization of the VIO. RkpG is a translation vector pointing
from the origin ofG to the origin ofRk, expressed inRk. It is
about the global position of Rk. ItpRk is a translation vector
pointing from the origin ofRk to the origin of It, expressed in
It. It is about the local position of It relative toRk. RkG q is the
Hamilton quaternion reflecting the relative rotation between
G and Rk. ItRkq reflects the relative rotation between Rk and

It. gRk indicates the gravity vector expressed in Rk. vIt
is the translational velocity of the IMU expressed in It. ba
and bg are respectively the additive bias on accelerometer and
gyroscope.

As shown in Eq. (5), IMU measurements are modeled as
the sum of the desired actual value (â and ω̂), additive bias,
and white Gaussian noise (wa and wg).

am = â+ ba +wa, ωm = ω̂ + bg +wg (5)

It ṗRk = −[ω̂]× · ItpRk + vIt +wp,

v̇It = −[ω̂]× · vIt + â+R(ItRkq)
T · gRk ,

It
Rk

q̇ =
1

2
It
Rk

q ⊗
[
0
ω̂

]
,

ḃa = wba , ḃg = wbg .

(6)

Eq. (6) shows the IMU-driven state dynamics (ẋ). [ω̂]× rep-
resents the skew-symmetric matrix associated with ω̂. wp

is the process noise in position integration. R(ItRkq) is a
transformation function from It

Rk
q to SO3 rotation matrix that

maps a vector expressed in It to its expression in Rk. ⊗
denotes quaternion product. We utilize the techniques intro-
duced in [19] for quaternion-related calculation.

The filter states in Eq. (6) are propagated by the IMU
measurements until a new image Ik+1 is captured. The pair
of Ik+1 and the previous image Ik are the inputs of the
uncertainty-aware pose network that is introduced in Subsec-
tion 3.1. The network outputs µt, σ

2
t , µθ, and σ2

θ. They are
the mean µ and variance σ of translation t and rotation θ,
respectively.

zµt
=RCI · (tIC + ItpRk −R(ItRkq)

T · tIC) +wt,

zµθ
=RCI · θ(ItRkq) +wθ.

(7)

The measurement equations are shown in Eq. (7). RCI is the
rotation matrix from the IMU frame to the camera frame. tIC
is the translation vector points from the IMU to the camera,
expressed in the IMU frame. θ(·) converts a quaternion to an
axis-angle expression. Elements of σ2

t and σ2
θ are used as the

diagonal elements of the measurement noise matrix. After the
measurement update, the a posterior relative pose estimation
It p̂Rk and It

Rk
q̂ is composed to the global pose, as shown in

Eq. (8).

Rk+1

G q =ItRk q̂ ⊗
Rk
G q,

Rk+1pG =R(ItRk q̂)
T ·Rk pG +It p̂Rk

(8)

The current IMU frame It becomes the new reference frame
Rk+1. The expression of the gravity vector gRk+1

in Rk+1 is
calculated as gRk+1

= R(ItRk q̂)
T · ĝRk . ItpRk+1

and It
Rk+1

q
are set to a zero vector and a unit quaternion whose vector part
is a zero vector, respectively. Their corresponding elements
in the covariance matrix are set to zeros too. Readers who
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Table 2: Accuracy of the proposed method (top group, rows 1 to 6) compared with the baseline method (bottom group, rows
7 and 8). V101 to MH05 shown in the eleven columns from the right are the names of flight sequences of the EuRoC MAV
dataset. The data below the sequence names show the root-mean-square errors (RMSE) of the absolute translation errors (ATEs)
of the estimated trajectories. Bold represents the overall best and underline represents the best of the proposed method.

ID FT1 GT2 MS3 V101 V102 V103 V201 V202 V203 MH01 MH02 MH03 MH04 MH05
1⃝ 4.24 2.34 3.04 4.05 4.97 5.88 6.42 3.92 4.79 14.1 4.04
2⃝ ✓ - - 2.23 - - 4.33 - - - - 4.25
3⃝ ✓ 3.48 2.51 2.74 4.07 5.49 7.73 5.60 3.93 6.18 17.7 19.8
4⃝ ✓ ✓ - - 2.42 - - 7.99 - - - - 8.16
5⃝ ✓ ✓ 1.23 2.86 3.74 1.86 4.37 4.27 7.24 5.06 4.26 3.24 3.68
6⃝ ✓ ✓ ✓ - - 1.55 - - 4.36 - - - - 3.04
7⃝ MSCKF (51 pts) 0.16 0.13 0.12 245 0.13 0.16 38.0 5.20 130 2.35 1.00
8⃝ MSCKF (199 pts) 0.09 0.09 0.11 0.12 0.10 0.20 0.34 0.24 58.5 0.65 1.54
1 Fine-tuning (FT) the pose network on the training sequences of the EuRoC dataset.
2 Using ground-truth (GT) labels as the learning targets in the NLL loss. If not using GT, the learning targets are the

predictions of the self-supervised teacher networks.
3 The pose network learns to predict translational motion with the metric scale (MS). Otherwise, the prediction is the nor-

malized translation, a unit vector.

are interested in the filter design can refer to [18] for more
details.

