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Abstract

Predicting streamflow in a changing climate poses significant challenges for traditional hydrological mod-
els. Static parameter sets result from model calibrations over historical data that increasingly encounter the
non-stationary impacts on the hydrological system. Endeavouring toward non-stationary model parameters
by incorporating time-adaptive ecosystem-scale root zone storage parameters shows promise for modelling
systems under change. The ongoing CATAPUC project aims to further develop, refine, and implement this
adaptive modelling approach. This paper continues to build upon this body of work by investigating the
evidence for land cover change impacts on root zone storage capacity, focusing specifically on uncertainties
in the evaporative balance. Combining long-term hydrometeorological data from the primary study area,
the Meuse basin, with the large-sample CAMELS datasets (GB and US) analyses were performed across
283 catchments. Applying the vector operations from Velde et al. (2014) and Jaramillo et al. (2018) to
decadal changes within the Budyko framework, we separate climate-related evaporative changes. We iso-
lated the residual component of evaporative change, which is the unknown component affecting parameter
estimations. Our findings indicate that this residual component is twice as prominent in evaporative change
as the climate component. The aim is to test if land cover changes have contributed significantly to the
residual component of evaporative change. A multi-scale approach to land cover change analysis is adopted
to bridge the data gap from 1984 to 2019. Implementing ensemble machine-learning methods on Landsat
imagery with Google Earth Engine, we develop annual timeseries of (30m) high-resolution multi-class data
for this period with accuracies up to 86% for 117 catchments (Meuse and GB). Resulting land cover change
estimates suggest that Meuse Basin urbanisation rates may have been significantly underestimated for this
period. The Meuse Basin over the most recent 20-year period is found to deviate anomalously in actual
evaporation compared with the large sample. A distinct spatial pattern reveals a concentration of deviations
in the east of the basin. Calculated by Tempel (2023), the anomaly in the basin corresponds with a relative
median error in root zone storage capacity change of −14%. Low flow analysis is performed to remove the
possibility that deviations are affected by anomalous contribution to streamflow from additional subsurface
flow. We observed that the increase in low flow variability over the same period exhibits a spatial pat-
tern similar to the Meuse Basin anomaly. We found no meaningful causal relationships linking multi-scale
interdecadal changes in forest, agriculture, and urban land classes to the observed deviations in the large
sample datasets. The implication of this study is that land cover change is likely not a significant driver of
evaporative changes, specifically, errors, throughout the record available.
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I Acronyms

Table 1: Acronyms with Definitions (Alphabetical Order)

Acronym Definition
AI Aridity Index
B Blue

CAMELS Catchment Attributes and Meteorology for Large-sample
CATAPUC Climate Analogy Mapping for Temporally Adaptive Parameters Under Change

DEM Digital Elevation Model
E-OBS ENSEMBLES gridded observational dataset

EI Evaporative Index
EVI Enhanced Vegetation Index
EWT Equivalent Water Thickness
FSN Forest and Semi-Natural
G Green
GB CAMELS GB
GEE Google Earth Engine
HC Hydroclimatic
HM Hydrometeorological

HILDA+ Historic Land Dynamics Assessment plus
LAI Leaf Area Index
LCC Landcover Change

LULCC Land-Use Land Cover Change
MIR Mid Infrared
NIR Near Infra-red

NDMI Normalized Difference Moisture Index
NDVI Normalized Difference Vegetation Index
NRFA National River Flow Archive

R Red
RS Remote Sensing
SI Seasonality Index

SMD Soil Moisture Deficit
SM Soil Moisture
SLA Service Level Area
SWIR Shortwave Infrared
TCA Tasselled-Cap Angle
TCB Tasselled-Cap Brightness
TCG Tasselled-Cap Greenness
TCW Tasselled-Cap Wetness
TM Thematic Mapper
US United States
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II Variables

Table 2: Variables with Definitions and Units

Variable Definition Units
P Precipitation mm/year
Q Discharge (streamflow) mm/year or m3/year
S Storage mm3

Ea Actual Evaporation mm/year
Ep Potential Evaporation mm/year
T Temperature °C
AI Aridity Index Dimensionless
EI Evaporative Index Dimensionless

