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”Nobody trusts a computer simulation,
and everybody trusts experimental data,

except the guy who did it.
Why not combine the two and get results everybody

can mistrust a little?”

Tony Kordyban based on a quote of Albert Einstein

To the people who like to know what I did in the past four years...
and the ones I love





PREFACE

My interests changed into a passion. Dynamic events like explosions, crashes,
and impacts affecting their surroundings make the physics behind them very
interesting. And, of course, the visualization of these events looks cool, leaving
out the consequences. Besides my interest in coding, this was the main reason
for me that I chose the presented Ph.D. topic.

Before getting into this topic, I want to point out that the presented methods are
implemented from scratch, starting during my Master’s. The thesis is structured
such that every chapter represents a journal article to be published in the past
four years. The reference to this article is given in the chapter. To keep the origi-
nality of the reviewed papers, I chose to leave the notation untouched for every
chapter. I apologize for the amount of work I have done.

Martin van der Eijk
Delft, September 2023
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1
INTRODUCT ION

This chapter provides the background on wave impacts and objective, numerical methods,
and outline of this thesis.

1.1 The three pillars of science
For centuries theory and experiment have been the foundation of science. The inter-
action between the two allows for verification and improvement of theories. The
evolution of computing has led to the acceleration of mathematical calculations
that resulted in new theories and explanations of natural events. Computations
can fill a gap between theoretical and experimental science and become a third
pillar of science.

The evolution of computing is also visible in the maritime industry. The complex-
ity and variability of water-wave phenomena necessitate innovative approaches
as the conventional (linear) techniques do not adequately represent highly non-
linear wave events. The most promising direction for research in water waves
is waves with large amplitudes [174]. Computational modeling can be advan-
tageous for these waves because of their complexity involving effects of, for
example, air-water interaction.

The overarching topic of this thesis is the development of an innovative compu-
tational model that can simulate complex wave events involving the contribution
and effect of air on large water waves and moving structures. The focus is on the
effect of air entrained in the water on the impact loading. The use of computa-
tional simulations contributes to understanding the physics and helps to design
an experimental setup that can represent the desired phenomenon [244]. The
following will briefly discuss the presence of air in large water waves, introduce
the existing research about the effect of air on water-wave impact loading, and
provide an overview of the numerical methods to deal with these events.

1
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1.2 The presence of air in breaking waves
As large-amplitude waves become steeper, they reach a critical level, and break
like plunging waves. Some large waves like this are considered ”extreme”. An
extreme wave has a low probability of occurrence, is large with respect to the
structure under consideration, and engages in complex interaction with struc-
tures that is not fully understood. Extreme waves can result in an impact loading
on an offshore structuremuch larger than the loading in nonbreakingwaves [167].
An illustration of an offshore structure acting in extremewaves is given in Fig. 1.1.

Figure 1.1. Shell Brent Charlie offshore structure in the North Sea experiencing loads by
breaking waves [300].

Violent impacts cause damage to numerous marine structures each year and
cause them to fail catastrophically even while being designed according to the
regulations [22]. This does not only happen in the maritime industry but also
for coastal sea defenses, geology, railway lines [135], offshore bridges [120, 286],
and LNG tanks [14]. Similar failures of offshore structures resulted in the loss of
people [153, 224]. A better understanding of these violent impacts is needed to
prevent damage to prevent loss of life. A large number of recent studies related
to large breaking waves are conducted by the aforementioned fields [14, 17, 36,
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57, 79, 126, 164, 166], experimentally, numerically, and analytically.

These studies showed that air plays a role in the impact loadings, but its effect was
difficult to quantify due to the complexity of the event. The interaction between
water and air near the free surface often leads to air entrapment, enclosing a large
air pocket in water, or entrainment, air bubbles dispersed through the water. The
influence of trapped air pockets is, however, often still neglected, while recent
studies showed that air does play a role in the impact process due to its high
compressibility. A plunging wave can trap an air pocket between the structure
and a body of water. The air pocket becomes compressed and starts to expand
after the wave overturning jet has hit the wall. The entrapment of air can result
in a considerable increase in impact pressure. This increase can be up to 10-100
larger than without the entrapment [28, 52, 111, 166, 171]. Specifically, ships with
a blunt bottom operating in heavy seas with extreme waves can trap air beneath
the hull [121] leading to pressures that can cause failure [134].

The entrainment of bubbles into the water can result from breaking water waves
[56]. The closing of a plunging jet can trap an air pocket, which, after breaking
up, can lead to the entrainment of air bubbles [140]. The mix of air bubbles and
water is called aerated water. Other processes generating air bubbles in water are
biological production, white capping, and air entrainment by capillary waves
[48]. The air volume is likely to be between one to ten percent [27]. The bubbles
produced by breaking waves can survive for several wave periods in salt water
and tend to remain small without coalescing [237]. Standard design practices
do not account for aerated water [83, 122, 249]. Without accounting for aeration,
wave impact pressures can be overestimated, leading to overly conservative ship
designs, but also underestimated, leading to probable catastrophic failure. Air
entrainment introduces a new dimension of complexity in analyzing water-wave
impacts and is the starting point of this thesis.

1.3 Research on aerated water-wave impacts
Experimental & Theoretical science
In geophysics aeration in breaking waves plays an important role in gas exchange
between water and atmosphere [56]. Zooming in to the scale of a structure, the
existence of bubbles in water has a notable influence on wave impact loading.
Air is more compressible than water and therefore the mixture of air and water
behaves differently from either water or air. One of the early studies related to
water-wave impacts and air entrainment was by Peregrine and Thais [206] who
developed an analytical approach that can estimate the pressure at the surface
of a confined space filled with a bubbly liquid. Compared to water without air,
a pressure reduction in wave impacts is found, even for a relatively small air
content. This has been verified by many experiments of aerated water-waves
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hitting a vertical wall [27, 28, 49, 171]. This reduction, called the cushioning effect,
is related to the incoming wave velocity and the speed of sound in the air-water
mixture [206]. Aeration is known to lower the maximum pressure but also tends
to distribute the impact pressure over a larger area and to increase the rise time of the
pressure during impact [27, 28]. Impacts at field scale with a high level of aeration
showed these longer rise times and lower pressures, while impacts with a low
level of aeration resulted in short-duration high-peaked pressures [49].

The expansion and compression of air pockets due to the impacts can cause
density waves. A density wave is a sharp change of pressure that moves through
the aerated water with the speed of sound of the mixture [28] and can interact
with other structures. The reflection of these density waves can lead to loading
oscillations. Fatigue analysis of ship structures may need to assess those loading
oscillations [171] but investigation on the loading oscillations due to reflection
is limited. Moreover, loadings below atmospheric pressure were observed in
the field [48] and the laboratory [28, 167] as a result of the oscillations. Large
oscillations in pressure can lead to destabilizing seaward forces on parts of a
structure [28]. Cavitation, a phenomenon in which the static pressure becomes
lower than the vapour pressure, may play a role in the impact loadings [167], as
it did in the failure of the Mutriku Breakwater Wave plant [177].

Much research on scaling laboratory experiments to full scale has been done [12,
21, 27, 51, 55], but scaling remains a challenge. The use of traditional scaling laws
significantly overestimates the forces [27, 51]. With Froude scaling, discrepancies
in the level of aeration [12], in the dynamics of the fluid pressure relative to the
atmospheric pressure, and in the compressible effect of aeration [21] are found,
because the ratio of flow inertia and gravitational forces, only accounts for water.

Computational science
A solution for scaling could be the use of computational modeling. However,
computational modeling of the breaking wave impacts is not yet at the same
level as experimental modeling [137]. There is a large gap between contempo-
rary numerical models used by industry and what is necessary for modeling
impacts. The complexity lies in modeling all relevant phenomena involved in
an extreme wave impact. The compressibility of air and air-water mixture, the
possibility of cavitation, overturning of the wave front and the breaking process,
and the coupled motion of a structure make it difficult to find a reliable solution
for the impact needed for engineering purposes. The current state-of-the-art in
numerical methods requires us to use expert judgement in choosing which phe-
nomenon to represent accurately as it is not possible tomodel all aspects together.
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There are many kinds of numerical simulation frameworks. Examples are frame-
works that make use of a grid system or a particle system. This thesis will not
focus on the particle methods and contribute to the numerical methods that
makes use of a grid for modeling multiphase flows. A grid consists of discrete
cells that cover a physical domain. The cells are used as control volumes for
approximating the governing equations. Solving the governing equations simu-
late the motion of the fluids. The models for simulating large wave impacts are
divided into different kinds of approaches. Every extension of an approach in-
creases computational costs but also accounts for an additional process. The first
class of approaches for water-wave impacts to be discussed are the single-phase
incompressible potential flow models [64, 87, 225, 314, 316] and Navier-Stokes
based models [97, 142]. Both classes are capable of predicting the wave before
overturning and impacting. The previous section discussed that air can play
a significant role in breaking waves, whereas the single-phase approach falls
short in predicting this. As a result, the two-phase incompressible models based
on the Navier-Stokes equations are introduced. These models can predict the
entrapment of air pockets [42, 113, 164, 165, 242], but fail in the prediction of the
compression and expansion of the air pocket. Including the compressibility of
air with the two-phase semi-compressible models results in the ability to model
compressible pocket oscillations [75, 291]. However, these models overpredict
the propagation speed of density waves through the water and cannot represent
aeration. The length scale between an offshore structure and entrained bubble
being too large for tracking and reconstructing the bubbles on the numerical
grid with sufficient accuracy [34] asks for a treatment that decreases the com-
putational costs such that it can deal with the compressible effects of aerated
water [214]. Existing models of this class are not yet ready for predicting loads
on marine structures accurately.

Recently, published numerical models with aeration show promising results
for wave impacts on vertical walls [22, 207, 214]. These models do not need
subgrid models but make use of the assumption of a homogeneous mixture of
air and water. However, these models revealed problems in resolving density
waves at the air-water interface. Non-physical pressure oscillations in a one-
dimensional shock tube test, a simplification of a pulsating air pocket, were
experienced due to using a conservative formulation [231]. Ma et al. [168] tried
to solve this problem by developing a quasi-conservative volume-fraction-based
compressible two-phase flow model. The model was based on the assumption of
a homogeneous mixture and could deal with dispersed-phase flows. The method
shows an increased interface diffusion across several mesh cells for large flow
gradient regions. The combination of the assumption of a homogeneous mixture,
Woods’ equation for the speed of sound [298], and interface diffusion results
in non-monotonic behavior of the speed of sound and an underprediction of
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the wave speed across the interface [232]. These aspects need consideration for
implementing a numerical model that includes the effect of aeration.

Moving bodies
A moving body slamming the water can include similar physics as a wave hitting
a wall [134]. The effects of aeration on the impact loadings can be imitated with
a simplified experiment of a body hitting the water. Various numerical [81, 117,
169, 195] and experimental [27, 81, 117, 169, 170] studies have investigated drop
tests in aerated water. A drop test of a 2D cross section is illustrated in Fig. 1.2. It
represents the slamming eventwhere inertia is the primary cause of the pressures.

Figure 1.2. A drop test of a 2D wedge at Delft University of Technology [78].

The existing studies vary in dimensionality, two-dimensional and three-dimensional
approaches, and in the shape of the moving body used for the drop. Similar
effects of aeration on the loadings are found as for the wave impacts on vertical
walls. Experimental and numerical aerated water entries of a three-dimensional
flat plate revealed that the impact results in shock loading, fluid expansion load-
ing excited by the entrapped air pocket, and secondary reloading caused by
the repeated pocket pulsation. The aeration of water resulted in a significant
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reduction of the impact loading by fifty percent of the pure-water loading or even
more [27, 117, 169, 170]. The reduction was not only found for flat plates but also
for other shapes [81, 117]. The problem of multiple rigid cone entries in aerated
water showed the dependence of the slamming load and the compressible effects
on the ratio of the expansion velocity of the wetted surface to the initial sonic
speed in the aerated water [81]. The expansion velocity depends on the direction
the fluid is forced to by the body.

1.4 Research objective
From a numerical perspective, the main objective of this thesis is to develop
a novel fully compressible pressure-based numerical model for high-density
ratio dispersive and separated flow problems. The model should be able to pre-
dict compressibility effects and the presence of density waves when a moving
body gets hit by aerated water. Robustness and computational efficiency are
main drivers in the development, together with accuracy. The challenges of the
non-monotonic behavior of the speed of sound for diffusive interfaces must be
overcome and large non-physical pressure oscillations must be kept in check.

From an experimental point of view, the objective is to design an experimental
setup for validating the numerical method. New information and data for nu-
merical verification about the compressibility effects of aerated water needs to
be gathered. The combination of numerical and experimental results for moving
bodies can provide insights regarding the compressibility effects of aerated water
on the impact loads, like loading oscillations caused by reflected density waves.
The description above of the numericalmethod indicates the steps that are needed
to obtain the objectives. Each of these steps is addressed in this thesis, which is
divided in three parts:

1. Develop an adequate semi-compressible pressure-based method that can
model high-density ratio two-phase flows, represent the compressibility
effects of an entrapped air pocket resolved by only a few grid cells, and
account for the interaction between a moving body and the fluids.

2. Extend the semi-compressible model to a fully compressible multiphase
flow model that can account for the presence of air in water as a homoge-
neous mixture and quantify the performance of this model by comparing
with new experimental data.

3. Improve the model based on the experienced difficulties with representing
high-density ratio interfaces and compressibility due to impacts.
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1.5 Abrief overviewof the startingpoint of the presentednumericalmethod
Core of the model
A starting point of the numerical method in this thesis is required to obtain the
objectives. The presented numerical model is developed in-house from scratch,
based on the one-phase flow model in the ComFLOW software package docu-
mented by Gerrits [97] and Kleefsman et al. [142]. The numerical model in the
ComFLOWsoftware package has amajor application in predicting hydrodynamic
wave load on offshore structures for research purposes and offshore-related com-
panies. A description of the ComFLOW method is given below.

Numerical discretization
The equations that can describe themotion of viscous fluids, are theNavier-Stokes
equations. These equations are referred to as the governing laws and express
the conservation of momentum and mass for Newtonian fluids, fluids in which
the viscous stresses scale linearly with strain. In the remainder, temperature
effects are neglected, so that the energy equation does not have to be solved. The
time discrete version of the Navier Stokes equations is obtained by integrating
the pressure implicitly, and the convective and diffusive terms in the momen-
tum equation explicitly. In ComFLOW [97, 142], the Navier-Stokes equations are
solved using a pressure-based algorithm, with a one-step projectionmethod [41].

In spatial directions, ComFLOW uses a robust finite-volume method. Robust
means that themodel is unlikely to break. A finite volumemethod is amethod for
approximating differential equations in the form of algebraic equations. Volume
integrals are converted to surface integrals using the divergence theorem. The
surface integrals are evaluated in terms of fluxes at the boundary of finite vol-
umes. These finite volumes together form a numerical grid consisting of discrete
cells covering the physical domain.

The governing equations are solved on a fixed Cartesian grid. A staggered ar-
rangement of variables is used. In this arrangement, the velocities are defined in
cell faces, and the scalar variables are defined in cell centers. Control volumes are
also staggered with respect to each other. Unknown scalar variables on different
locations in the grid are found by the usual averaging methods [292].

Interface tracking
A clear distinction where water is present, is made by cell labeling. The cells not
filled with water are labeled empty, and cells with some water adjacent to an
empty cell are labeled as surface cells. The remaining cells are labeled as fluid.
The Volume-of-Fluid approach [115] is used to capture the interface between the
fluids. Such an approach consists of two steps: the advection of the fluid from
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and to cells, and interface reconstruction in cells labeled as surface cells.

Geometric interface reconstruction is applied to capture the moment of water-
wave impacts accurately. The interface is reconstructed with piecewise (i.e. cell-
by-cell) linear line segments. A local height function is used for determining the
curvature. The advection of the interface. ComFLOW [142] displaces the interface
using the combination of the local height function and the donor-acceptormethod
[115] that should prevent any mass losses and the existence of unphysical spray
(separated water droplets) [142].

Multiphase modeling
The same Navier-Stokes equations apply to every fluid volume, but with differ-
ent coefficients in different fluids. A jump in mass and momentum of the fluids
across the interface is possible when these are separated by an interface. The
application of averaging [70] for deriving the set of equations at macroscopic
level is a classic technique to introduce multifluid models [212]. The averaging
results in the use of volume fractions, indicating the filling rate of a fluid in a cell.

The assumptions of immiscibility, no-slip between the fluids, no mass transfer
across the interface, and pressure equilibrium (a relaxed pressure to a common
value) simplify the system of equations to one set of Navier-Stokes equations for
the motion of a mixture where there is no need to solve the jump conditions. The
model is founded on the one-fluid assumption resulting in one unique velocity
and pressure field [188]. This set of equations is the start for the describedmethod
in this thesis modeling air-water phase flows.

Compressibility
The incompressible one-phase flow method of ComFLOW is extended to a
semi-compressible two-phase flow model by Wemmenhove [292]. The semi-
compressible flow model enforces a pressure-density relation for the air phase
so that an energy equation can be omitted and the compressibility of air can be
described. This thesis will improve the semi-compressible two-phase flow model
and extend it to a fully compressible multiphase flow model.

1.6 Research outline
Each part in this thesis, defined in the research objective, represents a step in
developing the final method. In Part I, numerical improvements for the core
of the semi-compressible numerical method are discussed. The encountered
numerical artifacts have been investigated and, in part, resolved. In Part II, mod-
eling of aeration with fluid-body interaction is discussed. The final model is
compared with results of self-conducted experiments. In Part III, numerical im-
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provements for interface modeling of high-density ratio two-phase flows are
discussed. Numerical schemes to increase the sharpness and accuracy of the
interface are introduced. The thesis contains in total six studies described in six
separate chapters.

Part I: Modeling of high-density ratio flows, compressible entrapped air-pocket oscilla-
tions, and fluid-body interaction
In Ch. 2, the suitability of the numerical model of the ComFLOW software pack-
age is tested for the global prediction of slamming loadings. For modeling a
rescue boat sailing in heavy irregular seas, the numerical method does not use
any assumptions or is limited in application range like a strip-theory method.
The vertical accelerations computed by the first-principles numerical method
are compared with a self-conducted towing tank experiment and an in-house
calibrated state-of-the-art strip-theory method.

In Ch. 3, the description of the incompressible one-phase method of the
ComFLOW software package is used as a starting point for developing a semi-
compressible two-phase model from scratch. A semi-compressible two-phase
model is tested for reproducing the oscillation effects of an entrapped air pocket
represented by multiple grid cells. Important aspects of entrapped air pockets
are the position of the free surface, surface tension, viscosity, and compressibility.
A surface tension model that can deal with two phases improved the accuracy of
representing the entrapped air pocket oscillations. Additional improvements by
implementing surface tension and a higher-order free surface reconstruction are
discussed.

In Ch. 4, the conservation of momentum of the two-phase model is scrutinized.
The model of Ch. 3 showed unphysical free surface distortion and a reduction in
momentum for incompressible cases with high-density ratios. The two-phase
model is improved by using a consistent mass and momentum transfer im-
plementation to reduce momentum losses. Furthermore, the extension of the
model in Ch. 3 for two-way fluid-body interaction with a cut-cell method and a
conservative transport split scheme for the interfaces is presented.

Part II: Experiments and numerics with aeration
In Ch. 5, an experimental setup for a ”truly” 2D wedge entry is presented for
validation. The experiment makes it possible to focus on the complicated inter-
action between the wedge and free surface and study both the wedge motion
and the free surface deformation with a large amount of detail. The results are
compared with the semi-compressible numerical model and can be used as a
benchmark for violent fluid-structure interaction.

In Ch. 6, the semi-compressible numerical model in Ch. 4 is used to develop a
new fully compressible pressure-based multiphase model that can account for a
compressible homogeneous mixture of air and water. The numerical difficulties
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discussed above give an underprediction of the propagation velocity of density
waves at the material interface due to the numerical diffusivity and give numeri-
cal pressure oscillations around the material interface caused by inconsistency.
Extension to fully compressible should minimize these effects. The experimental
setup of Ch. 5 is reused and extended for pressure measurement on the wedge
and the injection of tiny air bubbles in the water, and the experimental results are
used to validate the numerical method. The combination of the experiments and
numerical simulations is performed with the ambition to gain a better insight
into the effect of aeration on the loadings when a wedge enters the aerated water
in a closed domain.

Part III: Numerical improvements for interface modeling of high-density ratio flows
In Ch. 7, the representation of the free surface is improved and inconsistency in
the transport of the free surface is prevented such to have a better distinction
between air and entrained air. A new bilinear interface reconstruction scheme is
introduced. This method showed to be an improvement in the representation of
highly-curved interfaces, indicating an improvement in the distinction between
water, air, body, and entrained air. A new consistent and conservative unsplit
transport scheme is introduced to prevent instabilities near the interfaces be-
tween fluid and fluid, and between fluids and body.

The thesis closes with Ch. 8, summarizing the research findings and outlining
future prospects.





Part I

MODEL ING OF HIGH-DENS ITY RAT IO FLOWS ,
COMPRESS I BLE ENTRAPPED AIR-POCKET

OSC ILLAT IONS , AND FLU ID -BODY INTERACT ION

This part concerns the acquaintance with the core of the method
based on the software package ComFLOW (Ch. 2). The method is
extended to a semi-compressible two-phase model that can deal with
the compressibility of entrapped air pockets (Ch. 3). The method is
improved such that it can deal with high density-ratio flows, surface
tension effects, and fluid-body interaction (Ch. 4). This part aims to
improve the movement of the free surface and its interaction with
bodies by preventing unwanted energy losses.

Photo: [132]
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2
EXPER IMENTAL AND NUMER ICAL ASSESSMENT OF

VERT ICAL ACCELERAT IONS DUR ING BOW RE -ENTRY OF A
R IB IN IRREGULAR WAVES

This chapter is reproduced from [79] :

M. van der Eijk and P. R. Wellens. “Experimental and numerical assessment
of vertical accelerations during bow re-entry of a RIB in irregular waves.” Inter-
national Shipbuilding Progress 67 (2020), pp. 1–26

Abstract
This work presents the comparison of a self-conducted towing tank experiment with
the simulation results of a calibrated state-of-the-art strip-theory method and a first-
principles numerical method. The experiment concerns a Rigid Inflatable Boat (RIB) in
moderate-to-high irregular waves. These waves result in bow emersion events of the RIB.
Bow re-entry induces vertical accelerations which, in reality, can lead to severe injuries
and structural damage. State-of-the-art methods for predicting the vertical acceleration
levels are based on assumptions, require calibration and are often limited in application
range. We demonstrate how the vertical acceleration as a function of time is found from a
3D numerical method based on the Navier-Stokes equations, employing the Volume of
Fluid (VoF) method for the free surface, without any further assumptions or limitations.

2D+t strip theory methods like Fastship are based on the mechanics of wedges falling
in water. The 3D numerical method that is part of the software ComFLOW is compared
to previous research on falling wedges in 2D to investigate the effect of air and to find
suitable grid distances for the 3D simulation of the RIB. The 3D RIB simulations are
compared to Fastship and the experiment. With respect to the experiment, the ComFLOW
simulations show a slight underestimation of the levels of heave and pitch. The under-
estimation of Fastship is larger. The prediction of acceleration in ComFLOW is hardly
different from the experiment and a significant improvement with respect to Fastship.
ComFLOW is demonstrated to predict acceleration levels better than before, which creates
opportunities for using it in seakeeping optimization and for the improvement of methods
like Fastship. The properties of the RIB and the experiment are available as open data at
doi:10.4121/13078601 [288].
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2.1 Introduction
After a comprehensive study of U.S. Special Operations craft crewmen, 62% of
the crew reported one or more injuries that required hospitalization attributed
to high-speed craft operation [209]. The demand for high speed crafts to be
operational under all weather conditions without injuries leads to harsh design
restrictions where bow emergence and re-entry play an important role. Bow re-
entry in reality can lead to high vertical accelerations. In earlier years, reduction
of the total resistance to reach the highest forward speed was the main objective.
This resulted in adverse seakeeping behavior where the impacts induce severe
injuries to the crew.Measurements at Fast Raiding Interception and Special forces
Craft (FRISC) showed that acceleration pulses up to 15g were achieved [173].
Van Deyzen [267] concluded based on full scale trial data that the repeated
occurrence of 1g vertical acceleration was acceptable for the crew. To prevent
injury and structural damage following these high accelerations, the operator
needs to reduce speed. Speed-adaptation results in a reduced operational profile.

To enlarge the operational profile at high speeds and reduce the vertical acceler-
ations, the performance of the craft can be increased by improved ship design,
the design subsequently evaluated by conducting experiments that test the sea
keeping behavior. In support of experiments, approximating mathematical and
numerical methods for predicting accelerations have been developed over the
years, among which Fastship [139]. The state-of-the-art of these methods is lim-
ited in its range of application, because they depend, in part, on simplifications
and calibrated empirical relations.

Here, we propose a first-principles numerical method to predict the acceleration
levels of a Rigid Inflatable Boat (RIB) in moderate-to-high irregular waves. From
what we were able to find in literature, the main contribution of this article is
a direct deterministic comparison of vertical acceleration in time in irregular
waves between 3 methods: self-conducted towing tank experiments, a calibrated
state-of-the-art strip theory method called Fastship, and a 3D method based on
the Navier-Stokes equations called ComFLOW [142]. The comparison is done
for the entire time that a model is at constant speed in a run.

High speed craft have been widely investigated with most of the mathemati-
cal/numerical studies being based on slender body assumptions or potential
theory [150, 315]. Several approaches to predict the performance of a high speed
craft in calm water exist in literature. Tavakoli et al. [259] developed a math-
ematical model for the performance of planing hulls in forward accelerating
motion. The model is extended with empirical equations of displacement ships
and 2D+t theory, showing a fair agreement with experimental results. Recent
numerical work of Broglia and Durante [24] focused on the challenging free
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surface flow problem involving a surface vessel at high speeds in calm water
using a numerical one-phase uRaNS flow solver. They mentioned that the appli-
cation of a CFD based approach to study high speed craft is still rather limited.
An experimental and numerical study of the total resistance and drag prediction
is done by Avci and Barlas [7]. They conducted a towing tank test with a high
speed hull to compare with CFD methods, resulting in a good agreement for the
total resistance.

There are few accounts of validated 3D numerical approaches to predict the
vertical accelerations of high speed craft in irregular waves in literature. Wang
et al. [285] performed numerical simulations of a planing craft in regular waves
using a RaNSE VoF solver where they focused on the sea keeping performance
instead of the resistance. They concluded that validation with a model or full-
scale measurement still remains of the essence. Mousaviraad, Wang, and Stern
[187] assessed the capability of URaNS for the hydrodynamic performance and
bow re-entry of a high speed craft. Simulations of a high speed craft in regular as
well as irregular low-to-moderate waves were performed at a Froude number of
1.8-2.1. The results were validatedwith experiments for themean and amplitudes
of resistance, heave, pitch and acceleration. Similarly, Fu et al. [94] performed
simulations at the same conditions finding generally good agreement in terms of
expected values and standard deviations of vertical acceleration. Furthermore,
they analyzed and validated the bow re-entry performance of the craft at high
speed including vertical accelerations. More work where the accelerations of a
RIB in irregular waves are predicted is done by Lewis et al. [157]. They used
a RaNSE model in combination with non-linear strip theory through calcula-
tion of the forces occurring on a wedge impact. While the occurrence of wedge
impact and the frequency of heave an pitch motions were predicted well, the
magnitudes of accelerations were over-predicted compared to experimental data.
Articles that deterministically compare the full time registration of the motions
containing a bow re-entry event between a first-principles numerical model and
an experiment have not been found.

Based on the remarks made by Wang et al. [285] and others, we conducted a
towing tank experiment of a RIB in moderate-to-high irregular waves at Froude
number 𝐹𝑛 ≈ 0.25-1.0 for validation of numerical models. During the experiment,
the RIB is restricted to the heave and pitch motion while being towed through
the tank at a constant speed. The heave and pitch motion, accelerations and wave
height were measured for the time of a run. The experiments were controlled in
such a way that in every run a bow emergence and re-entry event was experi-
enced.

The 2D+t method Fastship is compared to the experiment at model scale for the
same incoming waves as in the experiment. Fastship is a faster-than-real-time
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model which makes use of 2D strips of wedges distributed over the hull length.
The coefficients for the equation of motion are based on experimental results and
analytical relations. The method has been extended over the years to include the
effect of control systems for the forward velocity [227, 267]. Fastship has been
used for the design of a RIB by Keuning et al. [138].

The proposed first-principles numerical method in this work is ComFLOW. 3D
simulations of the RIB motions using ComFLOW are performed at the same scale
and circumstances as the conducted experiment. Again, the incoming waves are
the same as in the experiment. The numerical method ComFLOWhas been under
development since Fekken, Veldman, and Buchner [89]. Over the last few years,
research is done to improve the description of violent flow phenomena which
are both highly non-linear and highly dispersive [75, 97, 142, 292]. ComFLOW is
based on the Navier-Stokes equations for the motion of an aggregated fluid with
varying properties. A fixed Cartesian grid is used with a staggered configuration
of variables within a cell. The free surface is displaced using the Volume-of-Fluid
(VoF) method where the interface is reconstructed using piecewise-linear line
segments (PLIC). Using a cut-cell method, a body can be incorporated to deter-
mine the interaction with the fluid [90]. Validation of the numerical simulation
method ComFLOW with experimental data of a high speed craft in 3D has not
been done before.

This article first presents the governing equations of fluid flow that Fastship and
ComFLOW are based on. Then, in order to study the importance of air and to find
the appropriate grid configuration for the prediction of bow re-entry, free falling
wedge drop tests are simulated with ComFLOW. By conducting the wedge drop
simulations, a first experience of how ComFLOW behaves for simplified bow
entries is demonstrated. With the selected grids, 3D simulations with the RIB
are performed. At the end, the comparison between the experiment, Fastship
and ComFLOW is made and conclusions are formulated based on the results.
The details of the RIB and the experiment are provided as open data by Wellens
[288].

2.2 Governing equations
2.2.1 One-phase flow model
The one-phase flow model makes use of the assumption that the effect of air can
be neglected. Water is considered as an incompressible and viscous liquid. Air is
considered as a vacuum. The liquid motion in a 3D domain is described by the
Navier-Stokes equations and a fluid displacement algorithm. For the one-phase
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flow model, the governing equations are only applied in the liquid-filled part of
the domain. The Navier-Stokes equations are simplified to [97]

∇ ⋅ u = 0,
𝜕u
𝜕𝑡 + u ⋅ ∇u = −

1
𝜌∇𝑝 +

𝜇
𝜌 ∇2u + F,

(2.1)

with u the velocity vector, 𝜌 the density of the fluid, 𝑝 the pressure and 𝜇 the
dynamic viscosity. F are the external body forces, in this case only gravity; [0
0 -9.81 ]𝑇 [m/s2]. For an incompressible flow, the density does not change in a
lagrangian manner and therefore the divergence of the velocity is zero.

2.2.2 Two-phase flow model
In contrast to the one-phase flow model, the two-phase flow model solves for
water and air in the entire domain, making it more computationally expensive.
In this model water remains an incompressible, viscous fluid. Air is chosen as a
compressible viscous fluid to account for cushioning effects.

The Navier-Stokes equations are stated for a mixed fluid in which the pressure
is relaxed to a single field. This results in one continuity and one momentum
equation for both water and air [292]

𝜕𝜌
𝜕𝑡 + ∇ ⋅ (𝜌u) =0,

𝜕(𝜌u)
𝜕𝑡 + ∇ ⋅ (𝜌uu) = − ∇𝑝+

∇ ⋅ (𝜇 (∇u + ∇u𝑇 −
2
3∇ ⋅ uI))

+ 𝜌F.

(2.2)

The mixed fluid properties 𝜌 and 𝜇 are defined in Eq. (2.7). To close the system
of equations, an energy equation referred to as the equation of state is introduced

𝑝
𝑝𝑟𝑒𝑓

= ⎛⎜
⎝

𝜌𝑔

𝜌𝑔,𝑟𝑒𝑓
⎞⎟
⎠

𝛾
. (2.3)

Eq. (2.3) is a polytropic relation between the pressure and density of the com-
pressible gas. 𝑝 and 𝜌𝑔 are the pressure and density of the compressible air. 𝑝𝑟𝑒𝑓
is the atmospheric pressure and 𝜌𝑔,𝑟𝑒𝑓 is the air density at atmospheric pressure.
𝛾 is the adiabatic coefficient: 𝛾 = 1.4[-] for air is used.
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2.2.3 Free surface & boundary conditions
For both the one-phase and the two-phase model, the fluid displacement algo-
rithm is described by a function 𝑠(x, 𝑡) = 0, with x = (𝑥, 𝑦, 𝑧)𝑇. The equation of
the displacement of the free surface is as follows [97]

𝐷𝑠
𝐷𝑡 =

𝜕𝑠
𝜕𝑡 + u ⋅ ∇𝑠 = 0. (2.4)

The boundary conditions needed by both models are as follows. At the fixed
walls of the domain or the moving objects, no penetration boundary conditions
are applied, u ⋅ n = u𝑏 ⋅ n. At domain walls also a free-slip boundary condition
is imposed, 𝜏 ⋅ n = 0. u𝑏 is the velocity of the moving object and 𝜏 is the shear
stress tensor. When performing wave simulations, an inflow boundary is needed
where the velocity profile of the incoming wave is prescribed and an outflow
boundary for the absorption of waves [289]. To that end, the Generating and
Absorbing Boundary Condition (GABC) of Wellens and Borsboom [289] is used
in combination with the superposition of linear wave velocity components to
model an irregularwave. The settings of theGABCare elaborated upon in Sec. 2.5.

In only the one-phase flowmodel, boundary conditions for pressure and velocity
are needed at the free surface to close the system. Eqs. (2.5) and (2.6) are the
result of continuity of the normal and tangential stresses [97] at the free surface

− 𝑝 + 2𝜇
𝜕𝑢𝑛
𝜕𝑛 = −𝑝0 + 𝜎𝜅, (2.5)

𝜇 (
𝜕𝑢𝑛
𝜕𝑡 +

𝜕𝑢𝑡
𝜕𝑛 ) = 0, (2.6)

where 𝑢𝑛 and 𝑢𝑡 denote the normal and tangential component of the velocity. 𝑝0
is the atmospheric pressure. The two-phase flow model requires the atmospheric
pressure to be set at a boundary that only connects with air, usually the ceiling
of the domain.

2.3 Numerical discretisation
2.3.1 Cell labeling
The mathematical model is implemented in the pressure-based numerical so-
lution method ComFLOW. In order to solve the Navier-Stokes equations, the
computational domain is covered with a fixed and staggered Cartesian grid.
In the grid, pressure and density are defined in cell centers and velocities are
defined at the edges of the cell. The Navier-Stokes equations are solved in every
cell (or in every cell that contains water in one-phase simulations). Structure
geometries cut through the grid so that cells within the contour of the structure
are partially or completely closed to flow. We call those cut cells and they are
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administered by edge and volume apertures. The apertures are a measure for
which part of the cell face or cell volume is open to flow.

The cells are divided into three groups to describe the fluid configuration. Cells
which can be filled with water, but are filled with air (or empty in one-phase),
are called E-cells. A S-cell (surface) contains fluid and is next to an E-cell. The
remaining cells containing fluid are labeledwith F. Cells which are fully occupied
by the structure are labeled with B. An example of the labeling is illustrated in
Fig. 2.1.

𝐹 𝐹 𝐹 𝐹 𝐹

𝐹 𝐹 𝐹 𝐹 𝑆

𝐵 𝐹 𝑆 𝑆 𝐸

𝐸 𝐸 𝐸 𝐸 𝐸

𝐸 𝐸 𝐸 𝐸 𝐸

Figure 2.1. Labeling of cells.

2.3.2 Discretisation of the Navier-Stokes equations
Where for the one-phase flow model the density and viscosity do not change,
with the two-phase flowmodel they do because of the aggregate fluid assumption
and the effect of compressibility. Density values are defined in the centers of cells
and found by arithmetic averaging

𝜌 =
𝐹𝑠
𝐹𝑏

𝜌𝑙 +
𝐹𝑏 − 𝐹𝑠

𝐹𝑏
𝜌𝑔,

𝜇 =
𝐹𝑠
𝐹𝑏

𝜇𝑙 +
𝐹𝑏 − 𝐹𝑠

𝐹𝑏
𝜇𝑔,

(2.7)

where 𝐹𝑏 and 𝐹𝑠 are the fractions of the cells that are open for flow and occupied
with liquid, respectively. The water density 𝜌𝑙 remains constant and the air den-
sity is calculated using Eq. (2.3). At the cell faces the density and viscosity are
calculated by cell-weighted averaging [75].

Velocities near and above the free surface are not solved for in the one-phase ap-
proach. These so-called EE and SE velocities, see Fig. 2.1, are needed to complete
the discretisation of the convective term in the momentum equation. They are
found by constant extrapolation from the inside of the water [142].
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To solve the Navier-Stokes equations, the equations are discretised in time and
space. The combination of the forward Euler method for time integration and
central discretisations of the derivatives in space is used for all but the non-linear
convective term. In that term, a first-order upwind discretisation is used. The
forward Euler method is a first order method but accurate enough, because of
small time steps and because the overall accuracy is determined by the accuracy
of the free surface displacement [142]. No turbulence model is used.

The system is solved using a one-step projection method. A Poisson equation
is formulated and solved for the pressure with a BiCGSTAB solver [275], with
ILU(𝜀) preconditioning. This solver is compatible with both one-phase flow and
two-phase flow and sufficiently robust for the large density variations from air
to water near the free surface in two-phase flow simulations. The free surface
is convected by the improved Volume-of-Fluid (iVOF) method in ComFLOW:
the free surface is reconstructed using a Piecewise Linear Interface Calculation
(PLIC [310]) and displaced with the split scheme MACHO [74] to solve Eq.
(2.4). A Courant number (CFL) restriction, based on the velocity u, is used for
numerical stability.

In ComFLOW, we choose to keep the motion solver for the structure separate
from the Poisson equation so that we can link to external libraries. That creates a
difficulty: the body velocities are required at the new time step, but they depend
on the pressures along the hull, and the new pressures along the hull depend
on the new body velocities. The two-way coupling between structure and fluid
is solved iteratively with underrelaxation applied to the update of the body
velocities, that consists of body force over mass of the structure. Tangential
stresses are ignored in the body force calculation.

2.4 Simulation of wedge entry compared with experiment
Water-entry of a wedge shaped section has been investigated in numerous stud-
ies, e.g. numerically in 2D and 3D by Kleefsman et al. [142] and experimentally
in 3D by Zhao, Faltinsen, and Aarsnes [316]. Wedge entry is a simplification of
a bow re-entry event and often used for the prediction of the forces on a cross
section in a 2D strip theory approach for a ship. We use falling wedges to verify
ComFLOW, to determine which physics are relevant for the 3D case, and for
finding the grid resolution. The geometry of the wedge is shown in Fig. 2.2. The
size of the cross section is similar to the 3D RIB. Besides 2D simulations of the
wedge entry also a 3D simulation is done to compare with the 3D experimental
data of Zhao, Faltinsen, and Aarsnes [316]. Muzaferija [189] determined that
a gap of 0.25[m] between the back and front wall and the wedge in the 3D
simulation gives results that compare well with experiments.
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Figure 2.2. Domain and dimensions of the wedge in [m].
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2.4.1 Setup wedge entry
The domain, illustrated in Fig. 2.2, has the same dimensions that were used in
the experiment by Zhao, Faltinsen, and Aarsnes [316]. The water depth is 1.5[m].
The free falling wedge moves in vertical direction and has an impact velocity
at the water surface of 6.15[m/s]. In the one-phase simulations the wedge is
simulated with an initial speed of 6.13[m/s] and a starting location 0.015[m]
above the water surface. The initial speed has been calculated using conservation
of energy.
For the two-phase flow simulations, the setup is largely the same as with one-
phase. In order to investigate the relevance of compressible air on wedge entries,
the wedge is positioned 0.1[m] above the water surface to be able to develop the
air cushioning effect [27]. Again the initial velocity is calculated using conser-
vation of energy, taking into account a margin for the air resistance. The initial
speed is set at 5.99[m/s].

The boundary condition at the top of the domainwith air defines the atmospheric
pressure. For the simulation it is critical to have a small time step at the time the
wedge enters the water surface so that the impact is represented accurately. For
all simulations a maximum CFL restriction of 0.7 is used, enforcing smaller time
steps when fluid velocities become higher. The time step is never larger than
0.001[s].

2.4.2 Appropriate grid resolution 2D wedge entry
In order to determine which grid size is suitable for the simulation of the RIB in
the following section, a grid convergence study has been done for the one-phase
flow model as well as the two-phase flow model in ComFLOW. In Figs. 2.3a
and 2.3b the velocity of the wedge over time is plotted. With the grid 50x50 we
capture the width of the RIB with around 8 cells.
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(a) One-phase flow.
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(b) Compressible two-phase flow.

Figure 2.3. Wedge entry: 2D grid convergence

The one-phase flow model shows jumps in the vertical speed which depend
on the grid resolution. These jumps in the speed are related to label changes.
The label defines whether the free surface conditions in Eqs. 2.5 and 2.6 need
to be enforced. The resulting discontinuous pressure in time affects the vertical
velocity of the wedge through its equation of motion. The vertical velocity is
smoothened by grid refinement due to the smaller effect of local pressures on
the global motion. Fig. 2.4 also shows that true grid convergence is not feasible
for the discontinuity of the wedge going from dry to wet. This is in agreement
with for instance the dam break simulations by Kleefsman et al. [142]. Grid
refinement results in new flow features. These features affect the vertical motion,
which can be observed for the two-phase 400x400 grid in Fig. 2.3b.

In Fig. 2.4 the free surface deformation due to the wedge entry is shown for
different grid resolutions of the one-phase flow simulations. It shows that free
surface keeps developing new flow features. For the one-phase flow simulations,
however, the flow features do not affect the vertical velocities of the wedge as
much as for the two-phase simulations. The computational effort of extrapolating
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the finest grid resolution in Fig. 2.3 to 3D is too high to be feasible. For this reason,
we choose to focus on representing the motions of the RIB well with 50x50 and
100x100 grid cells in the cross-section of the domain, and accept that the free
surface near the ship is underresolved.

(a) 50x50. (b) 100x100.

(c) 200x200. (d) 400x400.

Figure 2.4. Wedge entry in water with one-phase model at t=0.025[s].

2.4.3 Comparison one-phase & two-phase flow 2D wedge entry
Fig. 2.3a and Fig. 2.3b show that higher grid resolutions lead to lower differences
between the one-phase results. The twofinest two-phase results aremore different
than the two finest one-phase results. The comparison of a wedge entry in one-
phase and two-phase for similar resolutions is shown in Fig. 2.5. Where for the
one-phase model only the liquid is solved, the two-phase model using extra
equations for the density is solved over the entire domain. This makes the two-
phase model more computationally expensive. The difference in computational
time is a factor 10 approximately. The one-phase results are so close to the two-
phase results that it leads to the conclusion that the computational costs outweigh
the benefit of including air effects. This conclusion was not unexpected, Faltinsen
[86] concluded that the air cushion effect has an influence on the velocity for
deadrise angles of only a fewdegreeswhereas thewedge and the RIB in this study
have deadrise angles of 30[deg] or larger. Two-phase is also more dissipative for
wave propagation [292]. With this in mind we choose to simulate the RIB in 3D
without the effect of air.
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Figure 2.5. Wedge entry: comparison of one-phase and two-phase flow in 2D.

2.4.4 Results 3D wedge entry
The comparison of 3D wedge entry simulations on a 50x50x50 and 100x100x100
grid with the 3D experiment of Zhao, Faltinsen, and Aarsnes [316] is made in
Fig. 2.6. The 3D one-phase flow simulation results overpredict the deceleration
compared to the experimental result. However, the 2D simulations in Fig. 2.5
overpredicts the deceleration significantly more. This is a result of the restricted
movement of the fluid and 3D effects. This could mean that the deceleration in
2D strip theory simulations of ships in waves is also exaggerated, which would
lead to lower motions and inaccurate predictions of the vertical acceleration.
Further, the velocity jumps in 3D are smoothened because the local pressure
jumps have less effect on the global velocity of the wedge. Fig. 2.6 also shows the
3D one-phase simulation done by Kleefsman et al. [142] with a previous version
of ComFLOW using a grid of 60x60x60. The new ComFLOW results are similar
to ones from the previous version.
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Figure 2.6. Wedge entry: comparison of 3D one-phase with experiment.
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Based on the investigation with falling wedges, 1 phase simulations with a mini-
mum of 8 cells along the width of the RIB are appropriate to represent its vertical
motion behavior.

2.5 3Dsimulationswith Fastship andComFLOWcomparedwith experiment
An experiment with a RIB was conducted specifically for the purpose of this
chapter in the small towing tank of the Ship Hydromechanics Laboratory at Delft
University of Technology. The main objective of the experiment was to generate
a bow emergence and re-entry event in each run; to that end the highest surface
elevation in a sea state defined by a JONSWAP spectrum with a set peak period
and significant wave height, would be met by the RIB at the desired velocity in
a specific location in the tank. That specific location was 50[m] away from the
wave board, where even for the highest velocity it was certain that the boat had
accelerated to meet the desired velocity. The setup is illustrated in Fig. 2.7.

2.5.1 Experiment
The RIB model was free to move in heave and pitch, while other motions were
kept restrained. The mass of the RIB is 35.26[kg], with the center of gravity
(CoG) at 0.57[m] from the aft perpendicular and 0.159[m from the keel. The
radius of inertia for pitch is 0.459[m]. The dimensions of the RIB and the towing
tank are given in Tab. 2.1.

Table 2.1. Parameters RIB and towing tank.
Length towing tank 85.0 [m]
Width towing tank 2.75 [m]
Water depth 1.203 [m]
Mass model RIB 35.26 [kg]
Length model RIB 1.93 [m]
Width model RIB 0.653 [m]
Length waterline model RIB 1.837 [m]
Width waterline model RIB 0.554 [m]
Height max. model RIB 0.385 [m]
Draft model RIB 0.111 [m]
Scale factor 1:10 [-]

The velocity of the ship and towing carriage was measured using a calibrated
wheel that rolls along the side of the rail of the carriage. The position of the
ship with respect to the wave board is measured by a high power laser dis-
tance meter. The initial position of CoG always equals 71.439 m away from the
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wave board. The velocities 𝑣𝑠 at which the RIB was towedwere 1, 2, 3 and 4[m/s].

The position of the RIB with respect to the towing carriage was measured by
means of a Certus optical motion tracking system that uses a marker plate on the
model. Heave and pitch of the RIB are found from this system, with an accuracy
of 0.1[mm] according to the supplier. Note that the marker plate was not at CoG,
so that the heave signal from Certus needed to be transformed to CoG. Two
accelerometers were placed on the RIB, one at CoG and one near the bow. The
accuracy of the accelerometers was 0.01𝑔 according to the supplier.

There was a total of three wave gauges in the tank, of which two were fixed
and used to confirm that the desired wave signal was generated by the wave
board. They were placed at 18.632[m] and 20.840[m] from the wave board. The
maximum difference between the calibration data of the wave gauges and their
least square fit was 0.5[mm]. One wave gauge was towed with carriage and
ship model to measure the free surface elevation as the ship encounters it. It
was placed at 1.858[m] from CoG in front of the bow. The wave gauge was posi-
tioned near the side wall of the tank so that it did not disturb the incomingwaves.

The width of the towing tank did not affect the results. When in waves, the term
𝜔𝑒𝑣𝑠/𝑔 for the lowest velocity 𝑣𝑠 = 1[m/s] indicating the significance of side
wall effects is close to one. That is sufficiently high above the threshold value of
0.25 that no interference is expected [311]. Interference is only relevant for the
comparison between the experiment and Fastship, because there are no sidewalls
in Fastship. The comparison of the experiment with ComFLOW is more direct,
because in ComFLOW the side walls of the domain are at the same position as
the side walls of the tank. The effect that the bottom of the tank has on the waves
is accounted for in both Fastship and ComFLOW.

Two peak periods of the wave spectrum were considered, 1.1[s] and 2.2[s], with
the former giving the most interesting results in terms of large motions and bow
emergence. The significant wave heights considered ranged from 0.03[m] to
0.14[m], of which the lower wave heights were only used to build up towards
bow emergence and re-entry events. Time series of surface elevations ten thou-
sand seconds long were generated from these peak periods and significant wave
heights by converting theoretical JONSWAP spectra with peakedness factor 3.3
to the time domain. Of these signals, the largest consecutive maximum and
minimum, i.e. the largest wave, was selected. Starting from the time index of
the maximum elevation of that largest wave, a wave board signal was generated,
making sure that the surface elevation 50[m] away from the wave board would
contain all wave components in the time signal at least one peak period before the
time of the largest wave, and that no reflection from the spending beach at the end
of the towing tank would contaminate the results. The ship started moving at the
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specific time required to arrive at the target location when the largest wave would
be there too. An overview of the runs with interesting results is shown in Tab. 2.2.

Table 2.2. Overview experimental runs. Significant wave height is S.w.h. and Froude
number is Fn..

Run # Velocity [m/s] Peak period [s] S.w.h. [m] Fn. [-]
Run 24 1 0 0 0.24
Run 38 1 1.1 0.10 0.24
Run 40 2 1.1 0.06 0.47
Run 42 2 1.1 0.09 0.47
Run 44 2 1.1 0.10 0.47
Run 46 2 0 0 0.47
Run 48 2 1.1 0.03 0.47
Run 50 3 1.1 0.09 0.71
Run 52 3 1.1 0.09 0.71
Run 54 4 1.1 0.09 0.95
Run 56 2 1.1 0.14 0.47
Run 58 1 1.1 0.10 0.24
Run 60 2 2.2 0.14 0.47

In this chapter numerical results in terms of free surface, heave, pitch and the
acceleration at CoG with Fastship and ComFLOW are compared to the runs in
the experiment. Heave and pitch in Run 42 as a function of time are shown in
Fig. 2.12, the accelerations as a function of time for this run are in Fig. 2.13.

2.5.2 Fastship
Fastship is a strip theory 2D+t method. Runs in Fastship for the purpose of this
chapter are performed at full scale with a scale factor of 1:10 between model
and prototype due to the coefficients involved. The main input variables that
were varied between runs were the velocity and the components of the wave
signal with frequencies, amplitudes and phases. The unvarying coefficients that
were input to Fastship are given in Tab. 2.3 and obtained by Keuning et al. [138],
in which statistics of accelerations in Fastship were calibrated to the statistics
of experiments. The geometry of the ship is defined in terms of the position of
the keel, the position of the chine and the deck elevation at the perpendiculars
shown in the lines plan in Fig. 2.8.
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Table 2.3. Coefficients Fastship.
Geometric metacentre height 3.5 [m]
Cross flow drag coefficient 1.33 [-]
Added mass coefficient 1.1 [-]
Buoyancy correction factor 0.6 [-]
Buoyancy moment factor 1.0 [-]
Critical damping coefficient 0.075 [-]
Iforce (geometry above chines) 1 [-]
Itransom (near transom pressure) 1 [-]
Ideadrise (Cm depends on deadrise) 0 [-]
Ipilup (pileup depends on deadrise) 1 [-]
Time to develop sea state 0 [s]
Total time of run (model scale) 12 [s]
Maximum time step (model scale) 0.03 [s]

Specifically for this chapter, Fastship runs were performed with the wave input
from our new experiments. Internally, Fastship uses Airy wave components,
together with the complete linear dispersion relation for free surface waves at
any water depth.

Fastship requires wave input at CoG. At the position of CoG no waves were mea-
sured in the experiment. We used two ways to translate the signal from the signal
from the wave gauge that was fixed to the towing carriage: 1. using Airy wave
theory and 2. using the Airy components as input to a ComFLOW simulation
dedicated to deliver the wave signal at CoG. The difference is that nonlinear
interactions between wave components are included in the latter method, but
not in the former.

Using only linear Airy theory, the signal of the wave gauge that was fixed to
the towing carriage was transformed to its Fourier components to get frequen-
cies, amplitudes and phases. Using the Doppler shifted dispersion relation that
accounts for the forward ship speed to get the wave number, the phases were
adjusted to account for the distance between the position of the wave gauge and
CoG of the ship. Those same Fourier components are used in two ComFLOW
simulations, with the open domain boundary at the position of the wave gauge,
yielding an output wave signal at the position of CoG. The first ComFLOW simu-
lation, Grid 1, used Δ𝑥 = 0.08[m] or 15 cells per shortest wave length. The second
ComFLOW simulation, Grid 2, used twice the number of cells per shortest wave
length.

The comparison between using only Airy theory and using the ComFLOW simu-
lations with the two grid resolutions is shown in Fig. 2.9. The differences between
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0 and 4[s] are due to ComFLOW ramping up the signal from 0 to the desired
output. The difference in the peak at 5[s] between the two ComFLOW simula-
tions is because the dispersion errors of especially the shortest wave components
are smaller for the finer grid. The differences between linear Airy theory and
the ComFLOW simulations for the time larger than 4[s] are because ComFLOW
includes the nonlinear interactions between wave components.

Because the ComFLOW simulations are expected to be a better representation of
what the wave signal at CoG in the experiment would have been, the output of
the finer ComFLOW simulation at CoG is converted to its Fourier transform as
input for Fastship.
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Figure 2.9. Free surface elevation in Fastship and 2D ComFLOW simulations at the
position CoG (experiment not available).

The heave and pitch motion found with Fastship for run 42 are shown in Fig.
2.12, in which they are compared to the experiment. The axis system in Fastship,
with the vertical axis downward, is different from the axis system in the exper-
iment, with the vertical axis upward. The pitch rotation in Fastship is positive
anti-clockwise, whereas it is positive in clockwise direction in the experiment. It
was found after comparing Fastship output to the experiment, however, that the
axis system of the ship in Fastship, positive downward, is inconsistent with the
axis system of waves in Fastship, positive upward. For that reason, sinkage and
trim from a Fastship run without waves were subtracted from the motion signals.
The resulting signal was corrected before being recombined with sinkage and
trim. The corrected signals are in Fig. 2.12. The accelerations at CoG are also
corrected and visualized in Fig. 2.13, where they are compared to the experi-
ment. It is found from comparing the Fastship motions and accelerations to the
experiment, that the overall behaviour is consistent with the experiment. The
magnitude of the vertical acceleration is higher around 5[s] and underpredicted
in the remainder. The motions are underpredicted over the entire time span.
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2.5.3 ComFLOW
The dimensions of the ComFLOW domain are based on the results of Wellens
[290]. Along the line of wave propagation it is advised to make the domain two
typical wave lengths larger than the structure in either direction, to keep the wave
absorbing boundary conditions away from splashes and wave breaking near
the structure and to allow nonlinear wave interaction to take place between the
incoming and reflected wave systems. For this simulation, with forward speed
of the RIB it was decided to shift the structure one typical wave length closer
to the incoming wave boundary for two reasons. The first reason is because the
reflected wave system propagating ahead of the RIB was expected to be small.
The second reason is because we wanted to keep the stationary wave system
behind the RIB as small as possible near the aft boundary so as not to disturb the
wave absorbing boundary condition on that side too much. In 𝑥-direction, in the
direction of wave propagation, the domain extends from -2.2[m] to 3.3[m] with
CoG of the RIB at x = 0[m]. In transverse direction, the domain is the same size
as the towing tank. In vertical direction, the mean free surface coincides with z
= 0[m], with the bottom positioned at z = -1.203[m] to match the water depth
in the experiment and the top of the domain at z = 0.7[m], sufficiently far away
not to interfere with the motions of the ship, nor the free surface. The domain is
visualized in Fig. 2.10a.

From the 2D wedge simulations, it was found that 8 and 16 cells along the width
of the RIB are sufficient to capture the vertical motion behaviour. In longitudinal
direction, there are two requirements to the grid spacing. The grid size cannot be
too different from the transverse direction to keep the free surface reconstruction
algorithm accurate, and the grid size needs to be small enough to keep numeri-
cal wave dispersion and numerical wave dissipation sufficiently small. To keep
numerical errors small, there need to be approximately 15 cells in the shortest
wave length in the spectrum. The minimum grid sizes in the simulations close to
CoG of the vessel are Δ𝑥,Δ𝑦,Δ𝑧 = 0.08, 0.08 and 0.09[m], with 1% of stretching
in 𝑦-direction, and 2% in 𝑧-direction. This grid gives us 8 cells along the width of
the RIB. We call this grid 1. For comparison, a refined grid 2 was used with cells
twice as small. Grid 2, having at least 16 cells along the width, including the RIB
reconstruction is visualized in Fig. 2.10b. Cut-cells are used for the object, giving
a good representation for the wedge shaped ship. We are interested in the global
motion and therefore not interested in representing boundary layers around
the hull that would require a much higher grid resolution. The maximum CFL
number allowed for all ComFLOW simulations is 0.85. The maximum time step
varied with the variation of the CFL number and never exceeded 0.001[s].



2

36 experimental and numerical comparison of a rib in irregular waves

(a) Computational domain.

(b) Grid 2 with representation of RIB.

Figure 2.10. Snapshots of computational domain and grid.

The default boundary conditions in ComFLOW have been discussed in Sec. 2.2
above. We have performed calm water runs and runs with irregular incoming
waves. In order to perform wave simulations, a Dirichlet boundary condition for
the horizontal velocity is imposed at the incoming wave boundary, in combina-
tion with the Generating Absorbing Boundary Condition described by Wellens
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and Borsboom [289]. One advantage of the GABC is that incoming and outgoing
wave boundaries can be closer to the object in the domain. The coefficients of
the absorbing boundary condition on the incoming and outgoing ends of the
domain are 𝑎1 = 0.573, 𝑎1 = 0 and 𝑏1 = 0, making them effectively Sommerfeld
boundary conditions tuned to 0.573√𝑔ℎ, with 𝑔 the acceleration of gravity and ℎ
the water depth. The horizontal velocity is computed from a sum of Airy wave
velocity components, which are ramped up from 0 to the obtained velocity signal
over approximately 4[s]. The frequencies, amplitudes and phases for the wave
components come from the Fourier transform of the signal of the wave gauge
connected to the towing carriage. The phases are then corrected with the wave
number for each component, multiplied by the position of the resistance type
wave gauge in the simulation domain, 𝑥 = -1.858[m]. To demonstrate that the
wave signal at the position of the wave gauge in ComFLOW is the same as in the
experiment, those signals are plotted in Fig. 2.11. We will focus on the time span
between 4 and 9[s], indicated by the grey markers in Fig. 2.11, because this is the
time over which the velocity of the ship is constant.
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(a) 2D without RIB at wave probe.
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(b) 3D with RIB at wave probe, with markers at 4 and 9[s].

Figure 2.11. Free surface elevation comparison.
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2.5.4 Comparison results: Calm water simulation
Runs in initially calmwater were performed at different ship forward velocities in
the experiment, in Fastship and in ComFLOW. Tab. 2.4 shows the velocities and
the sinkage and trim for all methods, together with the Froude number based
on the length of the RIB. Trim is in good agreement between ComFLOW and the
experiment. Sinkage shows the same trend in ComFLOW and the experiment,
but there is a small difference. The boundary layer underneath the ship, being
dominated by numerical viscosity, is unlikely to have the correct size. This could
be an explanation for the difference.

The trim and sinkage found by Fastship are quite different from the experiment.
Specifically for Run 46, the sinkage is nearly three times as small as in the experi-
ment and the trim is nearly two times as high. Here, we must make a note that
Fastship was never specifically designed for the velocity range in this chapter, but
for higher forward ship velocities. A specific calibration for the velocity range in
this chapter will likely improve the Fastship results. However, we did not do this
because we wanted to remain consistent with the settings used by Keuning et al.
[138]. While the difference in sinkage is still under investigation, the difference
in trim is most likely due to an incomplete representation of the boxes in the
waterline at the stern in Fastship between ordinate 0 and 2 in Fig. 2.8; lack of
restoring moment there can cause an overprediction of trim. Mean sinkage and
trim is subtracted from the wave signals in the next section. In Fastship, the un-
steadymotions (heave, pitch) are treated independently from the steady position
(sinkage, trim) and an error in the steady position will not lead to additional
errors in the unsteady motions.

Table 2.4. Comparison steady values Fastship and ComFLOW with experiment (* indi-
cates a failed run).

Run nr. Velocity [m/s] Sinkage [mm] Trim [deg]
Experiment 24 1 * *
Fastship 24 1 2.1 0.89
ComFLOW 24 1 4.9 1.61
Experiment 46 2 22.9 2.44
Fastship 46 2 8.0 4.43
ComFLOW 46 2 19.0 2.63

2.5.5 Comparison results: Motion and Acceleration in irregular waves
Runs with waves were performed for different significant wave heights, measur-
ing heave, pitch and the accelerations at the CoG. The runs were done for a depth
Froude number of 0.6 and higher and Froude numbers based on length of the
RIB as in Tab. 2.1. Mean heave and mean pitch were subtracted from the signals
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and the normalized root mean square (rms) difference between the experiment
on the one side, and Fastship and ComFLOW (for two grids) on the other was
determined according to

𝜖𝑛𝑟𝑚𝑠 = √
𝑛

∑
𝑖=1

( ̂𝑦 − 𝑦)2

𝑛 ⋅
1
̄𝑦 , (2.8)

where ̄𝑦 is the range betweenmaximum andminimum of the simulation results ̂𝑦.
The motions in Run 42, for which the rms difference between the experiment and
ComFLOW is about the mean of all rms differences, are given in Tab. 2.5, among
other runs. It is found that the difference between the experiment and Fastship is
consistently larger than between the experiment and ComFLOW (for both grids).

Table 2.5. Comparison values Fastship and ComFLOW with experiment.
Error [-] Run nr. Vel. [m/s] Fastship ComFLOW 1 ComFLOW 2
𝜖𝑛𝑟𝑚𝑠,𝑎𝑐𝑐 42 2 0.146 0.067 0.107
𝜖𝑛𝑟𝑚𝑠,ℎ𝑒𝑎𝑣𝑒 42 2 0.198 0.157 0.085
𝜖𝑛𝑟𝑚𝑠,𝑝𝑖𝑡𝑐ℎ 42 2 0.211 0.086 0.052
𝜖𝑛𝑟𝑚𝑠,𝑎𝑐𝑐 44 2 0.157 0.071 0.097
𝜖𝑛𝑟𝑚𝑠,ℎ𝑒𝑎𝑣𝑒 44 2 0.162 0.143 0.117
𝜖𝑛𝑟𝑚𝑠,𝑝𝑖𝑡𝑐ℎ 44 2 0.193 0.092 0.073
𝜖𝑛𝑟𝑚𝑠,𝑎𝑐𝑐 48 2 0.167 0.068 0.112
𝜖𝑛𝑟𝑚𝑠,ℎ𝑒𝑎𝑣𝑒 48 2 0.203 0.145 0.101
𝜖𝑛𝑟𝑚𝑠,𝑝𝑖𝑡𝑐ℎ 48 2 0.223 0.080 0.063

Fig. 2.12 shows heave and pitch of the RIB in the ComFLOW simulation of Run
42, where it is compared to Fastship and to the experiment. Note that mean heave
and mean pitch for the Fastship and ComFLOW results have been replaced by
the mean heave and pitch in the experiment. From these figures we find that
heave and pitch in the simulations are of the same order of magnitude as the
experiment, but the difference between Fastship and the experiment is larger
than the difference between ComFLOW and the experiment. Fastship consis-
tently underestimates the motions with respect to the experiment. In Sec. 2.4.4
it was also found that the deceleration of 2D falling wedges is larger than that
of the 3D falling wedge. It needs to be investigated whether 2D versus 3D, with
Fastship being based on strips of 2D wedges, could be an explanation for the
lower motions. Acceleration is never truly computed in ComFLOW and therefore
not part of the output. The acceleration at CoG in ComFLOW is found from
numerical differentiation of the ship velocities in time in combination with a
butterworth filter of order 5 with a normalized cutoff frequency of 1/250. The
accelerations at CoG are shown in Fig. 2.13. From the figure we find that the
vertical accelerations in experiment and simulations are of the same order of
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magnitude. The agreement in acceleration between ComFLOW and the experi-
ment is better than the agreement between Fastship and the experiment. Fastship
underestimates the vertical acceleration, except for the peak at the time mark of
5[s]. The differences between the results of the different ComFLOW grids are
consistent with the differences between results for the wedge, and sufficiently
small to trust the results. A visual illustration of the ComFLOW simulation and
the experiment for run 42 is shown in Fig. 2.14.
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Figure 2.12. Numerical motion compared with experimental data.
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Figure 2.13. Comparison of acceleration with experimental data.

(a) Towing tank experiment of the RIB in irregular waves.

(b) 3D numerical simulation of the RIB in irregular waves.

Figure 2.14. Visual comparison of the towing tank experiment and the numerical simu-
lation.

2.6 Conclusions
This chapter is about the vertical accelerations during a bow re-entry of a Rigid
Inflatable Boat (RIB) in irregular waves. Its main contribution is the complete
deterministic comparison in time of the first-principles numerical method Com-
FLOW with the results of a self-conducted towing tank experiment in terms
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of vertical accelerations in irregular waves. The vertical accelerations are also
compared with the state-of-the-art strip-theory method Fastship.

The results of the wedge drop test showed that the effect of air on the vertical
motion of the wedge is marginal for a 30 degrees deadrise angle, making the one-
phase model more suitable to use in terms of computational effort. A minimum
of 8 cells along the width of the model is considered appropriate to represent
the vertical motion of the wedge and also the RIB in waves.

Using these outcomes, the simulation results with ComFLOW showed an un-
derestimation of the heave and pitch amplitudes with respect to the towing
tank experiment. The mean of the rms differences between the experiment and
ComFLOW are given in Tab. 2.5. According to Tab. 2.5, the results with Fastship
are found to underestimate the motions more than ComFLOW. The simulated
accelerations in ComFLOWare hardly different from the experiment. The vertical
acceleration from ComFLOW is closer to the experiment than the acceleration
from Fastship and showed a relative improvement of at least 20%.

In terms of computational effort, Fastship is faster. Fastship results are finished in
mere seconds per run, whereas ComFLOW requires at least 2 hours on a 20-core
dedicated machine to complete a run. For ComFLOW, however, no calibration
with experiments is required. Amodel like Fastship will always remain necessary
for rapid assessment, but now with ComFLOW we have an additional means to
evaluate RIBs in terms of accelerations and to improve models like Fastship.
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A COMPRESS I BLE TWO-PHASE FLOW MODEL FOR
PRESSURE OSC ILLAT IONS IN A IR ENTRAPMENTS

FOLLOWING GREEN WATER IMPACT EVENTS ON SHIPS

This chapter is reproduced from [75] :

M. van der Eijk and P. R. Wellens. “A compressible two-phase flow model for
pressure oscillations in air entrapments following green water impact events on
ships.” International Shipbuilding Progress 66.4 (2019), pp. 315–343

Abstract
A significant part of all structural damage to conventional ships is caused by complex free-
surface events like slamming, breaking waves, and green water. During these events air
can be entrapped by water. The focus of this work is on the resulting air pockets affecting
the evolution of the hydrodynamic impact pressure that loads the ship’s structure.

ComFLOW is a computationally efficient method based on the Navier-Stokes equations
with a Volume-of-Fluid approach for the free surface, designed to perform multiphase
simulations of extreme free surface wave interaction with maritime structures. We have
extended ComFLOW with a Continuum Surface Force (CSF) model for surface tension,
thereby completing our method for representing gas-water interaction after free surface
wave impacts. The implementation was verified with benchmark cases addressing all
relevant aspects of the dynamics of entrapped air pockets. The implementation was
validated by means of a dambreak experiment, a characteristic model for green water
impact events.

The method - having been verified and validated - was applied to a dam break simulation
for a different setting in which the impact on a wall leads to an entrapped air pocket.
Surface tension was found not to have an influence on entrapped air pocket dynamics
of air pockets with a radius larger than 0.08[𝑚]. For wave impacts it was found that
the effect of compression waves in the air pocket dominates the dynamics and leads to
pressure oscillations that are of the same order of magnitude as the pressure caused by
the initial impact on base of the wall. The code is avaiable at: https://github.com/
martin-eijk/2phase.git.
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3.1 Introduction
Hydrodynamic impact loading accounts for more than 10% of structural damage
to conventional ships [280]. There are multiple classes of wave impact such as
those resulting from slamming, waves breaking against the structure, and green
water. In rough seas, large amounts of water can flow over the ship’s deck; this
is called green water. Green water from the side of the ship has already been
recorded to cause damage midships and further aft on several maritime vessels
[25, 270]. A green water event is illustrated in Fig. 3.1.

Figure 3.1. Green water event after slamming [250].

During green water events involving a complex configuration of the free surface,
air and water interact in a way that can lead to entrained air and entrapment
of large air pockets. By entrapping an air pocket between the water and the
structure, the pocket can have a cushioning effect on the peak pressure on the
one hand [22, 212]. On the other hand, it can give an increase of the acting force
on the structure during a wave impact [22, 196] and the pressure oscillations in
the air pocket can increase pressure levels on the structure being impacted [212]
as well as induce resonant fluid-structure interaction [16]. Naval architects are
interested in determining these pressures for design.

