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SIS Epidemic Spreading with
Heterogeneous Infection Rates

Bo Qu and Huijuan Wang

Abstract—In this work, we aim to understand the influence of the heterogeneity of infection rates on the Susceptible-Infected-
Susceptible (SIS) epidemic spreading. Employing the classic SIS model as the benchmark, we study the influence of the independently
identically distributed infection rates on the average fraction of infected nodes in the metastable state. The log-normal, gamma and a
newly designed distributions are considered for infection rates. We find that, when the recovery rate is small, i.e., the epidemic spreads
out in both homogeneous and heterogeneous cases: 1) the heterogeneity of infection rates on average retards the virus spreading, and
2) a larger even-order moment of the infection rates leads to a smaller average fraction of infected nodes, but the odd-order moments
contribute in the opposite way; when the recovery rate is large, i.e., the epidemic may die out or infect a small fraction of the population,
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the heterogeneity of infection rates may enhance the probability that the epidemic spreads out. Finally, we verify our conclusions via
real-world networks with their heterogeneous infection rates. Our results suggest that, in reality the epidemic spread may not be so
severe as the classic SIS model indicates, but to eliminate the epidemic is probably more difficult.

Index Terms—Networks, epidemics, virus spreading, infection rates, heterogeneous SIS model

1 INTRODUCTION

THE studies on contagion processes in networks are
strongly motivated and justified by the anticipated out-
breaks of epidemic diseases in a population and non-stop
threats of cyber security in computer networks [1], [2], [3],
[4], [5]. The Susceptible-infected-susceptible (SIS) model [6],
[7], [8], [9], [10], [11], [12] is one of the most widely used
models to describe such processes. In the continuous-time
Markovian SIS model, a node is either infected or suscepti-
ble at any time ¢. Each infected node infects each of its sus-
ceptible neighbors with an infection rate B. The infected
node can be recovered with a recovery rate 8. Both infection
and recovery processes are independent Poisson processes.
The average fraction y,, of the infected nodes in the meta-
stable state, ranging in [0, 1], indicates how severe the influ-
ence of the virus is: the larger y is, the more severely the
network is infected.

The classic SIS model assumes that the infection rate g is
the same for all infected-susceptible node pairs and so is the
recovery rate § for all nodes. Most studies are focusing on
the relationship between the effective infection rate v and
the average fraction y., of infected nodes or the epidemic
threshold in the virus contamination process with homoge-
neous infection (recovery) rates. However, in reality, neither
the contact frequency [13] between a pair of individuals in
social networks nor the connecting frequency between a
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pair of nodes in computer networks is constant. Infection
rates can be different from pairs to pairs, thus heteroge-
neous. Many studies on real diseases, such as SARS [14]
and Plasmodium falciparum infection [15] also reveal the
heterogeneity of infection rates. Furthermore, Smith et al.
[15] suggest that the distribution of infection rates in differ-
ent populations may be varied as well, and Wang et al. [14]
find that infection rates with the log-normal distribution fit
best the data of SARS in 2003 by applying their model.

In this paper, we explore the effect of heterogeneous
infection rates on the average fraction y., of infected nodes
in a systematic way. We propose a SIS model, in a network
with N nodes, with the homogeneous recovery rate § but
heterogeneous infection rates g;; (=8;, i=12,...,N,
j=1,2,..., N and i # j) between node i and node j. Similar
to the classic homogeneous SIS, our SIS model with hetero-
geneous infection rates is as well a Markovian process
where the time for an infected node i to infect each of its
susceptible neighbors j is an independent exponential ran-
dom variable with average g;;'. The homogeneous SIS
model has the same infection rate g for all node pairs
whereas all the infection rates in our heterogeneous SIS are
independent and identically distributed (i.i.d.) random vari-
ables. We study how the distribution of infection rates influ-
ences the average fraction y., of infected nodes in the
metastable state.

A few recent papers [16], [17], [18], [19], [20], [21] have
taken into account either the heterogeneous infection or
recovery rates. In [16], we explored the influence of degree-
based recovery rates on the average fraction of infected
nodes in the metastable state. Preciado et al. [17], [18] dis-
cussed how to choose the infection and recovery rates from
given discrete sets to let the virus die out. Fu et al. [19] stud-
ied the epidemic threshold when the infection rates depend
on the node degrees and Buono et al. [20] considered a
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specific distribution of infection rates and observed slow
epidemic extinction phenomenon. Yang and Zhou [21] gave
an edge-based mean-field solution of the epidemic thresh-
old in regular networks (the degrees of all nodes are the
same) with i.i.d. heterogeneous infection rates (following
uniform or power-law distribution).