For the EKF, when µt is the normalized translation,
the propagated camera translation is normalized accordingly.
The measurement equation of translational motion is then

zµt
= RCI ·

tIC + ItpRk −R(ItRkq)
T · tIC

∥tIC + ItpRk −R(ItRkq)
T · tIC∥

+wt (9)

3.3 Evaluation

In the previous part of this section, we have successively
introduced the vision front-end which is the uncertainty-
aware pose network and the EKF-based robocentric back-
end. The VIO system consisting of them is referred to as
PoseNet-VIO in this paper. In this subsection, PoseNet-VIO
is evaluated on the EuRoC MAV dataset [7]. The PoseNet-
VIO variants in Table 2 have the same parameters in the
EKF-based back-end. Their vision front-ends, the pose net-
works, are different. They are trained by the NLL loss (Eq.
(2)) with different learning targets. The learning targets of
1⃝ and 2⃝ are the pose predictions of the self-supervised

teacher networks. The remaining four networks learn from
the ground truth. The translation prediction of 1⃝ to 4⃝ in
Table 2 are normalized to a unit vector that indicates the direc-
tion of translational motion. In contrast, 5⃝ and 6⃝ predict
translational motion with the metric scale that is learned from
the ground-truth labels of the relative poses. Since we use
monocular videos to train the teacher networks, their predic-
tion of translational motion has an ambiguous scale. There-
fore, the pose networks trained by the teacher networks can
only have normalized translational motion predictions. 2⃝,
4⃝, and 6⃝ are fine-tuned on the EuRoC training datasets

based on 1⃝, 3⃝, and 5⃝, respectively. The teacher networks

of 2⃝ are fine-tuned on the EuRoC training set based on the
parameters of the teacher networks of 1⃝. PoseNet-VIO with
a fine-tuned network is evaluated on the EuRoC testing se-
quences. All the front-end pose networks are trained on the
TartanAir dataset for 100 epochs. Fine-tuning on the EuRoC
training set lasts for 50 epochs.

The root-mean-square error (RMSE) of absolute transla-
tion errors (ATE) is the metric of VIO accuracy. The align-
ment of the estimated trajectory and the ground-truth trajec-
tory has 4-DoF (yaw and 3-d translation). The calculation is
conducted by [20]. PoseNet-VIO is compared with a state-of-
the-art (SOTA) VIO MSCKF [1] implemented by [21]. The
C++ code of PoseNet-VIO is implemented based on the open-
sourced code of [21]. Here we only compare with one SOTA
VIO since the gap in accuracy is big, as shown in Table 2.
The comparison of MSCKF with other VIO solutions can be
found in [22].

At the beginning of the five EuRoC sequences collected in
the machine hall, the MAV was moved by a human operator
and then stayed stationary for a while before taking off. For a
PoseNet-VIO whose front-end pose network has normalized
translation predictions, the lack of translational motion leads
to drift. So, when testing PoseNet-VIO variants 1⃝ to 4⃝, the
starting time points of the Machine Hall (MH ) sequences are
about one second before the takeoff. For MSCKF, if there
was a significant drift in the beginning, we did the same.

A design target of PoseNet-VIO is high efficiency. Thus
it has non-iterative network inference and a basic EKF. The
time consumption is constant. But since MSCKF uses fea-
ture points, the number of points affects the time consump-
tion. The time consumptions of PoseNet-VIO and MSCKF
are measured during the tests on MH05 sequence of EuRoC.
For PoseNet-VIO, the average total time cost is 7.811 ms, of
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Figure 1: Results of PoseNet-VIO variant 1⃝, tested on MH05. The two subplots on the left show the EKF a posterior
estimations (VIO outputs) of the MAV attitude and translational velocity. The attitude is relative to the global frame whose
z-axis is opposite to the gravity direction. The two subplots on the right show the outputs (mean prediction and uncertainty
estimation of the relative pose) of the front-end pose network.
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Figure 2: Results of PoseNet-VIO variant 3⃝, tested on MH05.
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Figure 3: Results of PoseNet-VIO variant 5⃝, tested on MH05.
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Figure 4: Results of PoseNet-VIO variant 6⃝, tested on MH05.
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which 6.036 ms is for network inference. For the default set-
ting of MSCKF ( 8⃝ in Table 2), the average total time cost is
17.415 ms, with 7.583 ms for processing feature points. The
average number of points is around 199. We modified the
number of feature points to track to a smaller number than the
default to make the average of the total time consumption of
processing a frame close to the time consumption of PoseNet-
VIO. When the average number of maintained points in an
image frame is around 51 ( 7⃝ in Table 2), the average total
time cost is 7.933 ms, with 3.821 ms for feature point tracking
and detection.