The pressures on marine structures and parts of these structures can be predicted
by modeling the dynamics of both water and the entrapped compressible air.
To model the interaction between water and air accurately, a sharp representa-
tion of the free surface is needed. One method capable of simulating extreme
free-surface flow in a computationally efficient way is ComFLOW, which has
been under development for maritime applications since Fekken, Veldman, and



3

3.1 introduction 45

Buchner [89].

ComFLOW,with its most recent implementation described byWemmenhove et al.
[291], is based on the Navier-Stokes equations for the motion of an aggregated
fluid with varying properties to model the combination of an incompressible liq-
uid and a compressible gas phase. A fixed Cartesian grid is used with a staggered
configuration of variables within a cell. The convective term is approximated
with a second-order upwind scheme and the time integration is based on a
second-order Adams-Bashforth scheme. The pressure is solved from a Poisson
equation, after which the velocity is solved from the newly computed pressure
gradients. To describe the free surface the Volume-of-Fluid (VoF) method is
used with piecewise-linear line segments to reconstruct the position of the free
surface within cells (PLIC). The treatment of the density at the free surface lead
to serious errors in the form of so-called spurious velocities [230], which affected
the evolution of the impact pressure. A gravity-consistent averaging method for
calculating the density at the cell faces was developed to prevent these spurious
velocities.

We have made an implementation based on ComFLOW to investigate the effect of
surface tension on the dynamics of the pressure in entrapped air pockets during
wave impacts. The important aspects to entrapped air pockets are

• the position of the free surface,
• surface tension,
• viscosity,
• compressibility.

The additional value of this work is to show the relevance of compressibility of air
and surface tension during a wave impact in which an air pocket gets entrapped.
The novelty of this article lies herein. With respect to Wemmenhove et al. [291]
we have

• investigated the difference betweenpiecewise-constant (SLIC) andpiecewise-
linear representation (PLIC) and the role of gravity-consistent density
averaging,

• implemented a surface tension model based on Brackbill, Kothe, and
Zemach [19],

• evaluated the effect of the term 𝜇∇𝑢𝑇 that is often omitted in the represen-
tation of the diffusive stresses in the momentum equation

to obtain the first complete model for the representation of entrapped air pocket
dynamics in wave impact events.

We have performed a verification study with a - to our knowledge - unique set of
cases that test all relevant aspects of entrapped air pocket dynamics
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• standing capillary waves and an oscillating initially square rod that tests
the combined effect of surface tension and viscosity,

• a rising bubble to test for the combination of buoyancy (gravity) and surface
tension,

• a shock tube to test for compressibility.

The verified implementation is validated with a dam-break experiment. The
implementation having been verified and validated, is used for a dam-break
simulation in new setting to quantify the pressure dynamics in an entrapped air
pocket. The code is avaiable at: https://github.com/martin-eijk/2phase.git.

3.2 Mathematical model
The flow of two phases ismodeled as an aggregated fluidwith variable properties
representing incompressible water and compressible air. By relaxing the pressure
of the two phases to a common value, the flow can be described by one continuity
equation and one momentum formulation [188]. This assumption leads to a
continuous velocity field. The continuity equation is given by

∫
𝑉

𝜕𝜌
𝜕𝑡 𝑑𝑉 + ∮

𝑆
(𝜌u) ⋅ n𝑑𝑆 = 0, (3.1)

where u is the velocity vector [𝑢, 𝑣]𝑇, n is the normal direction to the boundary
of the control volume and 𝜌 the mixture density, defined in Eq. (3.8).

The momentum equation in integral form is given by

∫
𝑉

𝜕(𝜌u)
𝜕𝑡 𝑑𝑉 + ∮

𝑆
𝜌u(u ⋅ n)𝑑𝑆 + ∮

𝑆
𝑝n𝑑𝑆

− ∮
𝑉

∇ ⋅ (𝜇(∇u + ∇u𝑇) −
2
3𝜇(∇ ⋅ u)I𝑑𝑉 + ∫

𝑉
𝜌F𝑑𝑉 = 0,

(3.2)

𝑝 is the relaxed pressure, 𝜇 is the dynamic viscosity for a mixture and F are
the body forces for gravity and capillary stresses, F = 𝑔 − 1

𝜌 (𝜎𝜅n𝛿Γ − (∇𝜎)𝛿Γ).
The parameter 𝜅 indicates the curvature of the free-surface interface, 𝜎 is the
surface tension coefficient and 𝛿Γ is a delta function concentrated on the interface
Γ between air and water.

The liquid is modeled as incompressible, while the density in the air is allowed
to vary. This requires an additional equation with respect to solving the Navier-
Stokes equations for incompressible media. Instead of solving for conservation of
energy explicitly, an equation of state is used for the air density. The temperature
is assumed constant, the air density is assumed barotropic, 𝜌𝑔 = 𝜌𝑔(𝑝), and the
polytropic energy equation

𝜌𝑔

𝜌0
= (

𝑝
𝑝0

)
1
𝛾

, (3.3)

https://github.com/martin-eijk/2phase.git
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is used to close the system, where the polytropic coefficient 𝛾 = 1.4 for pure air.
Instead of using 𝜌0 = 𝜌𝑛, the initial values are used for 𝜌0 and 𝑝0 to reduce ’drift’
of the pressure [292].

The free-surface indicator function is displaced as follows

𝐷𝑆
𝐷𝑡 =

𝜕𝑆
𝜕𝑡 + (u ⋅ ∇)𝑆 = 0, (3.4)

where S(x, 𝑡) = 0 gives the position of the free surface.

All domain boundaries in this article are assumed closed, u ⋅ n = 0 with n the
direction normal to the domain wall, and free slip, 𝜏 ⋅ n = 0. The top boundary
is used to define a pressure reference.

3.3 Numerical discretisation
3.3.1 Algorithm
The governing equations are discretized by means of a finite volume method
on a fixed Cartesian grid with staggered variables. The velocities are defined on
cell faces while the density, the pressure and the curvature are defined in cell
centers.

Using cell labeling, we distinguish between the liquid phase, the gas phase and
representations of structures in the domain. Cell completely filled by structures
are labeled B(ody) cells. The cells filled with air are labeled E(mpty) (the E-label
name is a residue fromwhen ComFLOWwas one phase). Cells with some liquid,
adjacent to E-cells are labeled S(urface) cells. All other cells are labeled F(luid)
cells. This means that a F-cell never connects with a E-cell. Note that a F-cell is
not necessarily completely filled with liquid.

Time integration of the momentum equation is implicit for the pressure, and
explicit for the convective and diffusive terms of the momentum equation. The
convective and diffusive terms are integrated in time with a second-order Adams-
Bashforth scheme. The time discrete versions of the continuity equation is

𝜌𝑛+1 + 𝛿𝑡𝜌𝑛∇ ⋅ u𝑛+1 = 𝜌𝑛 − 𝛿𝑡𝑢𝑛 ⋅ ∇𝜌𝑛, (3.5)



3

48 compressible two-phase flow model for air entrapments

and of the momentum equation after substituting the continuity equation

u𝑛+1 + 𝛿𝑡
1
𝜌𝑛 ∇𝑝𝑛+1

=u𝑛 + 𝛿𝑡F𝑛

−
3
2

𝛿𝑡
𝜌𝑛 (∇ ⋅ (𝜌uu)𝑛 − ∇ ⋅ (𝜇𝑛 (∇u𝑛 + (∇u𝑛)𝑇)))

+
1
2

𝛿𝑡
𝜌𝑛−1 (∇ ⋅ (𝜌uu)𝑛−1 − ∇ ⋅ (𝜇𝑛−1 (∇u𝑛−1 + (∇u𝑛−1)𝑇))) ,

(3.6)

where 𝑛 indicates the time level. The substitution for the momentum equation is
to remove the densities, to reduce computational cost [292]. By substituting Eq.
(3.6) in Eq. (3.5), a Poisson equation for the pressure is obtained

𝛿𝑡∇ ⋅ (
1
𝜌𝑛 ∇𝑝𝑛+1) =

1 − 𝐹𝑛
𝑠

𝜌𝑛
⎛⎜
⎝

𝜌𝑛+1
𝑔 − 𝜌𝑛

𝑔

𝛿𝑡 + ∇ ⋅ (𝜌𝑔u)𝑛 − 𝜌𝑛
𝑔∇ ⋅ u𝑛⎞⎟

⎠
+ ∇ ⋅ ũ.

(3.7)

The term ũ is an intermediate velocity, containing contributions of themomentum
terms evaluated at time level 𝑛 and 𝑛 − 1 e.g. the diffusive, convective and body
force term. The first part in between parentheses on the right-hand side of Eq.
(3.7) corresponds to the compressibility of the aggregated fluid. It represents
the Lagrangian derivative of the density. Separately, these terms can be large due
to the variety in density of the two phases at the free surface. Together, however,
these terms need to be equal to zero for the liquid phase. The density in the cell
center at time level 𝑛 is calculated by

𝜌𝑛 = 𝜌𝑙𝐹𝑛
𝑠 + 𝜌𝑛

𝑔(1 − 𝐹𝑛
𝑠 ), (3.8)

where 𝜌𝑙 and 𝜌𝑔 are the constant liquid density and the variable gas density,
respectively. Because of the constant liquid density within a cell, the Lagrangian
derivative of the density simplifies to

𝐷𝜌
𝐷𝑡 = (1 − 𝐹𝑠)

𝐷𝜌𝑔

𝐷𝑡 . (3.9)

When the density of the gas is much smaller than the density of the liquid, the
contribution of the Lagrangian derivative to the intermediate velocity at the free
surface is relatively small. The density of the gas at the next time level is found by
solving Eq. (3.3) for 𝜌𝑛+1

𝑔 (𝑝𝑛+1). Before the highly non-linear term is transferred
to the left-hand side of the pressure in Eq. (3.7), a Newton approximation is
used to linearize the term 𝜌𝑛+1

𝑔 (𝑝𝑛+1) by eliminating the power 1
𝛾 . The pressure

at the new time level is found from the linear system of equations by solving it
iteratively with Gauss-Seidel.

The liquid fraction is indicated by 𝐹𝑠 and solved using Eq. (5.4) by reconstructing
the free surface with SLIC in every cell. The flux through a cell face is calculated
as the velocity times the area of the cell face times the time step [142].
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3.3.2 Viscosity
Wemmenhove [292], and also Plumerault [212], neglect the term (∇u)𝑇 in the
viscous term, as is common to do. Wemmenhove et al. [291] do include the term
in their mathematical description, but do not evaluate its effect. The effect of
neglecting this term is evaluated for the 2D rising bubble case in Sec. 3.5.3. In
matrix form the stresses become as follows. For readability the compressible
term is left out of Eq. (3.6). For the final simulations in the Results section, the
compressible term is included.

⎡⎢
⎣

𝜕
𝜕𝑥𝜏𝑥𝑥 + 𝜕

𝜕𝑦𝜏𝑥𝑦
𝜕

𝜕𝑥𝜏𝑦𝑥 + 𝜕
𝜕𝑦𝜏𝑦𝑦

⎤⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

𝜕
𝜕𝑥 ( 2 𝜇𝜕𝑢

𝜕𝑥 ) + 𝜕
𝜕𝑦

⎛⎜
⎝

𝜇𝜕𝑢
𝜕𝑦 + 𝜇

𝜕𝑣
𝜕𝑥

⎞⎟
⎠

𝜕
𝜕𝑥

⎛⎜
⎝

𝜇𝜕𝑣
𝜕𝑥 + 𝜇

𝜕𝑢
𝜕𝑦

⎞⎟
⎠

+ 𝜕
𝜕𝑦 ( 2 𝜇𝜕𝑣

𝜕𝑦)

⎤
⎥
⎥
⎥
⎥
⎦

, (3.10)

where 𝜏 indicates the shear stress. The boxed terms are added when the term
(∇u)𝑇 is not neglected. As the viscosity is variable around the interface and ∇ ⋅ u
≠ 0 for air, the term ∇ ⋅ (𝜇(∇u + ∇u𝑇)) is not equal to ∇ ⋅ (𝜇∇u) as assumed by
others [212, 292].

The dynamic viscosities at the top and bottom of the staggered control volume
in horizontal direction are needed to find the derivative, see Fig. 3.2. These are
found by linear interpolation between the corner point viscosity values 𝜇𝑛,𝑤 and
𝜇𝑛,𝑒, 𝜇𝑠,𝑤 and 𝜇𝑠,𝑒, respectively. These corner point values between adjacent cell
centers are found by harmonic averaging [212]. For computing the local average
viscosity at a pressure point, Eq. (3.8) is used for 𝜇(𝐹𝑠, 𝜇𝑙, 𝜇𝑔), where 𝜇𝑙 is the
dynamic viscosity of the liquid and 𝜇𝑔 of the gas.

𝜇𝑛,𝑤 𝜇𝑛,𝑒

𝜇𝑠,𝑤 𝜇𝑠,𝑒

Figure 3.2. Corner points of 𝜇 for horizontal staggered control volume.
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3.4 Free-surface displacement
The free surface is displaced with the discretization of Eq. (5.4) using 𝐹𝑠 by
calculating the fluxes at the cell faces. In Wemmenhove et al. [291] the free
surface is reconstructed with piecewise-linear interface reconstruction (PLIC).
For this article, we evaluate piecewise-constant interface representation (SLIC),
with grid-aligned interfaces, and compare to PLIC, because of the significantly
lower computational cost for almost the same accuracy in situations with highly
distorted free surfaces such as wave impact simulations. This is in agreement
with the results in Sec. 3.5.5.

3.4.1 Local height function
SLIC has flotsam and jetsam (small droplets disconnecting from the surface) as
major drawback. As a remedy, SLIC is combined with a local height function,
consisting of three cells around the S-cell in all axis directions [97]. Instead of
updating the volume fraction of the S-cells separately, the height function is
updated, after which the water is redistributed depending on its original surface
orientation. With a local height function flotsam and jetsam are practically absent
from simulations. We use the same height function to assess the local curvature
for the application of surface tension.

3.4.2 Curvature
To implement surface tension, the curvature 𝜅 needs to be calculated in every
center of a S-cell. To calculate the mean curvature, the local height function based
on the surface orientation is used [142]. The grid-aligned free surface orientation
is determined by rounding the gradient of the height function. When the free
surface is oriented in x-direction (i.e. horizontally), the curvature for the free
surface can be calculated from (see Fig. 3.3)

𝜅𝑐 =
1

𝛿𝑥𝑐

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜕𝐻𝑦,𝑒

𝜕𝑥

√1 + (
𝜕𝐻𝑦,𝑒

𝜕𝑥 )
2

−
𝜕𝐻𝑦,𝑤

𝜕𝑥

√1 + (
𝜕𝐻𝑦,𝑤

𝜕𝑥 )
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (3.11)

where
𝜕𝐻𝑦,𝑒

𝜕𝑥 =
𝐻𝑦,𝑒 − 𝐻𝑦,𝑐

1
2 (𝛿𝑥𝑒 + 𝛿𝑥𝑐)

and
𝜕𝐻𝑦,𝑤

𝜕𝑥 =
𝐻𝑦,𝑐 − 𝐻𝑦,𝑤

1
2 (𝛿𝑥𝑤 + 𝛿𝑥𝑐)

.

The curvature can be determined from the height function in a similar way when
the free surface is oriented in y-direction (i.e. vertically), but then with grid
distances 𝛿𝑦 and the appropriate values for the height function.
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𝐻𝑦,𝑤

𝐻𝑦,𝑐 𝐻𝑦,𝑒

𝛿𝑥𝑤 𝛿𝑥𝑐 𝛿𝑥𝑒

Figure 3.3. Notation for curvature 𝜅.

3.4.3 Gravity-consistent density interpolation
Like the pressure, the density is defined at cell centers. In the discretization of
the governing equations, the density is also needed at the cell faces. Several
alternatives for calculating the density at cell faces are available. We employ a
cell-weighted average of the adjacent-cell center values, see Fig. 3.4

𝜌𝑓 =
𝛿𝑥𝑤𝜌𝑤 + 𝛿𝑥𝑒𝜌𝑒

𝛿𝑥𝑤 + 𝛿𝑥𝑒
, (3.12)

𝜌𝑓

𝛿𝑥𝑤 𝛿𝑥𝑒

𝜌𝑤 𝜌𝑒

Figure 3.4. Notation for cell-weighted averaging.

It is demonstrated by several authors [92, 107, 230, 291] that this method leads
to spurious velocities around the free surface. From the perspective of offshore
applications where the gravity force dominates, spurious velocities are caused by
an imbalance between gravity and the pressure gradient. To balance these forces,
both terms need to be discretized in the same way. The requirement ∇ × (𝜌g)
= 0 can be found from the momentum equation. To solve in a way that meets
the requirement, Wemmenhove et al. [291] came up with a gravity-consistent
method (without reference to whether it is applicable for SLIC)

𝜌𝑖,𝑗− 1
2

=
𝑑1𝜌𝑙 + 𝑑2𝜌𝑔

𝑑1 + 𝑑2
, (3.13)

where 𝑑1 and 𝑑2 are the distances to the free surface, see Fig. 3.5.
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g

3

1

4

2

S

S

𝑑1

𝑑2

𝛿𝑦

Figure 3.5. SLIC (dashed lines) of interface for density interpolation to cell faces.

Using Fig. 3.5, one can derive the limitations of both interpolation methods.
In the case of cell-weighted averaging, the position of the interface is not taken
into account. This can increase the spurious velocities following the imbalance of
forces. However, residuals never become larger than 14% of 𝜌g. The maximum
residuals are found in between non-adjacent S-cells (a S-cell connected with an
E-cell, and a S-cell below or above the E-cell).

Applying the gravity-consistent averaging method with SLIC, it prevents spuri-
ous velocities inmany, but not all circumstances. Especially near cellswith volume
fractions of 0.5, the gravity-consistent method gives large errors in combination
with SLIC. This because of the lower accuracy of the free surface reconstruction
compared to PLIC. As an example, the requirement ∇ × (𝜌g) = 0 rewritten in
integral form ∫ 𝜌g𝑑𝑆 = 0 is calculated, assuming that both S-cells in Fig. 3.5 have
a volume fraction of nearly 0.5 with the same free surface orientation. This is
worked out with numbers in Tab. 3.1; it gives the sum of 𝜌g over the dashed red
lines, using a gravity vector of g = [-10,-10]𝑇[m/𝑠2] perpendicular to the free
surface. The non-zero residue of the gravity-consistent method in Tab. 3.1 yields
spurious velocities, whereas the cell-weighted method of density averaging does
not. Note that besides the free surface configuration illustrated in Fig. 3.5, there
are many other configurations that have non-zero residues, leading to spurious
velocities.

Table 3.1. Cell-face densities multiplied by the gravity and the normal direction of the
dashed line for Fig. 3.5

Gravity-Consistent Cell-Weighted
(𝜌𝑔𝑦)1 -10,000 -7,500
(𝜌𝑔𝑥)2 -10 -2,500
(𝜌𝑔𝑦)3 10 2,500
(𝜌𝑔𝑥)4 5,000 7,500
∮ 𝜌g -5,000 0
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The effect of the residuals in Tab. 3.1 is illustrated in Fig. 3.6 for a domain size of
1[m]×1[m], 30×30 cells, and the orientation of the gravity vector and free surface
mentioned above. The maximum spurious velocity reached after 3[s] using
the gravity-consistent method is 0.4[m/s] while using cell-weighted density
method amaximumvelocity of 1⋅10−9[m/s] is obtained. It was found that gravity-
consistent density averaging combined with SLIC produces spurious velocities,
just like cell-weighted averaging. The errors for cell-weighted density averaging
appear to be smaller and more similar for different free surface configurations
than gravity-consistent density averaging. For this reason, combined with the
fact that it requires less computational effort, we chose cell-weighted averaging
together with SLIC for the remainder of this article.

Figure 3.6. Liquid fraction- and velocity field: (b) gravity-consistent averaging (max.
0.4[m/s]) versus (c) cell-weighted averaging (max. 1⋅10−9[m/s]).

3.4.4 Capillary forces
Because we chose an aggregated-fluid approach to keep computational costs in
check, the capillary force is added to the momentum equation as a body force.
Two options considered for the implementation of the body force are Continuum
Surface Force (CSF) [19] and Sharp Surface Force (SSF) [92]. Of the two, SSF
is formally more accurate, but CSF is less involved and has similar practical



3

54 compressible two-phase flow model for air entrapments

accuracy, because the error resulting from the imbalance between pressure and
surface tension is dominated by how the curvature of the free surface is estimated
[1].

The density in CSF is averaged between phases ( ̃𝜌= 1
2(𝜌𝑙+𝜌𝑔)) to reduce spurious

velocities in high density ratio flows [19]. The delta function 𝛿Γ in F below Eq.
(5.3) is equal to |∇𝐹𝑠| and the surface tension coefficient 𝜎 is assumed constant.
The force is discretized over a (momentum) control volume consisting of two
half (continuity) cells where either cell can have a surface orientation with a
certain curvature. It was demonstrated by Francois et al. [92] that a face-centered
CSF implementation performs better than a cell-centered one. Our discretization
of ∫𝑉

1
𝜌𝑛F𝑛

𝜎𝑑𝑉 in horizontal direction becomes

−
1
̃𝜌𝑛 𝜎𝜅𝑓(𝐹𝑛

𝑠,𝑒 − 𝐹𝑛
𝑠,𝑤)𝛿𝑦𝑐, (3.14)

where,

𝜅𝑓 =

⎧{{{
⎨{{{⎩

(𝜅𝑤 + 𝜅𝑒)/2, if 𝜅𝑒 and 𝜅𝑤 are defined

𝜅𝑤, if 𝜅𝑒 is not defined

𝜅𝑒, if 𝜅𝑤 is not defined

.

The subscripts indicate the position of the variable in the staggered control
volume. An example is shown in Fig. 3.7, where in this case 𝜅𝑓 = 𝜅𝑒.

𝑤 𝑒𝑓

Figure 3.7. Cell face value of 𝜅 when using SLIC.

3.5 Verification and validation
Our implementation is verified with several cases chosen to test for all essential
aspects of the dynamics of entrapped air pockets. They are: a 2D standing viscous
capillarywave to compare the interaction of surface tension and viscosity near the
free surface to an analytical solution; a 2D planar oscillating rod to compare the
same interaction along the circumference of a circle with a benchmark; a 2D rising
bubble to compare the interaction of buoyancy (gravity) and surface tension to
a benchmark; and a 1D shock tube to compare the effect of compressibility after
impacts to an analytical solution.



3

3.5 verification and validation 55

3.5.1 2D standing viscous capillary wave
Standing wave simulations can be used to asses the performance of the numerical
method for free-surface waves. All important free-surface dynamics are included,
while the domain is conveniently limited [290]. Standing capillary waves are
driven by surface tension. We simulated them with zero gravity to verify the CSF
model used for the representation of surface tension described in Sec. 3.4.4.

𝜆

H

𝜁𝑎

1[m]

2[m]

1[m]

Figure 3.8. Setup for simulation of capillary wave.

The setup with a domain of 1[m]×2[m] is shown in Fig. 3.8. The density and
the dynamic viscosity of the compressible air is 𝜌𝑔 = 1[kg/m3] and 𝜇𝑙 = 0.01[kg-
m/s]. The density and viscosity of the liquid are varied in three simulation. The
dispersion relation for a non-viscous capillary wave at zero gravity is given by
[152]

𝜔2
0 =

𝜎
𝜌𝑙 + 𝜌𝑔

|𝑘3|, (3.15)

where the wave number 𝑘 is equal to 2𝜋 over the wave length 𝜆 = 1[m]. The
initial wave height 𝐻 in all simulations is 0.01[m]. The time step limit for the
simulation of capillary waves is given by [19]

𝛿𝑡 ≤ √𝜌𝛿𝑥3

4𝜋𝜎 . (3.16)

The analytical solution by Prosperetti [218] is used to compare the numerical
results to, as done also by e.g. Dodd and Ferrante [67] and Dong and Wang
[68]. Note that the solution can only be used when the kinematic viscosity is the
same for both fluids. Two ratios of density and dynamic viscosity of the liquid
are used, indicating the ratio of top layer over bottom layer: ̄𝜌 = 𝜌𝑔/𝜌𝑙 and �̄� =
𝜇𝑔/𝜇𝑙. By varying these ratios, three sets of numerical results are compared to
the analytical solutions. A CFL number of 0.01 is used to keep advection errors
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small [9]. The results for 𝜎 = 1[N/m] are shown in Fig. 3.9. The numerical results
are almost identical to the analytical solution of Prosperetti [218], which verifies
the method for the effect of surface tension. The period is almost the same as
the inviscid solution in Eq. (3.15) if one considers that viscosity makes the wave
period slightly larger.
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Figure 3.9. Capillary standing wave for different ratios compared with analytical solu-
tions (a) ̄𝜌 and �̄� = 1,000; (b) ̄𝜌 and �̄� = 100; (c) ̄𝜌 and �̄� = 10.

3.5.2 2D planar oscillating rod
Another test case for the CSF model is an initially square 2D planar rod of liquid
in gas where oscillations are generated by capillary forces. This case has a direct
relation to an oscillating air pocket entrapped by a wave impact. Our numerical
results are compared with the results of Svihla and Xu [255] who used ANSYS
Fluent.

For the simulation, a square of liquid with an area of 4⋅10−4[m2] is used. This 2D
square should become, due to the capillary forces, a 2D circle with a diameter of
approximately 2.26⋅10−2[m]. The surface tension coefficient in the simulations
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equals 𝜎 =2.36⋅10−2[N/m]. The domain size is 0.04[m]×0.04[m]with 40 equally
spaced cells in both directions. A fixed time step of 1.0⋅10−3[s] is used. The liquid
density and gas density are unvarying and equal to 𝜌𝑙 = 790[kg/m3] and 𝜌𝑔 =
1.2[kg/m3], respectively. The dynamic viscosity of the gas and liquid phase is
1.0⋅10−3[Pa⋅s]. These settings were also used by Svihla and Xu [255]. A major
difference is that we used 1,600 cells, where they used 25,262 prism elements.

The simulation results are presented in terms of diameter as a function of time,
shape of the rod and the pressure. The change of the rod diameter over time is
compared with the results of Svihla and Xu [255] in Fig. 3.10.
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Figure 3.10. (a) Diameter and (b) average pressure of the bubble over time compared
with Svihla and Xu [255].

The figure shows that the diameter oscillates towards the theoretical diameter and
that the oscillations decrease over time as a result of both physical and numerical
dissipation (the latter becoming less with grid refinement). The pressure in
the bubble at equilibrium should be equal to 2𝜎/𝐷 = 2.09[Pa]. The pressure in
Fig. 3.10 converges to a value somewhat higher than the analytical value due to
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a systematic error made for the curvature [223]. Renardy and Renardy [223]
showed that the integral effect of the curvature converges to a value different
than the analytical value. This is also confirmed by the results of Deshpande,
Anumolu, and Trujillo [59] for an initially static 2D droplet. According to Ham
and Young [106], in the inviscid limit, the angular frequency of oscillation for a
2D planar rod is given by Lamb [152] as

𝜔2 = (𝑛)(𝑛2 − 1)
8𝜎

(𝜌𝑙 + 𝜌𝑎)𝐷3 , (3.17)

where 𝑛 is the mode of oscillation, equal to 4 for an initial square. This results in
an oscillation period of ≈ 0.178[s]. The period in our numerical results is smaller
than 2% different from the analytical value, which we attribute mostly to the
presence of viscosity in our model.

In Figs. 3.11 and 3.12 the volume fraction and pressure over time are compared.
Note that a different color scale is used than by Svihla and Xu [255], but these
graphs are presented to demonstrate that our shape and our pressure maxima
and minima match with their results, especially at the beginning. There is less of
a match in Fig. 3.12(e). This is because the size of the oscillations in our method
did not attenuate by the same amount as for Svihla and Xu [255] at the time of
the snapshot; our method has less dissipation. The same conclusion is found
from Fig. 3.10.

𝑎 𝑏 

𝑑 𝑐 

𝑎 𝑏 

𝑑 
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Figure 3.11. Volume fraction against time compared with Svihla and Xu [255] (left); (a)
0.01[s], (b) 0.05[s], (c) 0.09[s], (d) 0.13[s].

Figure 3.12. Pressure against time compared with Svihla and Xu [255] (left); (a) 0.49[s],
(b) 0.51[s], (c) 0.67[s], (d) 0.75[s], (e) 0.79[s].



3

3.5 verification and validation 59

3.5.3 2D rising bubble
The following test case is for the combination of buoyancy (gravity), viscosity
and surface tension. Our results are compared with the benchmark for a rising
bubble [123]. This benchmark was created due the absence of analytical solutions
and used for quantitative comparison of incompressible interfacial flow codes.
The initial fluid configuration of the 2D rising bubble test case is shown in Fig.
3.13.
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Figure 3.13. Flow domain for 2D rising bubble.

In the benchmark, both water and air are incompressible. The density of the
water and air are 1,000[kg/m3] and 100[kg/m3], respectively. Further parameter
values are shown in Tab. 3.2.
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Table 3.2. 2D Rising bubble parameter variations. Simulation 3 corresponds to the bench-
mark values

Test 𝜇𝑤 𝜇𝑎 𝜎 Re
[ 𝑘𝑔

𝑚𝑠] [ 𝑘𝑔
𝑚𝑠] [𝑁

𝑚] [−]
Benchmark 10 1 24.5 35
1 0.01 1⋅10−3 0 35⋅ 103

2 0.01 1⋅10−3 24.5 35⋅ 103

3 10 1 24.5 35

The spatial mean rise velocity 𝑣𝑐 is found from the simulations and compared
with the benchmark. It is calculated as

𝑣𝑐 =
∫𝑉𝑏

𝑣𝑑𝑉

∫𝑉𝑏
𝑑𝑉

=
∑𝑏 𝑣 ⋅ (1 − 𝐹𝑠)𝑉

∑𝑏(1 − 𝐹𝑠)𝑉 , (3.18)

where 𝑉𝑏 is the volume of the bubble region, 𝑉 the cell size, and 𝑏 the number of
cells which are covered by the bubble.

Before making the comparison between our implementation, the results of Wem-
menhove et al. [291] and the benchmark, we investigated the setup with parame-
ter variations. These simulations are indicated in Tab. 3.2 with numbers ranging
from 1 to 3. For these simulations, a grid of 40×120 cells was used. Fig. 3.14 shows
the spatial mean velocity of the rising bubble for the three simulations. Fig. 3.15
shows the different rising bubble geometries.
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Figure 3.14. Spatial mean velocity for all the rising bubble cases using the original
method ComFLOW with a grid size of 40×120.
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Figure 3.15. Snapshots of the 2D rising bubble in order of time for the three cases given
in Tab. 3.2.

From the figures, we find that the evolution of the spatial mean velocity and the
geometry of the bubble are highly dependent on surface tension and viscosity.
Without surface tension (simulation 1), the rising velocity after the penetration of
the jet is lower than with surface tension, because the bubble becomes wider as it
rises. With a high surface tension for simulation 2, the bubble does not become as
wide and does not slow down as much. The bubble reaches a higher maximum
velocity and the bubble’s acceleration (after 2.2[s]) occurs earlier in simulation
2 than in simulation 3 due to larger viscous stresses in simulation 3. Simulation
3 has the same parameters as the benchmark.

With the implementation in Wemmenhove [292], we found by varying parame-
ters, that we were never able to capture the benchmark’s spatial mean velocity
when it is at maximum. After more careful consideration, it was concluded that
the viscosity model was incomplete. Upon adding the boxed terms in Eq. (3.10)
a better comparison with the benchmark was obtained. This is demonstrated in
Fig. 3.16. With the same grid size of 80×240 and only the implementation of the
missing viscous stress components, the difference in mean spatial velocity with
the benchmark was reduced from 3.0% [292] to 0.3% (present implementation).
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with a grid resolution of 80×240.

To investigate how ourmethod deals with twomerging interfaces, the free surface
and the air-water interface of the bubble, an additional simulationwas performed
with a similar air bubble interface configuration and a lowered free surface. It is
shown in Fig. 3.17 for a numerical simulation how the rising air bubble protrudes
through the free surface . Note that this event was not part of the benchmark.

Figure 3.17. Snapshots of the 2D rising bubble passing through the interface in order of
time.

3.5.4 1D shock tube
By entrapping an air pocket between the water and the structure, the pocket is
compressed and can have a cushioning effect on the peak pressure during a wave
impact [22, 212]. The modelling of the compressibility of the air is tested with the
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simulation of a shock wave. Note that in our case a non-conservative momentum
equation is solved which results in diffused shock waves. The interest for our
slamming applications, however, is not in the exact position of the shock, but
rather on the associated pressure levels.

The simulation is based on Downes, Knott, and Robinson [69], who derived an
analytical solution for a 1D shock tube. The tube is simulated with unit length
in two simulations. It is completely filled by gas (𝐹𝑠 = 0), using 400 cells for
one simulation and 600 cells for the other. On either side, the velocity and the
gradient of the pressure are set to zero. The time step is unvarying and equal to
3.33⋅10−7[s] and the specific ratio for air, 𝛾 = 1.4. The initial values in the domain
are

𝑝 = { 106[𝑃𝑎], 𝑥 < 0.5[𝑚]
105[𝑃𝑎], 𝑥 > 0.5[𝑚]

, 𝑢 = 0[𝑚/𝑠],

𝜌𝑎 = { 6.908[𝑘𝑔/𝑚3], 𝑥 < 0.5[𝑚]
1.33[𝑘𝑔/𝑚3], 𝑥 > 0.5[𝑚].

Fig. 3.18 shows the initial configuration of the shock tube, divided in a driver
section with the higher pressure and a driven section with a lower pressure.
The figure also shows the relevant stages of the evolution of the pressure. When
released, two propagating fronts are created, moving in opposite direction, the
shock front and the rarefraction. The pressure immediately upstream of the
shock is called the contact surface (𝑝2). The Mach number associated with these
two pressure levels can be found from

𝑝2 = 𝑝1 (1 +
2𝛾

𝛾 + 1(𝑀𝑎2 − 1)) , (3.19)

yielding a value of 𝑀𝑎 = 1.71[-] when 𝑝2 = 324[kPa]. The pressure downstream
of the shock after reflection from the domain wall has taken place (𝑝3 in Fig. 3.18)
can be calculated with

𝑝3 = 𝑝2
⎛⎜⎜
⎝

(𝛼 + 2)𝑝2
𝑝1

− 1
𝑝2
𝑝1

+ 𝛼
⎞⎟⎟
⎠

, (3.20)

where
𝛼 =

𝛾 + 1
𝛾 − 1.

This results in 𝑝3 = 875[kPa].
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Figure 3.18. Initial condition and relevant stages of the pressure in a shocktube simula-
tion.

The results of the numerical simulations are plotted in Fig. 3.19. The figure shows
the pressure in the domain for different moments in time. The simulated shock
front moves with an average speed of ≈ 560[m/s] which corresponds with 𝑀𝑎
= 1.71[-]. This is in agreement with the analytical results.

When using 400 grid cells, pressure values 𝑝2 = 324[kPa] and 𝑝3 = 915[kPa]
are found. When using 600 grid cells, pressure levels 𝑝2 = 324.5[kPa] and 𝑝3 =
908.7[kPa] are found. Fig. 3.19 shows wiggles near the shock front that originate
from using central discretization of the pressure with an underresolved shock.
As expected, the wiggles and the range in space over which they occur become
smaller with increasing grid resolution.
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Figure 3.19. (Reflected) shock front in terms of the pressure at different time levels (400
grid cells and 600 grid cells in the enlargement.

It is demonstrated that the simulation results for the 1D shock tube converge for
a larger number of grid cells and that they converge to the analytical values. The
wiggles observed near the shock front become smaller with an increased number
of grid cells. They do not grow in time and are not expected to interfere with our
interpretation of the pressure levels in wave slamming events with enclosed air
pockets.

3.5.5 Dam break experiment
The final comparison before moving on to our main result is for the onset of a
wave impact event. The present implementation is validated against the experi-
ments of Martin et al. [176] who focus on the evolution of the free surface in a
dam break event. A dam break is a characteristic model for wave impact events.

The domain and initial condition for the experiment by [176] is shown in Fig. 3.20.
The size of the domain is 𝑎 = 0.584[m] and 𝑏 = 0.350[m]. The size of the dam of
water is 𝑙0 =0.292[m] and ℎ0 =0.146[m]. The parameters for water and air are set
to 𝜌𝑤 = 1⋅103[kg/m3], 𝜌𝑔 = 1[kg/m3], 𝜇𝑤 = 1⋅10−3[kg/m s] and 𝜇𝑔=1⋅10−4[kg/m
s]. The gravitational constant is set to g = 9.81[m/s2] and the surface tension is
equal to 𝜎 = 7.2⋅10−2[N/m].
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Figure 3.20. Setup dam break 2D case.

When the dam is released, the initial water level drops and a front propagates
towards the opposite end of the domain. The free surface in Martin et al. [176]
wasmeasured along the left wall as an elevation ℎ(𝑡) and as a position of the front
𝑙(𝑡) along the bottom. The simulation results are shown in Fig. 3.21, where ℎ(𝑡)/ℎ0
is plotted against dimensionless time. The simulation results are compared to
the experiment of Martin et al. [176] as well as more recent experimental and
numerical results [82, 136, 147]. Three different grid resolutions, 20×12, 40×24
and 80×48, were used. It is intriguing to observe that the simulation results
converge away from the experimental results, i.e. the coarsest-grid simulation
has the best agreement with the experiments. This is consistent with Kees et al.
[136], but at present there is no explanation. The differences may be caused by
not representing the friction between fluid and bottom well and by 3D effects
[136, 184].
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Figure 3.21. Change of 2D dam over time in (a) height (h) and (a) length (l).

3.6 Main result
As mentioned, a dam break is a representative case for wave impact phenom-
ena, especially for green water. The objective is to demonstrate with dam-break
simulations that oscillations in entrapped air pockets can cause pressure level
variations of the order of the impact pressure. Our simulations are run in 2D,
because of the increased likelihood of entrapping a pocket of air. Also, because
the ratio of buoyancy force over viscous forces is lower in 2D, the rising velocity
is smaller and air pockets persist longer. The simulation results are to be com-
pared to the experiments conducted at MARIN (Maritime Research Institute
Netherlands), in which the free surface and impact pressure on an obstacle in
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the path of the flow were measured.

The setup of the experiment is similar to before, see Fig. 3.20. The domain is 𝑎
= 3.22[m] × 𝑏 = 1.0[m] and has normally a width of 1.0[m]; the ceiling of the
domain was kept open. A door was used to fill a column of water to a height of
ℎ0 = 0.55[m] and a width of 𝑙0 = 1.22[m]. The water height is measured over
time with vertical wave probes at positions 𝐻1 = 0.58[m] and 𝐻2 = 2.72[m] with
respect to the origin. The pressure 𝑃1 was measured at the wall at the down-
stream end of the domain at a height of 0.03[m]. Experiments were conducted as
follows: the door was pulled up, releasing the water. The water flows towards the
opposite domain wall. There, an impact takes place with significant run-up and
overturning, after which the disturbance propagates back and forth in between
the domain walls.

Our main interest goes out to finding the impact pressure in the most efficient
way possible. A major factor determining the efficiency of the method is how the
free surface is reconstructed. In the next simulation, Young’s PLIC with gravity-
consistent density averaging is compared to SLIC with cell-weighted density
averaging for the dam break in theMARIN experiment. The peak pressure ismea-
sured at the foot of the wall (𝑃1). The results are shown in Fig. 3.22. A difference
in gauge pressure (𝑝 − 𝑝0) of 2% is found, equal to 110[Pa]. The time difference
of meeting the wave is 2.3⋅10−3[s]. This result contributes to the statement in
the introduction by Wemmenhove [292] saying that SLIC with the local height
function can achieve similar results as PLIC. The results with SLIC were obtained
with a factor of 3 less computational effort than PLIC,making SLICmore efficient.
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Figure 3.22. Difference in pressure for SLIC with height function and PLIC Youngs.

Twomore simulations were run for two different grids, 48×15 and 115×36. The pa-
rameters for water and air at a temperature of 20[deg] were used and the surface
tension coefficient was chosen equal to 𝜎 = 7.2⋅10−2[N/m]. Our 2D simulation
results are shown in Fig. 3.23, where they are compared to the 3D experiments
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and to the 3D numerical results of Wemmenhove et al. [291]. The water heights
and the pressure in Fig. 3.23 correspond reasonably well to the experiment and
almost completely to Wemmenhove et al. [291], until 𝑡 = 1.54[s]. It is consistent
with the original method that no true convergence is observed when increasing
the grid resolution.
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Figure 3.23. The results of the present model for the dam break case compared with
experimental results of MARIN and numerical results of Wemmenhove
et al. [291]; (a) the water height 𝐻1 in time, (b) the water height 𝐻2 in time,
(c) the gauge pressure 𝑃1.

Special attention goes out to the pressure oscillations at 𝑃1, see the enlargement in
Fig. 3.23c. These are due to the air pocket that is entrapped at around 𝑡 = 1.54[s]
after the run-up on the domain wall has overturned. Note that the entrapped
air pocket was not part of the 3D numerical results nor the experiment. The air
pocket is shown in Fig. 3.25 at time instance 𝑡 = 1.54[s] when the pressure in the
air pocket is lower than the atmospheric pressure.
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When averaging the pressure in the air pocket in space, a high frequency oscilla-
tion of 14.0[Hz] is found. The same characteristic high frequency oscillation is
found in the signal for pressure sensor 𝑃1 at the wall. In 𝑃1, also a low frequency
of around 3.0[Hz] can be found. This corresponds to the global motion of the
air pocket in space. By a Fourier transform of the pressure signal after 1.2[s],
the frequencies are compared. The results are illustrated in Fig. 3.24. The higher
frequency peaks observed in Fig. 3.24 are due to higher harmonics and they are
generated when the pocket is split in two parts [212].

0 10 20
0

0.5
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Figure 3.24. Normalized Fourier transform.

When using an equation for the natural frequency of cylindrical bubbles of this
size [127]

𝑅0𝑓0 = 1.10, (3.21)

With 𝑅0 = 0.08[m] the radius of the bubble, see Fig. 3.25, we find a natural
frequency of the bubble of 𝑓0 = 14[Hz]. This is of the same order of magnitude
as the frequency found in the simulation. It is demonstrated that the pressure
oscillations in the air pocket affect the pressure level at the wall and that the
magnitude of the oscillations is of the same order as the magnitude of the impact
pressure at the wall. The frequency of the oscillations is of the same order as
what can be found by using simplified theory for compressible gas pockets.
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(a)

(b)

Figure 3.25. Numerical results dam break in 2D (Fig. 3.20) using experimental setup of
MARIN. Pressure contours are illustrated for the water phase. Entrapment
of air pocket (diameter 0.16[m]) at 1.0[s] (a), 1.4[s] (b) and 1.6[s] (c) with
pressures in [Pa].
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(c)

Figure 3.25. Numerical results dam break in 2D (Fig. 3.20) using experimental setup of
MARIN. Pressure contours are illustrated for the water phase. Entrapment
of air pocket (diameter 0.16[m]) at 1.0[s] (a), 1.4[s] (b) and 1.6[s] (c) with
pressures in [Pa].

When the simulations were run without surface tension, the results were not
any different. This means that compressibility governs the entrapped air pocket
dynamics at this scale.

3.7 Conclusion
Our objective was to evaluate the effect of compressibility of air on the pressure
exerted on an object during an impact with water. For this we extended the
method of ComFLOW to obtain a complete model for representing the dynamics
of air pockets entrapped after wave impact events. The extended implementation
was verified by means of test cases relevant to the dynamics of entrapped air
pockets. The extended method was validated by means of a dam-break exper-
iment and applied to a dam break in a new setting with a wall, in which the
impact leads to an entrapped air pocket. The following conclusions were found:

• PLIC does not lead to better results than SLIC for the grid resolutions used
for the dam-break simulations in this article.

• Gravity-consistent density averaging as in Wemmenhove et al. [291] does
not improve the results with SLIC as it does with PLIC; cell-weighted
averaging gives comparable results at lower computational cost. The com-
bination of SLIC and cell-weighted averaging reduces the computational
effort with a factor of 3 with respect to PLIC and gravity-consistent density
averaging.



3

3.7 conclusion 73

• Our implementation compares well to test cases relevant to air pocket
dynamics and compares well to dam-break experiments.

• Our extended method compares well to the 3D dam-break experiment
performed by MARIN until the air pocket is enclosed.

• At the scale of the enclosed air pocket in our dam-break simulation (di-
ameter 0.16[m]), the effect of compression waves in the air dominates the
dynamics.

• The frequency of the pressure oscillations in the air pocket is of the same
order as the analytical natural frequency of an adiabatic cylindrical bubble.

Reflecting on our main objective, we found that surface tension at this scale has
no effect. Furthermore, we found that compressibility of air in an enclosed air
pocket during an impact with water causes compression waves and subsequent
pressure oscillations with a magnitude of the same order as the pressure of the
initial impact itself.
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TWO-PHASE FREE - SURFACE FLOW INTERACT ION WITH

MOVING BODIES US ING A CONS I STENT, MOMENTUM
PRESERV ING METHOD

This chapter is reproduced from [80] :

M. van der Eijk and P. R. Wellens. “Two-phase free-surface flow interaction
with moving bodies using a consistent, momentum preserving method.” Journal
of Computational Physics 474 (2023), p. 111796

Abstract
The numerical prediction of two-phase flows with an interface is challenging, to a consid-
erable extent because of the high density ratio at the interface. Numerical results become
affected by momentum losses, diverging spurious interface velocities, free surface distor-
tion, and even numerical instability. To prevent issues like these, consistent momentum
and mass transport with an additional continuity equation were introduced.
In this work we describe how a consistent discretization was incorporated into our

own method and extended for fluid-structure interaction (FSI) with moving rigid bodies.
The new method was tested against benchmark simulations from literature confirming
that consistent transport modeling gives a significant improvement compared to non-
consistent modeling for the dynamics of two-phase flows.

Newly devised proof of principle FSI simulations with momentum transfer from fluid
to body in the presence of a high density ratio between fluids are introduced that could
serve as a benchmark for future studies. The simulations demonstrate that consistent
modeling gives an order of magnitude improvement in terms of momentum conservation
compared to non-consistent modeling.

Simulations with the new method are also compared to FSI experiments from literature.
Results obtained with the consistent method are closer to the measurements than results
of the non-consistent method.
The merit of consistent modeling with and without FSI becomes especially apparent

for two-phase flows with a high density ratio between fluids.

75
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4.1 Introduction
This work is about a consistent method for two-way coupled fluid-structure in-
teraction (FSI) of two-phase flows with a high density ratio such as that between
water and air, impacting with moving rigid bodies. Two-phase flows, like those
surrounding floating marine structures, are difficult to predict. The structure
needs to be designed for violent weather conditions to ensure crew safety [91].
Linear approaches fall short of representing highly non-linear events to an ac-
ceptable level during these weather conditions. Traditionally, experiments at
scale are employed to model the events, but in specific circumstances numerical
simulations are also possible. Sophisticated two-phase flowmodels are needed to
evaluate the highly non-linear interaction between flow and structure accurately.

Our approach is based on a one-fluid formulation for incompressible flows.
A unique, continuous velocity field is solved and the pressure field is relaxed
to represent both fluids [188]. A finite-volume discretization of the governing
equations is adopted with a staggered arrangement of variables. This type of
discretization can suffer from numerical problems caused by large density ratios
of the fluids near the interface.

The density is discontinuous over the interface. The interfacial discontinuities
of fluid properties are often avoided or not well implemented in combination
with the continuous velocity field. A lack of attention to the numerical imple-
mentation of the discontinuity in density can lead to numerical instabilities and
non-physical flow features. When the density ratio between fluids increases, the
flow becomes more interfacially driven, adding to the numerical error [222]. The
error does not become apparent in the heavier fluid but rather in the lighter [29].

Errors can be introduced by the staggered arrangement of variables. The
arrangement features different positions of the control volumes for mass con-
servation and momentum conservation. Errors in momentum will appear for
non-matching momentum and mass fluxes. Following Rudman [230], such a
method is called ”non-consistent” in the remainder of this work. The momentum
flux becomes dominant over the mass flux in case the density ratio increases,
increasing the magnitude of the errors [222]. Numerical error accumulation near
highly deformed interfaces can lead to failure of the method or can result in
non-physical features [190].

Over the years, many have proposed strategies to mitigate these issues within a
wide range of numerical contexts [190]; for example Li et al. [158] for a moment-
of-fluid method, Vaudor et al. [268] for a staggered arrangement with a coupled
level-set Volume-of-Fluid (CLSVOF) method, Le Chenadec and Pitsch [154]
and Owkes and Desjardins [200] for sharp interface Volume-of-Fluid (VOF)
methods, and Jemison, Sussman, and Arienti [130] and Duret et al. [73] for
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compressible flow solvers. The methods referred to are similar in the way of
discretization but different in the reconstruction of the interface and transport.

Earlier numerical schemes based on VOF [29, 230] were not sensitive to the
numerical instabilities induced by a large density ratio. The method of Rudman
[230] uses, together with a staggered arrangement of the variables, grid refine-
ment for the transport and reconstruction of the interface. On the other hand,
the method of Bussmann, Kothe, and Sicilian [29] does not need Rudman’s grid
refinement because of a collocated arrangement. From the authors’ point of view,
the last two methods mentioned use a ”consistent” coupling of the momentum
and mass flux together with an unsplit transport scheme. The key point made by
Rudman [230] and Bussmann, Kothe, and Sicilian [29] is that in order to obtain
a conservative coupling between mass and momentum fluxes, the density of the
momentum flux in the convective term needs to be corrected with the mass flux
obtained from the VOF transport equation. Bussmann, Kothe, and Sicilian [29]
showed that the collocated arrangement results in easier enforcement of consis-
tency between the momentum and mass transport but introduces difficulties
with calculating the fluxes.

In the context of level-set methods, Raessi and Pitsch [222] introduced a con-
sistent, stable method. The method makes use of two geometric reconstruction
sweeps of the free surface at two different time levels. The disadvantage of the
method is that it is limited to one- and two-dimensional problems. The methods
of Ghods andHerrmann [98] for collocated unstructured grids and of Desjardins
and Moureau [60] and Nangia et al. [190], adapting the method of Rudman
[230] to level set methods, use an extra continuity equation. The extra continuity
equation results in a auxiliary density field that is coupled with the momentum
flux in the convective term in the momentum equation. Both methods [60, 98]
showed that non-geometric construction of the interface from a level-set field
and grid refinement can also result in consistency between momentum and mass
transport. However, being based on level-set, the methods were neither mass
nor momentum conserving and used first-order upwind for density and velocity
transport, producing diffusive flow features.

Patel and Natarajan [203] achieved higher-order accuracy with a consistent
scheme. Patel and Natarajan [204] came up with a consistent convective scheme
for momentum and algebraic (non-geometric reconstruction) VOF transport.
They showed that any non-consistency in the scheme leads to poor accuracy.

Recently, Zuzio et al. [320], using a staggered grid with CLSVOF for the inter-
face between fluids, describe a consistent momentum and mass method with a
temporary continuity equation. Compared to Rudman [230], they do not apply
grid refinement for transporting the free surface, thereby reducing the computa-
tional effort. We will adopt the strategy of Zuzio et al. [320] into our ownmethod
[75].
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Arbitrarily shaped bodies can be represented on fixed Cartesian grids by means
of immersed boundary methods (IBM). An early such method is that of Peskin
[208]. A distinction can be made between body forcing methods, using source
terms in the governing equations to impose the boundary conditions of the body,
and cut cell methods, in which the position of the boundary is reconstructed
and part of the discretization. Whereas a body forcing IBM method is straight-
forward to implement [208, 273], the interface between body and fluids can
become diffusive. Lagrange et al. [149] combined a body forcing IBM with the
consistent momentum and mass method (CMOM) of Zuzio et al. [320] for
non-moving bodies. Because the interface between fluids in our method [75] is
also reconstructed, we choose to incorporate a cut cell method for representing
the interface between body and fluids. Drawbacks of cut cell methods [38, 191,
263, 266, 269] is that work is involved in reconstructing the boundary and that
special treatments of small cut cells is needed [269]. On the other hand, the
reconstruction adds to the accuracy of where boundary conditions are imposed
and the governing equations do not change compared to uncut cells. Cheny and
Botella [38] proposed a cut cell method where small cut cells do not need any
special treatment, followed by Xie, Lin, and Stoesser [306] who have recently
described a cut cell method for moving bodies that is also consistent, but which
does not include two-way coupled fluid-structure interaction.

Fluid-structure interaction with two-way coupled body motion appears not to
have been investigated in the context of consistent momentum and mass meth-
ods, especially in terms of the momentum transfer from fluids to body when
impacts take place. In this work, our former method in Eijk and Wellens [75] is
extended with a cut cell method similar to Xie, Lin, and Stoesser [306] and made
consistent by incorporating elements from Zuzio et al. [320] to study two-way
coupled FSI.

This chapter starts with the governing equations and the discretization. The
implementation of the consistent method and the coupling with the structure are
discussed, highlighting the addition of the cut cell method for moving bodies. In
Sec. 4.5 our method is tested by means of fundamental verification cases with a
large density ratio at the interface. The verification includes newly formulated
simulations for momentum conservation with FSI, that could serve as a bench-
mark for future studies. In Sec. 4.6 simulation results are compared with 2D
experimental results with FSI. Conclusions are formulated in the final section.

4.2 Governing equations
The governing equations for two-phase flows of immiscible Newtonian fluids are
given in Eq. (4.1) and Eq. (4.2). These equations are formulated in a conservative
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vector form. The one-fluid formulation is used [188] with a single velocity field
and a single pressure field. The continuity equation reads

𝜕𝜌
𝜕𝑡 + ∇ ⋅ (𝜌u) = 0, (4.1)

in which u denotes the fluid velocity vector, 𝜌 is the mixture density. The mo-
mentum equation is given by

𝜕(𝜌u)
𝜕𝑡 + (u ⋅ ∇)𝜌u+ 𝜌u∇ ⋅u+ ∇𝑝 − ∇ ⋅ (𝜇(∇u+ ∇u𝑇) −

2
3𝜇∇ ⋅uI) + 𝜌F𝑓 = 0, (4.2)

where 𝑝 is the relaxed pressure, 𝜇 is the dynamic viscosity for a mixture and F𝑓
represents the body forces. The body force term contains gravity and capillary
stresses, so that F𝑓 = F𝑔 + F𝜎 = 𝑔 − 1

𝜌 (𝜎𝜅n𝛿Γ).

A transport equation is solved for displacing the interface between fluids, using
velocity field u under the assumption of a no-slip condition between the two
fluids

𝐷𝑓
𝐷𝑡 =

𝜕𝑓
𝜕𝑡 + (u ⋅ ∇)𝑓 = 0, (4.3)

where f(x, 𝑡) = 0 gives the position of the interface. When using the Volume-of-
Fluid (VOF) method, the distance function 𝑓 is replaced by volume fraction 𝐶𝑓.
The volume fraction is a measure of the ratio of fluid volumes in a cell.

The body will be assumed rigid. It is displaced with a state-space representation
of Newton’s second law, in which the position of the body x𝑏 is found from

𝜕x𝑏
𝜕𝑡 = u𝑏 (4.4)

and the body’s acceleration is found from

𝑚𝑏
𝜕u𝑏
𝜕𝑡 = F𝑏, (4.5)

with 𝑚𝑏 the body’s mass and F𝑏 the force of gravity together with the force of
the fluids on the body. The fluid force on the body is equal to the integrated
normal pressure along the body boundary. Viscous stresses are neglected in
the determination of the force on the body, because our main interest is in
representing the two-way coupled fluid-structure interaction of impacts – of
the body with the fluid or vice versa. Impacts take place over time spans that are
too short for viscous effects such as boundary layers to develop.

4.3 Grid and solution variables
Before presenting the numerical discretization of the governing equations and
the details of including two-way coupled fluid-structure interaction in a con-
sistent momentum and mass method, the grid structure is introduced with the
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definitions and notations needed for discussing the solution method.

A fixed Cartesian grid is employed. Labeling of grid cells is used to account for
the position of the interface between fluids and the interface between body and
fluids, so that it is defined where surface tension needs to be applied and where
reconstruction of the interface needs to take place. We have adopted the labeling
system of Kleefsman et al. [142], see Fig. 4.1, that uses the label B(ody) for cells
completely filled with body, the label E(mpty) for cells filled with gas only (or
the lighter of two fluids), the label S(urface) for cells with some liquid (or the
heavier of two fluids) directly adjacent to E-volumes. Remaining cells are labeled
F(luid). By definition, F-cells are not allowed to connect with E-cells. Note that
F-cells do not necessarily have to be completely filled with liquid; a cell like this
is indicated in Fig. 4.1 with a black marker. A cut cell, containing both fluid and
body, is indicated in Fig. 4.1 with a red marker. The blue marker in Fig. 4.1 is a
”special” cut cell. It contains two interfaces, between liquid and gas and between
fluids and body. The reconstruction of the interfaces needs extra attention; this
is discussed in Sec. 4.4.1.

F F F F F

F S F F F

S E S F B

E E E B B

E E E E E

Figure 4.1. Labeling of cells as in Kleefsman et al. [142]; labels B, F, S, and E. Body is
indicated by . Fluid is indicated by . Cut cells, always labeled with F, are
necessary for representing moving bodies in the grid. A F–cell that is not
completely filled ( ). A cut cell is illustrated by a marker ( ). A special cut
cell is illustrated by another marker ( ) which needs extra attention because
it contains two interfaces.

In the original labeling system [142], reconstruction of the interface between
fluids only takes place in S-cells and, hence, not in F-cells. In Fig. 4.2a, therefore,
the interface is shown to be discontinuous and the F-cell is shown with a hatched
pattern to indicate that it is not possible to distinguish between liquid and air in
this cell.
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In this work an additional label is introduced, called a C(orner) cell. When a
F-cell diagonally connects with no more than one E-cell, it gets the C-label. The
interface in a C-cell is reconstructed, resulting in a more continuous interface, as
illustrated in Fig. 4.2b. Reconstructing the interface in C-cells and including it in
evaluating the curvature results in a better representation of capillary effects and
prevents artificial air entrainment. A disadvantage is the need for an additional
calculation step during labeling. The additional computational cost is negligible
compared to solving the Poisson equation. The benefits of C-labeling will become
clear in Secs. 4.5 and 4.6.

F

S

S

E

(a) A F-cell.

C

S

S

E

(b) A C-cell.

Figure 4.2. Difference in labeling between F-cells (left) and C-cells (right). The grey
area represents the geometrical reconstruction based on the fill ratio of the
cells. Fluid is indicated by . The F-cell is not reconstructed and therefore
illustrated with a hatched pattern representing a mixture of liquid and gas.
New are the C-cells in which the free surface is reconstructed for a smoother
interface between fluids.

The standard MAC configuration of staggered variables is adopted, where scalar
variables (pressure 𝑝, density 𝜌, curvature 𝜅, volume fractions 𝐶𝑓 and 𝐶𝑏) are
stored in the center of a grid cell, and velocities are positioned in the faces of a cell.
Uncut cells are represented in Fig. 4.3 by means of continuous black lines, with
open circles in cell centers. Velocities in the cell faces are represented as arrows.
Continuity control volumes, used for discretizing the continuity equation, coin-
cide with grid cells. Momentum control volumes are shifted in space with respect
to continuity control volumes, horizontally for the equation describing (discrete)
conservation of horizontal momentum and vertically for vertical momentum
conservation, so that the velocities in the respective directions are in the centers
of momentrum control volumes. Variables in the centers of continuity control
volumes are given indices 𝑖 (horizontal) and 𝑗 (vertical) to refer to their position
in the grid; variables in the faces of continuity control volumes are given indices
𝑖− 1

2 and 𝑖+ 1
2 to show that they are positioned left or right of a continuity control

volume center and, similarly, 𝑗 − 1
2 and 𝑗 + 1

2 to indicate their position above or
below that center.
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Averaging is employed when the value of a variable is required at a different
location from where it is positioned in the grid. For instance, when a velocity is
required at the boundary of a horizontal momentum control volume at position
(𝑖, 𝑗) it is determined as the average of the velocities on either side. Density av-
eraging, however, or rather the discretization of the density requires a special
treatment in order to conserve momentum. It is explained in more detail in
Sec. 4.4.2 when CMOM is discussed.

𝑗 − 1

𝑗

𝑗 + 1

𝑖 − 1 𝑖 𝑖 + 1

Horizontal momentum
control volume 𝑉𝑚,ℎ

Vertical momentum
control volume 𝑉𝑚,𝑣

Continuity control volume 𝑉𝑐𝜌, 𝑝

𝑣

𝑢

x

y

𝛿𝑥

𝛿𝑦

Figure 4.3. Standard MAC configuration (staggered); pressure 𝑝 is defined in the cell
center ( ), the horizontal velocity 𝑢 field is sampled on the vertical faces (→),
the vertical velocity 𝑣 is sampled on the horizontal faces (↑). The subscripts
(i, j) for the position in the grid are defined. The overlap of the continuity
control volume (–), with a vertical momentum control volume (–), and with
a horizontal momentum control volume (–) is shown.

A cut cell method similar to Fekken [90] and Xie, Lin, and Stoesser [306] accounts
for the presence of the body in the grid. Continuity control volumes that are
intersected by the contour of the body are scaled by the part of the volume that
is taken up by the body. That scaling factor is called volume aperture 𝐶𝑏 and
defined as the ratio of the volume open to fluid (so one minus the volume of
the body) and the size of the control volume itself. It is shown in Fig. 4.4a. The
faces of continuity control volumes are also scaled by face apertures 𝑎𝑏. They
are defined as the area of the volume’s face open to fluid, divided by the area
of the face itself, see Fig. 4.4b. Apertures take on values between 0 and 1. For
the visualisation, velocities represented by arrows are shown in the middle of the
part of face that is open to flow, but that change in position is not actually part of
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the discretization, other than through the scaling of size of the face aperture.

Fig. 4.4c gives a representation of when an amount of liquid is present in the
continuity control volume 𝑉𝑐. The size of the control volume 𝑉𝑐 is 𝐶𝑏𝛿𝑥𝛿𝑦. The
amount of liquid is expressed, then, as the part of 𝐶𝑏 that is taken up by liquid,
i.e. 𝐶𝑓/𝐶𝑏. This means that the amount of gas in the volume is expressed as
(𝐶𝑏 − 𝐶𝑓)/𝐶𝑏. Note that volume and face apertures change in time as the body
moves through the grid.

𝐶𝑏,𝑖,𝑗𝛿𝑥𝑖𝛿𝑦𝑗
𝑎𝑏,𝑖− 1

2
𝛿𝑦𝑗

𝑎𝑏,𝑗− 1
2
𝛿𝑥𝑖

𝑎𝑏,𝑖+ 1
2
𝛿𝑦𝑗

𝑎𝑏,𝑗+ 1
2
𝛿𝑥𝑖

(a) Body volume aperture open to fluid 𝐶𝑏.

𝑢𝑖− 1
2 ,𝑗

𝑣𝑖,𝑗− 1
2

𝑢𝑖+ 1
2 ,𝑗

𝑣𝑖,𝑗+ 1
2

𝑢𝑏

𝑣𝑏

(b) Face apertures and velocities.

𝐶𝑓 ,𝑖,𝑗

𝐶𝑏,𝑖,𝑗
𝐶𝑏,𝑖,𝑗𝛿𝑥𝑖𝛿𝑦𝑗

𝐶𝑏,𝑖,𝑗−𝐶𝑓 ,𝑖,𝑗

𝐶𝑏,𝑖,𝑗
𝐶𝑏,𝑖,𝑗𝛿𝑥𝑖𝛿𝑦𝑗

𝑉𝑐

(c) Liquid and gas as fractions of 𝐶𝑏.

Figure 4.4. Continuity control volume (–) (i, j) for a cut cell. Body is indicated by .
Fluid is indicated by . 𝑢𝑏 and 𝑣𝑏 are the body velocities. Center (i, j) is given
by .

Control volumes for horizontal momentum 𝑉𝑚,ℎ are shown in Fig. 4.5 together
with the lower half of a control volume for vertical momentum 𝑉𝑚,𝑣. Necessarily,
the size of the momentum control volume is half of the size of the continuity
control volumes on either side. The volume aperture 𝐶𝑏 of a momentum control
volume in uncut cells is also determined as half of the sum of volume apertures
of the continuity control volumes, and the face apertures of a momentum control
volume 𝑉𝑚 are determined as half of the sum of face apertures of the continu-
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ity control volumes on either side. Applying that rigour to the visualization of
volume apertures in cut cells, leads to the representation in Fig. 4.5b where the
part of the horizontal momentum control volume 𝑉𝑚,ℎ that is open to fluid is
precisely half of the open parts of the continuity control volumes. Note that in
the discretization, again, the volume sizes and face sizes are not changed, but
rather scaled by means of apertures.

𝑢𝑖+ 1
2 ,𝑗𝑎𝑏,𝑖− 1

2
𝛿𝑦𝑗

𝑉𝑚,ℎ
𝑉𝑚,𝑣

(a) Uncut cells (control volumes) with with fluid.

𝑢𝑖+ 1
2 ,𝑗

𝑢𝑏

𝑣𝑏

𝑎𝑏,𝑖− 1
2
𝛿𝑦𝑗

(b) Cut cells (control volumes) with body.

Figure 4.5. Horizontal momentum control volume (–) in an uncut cells and in a cut cell
with indices (i, j). The lower half of a vertical momentum control volume (–)
is also shown. Body is indicated by . Fluid is indicated by . The center of a
continuity control volume in this representation is given by .

4.4 Discretization and solution algorithm
Our main interest is in the type of violent fluid-structure interaction encountered
in slamming, when a ship meets the free surface again after disconnecting from
the main body of water it is sailing in. We have studied slamming with our older
method for multiphase flow with gas and liquid, reported in Eijk and Wellens
[75]. That method was non-conservative and non-consistent; what we mean by
these terms will become clear from the discussion of the new, consistent method
in this section. The first sign of trouble with the older non-consistent method
was with the case of a vertical plate being impacted by a wedge shaped body
of water [18], which, before impact and therefore incorrectly, started showing a
large, and growing, local deformation of the interface between gas and liquid.
Results of the simulation are discussed in Sec. 4.5.

Inspiration for a solution to prevent erroneous interface deformations came
from the literature regarding consistent discretization of mass and momentum.
Consider the time discrete version of Eqs. (4.1), (4.2), and (4.3), using Forward
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Euler in time for brevity of notation, where superscript 𝑛 indicates the time level.
The equations are integrated over control volumes to obtain the weak form that
is the basis of the discretization in space. Our method combines elements from
Kleefsman et al. [142], Eijk and Wellens [75] and the consistent modeling in
Zuzio et al. [320] to obtain a new algorithm that can account for two-way coupled
fluid-structure interaction with moving bodies. The algorithm comprises the
following within a time step. First, the fluids and the body are transported using
Eq. (4.3) combined with the assumption of incompressibility of the fluids and
with volume fractions 𝐶𝑓 indicating the liquid fill ratio of volume apertures 𝐶𝑏

∫
𝑉𝑐

𝐶𝑛+1
𝑓 − 𝐶𝑛

𝑓

𝛿𝑡 𝑑𝑉 = − ∫
𝑉𝑐

(u ⋅ ∇) 𝐶𝑓𝑑𝑉

= − ∫
𝑉𝑐

∇ ⋅ (u𝐶𝑓) 𝑑𝑉

= − ∮
𝑆𝑐

(u𝑛𝐶𝑛
𝑓 ) ⋅ n⏟⏟⏟⏟⏟

𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡

𝑑𝑆,

(4.6)

in which 𝑆 is the boundary of a control volume. Volume fraction 𝐶𝑓 is equal
to one when a continuity control volume is completely filled with liquid (the
heavier of the fluids) and equal to zero when occupied by air (the lighter of the
fluids). Because the fluids are considered to be incompressible, the continuity
equation reduces to

∮
𝑆𝑚

u𝑛+1 ⋅ n𝑑𝑆 = 0. (4.7)

The time discrete momentum equation reads

∫
𝑉𝑚

𝜌𝑛+1u𝑛+1 − 𝜌𝑛+1ũ
𝛿𝑡 𝑑𝑉 = − ∮

𝑆𝑚
𝛿𝑝n𝑑𝑆, (4.8)

in which 𝑝𝑛+1 = 𝛿𝑝 + 𝑝𝑛 and from which auxiliary vector field ũ is solved from

∫
𝑉𝑚

𝜌𝑛+1ũ − ̄𝜌ū
𝛿𝑡 𝑑𝑉 = ∫

𝑉𝑚
∇ ⋅ (𝜇𝑛(∇u𝑛 + (∇u𝑛)𝑇))𝑑𝑉 − ∮

𝑆𝑚
𝑝𝑛n𝑑𝑆

− ∫
𝑉𝑚

𝜌𝑛+1F𝑓𝑑𝑉.
(4.9)

A similar form to Eq. (4.8) is solved by Bussmann, Kothe, and Sicilian [29] and
Raessi and Pitsch [222] with 𝜌𝑛+1 on the left hand side to prevent unphysical
velocities. Auxiliary vector field ̄u in Eq. (4.9) is solved from

∫
𝑉𝑚

̄𝜌ū − 𝜌𝑛u𝑛

𝛿𝑡 𝑑𝑉 = − ∮
𝑆𝑚

𝜌∗u𝑛 (u𝑛 ⋅ n)⏟⏟⏟⏟⏟⏟⏟
𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡

𝑑𝑆, (4.10)

whereas auxiliary density ̄𝜌 is solved from Eq. (4.1) used as a temporary conti-
nuity equation that is integrated over momentum control volumes
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∫
𝑉𝑚

𝜕𝜌
𝛿𝑡 𝑑𝑉 = − ∮

𝑆𝑚
(𝜌∗u𝑛) ⋅ n⏟⏟⏟⏟⏟
𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡

𝑑𝑆. (4.11)

Here, 𝜌∗ is a density for which a consistent discretization in space is used. A
consistent space discretization for momentum and mass is obtained when the
fluxes along boundaries that are indicated by the word ’consistent’ are treated
the same with continuity control volumes and with momentum control volumes,
and when the spatial discretization of 𝜌𝑛 and 𝜌𝑛+1 is the same on continuity
control volumes and on momentum control volumes. Different notations from
𝜌𝑛 and 𝜌𝑛+1 are used for densities 𝜌∗ and ̄𝜌 to make clear that their spatial dis-
cretization is different.