In this paper, we explore the influence of heterogeneous
infection rates on the epidemic spreading. In practice, the
number of new infections in a period of time can be used to
estimate the infection rate, for example, [22] counts the
number of infected people per time interval (daily, weekly,
etc.) to indicate the infection rate; [23], illustrating a strategy
to estimate the time-varying transmission rates for the
spread of infection, also takes into account the daily distri-
bution of new infections. Besides the number of new infec-
tions, the interacting frequencies between two neighboring
nodes have also been employed to estimate the infection
rate, for example, the infection rate has been considered to
be proportional to the interacting frequency. The average
infection rate obtained in both scenarios has been used as
the infection rate in the homogeneous epidemic model. Our
work points out how such assumption of homogeneous
rates would differ from real-world heterogeneous infection
rates with respect to their influence on the fraction of
infected population. We consider several representative dis-
tributions with the same mean but higher moments tunable,
since the influence of the mean' has been widely studied in
the homogeneous SIS model [24], [25], [26], [27], [28]. We
find that when the recovery rate is small, the heterogeneity
of infection rates on average retards the virus spread and
whereas larger even-order moments of the infection rates
tend to lead to a lower prevalence ¥, odd-order moments
contribute in the other way around; when the recovery rate
is large so that the epidemic may die out, the heterogeneous
infection rates may enhance the probability that the epi-
demic spreads out. To our best knowledge, our work is the
first to discuss the influence of higher moments of the infec-
tion rate distribution on epidemic models. Our findings
serve as a foundation to further explore the influence of
realistic heterogeneous and possibly correlated infection
rates on epidemic spreading.

2 SIS MoDEL WITH HETEROGENEOUS INFECTION
RATES

In this section, we introduce the classic SIS model, basic net-
work models, the heterogeneous infection rates and the sim-
ulation settings of the SIS model with heterogeneous
infection rates on a network.

2.1 The Classic SIS Model

In the continuous-time Markovian SIS model on a network
with N nodes, the state of a node at any time ¢ is a Bernoulli
random variable, where X;(¢) = 0 represents that node 7 is
susceptible and X;(t) =1 that node ¢ is infected. Each
infected node infects each of its susceptible neighbors with
an infection rate B. The infected node can recover with a
recovery rate 8. Both infection and recovery processes are

1. The infection rate between any pair of nodes equals to the mean in
the homogeneous SIS model.

independent Poisson processes. The ratio 7 = £ is called the
effective infection rate. For each effective infection rate 7,
the infection process dies out in any finite network after a
long enough time, and the corresponding steady state is the
absorbing state: i.e., the overall healthy state. However, if
the effective infection rate v is larger than the epidemic
threshold 7., the epidemic spreads out and there is a non-
trivial metastable state, where the average fraction y., of
infected nodes is non-zero and stable during a long time
[29]. The average fraction y., of infected nodes indicates the
severity of the overall infection.

2.2 Network Models

Among various network models, Erdos-Rényi (ER) model
[30] is one of the most widely-used and well-studied mod-
els. In an ER random network with N nodes, each pair of
nodes are connected with probability p independent from
every other pair, thus the distribution of the degree of a ran-
dom node is binomial: Pr[D = & = (¥, ))p*(1 — p)" " and
the average degree E[D] = (N — 1)p. For a large N and con-
stant average degree, the degree distribution is Poisson:
Pr[D = k] = e ™ (Np)* /K.

Besides the ER model, the network model with a scale-
free degree distribution (SF model) has always been used to
describe real-world networks such as the Internet [31] and
World Wide Web [32]. The degree distribution of SF net-
works is given by Pr[D = k] ~ k™ k € [duin, dumay], Where
dyiy 1s the smallest degree, d,,, is the degree cutoff, and A is
the exponent characterizing the broadness of the distribu-
tion [33]. In real-word networks, the exponent A is usually
in the range [2, 3], thus we confine the exponent A = 2.5 in
this paper. We further employ the smallest degree d,.;, = 2,
the natural degree cutoff dy,., = | N~V ] [34], and the size
N = 10". Hence, the average degree is approximately 4. As
the comparison, we consider the ER networks with the size
N = 10" and the average degree E[D] = 4.

2.3 Heterogeneous Infection Rates

In this section, we introduce three distributions of the het-
erogeneous infection rates. We aim to explore how the het-
erogeneous infection rates influence the spread of SIS
epidemics, particularly we study the relationship between
the variance® (and even higher moments) of the heteroge-
neous infection rates and the average fraction y,, of infected
nodes. Hence, we would like to choose infection-rate distri-
butions systematically such that they cover a broad range of
distributions including those observed in real-world and
importantly their higher order moments, at least the varian-
ces are tunable when their means are fixed.

The nth moment m,, of a distribution with the probability
density function (PDF) f5(B) is m, = [ B" f5(B)dp. Thus,
the first moment m, is just the mean and the relationship
between the second moment ms and variance Var[B] is
Var[B] = my — m?, where the random variable B is the
infection rate of a link. To eliminate the influence of the
mean mi, we further define the nth normalized moment
v, = :Z—I%, then v; = 1 and the normalized variance v = vy — 1.

We choose two asymmetric distributions: the log-normal
and gamma distribution, of which we can keep the means

2. The variance of a random variable is the second central moment.
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unchanged and tune the variances in a large range. The log-
normal distribution [35] B ~ Log-N(B; 1, 0), of which the
PDFis, for g > 0

2
Fo(Bs y0) = W‘”)

1
Bo/2m “p ( (202)
and the nth normalized moment is v, = exp(M), has a
power-law tail for a large range of B provided o is suffi-
ciently large. The log-normal distribution has as well been
widely observed in real-world, where the interaction fre-
quency between nodes is usually considered as the infection
rate between those nodes. One example is the infection rates
of the co-author network, as illustrated in Fig. 8b, Section 5.
Moreover, Wang et al. [14] find that by employing the log-
normal distributed infection rates, their epidemic model
can accurately fit the infection data of 2003 SARS.