In the sequences V201, MH01, and MH03, MSCKF
7⃝ drifts after very slow motion, which leads to big trajec-

tory errors. But in general, as shown in Table 2, PoseNet-VIO
is far less accurate than MSCKF. Comparing the variants of
PoseNet-VIO, a noticeable phenomenon is that networks pre-
dicting translational motion with metric scale lead to better
VIO accuracy than networks predicting normalized transla-
tion. Comparing the ATEs of 3⃝ and 5⃝, we can see that
5⃝ has advantages in seven out of the eleven sequences. This

is further evidenced by Fig. 2 (b) and Fig. 3 (b), where the es-
timated velocity of 5⃝ is more accurate. Without utilizing the
knowledge of objects’ sizes in the scene, the metric scale is
unobservable for a monocular video. The metric-scale trans-
lation prediction is based on the knowledge of the training
set. It can be problematic when generalizing to a different
dataset. But Fig. 3 (d) shows that the errors of translational
motion predictions are acceptable. The generalization is fine.
We attribute it to the large number and wide distribution of the
training samples. Subplot (b) for VIO velocity estimations of
Fig. 2 shows that using normalized translation ( 3⃝) leads to
big drifts in the beginning before the estimations converge af-
ter around 35 seconds. For 1⃝, it takes around 10 seconds for
the velocity estimation to converge, as shown in subplot (b)
of Fig. 1. While using metric-scale translation does not have
this problem, as shown in the two subplots (b) of Fig. 3 and
Fig. 4. In summary, given the current design, using normal-
ized translation leads to worse VIO accuracy in cross-dataset
evaluation.

Another phenomenon worth noticing is the effect of fine-
tuning. Fine-tuning brings better accuracy for all the variants,
indicating that although we have a big-scale and widely dis-
tributed training set, the generalization capacity can still be
improved. When the translation predictions have the metric
scale, we can see better accuracy in all subplots of Fig. 4 than
Fig. 3. Especially for the pose network’s predictions of trans-
lational motion shown in subplot (d), the predictions are more
accurate after fine-tuning. The possible reason is that the net-
work further learns the metric scale of the objects captured in
the EuRoC training set.

PoseNet-VIO variant 1⃝ interests us most because the
training does not use ground-truth labels or in-domain data.
Given the not-excellent but acceptable accuracy in Euler an-
gle estimation and velocity estimation after the convergence,

as shown in Fig. 1, we think this PoseNet-VIO variant can
act as an attitude and velocity estimator and be used for short-
term navigation. From Table 2, Fig. 1, and Fig. 2, we notice
that using the ground-truth poses in the training of the front-
end pose network ( 3⃝) does not improve the VIO accuracy
over using the predictions of the self-supervised teacher net-
works ( 1⃝). In eight out of eleven sequences, PoseNet-VIO
variant 1⃝ has better accuracy. The accuracy of network pre-
dictions of rotation has no clear difference, as shown in the
two subplots (c) of Fig. 1 and Fig. 2. But for the transla-
tion prediction shown in the two subplots (d), 1⃝ performs
better than 3⃝, especially in terms of uncertainty estimation.
The three-time standard deviations of 1⃝ better reflect the er-
rors of the mean predictions. This phenomenon indicates that
self-supervised teacher networks are powerful replacements
for ground-truth labels.

As shown in the subplot (c) of Fig. 1 to 4, the network pre-
dictions of relative rotation are well aligned with the ground
truth. The translation predictions are relatively worse and
noisier. Around 585, 595, and 610 seconds, translation pre-
dictions are obviously inaccurate, as shown in subplot (d) of
Fig. 1. From subplot (b), we can see that the velocity is slow
during those time slots. Slow velocity is a possible trigger of
inaccurate translation prediction. More research is required to
enable the network that predicts translation direction to better
cope with slow motion. About potential ways of improving
the PoseNet-VIO, one way is a VIO back-end that utilizes
network predictions of multiple time steps instead of only the
newest network prediction (current design). Another way is
to learn the metric scale from the self-supervised teacher net-
works. It requires the teacher networks to be trained on stereo
videos.

4 CONCLUSIONS

In this paper, we proposed the PoseNet-VIO based on an
uncertainty-aware pose network and an EKF. The accuracy
of PoseNet-VIO is worse than mainstream VIO solutions, but
it may act as an efficient attitude and velocity estimator for
short-term navigation. Based on the cross-dataset evaluation
and the comparison between different types of supervision,
we have the following findings. a) The simulation-to-reality
generalization capacity of the pose network is generally sat-
isfactory, also for the metric-scale translation prediction. b)
Training an uncertainty-aware pose network using the pre-
dictions of self-supervised teacher networks leads to rivaling
VIO accuracy to using ground-truth pose. c) Metric-scale
translational motion predictions produce better VIO accuracy
than normalized translational direction predictions. These
findings can be valuable to future research on learning-based
visual ego-motion estimation.
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