The discrete velocity field at the new time level is solved from Eq. (4.8) and
substituted into the discrete continuity equation to obtain a Poisson equation for
the pressure. A system of equations that combines the Poisson equation for the
pressure with the equation of motion for the moving body is solved, after which
velocity field u𝑛+1 is reconstructed from the pressure field and a new time step
commences.

The flow chart below summarizes these items. The numbers in the flow chart
refer to the numbers of the subsections in which the steps are discussed, with
emphasis on where the approach differs from earlier work.

Solution algorithm – in each time step:

a) Solve transport equation fluids 𝐶𝑛+1
𝑓 and body 𝐶𝑛+1

𝑏 and reconstruct
interfaces

b) Determine the discretization of the density before establishing aux-
iliary vector field ̄u
b)1. Determine 𝜌𝑛 (and 𝜌𝑛+1 and 𝜇𝑛)
b)2. Determine 𝜌∗

b)3. Solve temporary continuity equation for ̄𝜌
b)4. Determine auxiliary vector field ū

c) Determine auxiliary vector field ũ with 𝑝𝑛 and ũ𝑏

d) Solve system of Poisson equation for pressure change 𝛿𝑝 and equa-
tion of motion for body velocity u𝑛+1

𝑏

e) Solve new velocity field u𝑛+1 from the updated pressure differences.
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4.4.1 Transport fluids and body
Eq. (4.6) is the basis for the discretization of the transport equation. A straight-
forward discretization of the transport equation reads

𝐶𝑛+1
𝑓 = 𝐶𝑛

𝑓 −
1

𝛿𝑥𝛿𝑦 ∑
𝑓 𝑎𝑐𝑒

𝛿𝐶𝑓 ,𝑓 𝑎𝑐𝑒, (4.12)

in which subscript 𝑓 𝑎𝑐𝑒 refers to the sides of the continuity control volume and
the flux 𝛿𝐶𝑓, i.e. the amount of fluid that is transported from one continuity
control volume to the next, is of the form

𝛿𝐶𝑓 ∼
𝐶𝑓

𝐶𝑏
u𝑎𝑏𝛿𝑡𝛿x. (4.13)

Fig. 4.6 shows the flux at the face of the continuity control volume (cut cell) with
index (𝑖 + 1

2 , 𝑗), with body, liquid and gas present at the same time.

Compared to Zuzio et al. [320], the flux now also depends on the face apertures
𝑎𝑏. The stability of the time discretization is not affected by the apertures [142];
the Courant number still needs to be smaller or equal to one.

(𝑖, 𝑗) 𝛿𝐶𝑓 ,𝑖+ 1
2 ,𝑗

𝑢𝑖+ 1
2 ,𝑗𝛿𝑡

𝑎𝑏,𝑖+ 1
2 ,𝑗𝛿𝑦𝑗

Figure 4.6. Flux calculated in a cut cell representation of a continuity control volume.
Body is indicated by . Fluid (liquid) is indicated by . Center (i, j) is given
by . The amount of fluid being transported (fluxed) is hatched with (–).

The discretization of the transport equation in Eq. (4.12) is subject to errors,
caused to a considerable extent by the fact that the fluid is transported in the axis
directions separately, instead of in the direction of the velocity vector at once.
These errors are reduced when using the COSMIC transport algorithm [155]
combined with the correction of Weymouth and Yue [295] to improve mass
conservation.
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The COSMIC split scheme we incorporate consists of multiple transport steps
and reconstruction steps [155]. The COSMIC scheme, in 2D, reads as follows

𝐶∗𝑋
𝑓 = 𝐶𝑛

𝑓 −
1

𝑉𝑐
∑

𝑠𝑖𝑑𝑒=𝑖+ 1
2 , 𝑖− 1

2

𝛿𝐶𝑓 ,𝑠𝑖𝑑𝑒(𝑎𝑛
𝑏 , 𝑢𝑛, 𝐶𝑛

𝑓 )
1

+
𝐶𝑛

𝑓

𝑉𝑐
∑

𝑠𝑖𝑑𝑒=𝑖+ 1
2 , 𝑖− 1

2

𝑢𝑠𝑖𝑑𝑒𝐴,

𝐶∗𝑌
𝑓 = 𝐶𝑛

𝑓 −
1

𝑉𝑐
∑

𝑠𝑖𝑑𝑒=𝑗+ 1
2 , 𝑗− 1

2

𝛿𝐶𝑓 ,𝑠𝑖𝑑𝑒(𝑎𝑛
𝑏 , 𝑣𝑛, 𝐶𝑛

𝑓 )
1

+
𝐶𝑛

𝑓

𝑉𝑐
∑

𝑠𝑖𝑑𝑒=𝑗+ 1
2 , 𝑗− 1

2

𝑣𝑠𝑖𝑑𝑒𝐴,

(4.14)

in which 𝐴 is the area of the cell face open for flow. The free surface of the fraction
fields 𝐶∗𝑋

𝑓 and 𝐶∗𝑌
𝑓 are again reconstructed, resulting in 𝐶𝑋, 𝑛+1/2

𝑓 and 𝐶𝑌, 𝑛+1/2
𝑓 ,

respectively. The new reconstructed fraction fields are used to calculate

𝐶𝑛+1
𝑓 = 𝐶𝑛

𝑓 −
1

𝑉𝑐
∑

𝑠𝑖𝑑𝑒=𝑖+ 1
2 , 𝑖− 1

2

𝛿𝐶𝑓 ,𝑠𝑖𝑑𝑒
⎛⎜⎜⎜
⎝

𝑎𝑏, 𝑢𝑛,
𝐶𝑛

𝑓 + 𝐶𝑌, 𝑛+1/2
𝑓

2
⎞⎟⎟⎟
⎠

2

−
1

𝑉𝑐
∑

𝑠𝑖𝑑𝑒=𝑗+ 1
2 , 𝑗− 1

2

𝛿𝐶𝑓 ,𝑠𝑖𝑑𝑒
⎛⎜⎜
⎝

𝑎𝑛
𝑏 , 𝑣𝑛,

𝐶𝑛
𝑓 + 𝐶𝑋, 𝑛+1/2

𝑓

2
⎞⎟⎟
⎠

2

.

(4.15)

The terms with boxes around them are the steps in which fluxes are calculated.
Between these two steps, a reconstruction step takes place. The effect of these
two steps on the momentum conservation is discussed in Sec. 4.5.2. Something
that we have not seen discussed in literature is that we also use COSMIC for
transporting the interface between fluids and body.

After transport, the interface between liquid and air in continuity control volumes
is reconstructed with PLIC [202]. Reconstruction keeps the interface sharper
compared to algorithms without reconstruction. Also the contour of the body is
reconstructed by means of PLIC as it moves through the grid. An example of a
piecewise-linear representation of the interface between fluids and the contour
of the body in a continuity control volume is illustrated in Fig. 4.6. The recon-
struction of the interface between structure and fluid is similar to the interface
reconstruction between fluids [205].

Special attention is needed for cut cells labeled as S- or C-cell. These cells contain
the interface between fluids as well as the interface between fluid and structure,
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both requiring reconstruction. An iterative process is required to accomplish this.
We define an initial contact angle between the free surface and the structure. The
contact angle 𝜃1 is illustrated in Fig. 4.7a.

F C S

B S E

B C S

B B E

𝜃1

(a) Contact angle.

F C S

B S E

B C S

B B E

𝜃1

(b) Virtual fraction field.

Figure 4.7. Reconstruction of cut cells including the labels. Body is indicated by . Fluid
is indicated by .

Geometric reconstruction of the interface between fluids in a S- or C-cell with
PLIC requires a stencil of 3×3 cells. The reconstruction in cut cells needs volume
fractions of other cut cells or B-cells, where there are no volume fractions. The
volume fraction in these cells is determined with a virtual fraction field [40]. The
virtual fraction field is calculated based on the contact line represented by white
dots in Fig. 4.7a, resulting in the virtual fraction field illustrated in Fig. 4.7b. The
interface between fluids, then, is reconstructed based on the virtual fraction field.

In somewhat more violent two-phase flows, multiple, separate fluid bodies can
be found attached to the structure. An example is shown in Fig. 4.8a. It is neces-
sary to make the assumption that every fluid body has either two or zero cells
connecting with the rigid body where 𝜃1 is defined. The connecting cell is found
as follows: the S-labeled cut cell having the most surrounding E-cells compared
to the neighboring S-labeled cut cells is defined as a contact cell, in which angle
𝜃1 is then imposed. The remaining S-and C-cells are assumed to be independent
of 𝜃1 and reconstructed based on the virtual fraction field.
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𝜃1

𝜃1

F C S

B S E

B E E

B B S

(a) Two intersecting contact lines.

𝜃1

𝜃1

F C S

B S E

B E E

B B S

(b) Virtual fraction field.

Figure 4.8. Reconstruction of cut cells: multiple fluid bodies with intersection at . The
labels are included. Body is indicated by . Fluid is indicated by .

Separate bodies of fluid that are nearby can lead to intersecting contact lines and
overlapping virtual fraction fields. One such overlap is indicated in Fig. 4.8b by
the circle. To prevent incorrect reconstruction in surrounding S-and C-cells, the
overlap needs to be considered, because otherwise fluid bodies that are separate
will artificially merge. The reverse is also true. If the overlap is not considered
properly, fluid bodies may artificially spawn smaller fluid bodies (droplets or
bubbles). An example where fluid is kept nicely together is the buoyant cylinder
in Fig. 4.27a where a thin film of liquid flows down along the boundary of the
cylinder as it moves upward. In the remainder of the chapter, the angle 𝜃1 is
chosen equal to 90 degrees.

4.4.2 Discretization of the density
A consistent discretization of mass and momentum is obtained through the
discretization of the density. The density in different terms of the equations, also
indicated by the different notations 𝜌𝑛, 𝜌∗, ̄𝜌 and 𝜌𝑛+1, is treated differently. In
general, near the interface between fluids, the density on any control volume is
obtained through averaging by means of the volume fractions of the fluids

𝜌 = 𝜌𝑓
𝐶𝑓

𝐶𝑏
+ 𝜌𝑎

𝐶𝑏 − 𝐶𝑓

𝐶𝑏
, (4.16)

in which 𝐶𝑓 is the volume fraction of the liquid and (1 − 𝐶𝑓) the volume fraction
of the gas. 𝐶𝑏 is the part of a cut cell that is open to flow. 𝜌𝑓 is the density of the
liquid, and 𝜌𝑎 the density of the gas. Refer to Fig. 4.4c for the definitions of the
volume fractions.
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It is straightforward to use Eq. (4.16) for finding densities 𝜌𝑖,𝑗 in the centers of
continuity control volumes. The discussion below is about how to determine the
aforementioned densities in momentum control volumes.

4.4.2.1 Discretization of 𝜌𝑛 and 𝜌𝑛+1

Consider the horizontal momentum control volume indicated by the blue dashed
line in Fig. 4.9a. The continuity control volumes on either side are indicated by
continuous orange lines. The term (𝜌𝑢)𝑛 in the momentum equation is evaluated
as (𝜌𝑖+ 1

2 ,𝑗𝑢𝑖+ 1
2 ,𝑗)

𝑛. In our former method [75] density 𝜌𝑛
𝑖+ 1

2 ,𝑗
is obtained from

weighted averaging using the volume apertures in continuity control volumes

𝜌𝑛
𝑖+ 1

2 ,𝑗
=

𝐶𝑏,𝑖+1,𝑗𝛿𝑥𝑖+1𝜌𝑛
𝑖+1,𝑗 + 𝐶𝑏,𝑖,𝑗𝛿𝑥𝑖𝜌𝑛

𝑖,𝑗

𝐶𝑏,𝑖+1,𝑗𝛿𝑥𝑖+1 + 𝐶𝑏,𝑖,𝑗𝛿𝑥𝑖
. (4.17)

Averaging the density like this for non-conservative formulations of the equa-
tions does not necessarily lead to the problems described in the introduction, so
it does not require a consistent discretization. Our problems began when starting
to work with the conservative form of the governing equations.

𝜌𝑖+ 1
4 ,𝑗+ 1

4
𝜌𝑖+ 3

4 ,𝑗+ 1
4

𝜌𝑖+ 1
4 ,𝑗− 1

4
𝜌𝑖+ 3

4 ,𝑗− 1
4

𝜌𝑖,𝑗 𝜌𝑖+1,𝑗𝜌𝑖+ 1
2 ,𝑗

(a) Cell-weighted averaging using continu-
ity control volumes (–).

𝜌𝑖+ 1
4 ,𝑗− 1

4
𝜌𝑖+ 3

4 ,𝑗− 1
4

𝜌𝑖+ 1
4 ,𝑗+ 1

4
𝜌𝑖+ 3

4 ,𝑗+ 1
4

𝜌𝑖+ 1
2 ,𝑗

(b) Consistent density discretization with
sub-volumes in (–).

Figure 4.9. Density calculation at the center ofmomentum control volume; the continuity
control volume (–) and the horizontal momentum control volume (–), the
area used by the averaging/discretization method (–), the cell center ( ), the
center of a quarter of a cell ( ). Body is indicated by . Fluid is indicated by .

A discretization of the density consistent with the size of the momentum con-
trol volume is obtained by dividing the momentum control volume in four
sub-volumes as in Zuzio et al. [320] but now taking into account the volume
apertures in cut cells. By choosing four sub-volumes instead of two, one makes
sure that the discretization of the density is also consistent between horizontal
and vertical momentum control volumes. For each of the sub-volumes the vol-
ume apertures are determined, after which the density in a sub-volume, such as
𝜌𝑖+ 1

4 ,𝑗+ 1
4
in Fig. 4.9b, is determined according to Eq. (4.16).
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The density for the term (𝜌𝑢)𝑛 in a horizontal momentum control volume is then
found with

𝜌𝑛
𝑖+ 1

2 ,𝑗
=

1
bottom(𝐶𝑏,𝑖+ 3

4 ,𝑗+ 1
4
𝛿𝑥𝑖+1𝜌𝑛

𝑖+ 3
4 ,𝑗+ 1

4
+ 𝐶𝑏,𝑖+ 3

4 ,𝑗− 1
4
𝛿𝑥𝑖+1𝜌𝑛

𝑖+ 3
4 ,𝑗− 1

4
+

𝐶𝑏,𝑖+ 1
4 ,𝑗+ 1

4
𝛿𝑥𝑖𝜌𝑛

𝑖+ 1
4 ,𝑗+ 1

4
+ 𝐶𝑏,𝑖+ 1

4 ,𝑗− 1
4
𝛿𝑥𝑖𝜌𝑛

𝑖+ 1
4 ,𝑗− 1

4
),

(4.18)

in which

bottom = 𝐶𝑏,𝑖+ 3
4 ,𝑗+ 1

4
𝛿𝑥𝑖+1 + 𝐶𝑏,𝑖+ 3

4 ,𝑗− 1
4
𝛿𝑥𝑖+1 + 𝐶𝑏,𝑖+ 1

4 ,𝑗+ 1
4
𝛿𝑥𝑖 + 𝐶𝑏,𝑖+ 1

4 ,𝑗− 1
4
𝛿𝑥𝑖.

The term 𝜌𝑛+1 in Eq. (4.9) is discretized in the same way as in Eq. (4.18). Some-
thing that we have not seen being discussed in literature is the discretization of
the viscosity 𝜇𝑛 near the interface between fluids. As the viscosity in liquids can
be quite different from the viscosity in gases, it seemed ’consistent’ to also apply
the discretization in Eq. (4.18) to the viscosity 𝜇𝑛. The evaluation of this decision
has been made explicit for the case of the 2D rising bubble in Sec. 4.6.

4.4.2.2 Convective term with 𝜌∗

The convective term ∮𝑆𝑚
𝜌∗u(u ⋅ n)𝑑𝑆 in the momentum equation requires dis-

cretization of 𝜌∗ on momentum control volumes. Our older method [75] used
weighted averaging based on the volume apertures in continuity control volumes
for 𝜌∗, see Eq. (4.17). The new, consistent discretization is similar to [320], but
now with apertures. The objective of the discretization of 𝜌∗ is to keep the fluxes
𝜌u𝑑𝑆 in the transport equation, discretized on continuity control volumes, consis-
tent with the momentum fluxes 𝜌∗uu𝑑𝑆 in the convective term of the momentum
equation. For this reason, the term 𝜌∗u in the momentum flux is discretized by
means of mass fluxes through the faces of the momentum control volume as

𝜌∗u = 𝜌𝑓
1

𝛿𝑡𝐴𝛿𝐶𝑓 + 𝜌𝑎
1

𝛿𝑡𝐴 (u𝛿𝑡𝐴 − 𝛿𝐶𝑓) , (4.19)

in which 𝐴 is the area of the face open for flow depending on 𝑎𝑏 and the size of
the face. Note that the mass flux 𝛿𝐶𝑓 needs to be determined in a similar way
to what is shown in Fig. 4.6, but then through the boundary of a momentum
control volume instead of a continuity control volume. The parameters required
for determining 𝜌∗ along the faces of a horizontal momentum control volume –
velocities, apertures and mass fluxes – are shown in Figs. 4.10a through 4.10c.
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𝑣𝑖+1,𝑗+ 1
2

𝑣𝑖,𝑗+ 1
2

𝑢𝑖− 1
2 ,𝑗 𝑢𝑖+ 1

2 ,𝑗 𝑢𝑖+ 3
2 ,𝑗

(a) Velocity field.

𝑢𝑖+ 3
2 ,𝑗

𝛿𝑥𝑖 𝛿𝑥𝑖+1

𝛿𝑦𝑗

𝑎𝑏,𝑖,𝑗 𝑎𝑏,𝑖+1,𝑗

𝑢𝑖− 1
2 ,𝑗

(b) Apertures.

𝛿𝐶𝑓 ,𝑖,𝑗 𝛿𝐶𝑓 ,𝑖+1,𝑗

𝛿𝐶𝑓 ,𝑖+ 1
4 ,𝑗+ 1

2
𝛿𝐶𝑓 ,𝑖+ 3

4 ,𝑗+ 1
2

𝑢𝑖− 1
2 ,𝑗 𝑢𝑖+ 3

2 ,𝑗

(c) Flux field.

Figure 4.10. Horizontal momentum control volume with velocities (a), face apertures
(b) and mass fluxes (c) along the faces of the control volume necessary for
the consistent discretization of the density 𝜌∗.

The density 𝜌∗ in Eq. (4.19) in the left face of the horizontal momentum control
volume shown in Fig. 4.10 can then be rewritten as

𝜌∗
𝑖,𝑗 =

∣𝛿𝐶𝑓 ,𝑖,𝑗∣ 𝜌𝑓 + ∣𝑎𝑏,𝑖,𝑗𝑢𝑖,𝑗𝛿𝑡𝛿𝑦𝑗 − 𝛿𝐶𝑓 ,𝑖,𝑗∣ 𝜌𝑎

∣𝑎𝑏,𝑖,𝑗𝑢𝑖,𝑗𝛿𝑡𝛿𝑦𝑗∣
, (4.20)

with the face aperture of the momentum control volume at that location found
from

𝑎𝑏,𝑖,𝑗𝑢𝑖,𝑗 =
1
2 (𝑎𝑏,𝑖+ 1

2 ,𝑗𝑢𝑖+ 1
2 ,𝑗 + 𝑎𝑏,𝑖− 1

2 ,𝑗𝑢𝑖− 1
2 ,𝑗) . (4.21)
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4.4.2.3 Determine ̄𝜌 through temporary continuity equation

The left-hand side of Eq. (4.10) features the term ̄𝜌ū. In order to prevent instability,
the auxiliary density ̄𝜌 requires a consistent discretization. Such a discretization
can be obtained when Eq. (4.11) is used as a temporary continuity equation, see
Zuzio et al. [320]. Similar discretizations can be found in Bussmann, Kothe, and
Sicilian [29], Raessi and Pitsch [222] and Nangia et al. [190].

For a horizontal momentum control volume, discretization of the temporary
continuity equation with apertures to account for cut cells yields

̄𝜌𝑖+ 1
2 ,𝑗 = 𝜌𝑛

𝑖+ 1
2 ,𝑗

−
𝛿𝑡

𝑉𝑚,ℎ
(𝐺𝑛

𝑖+1,𝑗 − 𝐺𝑛
𝑖,𝑗) 𝛿𝑦𝑗

−
𝛿𝑡

𝑉𝑚,ℎ
(𝐺𝑛

𝑖+ 1
2 ,𝑗+ 1

2
− 𝐺𝑛

𝑖+ 1
2 ,𝑗− 1

2
)

1
2 (𝛿𝑥𝑖 + 𝛿𝑥𝑖+1) ,

(4.22)

in which 𝑉𝑚,ℎ is the size of the horizontal momentum control volume and

𝐺𝑛
𝑖,𝑗 = 𝜌∗

𝑖,𝑗 (𝑎𝑏,𝑖,𝑗𝑢𝑛
𝑖,𝑗 +

1
2(𝑎𝑏,𝑖− 1

2 ,𝑗 − 𝑎𝑏,𝑖+ 1
2 ,𝑗)𝑢𝑛

𝑏) , (4.23)

and

𝐺𝑛
𝑖+ 1

2 ,𝑗+ 1
2

=
1
2 (𝐺𝑛

𝑖+ 3
4 ,𝑗+ 1

2
+ 𝐺𝑛

𝑖+ 1
2 ,𝑗+ 1

2
) . (4.24)

Note the use of the horizontal body velocity 𝑢𝑏 in Eq. (4.23). This is different
with respect to Zuzio et al. [320].

4.4.2.4 Determine temporary velocity ū

Apart from density 𝜌∗, the spatial discretization of the convective term is compa-
rable to Kleefsman et al. [142] and therefore referred to as 𝒞(𝜌∗{u𝑛,u𝑛

𝑏})u𝑛. An
auxiliary vector field ū is solved from the discrete form of Eq. (4.10) that reads

̄𝜌ū = 𝜌𝑛u𝑛 − 𝛿𝑡 (Ω𝑛+1
𝑚 )−1 𝒞𝑛(𝜌∗{u𝑛,u𝑛

𝑏})u𝑛. (4.25)

The operators, like the convective operator 𝒞 and momentum control volume
operator Ω𝑚, include the cell face apertures 𝑎𝑏 and body apertures 𝐶𝑏. The oper-
ators are explained in more detail by Kleefsman et al. [142].

For the sake of the discussion, Forward Euler time integration of the momentum
equationwas used in the notation up to here.When using a second-order upwind
discretization in the convective term of the momentum equation combined with
Forward Euler time integration, it comes with a Courant stability limit that is too
low for practical simulation. Using a one-step Adams-Bashforth time integration
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of the momentum equation instead yields a larger stability region when using
a second-order upwind discretization [292], leading to the criterion that the
Courant number should remain smaller or equal to 0.25. The convective term
𝒞𝑛(𝜌∗{u𝑛,u𝑛

𝑏})u𝑛 in Eq. (4.25) then becomes 3
2𝑅𝑛 − 1

2𝑅𝑛−1 with

𝑅𝑛 = − 𝒞𝑛((𝜌∗)𝑛{u𝑛,u𝑛
𝑏})u𝑛 and

𝑅𝑛−1 = − 𝐶𝑛−1((𝜌∗)𝑛−1{u𝑛−1,u𝑛−1
𝑏 })u𝑛−1.

(4.26)

The use of Adams-Bashforth scheme for the convective term implies that this
scheme also needs to be used for the advective term of the auxiliary density field.
When doing so, spurious velocities are introduced around the interface. Because
the Adams-Bashforth uses two different time levels in one step, it is expected
that we need the same for the densities 𝜌∗. However, the densities at the old
time level 𝑛 − 1 are based on an older volume fraction field. This means that
they do not match the VOF mass fluxes at time level 𝑛 and can lead to density
values in control volumes without an interface at time level 𝑛. Time integration
as in Eq. (4.26) is not consistent and can lead to interface distortions. To prevent
interface distortions, Eq. (4.26) needs to be solved as follows

𝑅𝑛 = −𝐶𝑛((𝜌∗)𝑛{u𝑛,u𝑛
𝑏})u𝑛 and 𝑅𝑛−1 = −𝐶𝑛((𝜌∗)𝑛{u𝑛−1,u𝑛−1

𝑏 })u𝑛−1, (4.27)

where (𝜌∗)𝑛 is based on the volume fluxes to find 𝐶𝑛+1
𝑓 . The same is true for the

operators accounting for the body.

An example of the effect of using Eq. (4.26) instead of Eq. (4.27) is shown for a
high-density horizontal translating bubble in vacuum. The results in Fig. 4.11
are shown after 0.04[s] where the bubble have an initial speed of 10[m/s].

(a) Eq. (4.26). (b) Eq. (4.27).

Figure 4.11. Comparison of the effect of using Eq. (4.26) and Eq. (4.27) on the free
surface deformation. Black indicates volume fraction 𝐶𝑓 equal to one. White
indicates volume fraction 𝐶𝑓 equal to zero.

4.4.3 Auxiliary vector field ũ
The spatial discretization of gravity in the external force term F𝑓 is the same as
Kleefsman et al. [142], and therefore not specifically discussed. F𝑓 also contains
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the capillary force at the interface between fluids.

A continuum surface force (CSF) model is used for modeling the capillary force.
TheCSF-model imposes surface tension as a body force [9, 19], forwhich interface
curvature is an input. The curvature 𝜅 is calculated in every S-cell andC-cell, using
a local height function and is defined for every continuity control volume. The
direction in which “height” is defined depends on the largest component of the
interface’s normal vector found from the PLIC reconstruction. The combination
of the CSF-model and the height function ensures that the curvature calculation
is not the governing error resulting from the imbalance between pressure and
surface tension [1]. A height value 𝐻 consists of the sum of the volume fractions
in three cells in height direction as illustrated in Fig. 4.12. The curvature of the
continuity control volume with indices (𝑖, 𝑗) in Fig. 4.12 is found from

𝜅𝑖,𝑗 =
1

𝛿𝑥𝑖

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜕𝐻𝑦,𝑖+1

𝜕𝑥

(1 + (
𝜕𝐻𝑦,𝑖+1

𝜕𝑥 )
2
)

3/2 −
𝜕𝐻𝑦,𝑖−1

𝜕𝑥

(1 + (
𝜕𝐻𝑦,𝑖−1

𝜕𝑥 )
2
)

3/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (4.28)

where

𝜅 =
𝐻″

(1 + 𝐻′2)3/2 and 𝐻𝑦,𝑖 =
1

∑
𝑘=−1

𝐶𝑓 ,𝑖,𝑗+𝑘𝛿𝑦𝑗+𝑘

and
𝜕𝐻𝑦,𝑖+1

𝜕𝑥 =
𝐻𝑦,𝑖+1 − 𝐻𝑦,𝑖

1
2 (𝛿𝑥𝑖+1 + 𝛿𝑥𝑖)

and
𝜕𝐻𝑦,𝑖−1

𝜕𝑥 =
𝐻𝑦,𝑖 − 𝐻𝑦,𝑖−1

1
2 (𝛿𝑥𝑖−1 + 𝛿𝑥𝑖)

.

𝐻𝑦,𝑖−1

𝐻𝑦,𝑖 𝐻𝑦,𝑖+1

𝛿𝑥𝑖−1 𝛿𝑥𝑖 𝛿𝑥𝑖+1

𝛿𝑦𝑗−1

𝛿𝑦𝑗

𝛿𝑦𝑗+1

Figure 4.12. Stencil for curvature 𝜅 in case of a horizontally oriented interface using con-
tinuity control volumes. Fluid is indicated by . The considered continuity
control volume is given by (–).
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For the horizontal momentum cell in Fig. 4.13 the discretization of the capillary
force becomes

F𝜎,𝑖+ 1
2 ,𝑗 =

1
𝜌𝑛+1

𝑖+ 1
2 ,𝑗

𝜎𝜅𝑖+ 1
2 ,𝑗(𝐶𝑓 ,𝑖+1,𝑗 − 𝐶𝑓 ,𝑖,𝑗)𝛿𝑦𝑗, (4.29)

in which

𝜅𝑖+ 1
2 ,𝑗 =

⎧{{{{{
⎨{{{{{⎩

(𝜅𝑖,𝑗 + 𝜅𝑖+1,𝑗)/2, if 𝜅𝑖,𝑗 and 𝜅𝑖+1,𝑗 are defined and labeled as S

𝜅𝑖,𝑗, if 𝜅𝑖+1,𝑗 is not defined and labeled as E

𝜅𝑖+1,𝑗, if 𝜅𝑖,𝑗 is not defined and labeled as E

0, if 𝜅𝑖,𝑗 and 𝜅𝑖+1,𝑗 are not defined and labeled as E

.

The subscripts indicate the position relative to continuity control volume with
indices (𝑖, 𝑗), where 𝑖 + 1

2 , 𝑗 indicates the center of the horizontal momentum
control volume shown in Fig. 4.13. The density 𝜌𝑛+1

𝑖+ 1
2 ,𝑗

in Eq. (4.29) is determined
as in Eq. (4.18).

𝜅𝑖+ 1
2 ,𝑗

E S

(𝑖, 𝑗) (𝑖 + 1, 𝑗)

Figure 4.13. Cell face value of 𝜅 when using PLIC. The cells are labeled as E-cell and
S-cell. Fluid is indicated by . Horizontal momentum control volume is
illustrated by (–).

The discussion of the capillary force completes the discretization of the external
force term F𝑓. The spatial discretization of the viscous term is comparable to
Wemmenhove et al. [291] and referred to as 𝒟𝑛u𝑛, keeping in mind that here
the kinematic viscosity 𝜇𝑛 near the interface is discretized ’consistently’ as in
Eq. (4.18). Using these,

𝜌𝑛+1ũ = ̄𝜌ū − 𝛿𝑡 (F𝑓 − ∇ ⋅ (𝜇𝑛(∇u𝑛 + (∇u𝑛)𝑇)) + ∇𝑝𝑛) , (4.30)

where

ũ = ū − 𝛿𝑡 (Ω𝑛+1
𝑚 )−1 (F𝑓 −

1
𝜌𝑛+1 𝒟𝑛u𝑛 +

1
𝜌𝑛+1 (𝑀𝑇

0 )𝑛+1𝑝𝑛) , (4.31)

and the term ū is an auxiliary vector field with the contributions of the convective
term, see Eq. (4.25) (or Eq. (4.27) when using Adams-Bashforth).
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4.4.4 System of pressure Poisson equation and equation of motion
The continuity equation is solved for the continuity control volumes. When the
densities away from the interface are not allowed to vary, the discrete representa-
tion of the continuity equation can be written as

𝑀𝑛+1
0 u𝑛+1 = −𝑀𝑛+1

𝑏 u𝑛+1
𝑏 , (4.32)

with u the vector of fluid velocities, 𝑀0 the discrete divergence operator working
on the fluid velocities, u𝑏 the velocity of the body imposing a boundary condition
on the flow and 𝑀𝑏 the discrete divergence operator working on those boundary
velocities.

When u𝑛+1 is solved from Eq. (4.8), it is substituted into Eq. (4.32), which results
in a Poisson equation for the pressure

𝛿𝑡𝑀𝑛+1
0 (Ω𝑛+1

𝑚 )−1 1
𝜌𝑛+1 (𝑀𝑇

0 )𝑛+1 𝛿𝑝 − 𝑀𝑛+1
𝑏 u𝑛+1

𝑏 = 𝑀𝑛+1
0 ũ. (4.33)

The operators Ω𝑛+1
𝑚 , 𝑀𝑛+1

0 and 𝑀𝑛+1
𝑏 depend on the time-varying volume aper-

tures 𝐶𝑛+1
𝑏 and face apertures 𝑎𝑛+1

𝑏 . The operators are explained in more detail
by Kleefsman et al. [142] and Fekken [90].

The motion of the body is solved from

u𝑛+1
𝑏 = u𝑛

𝑏 + 𝛿𝑡𝑚−1
𝑏 (𝑚𝑏g +

1
2𝐴𝑛+1

𝑓 (𝑝𝑛 + 𝛿𝑝) +
1
2𝐴𝑛

𝑓 𝑝𝑛) , (4.34)

using Crank-Nicolson time integration. Here, 𝑚𝑏 represents the body’s mass and
𝐴𝑛+1

𝑓 the operator that integrates the pressure over the surface of the body. The
operator 𝐴𝑛+1

𝑓 makes use of the cell face apertures 𝑎𝑛+1
𝑏 to determine the area of

the body that the pressure acts on. Multiplying the operator with the pressure
field results in a force vector.

Using an auxiliary body velocity

ũ𝑏 = u𝑛
𝑏 + 𝛿𝑡𝑚−1

𝑏 (𝑚𝑏g +
1
2 (𝐴𝑛+1

𝑓 + 𝐴𝑛
𝑓 ) 𝑝𝑛) , (4.35)

and the Poisson equation in Eq. (4.33), the coupled system of fluid and body
can be written in compact form as

⎡⎢
⎣

𝐴 −𝑀𝑛+1
𝑏

𝛿𝑡
2𝑚𝑏

𝐴𝑛+1
𝑓 I

⎤⎥
⎦

⋅ [ 𝛿𝑝
u𝑛+1

𝑏
] = [𝑀𝑛+1

0 ũ
ũ𝑏

] , (4.36)

where 𝐴 represents the combination of the operators on the left-hand side of Eq.
(4.33) associated with 𝛿𝑝. Solving the system will find the pressure change 𝛿𝑝
and the body velocities u𝑏.
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4.4.5 New velocity field
The new fluid velocity field is solved from the pressure change 𝛿𝑝 as

u𝑛+1 = ũ − 𝛿𝑡 (Ω𝑛+1
𝑚 )−1 1

𝜌𝑛+1 (𝑀𝑇
0 )𝑛+1 𝛿𝑝. (4.37)

4.5 Proof of principle simulations
Our method is verified by means of several proof of principle simulations that
were specifically designed for this work. These simulations show the properties
of the method with regard to preserving mass, momentum and the shape of the
interface. The implementation of the method that is called ”consistent”, abbrevi-
ated with ”C”, is compared with the non-consistent implementation (”NC”) of
Eijk and Wellens [75]. The non-consistent method makes use of weighted aver-
aging to determine densities at control volume boundaries. Compared with the
consistent implementation described above, the former non-consistent method
uses no auxiliary density field, no density discretization based on the mass
fluxes through the boundaries of a momentum control volume, and the non-
conservative momentum equation is solved.

4.5.1 Moving wedge
The firstmoment ”problems”were encountered because of using a non-consistent
method was for the case of a moving wedge [18]. The case represents a liquid
wave impact against a wall in a LNG container undergoing motion. The wave
is represented as a wedge, because the objective in the original article was to
study the effect of rise time on the dynamic deformation of the container wall.
The fluid configuration is illustrated in Fig. 4.14a. The domain is 1 [m] by 1 [m]
with 80 grid cells in each direction. That means that the height of the wedge is
captured by 16 cells. The density of the liquid is 103[kg/m3]. The air density is
set equal to 10−9[kg/m3] to exclude effects that air may have on the wave impact.
Typically we find that the bigger the density ratio between liquids, the larger
the issues associated with non-consistent modeling. The wedge shape should be
preserved before the impact takes place.

The simulation result with NC, however, shows a distorted interface between
fluids. It is shown in Fig. 4.14c for time instance 0.04[s]. Furthermore, it is
expected that the momentum in vertical direction remains zero before impact.
The total vertical momentum 𝐼𝑣𝑒𝑟𝑡 is calculated at each time step as

𝐼𝑣𝑒𝑟𝑡 = ∑
𝑖,𝑗+ 1

2

(𝜌𝑛𝑣𝑛𝑑𝑉𝑚,𝑣)𝑖,𝑗+ 1
2
, (4.38)

where 𝑑𝑉𝑚,𝑣,𝑖,𝑗+ 1
2
is the size of the vertical momentum control volume. The evolu-

tion of 𝐼𝑣𝑒𝑟𝑡 over time is shown in Fig. 4.14b. It is clear that the vertical momentum
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for the non-consistent method shows a spurious increase over time. From Zuzio
et al. [320] came the inspiration that the shape deformation could be due to the
non-consistent discretization. Where the spurious momentum for a low density
ratio scales with the flow velocity, for a high density ratio the spurious momen-
tum change due to non-consistent modeling becomes dominant over the changes
that scale with the velocity.

With the former method (NC.), momentum transport and mass transport are not
consistent; they are decoupled. The non-consistency results in spurious velocities
around the interface. Fig. 4.14d shows the result of applying the new method
(C.). No strange interface distortion is visible anymore.
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(b) Change in vertical momentum 𝐼𝑣𝑒𝑟𝑡.
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(c) Non-consistent with C-labeling. (d) Consistent with C-labeling.

Figure 4.14. Moving wedge at 0.04[s] for a wedge height represented by 16 grid cells.

4.5.2 Diagonally translating high density droplet
After the wedge case with grid-aligned translation, the next case considers diag-
onal translation and the effect of a split scheme. A diagonally translating droplet
with a high density compared to the surrounding gas is modeled. The case was
proposed by Bussmann, Kothe, and Sicilian [29] and also used in Zuzio et al.
[320]. This case is designed to be a good indicator for non-consistency between
mass and momentum transport, as the high density ratio quickly leads to mo-
mentum losses and interface deformation.

The density ratio, 106 over 1[kg/m3], is the same as used by others [98, 222, 320].
The large ratio will mainly affect the convective term in Eq. (4.25). The effect of
surface tension and viscosity is neglected. The gravity constant is zero. A square
domain with sides of length 1[m] is used with an initial velocity field of 10[m/s]
in x and y directions throughout both high and low density fluid. The simulated
time is 0.05[s]. The radius of the droplet is 0.15[m]. A Courant restriction of 0.2
is used. The setup is illustrated in Fig. 4.15.
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1[m]

1[m]

𝑝𝑎𝑡𝑚
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x

D=0.30[m]

1
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Figure 4.15. Diagonally translating droplet: setup of simulation domain.

With the large density ratio at the interface, we expect that the interaction between
fluids is small and that the shape of the droplet is preserved. The kinetic energy
should be conserved during the simulation. It is calculated using the following
equation

𝐸𝑘 =
1
2 ∑

𝑖,𝑗
𝜌𝑖,𝑗

⎛⎜
⎝

(
1
2(𝑢𝑖+ 1

2 ,𝑗 + 𝑢𝑖− 1
2 ,𝑗))

2
+ (

1
2(𝑣𝑖,𝑗+ 1

2
+ 𝑣𝑖,𝑗− 1

2
))

2
⎞⎟
⎠

𝑑𝑉𝑐,𝑖,𝑗, (4.39)

where 𝑢 and 𝑣 are the horizontal and vertical velocity, respectively. The sub-
scripts indicate the position of the velocity in the staggered arrangement of
variables within a cell. The energy losses over time are depicted in Fig. 4.16a for
the non-consistent and consistent method. The new consistent method is bet-
ter at preserving kinetic energy in comparison with the original non-consistent
method. Even coarse meshes demonstrate good energy preserving behavior with
the consistent method. Fig. 4.16b shows an enlargement of the graph of energy
over time for the consistent method to investigate grid convergence. The energy
loss becomes smaller for higher grid resolutions. The (small) spikes in energy
are related to the droplet propagating through cells.

All results in this work were obtained with the COSMIC interface advection
method. The densities 𝜌∗ and ̄𝜌, see Eqs.(4.21) and (4.22), are based on the mass
’fluxes 1’ calculated in the first step of the COSMIC scheme, see the box with
number 1 in Eq. (4.14). One of the results, called ’fluxes 2’, was obtained with
densities 𝜌∗ and ̄𝜌 based on the mass fluxes indicated by the box with number 2
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in Eq. (4.15) to evaluate the differences.

The simulation with these densities based on the fluxes indicated by 2 had the
same setup as described above, and a grid resolution of 120x120. Its result in
terms of the kinetic energy is shown in Fig. 4.16b. Result ’fluxes 2’ is accompanied
by higher velocities near the interface, with, hence, smaller time steps to satisfy
the Courant criterion. The increased computational effort involved in using mass
fluxes 2 does not lead to improved kinetic energy preservation. On the contrary,
Fig. 4.16b shows that the non-consistency in using mass fluxes 2 leads to more
kinetic energy loss than even the coarsest-grid simulation that is based on mass
fluxes 1. In the remainder, the densities 𝜌∗ and ̄𝜌 are based on fluxes 1 in Eq. (4.14).
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leads to more energy loss.

Figure 4.16. Diagonally translating droplet: kinetic energy as a function of time.

The droplet’s interface deformation is illustrated in Fig. 4.17. These figures show
that the consistent methodwith a grid of 80x80 preserves the shape of the droplet
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while the non-consistent does not. The C-labeling that was discussed improves
the results. Without the extra label, the shape of the droplet is preserved less
well and fluids with different densities are kept separate less well. The kinetic
energy losses also increase when no C-labels are used from 0.017% to 0.090%
with a grid resolution of 40x40.

(a) Non-consistent method no C-labeling. (b) Non-consistent method with C-labeling.

(c) Consistent method no C-labeling. (d) Consistent method with C-labeling.

Figure 4.17. Diagonally translating droplet (grid 80x80): difference in shape of the in-
terface after 0.05[s]. Black: 𝐹𝑠=1.0 and white: 𝐹𝑠=0.0, with grey values in
between.

4.5.3 Momentum conservation droplet impact on fixed wall
The next step is to look at momentum conservation after an impact. In this case,
one-way interaction is tested between a solid wall and a droplet of fluid. The
setup is similar to the case with the droplet translating diagonally through the
domain, but, now apertures (𝐶𝑏, 𝑎𝑏) that represent the solid are involved.

The setup is illustrated in Fig. 4.18 where the dashed line indicates the expected
deformation of the fluid droplet, which because of the 2D nature of the setup
is actually a fluid cylinder. During the impact of the droplet with the wall, all
horizontal momentum is converted to vertical momentum as the droplet exerts
a force on the wall. The initial speed of the fluid droplet is 10[m/s] and it has
a density of 1000[kg/m3]. The density of the gas surrounding the fluid is kept
low at 10−9[kg/m3], for the same reasons as before. The radius of the cylindrical
droplet measures 0.15[m] initially. Gravity is equal to zero. The effect of viscosity
and surface tension is neglected. After 0.03[s], the impact finishes when the fluid
jets reach the bottom and top of the domain. The droplet is positioned such that
the loss of momentum takes place during the impact and not because of trans-
lation. The edge of the wall being impacted is positioned along the center of a cell.
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The initial horizontal momentum 𝐼0 is equal to 706.9[kgm/s]. After the impact,
loss of horizontal momentum of the fluid should be equal to the integrated force
in time acting on the wall. The following equation is used for the horizontal
momentum transfer at any time

∫
𝑡𝑛

𝑡0
𝐹𝑛

𝑏,𝑥𝑑𝑡 + 𝜖 = ∑
𝑖+ 1

2 ,𝑗

(𝜌𝑛𝑢𝑛𝑑𝑉𝑚,ℎ)𝑖+ 1
2 ,𝑗 − 𝐼0, (4.40)

where 𝐹𝑏,𝑥 is the force acting on the wall as a function of time 𝑡𝑛, 𝑉𝑚,ℎ is the
volume of the corresponding momentum control volume with indices (𝑖 + 1

2 , 𝑗),
𝑛 the time level, and 𝐼0 the initial momentum. The value 𝜖 indicates the fluid-
structure interaction error during the transfer. The case is simulated with the
consistent (C.) and the non-consistent (NC.) method for three different grid
resolutions. The integral in (4.40) is solved using the midpoint rule.

The value 𝜖 as a function of time is plotted in Fig. 4.19a for different grid resolu-
tions and both the non-consistent and the consistent method. The results show
convergence. The error for the non-consistent method is an order higher than for
the consistent method. The error of the non-consistent method first goes up, but
then, unexpectedly, it goes down. It was found that the error goes down because
the free surface started to form protrusions similar to those in Fig. 4.14c with a
velocity in opposite direction. Negative velocities reduce the error as it is defined
in Eq. (4.40). The maximum errors are given in Tab. 4.19b.
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(a) Value of the error 𝜖 over time.

Grid 30x120 45x180 60x240
C. [𝐼0%] 1.46 0.72 0.48
NC. [𝐼0%] 7.03 7.40 6.26

(b) Maximum value of the error 𝜖.

Figure 4.19. Droplet impact with fixed wall: fluid-structure interaction error 𝜖.
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0.5[m]

2[m]𝑝𝑎𝑡𝑚

𝜌 ≈0

R=0.15[m]

Figure 4.18. Droplet impact with fixed wall: setup of simulation domain.
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4.5.4 Two-way fluid-structure interaction
Two-way fluid-structure interaction is evaluated next. A droplet of fluid with
a horizontal velocity will impact with a wall that is initially at rest but free to
move. Special about this case is that the apertures are not only included, but
that their size now also depends on time. A similar configuration is used as in
the previous section, but now the change in horizontal momentum of the fluid
should be equal to the gain of (horizontal) momentum of the structure after
impact.

The setup is illustrated in Fig. 4.20. The speed of the droplet is 10[m/s] initially,
while the rectangular wall is at rest. The droplet has a smaller initial radius than
the previous case with the fixed wall to make sure the wall has reached its limit
velocity before the fluid jets hit the top and bottom of the domain. The droplet,
with a radius of 0.10[m] is positioned 0.06[m] in front of the rectangular wall
at the start of the simulation. The rectangular wall has a height of 0.9[m] and
a width of 0.19[m], centered at 0.655[m]. The impact takes place after around
0.006[s]. The gravity constant is set to zero. The density of the fluid and the
structure both are 1000[kg/m3]. The density of the gas around the droplet and
the wall is equal to 10−9[kg/m3]. The Courant restriction equals 0.2.

1[m]

𝑝𝑎𝑡𝑚

𝜌 ≈0

1[m]

y

x

Figure 4.20. Two-way fluid-structure interaction: setup of simulation domain with fluid
droplet impacting a wall that is free to move.

We expect that all the horizontal momentum of the fluid is converted into hor-
izontal momentum of the structure. The data required for the comparison is
straightforward to obtain from the simulation results until the jets created by the



4

108 consistent method for bodies and flow

interaction with the structure hit the bottom and top of the domain. Horizontal
momentum conservation is calculated using

𝑚𝑏𝑢𝑛
𝑏 + 𝜖 = ∑

𝑖+ 1
2 ,𝑗

(𝜌𝑛𝑢𝑛𝑑𝑉𝑚,ℎ)𝑖+ 1
2 ,𝑗 − 𝐼0, (4.41)

where 𝐼0 is 314.16[kgm/s].

The case is simulated with three different grid resolutions. The results for 𝜖 are
illustrated in Fig. 4.21. Similar results are obtained as for the case discussed in the
previous section with the solid wall; the errors are of the same order. Note that
also here, the errors of the NC. simulations goes down because of the protrusions
in the interface with negative horizontal velocities.
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(a) Value of the error 𝜖 over time.

Grid 100x100 200x200 300x300
C. [𝐼0%] 1.39 0.83 0.56
NC. [𝐼0%] 9.70 8.30 7.46

(b) Maximum value of the error 𝜖.

Figure 4.21. Fluid cylinder: fluid-structure interaction error 𝜖 due moving wall impact
for consistent method (C.) and non-consistent method (NC.).

4.5.5 Analyzing the momentum losses
The governing error appears to be related to an inconsistency between the auxil-
iary density field ̄𝜌 and the new density field 𝜌𝑛+1. The discretization of ̄𝜌, see
Eq. (4.22), is based on fluxes through the boundary of a momentum control
volume, while the discretization of 𝜌𝑛+1, see Eq. (4.18), is based on volumes in
the four sub-volumes of the momentum control volume. The difference between
these two density fields is caused by reconstruction of the interface that changes
the distribution of the fluids in the four sub-volumes of a momentum cell to
become different from what one would expect based on the fluxes of the mo-
mentum control volume alone. Therefore, the source of the error is located near



4

4.5 proof of principle simulations 109

the interface.

This is investigated by varying the radius 𝑅 of the droplet in the two-way in-
teraction case with a grid resolution of 200x200. For the circular shape of the
droplet, the number of internal cells varies with the radius squared, while the
number of interface cells, which is related to the circumference, varies linearly
with the radius. The results of the investigation are in Tab. 4.1. It shows that
the momentum errors reduce with increasing radius of the droplet and, hence,
with an increase of the number of F-cells over the number of S-cells. In smaller
droplets, therefore, the ratio of cells that contribute to the error versus cells that
contribute to the total momentum is less favourable. Note that the errors of the
consistent simulations in Tab. 4.1 are approximately two orders of magnitude
smaller than those in the non-consistent simulations. This is an argument that
using the consistent method becomes more relevant for keeping errors in check
in even more violent interfacial flows with larger curvature than in the test cases
with a droplet impacting the moving and fixed walls.

Potential solutions to decrease these errors further could be omitting the recon-
struction of the interface and take the diffusion of the interface for granted, using
a collocated arrangement of solution variables, or using the method of Rudman
[230] with interface transport and reconstruction on a grid that is twice as fine
as the base grid at the expense of computational effort.

R [m] 0.05 0.10 0.15 0.20
Ratio S/F-cells [-] 0.243 0.122 0.079 0.056
Max. 𝜖/𝐼0 trans. [%] (C.) 0.012 (C.) 0.009 (C.) 0.005 (C.) 0.002

(NC.) 9.45 (NC.) 5.27 (NC.) 3.85 (NC.) 3.06
Max. 𝜖/𝐼0 impact [%] (C.) 1.20 (C.) 0.82 (C.) 0.53 (C.) 0.45

(NC.) 3.98 (NC.) 3.03 (NC.) 2.51 (NC.) 2.04

Table 4.1. Effect of the size of the droplet radius in the case of the two-way interaction
with the moving wall for a grid of 200x200. The radius is a measure of the
number of interface cells (S, C) over internal cells (F). The maximum momen-
tum loss during translation (trans.) and after impact are given for consistent
(C.) and non-consistent (NC.) simulations.

4.5.6 Computational costs
The difference in computational cost between the consistent method and the
non-consistent method is not straightforward. Considering the droplet impact on
a fixedwall with grid 60x240, the consistent method needed 14%more time steps
than the non-consistent method. The increase of computational costs is caused
by the discontinuous handling of the density, resulting in a better prediction of
the moment of impact with higher flow velocities immediately after impact and,
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hence, smaller time steps because of the Courant restriction. Similarly, for the
two-way fluid-structure interaction with the moving wall and grid 300x300, the
consistent method needed 16% more time steps. However, for the diagonally
translating high density droplet the number of computational time steps with
grid 80x80 is almost 50% higher for the non-consistent scheme with respect to
the consistent scheme. The increase is due to spurious velocities at the distorted
interface.

4.6 Comparison benchmark & experiment
Results of the consistent method (this work) and of the older non-consistent
method [75] are compared with two benchmarks and with experimental results.

4.6.1 Rising bubble
The first case is a 2D rising bubble benchmark. Our results, with the consistent
method (C., this work) and the non-consistent (NC.) method [75], are compared
with the results of Hysing et al. [123]. Literature has shown that non-consistent
methods with CLSVOF for the interface [252, 254] give good results for rising
bubble simulations. Therefore, when referring to ’non-consistent’ we are only
referring to Eijk and Wellens [75]. The proof of principle simulations in the
previous section mainly evaluated the convective term in the momentum equa-
tion. Simulating the rising bubble also requires accurate modeling of capillary,
diffusive, and buoyancy effects. New in this work is the ’consistent’ discretization
of the viscosity near the interface, where other methods typically make use of
harmonic averaging for the viscosity [75, 222]. The focus for the rising bubble
case is to evaluate the discretization of the viscosity and the curvature.

The benchmark of Hysing et al. [123] with the 2D rising bubble was created
due to the absence of analytical solutions and is based on the average of the
results of high grid resolution simulations with several methods. The initial fluid
configuration of the 2D rising bubble case is illustrated in Fig. 4.22a. The fluid
variables per specific instance of the case are given in the ta in Fig. 4.22b. Results
of different simulations are compared in terms of the velocity of the bubble
over time, which is calculated as the mean of the vertical velocities in the cells
contained within the contour of the bubble

𝑣𝑐 =
∫𝑉𝑏

𝑣𝑑𝑉

∫𝑉𝑏
𝑑𝑉

=
∑𝐸,𝐶,𝑆

1
2(𝑣𝑛 + 𝑣𝑠) ⋅ (1 − 𝐶𝑓)𝑉

∑𝐸,𝐶,𝑆(1 − 𝐶𝑓)𝑉 , (4.42)

in which 𝑉𝑏 and 𝑣𝑐 are the volume of the bubble and the terminal velocity, re-
spectively. The bubble is tracked based on the labels. Only cells with labels C, S
and E contribute to the average velocity. The subscripts of the velocities 𝑣𝑛 and
𝑣𝑠 indicate the northern and southern velocity in the staggered arrangement.
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(a) Setup of flow domain.

Benchmark 𝜌𝑙 𝜌𝑔 𝜇𝑙 𝜇𝑔 𝜎 Re
[ 𝑘𝑔

𝑚3 ] [ 𝑘𝑔
𝑚3 ] [ 𝑘𝑔

𝑚𝑠] [ 𝑘𝑔
𝑚𝑠] [𝑁

𝑚] [−]
1 1000 100 10 1 24.5 35
2 1000 1 10 0.1 1.96 35

(b) Fluid properties of the two instances of the benchmark.

Figure 4.22. 2D Rising bubble benchmark.

The first instance in the table in Fig. 4.22b does not have large fluid property
ratios. The viscosity and density of the liquid are both only one order of mag-
nitude higher than for the gas bubble. As discussed in earlier sections, a low
ratio between fluid densities is expected to lead to small differences between the
consistent (C., this work) approach and the non-consistent (NC.) approach [75].
The NC. results are therefore omitted from this part of the benchmark.

The base case for simulating the first benchmark is the consistent method for
the density (this work), harmonic averaging of the viscosity near the interface,
and computation of the curvature with a stencil of 3x3 cells. One by one, the
improvements discussed in this work are evaluated, the consistent discretization
of the viscosity (Visc.), as described in Sec. 4.4.2.1, and a larger stencil of 5x5
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cells for the curvature (Curv.). The simulation results in terms of the velocity of
the bubble as a function of time are shown in Fig. 4.23a.

Themaximum velocity reached by the bubble is considered a good error measure
for the quantification of the difference between our results and the benchmark.
The maximum velocity of the consistent simulation is 1.6% smaller than the
benchmark. When using the flux-based viscosity the difference with the bench-
mark reduces to 1.2%. Changing the stencil for the curvature from 3x3 to 5x5
cells yield a difference with the benchmark of 0.8%. And when everything is
combined, the difference with the benchmark in maximum bubble velocity at a
grid resolution of 50x150 drops to 0.6%. The convergence of our newest consis-
tent implementation for different grid resolutions is shown in Fig. 4.23b. Even at
coarse grid resolutions, the difference with the benchmark can be considered
small. The difference with the benchmark in maximum velocity of the bubble at
the highest resolution of 80x240 is 0.02%.
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Figure 4.23. 2D Rising bubble: results of the first instance of the benchmark with low
fluid property ratios.

The second instance of the benchmark in Fig. 4.22b has larger fluid property
ratios than the first instance. We now expect that the effect of using the consistent
approach for the density near the interface is larger. The results of the consis-
tent method (C., this work) and the older non-consistent (NC.) method [75]
are compared with the benchmark and with each other to show the difference
between the two methods.

Fig. 4.24a compares the velocity of the bubble with large ratios in fluid proper-
ties over time between simulations. The maximum velocity of the bubble in the
NC. simulation has a difference of 4.45% with the benchmark. When the non-
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consistent method for determining the density near the interface is replaced by
the consistent method, the difference in maximum velocity with the benchmark
reduces to 0.45%. Both the consistent discretization of the viscosity (instead of
harmonic averaging) and increasing the stencil for the curvature from 3x3 to
5x5 cells each have a marginal influence on the results and bring the difference
in maximum velocity with the benchmark down to 0.44%, which is also the
difference with the benchmark when all improvements are combined. The grid
convergence study is shown in Fig. 4.24b. The consistent method with improve-
ments is in good agreement with the benchmark, already at low grid resolutions.
At the highest resolution of 80x240, the difference in maximum bubble velocity
with the benchmark is as low as 0.03%.
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Figure 4.24. 2D Rising bubble: results of the second instance of the benchmark with
high fluid property ratios.

The use of C-labels has not been discussed for the comparison with the rising
bubble benchmark. C-labels did not significantly affect the velocity of the rising
bubble, but they did affect its shape. That becomes most apparent for the rising
bubble when C-labels are combined with the older non-consistent method [75].
In Fig. 4.25 the bubble shapes are shown when C-labels are combined with the
older method [75] at grid resolution 50x150. Half of the rising bubble shape is
extracted from the non-consistent simulation results by filtering for fluid fractions
above 0.05. It is shown to the left. The half of the bubble to the right shows the
results when the non-consistent method is combined with C-labels. The C-labels
have made sure that a lot less distortion of the shape of the bubble has occurred
and that the simulation result is closer to the shape presented in Hysing et al.
[123].
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0.05 0.5 1

Figure 4.25. Simulation NC. without C-label (left) and NC. with C-label (right). Differ-
ence in shape with grid resolution 150×50, filter 𝐹𝑠 <0.95.

4.6.2 Buoyant cylinder water exit & entry
Like in Eijk and Wellens [79], our ultimate interest is in modeling the fluid-
structure interaction involved in the motions (accelerations) of high-speed craft
in heavy seas that frequently disconnect from the main water body when moving
vertically upward before falling downward with an impact. An experiment that
captures fundamental aspects of these phenomena was conducted by Colicchio
et al. [46]. The experiment consists of two parts. The first is a buoyant cylinder
that moves vertically upward before exiting the water, the other is that same
cylinder moving vertically downward before impacting with the water. The ex-
periment was designed to be as 2D as possible. The tests were conducted in a
prismatic tank with a length of 3000[mm], a water depth of 1400[mm] and a
width of 400[mm] in the direction that is assumed not to be relevant to the dy-
namics of the cylinder. The cylinder itself has a radius of 0.15[m] and an effective
density of 620[kg/m3]. During testing, the cylinder’s position and velocity was
measured, together with pressures at discrete locations along the contour of the
cylinder. In their article, the measured quantities were also compared to results of
a numerical method with a level-set free surface displacement algorithm. Details
of the numerical simulations, such as grid size and time step were not reported.

The initial fluid configuration for our simulations is illustrated in Fig. 4.26, with
specifics provided in the table in Fig. 4.26b. The value ℎ𝑏 indicates the cen-
ter position of the structure, and ℎ𝑏,0 the initial position. The following fluid
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properties are used: densities 𝜌𝑎=1[kg/m3] and 𝜌𝑙=1000[kg/m3], viscosities
𝜇𝑎=1.48⋅10−5[kg/ms] and 𝜇𝑙=10−6[kg/ms], gravitational constant g=9.81[m/s2]
and surface tension coefficient 𝜎=0.072[N/m]. The simulations are run until
1.5[s] with a maximum Courant number of 0.2. The initial speed for the cylinder
exiting the water is 0[m/s]; for the cylinder falling downward before entering
the water, it is 2.55[m/s].

W

L

H

p𝑎𝑡𝑚

ℎ𝑏

(a) Domain.

Exit Entry
H [m] 2.5 2.5
L [m] 3.0 3.0
W [m] 1.4 1.4
ℎ𝑏,0 [m] 0.15 -0.46

(b) Size domain.

Figure 4.26. Setup cylinder exit & entry.

Comparing numerical simulations to measurements from experiments is chal-
lenging, because you need to make sure that the differences between the two are
sufficiently small not to have an effect on the comparison. Two, what we think
are, cardinal moments during the experiments are shown in Fig. 4.27. These are
the moments when, for the water exit case, a free surface jet impinges on the
main body of the fluid, and when, for the water entry case, the fluid from either
side starts flowing over the cylinder and meets in the middle. These are events
that can be compared to long-crested wave breaking, that are inherently 3D and
sensitive to small perturbations [179], even when the setup of the experiment is
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otherwise flawless. This will be discussed in more detail.

(a) Exit at 1.03[s]. (b) Entry at 0.35[s].

Figure 4.27. Snapshots of cylinder exit & entry.

4.6.2.1 Cylinder exit

We will first discuss the case with the buoyant cylinder rising upward and exit-
ing the water. Much of the dynamics of the cylinder takes place away from the
interface between water and air. For this reason, the difference between results
of the non-consistent and the consistent method should remain small.

The cylinder’s velocity and position during exit are shown in Fig. 4.28. The mea-
surements (Exp.) are compared with level-set method (Num.) of Colicchio et al.
[46], our older non-consistent method (NC.), and the consistent method (C.)
discussed in this work with all improvements at different grid resolutions. Those
are forN = 75, 125, or 175 cells in both directions. A dashed line is plotted around
1[s]. From that moment, according to our interpretations, 3D effects will start to
play a role, see Fig. 4.27a, and the results in the simulations will start to diverge
from the measurements. The simulation results in Fig. 4.28, for NC. and C. alike,
match well with the experimental results before t=1[s], and grid refinement with
the consistent method (C.) leads to convergence.

The pressures from a simulation with the consistent method at a resolution of
125 cells in both directions at discrete locations along the cylinder contour are
compared with the measurements (Exp.) and the numerical results (Num.) of
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Figure 4.28. Results for buoyant cylinder exiting thewaterwithNC., andC. at resolutions
ofN = 75, 125, 175 cells in each direction (Exp. and Num. results taken from
Colicchio et al. [46]).

Colicchio et al. [46] in Fig. 4.29. The pressures were measured at angles of 0, 15,
45, 105, and 145 degrees, where 0 degrees indicates the bottom of the cylinder.
During the cylinder exiting the water, the low-pressure wake formed behind it
during its upwardmovement interacts with the air phase and entrains air bubbles.
The first moment of entrainment is illustrated in Fig. 4.27a. In the experiment,
the entrainment caused noisy pressure records, which were filtered out before
being presented [46]. The results of our simulations are not filtered. The smaller
spikes are due to the cylinder moving from cell to cell, the larger spikes are due
to the object moving from cell to cell near the interface between water and air.
The pressures in the simulation show a fair agreement with the experiment. The
probe at 105 degrees becomes dry after 0.82[s] while 0, 15, and 45 degrees remain
wetted by a mixture of water and air. It is our interpretation that the simulations
overestimate the pressure in thewater-air mixture later in the simulation, because
the breaking-up of air bubbles is not part of the formulation of the method.
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Figure 4.29. Pressure for buoyant cylinder exiting the water with N = 125 cells in each
direction (Exp. andNum. results taken fromColicchio et al. [46]). 0 degrees
indicates the bottom of the cylinder.

4.6.2.2 Cylinder entry

Next, the case with the cylinder entering the water with an impact is discussed.
Moments after the cylinder has penetrated the interface, two fluid jets are formed
that develop in the direction opposite to the downward motion of the cylin-
der. The difference between results of using the non-consistent or the consistent
method are expected to be larger than for the cylinder exiting the water, because
of the higher fluid velocities and the larger contour of interface along the jets.

In the wake above the cylinder as it is falling down through the interface, an
air cavity is generated. At some moment, the air cavity becomes unstable and
collapses. The collapse results in the mixing of air and water. After the collapse,
the free surfaces at both sides of the top of the cylinder move towards each other
and make contact (approximately) in the middle. In the experiment, it is around
0.35[s] when the cylinder gets fully surrounded with water. This moment is
shown in Fig. 4.27b. Our interpretation again is that the experiment is 2D until
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the free surfaces merge above the cylinder. Just like wave breaking the merge is
not expected to occur uniformly in the third dimension, causing 3D effects from
that moment on.

The velocity and position are plotted in Fig. 4.30. The position data extracted
from Colicchio et al. [46] is shifted along the vertical axis so that at time instance
0[s] the position ℎ𝑏 is 0. In both directions,N =75, 100, or 125 cells were used. The
results obtained with the consistent method (C.) converge, and there is a clear
difference with the results of the non-consistent method (NC.). Until 0.35[s],
the position ℎ𝑏 with the consistent method matches well with the experiment.
With the non-consistent method the penetration depth is somewhat smaller than
in the experiment. After 0.35[s], the simulation results start to deviate from
the experiment. Especially the velocity with the consistent method undergoes a
sudden change when the cylinders becomes completely enclosed in water. We
think that the water above the cylinder in the experiment is actually a mixture of
water and air with a lower density than water alone, affecting the velocity of the
cylinder to a lesser extent. This interpretation is in agreement with the difference
between the consistent method and non-consistent method, because in the latter
the density near the interface is also more diffuse, comparable to Fig. 4.17.
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Figure 4.30. Results for cylinder entering the water with N = 75, 100, 125 cells in each
direction (Exp. and Num. taken from Colicchio et al. [46]).

The pressures from the simulations with 125 cells in both direction, both with
the consistent method (C.) and the non-consistent method (NC.), are compared
to the pressures from the experiment of Colicchio et al. [46] in Fig. 4.31. For
reference, their numerical results are also added to the plots. The pressure sen-
sors were placed at 40 or 45[deg] intervals along the contour of the cylinder
where 0[deg] coincides with the bottom of the cylinder. The agreement in pres-
sures from the simulation and those in the experiment is fair, good perhaps
when the pressure from the sensor at 145[deg] would have been disregarded.
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This sensor is placed in what can be called the wake of the cylinder and ex-
periences the most complicated combination of water and air. The sensor at
0[deg] in Fig. 4.31a registers the impact pressure when the cylinder hits the free
surface. Note that the time axis for the graph of this sensor is different from
the time axes of the other sensors in Fig. 4.31. The pressure peak at 0[deg] in
the simulation with the consistent method reaches to approximately 2/3 of the
peak in the experiment. From the pressure in the experiment one can tell that
more is going on: the pressure oscillations following the impact are likely due
to vibration of the container in which the cylinder is dropped or density waves
at the speed of sound inwater. Those oscillations are absent from the simulations.

The comparison between consistent simulation results and non-consistent simu-
lation results in terms of the pressure does not allow interpretation, except for
the pressure sensor at 0[deg]. Oddly, the simulation with the non-consistent
method does not register a peak in the pressure at all, and produces an elevated
pressure level some time before the impact takes place in the experiment. For this
sensor it is clear that the non-consistent method does not represent the expected
physical behaviour, and that the consistent method does.

4.7 Conclusion
In this work the method of Eijk and Wellens [75] is combined with the consistent
mass-momentum transport (CMOM) scheme of Zuzio et al. [320] and extended
with two-way coupled fluid-structure interaction (FSI). With the new method,
we found similar results in terms of kinetic energy conservation as Zuzio et al.
[320] for the diagonally translating high-density bubble.

In addition to the translating bubble, results of our method are compared with
the rising bubble benchmark of Hysing et al. [123], which is highly relevant for
this type of two-phase flow. The difference in maximum velocity of the bubble
between the consistent implementation and the benchmark was 1.6% when the
density ratio was 10, and 0.45% when the density ratio was 1000 with a grid of
50x150 cells in horizontal and vertical direction, respectively. That needs to be
compared with a 1.6% (density ratio 10) and 4.5% (density ratio 1000) difference
between the older, non-consistent implementation at the same resolution and
the benchmark. Several other improvements contributed to further reducing the
difference in velocity: the viscosity discretized using VOF fluxes had a small, but
measurable influence, and the combination of a larger stencil for the curvature
of the interface and C-labels near the free surface made sure that also the shape
of the bubble was in agreement with the benchmark and that fluids were kept
separate better. With these improvements the consistent method converges to a
0.03% difference in maximum velocity with the benchmark at a grid of 80x240.
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Figure 4.31. Pressure for cylinder entering the water with N = 125 cells in each direction
(Exp. and Num. taken from Colicchio et al. [46]; note that the time axis is
different in Fig. 4.31a).