∆EIr Residual Change Component Dimensionless
∆EIr Climatic Change Component Dimensionless
Rn Net Incoming Radiation W/m2

K Daily Incoming Shortwave Radiation W/m2

∆ Slope of Temperature-Vapor Pressure Curve kPa/K
γ Psychrometer Constant kPa/K
G Soil Heat Flux W/m2

es Saturated Vapour Pressure Pa
ea Observed (actual) Vapour Pressure Pa
ρa Mean Air Density at Constant Pressure kg/m3

ca Specific Heat Capacity of Air J/kg/K
λv Latent Heat of Vaporisation J/g
ρw Bulk Density of Water kg/m3
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Michael O’Hanrahan MSc Thesis 1 INTRODUCTION

1 Introduction

The escalating repercussions of climate change profoundly influence the hydrosphere, primarily through aug-
menting the atmospheric water demand. A surge in global temperatures directly amplifies this demand, with
a non-linear increase of approximately 7% for each degree of warming (Boer, 1993). This thermal uptick, in
turn, has been linked to an elevation in the global concentration of precipitable water, with an average increase
ranging from 7− 9% since the mid-20th century (Held and Soden, 2006). Changes in water availability and soil
moisture deficits cause plants to adapt root zones impacting river flow significantly, the parameterisation of this
change poses a challenge to streamflow modelling and projection (Bouaziz et al., 2021, 2022; Gao et al., 2014;
Milly, 1994; van Noppen, 2022; Tempel, 2023).

Amplifying the gravity of the situation, the Intergovernmental Panel on Climate Change (IPCC) unequiv-
ocally asserts that anthropogenic climate change has led to an increased frequency and intensity of extreme
precipitation events, expressing this assertion with a high degree of confidence (Lee et al., 2023; Allen et al.,
2010). Compounding this, the confluence of intensified precipitation and rapid urbanisation has been linked
to heightened risks for low-lying coastal communities and livelihoods, emphasising the anthropogenic impact
exacerbating the vulnerability of these areas (Lee et al., 2023; Jian et al., 2021).

Existing within this interconnected network, the soil moisture-vegetation complex is a critical hydrological
interface that facilitates connections between land surface, subterranean, and atmospheric processes, mediated
by land-atmosphere feedback (Milly and Dunne, 1994). It presides over crucial functions such as evaporation,
transpiration, infiltration, runoff, and flow through the vadose zone (Robinson et al., 2008; Babaeian et al.,
2019). Soil moisture is a central influence on transpiration, underscoring its importance for vegetation vitality,
especially during dry periods.

Non-stationarity of hydroclimatic systems in the context of climate change is indeed an issue and a well-
recognized challenge in hydrology changing the frequency, magnitude and timing of extremes. For example,
Blöschl et al. (2017) presents compelling evidence for climate-driven changes in precipitation seasonality over
Western Europe that earlier soil moisture maxima lead to earlier and exacerbated winter floods. Traditional
hydrological model calibration focuses on past behaviours to achieve short-term streamflow forecasting and
longer-term prediction of future behaviour. Static parameters in the context of non-stationary climate are con-
tradictory and result in significant uncertainties (Bouaziz et al., 2021).

The pivotal role of vegetation cover is integral to regulating soil moisture extraction via evapotranspiration.
Vegetation, by necessity, maintains evapotranspiration during dry periods, thereby adapting to soil moisture
deficit conditions to meet canopy water demand and sustain ecosystem functionality (Milly, 1994; Rodriguez-
Iturbe, 2000). Rooting depths are observed to extend approximately 2m below the surface, however, variations
are largely attributable to local environmental conditions with the shallowest rooting depths (less than 100 mm)
occurring in wet climates with short inter-storm durations (Stone and Kalisz, 1991; Nepstad et al., 1994). In
contrast, regions characterised by higher aridity and longer dry periods necessitate deeper roots (Gao et al.,
2014). Consequently, incorporating the root zone storage capacity as a parameter in hydrological models is
essential for reducing predictive uncertainty.