The gamma distribution B ~ I'(8; k, 6), of which the PDF
is, for p > 0

k—1
Folpik6) = eop(=5) o

(T'(k) = [;°t"te~'dt) and the nth normalized moment is
[T/- (1 +ik™1), has a lighter tail than the log-normal distri-
bution. The Airline network, as demonstrated in Fig. 8a, has
an exponentially distributed infection rates, which corre-
sponds to the Gamma distribution when k£ = 1.

In order to take into account symmetrically distributed
infection rates as well, we design a variance-tunable and
symmetric distribution other than the two asymmetric dis-
tributions above. We call it the symmetric polynomial (SP)
distribution B ~ SP(B;a,b), whose PDF is

bla+1 a
fo(piab) =" D g
where €[l - 1+7]) and, a=1 and b€ [1,+00) or

b=1and a € [1,+00). The mean of the distribution is 1, the

variance is b((ﬁlg)- Compared to the commonly-used uniform

distribution (also symmetric and variance-tunable) with the
same mean, the SP distribution can be tuned in a larger
range of the variance.

2.4 The Simulations

In order to study the effect of the variance of the heteroge-
neous infection rates on the virus spread, we perform simu-
lations to obtain the fraction y,, of infected nodes as a
function of the normalized variance v of infection rates on
both ER and SF networks. We find that, for commonly used
2-parameter distributions (such as the uniform distribution,
log-normal distribution, gamma distribution, etc.), the scal-
ing on the mean of infection rates can be eliminated by the
same scaling on the recovery rate if we keep the normalized
variance v unchanged. This conclusion is also consistent
with the fact that only the effective infection rate £ matters
for the epidemic spreading, but not the infection rate g in
the homogeneous SIS model. Hence, without loss of gener-
ality, we set the mean m; of the infection rates to 1, thus all
the normalized moments v,, equal to the unnormalized ones
m,,. Instead of performing discrete-time simulations, we fur-
ther develop a continuous-time simulator, which was first

0.42f 4
0.40r B
=8 —o— Log-NV
0.38r
=
0.36Ff —~ SP R

02 04 06 038 1.0
v

Fig. 1. The average fraction y,, of infected nodes as a function of the nor-
malized variance v of infection rates for log-normal (o), gamma (OJ), and
SP (v) infection-rate distributions respectively, and the recovery rate
8 = 2. We consider ER networks with average degree E[D] = 4 and net-
work size N = 10". The results are averaged over 1,000 realizations.

proposed by van de Bovenkamp and described in detail in
[9]. A discrete-time simulation could well approximate a
continuous process if a small time bin to sample the contin-
uous process is selected so that within each time bin, no
multiple events occur. A heterogeneous SIS model allows
different as well large infection or recovery rates, which
requires even smaller time bin size and challenges the preci-
sion of a discrete-time simulation. Hence, we implement the
precise continuous-time simulations.

3 SwmALL RECOVERY RATES

In this work, the average of the heterogeneous infection rates
and the homogeneous infect rate are the same. Since the recov-
ery rate § plays the key role in the epidemic spreading, we dis-
cuss our results according to different ranges of the recovery
rates. In this section, we introduce our main results about how
the heterogeneous infection rates influence the contagion pro-
cesses of epidemic, when the recovery rates are small such
that the epidemic spreads out in both homogeneous and het-
erogeneous cases. In the next section, we focus on large recov-
ery rates—the homogeneous effective infection rate 7 is close
to the epidemic threshold 7. in the classic model, where the
epidemic with homogeneous infection rates may die out.

3.1 The Observations

We first show the simulation results when the variance of
the infection rates is smaller than 1, since the variance of a
non-negative and symmetric distribution cannot be larger
than the square of its mean,” thus 1 in this paper.

In Fig. 1, we find that the average fraction y., of infected
nodes decreases as the variance v of the infection rates
increases, no matter which distribution the infection rates
follow. Moreover, the comparison of the decay of the three
curves in Fig. 1 also suggests that, the smaller the third
moment* of the infection rate distribution is, the faster Yoo
decays as the variance increases.

When the variance v is larger than 1, the infection rates
cannot be symmetrically distributed. We thus discuss only
the log-normal and gamma distributions which are

3. For any random variable B following a non-negative and symmet-
ric distribution fp(B8) with mean m, the smallest and largest value that
B can reach is 0 and 2m; respectively, so the largest variance, which
equals to m?, can be reached when Pr[B = 0] = Pr[B = 2m,| = 0.5.

4. The third moment of the log-normal, gamma and SP distribution
is(v+1)%, (v+1)(2v+1) and 3v + 1 respectively.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 15,2021 at 16:22:13 UTC from IEEE Xplore. Restrictions apply.



180 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL.4, NO.3, JULY-SEPTEMBER 2017

Y 0.3 B
03 ol I

oo ab v ab 150
80.2? b

= —o— Log-V
0.1r B
=T
0.0 2 R 2 T8

1 10 v 100

Fig. 2. The average fraction y., of infected nodes as a function of the var-
iance v of infection rates following different distributions: Log-normal (o)
and gamma (0J), and the recovery rate § = 2. The simulations are on ER
networks with average degree E[D] = 4 and network size N = 10*. The
results are averaged over 1,000 realizations, and the error bars are the
standard deviations of the results in different realizations. The inset is
the same as the main graph, but in a linear-linear scale.

representative among the heavy-tailed distributions and
widely used in the real-world analysis.