It was demonstrated that using a consistent method in a setting with FSI is
advantageous for momentum conservation. Newly devised proof of principle
simulations involving a droplet of water impacting a moving solid wall showed
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an order of magnitude improvement in momentum conservation between the
consistent method and the older, non-consistent method.

Simulations with both the consistent and the non-consistent method compared
well with the cylinder exit experiment of Colicchio et al. [46] until, in our opinion,
the experiment cannot be considered 2D anymore. The comparisonwith a similar
experiment of the same authors, involving a cylinder falling on an free surface
that is initially at rest, demonstrates that the non-consistent method gives an
elevated pressure before the time the impact takes place in the experiment, but
does not reproduce a peak impact pressure. In contrast, the consistent method
captures the moment of impact well and produces a peak impact pressure that
is approximately two thirds of the impact pressure in the experiment.

The benefits of consistent transport modeling become especially apparent for
two-phase flows with a high density ratio between fluids. This was observed
both for the simulations with FSI and without. Consistent modeling improves
momentum conservation and yields a more realistic shape of the interface.
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Part II

EXPER IMENTS AND NUMER ICS WITH AERAT ION

This part concerns the extension of the numerical method to a fully
compressible multiphase model that can deal with the compressible
effects of air entrainment during a water-wave impact (Ch. 6). An
experimental setup for a wedge entry is presented (Ch. 5) that is
evolved into a setup that can deal with air entrainment and provide
data for validation of the numerical model (Ch. 6).

Photo: [245]
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5
EXPER IMENTAL , NUMER ICAL AND ANALYT ICAL

EVALUAT ION OF THE BUOYANT WEDGE ENTRY PROBLEM
WITH REEMERGENCE IN 2D

This chapter is reproduced from [78] :

M. van der Eijk and P. R. Wellens. “Experimental, numerical and analytical
evaluation of the buoyant wedge entry problemwith reemergence in 2D.” Journal
of Fluid Mechanics (nd)

Abstract
Maritime structures are designed to endure impact events such as the fall back onto the
free surface after clearing the water or getting hit by a large water wave. In studying these
events, the structure’s cross-section is often simplified to a wedge. Methods of modelling
the wedge entry and emergence problem broadly divide into experimental, numerical and
analytical. We argue that all three methods are required for reliable results when buoyant
wedges are concerned.
An experiment with falling buoyant, symmetric wedges was designed to be as 2D

as possible so that it may serve as a benchmark. The wedges undergo stages of fluid-
structure interaction ranging from slamming upon first contact with water on the way
down, to periodic oscillation in the free surface after having risen back up. Simulations
with a numerical two-phase flow method were performed to design the experiment and to
determine the forces on the wedge. The simulations were also used to extend an analytical
method for the accurate representation of the interaction between wedge and water until
the closure stage to study uncertainties in the experiment with respect to the wedge’s
velocity and inclination angle upon impact. The models of buoyancy force and fictitious
body continuation have properties not described before.
The methods show good agreement until the end of the closure stage, when a new

type of cavity closure in the experiment is shown to have intrinsically 3D characteristics
not captured by the 2D simulations. Details of the experimental setup, the data, and
the post-processing routines have been made available at https://doi.org/10.4121/
a698656f-2648-4bc7-99ae-4f9a27fd869c.
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5.1 Introduction
5.1.1 Introduction
Modeling the interaction between (high-speed) marine structures and waves
is crucial for a safe and economical design [22, 120, 135, 153, 224, 286]. Every
so many waves the interaction leads to an impact between structure and water.
Impacts are observed for the maritime application of high-speed vessels under-
going slamming [79], free-fall lifeboats experiencing large deceleration when
entering the water [13], sloshing in liquid cargo containments [63], and green
water on deck hitting a superstructure [15]. Impacts are also relevant in the fields
of aerospace engineering for water landings and spacecraft returning to earth
[238], biology for diving birds [228], the transfer of disease from leaf to leaf as
result of impacts with rain drops [99], and many more.

The typical cross-section of a (high-speed) vessel is wedge-shaped, undergoing
impact on its way down back into the water after having cleared the water before.
The bottom plates of the wedge are inclined with a deadrise angle. The transition
from bottom plates to vertical side walls are called chines. The side walls stop at
the top end of the wedge at the level of the horizontal deck of the cross-section.
The so-called 2D wedge entry problem has become a benchmark to obtain a
better understanding of the physics involved in impact with water. The wedge ex-
periences different stages during impact, described for instance by Wang, Lugni,
and Faltinsen [282]. Here, wewill make an attempt at an unambiguous definition
of the stages that are illustrated in Fig. 5.1. The first is the slamming stage (I),
that starts when the tip of the wedge first touches the water. During this stage the
force rapidly increases and free-surface jets are formed along the inclined bottom
of the wedge. The added mass increases quadratically with the wetted length
between contact points of the free surface with the wedge. The slamming stage is
described extensively by Dias and Ghidaglia [63] and Korobkin and Pukhnachov
[146], among others. The second stage is called transition stage [282], although
we prefer to call it separation stage (II). Here, the jets formed in the stage before
detach from the chine of the wedge leading to a strong drop in acting force and
a decrease in added mass. The separation stage has been investigated in Tassin,
Korobkin, and Cooker [257], Hascoët et al. [110], Iafrati and Battistin [124] and
Wen et al. [293], among others. Also during the separation stage, a cavity of air is
formed above the wedge when its top end falls beyond the level of the initial free
surface (before impact). A number of studies is dedicated to the generation of
the cavity, see Duclaux et al. [72] and Vincent et al. [272] for example. The buoy-
ancy force on the wedge is insignificant in the slamming stage (I), but develops
during the separation stage (II) and becomes the dominant force contribution.
The closure stage (III) starts when the side walls of the wedge become wet above
the chine, indicated in Fig. 5.1 by crosses in the dashed contour of the wedge
at that moment. During the closure stage the air cavity above the wedge starts
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to become more narrow [281, 282]. The closure stage ends when the separate
free water surfaces on either side of the wedge meet to form a continuous free
surface water surface above the wedge. That moment of contact between free
water surfaces left and right of the wedge therefore defines the start of enclosed
stage (IV). For wedges with a constant vertical velocity that is sufficiently high,
an air-pocket can be entrapped between wedge and water above. That air-pocket
is not visualized, because in our case, when the vertical velocity of the wedge is
nearly zero at the end of the closure stage, the free surfaces on either side roll
over the top of the wedge until they meet impulsively in the middle, creating the
additional vertical jet shown in Fig. 5.1IV. This type of transition from the closure
stage (III) to the enclosed stage (IV) is specific to this article and has not been
described yet by others. The enclosed stage is called ”post-closure” by Wang,
Lugni, and Faltinsen [282], but that term seems to imply that it is the final stage.
Based on the research for this article, we would like to propose an additional
and, in our view, final stage of the wedge entry problem: the Archimedal stage
(V). The Archimedal stage starts when the buoyancy force on the wedge has
converged to the value of the weight of the displaced volume, that becomes a
function of time again when the wedge on its way up breaks through the free
surface.

I: Slamming II: Separation III: Closure IV: Enclosed V: Archimedal

Figure 5.1. The five stages of wedge entry in water in chronological order. The enclosed
stage shows the free surface configuration after a type of closure that is
specific to this article. The dashed lines indicate the start of the stage, with
the red crosses the intersection between wedge and water at that moment.

Because of our interest in maritime applications we chose to investigate free-
falling wedges with different masses, expressed as the ratio 𝜇 of mass over mass
of the displaced wedge volume. When the ratio is lower than one, the wedge is
buoyant and the dynamics of the wedge are more representative of the cross-
section of a ship or falling life boat. Despite the extent of literature on wedge
entry, studies with buoyant wedges are fairly rare, with – to our knowledge –
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only Yettou, Desrochers, and Champoux [309] showing results of a 3D structure
that floats back to the free surface without analysis of the closure and enclosed
stage. We felt it was necessary to study free-falling wedge entry by means of ex-
periments, numerical simulations and analysis, because experiments validate the
numerical and analytical methods for the application, the simulations provide
information that is difficult to obtain from the experiment such as the force and
the fluid velocity field, and the analytical method is used to break down the force
on the wedge in the different components that are relevant in the different stages
of wedge entry. The analytical method is also used to investigate uncertainties
in the measurements from the experiment. The interdependencies of the three
methods are illustrated schematically in Fig. 5.2.
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Figure 5.2. The interaction between analytical, numerical and experimental modeling.
A combination of the three methods gives more reliable results than any of
them used by itself.

The existing literature for wedge entry is discussed with analytical methods first,
then numerical methods, followed by studies with an emphasis on experiments.
It is stated after each subsection what the contribution of this article will be.
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5.1.2 Analytical
An early report of modeling the slamming stage during 2D wedge entry was
given in Von Karman [274] for analyzing the interaction between seaplanes and
water during landing. The slamming force was estimated based on conservation
of momentum and the added mass effect by means of potential flow theory. The
model was extended in Wagner [278] to account for the increased wetted area
due to the water piling up along the inclined bottom of the wedge. This lead
to an improvement in determining the load, with the difficulty, however, of a
singularity in pressure at the position where the wedge surface and the free
water surface meet. The singularity needs to be resolved because it could lead to
an incorrect contribution to the load [144].

Zhao, Faltinsen, and Aarsnes [316] proposed a nonlinear method for the deter-
mination of the slamming force during wedge entry. Analytical theories for entry
in water of arbitrary shapes in different stages, including the separation stage,
are provided in series by Korobkin [144] and others together with Korobkin [143,
145, 146, 185, 251]. In Korobkin [144], the singularity is addressed by replacing
the value of the pressure by zero where it becomes negative, to good effect but
without a mathematical explanation. His overview further showed that a number
of analytical methods [162, 178, 294] are based onWagner, together with different
extensions. The extensions apply higher order terms in approximating either
the level of the root of the deflected jet or the shape of the body in the velocity
potential. The reported type of analytical method is representative of the physics
of wedge entry up to deadrise angles of 30 degrees – deadrise angle being the
inclination of the bottom plane of the wedge with respect to the horizontal –
without accounting for the specific shape of the body [162]. For sharper bodies,
the body shape needs to be accounted for [144].

The above-mentioned analytical methods can be used up to and including the
separation stage by the assumption of zero pressure at the flow separation point,
at the chine between inclined bottom and vertical side wall. Tassin, Korobkin,
and Cooker [257] showed that these methods overestimate the force reduction
after separation, and introduced a correction based on the Fictitious Body Con-
tinuation (FBC) concept. When the orientation of the free surface after flow
separation from the chine is known, using a linear FBC with that orientation
improves the estimation of loads compared to above mentioned during initial
cavity formation in the separation stage. Wen et al. [294] proposed a curved FBC,
instead of linear, providing better force predictions at the start of the separation
stage compared to Tassin, Korobkin, and Cooker [257].

It is necessary to include asymmetry in our analytical method in order to inves-
tigate an uncertainty in the experiment with respect to the wedge’s inclination
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angle. A different form of the Wagner conditions is needed than the usual ones
for symmetric entries. The Wagner conditions were derived under the assump-
tion that the free surface remains unchanged. Existing accounts of included
asymmetry are given in Korobkin and Malenica [145], Hascoët et al. [110], Qin,
Zhao, and Shen [220], and Tassin et al. [258].

Theoretical analysis of the dynamics of a cavity up to the moment of closure is
provided in several studies [72, 261, 262], mostly for cavities after 3D entry of
objects with a round or flat bottom. Where Greenhow [103] recognized cavities
after wedge entries, Wang and Soares [284] evaluated the effect of the shape
of the falling object on the cavity, Wang, Lugni, and Faltinsen [282] and Wang,
Lugni, and Faltinsen [281] investigated the airflow before and after closure of
the cavity in 2D, Gekle et al. [96] analyzed the cavity closure in 3D for axisym-
metric objects, and Vincent et al. [272] reported on modeling the shape of the
free-surface deformation, which generally curves outward and downward away
from the object [103].

We adopt an analytical approach for arbitrarily shaped objects using a curved
FBC, which we have extended to account for the asymmetry of the object and
for the cavity formation. The approach is combined with an equation of motion
for the wedge. The results are compared with the numerical and experimental
results in this article, and those of other literature for verification. The analytical
method is also used for force decomposition. Hydrostatic forces are incorporated
and used to analyze when the closure stage starts. The method, when verified
by means of experimental and numerical results, can be used in 2D strip theory
methods which are often used for rapid assessment of high-speed vessels in
water [79].

5.1.3 Numerical
Numerical simulations of wedge entries have routinely been compared with
experimental data as a means of validation [129, 240, 272, 282]; it is considered
standard procedure. Analytical methods, on the other hand, are often compared
with numerical simulation results as a means of verification [144, 257]. Different
types of numerical method have been adopted to simulate wedge entries: explicit
finite element methods [248, 283], finite volume methods [142, 211], boundary
element methods [124], particle methods [201], and hybrid methods [58] are
examples.

The numerical modeling of jets generated by the entry is seen as difficult. Jets
are sometimes limited by means of additional restrictions such as ’jet cut’ [124]
or not considered [162]. Smoothed particle methods [101], level-set immersed
boundary methods [30], finite volume methods [142, 211], or boundary element
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methods with potential flow theory [8] have been presented which do model
the free jet.

Our numerical method, described in Eijk and Wellens [80], is used in support of
the experiments. It is based on the Navier-Stokes equations with a finite volume
discretization of the spatial derivatives. A geometric Volume-of-Fluid (VOF)
method is used to track the interface between two fluids, with a cut-cell method
for the representation of the wedge. Reconstruction is applied to the interface be-
tween fluids and the interface between fluids and wedge. Mass and momentum
transport are matched consistently to reduce momentum losses in the fluid-
structure interaction between wedge and fluids. The method is validated for a
cylinder entry [80].

The numerical method was used to design the experimental setup. It is also
used to determine the forces on the wedge, jet formation, and the free surface
deformation altogether. The simulation results are the main reference for identi-
fying which parts of the acceleration signal are inherent to buoyant wedge entry
and which parts are model errors originating from the structure of the wedge’s
guiding mechanism or the box with water it lands in. The numerical method is
considered indispensable in verifying the main assumption regarding the 2D
nature of the experiment.

5.1.4 Experimental
Vertical drop experiments with simplified shapes of the falling object, including
wedges and ship-like sections, have been reported on in several studies. Examples
of the shapes that were used are: a cylinder [46], a spheroid [193], a flat plate
[43], a bow-flare section [23, 304, 305], a hydro-elastic wedge [201, 260], and
others [37]. In some instances the object in the experiment is asymmetric [10,
241]. The fact that some of the studies above are very recent demonstrates that
the water entry problem still warrants study.

Chuang [44], besides studying flat plate entry, also considered wedge entry with
a specific deadrise angle. The experiments conducted by Takemoto [256] were
a validation of the pressure distribution along the wetted area of the wedge ac-
cording to Wagner. Yamamoto, Ohtsubo, and Kohno [308] looked at the position
of the maximum peak pressures and how it is affected by the deadrise angle of
the wedge and the impact velocity. Greenhow [103] also looked at the pressure
distribution on a wedge and compared the measurements with an exact solution
[66], while, in addition, noticing the formation of a cavity above the wedge. 2D
wedge entry experiments for the main purpose of validating a numerical method
have been conducted a number of times [240, 301, 316]. Zhao, Faltinsen, and
Aarsnes [316] described the differences between 3D and 2D wedge entry, like
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others described the differences between axisymmetric object entry (cones) and
wedge entry [45, 129]. Yettou, Desrochers, and Champoux [309] looked into
the pressure distribution variation along the wedge surface and the wedge’s
dynamics as it decelerates. Tveitnes, Fairlie-Clarke, and Varyani [264] conducted,
in their account, the first experiment of a wedge entry with constant velocity,
until an immersion depth of the wedge where its added mass in water does
not change anymore. Those results were found to be consistent with analytical
methods. Tveitnes, Fairlie-Clarke, and Varyani [264] also considered a wedge
emerging from the water. Lewis et al. [156] provide a rather complete account of
jet formation, its evolution, and ultimate breakdown for a free-falling wedge on
the basis of experiments, supported by means of numerical simulations.

Wang, Lugni, and Faltinsen [282] conducted experiments with more attention
to the stages after slamming and separation. They showed that airflow plays an
important role in the cavity pressure during the closure stage. The pressure could
even attain negative values with respect to atmospheric pressure. The airflow
hardly affects the object velocity and the configuration of the free surface due
to the short duration of the closure stage. After closure, compressibility of air
might play a role and can generate force oscillations on the wedge. Vincent et al.
[272] looked at the drag force on the wedge after jet separation from the sides
and found a smaller drag than for fully immersed wedges with the same velocity.
They showed that the shape of the separated jet upon impingement with the free
surface depends on the Venturi-suction force and on surface tension. Jain et al.
[129] also provided experimental data of the slamming pressures for a constant
velocity and compared it with analytical results, focusing on the role of air below
the wedge just before impact.

Few experiments with free-falling wedges are 2D, an observation also mentioned
by Jain et al. [129] and Vincent et al. [272]. Our experimental setup aims to be
as 2D as possible, and we investigate when the assumption of the flow being
2D does not hold any more. The other account of an experiment with having
a buoyant object is in Yettou, Desrochers, and Champoux [309], but it is not
”truly” 2D and is without analysis of the final three stages in Fig. 5.1 when the
buoyancy force starts to play a role. Our results will show that the closure stage
and enclosed stage take place differently for buoyant wedges than for wedges in
the setup of Wang, Lugni, and Faltinsen [282] and Jain et al. [129].

5.1.5 Article outline
Whereas the discussion of existing literature for historical reasons followed
the order analytical methods, numerical methods and experiments for wedge
entry problems, the article is composed with that order in reverse. A descrip-
tion of the setup and the results of the 2D (buoyant) wedge entry experiments
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are described in Sec. 5.2. Sec. 5.3 features an account of the numerical method
and the simulations that were performed to find the force on the wedge and
to investigate the 2D nature of the experiment. The analytical method is doc-
umented in Sec. 5.4, together with the way its results were used to analyze
the contributions to the force on the wedge and uncertainties in the experiment.
Conclusions from the results are summarized in the final Sec. 5.6. The experimen-
tal data and additional resources are provided at https://doi.org/10.4121/
a698656f-2648-4bc7-99ae-4f9a27fd869c [287].

5.2 Experiment
5.2.1 Setup & Tests
An experiment was conducted for detailed observations of violent immersion
events of a 2D wedge and its subsequent path back to the free surface under
the influence of buoyancy. Similar data for especially that re-emergence have
not been found in the existing literature. The setup can be representative of
slamming of high-speed ships, but for wave interaction events with the lining
of a liquid cargo container [18] or the deck structure of a ship in the case of
green water [15]. The experiment is conducted in the Ship Hydromechanics
Laboratory at Delft University of Technology. The setup of the experiment is
shown in Fig. 5.3. A fall tower is used to allow the wedges to accelerate to a
high velocity upon impact. The maximum height of the fall tower was limited by
the 4[m] height of the ceiling, bringing the impact velocity into a range that is
fairly unique - high for slamming or free-fall life boats but not uncommon when
breaking waves hit the deck of a ship [26, 95]. Below, details of the experiment
and the experimental results are discussed, starting with the measurement of
the impact speed, followed by a Fourier analysis of the accelerometer signal and
filters, free surface deformation due to the wedge impact, the velocity signal, and
endingwith a frequency analysis of thewedge’s heavemotion after re-emergence.

The experimental setup is composed of three parts: a fall tower, a box filled with
water, and the wedge. The box was chosen to be small enough to ensure struc-
tural rigidity, but large enough to prevent the side walls of the box to influence
the slamming stage of the wedge on the free surface. The optimal domain size,
e.g. the distance between the side walls, was found by performing numerical
simulations with the in-house numerical method [80] described in Sec. 5.3. The
structure of the fall tower adds to the rigidity (stiffness) of the box. At the top
of the box, 40 by 80[mm] aluminium profiles of the brand ITEM® reinforce the
front and back walls of the box. The side and back walls are made of 36[mm]
and 18[mm] thick plywood, respectively. The front is made of perspex with a
thickness of 30[mm]. The thickness of the perspex is such to maintain stiffness
as it is not fixed to the tower. The perspex plate is mounted to the plywood
with around 40 screws equally distributed. As the box is made for a vertical

https://doi.org/10.4121/a698656f-2648-4bc7-99ae-4f9a27fd869c
https://doi.org/10.4121/a698656f-2648-4bc7-99ae-4f9a27fd869c
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(a) Domain box.

(b) Wedge with stiffeners and bearings. (c) Stiffened fall tower.

Figure 5.3. Experimental setup.
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2D case, stability is needed in the third dimension, the 𝑦-direction. The size of
the box in that 𝑦-direction is 0.24[m] on the inside. The box is mounted to a
plywood plate, on which lead weights are placed to prevent movement of the
box. The water level is set to 0.495[m] to prevent the bottom from influencing
the force on the wedge during the slamming stage. That water level was found
using numerical simulations. The box was made waterproof with several coats
of epoxy. For visualization purposes, the contrast is increased by painting the
wall yellow and by adding blue dye to the water.

The fall tower is made of 40 by 40[mm] stainless steel profiles. The tower legs are
supported with brackets. To every tower leg resin-coated plywood is attached,
guiding the bearings of the wedge’s falling mechanism. The top of the tower is
fixed against the ceiling to prevent swinging and to keep it level. After carefully
adjusting and readjusting the legs of the tower, the distance of a leg with respect
to vertical was nowhere larger than 0.5[mm] and the distance between legs did
not varymore than 0.5[mm]. Uncertainty of the position of the legs can lead to an
uncertainty of inclination angle of the wedge. The sensitivity of the force on the
wedge to a small deviation in its inclination angle is investigated later by means
of the analytical method we describe. At the top of the tower, a wooden plate was
installed, supporting a magnet so that the data acquisition system could release
the wedge and start the measurement at the same time. The wedge is dropped
from a height (𝑧) of 2.760[m] above the waterline. Theoretically, without friction,
the drop height would have resulted in a maximum impact velocity of 7.35[m/s]
(√2gh where 𝑔 is the gravitational constant of 9.81[m/s2]). Two light gates are
fixed to the legs of the tower at different elevations. The gates provide accurate
positionmeasurements to reduce integration errors of themeasured acceleration.

The wedge is painted black and waterproofed with several coats of epoxy. The
wedge was given a deadrise angle, the angle between a horizontal plane through
the tip of the wedge and its bottom plane(s), of 15 degrees to match it with the
cross-section at the stern of a high-speed vessel [79]. The deadrise angle was
not varied. The outside of the wedge is made of 12.0[mm] plywood with two
bottom plate stiffeners. The wedge was given three different weights to study
the wedge’s dynamics in water after impact. The weight is changed by adding
lead blocks on the inside, kept restrained to the wedge by means of a stainless
steel threaded rod positioned in the middle of the wedge. A guiding mechanism
is connected to the wedge featuring 16 wheels with ball bearings to fit between
the resin coated plywood of the tower. The vertical accelerations are measured
with two accelerometers connected to the top plate on the inside of the wedge. A
carriage end slot prevents the tip of the wedge from going deeper than 0.4[m]
below the initial free surface.



5

138 experimental, numerical and analytical wedge entry

Table 5.1. Measurement equipment used in falling wedge experiment.
Quantity Device Type
Acceleration Accelerometer 100g ME systeme AS28E
Acceleration Accelerometer 200g Analog Devices ADXL377
Free surface Camera GoPro Hero 4
Position Lightbarriers RS PRO Retroreflective
Release Electro Magnet Binder 10-320-06b00
Data collection DAQ Native instruments USB 6211

The measurement equipment is summarized in Tab. 5.1. The aforementioned
light gates are installed 0.431[m] apart, the lowest positioned 0.570[m] above
the water level at rest. The two accelerometers are rated at 100g and at 200g to
investigate the different accuracy levels. The sampling rate of the data acquisition
system is set at 1[kHz]. The camera measures 720 times 480 pixels at 240 frames
per second. The camera images were used for extracting the contours of the
air-water interface, but also for tracking the position of the wedge with CSRT
[88].

The three different weights of the wedge in the tests were 4[kg], 5[kg] and 10[kg].
In the analysis the weights are scaled with the weight of the displaced volume
so that in the remainder of this article the weights are referred to as 𝜇 = 0.8
(buoyant), 𝜇 = 1.0 (neutrally buoyant), and 𝜇 = 2.0 (not buoyant). A value for 𝜇
below one means that the wedge is buoyant and will float when at rest. Each test
is repeated five times to investigate the variability of the dynamics. The water
temperature in the box was kept at 16.3 degrees [C].

5.2.2 Results of wedge impact
Before focusing on the impact itself, it is discussed how the measurements of
acceleration are processed to the determine velocity and position of the wedge at
any time. From this approach the impact velocity is determined, i.e. the vertical
velocity of the wedge when it first touches the free water surface. The measure-
ments start when the magnet releases the wedge. The wedge passes two light
gates, an upper and a lower one, before impacting with the free surface. The
wedge penetrates the water column and floats back up when buoyant and oscil-
lates to rest. When not buoyant, the wedge’s final position is the carriage end stop.
The measurements finish when the wedge has come to rest. Test are repeated five
times. The velocity and position along the wedge’s fall trajectory are determined
in two main ways. The first approach is integration of a least-square fit of the
measured accelerations under the requirement that its position coincides with
the position of the light gates at a least-square fit of the time the light gates lose
signal. For this approach, we have first looked at the 100g and 200g accelerome-
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ters separately, and then at the combined data of the two accelerometers. The
second approach was to fit a theoretical parabola of position to the positions
of the light gates for a leas-square fit of the times the light gates lose signal. A
value of 9.81 [m/s2] for the acceleration of gravity 𝑔 and an initial velocity at
the position of the upper light gate was used, based on the measurements of
the light gates only. This approach provides an overestimation of the impact
velocity, because the vertical acceleration of the wedge was lower than 𝑔 due to
friction. The overestimation was necessary because it allowed us to exclude data
from the 100g accelerometer, that we think was damaged during the course of
the experiment. Camera results are used in a later stage for comparison. The
velocity over time, determined from integrating the accelerations measured with
the 200g sensor is illustrated in Fig. 5.4 with the min/max confidence intervals
before and after correction using the positions of the light gates. The correction
improves the estimate of the impact velocity by 3% and reduces the uncertainty
(size of the min/max confidence intervals).
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(a) Integrated 200g sensor data.
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(b) Integrated 200g sensor data, corrected with positions of light gates.

Figure 5.4. Velocity over time using data from the 200g accelerometer and from light
gates. Correcting the accelerometer data with the light gate data reduces the
uncertainty in impact velocity.
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The impact velocity is defined as the velocity when the tip of the wedge reaches
the position of the initial free water surface. It is shown in Fig. 5.5 for the differ-
ent wedges with 𝜇 = 0.8, 1.0, and 2.0. Fig. 5.5a compares velocity upon impact
between the different repetitions of the test. The dashed blue line in this graph
represents the naive estimate of the impact velocity, based on 𝑔 and the distance
between initial position and initial free water surface. It is the same for all weights
of the wedge. In reality, friction prevents the wedge from falling with the accel-
eration of gravity. The ratio of friction to weight of the wedge makes that the
impact velocity is higher for wedges with higher weight. When the five runs are
compared, the velocity upon impact reconstructed from the light gates has a
maximum deviation of around 1% in Fig. 5.5a with respect to the mean value.
The deviation with respect to the mean of the impact velocity based on the 200g
accelerometer (together with the light gates) is larger, especially for the wedge
with 𝜇 = 2.0. The main reason for the variation in impact velocity is noise in
the acceleration signal. Some noise is caused by the magnet at the start of the
measurements, some by transitions along the length of the guides, some by the
transition from tower to container, and a final cause of noise is the instrument
itself and its connection to the data acquisition system. Recall that the red line of
the light gates was considered an upper limit for the impact velocity, because it
did not account for friction (it is still lower than the dashed blue line, because it
uses a measured estimate of the initial velocity of the wedge at the position of the
upper light gate). Yet some estimates of the impact velocity of the wedge 𝜇 = 1.0
using the 100g accelerometer are higher than the upper limit. This was the first
reason for distrusting the measurements of the 100g sensor; other reasons are
described below. In our estimates of the impact velocity, The data points above
the upper limit of the light gates were excluded from the estimate of the impact
velocity; excluded data points are indicated with crosses (×) in Fig. 5.5a.

In Tab. 5.5b the vertical acceleration measured at the start and at the end of the
fall trajectory is compared between wedges of different weights. It is found that
the vertical acceleration decreases almost linearly in time. Air drag was expected
to increase with increasing velocity, but turns out to constitute only a small part
of the total friction force. The friction also increases somewhat with increasing
velocity.

Tab. 5.5c gives the mean impact velocities for the different instruments and for
the different weights of the wedge, together with the minima and maxima of
velocity from the five repetitions. The entries for the 100g sensor were determined
without excluded data points; the values for the impact velocity when those
data points would have been included are given in between parentheses. From
the table, using the 200g sensor with the light gate corrections, we find that the
impact velocity is 6.39[m/s] for 𝜇 = 0.8, 6.64[m/s] for 𝜇 = 1.0 and 6.99[m/s] for
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𝜇 = 2.0. In the remainder, time 𝑡 = 0[s] represents the moment when deceleration
starts.
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(a) Variation in impact velocity compared with analytic value. Solid line is the mean, dashed lines
is the max./min.. Accelero data is given.

Acc. 200g Acc. 100g
𝜇 Start End Start End
0.8 0.96g 0.55g 1.00g 0.59g
1.0 0.97g 0.67g 0.98g 0.78g
2.0 1.00g 0.80g 1.00g 0.82g

(b) Accelerations measured during fall (normalized with g). ’Start’ the moment the wedge is
released. ’End’ the moment of impact.

𝜇 0.8 1.0 2.0
Mean Max/Min Mean Max/Min Mean Max/Min

Acc. 100g 6.46 6.71/6.06 6.75 6.75/6.75 6.97 7.07/6.85
(6.74/6.06) (6.75/7.30) (7.80/6.85)

Acc. 200g 6.39 6.44/6.34 6.64 6.70/6.57 6.99 7.15/6.75
Light gates 6.65 6.72/6.62 6.80 6.85/6.78 7.03 7.11/7.00

(c) Mean values, minima and maxima of the impact velocity, in [m/s]. In between parentheses
are the impact velocities when the data points of the 100g sensor are not removed.

Figure 5.5. Impact velocity and variation of acceleration of the wedges.

5.2.3 Fourier analysis of system
The frequencies in the acceleration signals are investigated in order to determine
which are caused by the structures of the wedge and its guidance system, and of
the box. By filtering out these frequencies, the results of the experiment can be
compared with the numerical and the analytical results, in which the structural
vibrations are not taken into account.

A hammer test was performed by hitting the guiding mechanism of the wedges
with a hammer in vertical direction. The wedges with 𝜇 = 0.8 and 𝜇 = 1.0 were
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afloat during the hammer test; the wedge with 𝜇 = 2.0 was also in the water, but
rested on a length of rope that spanned the top of the box. For each weight, the
hammer test was repeated three times. The spectrum of accelerations with the
mean of the amplitudes of the five repetitions is shown in Fig. 5.6. Eigenmodes
of the structure appear to be near 100[Hz], 240[Hz] and 380[Hz] for all weights.
The wedge with 𝜇 = 1.0 also appears to have a mode at 460[Hz].
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Figure 5.6. Amplitude spectra of accelerations following hammer tests with vertical
impact on the guiding mechanism of the wedges in water. The amplitudes
are the mean of three tests.

The frequencies of all acceleration signals with wedge entries were analyzed.
The evaluated signals start at -0.003[s], with 𝑡 = 0 the moment of maximum
deceleration, and ends at 0.15[s] in the separation stage. The time between -0.003
and the moment of maximum deceleration is the rise time of the force, as will be
demonstrated below. Fig. 5.7 gives the amplitude spectra of acceleration for the
three different wedge weights. The amplitudes are the mean of five repetitions. A
spectrum of accelerations based on numerical results, obtained with the method
in Sec. 5.3, is added for comparison, because we can be sure that this signal
is without structural modes. The eigenmode near 380[Hz] is apparent for the
wedges with 𝜇 = 0.8 and 𝜇 = 1.0, but not for 𝜇 = 2.0. That latter wedge shows
amplified acceleration amplitudes near 240[Hz]. The eigenmode near 100[Hz]
found from the hammer test does not appear to be excited during impact. A
jump in amplitude is found near 20[Hz] for all wedge weights. We believe that
20[Hz] could be an eigenfrequency of the box, because it so consistently becomes
apparent for all wedge weights. In Fig. 5.7c for the wedge with the weight 𝜇 = 2.0,
the 100g sensor is showing much larger acceleration amplitudes than the 200g
sensor for nearly all frequencies. The acceleration amplitudes are also higher
than the amplitudes from the numerical simulation. This is the second reason to
distrust the measurements of the 100g accelerometer.
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(a) 𝜇 = 0.8.
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(b) 𝜇 = 1.0.
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Figure 5.7. Amplitude spectra of acceleration for wedge entry signals between -0.003[s]
to 0.15[s]. The dashed lines indicate the filtered spectra. The black dashed
line represents the spectrum obtained from simulations with the numerical
method described in the next section that excludes structural modes.

Based on hammer test and spectral analysis of the acceleration signals it was
decided to filter out the amplitudes at the frequencies of the structural modes
as follows: between 330-420[Hz] for 𝜇 = 0.8, and between 310-400[Hz] for 𝜇
= 1.0. The filtered amplitudes are given by the dashed lines in Fig. 5.7. The
procedure for the acceleration spectrum of the wedge with 𝜇 = 2.0 requires extra
explanation. The amplitudes for the structural mode at 250[Hz] could not be
completely removed because the amplitude spectrum from the numerical simu-
lations showed that part of that information originates from the interaction with
water. A first-order Butterworth filter was employed to smoothen the amplitude
spectrum around 250[Hz]. Amplitudes at frequencies of 400[Hz] and higher
were completely removed. Now the structural modes are no longer part of the
comparison that will be made below between experiment on the one side, and
the numerical method and analytical method on the other, because the latter two
only model the rigid body dynamics of the wedge.
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Fig. 5.8 shows the acceleration signals as a function of time before and after
filtering for the first three of the five runs with wedge 𝜇 = 0.8. The graphs show
the acceleration signal of the 100g and the 200g accelerometers before and after
filtering. Filtering removes the oscillations of acceleration after impact, but hardly
affects the maximum acceleration. For the wedge with weight 𝜇 = 0.8 the signals
from the 100g and the 200g accelerometers are in good agreement.

The maximum accelerations of all five runs, for all three wedge weights, are
shown in Fig. 5.8e, together with the mean value of the five runs. The variation
of the maximum acceleration is about 20% of the mean value. As expected, the
maximum acceleration goes down for increasing wedge weight, if we only con-
sider the 200g sensor (the ratio of impact force to weight is lower for higher
weights). The values of the 100g sensor for the runs with the 𝜇 = 2.0 wedge do
not follow this trend and are so clearly off that this is now the third reason to
distrust the 100g sensor. We believe the 100g accelerometer started to fail during
the tests for wedge 𝜇 = 1.0. Although the sensor specifications stated that 25%
overloading was allowed, perhaps consistently overloading the accelerometer
during the tests for 𝜇 = 0.8 initiated failure, see Fig. 5.8. The results for the tests
with 𝜇 = 1.0 showed that the sensor was not reliable. It really malfunctioned for
the tests with 𝜇 = 2.0. Therefore, the 100g sensor results are not considered in
further analysis and when accelerations are discussed in the remainder, only the
200g sensor is considered. The results of the 100g sensor are still presented to
show that experimental results do not always reflect reality.
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(a) 𝜇 = 0.8 acc. 100g non-filtered.
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(b) 𝜇 = 0.8 acc. 100g filtered.
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(c) 𝜇 = 0.8 acc. 200g non-filtered.
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(d) 𝜇 = 0.8 acc. 200g filtered.

Figure 5.8. Deceleration due to the impact of the wedge on the free water surface before
and after filtering.
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(e) Variation of max. deceleration after filtering. Red cross indicates which data should be omitted.

Figure 5.8. Deceleration due to the impact of the wedge on the free water surface before
and after filtering.

5.2.4 Camera image processing
The free surface extraction to compare with the numerical results and to help to
understand the physics is done in multiple steps using Python. The perspective
of the recordings of the impact is undistorted using a checkerboard behind the
perspex. This ensures that straight lines that should be straight in reality are
also straight in the video frames, unaffected by the camera. The undistorted
frames are cropped to only account for the box. Where already contrast between
the interfaces is created by painting the back wall yellow, the wedge black, and
blue-dying the water, extra contrast is added by using CLAHE filtering [319].
The extra contrast helps with identifying the wedge and free surface. We applied
CLAHE on the A channel of the LAB color model. Subsequently, the A channel
is switched with the L channel that showed an increase in contrast. The new
color model is changed back to the BGR color model. On the provided frames,
a bilateral filter is used to reduce the noise in a frame. Hereafter, an adaptive
binary threshold is used to segment the video frames in two colors. By doing
so, the free surface becomes noticeable. Static saliency algorithms are able to
identify the free surface and results in contours. The Otsu binary threshold with
dilation increases the contour thickness. The increased thickness makes it easier
for OpenCV [20] in Python to extract the contours.

Two examples of video frames fromwhich the free surface is extracted are shown
in Fig. 5.9. An impression of how symmetric the experiment is, can be made by
mirroring the free surface along a vertical line through the middle of the wedge.
The free surfaces on either side are in fair agreement with each other. From the
moment the wedge is in an upward motion and a new jet is generated above the
wedge, the symmetry is lost and - what we call - 3D flow features start appearing.
These 3D effects are found above the wedge and are discussed below when the
comparison with the numerical and analytical results is made.
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(a) Contour of the free surface in test with wedge 𝜇 =
2.0 at 0.08[s] in closure stage.
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(b) Comparison free surface left
and right of wedge 𝜇 = 2.0 at
0.08[s].

(c) Contour of the free surface in test with wedge 𝜇 =
0.8 at 0.58[s] in Archimedal stage.
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Figure 5.9. Extraction of free surface from camera recordings. Symmetry is compared
by mirroring the free surface from right to left; (–) experiment left, (–)
experiment right.

5.2.5 Velocity record
After the impact, the buoyant wedge starts to decelerate due to an increase in
added mass and hydrostatic forces. A remaining step is extracting the motion of
the wedge from the camera recordings. The actual size of the camera recorded
frames is determined by the size of the experimental configuration. The position
of the wedge is tracked with CSRT [88]. The effect of perspex on the angle of
view is neglected. A Fourier analysis is done to remove the noise caused by the
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pixels (720x480) and frame rate (240 per second). A low-pass filter of 8[Hz] is
used. The velocity signals found with the recordings are averaged in time and
illustrated in Fig. 5.10 for the three different cases.

It is important to mention that the camera recordings are used for the global
motion. The initial entry with a high deceleration is high frequency related and
therefore not well captured because of the filter. The same is true for the in-
stantaneous break of the 2x buoyant case reaching the maximum depth. The 2x
buoyant case is finished around 0.18[s].

The unfiltered accelerometer signal is calibrated based on the position of the
light gates, discussed in the previous section. The velocity signal is obtained by
integrating this signal, resulting in Fig. 5.10. The signals are calibrated on the
average impact velocity in Tab. 5.5c to show the variation found after impact and
not before the impact. In Fig. 5.10b, the mean oscillatory motion of the velocity
signal is vertically shifting over time compared with the camera recordings. The
standard deviation is, however, smaller than for the impact velocity in Tab. 5.5c
and increase in time.

To reduce the vertical shift, the velocity records of the accelerometers are cali-
brated on the camera recordings when the velocity is for the first time zero.
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Figure 5.10. Accuracy velocity during impact: the solid line is the mean, dashed lines is
the max./min..

5.2.6 Natural heave period
After the impact, the wedge ends up in an oscillatory heave motion for which the
theoretical period can be compared with the period found from the experiment.
The heave period is related to the restoring spring coefficient, the mass, and the
addedmass. When the motion of the wedge has become small (after time 4.0[s]),
the heave period of the wedge is determined from the average of six oscillations
within the same test. Then the period is averaged over the 5 tests. For the 0.8x
buoyant wedge, a period of 0.88[s] is found, averaged over five runs.

The restoring spring coefficient is determined by means of the waterline area.
The chines are fully wetted for the wedge with 𝜇 = 0.8 during heave, resulting in
a waterplane area of around 0.05[m2]. The added mass is approximated using

(1 + 𝑚𝑎)𝑚 =
𝜌𝑔𝐴𝑤

(2𝜋
𝑇 )

2 , (5.1)

where 𝑚𝑎 is the added mass factor, 𝑚 the mass of the wedge, 𝐴𝑤 the waterplane
area, and 𝑇 the period. This resulted in an added mass factor of around 0.48 for
the wedge with 𝜇 = 0.8, which is the same as found from Vugts [277] for this
kind of cross-section.

5.3 Simulations with discretization in space
5.3.1 Numerical solver
The numerical method of Eijk and Wellens [80] is used to determine the forces
on the wedge. It is also used to analyze the physics of the experiment in more
detail, in particular when 3D free surface phenomena in the experiment start
to play a role. Understanding the 3D nature of these phenomena is important
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for 2D strip theory methods used for rapid assessment of ship motions [79].
The numerical method is an incompressible two-phase flow model based on the
Navier-Stokes equations. Compressible effects of water and air are small enough
to ignore as the deadrise angle of the wedge (15[deg]) is sufficiently large [79,
86, 129].

The numerical method was inspired by the tradition of consistent methods fol-
lowing Rudman [230] and has been developed for predicting wave impact forces
on structures [18, 75, 77, 80]. Monolithic two-way coupling of the equations of
motion for fluid and structure is used to prevent the instabilities due to added
mass when it is in the same order as the mass of the wedge [18, 90]. A key feature
of the method is that momentum losses during the interaction between fluid and
structure are negligible [80]. A significant reduction of interface diffusivity was
made [76] so that an accurate prediction of the wedge’s moment of impact can
be made. A brief overview of the solver is given below with an account of the
governing equations and the grid structure.

The governing equations for two-phase flows of immiscible Newtonian fluids are
given in Eq. (5.2) and Eq. (5.3). The equations are formulated in conservative
form, using vector notation. A one-fluid formulation is usedwith a single velocity
field and a single pressure field [188], assuming that the two phases behave like
a mixture separated by an interface. The continuity equation reads

∫
𝑉

𝜕𝜌
𝜕𝑡 𝑑𝑉 + ∮

𝑆
(𝜌u) ⋅ n𝑑𝑆 = 0, (5.2)

in which u denotes the fluid velocity vector, 𝜌 is the mixture density, 𝑉 the control
volume and 𝑆 the boundary of 𝑉. The momentum equation is

∫
𝑉

𝜕(𝜌u)
𝜕𝑡 𝑑𝑉 + ∮

𝑆
𝜌u(u ⋅ n)𝑑𝑆 + ∮

𝑆
𝑝n𝑑𝑆 + ∫

𝑉
𝜌F𝑓𝑑𝑉

− ∫
𝑉

∇ ⋅ (𝜇(∇u + ∇u𝑇) −
2
3𝜇∇ ⋅ uI)𝑑𝑉 = 0,

(5.3)

where p is the mixture pressure, 𝜇 the dynamic viscosity for a mixture and F𝑓
the body forces. The body force term accounts for gravity and capillary stresses
and equals F𝑓 = F𝑔 + F𝜎 = 𝑔 − 1

𝜌 (𝜎𝜅n𝛿Γ), with 𝑔 the constant of gravity ([0,
-9.81]𝑇[m/s2]), 𝜎 the surface tension coefficient (0.072[N/m]) between fluids,
and 𝜅 the curvature of the interface.

The free surface is captured with

𝐷𝑓
𝐷𝑡 =

𝜕𝑓
𝜕𝑡 + (u ⋅ ∇)𝑓 = 0, (5.4)

where f(x, 𝑡) = 0 gives the position of the free surface.
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The structure, or body, is assumed rigid and displaced with a state-space rep-
resentation of Newton’s second law. The force acting on the body is equal to
integrated pressure along the body boundary 𝑆𝑏.

F𝑏 = ∮
𝑆𝑏

𝑝n𝑏𝑑𝑆. (5.5)

The governing equations are solved on a computational grid of cells. A Cartesian
grid is adopted with a staggered MAC (Marker-and-Cell) arrangement of vari-
ables. Velocities (u= [𝑢, 𝑣]𝑇) are defined in cell faces. Scalar variables, pressures
(𝑝), volume fractions (𝐶𝑓), and densities (𝜌), are defined in cell centers. The
control volumes for the continuity equation coincide with the grid cells. The
control volumes for the momentum equations are shifted in space with respect
to continuity control volumes as shown in Fig. 5.11, together with the positions
of variables in the grid. The control volumes partially overlap.

Horizontal momentum
control volume 𝑉𝑚,ℎ

Vertical momentum
control volume 𝑉𝑚,𝑣

Continuity control volume 𝑉𝑐𝜌, 𝑝

𝑣

𝑢

𝑥

𝑧

Figure 5.11. Standard MAC configuration of variables (staggered); pressure 𝑝 is defined
in the cell center ( ), the horizontal velocity 𝑢 field is sampled on the vertical
faces (→), the vertical velocity 𝑣 is sampled on the horizontal faces (↑). A
continuity control volume is shown as (–), a vertical momentum control
volume as (–), and a horizontal momentum control volume is (–). Note
that there is partial overlap between control volumes.

A Volume-of-Fluid (VOF) method is adopted for the geometrical reconstruc-
tion and transport of the interface. The distance function 𝑓 in (5.4) is replaced
by a discrete volume fraction 𝐶𝑓 having a value between 0 and 1. The volume
fraction indicates the filling ratio of one of the fluids in the cell. The interface
between the two phases is identified by labeling the grid cells [80]. The choice
of label depends on the volume fraction. In Fig. 5.12, the labeling of cells for a



5

152 experimental, numerical and analytical wedge entry

2D Cartesian grid is illustrated: label E(mpty) for cells completely filled with
the lighter of the two fluids (𝐶𝑓 = 0), label S(urface) for cells with some of the
heavier of the two fluids in them and adjacent to E cells in directions aligned with
the axis system, and label C(orner) for cells neighboring E cells in a diagonal
direction. The remaining cells are labeled F(luid). S-labeled cells and C-labeled
cells contain the interface. In these cells, reconstruction of the interface between
the two fluids takes place. Geometrical reconstruction is performed by means of
what we call bilinear interface calculation (BLIC) [76]. Transport of the interface
is achieved by solving Eq. (5.4) in combination with the unsplit, multidimen-
sional donating quadrant advection (DQA) scheme [76]. The advantage of this
scheme with respect to similar methods [163] is that it is consistent with the
discretization of the Navier-Stokes equations, i.e. complies with the tradition of
consistent methods.

F F F F F

C S C F F

S E S C F

E E E S B

E E E E E

𝐶𝑓 = 1

𝐶𝑓 = 0

0 < 𝐶𝑓 < 1

Figure 5.12. Labeling of cells [80]; labels F, B, S, C, and E. Fluid is indicated by (𝐶𝑓 > 0).
Body is indicated by .

The word ’consistent’ is used for methods in which the spatial discretization
of the terms for momentum advection in Eq. (5.3) and mass advection in Eqs.
(5.2) and (5.4) is treated the same with continuity control volumes (𝑉𝑐) and
with momentum control volumes (𝑉𝑚). The word ’flux’ is used to refer to the
amounts of mass and momentum that are transported between cells within a
time step. In order to achieve a consistent discretization, the density is discretized
using volume fraction fluxes such that the same combination of variables in the
momentum flux has the same value as that combination of variables in the mass
flux. Without consistency, spurious velocities are generated near the interface
and conservation errors occur, but also – according to our investigations for this
article – interface diffusivity and smearing of the impact force over time.

A cut-cell method is used to represent the wedge [80, 90]. This method has the
advantage that, when adopted, the spatial discretization of the governing equa-
tion remains the same. The control volumes are scaled by means of coefficients
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(volume apertures and edge apertures) to account for the parts of the volume
and its boundary that are open to flow (i.e. the parts not occupied by the wedge).
The interface between wedge and fluids is reconstructed and transported in the
same way as the interface between fluids, using Eq. (5.4) with 𝑓 replaced by
the discrete volume fraction 𝐶𝑏 that accounts for the volume of wedge in a cell,
in combination with BLIC and DQA. Special treatment for small cut cells, like
virtual cell merging [239], was found not to be necessary.

The velocity updates of fluid and structure are found with a pressure-based
solver. Implicit Crank-Nicolson time integration is used for the equation of mo-
tion of the structure, so that it combines well with the implicit discretization of
pressure in the momentum equation. Explicit time integration of the convective
and diffusive terms in the momentum is adopted using an Adams-Bashforth
method. The convective term is discretized in space with a second-order upwind
scheme. The time step is chosen dynamically during a simulation by means of
the Courant restriction that applies to our specific combination of discretizations
in time and space (CFL<0.25). The Courant restriction needs to be based on the
uncut cell size, as shown by Dröge [71].

The fluid properties used for the numerical simulations are based on the input
of the experiment. Fluid properties for a water temperature of 16.3 degrees [C]
are used. The numerical domain has the same size as the inside of the box used
in the experiment: a height of 0.9[m], a width of 1.1[m], and a water depth of
0.495[m]. The top boundary is closed and at that boundary the atmospheric
pressure is defined (1032.2[hPa] not measured in experiments, but taken from
a meteorological report covering the days the experiment took place). As the
numerical simulations are in 2D, the masses of the wedge per unit width for
the three cases are 16.95, 21.19, and 42.37[kg/m] for the wedge with 𝜇 = 0.8, 1.0
and 2.0, respectively. A maximum Courant restriction of 0.2 to stay on the safe
side of the stability limit. The numerical wedge is released at 0.005[m] above the
waterline with the initial velocity that the wedge in the experiment would also
have at that elevation.

5.3.2 Grid convergence
Agrid convergence study is performed to find a grid resolution that can represent
the four stages of impact. The domain is divided in cells of a uniform cell size.
The simulations are named for their number of cells in horizontal direction and
vertical direction. For the wedge with 𝜇 = 0.8 the convergence of the following
parameters is assessed: the maximum vertical acceleration experienced upon im-
pact in the slamming stage, the velocity of the wedge after impact in the enclosed
stage, and the free surface configuration at different times in the separation stage.
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An impact speed of 6.4[m/s] is used in this section, representative of all wedges
but not specific to any one of them. The formal comparison with the experiment
is described later in Sec. 5.5.

The wedge’s vertical acceleration during the impact is plotted in Fig. 5.13a for
different grid resolutions. The spikes in acceleration are caused by numerical
artifacts. The size of the spikes decreases with increasing grid resolution, because
the ratio of number of cut cells with a near-zero volume to total number of cut
cells becomes smaller. The maximum vertical acceleration from the simulations
with seven different grid resolutions is shown in Fig. 5.13b. The maximum ac-
celeration is demonstrated to converge to approximately 116[m/s2]. A grid of
330x270 cells is sufficiently accurate for this parameter as its results are within
2.5% of the maximum acceleration on the finest grid.

The free surface configuration on the left side of the wedge is shown for six grid
resolutions in Figs. 5.13c and 5.13d at two different times in the separation stage.
Formal convergence of the shape of the jet is not achieved. A higher resolution is
associated with a thinner jet that reaches a higher vertical position. Although
convergence of the shape of the jet was not obtained, this does not imply that the
force on the wedge is affected, because Eijk and Wellens [79] showed that the
shape of the jet does not influence the force during the slamming and separation
stage of the wedge.

Fig. 5.13e shows the velocity of the wedge over time, with emphasis on the ve-
locity during the enclosed stage. The closure stage (see Fig. 5.1) ends at around
0.32[s] when the fronts of the water that is propagating over the deck of the
wedge meet in the middle and generate a jet in upward direction. When the
wedge emerges through the free surface again, it starts oscillating vertically. The
velocity signals for six grid resolutions are compared. The velocity maximum of
the first oscillation is taken from the time signals and plotted in Fig. 5.13f. Those
velocity maxima are shown to converge to around 0.45[m/s] for increasing grid
resolution. The wedge’s vertical velocity signals for the different grid resolution
start to deviate more further in time, with the results of the two highest reso-
lutions close, but not on top of each other. Several free surface breaking events
occur during that time; free surface breaking, just like jet formation, is different
for all grid resolutions, and formal convergence of the wedge’s vertical velocity,
when it depends on the specifics of free surface waves after breaking, is therefore
hard to achieve.
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(a) Acceleration of the wedge over time.
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(b) Maximum acceleration.
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(c) Free surface at 0.02[s].
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(d) Free surface at 0.08[s].

Figure 5.13. Numerical results for wedgewith 𝜇 = 0.8 for different grid resolutions. Stage
number is included.



5

156 experimental, numerical and analytical wedge entry

0 1 2 3 4
−2

−1

0

1

2

IV - V

I
-

II
I

time [s]

v
e
lo
c
it
y

[m
/
s
]

55x45
110x90

165x135
220x180
275x225
330x270

(e) Velocity of the wedge over time.
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(f) First local velocity maximum.

Figure 5.13. Numerical results for wedge with 𝜇 = 0.8 for different given grid resolutions.
Stage number is included.

The heave frequency after the impact is found by extending the numerical simu-
lation to 8[s] for a grid resolution of 220x180. The period of oscillation between
consecutive local maxima is averaged over five oscillations. The resulting period
is 0.89[s], which is slightly different from the 0.88[s] foundwith the experimental
results. The difference is not large, but the most likely explanation is that the os-
cillation of the wedge is, in part, driven by the remaining free surface oscillations
and that the free surface between experiment and simulation is slightly different
because of wave breaking [179]. When the oscillation is considered completely
free, the added mass factor associated with the period found is around 0.48.

Much literature has investigated the impact of a 2D wedge during the slamming
stage, often with a constant fall velocity. Zhao, Faltinsen, and Aarsnes [316]
showed that the position of maximum pressure is found at the spray roots before
the free surface separates from the chine to form jets. After separation, the posi-
tion of maximum pressure acting on the wedge moves toward the keel and the
maximum pressure goes down. Results similar to Zhao, Faltinsen, and Aarsnes
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[316] are found with the simulation at a grid resolution of 330x270. The pressure
along the bottom of the wedge is shown in Fig. 5.14 at four moments in time,
at 𝑡 = 2.25e-3, 3.25e-3, 4.25e-3, and 5.25e-3[s] after the moment of first contact
between wedge and free surface (not after maximum acceleration in this case).
For those same moments in time, the free surface configuration near the wedge is
shown in Fig. 5.14b. Note that the free surface separates from the chine between
3e-3 and 4e-3[s]. Fig. 5.14c shows the total force on the wedge over time. The
rise time of the force is 0.003[s], a fact that was used starting from Fig. 5.7 to
define an appropriate time for the origin of time axis. Due to the deceleration
of the buoyant wedge, the total force already goes down before flow separation
and jet formation. After separation of the free surface from the chine, the force
drops more rapidly, which is consistent with the literature about wedges with a
constant fall velocity.
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(a) Pressure along half of the bottom of the wedge, from chine to keel, at different times.
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(b) Free surface configuration near the chine of the wedge, at different times.

Figure 5.14. Pressure distribution and free surface for wedge with 𝜇 = 0.8 at different
time instances indicated by the color. Flow separation takes place after
reaching the end of the chine. The total force on the wedge over time is
given.
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(c) Total force on the wedge over time. Stage numbers in Fig. 5.1 included. Color indicates the
time instance. Exact Moment of separation is not clear.

Figure 5.14. Pressure distribution and free surface for wedge with 𝜇 = 0.8 at different
time instances indicated by the color. Flow separation takes place after
reaching the end of the chine. The total force on the wedge over time is
given.

In the remainder, the numerical results are shifted in time, like the experimental
results, so that 𝑡 = 0[s] corresponds with the moment of maximum deceleration.
As there was a marginal difference between characteristic results for the high
grid resolutions, all simulations discussed from here on are with a resolution of
330x270. The moment when the separation stage starts is difficult to see with
the results so far.

5.4 Simulations with an analytical approximation in space
Previous work on analytical methods for wedge entry focuses on the slamming
stage and the beginning of the separation stage. Typically, the fall velocity is
considered constant. Our aim is to extend the applicability of analytical methods
and to consider buoyant wedges. To that end, an analytical method is derived so
that a force decomposition can bemade in order to study the relative contribution
of the different force contributions in the different stages of wedge entry. The
method is also used to investigate uncertainties in the experiment.

The modified Logvinovich model (MLM) [144] is implemented and extended,
coupled with an equation of motion, and assesed up to the closure stage. As
we have the required information from the experimental and numerical results,
the ficticious body continuation (FBC) approach is applied, so that improved
force predictions [257] can be made compared to bare MLM. A linear and a
curved FBC are evaluated improved based on the free surface from the numer-
ical simulations. A hydrostatic force is added to the method and its value is
analyzed. Recent work [110] has assessed the FBC for asymmetric wedge entries
(line between chines under an angle with the horizontal coordinate axis). Those
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results inspired us to investigate the uncertainty in the experiment related to
the tolerances of the guiding mechanism and the inclination angle of the wedge
with respect to the initial free surface of the water. The main parameters for the
derivation of the analytical approach are given in Fig. 5.15. They are explained
when discussing the equations that feature the parameters.

x

z

−𝑐2

𝑐1

ℎ

−𝑙2

o

𝑙1

o

𝛼

𝛽
𝛼

𝑓𝑏

𝑓𝑏𝑐

𝛽𝑏𝑐 + 𝛼

Figure 5.15. Parameters for analytic wedge entry. The wedge is allowed to have an angle
𝛼 with respect to the horizontal. The wedge has a boundary 𝑓𝑏. The mark ’o’
indicates the chines where flow separation occurs and continuation takes
place with a fictitious body with boundary 𝑓𝑏𝑐. The horizontal position of
the chines are given by 𝑙. The position of the tip of the wedge with respect
to the initial free surface is given by ℎ. The wetted length of the wedge is
defined by the range −𝑐2 to 𝑐1.

5.4.1 Free surface and body
Although the model of Logvinovich [162] is satisfactory for low deadrise angles,
we choose to account for the shape of the body as in the MLM method, so that
body contours other than wedges may also be evaluated. A continuous shape
function for the body (𝑓𝑏) is defined

𝑓𝑏(𝑥) = |𝑥|tan(
1
2

|𝑥|
𝑥 (𝛽1 + 𝛽2) +

1
2(𝛽1 − 𝛽2)) (5.6)

in which 𝛽 is the deadrise angle corrected by the inclination angle 𝛼 to get
𝛽1 = 𝛽 + 𝛼, and 𝛽2 = 𝛽 − 𝛼. Coordinate 𝑥 = 0 is defined at the horizontal position
of the lowest point along the body contour. The description of the body contour
in Eq. (5.6) is valid in the range −𝑙2 < 𝑥 < 𝑙1 in between the points where flow
separation takes place. The fictitious body is defined outside of this range. For a
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linear representation of the fictitious body [257] The linear approach of Tassin,
Korobkin, and Cooker [257] is

𝑓𝑏𝑐(𝑥) = 𝑓𝑏(𝑙1) + (𝑥 − 𝑙1)tan(𝛽1,𝑏𝑐), (5.7)

a discrepancy in the force just after flow separation was found by Wen et al.
[294] who compared the approach with numerical results. Therefore, the curved
formulation of Wen et al. [294] is adopted, to which we have added the asym-
metric aspect. For 𝑥 > 𝑙1, the description of the contour of the fictitious body
then becomes

𝑓𝑏𝑐(𝑥) = 𝑓𝑏(𝑙1)+(𝑥 −𝑙1)𝑓𝑥,𝑏(𝑙1)+
𝑙1
𝑘 (𝐴− ln(1+𝐴)) (tan(𝛽1,𝑏𝑐) − 𝑓𝑥,𝑏(𝑙1)) , (5.8)

in which
𝐴 =

𝑘(𝑥 − 𝑙1)
𝑙1

. (5.9)

Parameters 𝑘 and 𝛽𝑏𝑐 need to be determined from experimental or numerical
results of the free surface deformation.

5.4.2 Wetted area
The pressure acts along the wetted length (or contact region) of the wedge. It
depends on the depth of immersion ℎ with respect to the undisturbed free surface
and on the shape of the body shape 𝑓 that consists of the actual body 𝑓𝑏 and the
fictitious body 𝑓𝑏𝑐. Wagner’s condition, which is the condition that keeps the free
surface elevation restrained to the initial free surface, is used to determine the
wetted length. The condition consists of two transcendental equations

∫
1

−1
𝑓 (𝑥(𝜏))√1 + 𝜏

1 − 𝜏𝑑𝜏 = 𝜋ℎ(𝑡),

∫
1

−1
𝑓 (𝑥(𝜏))√1 − 𝜏

1 + 𝜏𝑑𝜏 = 𝜋ℎ(𝑡).

(5.10)

Wagner’s condition implies that the wetted area only depends on the immersion
depth of the body. Position 𝑥 is approximated by piecewise-linear functions [145]

𝑥(𝜏) =
1
2(𝑐1(𝑡) + 𝑐2(𝑡))𝜏 +

1
2(𝑐1(𝑡) − 𝑐2(𝑡)), (5.11)

in which the second part of the equation introduces the asymmetry. Depth ℎ is
found by integrating the body velocity (ℎ̇) over time

ℎ(𝑡) = ∫
𝑡

0
ℎ̇(𝑡)𝑑𝑡. (5.12)

The two transcendental equations in Eq. (5.10) are split to solve for the wetted
length in parts. Every part represents either the body or the fictitious body as
follows

∫
1

−1
𝐴𝑑𝜏 = ∫

1

𝑏1
𝐴𝑏𝑐𝑑𝜏 + ∫

𝑏1

−𝑏2
𝐴𝑏𝑑𝜏 + ∫

−𝑏2

−1
𝐴𝑏𝑐𝑑𝜏, (5.13)
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having abbreviated the integrand in Eq. (5.10) as 𝐴, and

𝑏1 = min(
2𝑙1 − 𝑐1 + 𝑐2

𝑐1 + 𝑐2
, 1) ,

𝑏2 = min(
2𝑙2 + 𝑐1 − 𝑐2

𝑐1 + 𝑐2
, 1) .

(5.14)

The wetted length of a wedge was derived by [145]

𝑐1(𝑡) =
𝜋

2tan(𝛽1)
1 − sin(−2𝛼)/sin(2𝛽)

(1 − 𝜈)√1 − 𝜈2
ℎ(𝑡) and 𝑐2 = 𝑐1(𝑡)

1 − 𝜈
1 + 𝜈, (5.15)

with 𝜈 the solution of

𝜈√1 − 𝜈2 + arcsin(𝜈) =
𝜋
2
sin(−2𝛼)
sin(2𝛽) . (5.16)

5.4.3 Velocity potential
The angle between the initial free surface and body contour is assumed to be
small. After linearisation of the boundary conditions at the undisturbed free
surface and solving the boundary value problem, the velocity potential is derived,
keeping only first-order terms (including the shape of the body) [144]

𝜙(𝑥, 𝑡) = −ℎ̇(𝑡)√(𝑐2(𝑡) + 𝑥)(𝑐1(𝑡) − 𝑥) − ℎ̇(𝑡)(𝑓 (𝑥) − ℎ(𝑡) − 𝑑(𝑡)), (5.17)

The first term in Eq. (5.17) is the velocity potential for a flat plate [278]. The
second term accounts for bodies of arbitrary shape that satisfy the assumption. In
that second term, 𝑑(𝑡) equals zero when linearisation is applied around the initial
free surface, and equals 𝑓 (𝑐(𝑡)) − ℎ(𝑡) when linearising around the instantaneous
position of the free surface as it goes up along the contour of the body. Note that
the linearisation of the boundary conditions does not lead to a linear problem,
because the wetted length is unknown a priori [110]. A second-order analysis is
more involved and reported by Oliver [197].

5.4.4 Pressure
Adding to prior assumptions that the liquid is assumed incompressible and
irrotational, and that the effect of surface tension can be neglected, leads to a
formulation of the (nonlinear) Bernouilli equation. Wagners’ original approach
for flat plates neglects higher-order terms, causing the pressure 𝑝(𝑥, 𝑡) to be
overestimated [86]. When it is also assumed that the vertical forces are dominant
over the horizontal ones, the MLM formulation of the Bernouilli equation along
the body contour becomes [110, 144]

𝑝(𝑥, 𝑡) = −𝜌 ⎡⎢
⎣
𝜙𝑡 +

𝑓𝑥ℎ̇
1 + 𝑓 2

𝑥
𝜙𝑥 +

1
2(1 + 𝑓 2

𝑥 )
(𝜙2

𝑥 − ℎ̇2) + 𝑔ℎ⎤⎥
⎦

, (5.18)
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to which we have added the hydrostatic pressure with gravitational constant
𝑔. Substituting the velocity potential with 𝑑 = 0 gives a formulation similar to
Hascoët et al. [110] with a pressure 𝑝𝑣 that depends on the fall velocity ℎ̇ of the
wedge and a pressure 𝑝𝑎 that depends on its acceleration ℎ̈, but with a hydrostatic
pressure 𝑝ℎ that depends on the vertical position

𝑝(𝑥, 𝑡) =𝑝ℎ(𝑥, 𝑡) + 𝑝𝑣(𝑥, 𝑡) + 𝑝𝑎(𝑥, 𝑡)
= − 𝜌𝑔ℎ̄ (Buoyancy)

+
1
2𝜌ℎ̇2max[

𝑑𝑐1
𝑑ℎ √

𝑐2 + 𝑥
𝑐1 − 𝑥 +

𝑑𝑐2
𝑑ℎ √

𝑐1 − 𝑥
𝑐2 + 𝑥 (Slamming)

−
1
4

(𝑐1 − 𝑐2 − 2𝑥)2

(𝑐1 − 𝑥)(𝑐2 + 𝑥)(1 + 𝑓 2
𝑥 )

− 1 (Jets), 0]

+ 𝜌ℎ̈ [√(min(𝑙1, 𝑐1) − 𝑥)(min(𝑙2, 𝑐2) + 𝑥) + 𝑓 (𝑥) − ̃𝑓 (𝑥)] (Added mass).
(5.19)

In Eq. (5.19), ̃𝑓 is the fictitious body continuation for asymmetric bodies that
accounts for both sides of the body not necessarily experiencing flow separation
at the same moment. Parameter ℎ̄, a representative depth of immersion, can
be defined with respect to the initial free surface (max(ℎ(𝑡) − 𝑓 (𝑥), 0)) or with
respect to another level. This is investigated later in this section.

The term 𝑝𝑣 consists of two parts. One part, before the minus sign, is the slam-
ming contribution found from the time derivative of the velocity potential; the
other part is the pressure reduction due to the formation of jets. The term 𝑝𝑎
represents the contribution of added mass.

The derivatives of the wetted length in Eq. (5.19) are solved after the wetted
length has been solved, in the following way

∫
1

−1
𝑓𝑥(𝑥(𝜏))

1
2(𝜏 + 1)√1 + 𝜏

1 − 𝜏𝑑𝜏 = 𝜋
𝑑ℎ
𝑑𝑐1

,

∫
1

−1
𝑓𝑥(𝑥(𝜏))

1
2(𝜏 − 1)√1 − 𝜏

1 + 𝜏𝑑𝜏 = 𝜋
𝑑ℎ
𝑑𝑐2

.

(5.20)

Integral splitting, like in Eq. (5.13), is applied when necessary.

The pressure acts on the body along the length between contact points where
the instantaneous free surface intersects with the body contour. That length can
be expressed as the range min(−𝑙2, −𝑐2(𝑡)) ≤ 𝑥 ≤ min(𝑙1, 𝑐1(𝑡)). From here
on 𝜉 is used for the outcome of min(𝑙, 𝑐). As a result of the quadratic terms in
the nonlinear Bernouilli equation, the pressure in the contact points tends to
negative infinity. Negative pressures are ignored [144] by using a max-function
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for ̃𝑝𝑣 as max(𝑝𝑣, 0). Although there is no physical explanation for neglecting the
negative pressure values, the results are satisfying.

The addedmass pressure 𝑝𝑎 does not level off after flow separation [257],whereas
according to Iafrati and Korobkin [125] it should. A fictitious continuation of
the body is needed for determining the submerged area [110]. Other than the
MLM of Hascoët et al. [110] the added mass is not linearised at the initial free
surface (𝑑(𝑡) = 0), but linearisation of the boundary conditions is performed
at the instantaneous position of the free surface (𝑑(𝑡) = 𝑓 (𝑐(𝑡)) − ℎ(𝑡)), similar
to the generalized Wagner model of Mei, Liu, and Yue [178]. This requires a
modification in the fictitious continuation compared to Hascoët et al. [110]. The
new formulation is given in Eq. (5.21). A min-function in 𝜉 for the fictitious
continuation is used to ensure that the added mass does not keep growing after
flow separation.

̃𝑓 (𝑥) = 𝑓 (−𝜉2) +
𝑥 + 𝜉2
𝜉1 + 𝜉2

(𝑓 (𝜉1) − 𝑓 (−𝜉2)). (5.21)

The effect of these changes compared to Hascoët et al. [110] is considered below.