The root zone storage capacity is a critical parameter in hydrological and land surface modelling. However,
it cannot be directly observed at the catchment or ecosystem scale. As such model-independent, ecosystem-
scale estimations of the root zone storage capacity are derived from long-term (LT, ≥ 10y) hydro-meteorological
datasets (Gao et al., 2014; Wang-Erlandsson et al., 2016). The benefit of using a model-independent approach
foregoes the need for soil or land-cover information. Ecosystem-scale evidence suggests that vegetation adaptive
responds to hydro-climatic forcing (Wang-Erlandsson et al., 2016; de Boer-Euser et al., 2019). The root zone
depth and vegetation cover extent across the landscape intrinsically determine soil water storage (Desborough,
1997). However, cascading drivers, like heightened atmospheric water demand resulting in drier soils and shifting
land uses, present clear non-stationarity for predictive hydrologic models, which traditionally employ stationary
defining parameters based on historical records.

Two major, entangled uncertainties remain that impact our ability to project root zone storage capacity
(Sr) and more specifically, the underlying actual evaporation. These two uncertainties form the basis for this
thesis: climatic changes and land cover changes and their impact on our ability to project actual evaporation
(Ea for determination of Sr). These uncertainties are potentially significant but unquantified in this stream of

1



Michael O’Hanrahan MSc Thesis 1 INTRODUCTION

research, the ’CATAPUC’ project, as it pertains to the Meuse. In this research, we attempt to separate and
quantify the non-climate-driven changes (residuals) in actual evaporation and test for any significant impact on
this component by changing land cover.

This research builds upon the work of Bouaziz et al. (2021), which investigated how changing climate scenar-
ios could influence root zone storage capacity (Sr) and actual evaporation. Specifically, Bouaziz et al. assumed
that catchments would follow their respective trajectories within the Budyko framework under varying climate
scenarios. This approach uniquely positions catchments within the Budyko framework based on their long-term
water balance, allowing a projection of actual evaporation and, subsequently, root zone storage parameters
under over 2K (+2 degrees Kelvin) climate scenarios. For scenario analysis, this effort is useful for showing the
sensitivities of different catchments under climate projections.

The effects of land use changes on these projections are accounted for by altering the Fu-parameter ω, as
per Fuh (1981). This parameter characterises the shape of the parametric curve within the Budyko framework
(outlined in section 4.1), which predicts an evaporative index-based on aridity conditions. By considering future
climate changes, a catchment can be projected along the curve associated with its observed ωobs value. However,
shifts in land surface properties - including vegetation cover, species composition, forest age, and biomass - can
result in changes to the Fu parameter (ωchange), as highlighted by Jaramillo et al. (2018). This is a residual
error in projection, expressed as a deflection from expectations in the actual evaporation, that complicates the
validity of scenario projection.

Bouaziz et al. (2021) used these on-curve projections to run a model demonstrating how the adaptive root
zone storage capacity would change under different climatic scenarios, without accounting for land use change
(ωchange). In this model, the root zone storage capacity (Sr,20y) increased by 34% compared to historical es-
timates, due to larger storage deficits in the summer period in a warmer environment. However, when the
model incorporated a hypothetical afforestation scenario (with broadleaf forests replacing coniferous ones), the
root zone storage capacity decreased slightly by −4%, as broadleaf forests are more water-efficient. This re-
sult contrasts with a scenario in which broadleaf forests were replaced by coniferous plantations, resulting in
a similar increase in root zone storage capacity (+4%), essentially the inverse of the afforestation scenario. In
a dynamic modelling scenario simulating climate-vegetation interactions, future streamflow and groundwater
levels decreased by −15% and −10% respectively, with minimal impact from land cover change.

Continuing research spurred the genesis of this CATAPUC project has modeled the implications of climate
change on root-zone storage capacity and the subsequent effects on streamflow in the Meuse basin. van Noppen
(2022) built upon this work by similarly projecting 2K+ scenarios above pre-industrial warming conditions,
but implementing a time-dynamic root zone storage parameter Sr strategy based on a multiple linear regression
relationship using climate analogy principles. The modelled two degree kelvin warming scenario with time-
dynamic Sr,20y yields decreases in streamflow (Q, -8.6%) and groundwater storage (-4.8%), with increases in
actual evaporation (Ea, +6.6%) and increased root zone moisture storage capacity (Sr,max +23.6%).