In Fig. 2, we observe the same as in Fig. 1. Moreover, we
find that the average fraction y of infected nodes decays
much faster when infection rates follow gamma distribu-
tions than log-normal distributions.

Here we only show the simulation results on ER random
networks with 10! nodes and average degree E[D] =4,
because simulation results on SF networks lead to the same
observations as illustrated in the Appendix, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TNSE.2017.2709786.
Moreover, though not shown in this paper, we have also
done the simulations with various values of the recovery
rate, such as § = 0.1, 0.2, 1, etc., for both ER and SF networks
and the conclusions are consistent.

3.2 The Influence of the Moments of the Infection
Rates

To explain our observations, we consider a susceptible node
and an infected node interconnected by a link. The probabil-
ity p(T) that the infected node infects the susceptible neigh-
bor in an arbitrary period T, is p(T) = [" fp(B)F(T; B) dB,
where f5(B) is the PDF of the infection rate, and F(T;B) is
the probability that infection occurs between the neighbor-
ing infected and susceptible node pair within the time inter-
val T when the infection rate is B. Since the infection
between any infected and susceptible node pair is an inde-
pendent Poisson process, the time for an infected node to
infect a susceptible neighbor is an exponential variable, i.e.,
F(T;B) =1 — e TP. We consider further the classic homoge-
neous SIS model, whose infection rate is equal to the aver-
age infection rate E[B] in our heterogeneous SIS model. The
counterpart of p(T") in the homogeneous SIS model is, then,
p(T) = F(T: E[B)).

Theorem 1. If f(B) is the probability density function of a non-
negative continuous random variable B, and F(T'; B) is the dis-
tribution function of an exponential random variable with the
rate parameter B, then for any T' > 0, we have

| st

F(T;B)dB < F(T; E[B]).

Proof.

/0 " PP p) ap

=1— [ [fs(Be'Pdp

0
=1-E[e ™).

Since the exponential function is convex, Jensen’s
inequality [35] tells us that

E[e—TB] > e—TE[B] .
Hence,

- fe(B)F(T; p)dB < 1 — e ™18l = (T, E[B]).

0
a

Theorem 1, that proves p(T') < p*(T'), tells us that if the
infection rate in the classic homogeneous SIS model and the
average infection rate in heterogeneous model are the same,
then in the same period of time an infection event is more
likely to happen in the classic SIS model.

We define x(T') = p*(T) — p(T') as the difference in infec-
tion probability within an arbitrary time interval 7" between
the SIS model with homogeneous and heterogeneous infec-
tion rates

X(T) _ E[efTB] _ efTE[B]

>\ (~T)"(E[B"] - (E[B)"
:Z( )" (E[B"] - (E[B])")

‘— n!
_ i": (mn —mi)(=T)"
o — n!
B o) (Tml)Q" 00 (m1)2'7L+1
= ;(V% - 1)W - ;(V%H - 1) m
(1)

Note that the first step in (1) is valid only if the sum
> 0% converges. The general log-normal distribu-
tion over an infinite range does not satisfy this condition.
However, the infection rates of real-world systems are
finite. Theorem 2 states that any realistic distribution of the
infection rates within a finite range satisfies this conver-

gence condition.

Theorem 2. For any non-negative random variable B distrib-
uted in a finite range (0, b] and any finite T, the sum

i E[B"} .

n=!

2eTb,

thus converges.

b
BB = [ 8 so(pras
—ﬂ/fB dﬁ //fB dpdp"

= B Es(B) / Fa(B)dp".

0

Proof.
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Fig. 3. The average fraction y., of infected nodes as a function of the
variance v of infection rates following gamma distributions. The
recovery rates § are different: 1 (o) and 0.5 (), and the dash lines
are fitting curves. The simulations are on ER networks with average
degree (k) =4 and network size N = 10%. The results are averaged
over 1,000 realizations. The inset contains the results about log-
normal distributions.

Since
B
Fulp) = [ Sulp)dp < 1.
0
we have
b
E[B"] <b" + / Fg(B)dp"| < 2b".
0
Hence,
i (-=T7)"E[B"]
n=0 n!
o | (D) [E(BY]|
= Z n!
n=0
o Tan
<2
- nZ:o n!
=2e"”,
which illustrates the convergence of Zfzo% for
any 7. a

Theorem 1 and (1) explore only on the local effect: the
epidemic spreads on average faster along a link in the het-
erogeneous case than the homogeneous case. However, if
the infection probabilities of all the nodes are similar and
the state of the each node (infected or not) is independent,
each connected node pair would have a similar fraction of
time when one node is infected whereas the other is suscep-
tible, i.e., the period that allows epidemic to spread. In this
case, the difference x(7'), where 0 < x(7T) < 1, in infection
probability along a link within an arbitrary time 7" may indi-
cate the difference in the fraction of infected nodes between
the homogeneous and heterogeneous SIS in the metastable
state. Both the heterogeneous infection rates and the hetero-
geneous network topology contribute to the heterogeneity
in the infection probability of each node. When the recovery
rate is low or equivalently the epidemic prevalence is high,
however, the infection probabilities of the nodes tend to be
similar. Hence, x(7") could suggest the difference in the frac-
tion of infected nodes between the heterogeneous and
homogeneous cases when the recovery rate is small. The
larger the difference x(7') is, the smaller the average fraction
Yoo Of infected nodes, in the metastable states of the