5.4.5 Forces
The added mass force, after integration of the added mass pressure, can be
written in the following form

𝐹𝑎 = 𝜌ℎ̈𝑉𝑎, (5.22)

in which 𝑉𝑎 is the volume of water that is accelerated by the body. The added
volume is illustrated in Fig. 5.16. It has two contributions: a semi-circle with
diameter 𝜉1 + 𝜉2 (indicated in blue in Fig. 5.16), and the submerged volume of
the wedge that needs to be subtracted from the semi-circle (indicated in red)

𝑉𝑎 =
1
2

𝜋
4 (𝜉1 + 𝜉2)2 − (

1
2 (𝜉1 + 𝜉2) (𝑓 (𝜉1) + 𝑓 (−𝜉2)) − ∫

𝜉1

−𝜉2
𝑓 (𝑥)𝑑𝑥) . (5.23)

The approach of Hascoët et al. [110] to the added mass is illustrated in Fig. 5.16a.
Our approach with the new formulation for the fictitious condition ̃𝑓 is shown in
Fig. 5.16b. The formulation of the added mass is tested for two benchmarks in
Sec. 5.4.7.
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o

õ𝑓

(a) Approach by Hascoët et al. [110], among others.

o

õ𝑓

(b) Approach in this article with new formulation fictitious continuation ̃𝑓.

Figure 5.16. Illustration of added mass for an asymmetric wedge entry. Added mass is
the difference between the first term of Eq. (5.23) (–) and the remaining
part (–).

The force contribution that depends on the velocity of the wedge, slamming and
the reduction due the formation of jets, is calculated as follows

𝐹𝑣 = ∫
𝜉1

−𝜉2
𝑝𝑣𝑑𝑥. (5.24)

The hydrostatic force contribution, 𝐹ℎ is calculated in the same way as the force
contribution that depends on the velocity, but now with 𝑝ℎ.

5.4.6 Equation of motion
The motion of the wedge is determined using a state-space representation of
Newton’s second law

𝑚𝑏
𝑑ℎ̇
𝑑𝑡 = 𝐹𝑣 + 𝐹𝑎 − 𝑚𝑏𝑔,

𝑑ℎ
𝑑𝑡 = ℎ̇.

(5.25)

in which 𝑚𝑏 is the mass of the body. The inclination angle of the wedge 𝛼 for
asymmetric entry is kept constant here, but can be included in the state-space
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representation as a time dependent variable. The system is solved by means of
fourth-order Runge-Kutta time integration with the steps in the flow chart below.

FOR EACH TIME STEP

1. Use the velocity ℎ̇ and the depth of immersion ℎ at the old time level
(Eq. (5.25))

2. Compute the wetted length (Eq. (5.13)) and its derivative (Eq.
(5.20))

3. Compute the pressure along the contour of the body (Eq. (5.19))

4. Integrate the pressure along the wetted length to obtain the force,
𝐹𝑣 + 𝐹𝑎 + 𝐹ℎ (Eqs. (5.22) and (5.24))

5. Integrate in time to obtain the new velocity ℎ̈ and depth of immersion
ℎ (Eq. (5.25))

Input to the system are the shape of the body with deadrise angle 𝛽 and inclina-
tion angle 𝛼, and the shape of the fictitious body with angle 𝛽𝑏𝑐 (and parameter 𝑘
for it to be curved). Initial conditions are the velocity of the wedge upon impact
ℎ̇0 and the immersion depth ℎ0 = 0.

The following two subsections contain a verification of the analyticalmethodwith
results of others that did not include a hydrostatic force. After verification, the
method is tested with a buoyancy force and compared with our own numerical
results during the slamming stage and the full separation stage up to the closure
stage.

5.4.7 Verification symmetric entry and fictitious body
The analytical method is verified with the numerical results of Piro and Maki
[211] and the analytical results of Tassin, Korobkin, and Cooker [257] (with
an approach similar to Hascoët et al. [110]) for a wedge that decelerates after
impact. The wedge has a deadrise angle 𝛽 = 10[deg] and an inclination angle 𝛼
= 0[deg]. Note that with 𝛼 = 0 the wedge entry is symmetric, so that 𝑙1 = 𝑙2 = 𝑙.
The trajectory of the wedge is described by ℎ = (ℎ̇1/2)𝑡2 + ℎ̇0𝑡. The velocity upon
impact ℎ̇0 is set to 4[m/s] and the constant deceleration ℎ̇1 is such that the speed
is equal to zero when the chine of the wedge reaches the initial water level. The
input angle for the linear fictitious body is set to 𝛽𝑏𝑐 = 45[deg] [257]. The force
as a function of time is shown in Fig. 5.17 where ”current” indicates our results,
that are very close to those of Tassin, Korobkin, and Cooker [257] overall. The
force has a maximum some time after impact. Flow separation starts at around
𝑡/𝑡1 = 0.4, where 𝑡1 is the moment of minimum force, and gives a steep drop in
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force. The force then tends to zero as the velocity tends to zero. It is not clear
why the force in the numerical results of Piro and Maki [211] goes up again after
reaching a minimum. The line ”current + a.m.” represents our results with the
modification in the added mass term made above. The modification brings the
results somewhat closer to the force maximum in the results of Piro and Maki
[211], and causes somewhat larger forces overall.

0 0.2 0.4 0.6 0.8 1
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t/t1 [−]

F
/
(ρ
ḣ
2 0
l)
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]

Piro & Maki (2013)

Tassin et al. (2014)

Current

Current + a.m.

Figure 5.17. Force over time during wedge entry with 𝛼 = 0, 𝛽 = 10[deg] and 𝛽𝑏𝑐 =
45[deg]. Results of the method in the current article compared to numerical
results (Piro and Maki [211]) and analytical results (Tassin, Korobkin, and
Cooker [257]) from existing literature.

5.4.8 Verification asymmetric entry
The asymmetric implementation of wedge entry is verified based on numerical
results of Hu et al. [119]. They used the domain setup of the 2D experiment
conducted by Barjasteh, Zeraatgar, and Javaherian [10] and made a comparison.
To our knowledge this is the first time that results of an analytic method are
compared to Hu et al. [119]. A wedge with a deadrise angle of 𝛽 = 20[deg] enters
the water with an initial impact velocity of 3.13[m/s] and a fixed inclination
angle 𝛼. The inclination angle is varied four times: 0[deg], 5[deg], 10[deg], and
15[deg]. The length of the chine of the wedge is 0.205[m] and the weight (𝑚𝑏) is
44[kg/m]. A comparison of the force in the numerical method versus the force
in the analytical method is made in Fig. 5.18.
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Figure 5.18. Wedge entry with 𝛽 = 20[deg] and 𝛽𝑏𝑐 = 45[deg]: acting forces over time
compared for our analytical approach (–) and the numerical (–) model of
Hu et al. [119].

In Fig. 5.18, good agreement between results of the numerical method and the
analytical method is found, so that the analytical method we have derived can be
considered suitable for asymmetric wedge entries. The main difference, however
small, is that the decrease in force after separation of the jets around 5[ms] occurs
more abruptly in the analytical results than in the numerical results. This finding
is consistent with what is found from our numerical results for a symmetric
wedge entry in Fig. 5.14c, where jet separation at 3.3[ms] (green dot) does not
cause such an abrupt force reduction either.

5.4.9 Verification slamming and jet separation stage with numerical results
In order to compare the performance of the linear FBC to the performance of
the curved FBC, the results of the analytical method are compared to the results
of our numerical method in Figs. 5.13 and 5.14. According to Wen et al. [294],
the difference between linear and curved FBCs starts to become important just
after jet separation. The free surface contour at 5.25e-3[s], just after jet separation,
is extracted from the numerical simulations and shown in Fig. 5.19. The figure
shows the free surface contour to the right of the wedge’s chine. The contour is
given by 𝐶𝑓 = 0.9. The horizontal position of the chine is indicated by a dashed
vertical line. The end point of the wetted length of the wedge is indicated by a
black circular marker. The marker is farther away from the center of the wedge
than the chine, because the wedge is in the jet separation stage. The contours
of the of the linear FBC and the curved FBC are also represented as dashed
lines. Contrary to Wen et al. [294], who base their coefficients on the free surface
positions at 1.25𝑙 and 1.5𝑙, with 𝑙 equal to half the wetted length, our coefficients
for the curved FBC come from a least-square fit of the free surface between the
chine and the end point of the wetted length, yielding 𝛽𝑏𝑐 = 54[deg] and 𝑘 =
30.0. The linear FBC is shown with the same 𝛽𝑏𝑐 = 54[deg].
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Figure 5.19. Comparing the linear and curved fictitious body continuation (FBC) to the
right of the wedge’s chine with the free surface of our numerical method
at 5.25e-3[s] using the contour given by volume fraction 𝐶𝑓 = 0.9. The end
point of wetted length at given time is indicated by marker .

Having all input needed for the analytical approach, the vertical force on the
wedge over time is shown in Fig. 5.20a, in which the result of the numerical
method for the wedge with 𝜇 = 0.8 is compared to the result of the analytical
method. The analytical result is in good agreement with the numerical result.
The difference in force is never larger than 5%; the difference in force near the
maximum at 0.015[s] is below 0.25%. With the curved FBC compared to the
linear FBC, the analytical force is closer to the force from the numerical method
for a longer duration after jet separation. The black circular marker in Fig. 5.20a
indicates the time at which the coefficients 𝛽𝑏𝑐 and 𝑘 were to the free surface of
the numerical method.
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(a) Result of numerical method compared to result of analytical method with linear and curved
fictitious body continuation (FBC). Time 5.25e-3[s] when FBC is fit to numerical free surface
is indicated with .
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(b) Result of analytical method decomposed into different contributions (see Eq. 5.19) during
slamming stage and jet separation stage with vertical dashed line at the time between stages.

Figure 5.20. Vertical force on wedge with 𝜇 = 0.8 over time. Stage numbers are included.

Fig. 5.20b shows how the force from the analytical method with 𝛽𝑏𝑐 = 54[deg]
and 𝑘 = 30.0 is decomposed into different contributions in the slamming stage
and in the jet separation stage. The following force contributions are distin-
guished: addedmass, slamming, jet formation, and hydrostatic. The contribution
of slamming is largest overall, especially during the slamming stage. The force
contribution associated with jet formation subtracts from the slamming force.
When represented as a force, the added mass contribution also subtracts from
the contribution of slamming to for the total force on the wedge. The hydrostatic
force during the slamming stage and the start of the jet separation stage is negli-
gible compared to the other force contributions.

These results demonstrate that the analytical method, with some input from
the numerical method to calibrate the FBC, can be used to determine the ver-
tical force on the wedge with good accuracy during the slamming stage and
the beginning of the separation stage. Linearising the added mass term at the
instantaneous free surface position (discussed in Sec. 5.4.4) leads to an improved
estimate of the added mass and maximum force compared to linearising at the
initial free surface position. A difference is that the drop in force magnitude at the
moment of flow separation (at around 3.5e-3[s]) is more abrupt in the analytical
results than in the numerical results. The analytical method requires a couple of
minutes to complete a simulation, with most of the computation time spent on
finding thewetted length at eachmoment in time, whereas the numerical method
requires several hours. With the limited computational effort required, the ana-
lytical method is better suited for the rapid assessment of small variations of the
wedge’s velocity and inclination angle during impact than the numerical method.
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5.4.10 Extension until closure stage: change of the FBC
In literature, analytical methods have not yet been employed to determine forces
on wedges until the closure stage. Also here the force as a function of time has
thus far been presented until 𝑡 = 0.015[s]. The wedge’s depth of immersion ℎ
and velocity ℎ̇ at that time are 0.05[m] and 2.5[m/s]. During the slamming stage,
the curve of the force as a function of immersion depth ℎ strongly resembles
the curve of the force as a function of time, shown in Fig. 5.20b. It was found
that starting from ℎ = 0.06[m], the analytical results begin to deviate from the
numerical results. The situation was analyzed by means of an additional nu-
merical simulation with the same impact velocity of 6.4[m/s], and the same
grid cell size as the 330x270 grid, but with the gravity constant 𝑔 set to 0 and
with a larger domain and hence more grid cells. The domain was made larger to
make sure that effects related to the size of the domain (boundary effects) were
excluded from the comparison between numerical and analytical results during
the separation stage (II). Note that boundary effects cannot have influenced the
results during the slamming stage (I), because the size of the box was designed
with that requirement in mind. The large numerical domain was 7.7[m] wide
with a water depth of 1.6[m], which is a significant increase compared to the
original domain of 1.1[m] wide with a water depth of 0.495[m]). Gravity was
turned off to make sure that the buoyancy force did not impair the comparison
between methods.

Fig. 5.21b shows the force on the wedge, made non-dimensional with 𝜌ℎ̇2𝑙, from
the numerical simulation in the larger domain for a range of immersion depths
starting from h = 0.05[m] (ℎ̇ = 2.5[m/s]) to a depth of 0.35[m]. It also shows
the force that resulted from the analytical method, obtained with the FBC for the
first part of the separation stage with 𝛽𝑏𝑐 = 54[deg] and 𝑘 = 30.0. That FBC will
be referred to as FBCII,1, with II the number of the stage from Fig. 5.1, from here
on. Fig. 5.21b also contains a line indicated with FBCII,2 that is a better match to
the numerical simulation results in the larger domain during the second part of
the separation stage. FBCII,2 has values 𝛽𝑏𝑐 = 64[deg] and 𝑘 = 2.3. These values
were found from fitting FBCII,2 to the free surface contour with 𝐶𝑓 = 0.9 from the
numerical simulation in the larger domain at an immersion depth ℎ = 0.26[m] of
the wedge (at time 𝑡 = 0.15[s]). This depth is considered to be representative of
the second part of the separation stage (II). Apparently, the FBC needs to change
with changing depth and, hence, changing velocity. In the time span between
0.01[s] and 0.04[s], the velocity ℎ̇ varies between 2.9 and 1.8[m/s]. We found
that a switch from FBCII,1 to FBCII,2 around 2.0[m/s] leads to good agreement
with the numerical results.
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(a) Force as function of immersion depth of wedge during separation stage (II). Results of numer-
ical method in larger domain and without gravity compared to results of analytical method
with different values for the curved fictitious body continuation (FBC). Marker indicates the
immersion depth at which FBCII,2 was fit the numerical free surface.
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(b) Free surface contour of the numerical simulation to the right of the wedge for an immersion
depth ℎ = 0.26[m] (time 𝑡 = 0.15[s]), together with the approximations of FBCII,1 and FBCII,2
to this contour. End point of wetted length at mentioned depth is indicated by marker .

Figure 5.21. Improved analytical representation of the force on the wedge with weight
𝜇 = 0.8 during the separation stage, using a FBC with a better fit to the
numerical free surface.

5.4.11 Extension until closure stage: buoyancy
Knowing that a buoyant wedge floats up after its vertical velocity has become
zero, implies that the buoyancy force becomes dominant at some moment in
the interaction with water. Typically buoyancy is modelled with a variable that
is defined with respect to initial, undisturbed free water surface, such as the
depth of immersion ℎ of the wedge. Following Fairlie-Clarke and Tveitnes [85],
the buoyancy force becomes 𝐹𝑏 = 𝜌𝑔 ∫(ℎ − 𝑓 (𝑥))𝑑𝑥. With zero or low vertical
velocities and disregarding air cavities, it is natural to assume that the buoyancy
force cannot become larger than 𝐹𝑏 = 𝜌𝑔∇, with ∇ the volume of the wedge,
which when in 2D will also be called ’volume’ for convenience.
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The buoyancy force during impulsive interaction between wedge and water was
found as the difference between forces from numerical simulations with and
without gravity. The underlying assumption of the approach is that the free
surface configuration near the wedge is sufficiently similar with and without
gravity, so that the only difference in force must be due to the hydrostatic pres-
sure. That appears to be true, at least until the beginning of the closure stage,
as will be demonstrated below. The larger domain was used to avoid effects of
the boundaries. Constant vertical velocities of the wedge were considered to
facilitate interpretation of the force.

Fig. 5.23 shows the force difference Δ𝐹, made non-dimensional with 𝜌𝑔∇, as a
function of immersion depth ℎ for various constant vertical velocities ranging
from 0.5[m/s] to 4.0[m/s]. The expression for the buoyancy force similar to
Fairlie-Clarke and Tveitnes [85] is represented by a continuous black line. The
value for the volume of the wedge ∇ is shown as a dotted horizontal black line.
Vertical dashed lines are plotted in the colours of the wedge velocities they are
associated with to mark out transitions between stages, with a roman numeral ac-
cording to the number of the stage as in Fig. 5.1. For a wedge velocity of 0.5[m/s]
we see that the buoyancy force first follows the line of Fairlie-Clarke and Tveitnes
[85] until nearly the end of the closure stage (III), then changes trend when the
enclosed stage starts (IV) and converges to the value of ∇ towards the Archimedal
stage (V). Note that the maximum buoyancy force for this velocity is larger than
the value for ∇. The buoyancy force for ℎ̇ = 1.0[m/s] also follows the line of
Fairlie-Clarke and Tveitnes [85] at first, but changes trend at a much lower value
of the depth of immersion ℎ and then continues to increase linearly with ℎ but
with a smaller slope compared to Fairlie-Clarke and Tveitnes [85]. Note that
the stage transitions for the wedge with ℎ̇ = 1.0[m/s] occur at a larger depth
of immersion compared to the wedge with ℎ̇ = 0.5[m/s]. The buoyancy force
for all tested values of the vertical velocity higher than 1.0[m/s] also increases
linearly with ℎ but with an even lower slope compared to that for ℎ̇ = 1.0[m/s].
Interestingly, for all those vertical velocities of the wedge higher than 1.0[m/s]
the slope of the buoyancy force as a function of depth is the same and equal
to 0.56𝜌𝑔ℎ. This is a representative model for the buoyancy force on free falling
wedges until the end of the separation stage (II).
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Figure 5.22. Buoyancy force on wedge obtained from the difference of forces on the
wedge in simulationswith andwithout gravity. Simulationswere performed
in the larger domain with a range of constant vertical velocities of the wedge.
Vertical dashed lines give the transitions between stages. FC&T represents
the model of Fairlie-Clarke and Tveitnes [85], ∇ the volume of the wedge.
The dashed black line with a slope of 0.56ℎ/∇ gives the outcome of the
current research that is used to model the buoyancy force for wedges with
higher impact velocities than 1.0[m/s].

It remains to be verified whether the free surface deformation near the wedge
with and without gravity is sufficiently similar. Fig. 5.23 shows the free surface
on either side of the wedge for a depth ℎ = 0.3[m] in the closure stage (III). The
wedge has a constant vertical velocity of 3.0[m/s]. The free surface with gravity
is coloured cyan, the free surface without is colored magenta. The colouring has
reduced opacity so that the overlap shows as a bright purple. Apart from the
jets, that overlap is nearly complete, meaning that we can say with some confi-
dence that the difference between forces on the wedge from these simulations
represents the buoyancy force. The figure also shows the initial free surface level
as a dashed line, with ℎ representing the distance between the dashed line and
the tip of the wedge. The buoyancy force, apparently, needs to be evaluated with
respect to a level that is almost halfway in between the initial free surface level
and the tip of the wedge. Our best explanation for this is that the wedge at higher
impact velocities creates its own, local free surface depression that affects the
hydrostatic pressure.
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0.56h h

Figure 5.23. Free surface configuration at ℎ = 0.3[m] for constant wedge velocity of
3[m/s] with gravity (cyan) and without (magenta). The overlap in purple
shows how similar the free surface configurations are. The immersion depth
ℎ is given with respect to the initial free surface level. The buoyancy force
found from this research needs to be modelled using a distance with respect
to a level near halfway in between the initial free surface level and ℎ.

Using the above, the different force contributions on the wedge can now be
determined beyond the early separation stage and can be considered accurate
until the closure stage. Starting at the moment in time when Fig. 5.20b stops,
Fig. 5.24 gives the contributions of slamming, added mass, jets and buoyancy
into the enclosed stage. Note that buoyancy force becomes dominant at the end
of the separation stage (II), just before the transition to the closure stage (III).
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Figure 5.24. Force components of analytical method in stages beyond the slamming
stage (I). Vertical dashed lines indicate transition between stages according
to Fig. 5.1. The analytical model is tuned up to the end of stage II.
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5.5 Synthesis of experimental, numerical, and analytical results
Before bringing everything together, there is one important step to consider. The
analytical method is not bounded by side walls and a bottom of the water column
as the tests of the experiment and the numerical simulations are. For later stages
than slamming (I), boundary effects become apparent and it is discussed how
theywere accounted for. Then, the experimental, numerical and analytical results
are compared between each other in terms of 1. the maximum vertical decelera-
tion, 2. the velocity after impact and 3. the free surface configuration after impact.
The results of the measurements are the average results from five repeated tests.
In the simulations with the numerical method and the analytical method, the
three wedges with weights 𝜇 = 0.8, 1.0 and 2.0 are released with the average
velocity at the moment of impact derived from the 200g accelerometer, Tab. 5.5c.
Those are 6.39, 6.64 and 6.99[m/s], respectively. Grid 330x270 which was found
from Sec. 5.3, is used in the numerical simulations in a domain with the inner
dimensions of the box in the experiment. The analytical method was used with
the modified fictitious body FBCII,1, having parameters 𝛽𝑏𝑐 = 54[deg] and 𝑘 = 30
during the beginning of the separation stage, and FBCII,2 with 𝛽𝑏𝑐 = 64[deg] and
𝑘 = 2.3 for ℎ̇ ≤ 2.0[m/s] during the second part of the separation stage (II). The
buoyancy force was modelled as 𝐹𝑏 = 𝜌𝑔 ∫ ℎ̄𝑑𝑥, with ℎ̄ = max(𝐶ℎℎ(𝑡) − 𝑓 (𝑥), 0)
and 𝐶ℎ = 0.56.

5.5.1 Boundary effects
The box in the experiment was sized such that it would not influence the force
on the wedge during slamming stage (I), with the knowledge available before
the experiment. It was found by comparing results of the analytical method with
the experimental results that there were boundary effects during later stages
than the slamming stage. Boundary effects were investigated with the numerical
method using the larger domain of size 7.7x2.6[m] and comparing those results
to the result in a numerical domain the size of the box 1.10x0.495[m]. The grid
resolutions, as before, were the same for both domains.

The comparison between results in the larger and original domain shows that
water piles up along the sides of the domain, which is also shown in Fig. 5.9,
effectively increasing the mean water level in the domain. The boundary effects
are included by adding a force with a linear dependency on the immersion depth
ℎ and some effect of the velocity of the wedge to the analytical method as

𝐹𝐵𝐶 = 1.8ℎ𝜌ℎ̇2𝑙 − (11.5ℎ2 − 2.1ℎ)𝜌𝑔∇, (5.26)

with 𝑙 the wetted length of the wedge. The first term is related to boundary
effects found without gravity and the second term for boundary effects with
gravity during the separation stage (II). Note that the gravity related term is
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independent of velocity.

5.5.2 Vertical deceleration after impact
The vertical deceleration over time in terms of 𝑔 has been plotted in Fig. 5.25 for
the three different weights of the wedge. The time range includes the slamming
stage (I) and the beginning of the separation stage (II). The maximum deceler-
ation is taken from these graphs and shown separately in Fig. 5.25d, together
with an uncertainty range. The uncertainty range for the experiment comes from
the minimum and maximum values of the maximum acceleration from the five
repetitions of the tests. The uncertainty range for the analytical method is found
from two sources of uncertainty. The first source of uncertainty comes from the
range of impact velocities derived from measurements of the 200g accelerometer
(Tab. 5.5c). The second source of uncertainty stems from uncertainties in the
setup regarding the guidance mechanism, the fall tower and the wedge. There
was a distance of approximately 0.5[mm] in between carriage of the wedge and
guiding rails. The maximum horizontal distance between any position over the
height of the tower and the vertical line made by a level with a laser was 0.5[mm].
The uncertainty to which the deadrise angle of the wedge could be measured
was 0.1[deg]. The sum of these uncertainties can be added up to a maximum
uncertainty of the inclination angle 𝛼 of the wedge of ±0.2[deg]. A number
of values for 𝛼 in between 0 and 0.2[deg] was used to determine the effect of
varying the inclination angle on the maximum vertical acceleration. The results
of these simulations are added to Fig. 5.25. Varying 𝛼, a maximum difference
in maximum acceleration of around 0.1% is found, which is considered to be
negligible compared the uncertainty in impact velocity.
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Figure 5.25. Deceleration of the wedges during the slamming stage (I) and the begin-
ning of the separation stage (II), obtained from experiment, numerical
simulations and simulations with the analytical method.

There is good visual agreement between the acceleration from the experiment,
the numerical and the analytical simulations. Especially the accelerations from
the two types of simulation are nearly identical. The increase in acceleration is
not as steep in the experiment as it is in the simulations, which is likely due to a
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combination of two things: (1) compressibility of the fluid, and (2) the (small)
margins between wedge and box at the front and back end of the wedge. For
pure water, compressibility could not be an explanation, but repeated violent
interaction between wedge and water could have increased the air content in
water. Only a fraction of air in water results in a much more compressible mix-
ture [81]. The narrow opening between wedge and box in the experiment could
have caused the pressure to be lower near the front and back end of the wedge,
reducing the total force on the wedge at its acceleration at any moment. The
maximum deceleration appears to be similar between all. Upon closer inspection
of the maximum deceleration in Fig. 5.25d, however, it shows that the maximum
is consistently lower in the experiments than it is in the simulations. The maxi-
mum acceleration from the simulations is also not in the uncertainty range of
the measured acceleration, so that variability between experiments is not the ex-
planation, but rather something systematic. As with the increase in acceleration,
the most likely explanations for the systemic difference between experiments
and simulations are compressibility of water and the openings between wedge
and box. This needs to be investigated in future work.

5.5.3 Velocity after impact
Themain reason for carrying out this study aswe did, was to be able to investigate
the entire process of wedges slamming into the free surface and re-emerging after
their maximum submergence had been reached. During that time, the wedge
experiences all stages in Fig. 5.1. Fig. 5.26 shows the velocity from 𝑡 = 0 to 2.5[s]
for the wedges with weights 𝜇 = 0.8 and 1.0. The velocity for the wedge with 𝜇
= 2.0 is not shown, because it hits the carriage end slot at around 0.17[s] after
impact and never comes back to the free surface. The velocity obtained from
consecutive camera images is now shown together with the velocity obtained
from the 200g accelerometer. Note that the position measurements of the camera
contained noise that was filtered out with a 8[Hz] low-pass filter. By comparing
the velocities obtained in these two ways, we demonstrate that the velocity is
only affected by differentiation errors and integration errors to a limited extent.



5

5.5 synthesis of experimental, numerical, and analytical results 179

0 0.5 1 1.5 2 2.5
−6

−4

−2

0

2
IV - V

time [s]

v
e
lo
c
it
y

[m
/
s
]

Numerical
Acc. 200g filt.

Camera

(a) 𝜇 = 0.8.
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(b) 𝜇 = 1.0.

(c) Pressure plot with free surface for 𝜇 = 0.8 showing moment at 0.32[s] when the cavity above
the wedge closes.

Figure 5.26. Velocity of wedges with 𝜇 = 0.8 and 1.0 during the five stages of impact
until re-emergence. Vertical dashed line in the top two graphs indicates the
moment of cavity closure, which for 𝜇 = 0.8 occurs at 0.32[s]. From the
moment of closure onward, 3D flow effects in the experiment prevent a
formal comparison with the 2D numerical results.
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The velocity obtained from the processed camera images is in good agreement
with the velocity obtained from the acceleration measurements. From the mea-
surements we find that the wedge with 𝜇 = 0.8 floats back to the free surface
faster than the wedge with 𝜇 = 1.0, as expected. At the free surface, the wedges
engage in a heaving motion, the wedge 𝜇 = 1.0 with a different period of oscilla-
tion than the other.

The moment of closure, i.e. the transition from the closure stage (III) to the
enclosed stage (IV), for 𝜇 = 0.8 at around 0.32[s] is shown in Fig. 5.26c with a
pressure contour plot of the numerical results. High pressures are observed on
top of the wedge, where the free surface from either side of the wedge progresses
over the deck until it meets in the middle. In the numerical simulations these
pressures relate to such a high force on the wedge that it influences its motion
on the way up. This moment is when the motion in the numerical simulation
starts to deviate from the motion in the experiment. The difference is due to
the free surface above the wedge in the experiment progressing as a dry bed
surge, see Fig. 5.28d, with differences along the 𝑦-axis in the experiment – the 3D
effects mentioned earlier – causing the force on the wedge in the experiment to
be less pronounced than in the numerical simulations. The 3D flow features are
comparable with steep breaking waves: breaking starts at one position along the
crest of the wave, somewhat randomly, before the entire wave overturns [179].
For 𝜇 = 1.0 the moment of closure occurs later because its higher velocity and
weight cause it to immerse deeper and float back up later.

We zoom in on the time span until 0.4[s] in Fig. 5.27, showing the velocity of the
wedges. Dashed vertical lines represent the transitions between stages. For the
wedge with 𝜇 = 0.8, the enclosed stage starts at around 0.32[s] when the free sur-
face from either side of the wedge meets – approximately – in the middle of the
deck above the wedge. The oscillation in the velocity record of the accelerometer
corresponds with the 20[Hz] found in Fig. 5.7 and is not related to effects of air
[75, 86]. The velocity of the wedge with 𝜇 = 2.0 in Fig. 5.27c is shown only until
0.2[s], just after it hits the carriage end slot. This explains the sudden jump in
velocity in the experimental results for that wedge. Up until that moment there is
good agreement between the velocity in the measurements and the simulations.
Considering all wedges with different weights, the general conclusion is that
the numerical simulations show good agreement with the experiments until
the moment of closure. Up to that moment our experimental setup can reliably
be considered 2D. Future simulations will need to take the 3D flow features in
the enclosed stage into account in order to be representative of the dynamics of
buoyant wedges.

For wedges 𝜇 = 0.8 and 𝜇 = 1.0, the analytical method is in good agreement
with the measurements and the numerical simulations up to the start of the
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closure stage at around 0.20[s] (transition from stage II to stage III), as was
our ambition. From that moment on, the free surface configuration does not
satisfy the boundary conditions on the wedge and the FBC anymore, because the
side walls of the wedge have become wet and the side walls are not part of the
analytical method. For both wedges, the switch of FBC coefficients at a velocity of
2.0[m/s] leads to satisfactory results. For the wedge with 𝜇 = 2.0 the agreement
with measurements and numerical simulations is somewhat less. This is most
likely due to the fact that the switch of FBC coefficients does not yet capture the
full variation with velocity.
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Figure 5.27. Velocity of the wedge until 0.4[s] for the wedges with 𝜇 = 0.8 and 1.0. For
the wedge with 𝜇 = 2.0, the velocity is shown until it hits the carriage end
stop. Dashed vertical lines represent the transitions between stages.



5

182 experimental, numerical and analytical wedge entry

0 5 · 10−2 0.1 0.15 0.2
−6

−4

−2

0

2

I - II

FBCII,1

FBCII,2

time [s]

v
e
lo
c
it
y

[m
/
s
]

Numerical
Analytic

Acc. 200g filt.

(c) 𝜇 = 2.0.

Figure 5.27. Velocity of the wedge until 0.4[s] for the wedges with 𝜇 = 0.8 and 1.0. For
the wedge with 𝜇 = 2.0, the velocity is shown until it hits the carriage end
stop. Dashed vertical lines represent the transitions between stages.

5.5.4 Free surface configuration
The free surface configuration during wedge entry with 𝜇 = 0.8 is shown in
Fig. 5.28. The free surface in the experiment is obtained from processing the
camera images. The main calibration of the camera images is obtained from the
four legs of the fall tower. The distance in between legs was carefully controlled
during the setup of the experiment and gives a reliable measurement over the
full height of the camera image. The calibration was checked by comparing the
water level estimated from the camera images to the actual water level that was
carefully controlled to 0.495[m] with a number of (closable) holes in the side
of the box. Image processing yields contours that satisfy the criteria that were
set; these contours are added to the camera images. The graph to the left of the
camera images in Fig. 5.28 keeps the outermost contour that was recognized in
the images and calls that the free surface position. The free surface position is
given as a function of coordinate 𝑥𝑐 (for width), that is zero at the left-most posi-
tion of the box, and coordinate 𝑧𝑐, that is zero at the bottom of the box. The free
surface position to the right of the wedge is mirrored on top of the left-hand side
free surface position, so that the symmetry in the experiment can be investigated.
The free surface from the numerical simulation is the contour where the filling
ratio of cells 𝐶𝑓 has a value of 0.9. The numerically obtained free surface is added
to the graphs.

Considering the comparison between the contours found from the camera im-
ages and the images themselves, reveals that edge detection only captures the
part of the free surface jets that can be considered water without air. It does
not capture the parts of the jets that have turned into spray and droplets. The
spray also obscures part of the jets from view, as we can see from Figs. 5.28b, and
5.28c. The free surface in the experiment is nearly symmetric. The free surface
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from the numerical simulations is in close agreement with the free surface in the
experiments, away from the jets. Protrusions of water from the free surface in
the numerical simulation are nearly always matched in the experiment, except
in Fig. 5.28f in the enclosed stage. The jets in the numerical simulations are more
pronounced and give a better indication of the highest elevation of the jets than
the contours extracted from the camera images. The breakup of the jets into spray
and droplets is represented less well in the numerical simulations than in the
experiment. Also, in Fig. 5.28d the jet that hits the top of the domain remains
attached to the ceiling, whereas in the experiments that water start falling down
earlier in the form of droplets. An interesting flow feature is observed in Fig. 5.28f.
The wedge, on its way up, causes a low-pressure zone near the free surface at 𝑥𝑐
= 0.15[m], causing the free surface to entrap a pocket of air that breaks up into
bubbles. Interestingly enough, although the numerical method cannot represent
the breakup of an air pocket into bubbles, a depression in the free surface is
observed in the numerical simulations at the position of the pocket of bubbles
in the experiment. In the enclosed stage in Fig. 5.28f, more water appears to
be above the wedge in the numerical simulation than in the experiment. The
rise back to the free surface in the numerical simulations is slower than in the
experiment, because of the large pressure that was generated when the cavity
closed. Whether that is the only explanation needs to be investigated by means
of 3D simulations.

The free surface in the simulations is a good match to the free surface in the
experiments. The quantification of the free surface position in the enclosed
stage is more reliable in the experiments than in the simulations, because the
experiments are asymmetric and the simulations are not. On the other hand,
the numerical simulations give a better estimate of the elevation to which free
surface jets may reach than the edge detection algorithm. This demonstrates that
the combination of experiments and simulations gives more reliable results of
the free surface position during wedge entry than either of them by themselves.
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Figure 5.28. Free surface configuration during wedge entry and re-emergence (𝜇 = 0.8);
(–) experiment left, (–) experiment right, (–) numerical result.
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5.6 Conclusion
Whereas most literature about wedge entry in water focuses on the initial impact
between wedge and free surface, we have designed an experiment – 2D – that
takes buoyant wedges from the slamming stage, through the stages of separation,
closure and enclosed, to an Archimedal stage that ends with periodic vertical
oscillation in the free surface. A new type of air cavity closure above the wedge
was encountered, with strong implications for the comparison with simulations.

Three different weights of the wedge were tested; one lighter than the weight
of its displaced volume of water, one with the same weight, and one heavier
than its displaced amount of water. Impact velocities of up to 7[m/s] were found
with a maximum deviation of 3% over five runs for the highest weight wedge.
These impacts resulted in a deceleration higher than 100 times the gravitational
constant with a maximum deviation of 7% for the wedge with the weight of its
displaced volume of water, and 2% for the wedge with twice that weight. After
having risen back up to the free surface, the buoyant wedges engage in a heave
oscillation with a period from which an added mass could be derived that was
the same as in literature.

The maximum acceleration of the wedge in simulations with our numerical
method was always larger than the mean of the measurements in the experiment
and the difference in acceleration up to the closure stage was never larger than
8%. The forces from the simulations could therefore be deemed representative
of the forces in the experiment. The numerical simulations were used to identify
with certainty those frequencies in the acceleration signal that correlate with
the support structure of the wedge, rather than with the interaction between
wedge and water. The free surface contours from the numerical simulations
reliably show the position of free surface features such as jets, where in the
experiment interpretation of the camera images was impeded by the break-up of
these features into droplets. From the numerical simulations, it was also found
that the assumption of the experiment being 2D does not hold any more after
the closure stage. At the end of the closure stage, free-surface instabilities in the
experiment, comparable to free surface wave breaking, cause variability in the di-
rection perpendicular to the wedge’s cross-section (𝑦-direction) and subsequent
fluid dynamics that are different from the simulations. Simulations beyond the
moment of closure necessarily have to be performed in 3D.

An analytical method was extended for inclination angles of the wedge other
than vertical (asymmetric impacts). The method was used to investigate the un-
certainty regarding the inclination angle of the wedge as a result of the tolerances
in the experimental setup. That uncertainty was found to cause a difference in
wedge acceleration of no more than 0.1%. The concept of a fictitious body contin-



5

5.6 conclusion 187

uation (FBC) was also extended to represent the wedge entry up to the closure
stage. It was found that the FBC needs to change with velocity; we adopted one
set of FBC coefficients for the beginning of the separation stage, and another set
for the second part of the separation stage. It was also found that the buoyancy
force on the wedge needs to be represented with a 44% lower coefficient than
previously thought, because of the wedge’s interaction with the free surface. Us-
ing these findings, simulation results of the analytical method up to the closure
stage never deviated more than 1.5% from the numerical simulations.

Combining three methods of representing buoyant wedge entry in water in the
way that has been described gives more reliable results in terms of acceleration,
velocity, position and forces than would have been obtained from any of the
methods separately.
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AN EFF IC IENT PRESSURE -BASED MULT IPHASE F IN ITE

VOLUME METHOD FOR INTERACT ION BETWEEN
COMPRESS I BLE AERATED WATER AND MOVING BODIES

This chapter is reproduced from [77] :

M. van der Eijk and P. R. Wellens. “An efficient pressure-based multiphase
finite volume method for interaction between compressible aerated water and
moving bodies.” Journal of Computational Physics (nd)

Abstract
Maritime structures in heavy seas can experience wave impact events with high loads.
The loads can lead to structural failure and even loss of life. Wave breaking in said sea
states causes air to be entrained in water as aeration cloads, remaining long enough to be
transported and to play a role in the impulsive interaction with the structure. A small
amount of air in water already forms a highly compressible mixture. Compressibility
influences the magnitude of the impact loads.
A new Cartesian grid method for compressible multiphase flow is introduced to ac-

count for water, air and homogeneous mixtures of air and water. The method is designed
to predict the hydrodynamic loads on moving bodies engaging with interfaces between
fluids having large density ratios. Pressure-density relations are enforced meaning that
the equation for conservation of energy is not explicitly solved. The interface between
fluids is transported using a geometric Volume-of-Fluid method. The interface between
fluids and structure is taken care of by a cut-cell method. An additional fraction field for
the amount of air in water in combination with a new formulation for the multiphase
speed of sound prevent overprediction of compressibility by artificial air entrainment.
New experimental data of 2D wedge impacts with aerated water are presented to

demonstrate the validity of the numerical method. For low aeration levels, the simulation
results in terms of the impact loads on the wedge and the frequencies of pressure waves
generated upon impact are in good agreement with the experimental data. Increasing
the level of aeration reduces the maximum impact load on the wedge. Reflected density
waves lead to secondary loads on the wedge. The intensity of the secondary loads, relative
to the primary load of impact, increases with the aeration level while the density wave
frequency decreases.
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6.1 Introduction
Maritime structures sail through heavy seas. Water waves encountered in these
sea states can induce wave impacts on the structures and generate high loads.
Wave loads have caused structural failure in the past [22, 120, 135, 286]. In some
cases, wave loads have led to loss of life [153, 224].

Waves impact with structures like ships, quay walls, caisson breakwaters and
the side walls of containment tanks. The impulsive interaction between water
and structure can also be represented by a structure that falls onto a free surface.
A theoretical account of a falling structure impacting with water is given by Von
Karman [274]; experiments with like structures were performed by Greenhow
[103]. Later work on impacts [102, 144, 279, 317] has in common that the water
was assumed incompressible.

Heavy seas feature breaking waves. Wave overturning causes air pockets to be
enclosed, which break up under water to form clouds of air bubbles, that are
only a fraction of a wave height in size. The small air bubbles remain entrained
for several wave periods [237], the entrained air making up in the order of a
percent of the water volume [27, 206]. We refer to the process of air entrainment
as aeration, and we call the mixture of water and air aerated water.

Due to aeration, the assumption of incompressibility of water is not always jus-
tified in modelling impulsive interaction of water with fixed structures [21, 27,
28, 112, 171]. Also for moving structures, experiments have demonstrated that
aeration affects the results [81, 84, 169, 170]. A small amount of air in water
already leads to a significant increase in the compressibility of the mixture [297].
The compressibility of aerated water can cause the peak of the impact load to
be smaller and the duration of the load to be longer, compared to impacts with
water that can be considered incompressible. Compressibility also allows for the
generation of density waves. These waves are defined as short-period oscillations
of density and pressure propagating through the mixture with the speed of
sound.

An early theory to account for compressibility with aeration was given by Pere-
grine and Thais [206] for a rapidly filling cavity, inspiring numerical methods
for modelling aerated water impacts on structures. These methods show simi-
larities to those for the prediction of cavitation erosion [236], vaporization [73],
compressible wave impacts [161] and underwater explosions [183].

There is a scale difference of 𝒪(104) between a maritime structure and the aera-
tion bubbles in the breaking waves that interact with the structure. A one-fluid
formulation allows for coarser grids and likely has lower computational cost
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compared to methods in which every air bubble near the structure is resolved
or tracked [32–34]. The implications of using a one-fluid formulation is that air
bubbles move with the same speed as the water containing them. This is a rea-
sonable model for the situation half a wave period after a wave near a maritime
structure has broken.

A one-fluid, weakly-compressible method for modeling homogeneous mixtures
of air and water was introduced by Bredmose, Peregrine, and Bullock [22]. The
method was based on the theoretical work of Peregrine and Thais [206]. The
method solves for the conservation of mass (water and air), momentum, and
energy. Aerated water is solved compressibly while the water remains incom-
pressible in the energy equation. According toMa et al. [168], themethod features
significant spurious oscillations in pressure and velocity near the interface be-
tween water and air. These oscillations are an artifact of a fully-conservative
scheme [231] and can result in non-physical pressures and negative volumes of
water [2].

The method proposed by Dias, Dutykh, and Ghidaglia [62] is similar to the
method of Bredmose, Peregrine, and Bullock [22]. It was designed for large aer-
ation levels, omitting tracking or reconstruction of the interface between fluids.
Oscillations in pressure and velocity were not present any more, but the fluid-
fluid interface became so diffuse that the distinction between the compressible
fluids disappeared. A diffuse interface may prevent oscillations, but it introduces
a non-monotonic behavior of the speed of sound across the fluid-fluid interface
when using the one-fluid assumption. Non-monotonic behavior is the spurious
reduction in speed of sound near the interface between air and water causing
erroneous pressure oscillations.

Ma et al. [168] introduced a Kapila-based model [133] being quasi-conservative
to prevent the unphysical oscillations around the interface. The method is able to
account for moving bodies and interface tracking using a cut-cell method and a
Volume-of-Fluid method. A third-order MUSCL reconstruction was used for the
interpolation of density values from cell centers to cell faces. A HLCC approxi-
mate Riemann solver was used for transporting convective fluxes. Comparison
with experimental data of a flat plate entry in aerated water [169] validates that
the method can predict the hydrodynamic loads involved in such an entry. At the
same time, interface diffusion across several mesh cells for large flow gradient
regions was reported.

Themodel proposed by Plumerault et al. [214] omitted the energy equation by us-
ing equations of state that describe the pressure-density relation. They introduced
a new fraction field indicating the amount of air in water. A pressure-relaxation
method is used to solve the system of equations. A pressure equilibrium is solved
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to compute the transport of the fluid-fluid interface, instead of solving a transport
equation. Compared to the quasi-conservative model of Ma et al. [168], no as-
sumption of the material derivative of entropy equal to zero is made. According
to Ma et al. [168], the method of Plumerault et al. [214] is vulnerable to diffusion
of the interface between fluids and to non-physical pressure oscillations at the
density wave front, for similar reasons as for the method of Bredmose, Peregrine,
and Bullock [22].

Others accounts of the effect of aeration are Elhimer et al. [81] and Hong, Wang,
and Liu [117]. These are left out of the discussion due to significant differences
in modeling but do contribute to the overview of existing literature made here.

The objective of this work is to introduce an efficient, quasi-conservative con-
sistent numerical method for modeling the interaction between homogeneous
aerated water andmaritime structures. We are mainly aiming at quantifying how
aeration affects the impact loads on arbitrarily-shaped structures in the presence
of a complex configuration of the interface between fluids. A secondary interest
pertains to the effect of density waves on the hydrodynamic load, i.e. capturing
the pressure oscillations as a result of reflecting and refracting density waves
rather than resolving the discontinuity of density at the density wave front in
the greatest detail. The following can be considered novelties:

• compared to Bredmose, Peregrine, and Bullock [22], Plumerault et al.
[214] and Ma et al. [168] that have a diffuse interface between fluids, the
interfaces are kept sharp by means of a Volume-of-Fluid (VOF) method
and geometric reconstruction of the fluid-fluid and fluid-body interface so
that the moment of impact and the impact load are represented accurately;

• contrary to Plumerault et al. [214], a transport equation is solved for the
additional volume fraction field so that, in future, the aeration level can
vary near the free surface. At present, for verification purposes, the aerated
water is homogeneous.

• the speed of sound in the aerated mixture is adapted near the interface
between fluids with respect toWood, Peregrine, and Bruce [299] to prevent
a non-monotonic behaviour of the speed of sound upon impact with bodies;

• contrary to Ma et al. [168] that formulated their methods as a density-
based solver, the numerical method is set up as a pressure-based solver
like those found for underwater explosions [183]. For low Mach numbers a
pressure based solver should be more efficient than a density-based solver,
because the CFL number is not based on the speed of sound, but on the
fluid velocities allowing for larger time steps;

• benchmark experimental data for aerated water entries are rare. An ex-
periment with wedge in aerated water were performed specifically for the
purpose of validating the numerical method in this work. Where most
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investigations quantify only the effect of aeration on the magnitude of the
primary impact peak, here also the post-impact, secondary loads from
reflected density waves are considered.

The chapter starts with Sec. 6.2 introducing the variable definitions and the
mathematical model in its conservative form. This mathematical model already
begins with the assumption of a single fluid. The system of equations is closed
by deriving the non-conservative formulation of the VOF transport equation and
introducing pressure-density relations in Sec. 6.3. In Sec. 6.4 the grid structure is
introduced, followed by Sec. 6.5 explaining the solution algorithm. In Sec. 6.6
the method is tested systematically against several benchmark 1D and 2D cases
from literature. In Sec. 6.7 the wedge entry in aerated water is simulated and
compared to the experiment that was set up specifically for validation of the
method. The chapter ends with a summary of the conclusions.

6.2 Mathematical model
6.2.1 Interface capturing
Free surface’ is used interchangeably with ‘interface’. Computing the position of
the fluid-fluid and the fluid-body interfaces accurately is relevant for determining
the moment of impact. A color function 𝑓(x, t) is used to capture the position of
the interface. Transport of the interface is described by

𝐷𝑓
𝐷𝑡 =

𝜕𝑓
𝜕𝑡 + (u ⋅ ∇) 𝑓 = 0, (6.1)

in which 𝑓(x, t) = 0 gives the position of the interface and u the interface velocity.

A fixed cartesian grid is used to divide the domain in volumes. We make use
of an interface-capturing Volume-of-Fluid (VOF) method, in which the color
function 𝑓 is replaced by a discrete volume fraction field. A volume fraction is
the average of the continuous color function for a given volume.

The definition of the volume fractions given in Fig. 6.1. Volume fraction 𝐶𝑏 indi-
cates the part of a volume that is open to fluid. ‘Body’ is used interchangeably
with ‘structure’. Fraction (1 − 𝐶𝑏) then represents the part of a volume that is
occupied by the body. Volume fraction 𝐶𝑎 indicates the part of a volume that is
occupied with gas (air), where 𝐶𝑓 gives the part of the volume occupied with
liquid, either water or aerated water, a homogeneous mixture of air and water.
This means that 𝐶𝑏 is equal to the sum of 𝐶𝑓 and 𝐶𝑎.

Following Plumerault, Astruc, and Maron [213], additional volume fraction
fields are introduced to indicate the part by volume of the homogeneous mixture
that is gas, 𝛽𝑔, and the part that is water 𝛽𝑙. These volume fractions are necessary
for the formulation of the mathematical model.
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Body 1 − 𝐶𝑏

Air above water 𝐶𝑎

Water 𝛽𝑙

Mixture 𝐶𝑓

Air 𝛽𝑔

Figure 6.1. Illustration of the phases of matter in the solver and how they are represented
discretely in the cartesian grid. Volume fraction 𝐶𝑓 is used for representing
aerated water, 𝐶𝑎 for air above the water, 𝛽𝑙 for the water part of the homoge-
neous air-water mixture, 𝛽𝑔 for the air part. 𝐶𝑏 gives the part of a volume not
occupied by the body and open to fluid.

6.2.2 Fluids: conservative form
The governing equations for the mathematical model are formulated for a mul-
tiphase flow of immiscible Newtonian fluids. The one-fluid approximation is
applied allowing for a single velocity and a single pressure field [188]. Equilib-
rium of pressure and a no-slip boundary condition between fluids is applied,
which is justified by the fact that our emphasis is on short-duration impacts with
aerated water.

For the air in aerated water, we neglect bubble interaction and effects of surface
tension. The air bubbles are assumed to be sufficiently small [296]. The assump-
tion of a homogeneous air-water mixture is valid when the eigenfrequencies
of the pressure waveguide due to compressibility are well below the bubble
resonance frequency [297], so that the mixture effectively behaves as a single
medium. When translated to our simulation setups, this is a requirement that is
met in all cases.

An equation for the conservation of mass, using a single velocity field u, is
formulated for each phase

𝜕𝛼𝑘𝜌𝑘
𝜕𝑡 + ∇ ⋅ (𝛼𝑘𝜌𝑘u) = 0, 𝑘 = 𝑎, 𝑙, 𝑔, (6.2)
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in which subscript 𝑎 stands for air above water, 𝑙 for the liquid part of the phase
with aerated water, and 𝑔 for the air part of the aerated water phase. Fractions 𝛼𝑘
are defined as

𝛼𝑎 =
𝐶𝑎
𝐶𝑏

,

𝛼𝑙 =
𝛽𝑙𝐶𝑓

𝐶𝑏
,

𝛼𝑔 =
𝛽𝑔𝐶𝑓

𝐶𝑏
.

(6.3)

Refer to Fig. 6.1 for the definition of the volume fractions.

The equation for the conservation of mass for the aggregate fluid is obtained
from the sum of the equations for each phase

𝜕𝜌
𝜕𝑡 + ∇ ⋅ (𝜌u) = 0, 𝜌 =

𝐶𝑏 − 𝐶𝑓

𝐶𝑏
𝜌𝑎 +

(1 − 𝛽𝑔)𝐶𝑓

𝐶𝑏
𝜌𝑙 +

𝛽𝑔𝐶𝑓

𝐶𝑏
𝜌𝑎. (6.4)

Parameter 𝜌 is the aggregate fluid density that is used together with the algebraic
relations

𝛽𝑔 + 𝛽𝑙 = 1,
𝐶𝑓 + 𝐶𝑎 = 𝐶𝑏,

(6.5)

Although not required, we now say that 𝜌𝑔 = 𝜌𝑎 because for all our applications
the gas entrained in water originates from the air above it.

The equations for the conservation of momentum, using again a single velocity
field and a single pressure field read

𝜕𝜌u
𝜕𝑡 + ∇ ⋅ (𝜌u ⊗ u) + ∇𝑝 + 𝜌g = 0. (6.6)

Here, 𝑝 is the pressure in the aggregate fluid and g the vector of the acceleration
of gravity. Note that the viscous term has been omitted from the momentum
equation as mainly short-duration events will be considered, in which viscous
effects such as the formation of boundary layers can be ignored.

6.2.3 Body motion
The body is assumed rigid and is displaced by a state-space representation of
Newton’s second law. The position of the body x𝑏 is found from

𝜕x𝑏
𝜕𝑡 = u𝑏, (6.7)



6

196 interaction between aerated water and moving body

and the body velocity u𝑏, in turn, is found from

𝑚𝑏
𝜕u𝑏
𝜕𝑡 = F𝑏. (6.8)

Themass of the body, 𝑚𝑏, is assumed constant. The force on the body, F𝑏, includes
the force of gravity and the force exerted by the fluid. Rotations of the body are
not included.

The fluid force on the body is found from integrating the pressure in the normal
direction to the boundary along the body contour. Viscous stresses on the body,
as said, are not considered.

6.3 Closure of system of equations
6.3.1 Fluids: speed of sound
Sec. 6.2 described the system of equations consisting of three independent equa-
tions for the conservation of mass, equations for the conservation of momentum
in the axis directions, and two equations for the state-space of the body. The pres-
sure and velocity field are solved from this system. But the system of equations
is not yet closed as it is not yet been defined how to solve for the density field.
That is described in this section, with due attention to closure of the system in
three-phase points where air, aerated water and body meet as we consider this a
novelty with respect to the existing literature.

Densities are obtained algebraically using equations of state. These equations
depend on the pressure andmake the connection between the continuity equation
(6.4) and the momentum equation (6.6) so that the change of density in time
can be solved for. The relation between pressure and density can be written in a
general form using the speed of sound. The speed of sound is the ratio of the
change in density to the change in pressure. Assuming that changes are small and
neglecting second order terms and higher, the equation of state for an individual
fluidbecomes

𝐷𝜌𝑘
𝐷𝑡 =

1
𝑐2
𝑘

𝐷𝑝
𝐷𝑡 , 𝑘 = 𝑎, 𝑙, 𝑔, (6.9)

with 𝑐 is the speed of sound, being the propagation rate of a pressure wave
with infinitesimal amplitude through a fluid at rest. The derivatives are taken at
constant entropy.

The conservation of mass equation in Eq. (6.4) contains an aggregate density
field which needs to be solved. The equation is rewritten in Eq. (6.10) such that
Eq. (6.9) can be used.

𝐷𝜌
𝐷𝑡 + 𝜌∇ ⋅ u = 0, (6.10)
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in which the first term is the material derivative of the aggregate density 𝜌. The
material derivative of the aggregate fluid cannot be replaced yet with Eq. (6.9).
Additional explanation is needed for solving the aggregate density 𝜌 and the
material derivative of this density. Using Eq. (6.4), definitions for the air and
water density, and the speed of sound 𝑐 need to be formulated.

The material derivative of the aggregate density 𝜌 in Eq. (6.10) is rewritten by
substituting the formulation of the aggregate density in Eq. (6.4). The material
derivatives of the individual fluids are replaced with Eq. (6.5). Accounting for
the presence of the body through volume fraction 𝐶𝑏, the material derivative of
the aggregate density becomes

𝐷𝜌
𝐷𝑡 =

𝐶𝑏 − 𝐶𝑓

𝐶𝑏

1
𝑐2
𝑎

𝐷𝑝
𝐷𝑡 +

𝐶𝑓

𝐶𝑏
⎛⎜
⎝

𝛽𝑔

𝑐2
𝑎

+
1 − 𝛽𝑔

𝑐2
𝑙

⎞⎟
⎠

𝐷𝑝
𝐷𝑡 +

𝐶𝑓

𝐶𝑏
(𝜌𝑎 − 𝜌𝑙)

𝐷𝛽𝑔

𝐷𝑡 +
1 − 𝛽𝑔

𝐶𝑏
(𝜌𝑙 − 𝜌𝑎)

𝐷𝐶𝑓

𝐷𝑡 .
(6.11)

The body is assumed rigid, resuling in 𝐷𝐶𝑏
𝐷𝑡 = 0 and, therefore, not visible in Eq.

(6.11). The remaining unknowns to be defined for the aggregrate fluid and its
material derivative are:

• the speeds of sound in air and water, 𝑐𝑎 and 𝑐𝑙 (Sec. 6.3.2), and
• the pressure-density relation for air and water, 𝜌𝑎 and 𝜌𝑙 (Sec. 6.3.2), and
• the material derivatives of 𝛽𝑔 and 𝐶𝑓 near the interface between air and

aerated water, and the calculation of 𝛽𝑔 (Sec. 6.3.3).

Resolving these unknowns in the next sections will lead to an equation of state of
the aggregate fluid and a formulation of the aggregate speed of sound 𝑐, rather
than separate equations for the constituent fluids.

6.3.2 Fluids: equations of state
The air above water, 𝐶𝑎 = 1 − 𝐶𝑓, and the air in aerated water, 𝛽𝑔, are assumed
compressible and to undergo isentropic compression. The relation between
density and pressure under these circumstances is [183]

𝜕𝜌𝑎
𝜕𝑝 =

1
𝑐2
𝑎

=
1

𝑎𝑐𝛾
(

𝑝
𝑎𝑐

)
1−𝛾

𝛾

with 𝑎𝑐 =
𝑝
𝜌𝛾 , (6.12)

in which 𝛾 is the ratio of specific heat of the gas at a constant pressure to its
specific heat at a constant volume, and 𝑎𝑐 the isentropic constant. Note that the
right-hand side of Eq. (6.12) represents a relation for the speed of sound in
air (𝑐𝑎) and can be used for substitution in Eq. (6.11). The specific heat ratio
for air is equal to 1.0 for isothermal conditions and 1.4 for adiabatic conditions.
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Peregrine and Thais [206] showed the choosing a value of either 1.0 or 1.4 for
the coefficient makes little difference for the loads generated during an impact.
An adiabatic process happens relatively fast compared to an isothermal process
like the propagation of sound. There is no time for heat exchange making 𝛾 =
1.4 a good assumption.

A nonlinear relation between density and pressure is derived from Eq. (6.12) by
integration using 𝑎𝑐 = 𝑝0/𝜌𝛾

𝑎,0. The formulation for 𝜌𝑎 is needed in the material
derivative in Eq. (6.11) and the aggregate density in Eq. (6.10).

𝜌𝑎 = 𝜌𝑎,0 (
𝑝
𝑝0

)
1
𝛾

(6.13)

Here, 𝜌𝑎,0 represents a reference value for the density. It is there to prevent ”drift-
ing” of the density during a simulation [292]. The reference value is chosen equal
to the initial density, which is chosen equal to the density at atmospheric pressure.

The water part of the aerated water, 𝛽𝑙, is assumed weakly-compressible. For
weakly compressible fluids, the relation between density and pressure is [183]

𝐷𝜌𝑙
𝐷𝑝 =

1
𝑐2
𝑙

, (6.14)

with 𝑐𝑙 the speed of sound in water. The speed of sound in water is assumed
constant and can be directly substituted in Eq. (6.11). The integration of Eq. (6.14)
results in a linear relation between the density of the water and the pressure
needed in Eq. (6.11) and Eq. (6.10) for the aggregate density.

𝜌𝑙 = 𝜌𝑙,0 +
1
𝑐2
𝑙

(𝑝 − 𝑝0) , (6.15)

in which 𝜌𝑙,0 is the initial density to be chosen equal to the density of water under
atmospheric conditions. Considering water weakly-compressible in this way
will have little influence on the impact loads we are interested in, because for
the pressure range we expect, the volume change of air in aerated water will
be much larger than the volume change of water in aerated water. Hence, the
major part of the volume change of the aerated water can be attributed to the
volume change of air. Nevertheless, accounting for the compressibility of the
liquid at this moment may extend the suitability of the method to applications
not currently envisaged. Sec. 6.7.2 features a reflection on the pressure range in
our current applications.

6.3.3 Fluids: volume fraction transport
In order to transport the interface between fluids, it is necessary to transport the
volume fraction fields 𝐶𝑓 and 𝛽𝑔. Also the material derivative for these volume
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fractions, for use in Eq. (6.11), have not yet been derived.

The dominance of the inertial effects over buoyancy makes the assumption of
a constant mass fraction 𝜇𝑔 valid. The mass fraction is the ratio of the mass of
aeration over the mass of the mixture of water and air. The constant mass fraction
𝜇𝑔 is predefined by

𝜇𝑔 =
𝛽𝑔𝜌𝑎

𝑚𝑓
, (6.16)

means that
𝐷𝜇𝑔

𝐷𝑡 = 0. Here, 𝑚𝑓 is the mass of mixture air and water. The mass
fraction can be rewritten to solve 𝛽𝑔, needed for solving the aggregate density 𝜌

𝛽𝑔 =
𝜇𝑔𝜌𝑙

(1 − 𝜇𝑔)𝜌𝑎 + 𝜇𝑔𝜌𝑙
. (6.17)

Substituting Eq. (6.16) in 𝐷𝜇𝑔/𝐷𝑡 = 0 in combination with Eq. (6.9) results in
the missing formulation of the material derivative of 𝛽𝑔 in Eq. (6.11)

𝐷𝛽𝑔

𝐷𝑡 = 𝛽𝑔 (1 − 𝛽𝑔) ⎛⎜
⎝

1
𝜌𝑙𝑐2

𝑙
−

1
𝜌𝑎𝑐2

𝑎

⎞⎟
⎠

𝐷𝑝
𝐷𝑡 . (6.18)

As mentioned in the introduction, a non-conservative formulation of the trans-
port equation for 𝐶𝑓 needs to be derived to prevent difficulties with spurious
oscillations around the interface [2]. A formulation like this is found by consid-
ering mechanical equilibrium, i.e. equilibrium of pressure and velocity, between
fluids [188].

The transport of the air-water interface with 𝐶𝑓 needs a different formulation
than the conservative form in Eq. (6.1). As mentioned in the introduction, a non-
conservative formulation of the transport equation needs to be derived to prevent
difficulties with spurious oscillations around the interface [2]. This formulation
is found by using the mechanical (pressure and velocity) equilibrium between
the fluids [188]. Summing all mass equations like for Eq. (6.4), as in Eq. (6.2),
and using Eq. (6.9) for every phase results in an equation for total mass balance

𝐷𝑝
𝐷𝑡 = −

𝐶𝑏
𝛽𝑔𝐶𝑓+(𝐶𝑏−𝐶𝑓)

𝜌𝑎𝑐2
𝑎

+
(1−𝛽𝑔)𝐶𝑓

𝜌𝑙𝑐2
𝑙

∇ ⋅ u. (6.19)

Filling in the sum of the mass balance of 𝑎 and 𝑙 results in

𝐷𝐶𝑓

𝐷𝑡 = −𝐶𝑓∇ ⋅ u − 𝐶𝑓
⎛⎜
⎝

𝛽𝑔

𝜌𝑎𝑐2
𝑎

+
1 − 𝛽𝑔

𝜌𝑙𝑐2
𝑙

⎞⎟
⎠

𝐷𝑝
𝐷𝑡 . (6.20)

Note the independence of 𝐶𝑏 which is essential for under-or overpredicting com-
pressibility of a mixture and the similar form as the Kapila’s one-dimensional



6

200 interaction between aerated water and moving body

transport equation [133]. The equation has proved to be competent and easier to
deal with than the fully conservative formulation [131, 231]. The right-hand side
of Eq. (6.20) assures that the material derivative of the phase entropy is zero in
the absence of shock waves.

The material derivative of 𝐶𝑓 in Eq. (6.20) is needed to solve the transport of
aerated water, but also for the material derivative of the aggregate density in
Eq. (6.11). Substituting the missing unknowns defined in Sec. 6.3.1 in Eq. (6.11)
results in the final formulation of the material derivative of the aggregate density
needed for solving the total mass balance

𝐷𝜌
𝐷𝑡 = 𝜌

⎛⎜⎜⎜⎜
⎝

(1−𝛽)𝐶𝑓

𝐶𝑏

𝜌𝑙𝑐2
𝑙

+

𝐶𝑏−𝐶𝑓

𝐶𝑏
+

𝛽𝐶𝑓

𝐶𝑏

𝜌𝑎𝑐2
𝑎

⎞⎟⎟⎟⎟
⎠

𝐷𝑝
𝐷𝑡 . (6.21)

6.3.4 Fluids: mixture speed of sound
The final formulation of the material derivative of the aggregate fluid is known
in Eq. (6.21). This means that, using Eq. (6.9), a formulation for the aggregate
speed of sound is derived

1
𝜌𝑐2 =

⎛⎜⎜⎜⎜
⎝

(1−𝛽)𝐶𝑓

𝐶𝑏

𝜌𝑙𝑐2
𝑙

+

𝐶𝑏−𝐶𝑓

𝐶𝑏
+

𝛽𝐶𝑓

𝐶𝑏

𝜌𝑎𝑐2
𝑎

⎞⎟⎟⎟⎟
⎠

. (6.22)

For the air-water mixture let’s define a mixture density (𝜌𝑓) by splitting the
formulation in Eq. (6.4)

𝜌𝑓 = (1 − 𝛽𝑔)𝜌𝑙 + 𝛽𝑔𝜌𝑎, 𝜌 =
𝐶𝑓

𝐶𝑏
𝜌𝑓 +

𝐶𝑏 − 𝐶𝑓

𝐶𝑏
𝜌𝑎, (6.23)

where 𝜌𝑓 is the density of the aerated water. According to [297], the speed of
sound formulation for homogeneous mixtures

1
𝜌𝑓𝑐2

𝑓
=

𝛽𝑔

𝜌𝑎𝑐2
𝑎

+
1 − 𝛽𝑔

𝜌𝑙𝑐2
𝑙

(6.24)

and
1

𝜌𝑐2 =

𝐶𝑏−𝐶𝑓

𝐶𝑏

𝜌𝑎𝑐2
𝑎

+

𝐶𝑓

𝐶𝑏

𝜌𝑓𝑐2
𝑓

. (6.25)

The mixture speed of sound formulation of Wood is illustrated in Fig. 6.2. Fig.
6.2 shows a large decrease in speed of sound for a small fraction of 𝛽𝑔, even up
to values lower than the speed of sound of air 𝑐𝑎 and water 𝑐𝑙 at atmospheric
conditions.
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Figure 6.2. Woods’ formulation in Eq. (6.24) for mixture sound of speed 𝑐𝑓. Plotted for
air volume fraction 𝛽𝑔 assuming 𝐶𝑓 = 1.

The trend in Fig. 6.2 can be explained by looking to the general formulation of
the speed of sound [296]

𝑐𝑓 =
1

√𝜌𝑓𝜅𝑓
, (6.26)

in which 𝜅𝑓 is the compressibility factor for the mixture. Assuming the compress-
ibility factor for air and density for water constant (𝐶) for a low volume fraction
𝛽𝑔, 𝜅𝑓 ≈ 𝜅𝑎, and 𝜌𝑓 ≈ 𝜌𝑙 results in

𝑐𝑓 =
𝐶

√𝛽𝑔 − 𝛽2
𝑔

. (6.27)

Where the density hardly changes, the mixture has the compressibility of air.

6.3.5 Fluids: new formulation speed of sound
For the speed of sound around the interface where a clear distinction is between
air and water, the mixture speed of sound formulation of Woods’ does in reality
not hold [232]. There is no mixture between air and water at the fluid-fluid
interface while we do use a homogeneous mixture model as stated in Sec. 6.2.2.
The speed of sound at the interface is underestimated. The Woods’ equation
results in non-monotonic behavior and inaccurate wave transmission around the
interface, getting worse for diffusive interfaces.

Ansari and Daramizadeh [3] gave another drawback for the mixture speed of
sound relation in Eq. (6.25). The indicated problem is relevant for high-density
ratio flows with large air volume changes and cavitation. The defined pressure-
density relation in Sec. 6.3.1 can lead to negative densities when sub-atmospheric
pressures play a role. A negative density results in a complex speed of sound
for the mixture. As the introduction mentioned, aeration can lead to cavitation,
meaning that the negative densities need to be prevented.
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We decrease the effect of the non-monotonic behavior of the speed of sound
across an interface by maintaining a sharp interface (explained in next Sec. 6.4).
The consistent approach for determining the mass and momentum fluxes by
[80] is used to deal with high-density ratio flows and sharp interfaces. The for-
mulation of the air density by Wemmenhove [292] is used to prevent negative
values when cavitation is involved. However, more attention needs to be paid
when a rigid body, a cut-cell method, is involved.

Results in Sec. 6.6.4 showed that these measures were not enough when a body
at the fluid-fluid interface is involved. The compressibility was not well pre-
dicted by comparing it with another numerical model. Saurel, Petitpas, and
Berry [232] developed a formulation by adding an extra governing equation
like the six-equations model of Hong, Wang, and Liu [116] to solve interface
problems separated by compressible media. The corresponding formulation for
the speed of sound is found called the frozen sound speed relation. This relation
is the high-frequency limit of the particles with no mechanical equilibrium being
the upper limit while the Woods’ (mechanical equilibrium) speed of sound
formulation is the lower limit. The particles are not able to adapt. Applying one
of the two formulations was found to have small influence in the results [246].
In this work we did find differences when a body was involved. By not assuming
a homogeneous mixture around the interface, a transmitted pressure wave by
the interface is better predicted.