The scenario presented implies future conditions of significant elevated moisture stress, reduced streamflow,
and amplified seasonality but doesn’t cover low flows or implications of land cover change in the historical data.
The predictions are contingent on two assumptions: Firstly, the vegetative species in future climate-analogous
catchments are assumed to be the same as that in the future Meuse catchments, such that the Meuse vegeta-
tion will equilibrate to the analogy. This is to say that vegetation in the Meuse catchment under change will
respond climate changes and emulate the parameter estimation of the catchment’s closest analogy. The second
assumption is that no human interaction will interfere with this equilibration process. While it is not possible
to know with certainty how vegetation will adapt into the future with any great certainty, it however is possible
to investigate past changes in land cover and try to attribute their effects to errors observed by quantifying
residual errors from the actual evaporation.

In the most recent research preceding this report, Tempel analysed past changes within the Budyko frame-
work to understand the historical implication of inter-decadal climate variability on the root-zone storage capac-
ity and the efficacy of Fu parameter-based projections. Projections are made within a subset of the historic data
and compared to subsequent historic data yielding error estimates from the methodology. Actual evaporation in
the data is predicted to be smaller than expected. Trends in the evaporative ratio were modelled for streamflow
effects and the resulting root zone storage parameters resulting in reduced annual summer evaporation and
increased autumn streamflow. Errors in the projection of evaporative ratio are difficult to attribute, and are

2
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becoming more uncertain in a changing climate.

As of yet, there is no direct evidence of whether land cover change has contributed to the residual errors in
Budyko framework movements. Further, until recently, there have been data limitations for directly observed,
reliable high-resolution land cover change over climatic time scales to address this question. The indication
is that big contrasts in forestry incur only minor shifts to the water balance Bouaziz et al. (2021). This is
untested with direct land cover change observation and the water-balance methods used in previous studies
have cited it as an unquantified uncertainty. What is known is that land use changes since 1960 in Europe and
the USA have been primarily by agricultural policies driving the conversion of land to pasture or grain to satisfy
global trade (Winkler et al., 2021; Winkler et al., 2020). In Europe, this coincides with the formation of the
European Union and the creation of the Common Agricultural Policy in 1957 to fortify European food secu-
rity and trade through agricultural intensification in the most rural areas (Milczarek-Andrzejewska et al., 2018).

Globally, land cover has been shaped by human intervention over centuries and, in turn, has also influenced
climate patterns (Schmidt et al., 2014). Winkler et al. (2021) estimates that global landcover change has affected
32% of the land surface. Vegetation removal or species change occurs at differing paces across the globe, where
afforestation is linked to increased evapotranspiration (ET ) and reduced streamflow and complicating matters
further is the varied ET rates associated with different vegetation species within a catchment (Jaramillo et al.,
2018; Buechel et al., 2022)). Concurrently changing climate and evaporative balances affect the evaporative
ratio (actual evaporation to precipitation) of a catchment, the contribution of land use vs. climate is still poorly
understood and unsatisfactorily quantified.

Separating land surface processes from climatic effects using Budyko decomposition becomes an appealing
prospect. The methodology attributing portions of evaporative index EI ratio to changes in land cover, is accom-
plished usually in the context of afforestation or deforestation Young (2014); Jaramillo et al. (2018). Land cover
changes, specifically vegetation surface and biomass changes, throughout history, are related to the evapora-
tive ratio and must be explored to refine better uncertainty in the projection of the root zone storage parameter.

Free and open access to satellite remote sensing from the Landsat missions in a new pre-processed collection
(collection 2) has spurred a new wave of land cover change analysis (Woodcock et al., 2008; Jian et al., 2021;
Zhu et al., 2016). This reprocessing is enticing to allow us to effectively attempt to attribute a portion of
the hydroclimatic uncertainty to land use cover over a significant portion of the Landsat mission since 1984.
Remote sensing and its applications in drought assessment and soil moisture deficits allow for some functional
relationships to be established between remotely sensed moisture-sensitive products and the water accessible by
soil. Moisture-sensitive remote sensing variables effectively determine moisture stress in vegetation, the NDII
specifically is found to have a significant linear relationship to equivalent water thickness and root zone storage
capacity Sriwongsitanon et al. (2016).