TABLE 1
The Coefficients of the Fitting Functions of v, versus the
Variance v for Different Infection-Rate Distributions
Under Different Recovery Rates

Dist. ) 1 co c3 C4

Loa— A 3 0.098 0.045 0.099 0.28

09— 2 0.20 0.011 0.21 0.14

r 1 0.0011 0.055 0.67 N/A
0.5 0.00085 0.053 0.83

heterogeneous SIS is. Equation (1), thus suggests that, the
larger even-order moments of the infection rates lead to a
smaller average fraction of infected nodes y.,, but the odd-
order moments contribute in the opposite way. These theo-
retical results help us better understand our two observa-
tions in Figs. 1 and 2, when the recovery rates are small: (a)
the average fraction y., of infected nodes decreases with the
increased variance, and (b) given the same variance, the
average fraction y., of infected nodes is lower if the third
moment of the distribution is smaller.

3.3 The Log-Normal Distribution versus the Gamma
Distribution

To explore how fast y, decays, we perform simulations
with different recovery rates § and fit the curves of y,, ver-
sus the variance v. We find that, as shown in Fig. 3, the rela-
tionship between the average fraction y..(v) of infected
nodes and the variance v can be fitted by a double-exponen-
tial function Yoo r(v) =cre 2"+ cze”“’ and a quadratic
function y.r(v) = ¢;v® — cv + ¢3, when the infection rates
follow log-normal and gamma distributions respectively.
The coefficients ¢, ¢y, ¢3, and ¢y, shown in Table 1, also
suggest that, approximately, y.. ;. decreases exponentially
with the variance v much slower than the linear decrease of
Yoo T When y,, 1 is not close to 0.

Besides the theoretical explanation as mentioned before,
we explore further the physical interpretations of the differ-
ence in the fraction of infected nodes between the log-nor-
mal and gamma distributed infection rates. We define r(B)
as the ratio between the PDF of the log-normal and gamma
distribution, i.e., r(8) = BB%’ZZ)) Thus limg_o7(B) =0 and
limg_.o 7(B) = oo. This reveals that if we set the same mean
and variance (large) for both distributions, the log-normal
distribution tends to generate a few extremely large values
whereas the gamma distribution generates many extremely
small values to produce the large variance.

In Table 2, we show the percentiles’ of the two distribu-
tions with a large variance v = 16. In a group of random
numbers generated by the gamma distribution, 25 percent
of them are even smaller than 2.2 x 107%. The infection
events driven by such small rates can hardly happen. How-
ever, in the infection rates generated by the log-normal dis-
tribution, even the first 1 percent smallest values are large
enough to make possible infections. Hence, the gamma dis-
tribution effectively filters the network more than the log-
normal distribution, and reduce the spread of the epidemic

5. A percentile is a measure to indicate the value below which a
given percentage of observations in a group of observations fall.
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TABLE 2
The Percentiles of the Log-Normal and Gamma Distribution
with the Mean m; = 1 and Variance v = 16

Percentiles Log— N r

1st 0.00483 9.44 x 10732
2.5th 0.00895 2.20 x 107%
5th 0.0152 1.44 x 10720
10th 0.0280 9.44 x 10716
25th 0.0779 2.20 x 1079
50th 0.243 1.44 x 1074

more. This interpretation is also consistent with the theoreti-
cal explanation of the influence of the third moment of a dis-
tribution. The same large variance can be introduced by the
log-normal distribution via the possibility of generating a
large value and by the gamma distribution via the high
probability of generating extremely small values. However,
the gamma distribution leads to a smaller third moments
compared to the log-normal distribution and the small
infection rates it generates effectively filter the network,
reducing the epidemic spread.

4 LARGE RECOVERY RATES

We have shown that when the recovery rates are small, the
iid. heterogeneous infection rates retards the epidemic
spreading and the larger variance of infection rates leads to
a smaller average fraction of infected nodes. Moreover, we
further explained the influence of the higher moments of
the infection rate on epidemic spreading. In this section, we
discuss how the heterogeneous infection rates influence the
epidemic spreading when the recovery rate is large, thus,
the epidemic is close to die out. As an example, we show
the simulation results of the SF networks with the log-nor-
mal distributed infection rates. We find that, the heteroge-
neous infection rates may increase the probability that the
epidemic spreads out when the recovery rate is large,
though if the epidemic can spread out, the larger variance
of infection rates still leads to a smaller average fraction of
infected nodes in the metastable state.