The use of the frozen speed-of-sound formulation at the fluid-fluid interface
solved the compressibility issue at the interface when a body is involved; around
the body, and the interface between the mixture, 𝐶𝑓, and air, (1 − 𝐶𝑓). The new
formulation for the speed of sound replaces Eq. (6.22) in Eq. (6.11) with

1
𝜌𝑐2 =

𝐶𝑏
𝐶𝑓𝜌𝑓𝑐2

𝑓 + (𝐶𝑏 − 𝐶𝑓)𝜌𝑎𝑐2
𝑎

(6.28)

where 𝑐𝑓 is given by mixture speed of sound formulation in Eq. (6.24) for volume
fraction 𝛽𝑔.

The authors are aware that changing the mixture speed of sound violates the
mathematical derivation of the model in Sec. 6.3. The combination of the frozen
speed of sound for volume fraction 𝐶𝑓 and themixture speed of sound for volume
fraction 𝛽𝑔, including a body with two unique volume fraction fields is new. The
behavior of the new formulation is illustrated in Fig. 6.3 and can be compared
with Fig. 6.2.
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Figure 6.3. Frozen speed of sound for different mixtures 𝛽𝑔, varying 𝐶𝑓 over 𝐶𝑏. The
cross represent the speed of sound of air.

6.4 Grid structure
Before introducing the discretization of the governing equations, the grid struc-
ture is introduced with the definitions and notations needed to solve the system
of equations. A brief account is provided of how to identify the material in-
terface between water and air, of the arrangement of variables being solved
for within a grid cell, and of the cut-cell method to incorporate moving bodies.
This account follows the lines of the method introduced by Eijk andWellens [80].

A fixed 2D cartesian grid is employed to divide the domain in cells. Cell labeling
is used to identify the position of the interface within the grid. As stated in the
introduction, the method should maintain a sharp interface to reduce the non-
monotonic behavior of the speed of sound. Labeling aids in keeping the interface
sharp because cells with air can be treated differently from cells with (aerated)
water, and differently again from cells that contain the interface between air and
(aerated) water. The cell labeling proposed by Eijk and Wellens [80] is used and
illustrated in Fig. 6.4a. The choice of label is based on the volume fraction 𝐶𝑓. A
cell completely filled by the body is labeled B and is not included in the system
of equations. A cell without liquid (𝐶𝑓 = 0) is labeled E (empty, for historical
reasons [142]). When a cell contains some fluid and is adjacent to an E-cell, it
is given the S-label (surface). A cell with some fluid and adjacent diagonally to
one empty cell is labeled as C. Remaining cells are labeled F (fluid, again for
historical reasons). A F-cell is not allowed to connect with an E-cell. Note that a
F-cell is not necessarily completely filled.

The standardMarker-and-Cell (MAC) staggered arrangement of variables within
a grid cell is used, meaning that the scalar variables (pressure 𝑝, density 𝜌, and
volume fractions 𝐶𝑓, 𝐶𝑏, 𝛽𝑔) are positioned in cell centers, and the components
of the velocity vector normal to the cell faces (u = [u1, u2]𝑇) are positioned at
those faces. The arrangement of variables is shown in Fig. 6.4b. Control volumes
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are employed to solve the governing equations. Two different kinds of control
volume are used. Conservation of momentum is solved for in momentum control
volumes, and continuity is solved for in mass control volumes. Mass control
volumes coincide with grid cells, see Fig. 6.5a. Momentum control volumes lie
staggered in the grid with respect to mass control volumes. All control volumes
are shown in Fig. 6.5b. Averaging is needed to obtain values of the density at
the positions of the velocity components. A consistent averaging procedure is
described by Eijk and Wellens [80] and not discussed further here.

F F F F B

F F F F F

S C F C S

E S C S E

E E S S E

(a) The labeling system for grid cells [80].

p, 𝜌 u1

u2

(b) A staggered arrangement of variables.

Figure 6.4. Fixed Cartesian grid structure with labels making a distinction between
body, water, and air. Standard MAC configuration of variables (staggered);
scalar variables (𝑝 and 𝜌) are defined in cell centers ( ), the velocity field 𝑢
is sampled at the faces of the cell (→).

The body is represented using a cut-cell method [90]. A cell is called a ‘cut
cell’ when part of the body’s contour intersects with this cell. The part of the
cell not occupied by body is referred to as volume fraction, or volume aperture,
𝐶𝑏. The interface between body and fluids cuts through the cell by means of
piecewise-linear segments. Volume and face apertures are used to account for
the presence of the body. Volume aperture 𝐶𝑏 indicates the part of a grid cell’s
volume that is open to fluid. Face apertures 𝑎𝑏 indicate the area of a grid cell’s
faces that is open to flow. Apertures are illustrated in Fig. 6.5a. Apertures scale
the size of the control volumes so that the equations in cut cells are solved like
those in uncut cells; the discretization of the equations does not change. A visual
representation of the scaling of control volumes is given in Fig. 6.5b. The size
of the mass control volume is 𝐶𝑏𝛿𝑥𝛿𝑦, and left-most part of the boundary of the
control volume that is open to flow is 𝑎𝑏𝛿𝑦. More about the treatment of cut cells
is given in Eijk and Wellens [80].
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𝑎𝑏𝛿𝑦

𝛿𝑥

𝛿𝑦

𝑦

𝑥

(1-𝐶𝑏)𝛿𝑥𝛿𝑦

𝐶𝑏−𝐶𝑓

𝐶𝑏
𝐶𝑏𝛿𝑥𝛿𝑦

𝐶𝑓

𝐶𝑏
𝐶𝑏𝛿𝑥𝛿𝑦 𝐶𝑏𝛿𝑥𝛿𝑦

(a) Cut cell with volume aperture 𝐶𝑏 indicating
the part of the grid cell’s volume open to
fluid and face aperture 𝑎𝑏 indicating the area
of a grid cell’s face open to flow. The mass
control volume is shown as (–). The filling
ratio of cells is administered in terms of 𝐶𝑓
and 𝐶𝑏.

𝛿𝑥

𝛿𝑦

(b) Staggered arrangement of control volumes
within the grid. Mass control volumes coin-
cide with grid cells.

Figure 6.5. Control volumes and cut cells. Cut cells are used to represent arbitrarily
shaped moving bodies in the grid by means of piecewise-linear segments.
Cut cells scale mass control volumes (–) and momentum control volumes
with an averaging procedure, leading to this graphical representation of
control volumes. Vertical momentum control volumes (–), and horizontal
momentum control volumes (–) lie staggered with respect to mass control
volumes.

6.5 Discretization and solution algorithm
The governing equations for conservation of mass (6.4) and conservation of
momentum (6.6) of the fluids are discretized and combined with the discrete
representations of the equations of motion of the body (6.7) and (6.8) into a
system of equations for solving the pressure 𝑝 and the body velocity u𝑏. The
fluid velocities u are solved from the pressure gradients. The fluid and body
velocities are used to transport the interface between fluids and the interface
between fluids and body. Density 𝜌 and the fraction of air in water 𝛽𝑔 (aeration)
are solved algebraically. The equations are combined into a solution algorithm.

The solution algorithm is an extension of the incompressible two-phase flow
method in Eijk and Wellens [80], that uses the same discretization techniques
for the mass, momentum and interface transport to obtain a consistent method.
Without consistency, momentum losses and distortion of the interface are found
for high-density ratio flows. A temporary continuity equation was used to obtain
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consistency, solving it on momentum control volumes to prevent momentum
losses as a result of the staggered grid.

A one-step projection method [41] is used for solving the pressure. Time levels
are indicated using superscripts 𝑛 + 1 and 𝑛. A above variables indicates an
auxiliary step. The following discrete operators are used to compose the system
of equations: Ω𝑓, Ω𝑐. ℭ𝑓, 𝑀𝑐, 𝑀𝑓, 𝒜𝑐, I, in which subscript (𝑓) or (𝑐) is used to
indicate whether the operator is applied on momentum or mass control volumes
respectively. The symbols represent the discrete

• 𝑀: divergence operator, that depends on grid sizes and face apertures 𝑎𝑏
[90].

• 𝑀𝑇: transpose of the divergence operator that equals the gradient operator,
working on pressures that are considered constant within grid cells [39].

• ℭ: convective operator that retains the skew-symmetry of its continuous
counterpart [269].

• Ω: volume operator representing the grid cell volume scaled by 𝐶𝑏 [90].
• 𝒜: operator that integrates the pressure along the body contour using face

apertures 𝑎𝑏 [80].
• I: identity matrix

The operators depend on time because of the volume and face aptertures that
change with the moving body.

The solution algorithm is explained as implemented.

FOR EACH TIME STEP

a) Solve volume fraction transport for fluid and body (𝐶𝑛+1
𝑓 , 𝐶𝑛+1

𝑏 ) and
reconstruct interfaces with face apertures 𝑎𝑛+1

𝑏

b) Solve auxiliary momentum field ̄𝜌ū and 𝜌𝑛

c) Solve auxiliary density and vector field ̄𝜌 and ū

d) Solve vector field including all explicit terms ũ and 𝜌𝑛+1 and 𝛽𝑛+1
𝑔

e) Solve new pressure field with 𝛿𝑝 and coupling with body u𝑛+1
𝑏

f) Solve new fluid velocity field u𝑛+1

After every time step, a Courant number is calculated for the new velocity field
u𝑛+1 [80]. When the Courant number does not satisfy the criterion associated
with the time integration, the time step is halved until it does. When the Courant
number is below a user defined minimum Courant number for 10 time steps,
then the time step is doubled.
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The following desctives the discretiztion in order of the steps in the solution
algorithm in subsections that have the same number as the step in the algorithm.
A final seventh subsection introduces an interface correction to the mixture speed
of sound formulation compared to Eq. (6.25) to prevent artificial compressibility
at the interface between fluids.

6.5.1 Interface transport
The interface capturing method consists of two steps: interface transport and
geometrical reconstruction of the interface. Interface transport depends on the
interface orientation and the discrete volume fraction field. The update for 𝐶𝑓
is solved by means of the discrete representation of Eq. (6.20). The update for
𝛽𝑔 is solved algebraically using Eq. (6.17). Transport equation (6.20) can be
separated into an advective and a compressive part. For the advective part fluxes
are computed along the boundary of a mass control volume. Fig. 6.6 shows a
visual representation of a flux in a cut cell. Using fluxes, the discretization of the
transport equation (6.20) becomes

𝐶𝑛+1
𝑓 = 𝐶𝑛

𝑓 −
1

𝛿𝑥𝛿𝑦 ∑
𝑠𝑖𝑑𝑒𝑠

𝛿𝐶𝑓 ,𝑠𝑖𝑑𝑒

1

−
𝛿𝑡

𝛿𝑥𝛿𝑦
𝐶𝑛

𝑓

𝐶𝑛
𝑏

⎛⎜⎜
⎝

𝛽𝑛
𝑔

𝜌𝑛
𝑎 (𝑐2

𝑎)𝑛 +
1 − 𝛽𝑛

𝑔

𝜌𝑛
𝑙 (𝑐2

𝑙 )𝑛
⎞⎟⎟
⎠

𝐷𝑝
𝐷𝑡

2

.

(6.29)

Boxed term 1 represents the advective part, boxed term 2 represents the com-
pressive part. A flux 𝛿𝐶𝑓 is of the form

𝛿𝐶𝑓 ∝
𝐶𝑓

𝐶𝑏
𝑢1𝛿𝑡𝑎𝑏𝛿𝑛, (6.30)

with 𝛿𝑛 representing the cell face size which in 2D corresponds to either 𝛿𝑥 or 𝛿𝑦.
In the example in Fig. 6.6, 𝛿𝑛 is equal to 𝛿𝑦.



6

208 interaction between aerated water and moving body

𝛿𝐶𝑓

𝑢1𝛿𝑡

𝑎𝑏𝛿𝑦

𝛿𝑥

𝑦

𝑥

𝐶𝑓

𝐶𝑏
𝐶𝑏𝛿𝑥𝛿𝑦

Figure 6.6. Flux in a cut-cell near the interface between air and aeratedwater. The hatched
area (–) represents the size of the flux 𝛿𝐶𝑓. The area surrounded by the dashed
line (–) represents the volume of the air-water mixture

𝐶𝑓

𝐶𝑏
𝛿𝑥𝛿𝑦 in the mass

control volume.

There is existing literature about using reconstruction after transporting the
interface, to good effect[53, 192, 276]. Geometric reconstruction reduces mass
loss and keeps the interface sharp. The piecewise linear interface calculation
method (PLIC) of Parker and Youngs [202] is applied. The labelling system in
Fig. 6.4a is used for marking out cells where the interface needs reconstruction;
those are cells labeled with S or C. An example of a PLIC interface segment is
shown in Figs. 6.5b and 6.5a.

The body is displaced similarly to Eq. (6.29). The difference is that the compres-
sive term does not need to be computed. The transport equation for the body
is

𝐶𝑛+1
𝑏 = 𝐶𝑛

𝑏 −
1

𝛿𝑥𝛿𝑦 ∑
𝑠𝑖𝑑𝑒𝑠

𝛿𝐶𝑏,𝑠𝑖𝑑𝑒. (6.31)

After updating 𝐶𝑏 to 𝐶𝑛+1
𝑏 , the interface between body and fluids is reconstructed

using the same PLIC method that is used for the interface between fluidsd. The
face apertures 𝑎𝑛+1

𝑏 indicated in Fig. 6.5a are found by averaging end points of
PLIC reconstruction lines in neighboring cells.

6.5.2 Auxiliary momentum field
The momentum equation (6.6) is solved in steps. First, an auxiliary momentum
field ̄𝜌ū is solved for

̄𝜌ū − 𝜌𝑛u𝑛

𝛿𝑡 Ω𝑛+1
𝑓 + ℭ𝑛

𝑓 (𝜌∗{u𝑛,u𝑛
𝑏})u𝑛. (6.32)
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Momentum 𝜌∗u is defined as the weighted average of momentum contributions
from the two fluids that are modelled

𝜌∗u = (𝐶𝜌𝑓 + (1 − 𝐶)𝜌𝑎)u, (6.33)

in which 𝐶 is a weight that is based on the mass fluxes

𝐶 =
|𝛿𝐶𝑓|

|u|𝑎𝑏𝛿𝑡𝛿𝑛, (6.34)

using 𝛿𝐶𝑓 from Eq. (6.30) to obtain consistency between mass and momentum.

Density field 𝜌𝑛 is found using the values of 𝑝𝑛, 𝐶𝑛
𝑓 and 𝐶𝑛

𝑏 and the reconstruc-
tion of the interface from the mass control volumes that have overlap with the
momentum control volume under consideration using the definition in Eq. (6.4).
When the pressure at the position of a velocity in a cell is necessary, it is found
as the average of the two nearest pressures in the direction of that velocity.

6.5.3 Auxiliary density
An auxiliary density field ̄𝜌 is computed for the momentum control volume
that complies with the discretization of the momentum fluxes and VOF fluxes
by means of a temporary continuity equation. The auxiliary density field is
needed due to the inconsistency between 𝜌𝑛+1 and ̄𝜌 [29, 80, 222]. The temporary
continuity equation reads

̄𝜌 − 𝜌𝑛

𝛿𝑡 Ω𝑛+1
𝑓 + 𝑀𝑛

𝑓 (𝜌∗{u𝑛,u𝑛
𝑏}) = 0. (6.35)

using the following approach near the interface between fluids and body

𝑀𝑛
𝑓 (𝜌𝑛{u𝑛,u𝑛

𝑏}) = 𝑀𝑛
𝑓 (𝜌𝑛u𝑛) + (1 − 𝑀𝑛

𝑓 ) (𝜌𝑛u𝑛
𝑏) . (6.36)

An auxiliary vector field ū is computed by dividing the auxiliary momentum
field by the auxiliary density found from Eq. (6.35).

6.5.4 New density & new aeration fields
A second auxiliary velocity field ũ is constructed to contain the remaining terms
of the momentum equation, that are integrated explicitly in time

ũ = ū − 𝛿𝑡 (Ω𝑛+1
𝑓 )

−1
(

1
𝜌𝑛+1 (𝑀𝑇

𝑐 )𝑛+1 𝑝𝑛 + g) , (6.37)

in which the new pressure field 𝑝𝑛+1 is split into a temporal change 𝛿𝑝 and the
pressure field at the old time level 𝑝𝑛.
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Density field 𝜌𝑛+1 is computed similarly to 𝜌𝑛. However, the new pressure field
𝑝𝑛+1, needed for equations of state of the fluids described in Sec. 6.3.1, remains
as of yet unknown. In order to prevent having to iterate between density and
pressure until convergence, which would involve a significant computational
effort with solving a Poisson equation at every iteration, rather an auxiliary
pressure field ̃𝑝 is constructed. Even without iterating between density and
pressure, the Poisson equation in the current method described here constitutes
90% of the total computational cost. The auxiliary pressure field is found from

̃𝑝 − 𝑝𝑛

𝛿𝑡 Ω𝑛+1
𝑓 + 𝑀𝑛

𝑐 (𝑝𝑛{u𝑛,u𝑛
𝑏}) − (𝑝𝑛 − 𝜌𝑛 (𝑐2)𝑛) 𝑀𝑛

𝑐 ({u𝑛,u𝑛
𝑏}) = 0. (6.38)

Note that this equation is solved onmass control volumes. Then, using Eqs. (6.12)
and (6.15) for the air density 𝜌𝑛+1

𝑎 and liquid density 𝜌𝑛+1
𝑙 , respectively, the new

density field 𝜌𝑛+1 is computed. The densities 𝜌𝑛+1
𝑎 and 𝜌𝑛+1

𝑙 are functions of 𝑝∗,
but also of 𝐶𝑛+1

𝑓 and 𝐶𝑛+1
𝑏 , see Sec. 6.5.2.

The new aeration field 𝛽𝑛+1
𝑔 is computed using the new density values 𝜌𝑛+1

𝑎 and
𝜌𝑛+1

𝑙 , together with Eq. (6.17) in which the mass fraction 𝜇𝑔 is required to remain
constant.

6.5.5 Pressure equation & coupling with body
The equation for the pressure change 𝛿𝑝 is obtained by taking the divergence
(𝑀𝑐) of the momentum equation and substituting it into the continuity equation
by eliminating the velocity field at the new time step u𝑛+1. The discrete continuity
equation for a mass control volume equals

1
𝜌

𝐷𝜌
𝐷𝑡 + 𝑀𝑛+1

𝑐 ({u𝑛+1,u𝑛+1
𝑏 }) = 0. (6.39)

After substituting the discrete momentum equation into Eq. 6.39 and rearranging
terms, an equation for 𝛿𝑝 and u𝑛+1

𝑏 is obtained

𝛿𝑡𝑀𝑛+1
𝑐 (Ω𝑛+1

𝑓 )
−1 1

𝜌𝑛+1 (𝑀𝑇
𝑐 )𝑛+1 𝛿𝑝 − (1 − 𝑀𝑛+1

𝑐 )u𝑛+1
𝑏 = 𝑀𝑛+1

𝑐 ũ +
1
𝜌

𝐷𝜌
𝐷𝑡 .

(6.40)
The material derivative density term in Eq. (6.40) is solved with Eq. (6.21)

1
𝜌

𝐷𝜌
𝐷𝑡 =

1

𝜌𝑛+1 (𝑐2)𝑛+1 (
𝛿𝑝
𝛿𝑡 Ω𝑛+1

𝑐 + 𝑀𝑛+1
𝑐 (𝑝𝑛{ũ, ũ𝑏}) − 𝑝𝑛𝑀𝑛+1

𝑐 {ũ, ũ𝑏}) , (6.41)

from which the unsteady term with the pressure change 𝛿𝑝 needs to be moved
to the left-hand side of Eq. (6.40). How the speed of sound (𝑐) is computed is
described in the last subsection of Sec. 6.3.
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Body motion
The discrete representation of the equations of motion of the body Eq. (6.8) is
given by

u𝑛+1
𝑏 − u𝑛

𝑏
𝛿𝑡 𝑚𝑏 + 𝑚𝑏g + 𝒜𝑛+1

𝑐 (𝛿𝑝 + 𝑝𝑛) , (6.42)

in which 𝒜𝑐 is an operator that integrates the pressure over the surface of the
body. Similar to the auxiliary velocity and pressure fields, an auxiliary body
velocity ũ𝑏 is formulated including terms that are integrated explicitly

ũ𝑏 = u𝑛
𝑏 + 𝛿𝑡𝑚−1

𝑏 (𝑚𝑏g + 𝒜𝑛+1
𝑐 𝑝𝑛) . (6.43)

Fluids and body are coupled through the pressure. The following system of
equations needs to be solved to find the field of pressure change 𝛿𝑝 the body
velocity u𝑏

[ ℒ𝑝 −𝑀𝑛+1
𝑏

𝛿𝑡𝑚−1
𝑏 𝒜𝑛+1

𝑐 I
] ⋅ [ 𝛿𝑝

u𝑛+1
𝑏

] = [ℛ𝑝
ũ𝑏

] , (6.44)

in which

ℒ𝑝 = 𝛿𝑡𝑀𝑛+1
𝑐 (Ω𝑛+1

𝑓 )
−1 1

𝜌𝑛+1 (𝑀𝑇
𝑐 )𝑛+1 −

1

𝜌𝑛+1 (𝑐2)𝑛+1 𝛿𝑡−1Ω𝑛+1
𝑐 , and

ℛ𝑝 = 𝑀𝑛+1
𝑐 ũ +

1

𝜌𝑛+1 (𝑐2)𝑛+1 (𝑀𝑛+1
𝑐 (𝑝𝑛{ũ, ũ𝑏}) − 𝑝𝑛𝑀𝑛+1

𝑐 {ũ, ũ𝑏}) .
(6.45)

6.5.6 New fluid velocity field
Finally, after having solved for the pressure change and the body velocity, the
new fluid velocity field is computed from

u𝑛+1 − ũ
𝛿𝑡 Ω𝑛+1

𝑓 + (𝑀𝑇
𝑐 )𝑛+1 𝛿𝑝 = 0. (6.46)

6.5.7 Numerical model discretization schemes
In this section the time integration has been represented as implicit for the
pressure and Forward Euler for the explicit terms. This was for the purpose of
presenting an already complex combination of equations, and in the presentation
we wanted to keep emphasis on the equations and not confoundmatters with the
details of the discretization. The algorithm as presented works, but improvement
with respect to the presented algorithm can be obtained with the discretization
discussed here.

The convective term in Eq. (6.46) is solved on a momentum control volume.
This term is discretized using the high-resolution scheme [114, 307]. The high-
resolution scheme combines high-order accuracywithmonotonicity and switches
from second-order to first-order upwind near the interfaces between body and
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fluids and between fluids. An explicit second-order Adams-Bashforth time step-
ping scheme then is employed for the convective term to allow for larger time
steps. The suitable Courant restriction for the combination of these two schemes
is 0.25 or lower [292].

The material derivative of the pressure is solved on mass control volumes. The
advective term of the derivative is split into two terms as illustrated in Eq. (6.41).
The divergence term of the pressure is discretized using arithmetic averaging
of pressures. The pressure equation in Eq. (6.44) is solved monolithicly with
the equations of motion of the body. The equations of motion of the body are
integrated in time using the Crank-Nicolson scheme [80].

The material interfaces defined using volume fractions 𝐶𝑓 and 1 − 𝐶𝑏 are trans-
ported using a direction-split scheme called COSMIC [155]. The COSMIC scheme
is applied for the advective term in Eq. (6.29). A correction around the interface
[295] is used to conserve mass for incompressible flows.

A final note on the discretization is that it was not designed to be completely
mass conserving. It is quasi-conservative in which mass errors are carefully
balanced against momentum errors and other errors that can be expected on
the fairly course grids that cannot be avoided for the envisioned application of
wave impacts on structures at sea. It is demonstrated next that the errors are well
behaved and that the numerical results show good agreement with analytical
solutions and experimental results.

6.6 Verification and validation with results from existing literature
Peregrine et al. [207] showed that it is likely that density waves are formed in the
compressible medium after wave impacts of aeratedwater against structures. The
capability of our method to represent the propagation of density waves is investi-
gated by comparing with results of existing benchmark tests with compressibiilty
from literature: a shock tube, a piston and a 2D shock bubble.

6.6.1 1D Shock tube
A shock tube is a 1D case in which a fluid or fluids at different initial pressure
are separated before being released. The propagation of a density wave in a tube
filled with air at different states initially was presented by Eijk and Wellens [75]
using a similar numerical method. Two shock tube cases are considered here.
One with water at high pressure on one side of the tube and air on the other, and
one with aerated water at a higher pressure one side of the tube than the other.
Gravitational effects are not relevant and are omitted from the simulations. For
both cases, three different grid resolutions are used and the effect of the Courant
number on the results is evaluated.
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6.6.1.1 Shock tube with two separated fluids

The first case resolves a density wave through a shock tube with two fluids, water
and air. A shock tube with water and air was investigated analytically by Sod
[247]. The setup of the simulation is illustrated in Fig. 6.7.

x 1[m]

x < 0.5[m] x > 0.5[m]

Figure 6.7. Setup of simulation of a shock tube with water ( ) and air. Water initially at
high pressure.

The fluid configuration, pressure and density satisfy the following initial condi-
tions

𝐶𝑓 = { 1[-], 𝑥 < 0.5[m]
0[-], 𝑥 > 0.5[m]

, 𝑝 = { 1.0[Pa], 𝑥 < 0.5[m]
0.1[Pa], 𝑥 > 0.5[m]

,

and
𝜌 = { 1.0[kg/m3], 𝑥 < 0.5[m]

0.125[kg/m3], 𝑥 > 0.5[m]
.

The initial velocity field is zero. Aeration is not considered, so 𝛽𝑔 =0.As equations
of state, these relations are employed

𝜌𝑙 = 𝑝, 𝜌𝑎 = (
𝑝
𝑎𝑐

)
1

𝛾𝑎
,

with 𝜌𝑙 the density of water and 𝜌𝑎, 𝑎𝑐 = 1.34543 and 𝛾𝑎 = 1.25 the density, specific
heat ratio and isentropic constant for air, leading to the following expressions for
the speed of sound in water and air respectively

1
𝑐2
𝑙

= 1,
1
𝑐2
𝑎

=
1

1.34543𝛾𝑎
(

𝑝
1.34543)

1−𝛾𝑎
𝛾𝑎 .

The maximum Courant number, based on the instantaneous fluid velocities,
equals 0.2. The final time for the simulations is set at 0.25[s]. Simulations are
performed for several grid resolutions to investigate convergence. The resolutions
are 250, 500, and 1000 cells over the tube length.

The simulation results are shown in Fig. 6.8 and compared to the analytical
results of Sod [247]. The displacement of the interface between fluids is predicted
well. The mass loss is never larger than 0.4% for the air phase and 0.01% for
the liquid phase. A rarefaction wave propagates through the water in negative
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x-direction and a compression wave propagates through the air in positive x-
direction. The fluid velocity is continuous across the interface between water and
air. The velocity gradients in the rarefaction wave (0.2 < x <0.5) are smoothed
by numerical viscosity, which decreases with increasing grid resolution. Note
that the compression wave front is not a formal discontinuity in the method; the
velocity jump is smeared out over a couple of grid cells. The numerical viscosity is
not sufficient to prevent wiggles near the compression wave front: small spurious
velocity oscillations are found there, but they are independent of the spatial
grid size. The velocity of the compression wave front is underestimated by 1.0%
and also the fluid velocities are somewhat underestimated compared to the
analytical results. This could be due to using the non-conservative form of the
equations in the method. The non-conservative form does not satisfy the same
Rankine-Hugoniot conditions, describing the states of the fluid on either side of
the compression wave front, as the conservative form.
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(a) Volume fraction field showing position inter-
face between fluids.
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(c) Pressure field.

Figure 6.8. Shock tube with water and air: numerical results compared to analytical
solution [247] for three different grid resolutions at time 𝑡 = 0.25[s].
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6.6.1.2 Shock tube with aerated water (water-air mixture)

The second case is a shock tube filled with aerated water, i.e. a homogeneous
water-air mixture, with a higher pressure and density in the left-most half of
the tube. An analytical solution for density wave propagation though dispersed
fluids (mixtures) was reported in Franquet [93]. The assumption of homogeneity
means that transport of the interface through 𝐶𝑓 is not resolved; 𝐶𝑓 is equal to one
throughout the domain. The mass fraction of the air in water is 𝜇𝑔 = 1.31⋅10−5[-
]. The initial conditions for the air volume fraction associated with that mass
fraction, and for the pressure on either side of the shock tube are

𝛽𝑔 = { 1.95 ⋅ 10−3[-], 𝑥 < 0.5[m]
1.00 ⋅ 10−2[-], 𝑥 > 0.5[m]

, 𝑝 = { 106[Pa], 𝑥 < 0.5[m]
105[Pa], 𝑥 > 0.5[m]

.

The initial conditions for the density of the air in water and for the density of the
water are

𝜌𝑎 = { 6.91[kg/m3], 𝑥 < 0.5[m]
1.33[kg/m3], 𝑥 > 0.5[m]

, 𝜌𝑙 = { 1027.4[kg/m3], 𝑥 < 0.5[m]
1027.0[kg/m3], 𝑥 > 0.5[m]

.

The equations of state are the same as in Sec. 6.3.1.

At first a maximum Courant number based on the instantaneous fluid velocities
of 0.001 is set. The final time of the simulations is 5.5137⋅10−4[s]. Simulations
with three grid resolutions are performed, using 250, 500 and 1000 cells in the
length of the tube.

The results of the simulations are shown in Fig. 6.9. The results are in agreement
with the analytical solution. The slight jump in the aeration and density field near
𝑥 = 0.5[m] is caused by a temperature fluctuation, which our method does not
solve for. Similar observations as for the shock tube with water and air separately
can be made regarding numerical viscosity, the resolution of velocity gradients
and oscillations near the compression wave front.
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(d) Pressure field.

Figure 6.9. Shock tube aerated water: numerical results compared with analytical solu-
tion [93] for three different grid resolutions at time 𝑡 = 5.51⋅10−4[s].

Next, the effect of the maximum Courant number on the results is investigated.
Simulations are performed in which the maximum Courant numbers are varied
between 5⋅10−4 and 1⋅10−2 at a grid resolution of 1000 cells. The results are shown
in Fig. 6.10, zooming in on the direct vicinity of the compression wave at time 𝑡
= 5.51⋅10−4[s]. The resolution of the jump in velocity over the compression wave
front is strongly affected by the choice for the maximum Courant number. With
a Courant number of 5⋅10−4 the jump is resolved well but velocity oscillations
(wiggles) are observed. The oscillations become smaller for higher Courant
numbers, until for a value of 1⋅10−2 no oscillations remain. But at a maximum
Courant number of 1⋅10−2, The jump in velocity near the compression wave front
is also not resolved well anymore.

For the shock tube with aerated water the speed of the propagating density wave
is close to 200[m/s]. That means that for a Courant number based on the fluid
velocities of 1⋅10−2, the Courant number based on the speed of the density wave
is approximately 2. Considering the shock tubewith separatedwater and air with
a Courant number based on fluid velocities of 0.2, the Courant number based on
the density wave speed is 0.3. Note that the numerical method is not intended
for an optimal representation of shock fronts, but for the representation of effects
associated with compressibility in impacts between waves and structures. To
obtain an adequate representation of the fluid properties on either side of the
density wave front, the experience with the shock tubes gives us that the Courant
number based on the speed of the density wave needs to be kept well below 1.
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Figure 6.10. Shock tube aerated water: effect of maximum Courant number (based on
instantaneous fluid velocity) on the velocity on either side of the compres-
sion wave front. Simulations performed with grid 1000 and velocity shown
at time 𝑡 = 5.51⋅10−4[s].

6.6.2 Water or rigid body piston
To demonstrate the method’s performance at capturing low-frequency, low-
velocity, large scale compression of fluids that are separated by an interface,
vertical 1D ‘piston’ simulations are performed [61, 168]. The piston is either
a layer of water or a body initially placed in between two layers of air before
releasing it to fall down due to gravity. The piston compresses the air belowwhile
gaining and losing inertia, after which the compressed air pushes the piston back
up again. At these low velocities, the water piston, being weakly compressible, is
expected to behave the same as the piston that is modelled as a moving body.
The piston simulation setup is shown in Fig. 6.11. The piston is hatched to indi-
cate that it can either be a rigid body (𝐶𝑏 is transported) or water (𝐶𝑓 is trans-
ported). The initial air density is 1[kg/m3], and the density of water and body
is 1000[kg/m3]. The pressure follows an aerostatic pressure distribution with
value of 1⋅105[Pa] at the bottom end of the domain. The gravity constant g is [0,
-9.81]𝑇[m/s2]. The maximum Courant number is 0.2. The velocity field when
the simulations start, is zero.
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Figure 6.11. Piston: simulation setup. Hatched area indicates either water or a moving
rigid body.

Results are given in Fig. 6.12 in terms of the pressure at the bottom end of the
domain for different numbers of cells over the full height of the domain. Results
are compared to those of Guilcher et al. [104]. The pressure over time with a
piston composed of water in Fig. has converged for grid 450 and then matches
the results of Guilcher et al. [104]. When the water is replaced by a moving rigid
body for grid 450, the pressure in Fig. 6.12b, the pressure is a match to that below
the water piston. Both piston motions have the same expected physical behavior,
even though the transport algorithms for 𝐶𝑓 and 𝐶𝑏 are quite different.
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(a) Pressure below water piston for different
grids (maximum Courant number 0.2).
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(b) Pressure below moving rigid piston com-
pared to water piston for grid 450.

Figure 6.12. Piston: pressure below piston as a function of time when piston is either
water or moving rigid body.

6.6.3 2D Shock bubble
The test case with a shock bubble is performed to investigate how density waves
change direction and how they are transmitted between fluids in simulations
with a compressible multiphase method. Helium shock-bubble experiments were
performed by Haas and Sturtevant [105] and the results serve as a benchmark.

The simulation setup for the 2D helium shock bubble case is illustrated in Fig.
6.13. Air, initially, is in two states on either side of the domain, just as for the
shock tube. A cylindrical helium bubble is placed in the air at one of these states,
approximately in the middle of the domain. The domain boundaries are closed
with atmospheric pressure prescribed on the left horizontal end of the domain.
Because the simulation setup is symmetrical in y-direction only half of the do-
main in that direction is simulated. Three grid resolutions are used in half of
the domain: 1200x150, 800x100, and 400x50. A Courant number of 0.2 is used.
The shock front arrives at the 𝑥-position of the helium bubble at 6⋅10−5[s] after
the fluids are released. From here on, the moment the shock front arrives at the
position of the bubble is is defined as t=0[s].
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Figure 6.13. Shock bubble: simulation setupwith air at two states of pressure, and helium
bubble in the air at one of these states.

The helium bubble in the experiment was contaminated with 28% air (of mass)
[105]. The fluid properties in Table 6.1 take the contamination into account
and are given for a temperature of 25 degrees Celsius [105]. These properties,
according to the Rankine-Hugoniot equations, are associated with an initial
shock front speed of 420[m/s] and a Mach number of 1.22 [105, 221]. Quirk and
Karni [221] conducted a detailed numerical study of the helium shock bubble.
Kreeft and Koren [148] also simulated the shock bubble, but with different fluid
properties using a density-based model solving Kapila’s five-equation model for
inviscid, non-heat-conducting, compressible two-fluid flows. Even though the
fluid properties they used were different, the same shock front speed as in the
experiment was obtained [148].

𝛾 𝜌 𝑝 𝐶𝑓 𝛽 𝑢
[-] [kg/m3] [kg/ms2] [-] [-] [m/s]

Air 1 1.4 1.168 1.0⋅105 1.0 0 0
Air 2 1.4 1.612 1.5698⋅105 1.0 0 -115.5
Helium 1.648 0.212 1.0⋅105 0 0 0

Table 6.1. Initial fluid properties for helium shock bubble simulation [105].

In the simulations, the front of the density wave before interacting with the
helium bubble at 𝑡 = 0[s], is smeared out over ten grid cells. We chose the
position in the middle of these 10 cells as the position of the density wave front
to compare with the results from literature. The results of the simulations are
given in terms of the positions and the velocities of the interfaces and the density
wave fronts. The definition of all interfaces and shock fronts is given in Fig.
6.14a. Interfaces and shock fronts are identified by their velocities 𝑣. Fig. 6.14b
features a space-time plot of the interfaces, in which the results of the numerical
method at three grid resolutions is compared with the results of Quirk and
Karni [221]. The maximum Courant number is 0.2. The results of our numerical
method have converged. Where the grid spacing used by Quirk and Karni [221]
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was 0.056[mm], a relatively coarse grid is used in our simulations, with the
1200x150 grid having a spacing of 0.30[mm]. Spurious oscillations at the density
wave front were not observed. Even at these coarse grids, the positions of the
interfaces over time are in good agreement with Quirk and Karni [221]. A similar
conclusion was found for the cases with the shock tube.

(a) Definition of interfaces and density wave
fronts.
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(b) Space-time plot of interface positions.

Figure 6.14. Shock bubble: definition of interfaces and density wave fronts together
with a space time plot of the position of the interfaces and wave fronts.
Numerical results (markers) at three grid resolutions: 400x50 , 800x100
and 1200x150 , compared with Quirk and Karni [221] (solid lines). The

maximum Courant number is 0.2.

The velocity magnitudes of the interfaces and the density wave fronts are com-
pared with the experimental results of Haas and Sturtevant [105] and the nu-
merical results of Quirk and Karni [221] and Kreeft and Koren [148] in Table 6.2.
Good agreement is found between the results of our method using grid 1200x150
(maximum Courant number 0.2) and the existing results from literature.

𝑣𝑠 𝑣𝑟 𝑣𝑡 𝑣𝑢𝑖 𝑣𝑑𝑖 𝑣𝑗
Haas and Sturtevant [105] 410 900 393 170 145 230
Quirk and Karni [221] 422 943 377 178 146 227
Kreeft and Koren [148] 419 956 - 176 - -
Present model 1200x150 CFL = 0.2 417 970 384 184 146 215

Table 6.2. Shock bubble: velocity magnitudes (in [m/s]) of interfaces and density wave
fronts.

Density profiles at time 𝑡 = 1.4⋅10−4[s], taken at y = 89[mm] at the top of the
domain and at y = 49.5[mm] in the middle of the domain, are shown for grid
resolutions 400x150 and 1200x150 and Courant numbers 0.005 and 0.2. Compar-
ing results for the same Courant number, but different spatial grid resolution,
and for the same spatial resolution but different Courant numbers, shows that
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increasing the spatial grid resolution and reducing the Courant number yield
nearly the same effect: the density profile shows more variation and the density
wave front is spread out less in space. The increase in grid resolution and the
lowering of the Courant number did not significantly affect the position of the
density wave front or the interface of the bubble themselves. The fluid interface
between helium and air (at 𝑣𝑑𝑖 and 𝑣𝑢𝑖) is captured well and smeared out less
due to the geometrical reconstruction.
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Figure 6.15. Shock bubble: density profile 𝜌 at time 1.4⋅10−4[s] for different grid resolu-
tions and Courant numbers. Dashed lines for 𝜌 at y = 89[mm]. Solid lines
for 𝜌 at y = 49.5[mm].

6.6.4 2D wedge entry in incompressible water
The test case of a 2D wedge impact with incompressible water is considered to
evaluate the new speed-of-sound formulation in Eq. (6.28). The setup of the
simulation is shown in Fig. 6.16a, containing the dimensions of the domain and
thewedge; it is the same setup as the one used in the next section about validation.
The angle that the bottom planes of the wedge make with the horizontal, the
so-called deadrise angle (𝛼), is 15[deg]. In the simulation the wedge falls down
vertically and impacts with the water. The vertical velocity of the wedge upon
impact (𝑉𝑖) is 7.0[m/s]. The grid is named for the number of cells that are used
to represent the bottom plane of the wedge within the dashed box in Fig. 6.16a,
because it is important to resolve the water jets formed in that box with sufficient
accuracy. For the simulations described here, a grid resolution of 33x18 in the
box is used.
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Figure 6.16. 2D wedge entry: simulation setup and force on wedge as a function of time.
Force from the current method with 𝛽𝑔 = 0.0 and two different formulations
for the speed of sound compared with incompressible model from an earlier
article [75]. Grid 33x18 used.

Two simulations without aeration, so that 𝛽𝑔 = 0.0, are performed, from which
the vertical force on the wedge over time is obtained. Without entrained air in wa-
ter, the results of these simulations should be close to that of the incompressible
method described in Eijk and Wellens [75]. One simulation is performed with
an implementation of the traditional mixture speed of sound in Eq. (6.25). The
other simulation is performed with an implementation of the new formulation
for the speed of sound in Eq. (6.28). Zooming in on the peak of the force in
Fig. 6.16b, one finds that the force from the implementation with new speed of
sound in Eq. (6.28) is a near-exact match with the force from the incompressible
method [75]. The force from the implementation with the traditional mixture
speed of sound in Eq. (6.25), shows a low-frequent oscillation. The low-frequent
oscillation is the result of a numerical artifact that we call ‘spurious compress-
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ibility’. In violent free surface flow, grid cells labelled F can sometimes receive
a lower value for the filling ratio 𝐶𝑓 than 1. Using Woods’ equation, Eq. (6.25),
values for 1 − 𝐶𝑓 are treated the same as aeration, so that a fluid containing an
artifact of violent free surface flow can become misrepresented as a compressible
fluid. Small values for 1 − 𝐶𝑓 can already lead to a significant decrease of the
speed of sound. The spurious compressibility shows up as force oscillations
some moments after the wedge impacts with the water. Eq. (6.28) corrects for
the presence of F-labelled cells with values for 𝐶𝑓 lower than 1 and therefore does
not lead to force oscillations that should not be there.

6.7 2DWedge impact with aerated water
In order to evaluate the capabilities of the numerical method in terms of fluid-
structure interaction with compressible aerated water, it is validated against a
new experiment that was performed specifically for this work. Before motivating
why it was necessary to conduct a new experiment, first an overview of existing
literature about experiments with aerated water is provided.

6.7.1 Brief overview of experiments with aerated water
Experimental data for fluid-structure interaction with aerated water is rare [81,
118, 169–171], with Eroshin et al. [84] being an early account such an experiment.
Hong, Wang, and Liu [118], Ma et al. [169], and Mai et al. [170] used a flat plate
and Elhimer et al. [81] used 3D cones with different deadrise angles. A general
conclusion they made is that the effect of aeration is relevant for designing mar-
itime structures operating in heavy seas. A significant reduction of the impact
loads is found compared to impacts with pure water.

For flat plate impacts, Ma et al. [169] found that increasing the level of aeration
increases the rise time and fall time of the impact pressure on the plate. They
added that with flat plate impacts cavitation likely plays a role. Mai et al. [170],
also studying flat plate impacts, motivated that the high-frequency oscillations
associated with the compressibility of the medium they found, can have conse-
quences for the fatigue analysis of the structure, but that the standard regulations
for taking impact pressures into account may be conservative in the presence
of aeration, as these, being based on pure water, specify impact pressures that
are too high. Their results are in agreement with the numerical results of Hong,
Wang, and Liu [118].

For cone impacts with aerated water, Elhimer et al. [81] found a reduction of the
wetted contact surface, a reduction of the impact pressure, and a reduction of
the average pressure, compared to cone impacts with pure water. They showed
that the edge Mach number (𝑀𝑎𝑒𝑑𝑔𝑒) is relevant for indicating the significance
of aeration on the peak pressures. The edge Mach number is the ratio of the fluid
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expansion velocity along the bottom of the body and the speed of sound of the
mixture

𝑀𝑎𝑒𝑑𝑔𝑒 =
𝑉𝑖

tan(𝛼)𝑐𝑓
, (6.47)

where 𝑐𝑓 is found from Eq. (6.24) and 𝛼 is the deadrise angle, that was illustrated
in Fig. 6.16. Elhimer et al. [81] concluded that when the edge Mach number
(𝑀𝑎𝑒𝑑𝑔𝑒) is above 0.05, compressibility has a relevant effect on the impact pressure.
When 𝑀𝑎𝑒𝑑𝑔𝑒 is above 0.3, the type of nonlinearity related to that in the equation
of state of the air-water mixture is found. In the range 0.05 < 𝑀𝑎𝑒𝑑𝑔𝑒 < 0.3 the
largest changes in impact pressures are found.

6.7.2 Experimental setup
The existing experiments in literature focus on finding the effect of aeration on
the impact pressure. While that is certainly our motivation, too, validating the
numerical method requires more than only the pressure. Because the speed of
sound of themixture has such a central role in the derivation of the closuremodel,
the experiment for validationwas designed to capture not only the pressure upon
impact, but also the secondary pressure oscillations as a result of the reflected
density waves. The body in the experiment is formed by a wedge, because the
numerical method is not suited to capture the phase changes associated with
cavitation encountered by Ma et al. [169].

The setup of the experiment consists of three parts: the box containing water, the
fall tower and the wedge attached to a guiding mechanism within the fall tower.
The fall height from the tip of the wedge to the initial free surface of the water is at
most 2.83[m] so that, with friction, a maximum impact speed 𝑉𝑖 up to 7.0[m/s]
can be achieved. The box and wedge are illustrated in Fig. 6.17, in which 𝛼 is
the deadrise angle. The box is made of 36[mm] thick plywood, with a 30[mm]
perspex front, having the overall inner dimensions of in-planewidth×height×out-
of-plane width = 1100×900×240[mm]. The out-of-plane width of the wedge is
238[mm]. This is somewhat smaller than the box to prevent contact between
wedge and box, while minimizing 3D effects due to the gap between wedge and
box. The width of the wedge between chines is 218[mm], being five times smaller
than the width of the box. The water level in the box is 495[mm] with respect to
the bottom of the box.
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Figure 6.17. Setup of wedge impact experiment with aerated water. Dimensions of the
experiment are also the dimensions of the numerical domain.

Twowedges are used, each with amass of 31.78[kg/m], having different deadrise
angles (𝛼). one has a deadrise angle of 15[deg], the other of 30[deg]. These dead-
rise angles are encountered frequently in industry at different cross-sections of
high-speed vessels [79]. The side walls of the wedge above the chine are 0.20[m]
high. The wedge is equipped with four pressure sensors, positioned along the
bottom of the wedge. The positions of the sensors on one side of the wedge are
shown in Fig. 6.17 for the two different deadrise angles. The other two pressure
sensors are placed symmetrically at the other side of the wedge. The type of
pressure sensor is 113B25 ICP of PCB Piezotronics, with a membrane diameter of
5.54[mm]. This type measures impact pressures accurately during a short time,
after which they are ’loaded’ and need to ’discharge’. The pressure sensor closest
to the tip of the wedge us called pressure sensor 1, the other, closest to the chine,
is called 2. The sensors place on the other side of the wedge are used as measure
of the variability of the pressure. A sampling frequency of 100[kHz] was used to
record the pressure.

Air bubbles in water are created at the bottom of the box. A homogeneous (equal)
distribution of air bubbles is approached through the use of sixteen AS23 fresh
water air diffusers of Pentair equally distributed along the bottom of the box. The
air diffusers create bubbles with varying size in the order of 1[mm] in diameter.
The aeration level is measured with the approach of Ma et al. [169] (Eq. 2) using
a cylindrical tube that is significantly larger than the size of the bubbles. The
time it takes to fill the tube with air versus the rise time of the bubble determines
the aeration level. The standard deviation and mean of the aeration levels 𝛽𝑔 in
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the experiment are shown in Fig. 6.18 for three different locations in the box. The
position of the wedge in the box is indicated by the solid black lines near the
origin of the horizontal axis. For every location, six aeration measurements are
performed and expressed as volume of air over volume of water. The standard
deviation of the six aeration measurement increases with increasing level of
aeration. It is less than 1⋅10−3 for the aeration levels approximating 1% by volume,
rising to 2.5⋅10−3 for the aeration levels close to 4% by volume. The variation
between locations also increases with increasing level of aeration, being smaller
than 3⋅10−3 for the aeration level close to 1% and rising to more than 1⋅10−2

for aeration levels of 4%. A homogeneous air-water mixture was not achieved,
especially considering the aeration levels near the boundary of the box, but near
the position of the wedge homogeneity is approximated reasonably well.
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Figure 6.18. Aeration measurements represented as air volume over water volume at
the free surface for different locations in the box. Position of the wedge is
indicated by solid black lines at the bottom of the graph.

The experiment is conducted for combinations of four aeration levels (𝛽𝑔 = 0.0,
0.01, 0.02, 0.04[-]) and two deadrise angles (𝛼 = 15, 30[deg]). The impact velocity
of the wedge is kept constant at 𝑉𝑖 = 7[m/s]. The combinations are illustrated
with white circles in Fig. 6.19, showing the edge Mach number as a function of
aeration level and deadrise angle. The maximum edge Mach number is the ratio
of the maximum flow velocity along the ”edge” of the wedge over the speed of
sound. A 𝑀𝑎𝑒𝑑𝑔𝑒 equal to 0.5 is reached. Every test in the experiment is repeated
five times and gives 10 data signals as a function time per pressure sensor (recall
the symmetrically placed pressure sensors). The 10 data points per time step
are used to determine the mean and the standard deviation of the pressure. The
expected maximum pressure on the wedge is between 104 and 107[Pa], so that
the density changes in the mixture can be attributed mainly to the air in water
[81].
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Figure 6.19. The edge Mach number (𝑀𝑎𝑒𝑑𝑔𝑒) depending on the impact velocity 𝑉𝑖 =
7[m/s] and the deadrise angle 𝛼 of the wedge, and the aeration level 𝛽𝑔 for
a homogeneous mixture. The experimental tests are represented by .

6.7.3 Numerical setup
The size of the domain in the numerical setup is given by Fig. 6.17. The top bound-
ary of the domain is used to define the atmospheric pressure. The remaining
walls are closed and can reflect density waves. The initial height of the bottom
of the wedge above the initial waterline ℎ0 is 10[mm]. The air layer between the
wedge and the interface is not expected to affect the loadings as the deadrise
angles are too high [79, 318].

The relevant parameters for the fluids and wedge are given in Tab. 6.3a. The
degrees of freedom of the wedge are limited to allow only vertical motion. The
end time of the simulations is 0.10[s] so that the entire slamming stage of the
interaction between wedge and aerated water is captured. A maximum Courant
number of 0.2 is used. The impact velocity of the wedge in the simulations is 𝑉𝑖 =
7.0[m/s]. Simulations are performed for the same cases in Fig. 6.19, represented
by the white dots, for which tests in the experiment were performed. The relevant
parameters are also summarized in Tab. 6.3b. These cases cover the range of 0.05
< 𝑀𝑎𝑒𝑑𝑔𝑒 < 0.5.

Parameter Value
𝜌𝑙 [kg/m3] 999.00
𝜌𝑎 [kg/m3] 1.22
𝑝𝑎𝑡𝑚 [Pa] 1.00⋅105

ℎ0 [m] 0.01
(a) Initial conditions of fluids and wedge.

Variable Values
𝛼 [deg] 15 30
𝛽𝑔 [-] 0.0 0.01 0.02 0.04

(b) Variables considered in the numerical
simulations.

Table 6.3. Simulation parameters



6

6.7 2d wedge impact with aerated water 229

A grid convergence test for the simulated pressure is conducted with 𝛼 = 15[deg]
and 𝛽𝑔 = 0.0[-]. The dashed box in Fig. 6.17 is used as a reference for the grid
resolution. The reported number of cells therefore is an indication of the number
of cells in horizontal and vertical direction used to capture the slope of the bottom
of the wedge. The simulation results of the grid convergence test are shown in
Fig. 6.20. The figure shows the pressure obtained at the location of pressure
sensor 1 (closest to the tip of the wedge) as solid lines, and the pressure at the
location of pressure sensor 2 as dashed lines. The value of the pressure at any
time is the average taken over the area of the sensor with diameter 5.54[mm].
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Figure 6.20. Simulation results for grid convergence test, using 𝛼 = 15[deg] and 𝛽𝑔
= 0.0[-]. Pressure sensor 1 represented by solid lines. Pressure sensor 2
represented by the dashed lines. Pressure is the average taken over the area
of the sensor with diameter 5.54[mm].

The discussion of convergencewill focus on pressure sensor 1; the results obtained
for pressure sensor two follow a similar trend. One measure of grid convergence
is to consider the pressure integrated over time up to 0.005[s], representing an
equivalent of impulse. The pressure impulse converges rapidly. The pressure
impulse on the finest grid of 135x35 has a value of 487.0[Pa⋅s]. The difference
in pressure impulse with the coarsest grid was 1% of that value; a difference
of 0.2% was obtained for 66x29; and a difference of 0.04% for 109x29. Another
measure of grid convergence is to consider themaximumpressure during impact.
The maximum pressure on the finest grid of 132x35 is 3.7⋅105. The difference
in maximum pressure with the coarsest grid of 33x18 is 6.6% of that value. For
grid 109x29 the difference in maximum pressure is 2.0% of that value. Grid
convergence in terms of the maximum impact pressure therefore has not been
obtained. As the convergence is not monotonous, we do not expect that formal
grid convergence of the maximum pressure can be obtained. This needs to be
accounted for in our interpretation of the comparison between experiment and
simulations. All simulations from here on are performed with grid 109x29.
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6.7.4 Comparison simulations and experiment: maximum pressures
Fig. 6.21 shows the pressures obtained from the numerical simulations with grid
109x29 together with the pressures obtained from the tests in the experiment.
The atmospheric pressure was subtracted from all results. Solid blue lines are
for pressure sensor 1 and dashed blue lines are for pressure sensor 2. The blue
lines for the pressure from the experiment are the average of ten signals. A band
is formed along the lines representing one standard deviation above and below
the average. The lines from the experiment show that discharging the pressure
sensors after impact leads to an increased bandwidth around the average pres-
sure and increased uncertainty.

Red lines in Fig. 6.21 represent the pressures from the simulations, solid lines
for pressure sensor 1 and dashed lines for pressure sensor 2. The lines are the
average pressures obtained from two simulations at each aeration level 𝛽𝑔 with
the minimum and maximum value measured at that level on either side of the
wedge, see Fig. 6.18. The following simulations were performed: 𝛽𝑔 equals 1.0
and 1.5% for the aeration level of 1.0%; 𝛽𝑔 equals 1.9 and 2.4% for a level of 2.0%;
𝛽𝑔 equals 3.7 and 4.6% for the aeration level of 4.0%. The uncertainty found from
the grid convergence test is not included in Fig. 6.21.
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(b) 𝛽𝑔 = 0.01[-] and 𝛼 = 15[deg].
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(c) 𝛽𝑔 = 0.02[-] and 𝛼 = 15[deg].
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Figure 6.21. Impact pressures: numerical simulation results ( ) with experimental
results ( ) for two pressure positions. Pressure sensor 1 is represented
by solid lines ( ). Pressure sensor 2 is represented by dashed lines ( ).
Band for the experiments composed of one standard deviation below and
one above average pressure. Grid 109×29 was used for the simulations.
Simulated pressures are the average of two simulations with the minimum
andmaximumvalue for aeration at that level. Band around numerical results
formed by minimum and maximum. Uncertainty of grid convergence not
included in graphs.
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The simulated pressures show good visual agreement with the measured pres-
sures for both deadrise angles and for all aeration levels. The pressures obtained
during impacts with the 30[deg] deadrise angle wedge are hardly affected by
the level of aeration. This conclusion is consistent between the simulation results
and the experimental results. For the wedge with a deadrise angle of 15[deg],
the maximum pressure during impact goes down with increasing level of aer-
ation, both in the simulations and in the experiments. There are a number of
differences between simulation results and measurements for this wedge. For
pressure sensor 2, the pressure in the simulations rises before the pressure in
the measurements rises, as if the water reaches pressure sensor 2 earlier in the
simulations than it does in the experiments. The most likely explanation is that
the jets of water formed by the wedge displacing water are fairly thin, and there-
fore underresolved in the simulations.

Although the maximum pressure in the measurements can be higher than the
pressure in the simulations for some cases, the pressure in the simulations near
the maximum pressure is consistently higher. We observed that before for simu-
lations and experiments without aeration, and then it seemed to be due to 3D
effects caused by the gaps betweenwedge and box at both out-of-plane endpoints
of the wedge. These effects seem to decrease the pressures. That is, however,
not the only explanation for the difference in pressure between simulations and
experiment in this study, because the difference in pressure increases with in-
creasing level of aeration. It seems that the aerated water in the experiments with
higher levels of aeration than 1% is more compressible than what is modelled in
the simulations.

A final difference that is apparent, is that pressure sensor 1 (see Fig. 6.17) in the
experiment registers a pressure rise before a pressure is registered in the numeri-
cal simulations. That difference in pressure between simulations and experiment
before the maximum pressure is attained, becomes larger with increasing levels
of aeration. Similar results were found by Elhimer et al. [81] and Ma et al. [168]
who explained the difference by a layer of froth at the free water surface that
becomes larger with higher levels of aeration. The explanation seems plausible
and consistent with what can be observed from Fig. 6.21, but at present we lack
the means to investigate this further.

The pressure maxima in simulations and experiment, with their respective band-
widths, are plotted as a function of level of aeration in Fig. 6.22. An uncertainty
of 2%, as a result of the simulation results not being completely converged for
maximum pressures, are included in the graph. Fig. 6.22 confirms that the level
of aeration hardly affects the maximum impact pressures for the wedge with a
deadrise angle of 30[deg]. The pressure maxima from the simulations are within
the uncertainty band of the experiments, for both wedges at both pressure sensor



6

6.7 2d wedge impact with aerated water 233

locations. For the wedge with a deadrise angle of 15[deg], the effect of aeration
on the maximum impact pressure is significant. The trends for increasing levels
of aeration between simulations and experiment are different. The aerated water
in the experiment seems to become more compressible with increasing level
of aeration than the modelled air-water mixture in the simulations. This could
potentially have to do with the fact that ratio of air to water for higher levels of
aeration is such that bubbles start to influence each other and that the assumption
of homogeneity is not valid anymore.
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(a) Pressure sensor 1.
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Figure 6.22. Maximum impact pressures for different levels of aeration. Simulation re-
sults are compared with experimental result. The band around the experi-
mental pressure maxima is formed by one standard deviation. The band
around the simulated pressures is formed by the uncertainty due to the
grid size and the variation in measured aeration values near each aeration
level.

6.7.5 Comparison simulations and experiment: post-impact pressure oscillations and
frequency analysis

The wedge impacting with the aerated water generates density waves due to the
compressibility of the air-water mixture. The density wave reflect off of domain
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boundaries and propagate back to the wedge. The back-and-forth propagation
of the density waves causes pressure oscillations on the wedge. A time sequence
of the simulated pressure after impact for the wedge with 𝛼 = 15[deg] and for
aerated water with 𝛽𝑔 = 0.04[-] is shown in Fig. 6.23. Grid 109x29 was used for
the simulation. The density waves become apparent by their front, which shows
as a barrier between regions with higher and lower pressure that propagates
through the domain.
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Figure 6.23. Time sequence of simulated pressure fields for wedge impact 𝛼 = 15[deg]
and 𝛽𝑔 = 0.04[-] at different time instances. From the sequence it becomes
apparent that density waves are formed that propagate through the domain.
The numerical grid was 109×29.

In Fig. 6.24, the simulated pressure over time along the chine of the wedge with
a deadrise angle of 𝛼 = 15[deg] is shown for four levels of aeration. Grid 109×29
was used for the simulations. In the simulations, an increase in aeration level
results in an increase in amplitude of the post-impact pressure oscillations.



6

6.7 2d wedge impact with aerated water 235

−0.1 0 0.1

0

0.02

0.04

x [m]

t
[s

]

(a) 𝛽𝑔 = 0.0[-].

−0.1 0 0.1

0

0.02

0.04

x [m]

0

1 · 105

2 · 105

3 · 105

[P
a]

(b) 𝛽𝑔 = 0.01[-].

−0.1 0 0.1

0

0.02

0.04

x [m]

t
[s

]

(c) 𝛽𝑔 = 0.02[-].

−0.1 0 0.1

0

0.02

0.04

x [m]

0

1 · 105

2 · 105

3 · 105

[P
a]

(d) 𝛽𝑔 = 0.04[-].

Figure 6.24. Simulated pressure along bottom of wedge (𝛼 = 15[deg]) over time for
different levels of aeration. Interaction of reflected density waves pressure
oscillations on the wedge. Numerical grid used is 109×29.

A Fourier analysis of the signal in Fig. 6.24 at the (inner positioned) pressure
sensor 1 is illustrated in Fig. 6.25. For the aeration levels 𝛽𝑔 = 0.01, 0.02, 0.04[-] a
speed of sound (𝑐𝑓) of around 109, 77, 55[m/s] is found. The domain frequency
related to the position of the bottom or the side walls of the domain can be
calculated with 𝑐𝑓/(2ℎ𝑤) (where ℎ𝑤 = 0.495[m]). The time range the pressure
signals are analyzed is from 0.002[s] after maximum pressure to ℎ𝑤/𝑐𝑓[s] such
that the density wave can be experienced two times after the peak pressure. The
pressure oscillations are obtained by filtering the pressure signal with a high
pass filter up to 40[Hz] for all aeration levels, not to interfere with the domain
frequency and remove the ”non-oscillating” signal. The same time signal for
all cases, numerical and experimental, is used for equal comparison. A Fourier
analysis of the obtained pressure oscillation signals is illustrated in Fig. 6.25.
The magnitude is normalized by the maximum mean pressure peak found in
the experiment for pressure sensor 1 in Fig. 6.22 to show the relevance of the
post-impact loadings.
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For aeration level 𝛽𝑔 = 0.0 in Fig. 6.25a, a frequency in the experimental re-
sults is found of around 450[Hz] which could correspond with some air left
in the water (𝛽𝑔 = 0.0005). The experimental frequency is also found for other
aeration levels meaning that this is not the case and is related to the vibration
of the setup. For this reason, we only look to lower frequency effects (< 400[Hz]).

The experimental and numerical results show that an increase in aeration level
resulted in a longer continuation of the pressure oscillations with a lower fre-
quency. The domain frequency for the bottom, given by the straight dashed lines,
and the sidewalls, given by the straight dotted lines, and their higher modes do
fit with the governing frequencies. An increase in the aeration level results in a
shift in frequencies. The shift in frequencies for increasing aeration is conform to
the mixture speed of sound formulation in Eq. (6.24). The governing frequencies
agree fairly with the double frequencies of the speed of sound (𝑐𝑓/(2ℎ𝑤)). The
governing frequencies are slightly higher than the ones found with the dashed
lines because of the shortened distance ℎ𝑤 due to the penetration of the wedge.
The (relative) magnitude of the pressure oscillations increases with the aeration
level up to 20% numerically and up to 4% experimentally which is in agreement
with the results found in Fig. 6.23.

The difference between the experiment and numerical model, besides mentioned
above in Sec. 6.7.4, need some explanation. Low aeration levels, like for the
maximum pressure, are numerically better predicted. Higher aeration levels
are conservatively predicted by the numerical model and shows a difference
in physics accounting for. The density waves are more damped experimentally
than numerically related to the homogeneous assumption. In the experiment the
mixture is due to the bubbles not fully homogeneous leading to diffusion, and
the bubbles do interact and can lead to reflection. The numerical homogeneous
assumption results in a prediction of the shock front (a sharp jump in pressure)
which is in the experiment not found. This is part of 3D effects, where 2D in
essence result in higher loads [79]. The model does not acccount for air pocket
fragmentation, bubbles are from nature 3D, which also could prevent damping.

The assumption made in this work for not correctly modedling the discontinuity
shows therefore no problems for predicting impacts like the presented wedge im-
pact. The homogeneous assumption is correct for low aeration levels, in this case
up to 1%. Besides the agreement with the domain frequencies, a fair agreement
for the governing frequencies is found between the experiment and numerical
results.
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(b) Fourier 𝛽𝑔 = 0.0[-] until t = 0.02[s].
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(c) Signal 𝛽𝑔 = 0.01[-] until t = 0.02[s].
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(d) Fourier 𝛽𝑔 = 0.01[-] until t = 0.02[s]. Longi-
tudinal ( ) and transverse ( ) mode.
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(e) Signal 𝛽𝑔 = 0.02[-] until t = 0.03[s].
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(f) Fourier 𝛽𝑔 = 0.02[-] until t = 0.03[s]. Longi-
tudinal ( ) and transverse ( ) mode.

Figure 6.25. Signals found after subtraction and Fourier transform of the post-impact
loadings for 𝛼 = 15[deg]. Signal used for analysis is 0.002[s] after impact.
The signal is high-pass filtered (40[Hz]) resulting in the pressure oscillation
caused by densitywaves. The numerical grid used is 109×29. The red dashed
lines indicate the domain frequencies from the bottom wall (longitudinal)
and the red dotted lines from the side walls (transverse).
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(g) Signal 𝛽𝑔 = 0.04[-] until t = 0.04[s].
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(h) Fourier 𝛽𝑔 = 0.04[-] until t = 0.04[s]. Longi-
tudinal ( ) and transverse ( ) mode.

Figure 6.25. Signals found after subtraction and Fourier transform of the post-impact
loadings for 𝛼 = 15[deg]. Signal used for analysis is 0.002[s] after impact.
The signal is high-pass filtered (40[Hz]) resulting in the pressure oscillation
caused by densitywaves. The numerical grid used is 109×29. The red dashed
lines indicate the domain frequencies from the bottom wall (longitudinal)
and the red dotted lines from the side walls (transverse).

6.8 Conclusion
A new compressible pressure-based multiphase model is presented for modeling
the interaction of homogeneous aerated water with moving bodies. It is efficient
because the operation that requires most computational effort is solving the Pois-
son problem for the pressure with a number of unknowns equal to the number of
grid cells in the domain. Themodel can deal with high-density ratio compressible
flows using a non-conservative formulation for transport of the interface. The un-
physical increase of compressibility, caused by a non-continuous representation
of the interface leading to artificial air entrainment, is prevented by means of
an additional volume fraction field and a new formulation for the speed of sound.

The numerical results are in good agreement with solutions for traditional com-
pressible multiphase flow cases: an oscillating water piston, a shock tube for
separated and dispersed phases, and a cylindrical helium shock bubble. The test
cases demonstrate the method’s ability to handle contact discontinuities and rar-
efactions. Geometrical reconstruction of the fluid-fluid and fluid-body interfaces
kept these interface sharp. Issues with wiggles around the contact discontinuity
were not encountered, because the Courant limit of our formulation depends
on the fluid velocities and not on the speed of the density waves. Even with
coarse grid resolutions, the pressure levels in propagating density waves were
well predicted, but the discontinuity between pressure levels was diffused over
a couple of grid cells.
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An 2D experimental setup for wedge impacts with water was converted specifi-
cally for this work to validate the numerical method for the interaction between
aerated water and moving bodies in terms of the pressure. Air diffusion stones
were placed on the bottom of a box with water to generate aeration levels up
to four percent (by volume). We considered Mach numbers of up to 0.5, based
on the maximum flow velocity of the jets and the mixture speed of sound. The
numerical and experimental results are in good visual agreement for lower aer-
ation levels, both showing a similar maximum pressure and development of
the pressure over time. For a deadrise angle of the wedge of 15 degrees the
differences at higher aeration levels are larger. For the higher aeration levels, the
maximum pressures in the experiment during impact were lower than in the
simulations. We believe this can be due to inhomogeneity of the mixture in the
experiment at higher aeration levels.

The post-impact pressure oscillations due to density waves reflecting from the
domain boundaries had higher amplitudes in the simulations than in the experi-
ment. The post-impact oscillation amplitudes become larger when the aeration
level, up to 4% of the maximum impact pressure in the experiment and up to
20% in the simulations. The governing frequencies of the post-impact oscillations
were in good agreement. The speed of sound in the water-air mixture, there-
fore, is represented well. It is a matter of future study which parts of numerical
method influence the amplitudes of the density waves after impact, so that the
method becomes a better representation of the experiment. The assumption of
homogeneity looks applicable for aeration levels up to 1%.





Part III

NUMER ICAL IMPROVEMENTS FOR INTERFACE
MODEL ING OF HIGH-DENS ITY RAT IO FLOWS

This part concerns the numerical improvements with respect to mod-
eling the interfaces (Ch. 7), experienced for simulations involved
with aeration using the fully compressible multiphase model in Ch. 6.
A decrease of discontinuity in the free surface decreases the amount
of artificial non-reconstructed air in water and increases accuracy
of tracking. A mentioned inconsistency in the transport due to a
reconstruction step needs to be prevented.