In this study, the aim is to adapt the Landsat data to interdecadal indices on a per-catchment basis to test
for causal relationships between land cover changes and residual errors in the Budyko framework. In the absence
of the discovery of any causal relationships, the analysis contextualises the Meuse basin against large-sample
hydrology datasets. Additionally, the multi-scale land cover change data generation creates new insights into
these changes over the period of the study.

1.1 Problem Statement

Land surface alterations and climate change have triggered far-reaching impacts on global hydrological systems,
with the effects becoming increasingly pronounced over recent decades. However, there has been an inadequate
delineation between the proportional contributions of land use and land cover change (LCC) vis-à-vis climatic
changes to the hydrological response. Estimations of future actual evaporation using the Budyko framework
are subject to evaporative index deviations resulting in errors in root zone storage capacity and streamflow
estimation.

The challenge of quantifying the impacts of these simultaneous land and climate processes necessitates a
comprehensive exploration of long-term water balance alterations and the frequency, magnitude, and timing
of change. By identifying pertinent climate and land-use descriptors, land cover change observations as a
component of error contribution may be assessed.

3
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1.2 Research Questions

This second CATAPUC iteration comprises two theses and is guided by following overarching question:

’What are the individual contributions of climate and land cover changes to root zone storage
capacity?’

Under this broad question, we should gather data and perform analysis to prove or reject the following
hypotheses:

1. ’H1: Budyko framework actual evaporation deviations can be separated effectively as an estimate of climate
change and an additional residual effect.’

2. ’H2: Remote sensing technologies can effectively bridge an existing data gap, to allow land cover observa-
tions on a climatic time scale (> 30 years).’

3. ’H3: The residual component of evaporative index changes, as defined by the Budyko framework, is signif-
icantly correlated with observed landcover changes.’

Tempel (2023) as a recently released parallel thesis topic has focused on the historical climatic changes
and the errors in prediction or projection in the Budyko space and models some representative scenarios for
implications toward streamflow. The research herein places a greater emphasis on quantifying land cover change
portion to compliment the preceding and parallel work but also owes much to, and relies upon data processing
efforts by Tempel (2023) and Bouaziz et al. (2022) to enable the results and discussion presented.

4
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(a) (b)

Figure 1: 27 Meuse basin sub-catchments above the Maastricht (Borgharen) gauging station Green catchments
(n=22) that have been selected and included in the analysis. Map (a) the Meuse Basin on a digital elevation
model (DEM) in meters with country boundaries. The most southerly point at 47.95oN and Borgharen at
50.89oN . Map (b) is the same catchment boundary selection on a (Bing) satellite image.

2 Primary Study Area: The Meuse Basin

The Meuse river basin is situated in Northwest Europe and covers approximately 36, 000km2. It traverses parts
of the Netherlands, Belgium, France, Germany, and Luxembourg. Its origin lies within the Langres Plateau
in France, and it travels a course of roughly 925 km before reaching the Rhine-Meuse-Scheldt delta in the
Netherlands. The basin is geologically divided into three main zones: the Lorraine Meuse, Ardennes Meuse,
and the Dutch and Flemish lowlands. This study focuses on the area of the basin upstream of Maastricht
(Borgharen), totalling 21, 241km2, not including the Dutch lowlands. At a high level, 40.5% of the Meuse basin
is dedicated to agriculture, forested areas represent 28% (Copernicus Land Monitoring Service, see appendix for
more detailed class area distribution at a low level based on a 2012 example 15, 38). The river is a crucial re-
source, supplying water to about six million people in Belgium and the Netherlands. With economic growth and
population expansion, the demand for water as well as the risk of urban flooding has increased Wit et al. (2007).

Different regions are geologically distinct with the Lorraine Meuse characterized by sedimentary Mesozoic
rocks surrounded by hilly landscapes and broad floodplains. The Ardennes Meuse cuts through the Paleozoic
rocks of the Ardennes Massif, featuring narrow, steep valleys. On the other hand, the Flemish lowlands and
Limburg are underpinned by loosely consolidated sedimentary rocks where the landscape expands to form ex-
tensive floodplains and a low river gradient de Wit (2008)Wit et al. (2007) (see maps attached as figure 44 for
reference on terrain and location).