We first employ the log-normal distribution for the het-
erogeneous infection rates and set the recovery rate § = 20.
As shown in Fig. 4, though the average fraction y.. of
infected nodes is close to 0 (due to the large recovery rate),
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Fig. 4. The average fraction y,, of infected nodes as a function of the var-
iance v of infection rates following the log-normal distribution, and the
recovery rate § = 20. The simulations are on SF networks with the expo-
nent A = 2.5 and the network size N = 10%. The results are averaged
over 1,000 realizations, and the error bars are the standard deviations of
the results in different realizations.
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Fig. 5. The average fraction ¢, (o) of infected nodes in the nonzero-
infection realizations and the percentage p* (0) of the nonzero-infection
realizations as a function of the variance v of infection rates. The infec-
tion rates follow the log-normal distribution and the recovery rate § = 20.
The simulations are on SF networks with the exponent A = 2.5 and the
network size N = 10*. The results are averaged over 1,000 realizations,
and the error bars are the standard deviations of the results in different
realizations.

we can observe that the larger variance may lead to a
slightly larger average fraction y, of infected nodes. How-
ever, the error bars (the standard deviation of the simulation
results from different realizations) are large as compared to
the average fraction of infected nodes. This is due to the fact
that when the epidemic is close to die out on average, i.e.,
when § = 20, the epidemic dies out in some iterations of the
simulations but spreads out with a nonzero fraction of
infected nodes in the metastable state in the others.

Fig. 5 shows the percentage p* (€ [0, 1]) of the spread-out
realizations in all realizations and the average fraction y_ of
infected nodes in these nonzero-infection realizations as a
function of the variance of the infection rates. Here the the
simulations are on SF networks with the size N = 10" and the
exponent A = 2.5. Clearly, the average fraction of infected
nodes obtained by averaging that in all realizations is
Yoo = P Y5, We find that, in all nonzero-infection realizations,
the average fraction i of infected nodes still decreases as the
variance of the infection rates increases. The average fraction
Yoo Of infected nodes obtained from all realizations may
increase as the variance of the infection rates increases,
because the percentage p* of nonzero-infection realizations
increases when the variance of the infection rates is small and
increases. Hence, the heterogeneous infection rates may
enhance the probability that the epidemic spreads out. This
can be explained as follows: the heterogeneous infection rates
and the hubs in scale-free networks enable those links with a
large infection rate to form a connected subgraph, allowing
the epidemic to spread out. However, when the variance v is
large and further increases, as shown in Fig. 5, the fraction of
non-zero infection realizations decreases. This is because, a
large variance v of the infection rates produces fewer large
infection rates, prohibiting the formation of a connected sub-
graph with high infection rates that allows the epidemic to
spread. However, the average fraction of infected nodes of
the nonzero-infection realizations tend to decrease with the
variance or heterogeneity of the infection rates.

If we increase the recovery rate to ensure that the epi-
demic dies out in the homogeneous case, i.e., the effective
infection rate is below the epidemic threshold 7. in the classic
SIS model, we obtain the same conclusions: the average frac-
tion y of infected nodes in nonzero-infection realizations (if
exist) always decreases as the variance of the infection rates
increases, and the heterogeneous infection rates may
increase the probability that the epidemic spreads out.
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Fig. 6. (a) The average fraction 3 of infected nodes in the nonzero-
infection realizations and (b) The percentage p* of the nonzero-infection
realizations in all realizations as a function of the variance v of the infec-
tion rates which follow the gamma (o) and log-normal () distribution.

We further compare the simulation results between the
log-normal and gamma distributions. As shown in Fig. 6a,
the average fraction y’_ of infected nodes in nonzero-infec-
tion realizations is larger when the infection rates follow the
log-normal distribution than the gamma distribution. This
observation is consistent with our previous observations
and conclusions as illustrated in Section 3, when the varian-
ces of the infection rates are the same, the larger third
moments of the infection rates lead to the more severe infec-
tion. However, as shown in Fig. 6b, when the variance of
the infection rates is small, the percentage py of the non-
zero-infection realizations is larger in the case of the gamma
distributed infection rates than the percentage p;j of the non-
zero-infection realizations in the case of the log-normal dis-
tributed infection rates. Moreover, as the variance of the
infection rates is relatively large (for example, around 30 in
Fig. 6b) and increases, pi decreases faster than pj, and py
could be smaller than pj if the variance is large enough.
Given a network and a large recovery rate, more large infec-
tion rates lead to a higher probability that the epidemic can
spread out. As in Section 3.3, we can explain the observa-
tions in Fig. 6b by exploring the percentiles of the log-nor-
mal and gamma distributions with the mean 1 in Table 3,
where two values (16 and 128) of the variance are employed
as examples. When the variance is 16, there are more large
values in a group of random numbers generated by the
gamma distribution than the log-normal distribution; how-
ever, when the variance increases to 128, though the first 1
percent largest values of the gamma distribution are still
larger than those of the log-normal distribution, there are
more large values in the group of the log-normal random
numbers. Hence, with the same small variance, the gamma
distributed infection rates contribute more to the survival of
the epidemic than the log-normal distributed infection rates,
whereas with the same large variance, the log-normal

TABLE 3
The Percentiles of the Log-Normal and Gamma Distributions
with the Mean m; = 1 and Variance v = 16 and 128

Log—N r Log—N r

v =16 v =16 v =128 v =128
99th 12.1936 19.9409 15.1178 24.2306
98th 7.7225 12.9981 8.2133 5.7424
97th 5.7697 9.3923 5.6176 1.5509
96th 4.6209 7.1783 4.2063 0.4140
95th 3.8751 5.6325 3.3260 0.1507

distributed infection rates may lead to a higher probability
that the epidemic spreads out.