Photo: [181]





7

7
AN EFF IC IENT 2D B IL INEAR INTERFACE

RECONSTRUCT ION ALGOR ITHM AND CONS I STENT
MULT ID IMENS IONAL UNSPL IT ADVECT ION SCHEME FOR
ACCURATE TRACK ING OF H IGHLY-CURVED INTERFAC IAL

STRUCTURES ON UNIFORM GR IDS

This chapter is reproduced from [76] :

M. van der Eijk and P. R. Wellens. “An 2D efficient bilinear interface recon-
struction algorithm and consistent multidimensional unsplit advection scheme
for accurate tracking of highly-curved interfacial structures on uniform grids.”
Journal of Computational Physics (nd)

Abstract
A new bilinear interface reconstruction algorithm (BLIC) is presented to capture highly-
curved interfaces more accurately on structured grids without a significant increase
in computational costs compared to the standard piecewise linear interface calculation
(PLIC) methods. The new reconstruction algorithm uses the initial PLIC segment and
improves continuity of the interface using an averaging method. A curvature-weighted
method improves the repositioning of the linear segments.
A new unsplit donating quadrant advection (DQA) scheme is introduced that is

conservative and can create consistency with the momentum flux for two-phase flow
models with a staggered MAC arrangement of variables within a grid cell. The consistent
discretization of the fluxes prevents spurious interface velocities, negative densities, and
instabilities. Standard 2D test cases and benchmarks demonstrate the performance of the
BLIC and the DQA scheme, showing high accuracy and low costs compared to other
available methods.

243
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7.1 Introduction
7.1.1 Motivation and Volume-of-Fluid method
Modeling an interface between two separated fluid structures is a general appli-
cation in industry. An application example for interface modeling is breaking
water waves. Breaking wave impacts can enforce high peak pressures on marine
structures. The forces are difficult to predict due to the complex free surface
configuration of a breaking wave. Analytical expressions, assumptions, and em-
pirical relations are currently used for the prediction of these forces which do not
account for all their physical variability, hence the need for accurate free surface
resolving numerical methods.

Sophisticated low-cost numerical two-phase flow models would decrease the
uncertainty in determining the acting forces on marine structures. These models
can also be used for a better understanding of the physics. This work proposes
two new low-cost algorithms that improve the accuracy of modeling an interfa-
cial flow compared to state-of-the-art approaches: an interface reconstruction
algorithm and a stable interface advection scheme, both for use in numerical
two-phase flow models.

There are multiple ways of interface modeling available for a two-phase flow
model. One type of categorization is that between interface-capturing and interface-
tracking techniques. The interface-tracking approach is a technique that explicitly
transports Lagrangian markers surrounding an interface [216]. Disadvantages of
such an approach are the difficulty of handling arbitrary changes of the topology
and complex operations like the merging and breakup of interfaces [234]. In
this work, we consider interface-capturing. Many interface-capturing techniques
exist, e.g. Volume-of-Fluid (VOF) methods using a discrete volume fraction field
𝐶𝑓 having a value between 0 and 1 to identify the position of the interface, and
level-set methods using the signed distance to the interface.

The level-set method is easily differentiable, but often not fully mass conserving
without special measures [198, 253]. This work focuses on a VOF method that
enforces strict volume conservation. A VOF method [115] uses a color function
𝑓 (x, 𝑡) as an indicator of the material present at a defined position. The advection
equation is

𝐷𝑓
𝐷𝑡 =

𝜕𝑓
𝜕𝑡 + (u ⋅ ∇) 𝑓 = 0, (7.1)

where u is the interface velocity. The interface motion is approximated on a
numerical grid of discrete cells covering the physical domain at hand. Cells are
control volumes for governing equations like Eq. (7.1). In the discrete represen-
tation of Eq. (7.1), volume fraction field 𝐶𝑓 is the average of the continuous color



7

7.1 introduction 245

function over a given cell.

A VOF method for capturing the interface consists of two parts: the geometrical
interface reconstruction and fluid advection. Geometrical interface reconstruction
is required for finding the position of the interface from the color function.
Fluid advection works by determining the donating regions and the fluxes. The
donating region is the volume that is transported through the cell face while the
flux is the quantity of the captured fluid going through the cell face. Our focus is
on geometrical reconstruction using VOF although algebraic reconstruction [243,
302] or no reconstruction with compressive terms would also have been options
when our interest would have been on only the two phases of fluid. There are
faster methods than geometric reconstruction, using explicit analytic formulas (a
Moment of Fluid method [182]). Algebraic reconstruction requires less complex
coding and computational costs than geometrical reconstruction, but may have
lower accuracy for similar grid resolutions. With this work, however, we aim
to resolve challenges with two-phase flow modelling especially when an object
is present, challenges that were encountered in our method [80] and in others.
The implementation of the new schemes required to address the challenges is
investigated in 2D on structured grids for two-phases. A reflection regarding
their implementation in 3D is formulated.

7.1.2 Brief literature overview of geometrical interface reconstruction
Early algorithms to predict the interface orientation are the piecewise linear
approximation [54], a stair case approximation [115], and simple line segments
aligned with one of the grid axes (SLIC) [194]. These algorithms have a disad-
vantage that they can not keep fluid structures together due to the discontinuity
in the interface from cell to cell; diffusion of the interface results in unphysical
disconnecting droplets.

The Piecewise Line Interface Calculation (PLIC) method was an improvement
over SLIC because it uses a linear function instead of a constant function of the
spatial coordinates for determining the interface position in a grid cell. Even
though the PLIC method still suffers from interface discontinuity at the faces of a
grid cell, the PLIC method is often used to good effect. Many methods are avail-
able for determining the interface orientation, e.g. Parker and Youngs’ method
[202], (efficient) least square interface reconstruction (ELVIRA) [210], least-
square gradient [226], height function scheme (Centered Columns) [210], Mixed
Youngs-Centered (MYC) implementation [6], Centroid-Vertex Triangle-Normal
Averaging (CVTNA) [160], piecewise continuous linear interface calculation
(PCLIC) [271], and linear or quadratic fitting [235].
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After the introduction of the PLIC method, other methods with higher-order
functions in the spatial coordinates for the reconstruction were introduced. Price
[217] proposed a parabolic reconstruction method (PPIC) based on a second-
order equation for the interface segment. Similarly, Renardy and Renardy [223]
presented a three-dimensional parabolic approach called PROST. Both meth-
ods showed an increase in accuracy but also in computational costs caused by
iterative steps. The discussed parabolic reconstruction methods still display dis-
continuities in the interface. A reconstruction method that aims to reduce the
discontinuity between the material interfaces is Patterned Interface Reconstruc-
tion (PIR) [186] using planar interfaces. This method is second-order accurate
but does not fully satify continuity.

Further developed methods enforced the continuity of the interface. Sometimes
even equality of the line segments’ first derivative on either side of a cell faces is
satisfied. The following references in this paragraph all found that a continuous
representation of the interface reduces the diffusivity of the interface. Reconstruc-
tion methods based on cubic splines of Ginzburg and Wittum [100] and López
et al. [163] (SIR) resulted in continuity and improved estimation of the curvature.
However, the interfaces are wavy due to the non-locality of errors. Diwakar, Das,
and Sundararajan [65] proposed the Quadratic Spline based Interface (QUASI)
reconstruction algorithm satisfying the continuity and first derivative constraint.
Although the QUASI method showed improved accuracy, the computational
costs are an order higher than the standard low-order reconstruction methods.
The noniterative PQLIC method [271] using quadratic lines has improved accu-
racy but, again, a significant increase in computational costs. Furthermore, the
PQLIC method is not fully conservative. Another method worth mentioning is
the piecewise circular arc interface calculation (PCIC) method [172] that makes
use of a correction such that the interface is continuous. Other recently published
methods provide higher-convergence rates but do not tackle topological changes
of the interface like the methods discussed above [31, 313].

The reconstruction methods using higher-order functions are accompanied by an
increase in the difficulty of flux calculations, computational costs, and sometimes
additional computational (iterative) steps. For increasing the accuracy of repre-
senting an arbitrary (highly-curved) fluid structure like a breaking wave with
small flow features, the accuracy and sharpness improvement of the interface
does not always outweigh the increase in computational costs. An example of
such a highly-curved fluid structure is illustrated in Fig. 7.1.
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Figure 7.1. Comparison free surface experimental & numerical data of a 2D wedge entry
representing a section of a marine structure [78]; – experiment left side, –
experiment right side, – numerical result at 0.092[s]. The ’h’ and ’w’ indicate
the height and width position, respectively. The impact speed is up to 7[m/s]
for a wedge with with a deadrise angle of 15[deg] and a width of 0.218[m].

Our new reconstruction algorithm aims to improve the accuracy of reconstructing
highly-curved interfaces without a significant increase in computational costs
compared to a PLIC algorithm using the Volume of Fluid method. The algorithm
should be robust for an accurate interface reconstruction; the implementation
needs to be straightforward. An iterative scheme is avoided such that no thresh-
olds are needed. Compared to a PLIC algorithm, the presented scheme should
reconstruct the interface with higher accuracy. We call the new algorithm the
BiLinear Interface Calculation (BLIC) method. It is discussed in Sec. 7.2.

7.1.3 Brief literature overview of fluid advection schemes
The second part of a VOF method is fluid advection. Fluid advection geomet-
rically estimates the fluid fluxes through the faces of a grid cell as a means of
transporting the interface. The donating region and the corresponding recon-
structed interface determine the size of the fluid flux. A distinction between two
kinds of fluid advection schemes is made: an operator-splitting advection scheme
and an unsplit advection scheme.

The operator-splitting schemes are characterized by the ease of determining the
donating region and by how many calculation steps are required for the final
fluid flux. These calculation steps can be split into two parts; determining the
fluid flux in one direction and intermediate geometrical interface reconstruc-
tions. The advantage of a direction-split scheme is that it is straightforward to
implement and robust. However, they show numerical diffusion and geometrical
splitting errors that distort the interface [210]. The Conservative Operator Split-
ting for Multidimensions with Inherent Constancy (COSMIC) scheme [155] tries
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to minimize these errors and is used for comparison in this work with unsplit
advection schemes. The choice for COSMIC as a reference is made because it
was applied in our research field a number of times before [74, 80]. The focus of
this work is on unsplit advection schemes.

The second kind of fluid advection algorithm, unsplit advection schemes, pre-
vents geometrical errors and the intermediate reconstruction step(s) by fluxing
at once, sometimes in multiple directions, based on a polygon forming the do-
nating region. The polygon is a plane figure described by a finite number of line
segments resulting in a closed shape for every cell face. The polygon represents
the donating region used for determining the flux. Polygon reconstruction is
based on the velocity magnitude at the cell face and the surrounding velocity
field.

Themajority of unsplit advection schemes discussed here are for structured grids,
but it is worth mentioning two recently proposed unsplit advection schemes for
unstructured grids without going intomore detail: a new triangulation algorithm
with a modified Swartz method (UFVFC-Swartz) that shows high accuracy on
unstructured grids [175], and a blended high-resolution scheme described as
simple and efficient [141].

Many (multidimensional) unsplit advection schemes for structured grids are
available, but not all advection schemes are without problems. The problems are
characterized by Comminal, Spangenberg, and Hattel [47]: overlapping of do-
nating regions (non-conservative), gaps between the donating regions (diffusion
of interface), and non-conforming donating regions (undershoot or overshoot
because the edges of the adjacent donating regions do not have the same length).

Early unsplit advection schemes were introduced by Rider and Kothe [226],
Pilliod Jr. and Puckett [210] and Puckett et al. [219], and Harvie and Fletcher
[109]. The Rider and Kothe scheme estimates the donating regions by a polygon
based on face-centered velocities. Where the advection scheme is straightforward
and has low costs, it is non-conservative because of overlapping donating regions
and the diffusivity of the interface. The conservative Defined Donating Region
(DDR) scheme of Harvie and Fletcher [109] prevents the overlap but increases
the diffusivity of the interface and has a lower order of accuracy. Higher accuracy
is obtained by Puckett’s scheme, allowing, in contrast to DDR, fluid to enter and
exit a cell in one time step while still being conservative. None of the discussed
schemes results in conforming donating regions.

López et al. [163] proposed the Edge-Matched Flux Polygon Advection (EMFPA)
scheme. Different than the advection schemes above, it is based on vertex ve-
locities instead of face-centered velocities. The EMFPA scheme is accurate and
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conservative. However, the advection scheme did not initially result in conform-
ing regions due to the volume corrections needed to satisfy the volume constraint,
i.e. the volume of the polygon that satisfies the flux size based on the face-centered
velocity.

More variations of the volume corrections of EMFPA are proposed [159, 180],
but they did not solve the non-conforming regions. Cervone et al. [35] proposed
an additional volume correction that solved the problem of conforming regions.
The FMFPA-3D scheme of Owkes and Desjardins [199] showed another solution
for having conforming donating regions using EMFPA. They added a simplex to
the polygon to create a solenoidal fluid flux.

The advection schemes discussed above are based on polygons constructed of
linear edges. More sophisticated advection schemes, like Cellwise Conservative
Unsplit advection (CCU) [47] using streaklines and the Stream scheme [108]
using stream tubes, are not discussed in this work because of the computational
costs. The CCU scheme showed to be around seven times more expensive than
the EMFPA scheme.

Conclusions found in existing literature for a consistent two-phase flow solver
[80] are the reason for introducing a new fluid-advection scheme. Eijk and
Wellens [80] use a consistent approach to determine the mass and momentum
fluxes on a staggered MAC arrangement of variables. A temporary continuity
equation and densities discretized with the mass fluxes are used for consistency
[320]. Eijk and Wellens [80] concluded that a direction-split advection scheme,
like the COSMIC scheme, leads to inconsistency between the mass and momen-
tum transfer and an increase in instability of the interface. The inconsistency is
caused by a combination of the intermediate geometrical interface reconstruction
step and the staggered MAC arrangement of variables. The densities resulting
from the temporary continuity equation can even be negative, leading to insta-
bility of the interface.

EMFPA [199] prevents the intermediate geometrical reconstruction step while
remaining conservative. However, as EMFPA is based on cell-vertex velocities,
the created polygon can result in a so-called ”negative” donating region. An
example is illustrated in Fig. 7.2. The blue donating region self-intersects through
the cell face resulting in a donating and a receiving volume at the same time. The
receiving volume is of the opposite sign than the velocity centered at the cell face
(𝑢𝑓 𝑎𝑐𝑒). There is the possibility that the final flux (𝛿𝐶𝑓) found with the receiving
region is larger than the donating region or even the volume constraint. This is
not correct, because the flux and the face-centered velocity have opposite signs.
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Negative receiving volume

Positive donating volume

𝑢𝑓 𝑎𝑐𝑒

Figure 7.2. Example with EMFPA scheme resulting in a negative donating region. The
donating region is given by the blue lines . This region can generate a
receiving flux larger than the donating one for a geometrically reconstructed
interface, which is incorrect. The geometric fluid structure is given by . The
flux 𝛿𝐶𝑓 (hatchedwith –) has a different direction (indicated by a blue arrow)
than the face-centered velocity 𝑢𝑓 𝑎𝑐𝑒 (indicated by a black arrow). The faces
of a grid cell are given by –. A cell vertex is given by ×.

From the authors’ point of view, the donating region in Fig. 7.2 is in contradiction
with the momentum fluxes for two-phase flow solvers in which the velocity is
assumed constant over the cell face; the momentum flux and mass flux based
on the face-centered velocity can have a different sign from the VOF flux. The
negative region can result in negative densities for a two-phase flow solvers such
as Eijk and Wellens [80]. The problems of splitting schemes and the negative
densities with EMFPA are discussed in more detail in Sec. 7.6.

The new advection scheme introduced below is a multidimensional unsplit VOF
advection scheme that is conservative, conforming, and allows the material to
enter and exit a grid cell in one time step. Face-centered velocities are used to
prevent negative regions. We call the advection sheme DQA, which stands for
donating quadrant advection. It is seen as a modification of EMFPA and the
Rider-Kothe scheme that should obtain similar accuracy to EMFPA.

7.1.4 Structure of this work
This work starts with the introduction of the BiLinear Interface Calculation
(BLIC) algorithm. In Sec. 7.3 the new BLIC method is compared with two stan-
dard PLIC methods for the static reconstruction of two shapes. In Sec. 7.4 the
donating quadrant advection (DQA) scheme is introduced. The combination
of the BLIC and DQA schemes are compared with other available methods in
terms of accuracy and computational costs for traditional transport benchmarks
in Sec. 7.5. In Sec. 7.6 the consistent application of the advection scheme for a
two-phase solver [80] with a staggered arrangement of variables is discussed.
The occurrence of negative densities when using a split advection scheme or the
EMFPA scheme is highlighted. Instabilities caused by the reconstruction step
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and prevention of negative densities are illustrated in Sec. 7.6.4 for the example
of a translating bubble. Conclusions are formulated in the final section.

7.2 BiLinear Interface Calculation
The new reconstruction method presented here will be called BiLinear Interface
Construction (BLIC) method. It consists of the following steps:

1. Identification of the cells defined as interface.
2. An initial Piecewise Linear Interface Construction (PLIC) per cell is defined

as an interface based on the gradient of the volume fraction and the volume
in a cell 𝐶𝑓.

3. The determination of cell face values, which are a measure of the part of
the cell face that is in contact with the captured fluid 𝐶𝑓.

4. The application of weighted averaging on either side of the cell face to
create continuity of the interface.

5. Addition of a control point, resulting in a bilinear interface, to keep the
volume of 𝐶𝑓 the same.

The number of the step refers to the number of the subsection below in which
the step is discussed. The method should remain low-in-costs, achieve higher
accuracy for highly curved interfaces, and increase the continuity of the interface
compared to PLIC methods. The scope of the implementation is limited to 2D.
Considerations about extending the implementation to 3D are given at the end
of this chapter. PLIC methods (e.g. Parker and Youngs, least-square gradient,
ELVIRA) are portable to unstructured grids [128]. The BLIC method is a low-
effort extension of PLIC which would be equally portable to unstructured grids.

7.2.1 Identification of the interface
Labeling of grid cells is used to account for the position of the interface between
two fluids. The labels decide where the reconstruction of the interface takes place.
The choice for the label of each cell is based on the volume fraction. The volume
fraction 𝐶𝑓 indicates the degree to which a grid cell is filled with fluid and takes a
value between 0 and 1. We have adopted the labeling system of Eijk and Wellens
[80], omitting solid structures (B label) for brevity. In Fig. 7.3, the labeling of the
cells in a domain containing two fluids is illustrated, using label E(mpty) for cells
completely filled with the lighter of the two fluids (𝐶𝑓 = 0), the label S(urface)
for cells with some of the heavier of the two fluids adjacent to aligned E cells,
and the label C(orner) for one diagonally neighboring E cell. A S-cell is found
when 𝐶𝑓 > 0 and a neighboring cell in the horizontal or vertical plane is E(mpty).
A C-cell is labeled after finding the S-cells, when 𝐶𝑓 > 0in a cell and neighbours
diagonally to a E-cell. Remaining cells are defined as F(luid) cells. S-labeled cells
and C-labeled cells need reconstruction of the interface between the two fluids.
Why S-cells and C-cells are labeled differently is because of continuity of the
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interface and will become clear later in this section. S-cells and E-cells are also
referred to as interface cells.

F F F F F

C S C F F

S E S C F

E E E S S

E E E E E

𝐶𝑓 = 1

𝐶𝑓 = 0

0 < 𝐶𝑓 < 1

Figure 7.3. Labeling of cells [80]; labels F, S, C, and E. Fluid is indicated by (𝐶𝑓 > 0).

7.2.2 Initial PLIC reconstruction
A PLIC method uses a piecewise linear segment that approximates the real
physical interface in a cell. An example of such a linear segment is illustrated in
Fig. 7.4. It is described by the following 2D equation

𝑚𝑥𝑥 + 𝑚𝑦𝑦 = 𝛼, (7.2)

where m = [𝑚𝑥, 𝑚𝑦]𝑇 is the interface orientation, x = [𝑥, 𝑦]𝑇 the position vector
of a point on the interface, and 𝛼 the distance to the origin so that the interface
satisfies the volume constraint 𝐶𝑓 for the given interface orientation. The distance
to the origin 𝛼 of the interface is found analytically, as in Scardovelli and Zaleski
[233], either in 2D or in 3D.

y
x

m
𝛼

x = [x, y]

Figure 7.4. A quarter circle reconstructed using piecewise linear segments (PLIC); the
normal vector m and height value constant 𝛼 for a random x are illustrated
for a 3×3 stencil. Fluid is indicated by (𝐶𝑓 > 0).
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The first step of a PLICmethod is to identify the interface orientation, often based
on the gradient of the volume fraction. Many methods to determine the interface
orientation are published and discussed above. In the presented work, Parker
and Youngs’ method and Mixed Youngs-Centered (MYC) are discussed because
of their ease of implementation and the relatively low costs [74]. Here, in any
case, Parker and Youngs and MYC are compared to identify their effect on the
final reconstruction. Diwakar, Das, and Sundararajan [65] mentioned that for
their higher-order QUASI method, the interface orientation method for the initial
PLIC is expected not to be relevant for the final reconstruction. We will find out
if this is also the case for the BLIC method.

The Parker and Youngs’ method, for a 2D grid, determines the gradients of the
volume fraction 𝐶𝑓 at four corners of the central grid cell using finite difference.
The gradients are normalized and averaged, resulting in the interface orientation
m. The method is first-order accurate, but the errors in the reconstruction are
comparable to second-order methods [210, 235].

The Mixed Youngs-centered (MYC) method [6] is a mix between the Parker and
Youngs’ method and the standard height function approach with a stencil of 3×3
grid cells. It is described as a fast and accurate way to compute the interface nor-
mal m. Aulisa et al. [6] showed that the implementation outperforms the Parker
and Youngs’ method [202] in terms of accuracy and approaches second-order
accuracy. Düz [74] reported the MYC implementation as a good compromise
between accuracy and computational cost.

7.2.3 Face values
The next step of the BLIC method is determining the face values of the PLIC
reconstruction. Every PLIC line contains two endpoints positioned at a cell face.
An example is illustrated in Fig. 7.5. The face value is determined by a PLIC
endpoint, illustrated by . 𝐴 is a value between 0 and 1 that describes the part of
a cell face that connects to the heavier fluid (𝐶𝑓 = 1). These endpoints are found
analytically [233]. The 2D PLIC line forms a quadrangular or triangular shape,
uniquely described by 𝑚𝑥, 𝑚𝑦, and 𝛼. For every cell with label S or C a PLIC line
is computed. The endpoints of PLIC lines in the two cells on either side of a cell
face in general do not coincide. The face apertures based on the PLIC lines left
and right cell face, 𝐴𝑙𝑒𝑓 𝑡 and 𝐴𝑟𝑖𝑔ℎ𝑡, are combined so that face aperture 𝐴 is the
average of 𝐴𝑙𝑒𝑓 𝑡 and 𝐴𝑟𝑖𝑔ℎ𝑡.
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𝐴𝑙𝑒𝑓 𝑡 𝐴𝑟𝑖𝑔ℎ𝑡

𝐴

𝑆 𝑆 𝑆𝐸

𝑆 𝐹

𝐸 𝐸

Figure 7.5. Definition of face values 𝐴. Fluid is indicated by . PLIC endpoints . A more
continuous endpoint is found by averaging PLIC endpoints. The labeling of
the cells and the surrounding cells is shown by means of letters 𝐹, 𝑆 and 𝐸.

The neighboring PLIC endpoints may be not positioned on the same cell face.
This makes it harder to obtain continuity of the interface. Repositioning of the
endpoints then is needed. Examples of how endpoints could be repositioned is
illustrated in Fig. 7.6, which are inspired by the approach of Diwakar, Das, and
Sundararajan [65]. The red arrows show the directions in which PLIC endpoints
are moved. Every situation needs a different treatment to determine face aperture
𝐴, created by the more continuous interface that is represented by means of he
dashed lines after repositioning the endpoints.

We want to avoid distinguishing between situations like in Fig. 7.6 to limit the
involved computational effort. A such method should satisfy the following con-
straints

1. the face value 𝐴 of an edge in an interface cell (S-or C-cell) neighboring a
F-or E-cell is equal to 1 or 0, respectively;

2. a S-or C-cell has two face values 𝐴 between 1 and 0;
3. the volume constraints are enforced without iteration or a significant in-

crease in computational costs;

and is described in the next section.

𝑆 𝑆 𝑆𝐸

𝑆 𝐹

𝐸 𝐸

(a) Both values 𝐴𝑙𝑒𝑓 𝑡 and 𝐴𝑟𝑖𝑔ℎ𝑡 between 0 and 1 on common edge.
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𝑆
𝑆

𝑆𝐸

𝑆 𝐹

𝐸 𝐸

(b) Full face value on common edge; 𝐴𝑙𝑒𝑓 𝑡 = 1 and 0 < 𝐴𝑟𝑖𝑔ℎ𝑡 < 1.

𝑆 𝑆 𝑆𝐸

𝑆 𝐹

𝐸 𝐸

(c) A zero face value on common edge; 0 < 𝐴𝑙𝑒𝑓 𝑡 < 1 and 𝐴𝑟𝑖𝑔ℎ𝑡 = 0.

𝑆
𝑆

𝑆𝐸

𝑆 𝐹

𝐸 𝐸

(d) No common edge with face values 𝐴𝑙𝑒𝑓 𝑡 and 𝐴𝑟𝑖𝑔ℎ𝑡 equal to 1.

Figure 7.6. Four different situations of PLIC reconstructions to obtain continuity along
the interface without satisfying the volume constraint yet [65]. Each situation
ask for a different treatment to find the endpoints, which requires compu-
tational effort. A method that avoids distinguishing between situations is
proposed in Sec. 7.2.4. Fluid is indicated by . PLIC endpoint . Continuous
endpoint . The labeling of the cells and the surrounding cells is shown by
means of letters 𝐹, 𝑆 and 𝐸.

7.2.4 Averaging method: curvature weighted
The proposed averaging method for determining the new face value 𝐴 is based
on the motto that the curvature is more accurately predicted by a piecewise linear
segment when the curvature is close to zero. When averaging, the method gives more
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weight to the parts of the interface that have low curvature. A piecewise linear
representation for those parts is expected to be more accurate than for the parts
of the interface with high curvature. Weighted averaging prevents the parts of
the interface with high curvature from influencing the parts with low curvature,
improving the overall accuracy of the interface reconstruction. A better curvature
prediction gives a more accurate representation of the face values of the interface.

The curvature is calculated for interface cells (S-and C-cells). Curvature is not
defined for the remaining labels.Manymethods are available to predict curvature.
In this work, we will only highlight two; the standard height function technique
[50, 215] and the classic technique using finite difference [1, 202]. These methods
are chosen for their relative ease of implementation.
The curvature (𝜅) is defined as

𝜅 = −∇ ⋅ (
∇𝜙

||∇𝜙||) , (7.3)

where 𝜙 can be a height value (a sum of aligned volume fractions) or just the
volume fraction 𝐶𝑓. The standard height function technique is described by, for
instance, Kleefsman et al. [142], using a 3×3 stencil. When the interface is more
vertical than horizontal, the height function is defined parallel to the horizontal
axis. The finite difference technique to calculate the curvature is based on the
approach of Parker and Youngs [202]. The approach computes the normal vector
to the interface at every corner of a cell. The difference in normal vectors at the
corners results in the curvature of the free surface in that cell, defined at the cell
center.

An example of a interface on a 3×3 stencil is shown in Fig. 7.7. The curvature
at the corner of the fluid body in this example should approach infinity; the
values for the height function technique and the classic finite difference technique
are given. Fig. 7.7 is an extreme example, with a strongly underresolved free
surface configuration, to exaggerate the issue with the standard height function
technique. The issue with the standard height function technique is that applying
the method at sharp corners of the interface can lead to negative values of the
curvature. To avoid negative values for the curvature, we continue with the
classic finite difference technique. For more information about accurate methods
for determining curvature, one is referred to Popinet [215] and Abadie, Aubin,
and Legendre [1], who resolved the issue with negative curvature by making
the height function technique adaptive.
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𝐸 𝑆 𝐹

𝐸 𝑆 𝑆

𝐸 𝐸 𝐸

0 0.79 0

0 0.56 0.51

0 0 0

0 0.83 0

0 -0.23 0.80

0 0 0

𝐴𝑙𝑒𝑓 𝑡 𝐴𝑟𝑖𝑔ℎ𝑡

× ×𝜅𝑙𝑒𝑓 𝑡 𝜅𝑟𝑖𝑔ℎ𝑡

Figure 7.7. Prediction of the curvature (𝜅) using the volume fractions 𝐶𝑓 with two differ-
ent techniques; the classic technique ( ), and the height function technique
( ). Fluid is reconstructed with original PLIC indicated by (𝐶𝑓 > 0). PLIC
endpoint . Continuous endpoint resulting in 𝐴 . Center grid cell where 𝜅 is
defined (×).

The new face value 𝐴 is calculated as

𝐴 =
𝜅𝑛𝜅

𝑟𝑖𝑔ℎ𝑡𝐴𝑙𝑒𝑓 𝑡 + 𝜅𝑛𝜅
𝑙𝑒𝑓 𝑡𝐴𝑟𝑖𝑔ℎ𝑡

𝜅𝑛𝜅
𝑙𝑒𝑓 𝑡 + 𝜅𝑛𝜅

𝑟𝑖𝑔ℎ𝑡
, (7.4)

where 𝑛𝜅 is a weighting factor. This weighting factor is a free parameter for which
a value is found by comparing simulation results in Sec. 7.3 for the static recon-
struction of two different shapes. Referring to the constraints given in Sec. 7.2.3,
the formulatedmethod ensures that the face values of a F-cell or E-cell are 1 and 0,
respectively. Repositioning of the endpoints (see Fig. 7.6) is automatic when the
curvature-weighted approach is used. The curvature weighted approach should
ensure that when an interface cell has more than two neighboring interface cells
in vertical and horizontal direction, the number of face values remains two by
applying it only for the lower two values of 𝐴.

7.2.5 Addition of BLIC point
When the continuity is improved by averaging as in Fig. 7.8a, the reconstruction
will not satisfy the volume constraint. Therefore an additional point is introduced
which will make the reconstruction bilinear. The additional point is initially po-
sitioned in the middle of the reconstructed line, see the in Fig. 7.8b. The point
moves perpendicular to the continuous reconstructed line until it satisfies the
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volume constraint for 𝐶𝑓.

No iterations are needed to find the final position of the additional point. Using
the definitions in Fig. 7.8c, the coordinates of the additional point (𝑥3, 𝑦3) are
found from

𝑦3 = 𝛼(𝑥3,0 + 𝛽) + 𝑏 where 𝛼 = −(𝑥1 − 𝑥2)/(𝑦1 − 𝑦2) and 𝑏 = 𝑦1 − 𝛼𝑥1. (7.5)

The points are ordered counter clockwise. The third line can move over the line
y(𝛽) with intial point

𝑥3,0 =
𝑥1 + 𝑥2

2 and 𝑦3,0 =
𝑦1 + 𝑦2

2 . (7.6)

The value of 𝛽 is found by

𝛽 =
𝑉𝑓 𝑖𝑛𝑎𝑙 − 𝑉0

1
2𝛼(𝑥2 − 𝑥1) + 1

2(𝑦1 − 𝑦2)
, (7.7)

where 𝑉𝑓 𝑖𝑛𝑎𝑙 −𝑉0 is the difference between the volume constraint and the volume
before adding the extra control point.

x

y

(a) Averaging the face values of PLIC.

x

y

(b) Adding the BLIC control point.

𝑉0

𝑉𝑓 𝑖𝑛𝑎𝑙

(𝑥1, 𝑦1)

(𝑥2, 𝑦2)

(𝑥3, 𝑦3) 𝛽

(c) Definitions for BLIC reconstruction.

Figure 7.8. Procedure BLIC reconstruction to meet volume constraint. The volume 𝑉0
after averaging the face values to 𝐴 is . The final volume 𝑉𝑓 𝑖𝑛𝑎𝑙 satisfying
the volume constraint is . BLIC additional point . Continuous endpoint .
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7.2.6 Evaluation & Remark
The curvature-weighted averaging is evaluated for the reconstruction of a sharp
corner in Fig. 7.9, including the additional point satisfying the volume constraint.
Two values for 𝑛𝜅, 0 and 2, are compared with the end-positioning approach of
Diwakar, Das, and Sundararajan [65]. Note that 𝑛𝜅 equal to 0 is simply averaging.
The approach of Diwakar, Das, and Sundararajan [65] needs special treatments
for repositioning endpoints as mentioned in Sec. 7.2.3. Compared to Fig. 7.6b
their approach ignores the information of 𝐴𝑙𝑒𝑓 𝑡 and assumes 𝐴 is equal to 𝐴𝑟𝑖𝑔ℎ𝑡.

The results in Fig. 7.9 show that for this case, the proposed curvature-weighted
averaging method is an improvement compared to the approach of Diwakar, Das,
and Sundararajan [65]. The value of 𝑛𝜅 affects the reconstruction and therefore
needs extra evaluation in Sec. 7.3.

(a) Complete corner reconstruction BLIC. (b) Middle cell reconstruction difference
BLIC.

(c) Outer cell reconstruction difference BLIC.

Figure 7.9. Continuous face value calculation 𝐴 for a 90 degrees corner. Red line is
PLIC Youngs reconstruction (–). is the approach of Diwakar, Das, and
Sundararajan [65] for determining the face values. is the averaging method
for 𝑛𝜅 = 0. x is the weighted averaging method for 𝑛𝜅 = 2. Fluid is indicated
by (𝐶𝑓 > 0).

An additional remark concerns the BLIC point dividing the line segment. When
this BLIC point is positioned outside of a grid cell, the initial PLIC line is used.
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The interface in that case is not continuous anymore. This is most likely to happen
for S and C-cells which are almost empty or almost full. How often this happens
is evaluated for the reconstruction of circle with 64 grid cells in the diameter.
The chance is in the order of 0.1% and decreases to zero with grid refinement.
For the reconstruction of a square with its sides resolved by 64 grid cells, the
same results are obtained. The test case in Sec. 7.5.2 elaborates on this by also
considering underresolved structures and shows how accurate BLIC remains
compared with PLIC.

Another remark concerns the C-cells which is a reason why S-and-C-cells do
not have the same label. There is the chance that a C-cell, connected to two
S-cells, has an original PLIC interface with an opposing orientation than the
S-cells before applying BLIC. This works against creating a smooth continuous
BLIC interface when using the curvature-weighted approach. For this situation,
the normal of the interface in the C-cell is reoriented such that it points in the
direction of the average of the normal vectors of the interfaces in the neighbor-
ing S-cells. After reorienting the normal vector, the face values 𝐴 in the BLIC
algorithm are determined. The situation of opposing orientations in neighboring
interface cells is even rarer than BLIC points being positioned outside of grid cells.

A final remarks concerns the extension to 3D. The BLIC algorithm can be ex-
tended to 3D by following a similar procedure with planes and lines instead of
lines and points. The BLIC algorithm presented in Sec. 7.2 can be formulated
in 3D without increasing the complexity. The shape of the interface will be a
pyramid after positioning the endpoints using the curvature-weighted approach.
The cost increase of using BLIC instead of PLIC in 2D is evaluated in Sec. 7.5.3.
The cost increase of using BLIC instead of PLIC in 3D is proportional to that in
2D.

7.3 Static reconstruction interface
The accuracy of the following reconstruction methods is compared for two static
shapes: Parker and Youngs [202], Mixed Youngs Centered (MYC) [6], and BLIC.
The transport of fluid is not involved, only reconstruction. The shapes that are
evaluated are a circle and a square.

A domain of one by one is used. The width of the square is 0.512, and the circle
radius is 0.368. The square is positioned in the center of the domain and the circle
off-center at (0.525, 0.464) to prevent the reconstruction method from favoring a
specific interface orientation [226]. The 𝐿1 norm of the error between the exact
interface and the reconstructed interface is calculated as

𝐿1 = ∫ ∫ |𝑆𝑒𝑥𝑎𝑐𝑡(𝑥, 𝑦) − 𝑆𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑(𝑥, 𝑦)|𝑑𝑥𝑑𝑦, (7.8)
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in which 𝑆 is the interface. The 𝐿1 norm for both shapes and the different recon-
struction methods is given in Tab. 7.1 as a function of the number of grid cells in
the domain.

Grid Youngs Youngs + BLIC
Square Circle Square Circle

10 4.81e-3 8.92e-4 3.51e-4 3.59e-4
20 6.81e-4 (2.82) 2.59e-4 (1.78) 7.61e-5 (2.21) 9.91e-5 (1.86)
40 2.48e-4 (1.46) 1.17e-4 (1.15) 2.57e-5 (1.57) 4.38e-5 (1.18)
80 7.20e-5 (1.79) 5.39e-5 (1.12) 5.62e-6 (2.19) 2.03e-5 (1.11)
160 4.06e-6 (4.15) 2.83e-5 (0.93) 1.90e-7 (4.89) 1.09e-5 (0.90)
320 1.79e-6 (1.18) 1.41e-5 (1.01) 6.24e-8 (1.60) 5.52e-6 (0.98)

Grid MYC MYC + BLIC
Square Circle Square Circle

10 5.64e-3 9.76e-4 8.82e-4 4.63e-4
20 7.72e-4 (2.87) 2.35e-4 (2.05) 7.61e-5 (3.53) 1.21e-4 (1.94)
40 3.40e-4 (1.18) 6.91e-5 (1.77) 1.96e-5 (1.96) 3.41e-5 (1.83)
80 8.82e-5 (1.95) 3.02e-5 (1.19) 1.93e-6 (3.34) 1.53e-5 (1.16)
160 4.44e-6 (4.32) 1.57e-5 (0.94) 4.26e-7 (2.18) 7.91e-6 (0.95)
320 1.97e-6 (1.17) 7.71e-6 (1.03) 1.72e-7 (1.32) 3.86e-6 (1.03)

Table 7.1. Reconstruction error static square / circle for different grid resolutions with
𝑛𝜅 = 2. The order of convergence is given in between parentheses.

Circular shapes are common for fluid configurations, like droplets and bubbles.
High accuracy in representing these shapes is important for contacts between
bodies. The reconstruction using Parker and Youngs and MYC alone results in
errors at least twice as high as when they are combined with BLIC.

Sharp corners in fluid bodies, like those in a square, are not present due to surface
tension effects. However, when moving solid objects representing structures are
present in a simulation, and when it is convenient to reconstruct the interface
between solid objects and fluids in the same way as between fluids, then sharp
corners do play a role. From that point of view, we want to know how the various
reconstruction methods deal with sharp corners. The reconstruction error in the
𝐿1 norm is reduced by an order of magnitude compared to Parker and Youngs
and MYC when using the BLIC method.

The results in Tab. 7.1 show thatwhen an underresolvedmaterial interface like the
corner of a square is present, BLIC decreases the reconstruction error significantly
with a higher order of convergence. For the circle, which is not underresolved,
the results show that the decrease in error with BLIC is less. For the circle, the
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reconstruction error with BLIC converges to the error obtained with PLIC on
a grid that is twice as fine. This was expected because BLIC divides piecewise
linear segments in two.

The effect of the magnitude of weighing factor 𝑛𝜅 on the reconstruction error
in Eq. (7.4) is evaluated in Tab. 7.2 for BLIC (initialization with Parker and
Youngs). The results show that the dependency on the curvature for the face
apertures in the BLIC method improves the accuracy of reconstructing a square.
For the square having sharp corners, the best performing value for 𝑛𝜅 is 2. A
lower value for 𝑛𝜅 performs better than a high value for the reconstruction of
a circle. BLIC performs, independent of the value of 𝑛𝜅, better than Parker and
Youngs when comparing the errors in Tab. 7.2 with Tab. 7.1. The reason for the
improvement compared to PLIC when using higher values for 𝑛𝜅 is because the
corners of a square in general are inherently underresolved, making PLIC so
inaccurate. For circles, this inherent absence of resolution is not there, so that
BLIC and PLIC have a comparable accuracy. Making 𝑛𝜅 adaptive is an interesting
option for future research. In the remainder of this article, we will continue with
𝑛𝜅 is 2 with the underlying thought of representing fluid configurations with
highly-curved interfaces.

𝑛𝜅 0 1 2
Square Circle Square Circle Square Circle

10 1.26e-3 3.76e-4 4.68e-4 3.38e-4 3.51e-4 3.59e-4
20 8.00-4 1.03e-4 3.18e–5 9.91e-5 7.61e-5 9.91e-5
40 8.25e-5 4.06e-5 5.93e-6 3.96e-5 2.57e-5 4.38e-5
80 1.75e-5 1.76e-5 5.04e-6 1.85e-5 5.62e-6 2.03e-5
160 4.44e-6 9.39e-6 2.47e-7 9.67e-6 1.90e-7 1.09e-5
320 1.97e-6 4.69e-6 1.41e-7 4.94e-6 6.24e-8 5.52e-6

𝑛𝜅 3 4
Square Circle Square Circle

10 2.34e-4 4.22e-4 1.19e-4 7.05e-4
20 8.94e-5 9.85e-5 9.28e-5 9.79e-5
40 3.85e-5 4.58e-5 4.60e-5 4.67e-5
80 6.20e-6 2.13e-5 6.77e-6 2.19e-5
160 4.93e-7 1.15e-5 6.80e-7 1.18e-5
320 2.10e-7 5.84e-6 3.05e-7 6.02e-6

Table 7.2. Reconstruction error static square / circle with BLIC (with Parker and Youngs
initialisation) for increasing value of 𝑛𝜅, and therefore dependency of curva-
ture 𝜅.

The cost evaluation and comparison with other available reconstruction algo-
rithms is done for the benchmarks in the next section.
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7.4 Unsplit edge-matched upwind flux polygon advection scheme
A new unsplit multidimensional advection scheme has been developed. It is
compared with a direction-split advection scheme, called COSMIC [155], for sev-
eral benchmarks. Before introducing these advection schemes, a brief overview
of the advection of the interface using the Volume-of-Fluid (VOF) approach is
given.

7.4.1 VOF advection
The interface is captured using Eq. (7.1) under the assumption of incompressibil-
ity and the no-slip condition between the two fluids. In case of a Volume of Fluid
(VOF) method, the color function 𝑓 is replaced by a discrete volume fraction 𝐶𝑓.
The discrete volume fraction indicates the filling ratio of one of the fluids in a
grid cell and is the average of the color function.

The fluids are transported with the assumption of incompressibility

∫
𝑉𝑐

𝐶𝑛+1
𝑓 − 𝐶𝑛

𝑓

𝛿𝑡 𝑑𝑉 = − ∫
𝑉

(u ⋅ ∇) 𝐶𝑓𝑑𝑉

= − ∫
𝑉

∇ ⋅ (u𝐶𝑓) 𝑑𝑉

= − ∮
𝑆𝑐

(u𝑛𝐶𝑛
𝑓 ) ⋅ n𝑑𝑆,

(7.9)

in which 𝑉 and 𝑆 are the volume and boundary of the grid cell, respectively.
The superscript indicates the time level; 𝑛 + 1 is the new time level and 𝑛 is
the old-time level. Eq. (7.9) is the basis for the discretization of the advection
equation. A straightforward discretization of the advection equation reads

𝐶𝑛+1
𝑓 = 𝐶𝑛

𝑓 −
1
𝑉 ∑

𝑓 𝑎𝑐𝑒
𝛿𝐶𝑓 ,𝑓 𝑎𝑐𝑒, (7.10)

in which subscript 𝑓 𝑎𝑐𝑒 refers to a cell face, and the VOF flux 𝛿𝐶𝑓 is the amount
of fluid transported from one cell to the next. Similar to Fig. 7.2, Fig. 7.10 shows
an example of a flux at the cell face and the donating region for a one-directional
flow field. The velocity field is defined at the cell faces of a grid cell. The VOF
flux is based on the reconstructed interface segment of the donating cell. The
flux is of the form

𝛿𝐶𝑓 ∼ 𝐶𝑓𝑢𝛿𝑡𝛿𝐴, (7.11)

where 𝛿𝐴 is the part of the area of a cell face in contact with the fluid being
transported. The total area of the cell face in Fig. 7.10 is equal to 𝛿𝑦. The naming
of the cell faces, w(est), e(ast), n(orth), and s(outh), are illustrated.
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𝛿𝐶𝑓

𝑢𝛿𝑡

𝛿𝑦

𝛿𝑥

𝑤 𝑒
𝑠

𝑛

Figure 7.10. Flux is calculated in a grid cell. Fluid is indicated by . The other fluid is
white. The amount of fluid being transported (fluxed 𝛿𝐶𝑓) is hatched with
–. The cell faces are named. The donating region is indicated by the dashed
line.

7.4.2 COSMIC advection scheme
The COSMIC split scheme we compare the new method to consists of multiple
transport and reconstruction steps [155]. The COSMIC scheme, in 2D, reads as
follow

𝐶∗𝑋
𝑓 = 𝐶𝑛

𝑓 −
1
𝑉 ∑

𝑓 𝑎𝑐𝑒=𝑤, 𝑒
𝛿𝐶𝑓 ,𝑓 𝑎𝑐𝑒(𝑢𝑛, 𝐶𝑛

𝑓 ) +
𝐶𝑛

𝑓

𝑉 ∑
𝑓 𝑎𝑐𝑒=𝑤, 𝑒

𝑢𝑓 𝑎𝑐𝑒𝛿𝑦,

𝐶∗𝑌
𝑓 = 𝐶𝑛

𝑓 −
1
𝑉 ∑

𝑓 𝑎𝑐𝑒=𝑛, 𝑠
𝛿𝐶𝑓 ,𝑓 𝑎𝑐𝑒(𝑣𝑛, 𝐶𝑛

𝑓 ) +
𝐶𝑛

𝑓

𝑉 ∑
𝑓 𝑎𝑐𝑒=𝑛, 𝑠

𝑣𝑓 𝑎𝑐𝑒𝛿𝑥,
(7.12)

The interface of the intermediate volume fraction fields 𝐶∗𝑋
𝑓 and 𝐶∗𝑌

𝑓 is again re-
constructed, resulting in 𝐶𝑋, 𝑛+1/2

𝑓 and 𝐶𝑌, 𝑛+1/2
𝑓 . The superscripts ∗ and 𝑛 + 1/2

indicate intermediate time levels. A distinction is made between these two time
levels (∗ and 𝑛 + 1/2) for the discussion in Sec. 7.6 of why inconsistency can
be found with COSMIC. Even though the values for 𝐶𝑓 with time levels ∗ and
𝑛 + 1/2 in a cell are the same, the staggered arrangement of variables causes a
difference for momentum control volumes after the reconstruction.

The new fraction field is found from

𝐶𝑛+1
𝑓 = 𝐶𝑛

𝑓 −
1
𝑉 ∑

𝑓 𝑎𝑐𝑒=𝑤, 𝑒
𝛿𝐶𝑓 ,𝑓 𝑎𝑐𝑒

⎛⎜⎜⎜
⎝

𝑢𝑛,
𝐶𝑛

𝑓 + 𝐶𝑌, 𝑛+1/2
𝑓

2
⎞⎟⎟⎟
⎠

−
1
𝑉 ∑

𝑓 𝑎𝑐𝑒=𝑛, 𝑠
𝛿𝐶𝑓 ,𝑓 𝑎𝑐𝑒

⎛⎜⎜
⎝

𝑣𝑛,
𝐶𝑛

𝑓 + 𝐶𝑋, 𝑛+1/2
𝑓

2
⎞⎟⎟
⎠

.

(7.13)
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7.4.3 Proposed Donating Quadrant Advection (DQA) scheme
As mentioned in the introduction, we want the new advection scheme to satisfy
the following conditions.

1. It will be an unsplit multidimensional scheme: to prevent distortion of the
interface, and geometrical errors.

2. Be conservative and non-diffusive: no overlapping regions or gap between
neighboring donating regions.

3. Feature conforming regions: the length of the edges of two neighboring
donating regions should have the same length.

4. Allow fluid to enter and exit a grid cell in one time step.

The EMFPA [199] scheme meets these requirements. The computational costs
and accuracy of the new scheme should not be inferior to the EMFPA scheme. It
also, in contrast to EMFPA, needs to be consistent with the mass and momentum
transfer of two-phase flow solvers similar as presented in Eijk and Wellens [80].
Therefore, the subsection explaining the new scheme consists of four steps:
positioning and determining the linear edges of the donating region, volume
correction by adding an extra control point to satisfy the volume constraint, and
checking if the final donating region complies with the requirements.

7.4.3.1 Positioning of the linear edges

The new scheme is based on face-centered velocities, like Rider-Kothe [226],
to prevent the so-called negative donating flux-region, illustrated in Fig. 7.2.
The negative donating region can result in a VOF flux of opposite sign than
the fluxing face velocity. We consider this inconsistent with the direction of the
face-centered velocity and the effect thereof is elaborated upon in Sec. 7.6. The
donating region needs to be on one side of the cell face, given by the sign of the
face velocity. In contrast to Rider-Kothe, the new scheme is conservative and has
no overlap with neighboring donating regions. We will name the scheme DQA,
short for Donating Quadrant Advection.

Three different situations for constructing a linear edge of the donating region
are illustrated in Fig. 7.11. The difference between the vertex velocity-based
EMFPA scheme in Figs. 7.11d, 7.11e, 7.11f and the new scheme in Figs. 7.11a,
7.11b, 7.11c is given. The encircled velocities in Fig. 7.11 are used for determining
the magnitude and direction of the thick-lined linear edge. The vertex velocities
used for EMFPA are found by averaging the surrounding face-centered velocities.

The DQA scheme depends on the direction of the fluxing face-centered velocity.
The quadrant where the linear edge is positioned decides which single face-
centered velocity is used. The linear edge is always positioned in a quadrant
where, in 2D, two (vertical and horizontal) face-centered velocities are donating.
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When no quadrant has two donating face-centered velocities, in Fig. 7.11c, a
non-sloped linear edge is made to prevent a negative donating region. The use
of this non-sloped linear edge has the disadvantage that it can lead to a gap
between neighboring donating regions because the linear edge does not match
with the linear edge for the donating region of the upper velocity in Fig. 7.11c. But
enforcing a non-sloped edge is necessary to prevent negative donating regions.
The loss of accuracy as a result of this procedure is checked for benchmarks in
Secs. 7.5.1 and 7.5.2 by comparing with EMFPA. The results will show that DQA
is competitive with EMFPA.

×

𝛿𝐶𝑓

(a) DQA 1: Edge of polygon in the corre-
sponding cell.

××

𝛿𝐶𝑓

(b) DQA 2: Edge of polygon in another cell.

×

𝛿𝐶𝑓

(c) DQA 3: Velocity change of sign.

×

𝛿𝐶𝑓

(d) EMFPA 1: Edge of polygon in the corre-
sponding cell.

××

𝛿𝐶𝑓

(e) EMFPA 2: Edge of polygon in another
cell.
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×

𝛿𝐶𝑓

Negative donating region

(f) EMFPA 3: Velocity change of sign.

Figure 7.11. Three different situations of flux polygon construction using velocities de-
fined on the cell faces. The thick linear edge is determined by the encircled
velocities. Grid cells are illustrated with −. The amount of fluid being trans-
ported with DQA (fluxed 𝛿𝐶𝑓) is virtual hatched with – and with EMFPA is
hatched with –. A cell vertex is given by × where the velocities are averaged
for EMFPA. A velocity position is given by an arrow.

7.4.3.2 Determination of the linear edges

Determining the complete donating region with DQA, including the coordi-
nates of the vertices, is based on Fig. 7.12. The flux velocity 𝑢𝑚𝑎𝑖𝑛 determines the
volume of the donating region. The vertical velocities 𝑣𝑏𝑜𝑡 and 𝑣𝑡𝑜𝑝 are used to
determine the slope of the linear edges. The distance value 𝜖 and slope value 𝜙
are related to the volume correction discussed in the next subsection.

The velocities are defined such that the positioning of the linear edges complies
with the three situations illustrated in Fig. 7.11. The velocities in Fig. 7.12a for
the linear edges of the donating region are defined as follow

[𝑢1, 𝑣1] =

⎧{{{
⎨{{{⎩

[𝑢𝑚𝑎𝑖𝑛, 𝑣𝑏𝑜𝑡], if sign(𝑣𝑏𝑜𝑡/𝑢𝑚𝑎𝑖𝑛) ≠ sign(𝑢𝑚𝑎𝑖𝑛)

[𝑢𝑏𝑜𝑡, 𝑣𝑏𝑜𝑡] , else if sign(𝑢𝑏𝑜𝑡) = sign(𝑢𝑚𝑎𝑖𝑛)

[𝑢𝑚𝑎𝑖𝑛, 0.0], otherwise

[𝑢2, 𝑣2] =

⎧{{{
⎨{{{⎩

[𝑢𝑚𝑎𝑖𝑛, 𝑣𝑡𝑜𝑝], if sign(𝑣𝑡𝑜𝑝/𝑢𝑚𝑎𝑖𝑛) = sign(𝑢𝑚𝑎𝑖𝑛)

[𝑢𝑡𝑜𝑝, 𝑣𝑡𝑜𝑝] , else if sign(𝑢𝑡𝑜𝑝) = sign(𝑢𝑚𝑎𝑖𝑛)

[𝑢𝑚𝑎𝑖𝑛, 0.0], otherwise

(7.14)

Donating region construction in other directions is approached similarly. The
scheme, like EMFPA [199], can be straightforwardly extended to 3D.
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(−𝑢𝑎𝑣𝑔 𝑑𝑡 + 𝜖,
1
2𝛿𝑦 − 𝑣𝑎𝑣𝑔𝑑𝑡 + 𝜖𝜙)

𝑢𝑚𝑎𝑖𝑛

𝑢𝑡𝑜𝑝

𝑢𝑏𝑜𝑡

𝑣𝑡𝑜𝑝

𝑣𝑏𝑜𝑡

(𝑢2, 𝑣2)

(𝑢1, 𝑣1)𝑣1/𝑢1

𝑣2/𝑢2

𝜖

(a) Example of face-centered velocities needed.

𝜖
𝛿𝑦

(0.0, 0.0)

(0.0, 𝛿𝑦)
(−𝑢2𝑑𝑡, 𝛿𝑦 − 𝑣2𝑑𝑡)

(−𝑢1𝑑𝑡, −𝑣1𝑑𝑡)

(−𝑢𝑎𝑣𝑔𝑑𝑡 + 𝜖,
1
2𝛿𝑦 − 𝑣𝑎𝑣𝑔𝑑𝑡 + 𝜖𝜙)

(b) Coordinates defining the polygon; additional point is black.

Figure 7.12. Defintion of DQA scheme; in case 𝑢1 = 𝑢𝑚𝑎𝑖𝑛, 𝑢2 = 𝑢𝑡𝑜𝑝, 𝑣1 = 𝑣𝑏𝑜𝑡, and 𝑣2 =
𝑣𝑡𝑜𝑝. Donating region is given by –. Slopes are given by –. The volume cor-
rection with slope 𝜙 is illustrated for the approach of Owkes and Desjardins
[199]. The cell face area 𝛿𝐴 is equal to 𝛿𝑦.

7.4.3.3 Volume correction

The donating regions in Fig. 7.12 do not initially satisfy the volume constraint.
Many volume correction methods are available [35, 159, 180, 199]. The correction
method of Owkes and Desjardins [199] is adopted by adding an extra control
point. This extra point ensures that the volume of the donating region satisfies
the volume constraint. Conforming donating regions are found when applying
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this correction method.

The distance value 𝜖, illustrated in Fig. 7.12b, should result in a donating region
with a volume of 𝑢𝑚𝑎𝑖𝑛𝑑𝑡𝛿𝐴 (the volume constraint). The additional point that
satisfies the volume constraint is found with 𝑢𝑎𝑣𝑔 and 𝑣𝑎𝑣𝑔 being equal to 1

2(𝑢1 +
𝑢2) and 1

2(𝑣1 + 𝑣2), respectively. The distance is found from

𝜖 = 𝑑𝑡
−𝑢2𝑣1𝑑𝑡 + 𝑢1𝑣2𝑑𝑡 + 2𝑢𝑚𝑎𝑖𝑛𝛿𝐴 − (𝑢1 + 𝑢2)𝛿𝐴

(𝑣2 − 𝑣1)𝑑𝑡 + (𝑢1 − 𝑢2)𝜙𝑑𝑡 − 𝛿𝐴 , (7.15)

in which 𝛿𝐴 is equal to 𝛿𝑦 for Fig. 7.12.

The slope value 𝜙 can be determined in many ways. Evaluation of the effect of 𝜙
on the accuracy is needed. Owkes and Desjardins [199] uses the normal vector
of the original linear edge as the direction for creating the additional point. This
method is illustrated as an example in Fig. 7.12. Other ways to determine the
slope value 𝜙 are

𝜙 =
𝑣2 − 𝑣1
𝑢2 − 𝑢1

(Owkes and Desjardins [199]),

𝜙 = 0 (current called 𝑧𝑒𝑟𝑜),

𝜙 =
𝑣2 + 𝑣1
𝑢2 + 𝑢1

(current called 𝑎𝑣𝑔).

(7.16)

The evaluation of the slope value is done in the next section. The slope value of
Owkes and Desjardins [199] is used for comparison with other computational
methods.

The extra correcting point can result in a non-convex donating flux region. When
the shape is non-convex, the donating region is split into multiple convex tri-
angles. This increases the computational costs as the triangles are dealt with
separately, but it solves the problem of determining the VOF flux of a non-convex
region. The intersection points of the donating region with the BLIC interface
are expensive to determine for non-convex shapes. The computational costs are
analyzed in one of the following sections.

7.4.3.4 Reducing order with DDR scheme

Owkes and Desjardins [199] showed that their advection scheme is uncondition-
ally stable. Wewant to discuss what constraints are needed to keep the two-phase
solver described in Sec. 7.6 stable. When the volume correction is large, the ad-
ditional point can lead to an overlap of the donating region with neighboring
regions. Or it can result in a negative donating region. The DQA method can
easily switch to a lower-order DDR scheme when this happens. The difference
between DDR and DQA, illustrated in Fig. 7.13b, is that the donating polygon
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never intersects a cell face; material cannot enter and exit a cell in one time step.
The DDR scheme is found when the boxed step in Eq. (7.14) is omitted. DDR is
robust and conservative, but increases the diffusivity of the interface.

The criteria to switch from DQA back to DDR are

1. The correcting point should not lead to overlap with neighboring polygons
or the polygon itself to prevent mass changes.

2. The correcting point should not be at the opposite side of the cell face
compared to the other points of the donating region (later referred to as
’negative donating region’) because it can induce instability of the two-
phase solver.

When these criteria are not met, one of the provided constraints is violated, and
the DDR method is used for that particular cell face. Note that the correction
method we use can also cause mass issues due to overlap when combined with
EMFPA. Alternative correction methods will be a research topic of ours for the
near future.

The chance that switching back toDDRoccurs is negligible for caseswith imposed
velocity fields. However, for the case in Fig. 7.1, with large fluid deformations
[78], the switch back provides robustness, in the sense that negative donating
regions that can induce instabilities of the two-phase solver are prevented. For a
case similar to the one shown in Fig. 7.1, using a relatively coarse grid resolution
(roughly 100 cells in the width and height of the domain) and a Courant number
of 0.50, the number of times the algorithm switches back to DDR is smaller than
1% of the total number of time steps. Switching back especially occurs when
water and air near the interface have large velocities in opposite direction. At
those moments, the correction to meet the volume constraint can lead to overlap
or the situation discussed in the Sec. 7.4.3.5, so that switching back to DDR
is necessary to prevent instability. The percentage of time steps, in which the
algorithm switches back to DDR, decreases when lowering the Courant number.
Grid refinement with a factor of two reduces the number of times the algorithm
switches back with a power of two. We consider the chance of the algorithm
switching back small. The effect of switching back to DDR on the accuracy is
evaluated in Sec. 7.5.2.

7.4.3.5 Difference EMFPA and DQA for two examples

In Fig. 7.13 the full donating region with EMFPA and DQA is compared for two
cases. These two cases are considered to be the most different. The length of the
velocity vectors is to scale. The flux size is illustrated by the hatched area. The
volume correction method of Owkes and Desjardins [199] is used with both
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EMFPA and DQA.

In Fig. 7.13a, a shear flow is considered, an example of EMFPA having a flux of
opposite sign than the fluxing face-centered velocity. The DQA scheme prevents
this by using the face-centered velocity based on the position of the linear edges
of the donating region. In Fig. 7.13b, an example of DQA switching to DDR is
given. A negative donating region is created due to the volume correction, which
is allowed by EMFPA but not by the DQA scheme.

The authors want to point out that, even though the chance is small, EMFPA
can result in a negative donating region that gives a flux larger than the volume
constraint. In other words, the size of the hatched area can be larger than the
sum of the receiving and the donating region. As a requirement, DQA strictly
enforces volume conservation.

𝑢𝑚𝑎𝑖𝑛

𝑢𝑡𝑜𝑝

𝑢𝑏𝑜𝑡

𝑣𝑡𝑜𝑝,𝑙

𝑣𝑏𝑜𝑡,𝑙

𝑣𝑡𝑜𝑝,𝑟

𝑣𝑏𝑜𝑡,𝑟

(a) Shear flow: presented scheme prevents flux of opposite sign than velocity.

Figure 7.13. Difference between EMFPA ( ) and the DQA scheme ( ) for two different
case. The dashed line is the donating region after volume correction. The
solid line is the original donating region. The hatched area is the flux 𝛿𝐶𝑓.
Liquid is indicated by . The air is white. Note that the hatched area for the
EMFPA scheme can be larger than the volume constraint 𝑢𝑚𝑎𝑖𝑛𝛿𝑡𝛿𝐴, but
DQA is not.
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𝑢𝑚𝑎𝑖𝑛

𝑢𝑡𝑜𝑝

𝑢𝑏𝑜𝑡

𝑣𝑡𝑜𝑝,𝑙

𝑣𝑏𝑜𝑡,𝑙

𝑣𝑡𝑜𝑝,𝑟

𝑣𝑏𝑜𝑡,𝑟

(b) In a wake: presented scheme uses DDR to prevent negative region.

Figure 7.13. Difference between EMFPA ( ) and the DQA scheme ( ) for two different
case. The dashed line is the donating region after volume correction. The
solid line is the original donating region. The hatched area is the flux 𝛿𝐶𝑓.
Liquid is indicated by . The air is white. Note that the hatched area for the
EMFPA scheme can be larger than the volume constraint 𝑢𝑚𝑎𝑖𝑛𝛿𝑡𝛿𝐴, but
DQA is not.

7.5 Fundamental transport cases
7.5.1 Zalesak slotted disk rotation
The first benchmark case with advection of a fluid structure to be discussed is the
Zalesak slotted disk [312]. The Zalesak slotted disk is a well-known benchmark
for volume-trackingmethods. The disk is rotated for one complete anti-clockwise
revolution in a velocity field with uniform vorticity

𝑢 = −Ω(𝑦 − 𝑦0), 𝑣 = Ω(𝑥 − 𝑥0), (7.17)

where u=[u, v]𝑇 is the 2D velocity field, x=[x, y]𝑇 the spatial position, and the
position with subscript ’0’ the axis of rotation. The domain is four by four with
the center of rotation at coordinate (2.00, 2.00). The constant angular velocity Ω
is 0.50. The disk has a radius of 0.50 and is initially positioned at coordinate (2.00,
2.75). The slot has a width of 0.12 and stops in the center of the disk. The grid
resolution used for the benchmark is 200×200. These parameters are adopted
from the work of Rudman [229] and Diwakar, Das, and Sundararajan [65]. The
error is defined as

𝐸𝑛 =
∑𝑖,𝑗 |𝐶𝑛

𝑓 ,𝑖,𝑗 − 𝐶0
𝑓 ,𝑖,𝑗|

∑𝑖,𝑗 𝐶0
𝑓 ,𝑖,𝑗

, (7.18)

in which 𝑛 represents the number of revolutions of the slotted disk.
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In Tab. 7.3, the errors of Eq. (7.18) for various reconstruction and advection
schemes after one rotation of the disk are given with a reference to the article
from which it was taken. The results of the newly presented reconstruction and
advection scheme are compared with the state-of-the-art schemes in Tab. 7.3. For
an equal comparison, a Courant number of 0.25 is used based on the maximum
velocity [163]. The number of times DQA switches back to DDR, as discussed in
Sec. 7.4.3.4, is 0%. López et al. [163] commented that the largest error for this
case is typically found near the slot and Scardovelli and Zaleski [235] found that
PLIC methods normally smooth out parts of the interface with high curvature,
like the slot.

Algorithm Error (E1)
SLIC [194] 8.38e-2
Hirt-Nichols [115] 9.62e-2
CICSAM [265] 2.02e-2
High-resolution VOF - unstructured grid [141] 1.01e-2
Puckett - stream [108] 1.00e-2
Puckett - DDR [109] 9.73e-3
Puckett - EMFPA [163] 9.73e-3
Youngs - stream [108] 1.07e-2
Youngs - DDR [109] 1.56e-2
Youngs - EMFPA [163] 1.06e-2
QQ - THINC [303] 1.42e-2
SIR - EMFPA [163] 8.74e-3
ACLSVOF uniform triangular grid [5] 7.19e-3
ACLSVOF adaptive triangular grid [5] 1.25e-2
Linear ls. fit - EI-LE [235] 9.42e-3
Quadratic ls. fit - EI-LE [235] 5.47e-3
Quadratic ls. fit + continuity - EI-LE [235] 4.16e-3
QUASI - EMFPA [65] 2.69e-3
Youngs - DQA (current) 1.23e-2
Youngs - COSMIC (current) 1.25e-2
MYC - DQA (current) 1.06e-2
MYC - COSMIC (current) 1.09e-2
Youngs BLIC - DQA (current) 7.76e-3
MYC BLIC - COSMIC (current) 6.38e-3
MYC BLIC - DQA (current) 5.85e-3

Table 7.3. Error 𝐸𝑛 for slotted disk rotation (𝑛 = 1). Other schemes are compared with
the presented ones. Youngs is an abbreviation for the Parker and Youngs
method. Least square is abbreviated with ls.. A Courant number of 0.25 is
used.
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Algorithm 50×50 100×100 200×200
MYC - DQA (current) 1.39e-1 3.45e-2 (2.01) 1.06e-2 (1.70)
MYC - COSMIC (current) 1.41e-1 3.47e-2 (2.02) 1.09e-2 (1.67)
MYC BLIC - COSMIC (current) 1.42e-1 2.08e-2 (2.77) 6.16e-3 (1.76)
MYC BLIC - DQA (current) 1.38e-1 2.30e-2 (2.58) 5.85e-3 (1.98)

Table 7.4. Error 𝐸𝑛 for slotted disk rotation (𝑛 = 1) for different grid resolutions using
MYC. A Courant number of 0.25 is used. The order of convergence is in
between parentheses.

The error 𝐸1 after one rotation of the disk and the order of convergence obtained
when using the reconstruction and advection methods in this work, is shown in
Tab. 7.4. For higher grid resolutions, the error can potentially be governed by the
number of time steps [235]. Decreasing the Courant number results in higher
errors 𝐸1, because it increases the number of reconstruction and advection steps.
Where a Courant number of 1.00 with a grid of 200×200 (MYC BLIC - DQA)
results in an error of 4.78e-3, a Courant number of 0.50 gives 5.30e-3, and 0.25
gives 5.85e-3. This effect is also mentioned by Diwakar, Das, and Sundararajan
[65], showing that it does not happen with their QUASI scheme.

In Fig. 7.14, the application of BLIC showed that the corners of the slot are better
represented than with PLIC. A more accurate PLIC method like MYC reduces
the error compared to Paker and Youngs, also in combination with BLIC. The
unsplit DQA advection scheme shows a slight reduction of the error compared to
COSMIC and a similar error as EMFPA. The combination of DQA andMYC BLIC
obtains similar accuracy for the slotted disk as higher-order methods like the
Quadratic fit methods [235]. The computational costs are compared in Section
7.5.3.
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Figure 7.14. The interfaces of the Zalesak’ slotted disk for one turn with 200×200. MYC
BLIC - DQA is indicated by . MYC BLIC - COSMIC is indicated by . MYC -
COSMIC is indicated by . Reconstruction of interface is given for a number
of rotations n = 1.

7.5.2 Rider–Kothe single vortex
A simple translation or solid body rotation of a fluid structure like the slotted
disk by itself is not enough for testing interface modeling methods. No final
judgment can be made because this kind of case is not realistic and more suit-
able for benchmarking and debugging [229]. A more physical case for interface
modeling is the reversed single vortex field case by Bell, Colella, and Glaz [11],
modified by Rider and Kothe [226].

A solenoidal velocity distribution is imposed for the reversed single vortex field
in a domain of one by one. The velocity field is determined by the stream function
field

Ψ(𝑥, 𝑦, 𝑡) =
1
𝜋sin2(𝜋𝑥)sin2(𝜋𝑦)cos(

𝜋𝑡
𝑇 ) , (7.19)

with 𝑇 as the period of the reversed motion of the vortex. An initial circle with a
radius of 0.15 is positioned at (0.50, 0.75) and deformed until 𝑡 = 𝑇/2. Hereafter,
the deformed structure deforms back to its initial shape until 𝑡 = 𝑇. The error
𝐸𝑇 is determined by the difference between the initial and final volume fraction
field multiplied by the grid spacing [65]

𝐸𝑇 = ∑
𝑖,𝑗

𝛿𝑥𝑖𝛿𝑦𝑗|𝐶𝑇
𝑓 ,𝑖,𝑗 − 𝐶0

𝑓 ,𝑖,𝑗|. (7.20)

According to Scardovelli and Zaleski [235] the main error for the single vortex,
as well as for the slotted disk, is caused by the number of reconstructions rather
than the advection algorithm.