Located in a temperate climate zone, the Meuse River experiences frequent weather changes. Its majority
rain-fed streamflow shows strong seasonality, with elevated winter flows and low summer flows Wit et al. (2001).
Even though precipitation remains relatively constant throughout the year, potential evaporation fluctuates,
influencing the seasonal streamflow variation. The summer discharge on average, is one-quarter that of the
winter. Snow impact in the basin area is generally low save for some events. Based on historical E-OBS
climate and streamflow data, the Meuse basin exhibits approximate annual averages for precipitation, poten-
tial evaporation, and streamflow as 968 mm yr−1, 593 mm yr−1, and 397 mm yr−1, respectively (Cornes et al.,
2018). Precipitation in the upper reaches of the basin to the low-lying catchments ranges from 1250mmyr−1 in
the Ardennes or Eastern Belgium to 700mmyr−1 in North Eastern France Wit et al. (2007)Bouaziz et al. (2022).

The catchment selection process is aligned with the parallel research of Tempel (2023) implements and refines
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Figure 2: Timeline comparison of datasets employed in the analysis. The blue data (HM timeseries) from four
distinct datasets are processed to derive indices for the decadal periods demarcated by black bars. The lower
green data pertains to the LCC data showing relative maximum extent of the complimentary timeseries.

the stipulations set by van Noppen (2022). Two primary exclusions for this data is that any streamflow that
has been significantly altered (e.g. by canal) has been removed. Additionally, any catchments that experience
regular snowfall, which would affect the water balance calculations, have similarly been excluded from the
analysis.

3 Data

The data examined in this research fall into two main categories: hydrometeorological timeseries (encompassing
precipitation, evaporation, discharge - ’HM’) and remotely-sensed imagery and spatial data, which are processed
into complementary timeseries to provide observations on land cover change (LCC). These are transformed into
hydroclimatic indices (’HC’) over a 10-year timescale. An essential aspect to note is the differential standard
potential evaporation calculation methods across datasets, necessitating a consistent calculation approach via
the Makkink method for all data, as suggested by van Noppen (2022).

This study utilises three geographically distinct HM datasets corresponding to catchments in: the Meuse
Basin, which spans France and Belgium (3.1); the United Kingdom, represented by CAMELS GB (3.1.2); and
the USA, represented by CAMELS US (3.1.3). The CAMELS datasets increase the study sample size from
22 catchments (limited to France and Belgium) to 286 catchments that cover a diverse range of climatology,
specifically in terms of aridity. Incorporating catchments with varied levels of aridity is beneficial for this study
as we employ the Budyko framework for comparative analysis. It’s known that vegetation adapts to aridity
and seasonality, making such a varied dataset highly relevant (van Noppen (2022)). These historical data are
processed to a decadal mean value as outlined in 4.1 to address research hypothesis 2.

3.1 Meuse Data

Historical climatic data has been processed and provided by Bouaziz et al. (2021) from the European daily
high-resolution gridded dataset, E-OBS from Cornes et al. (2018). The gridded observation data is providing
precipitation, temperature and air pressure at a daily temporal resolution with a grid size of 25km2. Tempera-
ture data is reprocessed using a DEM and a fixed lapse rate of 0.0065ocm−1. Bouaziz et al. (2021) notes that
> 20% precipitation underestimation is consistently present in the E-OBS compared to more local observations
from the Service Public de Wallonie. This leads to applying the monthly bias correction factor. The Makkink
formulation (Appendix Equation: 22) estimates potential evaporation from incoming radiation and tempera-
ture. Two distinct datasets, France and Belgium are available for discharge and cover significantly different
time windows.
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(a) (b)

Figure 3: Mapped location of CAMELS catchment data included in the analysis. (a) Selected Camels GB
catchments (red boundaries with a green fill, n=95). (b) Selected Camels US catchments in green (n=169)

The Borgharen timeseries is readily accessible from Rijkswaterstaat and constitutes the longest available
timeseries on the Meuse (?).