We observe the same in ER networks as shown in the
Appendix, available in the online supplemental material.
Moreover, the links with i.i.d. large infection rates are more
likely to form a subgraph in SF networks than in ER net-
works, because of the existence of the nodes with large
degrees in SF networks. Hence, with the similar value of the
average fraction y; of infected nodes in the nonzero-infec-
tion realizations, we find that the percentage p* of the non-
zero-infection realizations is much smaller in ER networks
than SF networks.

We further consider an extreme case of SF networks-the
star network: one central node ny connects with all the other
m (m > 1) side nodes n; (i =1,2,...,m), and there is no
link between any pair of the side nodes. By designing a spe-
cific distribution of the heterogeneous infection rates, we
can always give a value of the recovery rate § so that the epi-
demic spreads out with the heterogeneous infection rates
but dies out with the corresponding homogeneous infection
rates in a finite-size star network. In the classic model, the
epidemic threshold of a star network is 7. = £ = \/%% [7]. If
we set the homogeneous infection rate § = 1 and the recov-
ery rate § = /m + ¢, where ¢ is a positive but small constant
number, then the epidemic dies out. With the same recovery
rate, we set the heterogeneous infection rate with the distri-
bution Pr[B =2 — ¢| = Pr[B = ¢] = 0.5, where ¢ is again a
small and positive constant number, thus the average infec-
tion rate E[B] = 1. We now look at the subgraph which is
composed of the central node and approximately % side
nodes connected to the central node with infection rate

By =2 — €1. The effective infection rate is gy = Beub —
2—€1 . 2 1 ~ . . .
ﬁn—ﬁq R > T Tesubs where 7.4, is the epidemic

threshold of the n;ubgraph. Hence, with the same recovery
rate and the same average infection rates, the epidemic dies
out in the homogeneous case but spreads out in the afore-
mentioned heterogeneous case.

5 REAL-WORLD NETWORKS

As mentioned in Section 2.3, the interaction frequency
between two nodes in a real-world network has been con-
sidered as the infection rate between the pair of nodes. In
this section, we choose two real-world networks as exam-
ples to illustrate how their heterogeneous infection rates
affect the spread of SIS epidemics on these networks. The
heterogeneous infection rates from the datasets are normal-
ized by the average so that the average is 1. We compare the
average fraction of infected nodes in the metastable state of
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Fig. 7. The degree distributions of the airline (0J) and co-author network
(e) can be approximately fitted by the power law distribution with a slope
A = 1.5 and 2.5 respectively.

the two networks in the 3 scenarios: 1) each network is
equipped with its normalized original heterogeneous infec-
tion rates (hetero-p) as given in the dataset; 2) each network
is equipped with the infection rates in the normalized origi-
nal dataset but randomly shuffled (shuffled-p); 3) each net-
work is equipped with a constant infection rate (homo-g)
which equals to the average infection rate of the normalized
original infection rates as given in the datasets. The hetero-
geneous infection rates in each network described in Sce-
nario 1 are possibly correlated. For example, the infection
rate of a link may depend on the degrees of the two ending
nodes of this link. The shuffling in Scenario 2 effectively
removes the correlation if it exists, and the infection rates in
Scenario 3 are homogeneous as in the classic SIS model. Our
objective is to explore the relation between the infection
rates and average fraction of infection in these 3 scenarios
for both networks to verify our previous findings.

The first network is the airline network where the nodes
are the airports, the link between two nodes indicates that
there’s at least one flight between these two airports, and
the infection rate along a link is the number of flights
between the two airports. We construct this network and its
infection rates from the dataset of openFlights.® The other
one is the co-author network, where the nodes are the
authors of papers, the link represents that the two corre-
sponding authors have at least one collaborated paper, and
the infection rate is the collaboration frequency[36].

Besides the infection rates, the network topology may as
well influence the spread of SIS epidemics. We explore the
most fundamental network feature of the two networks: the
degree distributions which are shown in Fig. 7. We can see
that the degree distributions of the airline network and co-
author network approximately follow a power law with the
slope A = 1.5 and 2.5 respectively. Hence, the degree distri-
butions of the two networks influence the spread of epidem-
ics in a similar way. More details of the two networks are
listed in Table 4. Note that we normalized the infection rates
of each network by its mean so that the average rate is 1.

The distributions of the infection rates from the two net-
works are shown in Figs. 8a and 8b. We find that, approxi-
mately the infection rates of the airline network are
exponentially distributed, whereas those of the co-author
network follow a log-normal distribution. Both of the two
datasets support our previous choices of the infection-rate
distribution.