Period 𝑇 is chosen to be 2.00. Tab. 7.5 shows the errors 𝐸𝑇 for single vortex
simulations with the advection and reconstruction methods presented in the
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current work. The methods described here are compared to methods from the
existing literature. Three different grid resolutions 32×32, 64×64, and 128×128
are considered. A Courant number of 0.95 is used, the Courant number at each
time level being based on the maximum velocity component in the domain at
that time level. In the existing methods, a Courant number of 1.00 was used, but
for that number using DQA can lead to mass losses due to overlap in donating
polygons caused by the correction point (see Sec. 7.4.3.4). This is elaborated
upon below.

Algorithm 32x32 64x64 128x128
Hirt & Nichols + LHF [74] 1.01e-2 5.25e-3 (0.94) 2.47e-3 (1.09)
QQ - THINC [303] 6.70e-2 1.52e-2 (2.16) 3.06e-3 (2.29)
Puckett - stream [108] 2.37e-3 5.65e-4 (2.07) 1.32e-4 (2.10)
Puckett - Rider & Kothe [226] 2.36e-3 5.85e-4 (2.01) 1.31e-4 (2.16)
Puckett - EMFPA [163] 2.14e-3 5.39e-4 (1.99) 1.29e-4 (2.06)
Youngs - stream [108] 2.49e-3 7.06e-4 (1.82) 2.23e-4 (1.66)
Youngs - EMFPA [163] 2.31e-3 6.89e-4 (1.75) 2.25e-4 (1.61)
LSG - COSMIC [74] 2.74e-3 7.01e-4 (1.97) 1.96e-4 (1.84)
LSG - EI-LE [74] 2.70e-3 6.93e-4 (1.96) 1.89e-4 (1.87)
ELVIRA - COSMIC [74] 2.55e-3 6.50e-4 (1.97) 1.51e-4 (2.11)
ELVIRA - EI-LE [74] 2.54e-3 6.47e-4 (1.97) 1.45e-4 (2.16)
CVTNA - PCFSC [160] 2.34e-3 5.38e-4 (2.12) 1.31e-4 (2.04)
Linear ls. fit - EI-LE [235] 1.75e-3 4.66e-4 (1.91) 1.02e-4 (2.19)
Qls. fit - EI-LE [235] 1.88e-3 4.42e-4 (2.09) 9.36e-5 (2.24)
Qls. fit + cont. - EI-LE [235] 1.09e-3 2.80e-4 (1.96) 5.72e-5 (2.29)
Mixed VOF method [5] 1.00e-3 2.69e-4 (1.89) 5.47e-5 (2.30)
SIR - EMFPA [163] 8.62e-4 2.37e-4 (1.86) 5.62e-5 (2.08)
QUASI - EMFPA [65] 6.65e-4 1.57e-4 (2.08) 4.33e-5 (1.86)
PCIC - EMFPA [172] 5.61e-4 1.46e-4 (1.94) 4.17e-5 (1.81)
Youngs - DQA (current) 2.14e-3 5.15e-4 (2.05) 1.66e-4 (1.63)
MYC - DQA (current) 2.09e-3 4.32e-4 (2.27) 1.08e-4 (2.00)
MYC - COSMIC (current) 2.74e-3 6.96e-4 (1.98) 1.80e-4 (1.95)
Youngs BLIC - DQA (current) 1.23e-3 1.88e-4 (2.71) 6.25e-5 (1.60)
MYC BLIC - COSMIC (current) 1.68e-3 4.04e-4 (2.06) 1.40e-4 (1.53)
MYC BLIC - DQA (current) 1.21e-3 2.04e-4 (2.57) 4.42e-5 (2.20)

Table 7.5. Error 𝐸𝑇 at different grid resolutions for the reversed single vortex field with
𝑇 = 2.00 and Courant number 0.95. Methods presented in this article are
compared with methods from the existing literature, for which a Courant
number of 1.00 was used. Youngs is an abbreviation of the Parker and Youngs
method. The order of convergence is in between parentheses. Quadratic least
square is abbreviated with qls..
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MYC BLIC - DQA has a lower error compared to other available methods. The
method competes in terms of accuracy with higher-order methods like PCIC
(piecewise circular arcs) and QUASI (quadratic splines). The choice for a more-
accurate PLIC method, like MYC compared to Parker and Youngs, improves the
result for reversed single vortex. For a period 𝑇 of 2.0 and grid 128×128, MYC
BLIC - DQA has a similar error as PCIC - EMFPA. Referring back to Sec. 7.4.3.1,
the accuracy of DQA is similar to EMFPA when comparing Youngs - DQA with
Youngs - EMFPA. These results show that the use of a non-sloped linear edge
has negligible influence on the accuracy for this case.

Fig. 7.15 shows the difference in interface at 𝑡 = 𝑇/2 and 𝑡 = 𝑇 for six of the single
vortex simulions in Tab. 7.5, comparing methods on a grid of 32×32 and on a
grid of 128×128. The interface obtained with MYC BLIC - DQA on the coarser
grid comes closest to the interface obtained on the finer grid. On the finer grid
the difference between methods is not visible any more. Switching back from
BLiC to PLIC was not necessary for the simulations used to make Fig. 7.15; they
all met the constraints defined in Sec. 7.2.6.
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Figure 7.15. The interfaces for the reversed single vortex from Rider and Kothe [226]
with 𝑇 = 2.00 and Courant number 0.95. MYC BLIC - DQA is indicated by .
MYC BLIC - COSMIC is indicated by . MYC - COSMIC is indicated by .

The effect of the Courant restriction on the accuracy of the simulations is evalu-
ated for the methods discussed above. The error 𝐸𝑇, obtained using grid 128×128,
is shown in Tab. 7.6 for values of the Courant number 0.1, 0.5, 0.95 and 1.00.
Similar to the slotted disk, a decrease in Courant number does not lower the
error when using DQA. The larger error for lower Courant numbers is due to
the increased number of reconstructions. When using COSMIC the error does
decrease when going from Courant number 1 to Courant number 0.95, and from
0.95 to 0.5, but that due to the fact that COSMIC, with the reconstruction step, is
not mass conserving for Courant numbers above 0.5 [295]. Note again that DQA
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is not mass conserving either at a Courant number of 1.0 because of the overlap
in donating regions. The mass losses for DQA depend on the grid size. The mass
losses for MYC BLIC - DQA with Courant number 1.00 are 0.18%, 0.62% and
1.50% respectively, for grids 128×128, 64×64 and 32×32. For grids 128×128 and
64×64 DQA switched back to DDR in 0.00% of all time steps, for grid 32×32
DQA switched back in 0.50% of all time steps.

Courant number 0.1 0.5
Youngs - DQA (current) 3.06e-4 (0.00%) 2.66e-4 (0.00%)
MYC - DQA (current) 1.35e-4 (0.00%) 1.21e-4 (0.00%)
MYC - COSMIC (current) 1.39-4 (0.00%) 1.30e-4 (0.00%)
Youngs BLIC - DQA (current) 2.23e-4 (0.00%) 8.22e-05 (0.00%)
MYC BLIC - COSMIC (current) 1.53e-4 (0.00%) 6.36e-05 (0.00%)
MYC BLIC - DQA (current) 1.34e-4 (0.00%) 4.99e-5 (0.00%)

Courant number 0.95 1.0
Youngs - DQA (current) 1.66e-4 (0.00%) 3.30 (0.04%)
MYC - DQA (current) 1.08e-4 (0.00%) 2.49e-4 (0.18%)
MYC - COSMIC (current) 1.80e-4 (0.04%) 2.47e-4 (0.07%)
Youngs BLIC - DQA (current) 6.25e-5 (0.00%) 2.22e-4 (0.18%)
MYC BLIC - COSMIC (current) 1.40e-4 (0.04%) 1.98e-4 (0.08%)
MYC BLIC - DQA (current) 4.42e-5 (0.00%) 2.15e-4 (0.18%)

Table 7.6. Error 𝐸𝑇 at grid resolution 128×128 for different Courant numbers. The mass
changes are given as a percentage of the initial mass in between parentheses.

In Fig. 7.16, two different grid resolutions and time instances of the interface for
a non-reversed single vortex are illustrated. The BLIC method keeps the fluid
body better together than PLIC. The number of detached droplets is reduced
when using BLIC. Sharper parts of the vortex, especially the front, and the tail
are represented better with BLIC than with PLIC. With BLIC the interface could
not always be reconstructed for grid resolution 32×32 and switched back to PLIC
due to the correction point of BLIC being outside of a cell. The number of time
steps BLIC switched to PLIC for that grid until t = 3.0 is 8.9% with MYC BLIC -
DQA and 13.7% with MYC BLIC - COSMIC. Even when having to switch back to
PLIC this many time, there is still an advantage of using BLIC because its error
𝐸𝑇 is smaller than for plain PLIC. For grid 128×128, BLIC switched back to PLIC
in fewer than 0.3% of all time steps.
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(d) 128x128 at t = 3.00.

Figure 7.16. The interfaces for a non-reversed single vortex with different reconstruction
and transport schemes at two time instances. MYC BLIC - DQA is indicated
by . MYC BLIC - COSMIC is indicated by . MYC - COSMIC is indicated by
.

The effect of determining the slope value 𝜙 for the DQA scheme is evaluated for
the three approaches provided in Eq. (7.16). The results are given in Tab. 7.7
for the combination MYC BLIC - DQA. The volume correction of Owkes and
Desjardins [199] has the best results for this case, even though they mentioned
that the effect of the volume corrections is probably small.

𝜙 32x32 64x64 128x128
Owkes and Desjardins [199] 1.03e-3 2.18e-4 4.51e-5
𝑧𝑒𝑟𝑜 1.11e-3 2.22e-4 4.69e-5
𝑎𝑣𝑔 1.27e-3 2.52e-4 6.03e-5

Table 7.7. Error 𝐸𝑇 for different 𝜙 in Sec. 7.4.3.3 with MYC BLIC - DQA for the reversed
single vortex field with 𝑇 = 2.00 and Courant numer is 0.95.
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7.5.3 Computational costs
The code is written in Python and compiled using the Numba package [151].
The compiled code is run on a 12-core stand-alone machine. In Fig. 7.17, the
computational costs of the reconstruction and advection methods are compared
for the reversed single vortex, normalized with the costs of the combination
Parker and Youngs - COSMIC (Y-C). The costs at three different grid resolutions
are compared. The average computational time is based on 384 time steps. The
sensitivity of the costs is tested by repeating the same simulation on the same
machine. After repeating five times, the cost variation is between 1% and 3%.

The application of the MYC reconstruction method over the Parker and Youngs’
method is neglectable in computational costs. BLIC has between 20% and 1%
more computational costs than Parker and Youngs. Similarly, as the results of
Diwakar, Das, and Sundararajan [65], the costs relatively decrease by increasing
the grid resolution.

The costs of the advection scheme become dominant for a higher grid resolution.
The presented unsplit advection scheme (DQA) results in an average of around
5% less computational costs than the splitting scheme (COSMIC) when using a
PLIC method. Similarly, the extra costs of using BLIC with the COSMIC scheme
compared to the DQA scheme are even more dominant. The relative increase
in computational costs is because of the additional intermediate reconstruction
steps for COSMIC. The DQA scheme does not make use of intermediate recon-
struction steps.
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Figure 7.17. Comparison of computational costs normalized with the costs of Parker and
Youngs - COSMIC (Y-C) for the single vortex case based on 384 timesteps for
three different grid resolutions. (D) is DQA. (C) is COSMIC. (Y) is Parker
and Youngs’ method. (MYC) is Mixed Youngs and Centered method.

Compared to other reconstruction methods in the existing literature of which
the costs are documented, BLIC appears to have fairly low costs. The quadratic
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least-square reconstruction algorithm with continuity equation seems twice as
costly as Parker and Youngs [235]. The QUASI method, showing high accuracy
in representing the interface, is around 30 times higher in costs and ELVIRA 10
times compared to Parker and Youngs [65]. The computational costs of the SIR
scheme are comparable with BLIC, around 1.1 times higher in costs than Parker
and Youngs [163]. PCIC with continuity correction is around 15 times higher in
costs compared to Parker and Youngs [172]. Note that it is difficult to compare
with accuracy to the reported computational costs of methods in the existing
literature. Not for every method cost indications are given. And for ELVIRA, for
instance, reports [65, 163, 172] appeared inconsistent. Costs, moreover, depend
on the efficiency of coding and the hardware that was used. For these reasons,
the comparison in Fig. 7.17 can potentially be valuable, because all methods were
implemented in the same code and run on the same machine.

7.6 Consistent mass-momentum transport
’Consistent’ is the name used for two-phase methods with staggered variables
that make sure that mass and momentum fluxes are determined in the same
way, carefully considering that the control volumes for mass and momentum
are also staggered with respect to eachother [4, 80, 200, 230, 320]. Consistent
modeling prevents momentum losses and prevents spurious velocities from
being generated near the interface between fluids, that – in some cases – lead to
instability.

Consistency is analyzed for the transport and reconstruction methods described
in this work, in combination with the two-phase method of Eijk and Wellens
[80]. The results of Eijk and Wellens [80] show temporal plots of momentum
losses which are nearly zero. When spurious velocities do occur and when they
can be explained in terms of the discretization of mass and momentum, we call
them ’inconsistencies’. The discretization of the density is key for explaining the
inconsistencies.

7.6.1 Brief overview of two-phase solver
A brief overview of the two-phase solver is needed to explain from where incon-
sistencies originate. The governing equations for two-phase flow are formulated
as if it is a single homogeneous mixture [188]. The motion of the mixture is
described in terms of a single velocity and a single pressure field, solving the
continuity equation and the momentum equation, together with the advection
equation for the interface. Viscous, capillary, and gravitational effects are ne-
glected for the purpose of this work.
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A 2D Cartesian grid of cells is adopted. According to the staggered MAC config-
uration of variables, velocities (u = [𝑢, 𝑣]𝑇) are defined in grid cell faces, and
scalar variables, the pressures (𝑝), volume fractions (𝐶𝑓), and densities (𝜌), are
defined in grid cell centers. How continuity control volumes (𝑉𝑐) and momen-
tum control volumes (𝑉𝑚), different for each velocity direction, are defined with
respect to the grid cells is shown in Fig. 7.18.

Horizontal momentum
control volume 𝑉𝑚,ℎ

Vertical momentum
control volume 𝑉𝑚,𝑣

Continuity control volume 𝑉𝑐𝜌, 𝑝

𝑣

𝑢

x

y

𝛿𝑥

𝛿𝑦

Figure 7.18. Standard MAC configuration of variables (staggered); pressure 𝑝 is defined
in the cell center ( ), the horizontal velocity 𝑢 field is sampled on the vertical
faces (→), the vertical velocity 𝑣 is sampled on the horizontal faces (↑). The
overlap of the continuity control volume (–), with a vertical momentum
control volume (–), and with a horizontal momentum control volume (–)
is shown.

Considering the time discrete version of the continuity,momentumand advection
equation, using Forward Euler in time for brevity of notation, the equations are
integrated over control volumes to obtain the weak form. The weak form is the
basis of the discretization in space. First, the fluids are advected using Eq. (7.9),
repeated here without equation number to be complete

∫
𝑉𝑐

𝐶𝑛+1
𝑓 − 𝐶𝑛

𝑓

𝛿𝑡 𝑑𝑉 = − ∮
𝑆𝑐

(u𝑛𝐶𝑛
𝑓 ) ⋅ n⏟⏟⏟⏟⏟

𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡

𝑑𝑆.

Here, 𝑆𝑐 refers to boundary of the control volume 𝑉𝑐 shown in Fig. 7.18. Transport
and reconstruction of the interface are solved for continuity control volumes
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with labels S and C (refer to the labeling system in Sec. 7.2.1). Because the fluids
are considered incompressible, the continuity equation reduces to

∮
𝑆𝑐
u𝑛+1 ⋅ n𝑑𝑆 = 0. (7.21)

The time discrete momentum equation is solved in steps, the main step being

∫
𝑉𝑚

𝜌𝑛+1u𝑛+1 − 𝜌𝑛+1 ̄u
𝛿𝑡 𝑑𝑉 = − ∮

𝑆𝑚
𝑝𝑛+1n𝑑𝑆, (7.22)

in which auxiliary vector field ū in Eq. (7.22), without viscous, capillary and
gravitational effects, is solved from

∫
𝑉𝑚

̄𝜌ū − 𝜌𝑛u𝑛

𝛿𝑡 𝑑𝑉 = − ∮
𝑆𝑚

𝜌∗u𝑛 (u𝑛 ⋅ n)⏟⏟⏟⏟⏟⏟⏟
𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡

𝑑𝑆, (7.23)

whereas auxiliary density ̄𝜌 is solved with a temporary continuity equation that
is integrated over momentum control volumes

∫
𝑉𝑚

̄𝜌 − 𝜌𝑛

𝛿𝑡 𝑑𝑉 = − ∮
𝑆𝑚

(u𝑛𝜌∗) ⋅ n⏟⏟⏟⏟⏟
𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡

𝑑𝑆. (7.24)

Here, 𝜌∗ is a density for which a consistent discretization in space is used. A
consistent space discretization for momentum and mass is obtained when the
advective terms indicated by the word ’consistent’ are treated the same with
continuity control volumes and with momentum control volumes, and when the
spatial discretization of 𝜌𝑛 and 𝜌𝑛+1 is the same on continuity control volumes
and onmomentum control volumes. The density 𝜌𝑛+1 is solved differently from ̄𝜌.

The new density 𝜌𝑛+1 is associated with the fluid volume in a momentum
control volume, The fluid volume 𝒜 in a momentum control volume is cal-
culated with volume fraction field 𝐶𝑛+1

𝑓 and the fluid-interface orientation: 𝜌 =
𝒜𝜌𝑓 + (1 − 𝒜)𝜌1−𝑓, with 𝜌𝑓 the constant density of the fluid that is advected (typi-
cally the heavier of the twofluids), and 𝜌1−𝑓 the constant density of the other fluid.

The auxiliary density ̄𝜌 is calculated using 𝜌∗. The value of 𝜌∗ depends on the
size of the VOF flux 𝛿𝐶𝑓 at the boundary of the momentum control volume, so
that consistency is obtained between the mass flux and the momentum flux. The
momentum flux 𝜌∗u is discretized using

𝜌∗u = (𝒞𝜌𝑓 + (1 − 𝒞)𝜌1−𝑓)u, (7.25)

in which 𝒞 is a scalar fraction indicating the VOF flux normalized by the size of
the donating region [320]. This discretization ensures consistency between mass
and momentum flux.

𝒞 =
|𝛿𝐶𝑓|

|u|𝛿𝑡𝛿𝐴. (7.26)

The density 𝜌∗ is above zero by definition and, therefore, absolute values of flux
and velocity are used.
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7.6.2 Application of an advection scheme to the solver
Besides calculating the VOF fluxes around the faces of the continuity control vol-
ume for Eq. (7.6.1), additional VOF fluxes need to be calculated around the faces
of the momentum control volumes for Eqs. (7.24) and (7.23) to find 𝜌∗. Owkes
and Desjardins [200] dealt with this in a similar way. The VOF flux positions for
all control volumes are illustrated in Fig. 7.19, including examples of donating
regions for a flow that is directed to the right and to below. Fig. 7.19 shows
one of the nine continuity control volumes in Fig. 7.18. The continuity control
volume is subdivided in four quadrants so that fluxes of mass and momentum
can be matched in continuity control volumes, horizontal and vertical control
volumes. An arrow is drawn at every face of a quadrant, representing a VOF flux
that requires computation. Per 2D grid cell, not four, but twelve VOF fluxes are
calculated.

The thick-lined arrows in Fig. 7.19 are the cell-face-centered velocities solved
from the system in Eq. (7.22). These velocities are assumed constant along a
cell face. Therefore, the unknown sub-velocities for the faces of the quadrants
are equal to the solved face-centered velocity, for instance for the velocities on
the right-hand side of the cell: u𝑟𝑖𝑔ℎ𝑡 = 𝑢𝑟𝑖𝑔ℎ𝑡,1 = 𝑢𝑟𝑖𝑔ℎ𝑡,2. The same applies to
u𝑙𝑒𝑓 𝑡, v𝑏𝑜𝑡, and v𝑡𝑜𝑝. The velocities in the middle of a grid cell (u𝑚𝑖𝑑 and v𝑚𝑖𝑑) are
not the same as the velocities in the cell faces. An averaging procedure is used
to find these velocities. They are found from 𝑣𝑚𝑖𝑑 = 1

2 (𝑣𝑡𝑜𝑝 + 𝑣𝑏𝑜𝑡) and 𝑢𝑚𝑖𝑑 =
1
2 (𝑢𝑙𝑒𝑓 𝑡 + 𝑢𝑟𝑖𝑔ℎ𝑡). The sum of the two fluxes at the position of 𝑣𝑚𝑖𝑑,1 and 𝑣𝑚𝑖𝑑,2
in Fig. 7.19 results in the total VOF flux through the bottom face of the vertical
momentum control volume needed for 𝜌∗. The same is true for the horizontal
control volume fluxes at the position of 𝑢𝑚𝑖𝑑.
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𝑢𝑙𝑒𝑓 𝑡 𝑢𝑟𝑖𝑔ℎ𝑡

𝑣𝑡𝑜𝑝

𝑣𝑏𝑜𝑡

u𝑙𝑒𝑓 𝑡,1 u𝑟𝑖𝑔ℎ𝑡,1

v𝑡𝑜𝑝,1

v𝑏𝑜𝑡,1

u𝑙𝑒𝑓 𝑡,2 u𝑟𝑖𝑔ℎ𝑡,2

v𝑡𝑜𝑝,2

v𝑏𝑜𝑡,2

v𝑚𝑖𝑑,1 v𝑚𝑖𝑑,2

u𝑚𝑖𝑑,1

u𝑚𝑖𝑑,2

𝛿𝑦

𝛿𝑥

Figure 7.19. Subdivision of a grid cell in quadrants. DQA donating regions needed for a
consistent discretization with a staggered arrangement are also indicated;
solid black is the border of the grid cell and dashed black borders are the
donating regions based on the sub-velocities. The 𝑢𝑚𝑎𝑖𝑛 velocity for every
donating region is given. Cell-face-centered velocities are thick-lined. The
other arrows are sub-velocities. The overlap of the continuity control volume
(–) with a vertical momentum control volume (–) is indicated, as well as
the overlap with a horizontal momentum control volume (–).

The sub-velocities in Fig. 7.19 are used to reconstruct the donating region. The
linear edges of the donating regions (black dashed lines in Fig. 7.19 representing
the (sub-)donating regions) are calculated as in Sec. 7.4 using the sub-velocities
of the cell quadrants. The sum of two donating regions along a cell face should
be equal to the volume constraint, where ’volume constraint’ means the total
amount of fluid to be fluxed. For example, the volume constraint for the donating
regions at the face indicated with 𝑟𝑖𝑔ℎ𝑡 is 𝑢𝑟𝑖𝑔ℎ𝑡𝛿𝑦 = 1

2𝑢𝑟𝑖𝑔ℎ𝑡,1𝛿𝑦 + 1
2𝑢𝑟𝑖𝑔ℎ𝑡,2𝛿𝑦.

Similarities with Owkes and Desjardins [200] are found in dividing the cell
into sub-cells. Even though they make use of vertex-centered velocities and
adopt the method of Rudman [230], reconstructing the interface in sub-cells to
create consistency and a conservative scheme, a difference is found in the way of
correcting the donating region such that they comply with the volume constraint.
In our case, for every sub-velocity a donating region with a correction is defined,
resulting in a less complex system but more correction calculations.

7.6.3 Inconsistency
A method is considered to be fully consistent when the auxiliary density ̄𝜌 is the
same as 𝜌𝑛+1, see Eqs. (7.22) and (7.23). The method in Rudman [230] is fully
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consistent with both transport and reconstruction of the interface taking place
in cell quadrants, but also computationally expensive. Reconstruction handled
in complete cells, instead of in cell quadrants, can lead to small inconsistencies.
The overlap of the interface reconstruction in the continuity and momentum
control volume is the reason for this. The problem is that ̄𝜌 does not account for
the reconstruction of the fraction field in a complete cell (or continuity control
volume), while 𝜌𝑛+1 does. Collocated approaches, like in Bussmann, Kothe, and
Sicilian [29] and in Rudman [230], do not have this issue.

Zuzio et al. [320] use grid cells divided up in quadrants to determinemass fluxes,
but reconstruct the interface in complete grid cells. In theory, reconstructing the
interface in this way can lead to inconsistency because during reconstruction
fluid can be moved from one quadrant to another, without having mass fluxes
associated with that movement. Zuzio et al. [320] have demonstrated, however,
without explicitly stating it in their article, that the effect of this type of inconsis-
tency on the overall accuracy of the method is marginal, which was confirmed
later by Eijk and Wellens [80] when using a similar approach in combination
with the COSMIC transport method that reduces direction-split errors through
an additional step including intermediate reconstruction.

An example of the non-problematic inconsistency described above with single-
step advection methods is given in Fig. 7.20. The interface is transported in 1D
with a constant velocity. The grey area shows the fluid configuration before
transport. The hatched area shows the fluid configuration after transport. The
numbers represent the volume fraction in half of a momentum control volume
(in blue), normalized by the size of the momentum control volume. Fig. 7.20a
gives the configuration of the fluid after transport (net value of all fluxes), but
before reconstruction. The volume fraction in the halves of the momentum con-
trol volume then has a value that correspond to the fluxes. After reconstruction,
in Fig. 7.20b, the volume fraction in the halves of the momentum control volume
has changed. And because density field ̄𝜌 is based on the VOF fluxes, and density
field 𝜌𝑛+1 is based on the volume fraction, an inconsistency between ̄𝜌 and 𝜌𝑛+1

arises.
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0.13 0.30
(a) Fluid configuration before (grey) and af-

ter (hatched) transport. Volume fraction
in momentum control volume (number)
matches the fluxes.

0.14 0.31
(b) Fluid configuration after transport and

reconstruction (hatched). Volume frac-
tion in momentum control volume does
not match fluxes anymore.

Figure 7.20. Interface transport and reconstruction resulting in inconsistency between ̄𝜌
and 𝜌𝑛+1, because ̄𝜌 is based on the fluxes (leading to fluid configuration in
(a)) and 𝜌𝑛+1 is based on the volume fraction after reconstruction (fluid
configuration in (b)). Volume fraction before transport is indicated by . Vol-
ume fraction after transport is indicated by hatched area. The cell boundary
(–), the horizontal momentum control volume (–), and continuity control
volume (–) are also shown. The arrows represent the VOF fluxes through
the faces of the momentum control volume. The values give the volume
fraction of half the momentum control volume, normalized by the size of
the total momentum control volume.

For incompressible flow modeling using the mixture formulation, the conditions
𝜌1−𝑓 < ̄𝜌 < 𝜌𝑓 and 𝜌1−𝑓 < 𝜌𝑛+1 < 𝜌𝑓 for 𝜌1𝑓

< 𝜌𝑓 need to hold. Density 𝜌𝑛+1 is
associated with the volume fractions in a momentum control volume. As 𝒜,
as well as 𝐶𝑓, is bounded between 0 and 1, 𝜌𝑛+1 always satisfies these criteria.
Density ̄𝜌 is based on the VOF fluxes. It therefore depends on the advection
scheme whether ̄𝜌 satisfies the conditions.

Upon more careful consideration, it was found that the intermediate reconstruc-
tion in COSMIC lead to a more substantial inconsistency, resulting in spurious
velocities, negative densities ̄𝜌 and even instability. Compared with the non-
problematic reconstruction step discussed above, this intermediate reconstruc-
tion does violate the criteria given. The mechanism is explained below and is true
for all direction-split schemes that include intermediate reconstruction (another
example is the MACHO scheme [155]).

A sequence of steps of how a negative value for ̄𝜌 can come about with COSMIC
is given in Fig. 7.21 using the notations in Sec. 7.4.2. The hatched area indicates
the size of the flux. The advection of the interface is split in fluxing the vertical
direction first (Fig. 7.21a) to obtain the intermediate volume fraction field 𝐶∗

𝑓 ,
then reconstructing the interface to obtain 𝐶𝑛+1/2

𝑓 (Fig. 7.21b), followed by flux-
ing in horizontal direction to obtain 𝐶𝑛+1

𝑓 (Fig. 7.21c).
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𝛿𝐶𝑓 ,1

𝐶∗
𝑓

(a) Vertical flux results in 𝐶∗
𝑓 .

𝐶∗
𝑓

𝐶𝑛+1/2
𝑓

(b) Reconstruction step for continuity
CV to 𝐶𝑛+1/2

𝑓 .

𝛿𝐶𝑓 ,2

𝐶𝑛+1/2
𝑓

(c) Horizontal flux to obtain 𝐶𝑛+1
𝑓 .

Figure 7.21. Problematic inconsistency due to intermediate reconstuction in COSMIC.
Fluid 𝐶𝑛

𝑓 is indicated by . The cell boundary (–), the horizontal momentum
control volume (–), and continuity control volume (–) are shown. The black
hatched area indicates the flux for the momentum control volume. The black
dashed line is the donating region for the given face-centered velocity.

The initial density 𝜌𝑛 in Fig. 7.21 is equal to zero inside the momentum control
volume. Using the variables from the situation of Fig. 7.21 in Eq. (7.24) results
in an expression like

̄𝜌 = −
1

𝛿𝑉𝑚
(𝛿𝐶𝑓 ,2 − 𝛿𝐶𝑓 ,1)𝜌𝑓, (7.27)

in which it is assumed that the only non-zero VOF fluxes are 𝛿𝐶𝑓 ,1 and 𝛿𝐶𝑓 ,2,
that 𝛿𝑉𝑚 is the size of the momentum control volume, and that 𝜌𝑓 >> 𝜌(1 − 𝑓 ).
When, due to intermediate reconstruction 𝛿𝐶𝑓 ,2 is larger than 𝛿𝐶𝑓 ,1, so when the
hatched area in Fig. 7.21c is larger than in Fig. 7.21a, then a negative value for ̄𝜌
is obtained. Our experience is that negative densities lead to spurious velocities,
which affect the time step through the Courant criterion. When the time step is
kept the same, the spurious velocity may lead to instability.

Solutions to prevent negative densities could be to apply reconstruction in cell
quadrants as in Rudman [230] with much increased computational effort. An-
other solution altogether could be to adopt a discretization based on a collocated



7

7.6 consistent mass-momentum transport 289

arrangement of variables and control volumes. The solution we chose to obtain a
robust, accurate and consistent method for two-phase flow simulations was to
develop DQA, an unsplit advection method.

DQA is inspired by EMFPA. When researhing the application of EMFPA for our
applications, another problematic inconsistency was encountered that can lead
to negative values of ̄𝜌, and even instability, when the VOF flux is of opposite sign
from the velocity in the same control volume face. Where the donating region
for direction-split methods is always solely on one side of the control volume
face, a multidimensional unsplit advection scheme like EMFPA can generate neg-
ative donating regions, as shown in Figs. 7.2, 7.11f, and 7.13b. Negative donating
regions can result in a VOF flux 𝛿𝐶𝑓 directed inwards of a momentum control
volume, while the velocity u points outwards.

An example of a negative donating region is illustrated in Fig. 7.22, in which the
VOF flux 𝛿𝐶𝑓 is larger than the available fluid volume. Using Eq. (7.25) results
in momentum 𝜌∗𝑢 of opposite sign from the VOF flux. Using Eq. (7.24)

̄𝜌 = (𝒜𝑛 −
𝛿𝐶𝑓

𝛿𝑉𝑚
) 𝜌𝑓 (7.28)

for the situation in Fig. 7.22, in which the value of 𝒜𝑛 is smaller than the VOF
flux

𝛿𝐶𝑓

𝛿𝑉𝑚
, while assuming that 𝜌𝑓 >> 𝜌(1 − 𝑓 ), leads to a negative value for ̄𝜌,

spurious velocities and, potentially, instability. There is even the chance with
EMFPA, although small, that the VOF flux 𝛿𝐶𝑓 in the negative donating region is
larger than the volume constraint 𝑢𝛿𝑡𝛿𝐴. Then, fraction 𝐶 in front of fluid 𝜌1−𝑓
in Eq. (7.25) becomes negative, at which time mass conservation is not longer
enforced. DQA, which does not allow for negative donating regions by design,
prevents the problematic inconsistency.

𝜌∗𝑢

𝛿𝐶𝑓

𝒜𝑛

Figure 7.22. Negative donating region when using EMFPA. Volume fraction 𝐶𝑓 is indi-
cated by . The donation region is shown in (–). The hatched area is the
VOF flux 𝛿𝐶𝑓. Momentum flux 𝜌∗𝑢 is of opposite direction from the VOF
flux 𝛿𝐶𝑓. In case the fluid volume (𝒜𝑛) is smaller than the VOF flux 𝛿𝐶𝑓, a
negative density ̄𝜌 is found, potentially leading to spurious velocities and
instability.
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7.6.4 The effect of the advection scheme on stability
Simulations with the two-phase solver of Eijk and Wellens [80] are performed to
demonstrate the effect of inconsistency on the results. Two cases are considered.
The first is designed to show the negative densities associated with the interme-
diate reconstruction step when using COSMIC for fluid transport. The second
case is designed to show the negative densities resulting from negative donation
regions when using EMFPA for fluid transport. The results of both cases are
compared with the simulation results in which DQA is used for fluid transport.
In all simulations, BLIC-MYC is used to reconstruct the interface.

The setup of the first case is shown in Fig. 7.23. A 2D cylinder (circle) composed
of high-density fluid is translated diagonally through the domain at a constant
velocity of 14.14[m/s]. The cylinder is surrounded by a low-density fluid with a
uniform velocity of the same magnitude and in the same direction as the velocity
of the high-density cylinder. The relative velocity between fluids, therefore, is
zero and further velocity changes should not occur. The density ratio between
fluids is 106. The effect of the grid resolution on the results is investigated by
considering three grid resolutions with 40×40, 80×80, and 120×120 grid cells.
The time step is kept restrained at a value corresponding to an initial Courant
number of 0.2. The Courant number is based on the size of the momentum
control volume. The simulations finish after 100 time steps.

1[m]

1[m]

y

x

0.3[m]

14.14[m/s]

45∘
10[m/s]10[m/s]

10[m/s]

10[m/s]

Figure 7.23. Simulation setup with cylinder of high-density fluid translating diagonally
through low-density fluid at zero relative velocity.
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The results of the 40×40 simulation with the diagonal translation of the fluid
cylinder are shown in Fig. 7.25. Contour plots of the pressure after 50 time steps
are given. The pressure distribution in the simulation with COSMIC is show-
ing a region with lower pressure and a region with higher pressure which is
unexpected for a simulation with zero relative velocity between the high-density
fluid cylinder and the surrounding fluid. These regions are caused by spurious
velocities that themselves are caused by the negative density that has developed
according to the mechanism described above. As shown on the right of Fig. 7.25,
a simulation with DQA instead of COSMIC, but otherwise the same, yields the
expected results and does not show any pressure gradients.
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(a) COSMIC.
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(b) DQA.

Figure 7.24. Contour plot of pressure in 40×40 simulation after 50 time steps. The in-
terface is shown as a continuous black line. Results with COSMIC, to the
left, feature regions of low and high pressure caused by spurious velocities.
The simulation with DQA gives the expected results for this case without
pressure gradients.

Fig. 7.25 compares the interfaces between COSMIC and DQA for two grid resolu-
tions, 80×80 and 120×120. For both grid resolutions, the interface with COSMIC
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is highly distorted as a result of the spurious velocities, whereas the interface
with DQA is as expected. The interface distortion does decrease with increasing
grid resolution. Both simulations with COSMIC became unstable, but the sim-
ulation with a grid resolution of 120×120 became unstable at a later time step
than the simulation with a grid resolution of 80×80.

0.2 0.4
0.2

0.4

x [m]

y
[m

]

(a) 80×80, after 56 time steps.

0.2 0.4

0.2

0.4

x [m]

y
[m

]

(b) 120×120, after 66 time steps.

Figure 7.25. The interface between fluids in 80×80 and 120×120 simulations at two
time levels. COSMIC is –. DQA is –. The interface in the simulations with
COSMIC is highly distorted, whereas the simulations with DQA give the
expected results.

The density ̄𝜌 should be in between 𝜌𝑓 and 𝜌1−𝑓. However, the simulation with
COSMIC resulted for every time step in over-and undershoots of the density ̄𝜌 in
the order of 50. The over- and undershoots increase when the simulation becomes
unstable until it crashes. An overshoot of 50[kg/m3] compared to a density ratio
of 106 seems small but can result in instability. The spurious velocities are smaller
for lower density ratios. It must be noted that the simulations became unstable
because we did not allow the time step to decrease according to the Courant
criterion.

It is our experience, from Eijk and Wellens [80] and the present work, that ex-
aggerating the density ratio with respect to more common ratios such as for
water and air, helps trigger issues when they are there. The undershoots and
overshoots of the intermediate density ̄𝑟ℎ𝑜 seemed inconspicuous, but set a chain
of events into motion that can even lead to unstable simulations.

The second case is designed to demonstrate the effect of having negative donat-
ing regions when using the EMFPA unsplit advection scheme in a two-phase
flow solver with a high-density ratio between fluids. Negative donating regions
can also lead to negative densities and spurious velocities. The mechanism is
different from that with COSMIC, but the effect on the robustness of the solver
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is the same. The previous case discussed does not show any issues for EMFPA
because no negative donating regions are created with the imposed constant
velocity field. The chance of negative donating regions increases for shear flows
as in Fig. 7.13a.

The simulation setup is shown in Fig. 7.26. A 2D square of high-density fluid is
at rest while being surrounded by low-density fluid moving with an undisturbed
velocity magnitude of 10[m/s]. The density ratio between fluids is 106. Two grid
resolutions, 86×86 and 87×87, are considered to show how sensitive EMFPA can
be for the specific configuration of fluids. The time step is allowed to vary so
that at any time the Courant number is lower than 0.4. The simulations end at 𝑡
= 0.05[s]. The thought behind the setup is to represent a shear flow, in which
negative donating regions are constructed with EMFPA as in Fig. 7.13a. DQA
does not allow negative regions to be formed. In absence of gravity and viscous
stresses, the setup should not result in deformation or movement of the square
of fluid. The differences between the simulation results with EMFPA and with
DQA will be discussed.

1[m]

1[m]
0.3[m]

y

x

-10[m/s]-10[m/s]

Figure 7.26. Simulation setup with square of high-density fluid at rest surrounded by
low-density fluid moving with an undisturbed velocity magnitude of 10
m/s.

The differences between the simulation results with EMFPA and with DQA are
most apparent when the horizontal velocity field is shown together with the
interface between fluids. Fig. 7.27 shows the horizontal velocity and interface
of four simulations at time 𝑡 = 0.005[s]. The top row in Fig. 7.27 is for grid
resolution 86×86 and has the EMFPA results on the left and the DQA results on
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the right. The EMFPA results for grid 86×86 feature a distorted interface caused
by negative densities, resulting in spurious velocity oscillations that attain a
magnitude as high as 70[m/s] (the scale in the plot goes until 20 to be able to
compare with the other plots in the figure). The bottom row of Fig. 7.27 shows
the results of the simulation with a grid resolution of 87×87, again with EMFPA
on the left and DQA on the right. For grid 87×87, the results of EMFPA and
DQA are the same and equal to what could be expected. The difference between
the results of the simulations with EMFPA, with a marginal difference in grid
resolution, indicates how sensitive a two-phase flow solver can be to negative
densities.
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(a) EMFPA 86×86.
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(b) DQA 86×86.
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(c) EMFPA 87×87.

0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

x [m]

y
[m

]

−20

−10

0

u
[m

/s
]

0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

(d) DQA 87×87.

Figure 7.27. Contour plot of horizontal velocity and interface at 𝑡 = 0.005[s] in simula-
tions with EMFPA and DQA at slightly different grid resolutions. Contour
levels of the interface represent volume fraction values of 0.5, 0.01, 0.001,
and 0.0001, becoming smaller from the high-density square towards the
low-density surrounding fluid. EMFPA generates spurious velocities near
-70[m/s] (not shown, minimum of scale is -20[m/s]).

The interface deformation with EMFPA is related to the specific position of the
interface in a grid cell with a grid resolution of 86×86 and to EMFPA using vertex
velocities. When a grid cell containing the interface is nearly filled, then, due
to the high velocity of the low-density fluid, a negative donating region can be
formed with a VOF flux of the opposite sign from the main velocity in that cell
(see Fig. 7.13a). That VOF flux deforms the interface, which induces a negative
density. With grid resolution 87×87, the grid cells near the interface have a lower
volume fraction which prevents the negative donating region from being formed.
DQA is not sensitive to this mechanism because it does not allow the creation of
negative donating regions.

The spurious horizontal velocities in the 86×86 EMFPA simulation are a conse-
quence of negative densities which are caused by the VOF fluxes in interface
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cells of opposite sign from the velocity in those cells. Negative densities ̄𝜌 were
computed with values up to -350[kg/m3] in more than 50% of the time steps
according to the mechanism explained above: solving the velocity field ū in Eq.
(7.23), using Eqs. (7.25) and (7.24) yields a negative density ̄𝜌, resulting in a
change in sign of the velocity. The pressure field needs to ensure a divergence-
free field and, therefore, induces a larger correction of the velocity field, giving
even higher velocities.

7.7 Conclusion
A new bilinear interface calculation (BLIC) method is introduced for recon-
structing the interface in a 2D Volume-of-Fluid (VOF) method. A new multidi-
mensional consistent unsplit VOF advection method, DQA, which is short for
Donating Quadrant Advection, is presented using face-centered velocities that is
conservative, low-cost, and accurate. It allows the fluid to enter and exit a cell in
a time step.

Both BLIC and DQA are tested with standard 2D benchmarks like static re-
construction of two different shapes, Zalesak’s slotted disk, and a reversed sin-
gle vortex field. The BLIC method uses a robust curvature-weighted averaging
method with a piecewise linear segment as starting point to create continuity of
the interface along the cell faces. Weighting using the curvature increases the
accuracy of the BLIC method, especially for underresolved material interfaces.
The accuracy of BLIC for higher grid resolutions converges to the accuracy of
PLIC on a grid twice as fine. The additional computational costs compared to
Parker and Youngs’ PLIC method is up to 20%, decreasing to 1% for higher grid
resolutions. However, the increase in accuracy of representing the interface is
up to an order of magnitude. The BLIC method needs a less dense grid and less
computational time to reach similar accuracies as the PLIC method.

The DQA schemewe present shows similar accuracy as the state-of-the-art vertex
velocities-based EMFPA scheme for traditional benchmarks. The computational
costs of the unsplit DQA scheme are lower than for a direction-split scheme like
COSMIC, mostly because of the intermediate reconstruction steps a direction-
split scheme uses. The combination of the BLIC and DQAmethods is competitive
with higher-order methods in terms of accuracy but outperforms most of them
in computational cost based on provided data from literature.

An important additional benefit of the DQA scheme is introduced to ensure
consistency for an existing consistent two-phase flow solver with a staggered
arrangement of variables. Consistency means using the same discretization tech-
niques for determining the momentum, mass, and VOF fluxes and carefully
matching them in the different control volumes that are staggered with respect
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to each other. Consistency is achieved by incorporating the VOF fluxes in the
discretization of the density. Negative densities due to inconsistency are found
for an intermediate reconstruction step in COSMIC, and for a VOF flux of the
opposite sign than the velocity in EMFPA. The negative densities result in spuri-
ous velocities and instability near the fluid interface. The DQA scheme prevents
these negative densities and remains stable and accurate in a simulation of a
translating high-density cylinder in a low-density fluid, for which COSMIC fails,
and in a simulation with a square of high-density fluid in a shear flow with
low-density fluid, for which EMFPA fails.
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8
CONCLUS IONS AND FUTURE WORK

This chapter outlines the main results and findings of each part of this thesis and suggests
any future research work.

8.1 Results and main findings
The overarching objective in this thesis is the development of a new pressure-
based compressible multiphase flow model that can account for the effect of a
compressible air-water mixture on the loadings on a freely-moving body. The
emphasis lies on building a fast and robust model from scratch where well-
considered decisions are made for numerical techniques. The capability of the
method should be modeling the compressibility of the air-water mixture, high-
density ratio flows, and presence of pressure waves when it gets in contact with
a moving body.

In order to obtain this method, the starting point is the one-phase flow model in
ComFLOW, used because of being fast and robust for the prediction of water-
wave impacts. The thesis is separated in three parts:

1. Develop an adequate semi-compressible pressure-based two-phasemethod
that can model high-density ratio flows, represent the compressibility ef-
fects of a well resolved entrapped air pocket, and account for the interaction
between a moving body and the fluids.

2. Extend the semi-compressiblemodel to a full compressiblemultiphase flow
model that can account for the presence of air in water as a homogeneous
mixture and quantify the abilities of this model by comparing with new
experimental data.

3. Improve the model based on the experienced difficulties of modeling high-
density ratio interfaces and compressibility due to impacts.

The aim is to use this final model to analyze the effect of air in water on, e.g.,
slamming and green-water events. It was necessary to conduct experiments for
validation as a sub objective of this thesis.

299
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Part I: Modeling of high-density ratio flows, compressible entrapped air-pocket oscilla-
tions, and fluid-body interaction
ComFLOW showed that the effect of the compressibility of air between the free
surface and a high-speed vessel dropping with an average deadrise angle of 30
degrees into the water is negligible. Based on these results, the choice is made to
use a one-phase flow model to compare the numerical model with the experi-
mental results of a high-speed vessel in irregular headwaves. The one-phase flow
model was shown to outperform a state-of-the-art strip-theory method in terms
of accuracy with an improvement of up to 20% for the vertical acceleration and
is seen as an adequate tool for improving analytical methods like the strip-theory.

The one-phase model could simulate the impacts of a vessel in irregular waves
and, therefore, be used as a basis to develop an in-house model from scratch.
This in-house model is extended to a semi-compressible two-phase flow model
where the air above the free surface is considered as compressible.

The semi-compressible model is applied for simulating the dynamics of an en-
trapped air pocket due to an overturning wave. For traditional test cases, the
extended model showed that the air pocket dynamics are well captured. The
effect of compression waves in the air dominates the dynamics of an entrapped
air pocket, and surface tension had no effect on this scale. The pressure waves
generated by the pulsation of the air pocket can be in the same order as the
maximum pressure induced by the wave impact on the wall. However, the 2D
simulations are overpredicting the pressures compared to experimental data
because of the restricted movement of the fluids in 2D.

Around the interface between the fluids spurious velocities were present, even
though multiple density averaging methods were tested that should have pre-
vented this. The spurious velocities resulted in unphysical free-surface distortion
and needed to be prevented.

Literature showed that high-density ratio interface flows are challenging and can
easily result in unphysical free surface distortion. The staggered arrangement of
variables can lead to a non-consistent discretization of the mass and momentum
fluxes due to the difference in control volumes. A non-consistent discretization
can cause momentum losses. A consistent discretization technique for momen-
tum and mass is obtained when the fluxes along faces of control volumes and
the spatial discretization of the densities are treated the same for all control
volumes. Additionally, a new label is added to the cell labeling system to improve
the sharpness of the interface. The model is extended with a cut-cell method
that can represent a body. A monolithic coupling between the fluids and body
is implemented to model two-way interaction. The consistent discretization of
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cut-cells and high-density ratio flows gave an order of magnitude decrease in mo-
mentum losses for fluid-body interaction compared with the old non-consistent
discretization technique. Comparison with experimental data showed numerical
results closer to the measurements.

Part II: Experiments and numerics with aeration
In the second part of this thesis, the model is extended to account for the effect of
air homogeneously distributed in water and the interaction with freely moving
bodies. Validation with experimental data is necessary to show that the model
produces reliable results. Before the extension is implemented, an experimental
setup is presented. The setup includes a buoyant falling and emerging wedge
in ”2D”. The provided experimental data can be used as a 2D benchmark for
violent fluid-body interaction and improvement of 2D strip theories for ship
motion. The numerical results with the semi-compressible two-phase model
showed good agreement with the experimental results for free surface deforma-
tion and body motion. The combination of both numerical and experimental
results provides a better understanding of when 3D effects are relevant; the
moment when the cavity becomes unstable and closes, created in the wake of the
body after it penetrated the water. The combination of experiment and numerical
simulations reduces uncertainties, and leads to a better understanding of physics.

A new fully compressible pressure-based multiphase flow model is presented
that can account for the effect of a constant mass fraction of air in the water and
the interaction between the air above the free surface, the air-water mixture, and
a body. The model releases the need for exact mass conservation using a non-
conservative formulation for the interface transport which prevents unphysical
oscillations around the interface, and the need to capture the sharp discontinuity
of pressure waves due to the use of continuous spatial discretization schemes.
The model enforces pressure-density relations that neglect the effect of temper-
ature changes. A new formulation of the speed of sound and adding another
volume fraction field indicating the aeration level prevented artificial compress-
ibility effects due to unphysical air entrainment around the interfaces and cell
label changes. The model showed good results for traditional benchmarks where
the propagation of pressure waves through a fluid and through an interface are
measured, even though the discontinuity of the waves is smeared out over a
couple of grid cells.

The 2D experimental setup is extended to account for aeration, resulting in com-
pressibility effects due to the ratio of maximum fluid velocity over the speed of
sound of up to 0.5. The numerical and experimental results are in good agreement
for low aeration levels, but start to deviate for higher aeration levels. Compared
to the numerical results, the cushioning effect of the experiment is higher. The
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post-impact loadings on the wedge caused by reflected pressure waves were less
present for the experiment than for the numerical model. 3D bubble effects, not
allowing for air pocket fragmentation, a not fully homogeneous mixture in the
experiment, not being numerically mass conserving, and enforcing pressure-
density relations can be an explanation for the remaining differences in the
experimental and numerical results. The high frequencies of the post-impact
loadings found with the numerical model are in good agreement with the exper-
imental results for relatively high aeration levels because, related to the Courant
restriction, the fluid velocities are in the same order as the pressure wave ve-
locities. The post-impact loading variations become larger (compared to the
maximum pressure at impact) when the aeration level increases and are likely
to play a role in fatigue of structures.

Part III: Numerical improvements for interface modeling of high-density ratio flows
The artificial compressibility effects, when aeration is involved, are partly caused
by the discontinuous interface reconstruction across the numerical grid. A new
low-cost bilinear interface calculation method is introduced to enforce interface
continuity with a curvature-weighted approach. Direction-split methods with
a reconstruction step in combination with the staggered arrangement leave
unresolved inconsistencies between the mass and momentum fluxes. These are
minimized by introducing a new unsplit interface advection scheme. It prevents
the inconsistencies that can result in an unstable interface. The new advection
scheme also showed to be more shape preserving than the direction-split scheme
used by the originalmethod. The combination of both new schemes is competitive
with higher-order methods in terms of accuracy but outperforms in costs.

8.2 Outlook
Suggested future research work is separated in two parts: improvements of the
numerical model, and extensions for the experimental setup.

Numerical model
A 2D environment is a convenient place to develop a numerical model. However,
many times it was experienced that 3D effects play a role and result in a deviation
compared to the 2D results. Developing a 2D experimental setupwas experienced
as difficult, explaining why there are not many truly 2D benchmarks. Extending
the presented numerical model to 3D should be one of the next steps.

The numerical model did not consider air pocket fragmentation during the
simulation due to the assumption of homogeneity. The experiments for thewedge
entry showed that air entrainment happens during the entry and emergence. The
use of subgrid models beyond the assumption of a constant mass fraction of air
in water is a step that can be made to include fragmentation without significantly
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increasing the computational costs.
More attention is needed for handling cut cells at the fluid-fluid interface

and face apertures of moving bodies for preventing unphysical air entrainment
beneath the free surface. The calculation of the triple point where two interfaces
come together, body-fluid and fluid-fluid interface, and the reconstruction of the
fluid-fluid interface is relevant for the propagation of a jet along the boundary
of a body. When the interface is not kept sharp, artificial air entrainment or
unphysical detaching of droplets can happen. Applying the bilinear interface
calculation method and the donating quadrant advection scheme for moving
bodies needs evaluation.

Other steps that need consideration are comparing the staggered arrangement
with a collocated arrangement of variables for momentum losses by fluid-body
interaction, quarter cell reconstruction to reduce the momentum losses and
prevent inconsistency due to interface reconstruction, and the implementation
of shape-preserving body rotation or deformable bodies.

Experimental setup
The proposed experimental setup with a wedge is a fundamental case that makes
it easier to understand what happens during an aerated water-wave impact. New
experimental setups that can consider multiple water-penetrating bodies, green
water events, breaking waves, and cases that approach reality can be next steps
when there is more understanding of these kinds of impacts.

For this experimental setup, 3D effects and the homogeneous distribution of
air need evaluation. An attempt needs to be made to visualize the propagating
pressure waves by looking at the motion of the tiny air bubbles with a high-
speed camera, by positioning pressure sensors at the domain boundaries, and by
considering the deformation of the free surface for different aeration levels. Even
a flexible wedge could help to identify pressure waves. Measuring the aeration
level and the distribution with optical probes should decrease the uncertainty
in air content. With the recordings of a high-speed camera, the air entrainment
during impact could be derived. This requires the use of markers to control
distortion. The measurements will yield a better understanding and can be the
basis of a subgrid model for air entrainment.
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SUMMARY

A deeper understanding of physics is required when the complexity of events
increases. A complex event consists of many detailed interacting processes. The
complete picture asks for an understanding of each of the processes individually.
Numerical computing in the maritime industry is becoming more relevant due
to the increase in usability and relatively low costs compared to experiments. The
numerical results allow for analysis at the required level of detail. The complexity
of water-wave impacts on offshore structures necessitates innovative numerical
approaches because conventional analytical techniques fall short of representing
the non-linearity in these events.

Large amplitude waves can break and cause impacts with damages to structures
that lead to catastrophic failure and even loss of people. Even though these
structures are designed according to the regulations, the lack of understanding
of these extreme wave impacts can result in these failures. This is the motive of
recent studies about large breaking waves.

A breaking wave can result in air entrapment followed by air entrainment due
to fragmentation. The entrained air bubbles can remain in the water for sev-
eral wave periods up to several percent in volume. The highly-compressible
air bubbles in water (a homogeneous mixture of water and air) increase the
mixture compressibility and decrease the speed of sound significantly. The mix-
ture results in different loadings than pure water. A cushioning effect on the
impact, distribution of the impact pressure over a larger area, increase in rise and
fall time of the pressure, cavitation, and pressure waves can be due to air in water.

The overarching topic of this thesis is to gain more understanding of the effect
of air entrapment and entrainment on wave impact loadings on floating bodies.
An innovative fast computational model is developed that can account for these
highly deformable interface flows. The model should deal with high-density
ratio flows, sharp interface modeling for predicting the moment of impact, com-
pressible entrapped air pockets, and a compressible homogeneous mixture of
air and water. An experimental setup was needed that includes the effect of
air entrainment in fluid-structure interaction. The results are used for model
verification.

This dissertation consists of three parts. In the first part, the one-phase flow
model of ComFLOW is introduced as starting point for further development.
This method has a major application in predicting hydrodynamic wave loading
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on offshore structures. The numerical model is characterized by the following
terms: finite-volume method, Volume-of-Fluid interface capturing, geometri-
cal interface reconstruction, pressure-based solver, one-fluid formulation, the
staggered arrangement of variables on a fixed Cartesian grid, and a cut-cell
method to account for moving rigid bodies. Results obtained with the one-phase
flow model are compared with in-house conducted towing tank results of a
high-speed vessel in moderate to high irregular head waves and a calibrated
state-of-the-art strip theory method. The large vertical accelerations are well
captured by the one-phase flow model, outperforming the strip-theory method
in terms of accuracy. This creates opportunities for using the numerical model in
seakeeping optimization and improving strip-theory methods.

Large breaking waves can result in the entrapment of highly compressible air
pockets. The one-phase flowmodel is extended to a semi-compressible two-phase
flow model accounting for the compressibility of the air phase. The dynamics of
such an enclosed air pocket are characterized by the position of the free surface,
surface tension, viscosity, and compressibility. The semi-compressible two-phase
flow model incorporates a continuum surface model for surface tension and is
tested for these characteristics by simulating traditional benchmarks. The results
are in good agreement with the benchmarks. A wave impact case on a vertical
wall with an overturning wave entrapping an air pocket shows that the com-
pression of the air pocket dominates the dynamics. Pressure oscillations have
amplitudes in the order of the pressure caused by the initial impact on the wall.

The interface modeling of two-phase flows is challenging due to the high-density
ratio. A consistent discretization of mass and momentum transport is applied
to prevent distortion, spurious velocities, and numerical instability. The model
is extended for fluid-structure interaction using a cut-cell method. Simulations
of newly devised fluid-structure interaction benchmark simulations show that
using a consistent discretization reduces the momentum losses by an order of
magnitude compared to non-consistent discretization. The reduction gets more
apparent for high-density ratios. Results obtained with the consistent discretisa-
tion are closer to experimental measurements.

In the second part of the dissertation, an experiment with a wedge entry that is as
2D as possible is presented. This setup makes it possible to focus on complicated
interactions between bodies and free surfaces with a large amount of detail. The
experimental results act as a basis for the extension to simulate aerated water
wave impacts and can be used as a benchmark for violent fluid-structure in-
teraction. The free surface deformation and the dynamics of a buoyant wedge
entering and emerging from the water are analyzed and compared with the semi-
compressible two-phase numerical model. The combination of the experimental
and numerical results reduces the uncertainty concerning chaotic aspects of the
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flow and measurement errors and it results in a better understanding of when
3D effects take place.

The experimental setup is extended for pressuremeasurements on thewedge and
injecting a homogeneously distributed air bubble field. The numerical model is
extended to a new fully compressible pressure-basedmultiphasemodel. Pressure
density relations are enforced, and the assumption of a homogeneous mixture
is made to reduce costs by preventing the tracking of every single tiny bubble
around a large structure. An additional fraction field indicating the aeration
level and a new formulation for the speed of sound are described. This is to
prevent artificial air entrainment that overestimates compressibility around the
fluid-fluid interface. Comparing the numerical and experimental results shows
the cushioning effect and rise and fall time of the pressure on the wedge in-
creasing for a large amount of air in water. The sequential post-impact loadings
on the wedge due to reflected pressure waves are increasing for a higher air
content in water relative to the maximum pressure. The governing frequencies of
these sequential loadings are decreasing in agreement with the speed of sound
formulation. These may play a significant role in the fatigue of marine structures.

The numerical air entrainment is likely caused by discontinuities in the approxi-
mation of the interface. In the third part, a new bilinear interface reconstruction
algorithm is presented, enforcing continuity using a curvature-weighted ap-
proach and the initiation of piecewise linear interface segments. Applying this
algorithm leads to a neglectable increase in computational costs compared to
standard piecewise linear interface calculation methods, but an order reduction
in the error for shape preservation for traditional benchmarks like the Zalesak
slotted disk and the reversed single-vortex. The new reconstruction outperforms
higher-order methods of other literature in terms of costs by having similar
accuracy. A new unsplit face-matched upwind-based flux polygon advection
scheme is proposed to prevent inconsistency between mass and momentum
fluxes due to using interface reconstruction and a staggered arrangement of
variables. A translation of a high-density cylinder in low-density fluid verifies
the improvement of consistency by not getting unstable.

Overall, this thesis sheds light on a stable and accurate numerical model for
high-density ratio interface flows, discontinuous interface reconstruction, com-
pressible entrapped air pocket oscillations, and fluid-structure interaction. The
main outcome is an approach of modeling impacts of (moving) structures in
aerated water, and the validation of the numerical model.





SAMENVATT ING

Eendieper begrip vande fysica is vereistwanneer de complexiteit van gebeurtenis-
sen toeneemt. Een complexe gebeurtenis bestaat uit vele gedetailleerde op elkaar
inwerkende processen. Het complete plaatje vraagt om inzicht in elk van deze
processen afzonderlijk. Numeriek rekenen in de maritieme industrie is steeds
relevanter door de toename in bruikbaarheid en relatief lage kosten in vergelijk-
ing met experimenten. De numerieke resultaten maken analyse op het vereiste
detailniveau mogelijk. De complexiteit van golfklappen op offshore construc-
ties vereist innovatieve numerieke benaderingen omdat conventionele analytis-
che technieken de niet-lineariteit in deze complexe gebeurtenissen niet kunnen
weergeven.

Golven met grote amplitude kunnen breken en inslaan, met als gevolg schade
aan constructies, catastrofaal falen en zelfs het overlijden van mensen. Ook al
zijn deze constructies volgens de regelgeving ontworpen, het gebrek aan inzicht
in extreme golfklappen kan tot ongelukken leiden. Dit is de motivatie om onder-
zoek naar brekende golven te doen.

Een brekende golf kan lucht insluiten, waarna de luchtinsluiting fragmenteert
tot luchtbellen. De meegevoerde luchtbellen kunnen meerdere golfperioden in
het water blijven met een volume van enkele procenten van het watervolume.
De sterk samendrukbare luchtbellen in water (een homogeen mengsel van wa-
ter en lucht) verhogen de samendrukbaarheid van het mengsel en verlagen de
geluidssnelheid aanzienlijk. Het mengsel resulteert in andere golfbelastingen
dan zuiver water. Een verend effect op de maximale belasting, verdeling van de
drukbelasting over een groter gebied, toename in stijg- en daaltijd van de druk,
cavitatie en drukgolven kunnen te wijten zijn aan lucht in water.

Het overkoepelende onderwerp van dit proefschrift is om meer inzicht te krijgen
in het effect van lucht -als insluiting of als mengsel met water- op belastingen
op drijvende lichamen. Er is een innovatief snel rekenmodel ontwikkeld dat
rekening kan houden met deze sterk vervormbare grensvlak stromingen. Het
model moet omgaan met een hoge dichtheidsverhouding rond het grensvlak,
het scherp modelleren van het grensvlak tussen twee vloeistoffen voor het voor-
spellen van het moment dat belasting plaatsvindt, samendrukbare ingesloten
luchtvolumes en een samendrukbaar homogeen mengsel van lucht en water. Er
was een experimentele opstelling nodig die het effect van het meevoeren van
lucht op de interactie tussen vloeistof en structuur kan beschrijven. De experi-
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mentele resultaten zijn gebruikt voor het valideren van het numeriek model.

Dit proefschrift bestaat uit drie delen. In het eerste deel is het één-fase stro-
mingsmodel ComFLOWgeïntroduceerd als uitgangspunt voor verdere ontwikke-
ling. Deze methode wordt toegepast bij het voorspellen van hydrodynamische
golfbelastingen op offshore constructies. Het model is gekenmerkt door de vol-
gende termen: eindige-volumemethode, Volume-of-Fluid voor het benaderen
van het grensvlak, het geometrische reconstrueren van het grensvlek tussen twee
vloeistoffen, vergelijkingen oplossen op basis van de drukterm, het formuleren
van de stroming als een gemengde vloeistof, de verspringende rangschikking
van variabelen op een vast Cartesiaans rooster en een methode die gebruik-
maakt van cut cells om rekening te houden met bewegende niet-vervormbare
lichamen. Resultaten verkregen met het één-fase stromingsmodel zijn vergeleken
met intern uitgevoerde sleeptankresultaten van een hogesnelheidsvaartuig in
matige tot hoge onregelmatige kopgolven en een gekalibreerde state-of-the-art
striptheoriemethode. De grote verticale versnellingen zijn goed gerepresenteerd
door het één-fase stromingsmodel dat qua nauwkeurigheid beter presteert dan
de striptheoriemethode. Dit creëert mogelijkheden om het numeriek model te
gebruiken bij optimalisatie van zeegang en het verbeteren van striptheoriemeth-
oden.

Grote brekende golven kunnen leiden tot het insluiten van zeer samendruk-
bare luchtvolumes. Het één-fase stromingsmodel is uitgebreid tot een twee-fase
stromingsmodel dat rekening houdt met de samendrukbaarheid van de lucht.
De dynamica van zo’n ingesloten luchtvolume is gekenmerkt door de positie
van het vrij vloeistofoppervlak, oppervlaktespanning, viscositeit en samendruk-
baarheid.Het twee-fase stromingsmodel bevat een continuüm-oppervlaktemodel
voor oppervlaktespanning en is op deze kenmerken getest door traditionele
gebeurtenissen te simuleren. De numerieke resultaten komen goed overeen met
de traditionele simulaties. Een golfklap op een verticale wandmet een omslaande
golf die een luchtvolume vasthoudt, laat zien dat de samendrukbaarheid van het
luchtvolume dominant aanwezig is in de druk. De drukschommelingen hebben
amplitudes in de orde grootte van de initiële piekbelasting op de muur.

Het modelleren van het grensvlak tussen twee vloeistoffen is een uitdaging van-
wege de hoge dichtheidsverhouding. Een consistente discretisatie van massa-
en momentumtransport is toegepast om vervorming, onechte snelheden en nu-
merieke instabiliteit te voorkomen. Deze is uitgebreid voor vloeistof-lichaam
interactie met behulp van cut cells. Nieuw ontworpen situaties voor vloeistof-
lichaam interactie laten zien dat het gebruik van een consistente discretisatie
de momentumverliezen met een orde van grootte reduceert in vergelijking met
niet-consistente discretisatie. De reductie is duidelijker voor verhoudingen met
een hogere dichtheid. De verkregen resultaten met de consistente discretisatie
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liggen dichter bij de experimentele metingen.

In het tweede deel van het proefschrift is een experiment gepresenteerd met een
vallende wig in water die zo 2D mogelijk is. Deze opstelling maakt het mogelijk
om te focussen opde details van de gecompliceerde interacties tussen lichamen en
vloeistoffen. De experimentele resultaten dienen als basis voor de uitbreiding om
golfbelastingen met lucht in het water te simuleren en kunnen worden gebruikt
als maatstaf voor hevige vloeistof-lichaam interactie. De vervorming van het vrije
oppervlak en de dynamica van een drijvende wig die het water binnenkomt en
uitgaat zijn geanalyseerd en vergeleken met het semi-samendrukbare twee-fase
numerieke model. De combinatie van de experimentele en numerieke resultaten
vermindert de onzekerheid over chaotische aspecten van de stroming en over
meetfouten en leidt tot een beter begrip van wanneer 3D-effecten optreden.

De experimentele opstelling is hierna uitgebreid voor drukmetingen op de wig
en het injecteren van een homogeen verdeeld luchtbellenveld. Het numerieke
model is uitgebreid naar een nieuw, volledig samendrukbaar, op druk-gebaseerd
meer-fasen model. Drukdichtheidsrelaties zijn afgeleid en de aanname van
een homogeen mengsel is gemaakt om de kosten te verlagen. Deze aannames
voorkomen dat elke kleine luchtbel rond een groot lichaammoet worden gevolgd.
Een extra fase die het beluchtingsniveau aangeeft is toegevoegd en een nieuwe
formulering voor de geluidssnelheid is gepresenteerd. Dit is om het kunstmatig
meevoeren van lucht te voorkomen die de samendrukbaarheid rond het vloeistof-
vloeistofgrensvlak overschat. Vergelijking van de numerieke en experimentele
resultaten laat zien dat het verend effect en de stijg- en daaltijd van de druk op
de wig toenemen voor een grotere hoeveelheid lucht in water. De repeterende
belastingen op de wig als gevolg van gereflecteerde drukgolven nemen toe voor
een hoger luchtgehalte in water. De frequenties van deze repeterende belastingen
nemen af in overeenstemming met de snelheid van het geluid. Deze repeterende
belastingen kunnen een belangrijke rol spelen bij de vermoeiing van maritieme
constructies.

Het numeriek insluiten van lucht is waarschijnlijk veroorzaakt door discon-
tinuïteiten in de benadering van het vrij vloeistofoppervlak. In het derde deel
van het proefschrift is een nieuw bilineair reconstructiealgoritme gepresenteerd
voor het vloeistofoppervlak dat continuïteit afdwingt met behulp van een met
kromming gewogen benadering en de initiatie van simpele lineaire segmenten.
De toepassing van deze method leidt tot een verwaarloosbare toename van
de rekenkosten in vergelijking met standaard stuksgewijs lineaire segmenten,
maar reductie in de fout voor vormbehoud met een orde van grootte voor tradi-
tionele simulaties zoals de Zalesak-schijf met sleuven en de omgekeerde enkele
draaikolk. De nieuwe reconstructie presteert qua kosten beter dan methodes van
hogere orde voor vergelijkbare nauwkeurigheid. Een nieuw verplaatsingsalgo-
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ritme is voorgesteld om inconsistentie tussen massa- en momentumtransport
te voorkomen als gevolg van het gebruik van oppervlakreconstructie met de
door ons gebruikte verspringende plaatsing van variabelen. De verplaatsing van
een cilinder met hoge dichtheid in een vloeistof met lage dichtheid verifieert de
verbetering van de consistentie door niet instabiel te worden.

Al met al werpt dit proefschrift licht op het stabiel en nauwkuerig numeriek mod-
elleren van oppervlaktestromingen met een hoge dichtheidsverhouding tussen
fases, discontinue oppervlaktereconstructie, oscillaties in ingesloten samendruk-
bare luchtvolumes en interactie tussen vloeistoffen en lichamen. Het belangrijkste
resultaat is een nieuw model voor golfbelastingen op (bewegende) constructies
met lucht in water, en de validatie van het model.
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