3.1.1 CAMELS Large Sample Datasets

CAMELS (Catchment Attributes and MEteorology for Large-sample Studies) is a large body of datasets
enabling large-sample comparative studies for climate analogies. Though other large-sample datasets exist (
CAMELS-CL Alvarez-Garreton et al. (2018), LAMAH Klingler et al. (2021)), we operate a strict catchment
selection procedure in an attempt to primarily eliminate the uncertainty from snow-water flux influence and
human-flow modifications, this catchment selection process is explained in detail in Tempel (2023).

3.1.2 CAMELS GB

The CAMELS-GB dataset comprises 671 total catchments across Britain (England, Wales, Scotland and North-
ern Ireland) Coxon et al. (2020). Discharge data is from selected gauging systems within the UK NRFA Service
Level Agreement (SLA), meaning that the gauging stations have met a high standard of operation and are
considered to contribute most critical information to the gauging network in the U.K. (Dixon et al., 2013).
Coxon et al. (2020) compiles meteorological timeseries for each catchment based on 1km2 gridded U.K. na-
tional, CHESS-met (Robinson et al., 2020) observations, which is either interpolated from daily station data
or interpolated from coarser gridded products. Potential evaporation is calculated following the FAO standard,
using the Penmann-Monteith method for well-watered grass Allen et al. (1998). The rainfall specifically is
derived from the 1km2 rainfall dataset CEH-GEAR from 1961 to 2015 for GB and NI.

This compilation work resulted in open-access datasets spanning from October 1970 to September 2015,
including flow (Q), rainfall (P ), potential evaporation (EP ), temperature (T )

3.1.3 CAMELS USA

The CAMELS USA dataset, as developed by Newman et al. (2014), incorporates 671 catchments spread across
the Contiguous United States. The catchment sizes included show significant variance, leaning toward smaller
scales (median 336km2), with a distinct under-representation of larger eco-regions; fewer than 5 catchments
exceed an area of 10, 000km2.

For the meteorological forcing data, the N15-Daymet source was employed, yielding the necessary variables
delineated in sections 3.1.2 and 3.1, covering the period from October 1989 to September 2009. It is important
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to note that the potential evapotranspiration, denoted as EP , is estimated within the N15-Daymet Thornton
et al. (2016) using the Priestly-Taylor equation.

3.2 Spatial Data

The examination of landcover change (LCC) and its implications on HC expressions throughout the Meuse
basin requires comprehensive LCC data. However, the scale of data selection presents inherent uncertainty.
There exists a multitude of pre-processed data sources, each defined by their distinct characteristics. These
are primarily distinguished by the diversity of provided information (e.g., land cover classes), their spatial
resolution (defined in pixel width [m]), and their temporal resolution. These datasets exhibit a significant
trade-off: enhanced informational detail often implies a compromise on temporal or spatial resolution.

In this study, the temporal resolution for LCC is desired to be annual. The employed datasets cover a
spectrum from high (Landsat Classified), medium (CORINE), to low resolution (HILDA+) data. The Landsat
data, a key resource in this study, facilitates the extraction of vegetation or moisture-sensitive bands, offering
insights into potential correlations with HC expressions. Additionally, the application of machine learning on
Landsat data allows for precise land cover class differentiation, further enabling the study of changes’ impacts.
Consequently, this bolsters the richness of the available data on vegetation change, presenting a thorough set
of annual observational data since 1984.

3.2.1 Landsat Timeseries

Launched in 1982, the Landsat 4 Thematic Mapper (TM) represented a significant step forward in satellite-
based Earth observation, capturing images at a 30-meter pixel resolution in a 16-day cycle, with a swath width
of 185 km (0.185 degrees) (Chander et al., 2009). This legacy was continued by the nearly identical Landsat
5 in 1985, ensuring the ongoing supply of high-resolution data. In 1999, Landsat 7 introduced the eight-band
Enhanced Thematic Mapper Plus (ETM+) sensor, enhancing the program further. Despite a scanning line
correction failure in June 2003 that led to inconsistent imaging patterns, Landsat 7 remains one of the most ac-
curate civilian satellite data sources (Chander and Markham, 2003). The program expanded with the launches
of Landsat 8 in 2013 and Landsat 9 in 2021, marking a continuous 41-year mission of passive Earth observation
on a climatic timescale.