6. http:/ /openflights.org/data.html

TABLE 4
The Number of Nodes, Number of Links, Variance of Infection
Rates and Range of Infection Rates in the Two Networks

Name Nodes  Links  Variance Range
Airline 3,071 15,358 0.5560 [0.2383, 11.0626]
Co-author 39,577 175,692 3.0566 [0.0678,90.4625]
5.1 Small Recovery Rates

We first consider the small recovery rates, with which the
epidemic does not die out in any realizations. In this paper,
we assume that the infection rates are i.i.d. which corre-
sponds to Scenario 2. As shown in Figs. 9a and 9b, the aver-
age fraction y,, of infected nodes in Scenario homo-8 is
always larger than that in Scenario shuffled-g8, which con-
firms our conclusion that the heterogeneity of infection rates
on average retards the contagion processes of epidemics,
when recovery rates are not very large. Moreover, we find
that the reduction Yoo homo—p — Yoo shuffied—g 15 larger in the co-
author network, which has a larger variance of infection
rates, than that in the airline network.” This observation
verifies our conclusion that, the larger the variance of the
infection rates is, the smaller y., is. Compared to the inde-
pendent infection rates in the case shuffled-g, the possibly
correlated infection rates in the case hetero-g can further
decrease (in e.g., the airline network) or increase (in e.g., the
co-author network) the average fraction of infected nodes.
This observation points out a new challenging question:
what is the influence of such correlated heterogeneous
infection rates on the SIS epidemics.

5.2 Large Recovery Rates

As shown in Fig. 10, when the recovery rate increases and the
effective infection rate is close to the epidemic threshold, the
average fraction y., of infected nodes in the Scenario hetero-
B becomes mostly larger than that in the other two scenarios.
Besides that, it is still consistent with our previous conclu-
sion that if Yoo,homo—B 7é 0/ then Yoo,homo—B = Yoo shuffled—pB-
Moreover, in the co-author network, we observe that when
the recovery rate § = 40/ Yoo shuffled—B > Yoo, homo—p = 0. How-
ever, in the airline network, we cannot observe that
Yoo shuffled—g > Yoo homo—pg With any selected recovery rate, and
this may be because of the small variance of the infection
rates. Hence, the observations verify our conclusions that if
the epidemic spreads out with the homogeneous infection
rates, then the overall infection is always more severe than
that with the heterogeneous infection rates (i.i.d. and with
the same mean as the homogeneous infection rate); however,
the heterogeneous infection rate may contribute to the sur-
vival of the epidemic.

6 DISCUSSIONS

In summary, we illustrate with simulations, theoretical
analysis and physical interpretations that, when the recov-
ery rate is small, the heterogeneity of infection rates on aver-
age retards the virus spread and whereas the larger even-
order moments of the infection rates tend to lead to a

7. We assume that the two networks have a similar topology, since
they have a similar degree distribution as shown in Fig. 7
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Fig. 8. The distribution of the infection rates from real-world networks: (a)
airline network and (b) co-author network. In each figure, the distribution
(o) and fitting curve (dash line) are shown. The fitting curves are expo-
nential and log-normal distributions in (a) and (b) respectively.

smaller y.,, the odd-order moments contribute in the other
way around; when the recovery rate is large so that the epi-
demic may die out, the heterogeneous infection rates may
enhance the probability that the epidemic spread out. We
also verify the influence of the heterogeneity of infection
rates on virus spread in real-world networks. Our work
reveals that the higher moments, especially the variance, of
the infection rates may evidently affect the epidemic spread,
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Fig. 9. The average fraction y., of infected nodes as a function of the
recovery rate 5. The networks are from real-world: (a) airline network
and (b) co-author network. In each figure, the SIS model with homoge-
neous (o), original heterogeneous (0) and shuffled heterogeneous (v)
infection rates are compared.
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Fig. 10. The average fraction y., of infected nodes as a function of the
recovery rate §. The recovery rate is very large so that the effective infec-
tion rate is close to the epidemic threshold. The networks are from real-
world: (a) airline network and (b) co-author network. In each figure, the
SIS model with homogeneous (o), original heterogeneous (00) and shuf-
fled heterogeneous (v) infection rates are compared.

even far more seriously than intuitively expected. Our find-
ing implies that real-world heterogeneous epidemic spread
may not be as severe as the classic homogeneous SIS model
predicts, but the heterogeneous epidemic may not be as
easy as the homogeneous SIS model indicates to die out.

In this work, we have focused on the Markovian SIS
where the time for an infected node ¢ to infect a susceptible
neighbor j is an exponential random variable with rate ;;.
Theorem 1 can be extended to Non-Markovian SIS models
with heterogeneous infection rates where the infection time
between a neighboring infected susceptible node pair (z, j)
with average 1/f;; follows a distribution other than the
exponential distribution. Such extension to Non-Markovian
SIS models is possible if 1 — F(; B) the probability that the
infection time is larger than v when the average infection
time is 1/B is a convex function of B.

The time for an infected node to infect a susceptible
neighbor is more in depth and detailed information. Infec-
tion time measurement becomes possible though in general
is still challenging. For example, in the experiments of the
epidemic in the plant population, the infection time can be
measured. As more such datasets become available, it
would be interesting to tackle a new direction—the influ-
ence of the heterogeneous infection time on viral spreading.
For example, what is the influence of the heterogeneity of
the average infection time 1/8, when the heterogeneous SIS
model is Markovian? What is the influence of the heteroge-
neous infection time which may follow an arbitrary distri-
bution, thus in a general non-Markovian SIS model?
Furthermore, the heterogeneous infection rates are assumed
to be i.i.d.; however, the infection rates in real-world could
be correlated. For example, the infection rates may depend
on the nodal degrees [37], and how the correlated heteroge-
neous infection rates influence the metastable prevalence of
the epidemic is also an interesting topic.
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