However, one should note that Landsat 8 imagery has narrower red and infrared bands than those of the
ETM+, potentially introducing minor errors. According to a study by Xu (2014), these errors are largely neg-
ligible for annual landscape change but are relevant for seasonal phenology.

The successive Landsat missions have generated a vast archive of consistently reprocessed, high temporal and
spatial resolution imagery, freely available since 2008 (Woodcock et al. (2008)). Nonetheless, no single mission
(sensor) can provide a complete timeseries from 1984 to the present (Roy et al., 2014). Therefore, this study
compiles Collection Tier-1 atmospherically and geometrically corrected images to create an inclusive timeseries.
With the release of Landsat Collection 2 in 2021, all imagery from Landsat 4-9 has been reprocessed, including
Quality Assessment (QA) metadata useful for monitoring landscape changes (Survey (2021)). This metadata
enables effective masking of clouds and water bodies, ensuring consistency while preventing band saturation.
Moreover, the previously time-consuming task of pre-processing is now largely unnecessary.

The open-access cloud computing platform Google Earth Engine Gorelick et al. (2017) offers expansive
datasets without requiring local storage or memory, thereby facilitating Land Use and Land Cover (LULC)
analyses on an unprecedented scale. Consequently, highly accurate Landsat-based classification products have
been developed for global land classes on a yearly basis Zhang et al. (2021), further showcasing the capabilities
of the Google Earth Engine platform.

In this study, we access surface reflectance data from the Landsat missions and composite to a yearly time-
series via GEE to analyse land cover changes from 1984-2019. Band arithmetic allows the derivation of vegetation
indices, enabling zonal statistics and area-above-threshold computations. We hope to test the hypothesis (3)
assuming one or many of the land cover change indices will display some relation to the hydroclimatic variables
derived in section 4.1.
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Table 3: Six bands are used from the original seven-band TM/ETM+ Landsat sensors that changed band
reference in 2013 with the introduction of the OLI sensor on Landsat 8. We remap the bands to the original
TM/ETM+ so that band 1 is always blue

TM/ETM OLI Wavelength Wavelength [µm] Resolution [m]

Band 1 Band 2 Visible (b) 0.45-0.52 30
Band 2 Band 3 Visible (g) 0.52-0.60 30
Band 3 Band 4 Visible (r) 0.63-0.69 30
Band 4 Band 5 Near-Infrared 0.76-0.90 30
Band 5 Band 6 Shortwave-Infrared 1.55-0.75 30
Band 6 Band (10&11) Thermal 10.4-12.5 120
Band 7 Band 7 Mid-Infrared 2.08-2.35 30

Sensor Year: 1982 2013

3.3 Landcover Datasets

3.4 CORINE

The Coordination of Information on the Environment (CORINE) Land Cover (CLC) inventory, launched in
1985 with the reference year of 1990, provides an extensive record of land cover distributed over 44 classes. This
catalogue has continuously received updates, specifically in 2000, 2006, 2012, and 2018. To ensure a faithful
representation of areal and linear phenomena, the CLC employs a Minimum Mapping Unit of 25 hectares (ha)
and a minimum width of 100 m, respectively Buttner et al. (2004).

The CLC database serves as a crucial asset for wide-ranging spatial analyses. It features a homogenous
depiction of land cover throughout Europe, allowing for the precise recognition of various land-use categories.
One of the key aspects of CLC databases is their frequent updates, which enable the analysis of change dynamics
and rates, thereby supporting predictive endeavours. In this study, we have used data from 2006, 2012, and
2018. When juxtaposed with other data sources such as the Urban Atlas and the Global Human Settlement
Layer, the CLC database exhibits enhanced adaptability.

However, it is essential to acknowledge certain limitations when utilising CLC data in studies. The in-depth
nature of input data and the employed interpretation methods often necessitate a high degree of generalisation.
In areas marked by substantial land fragmentation, the results can generally be extrapolated only to dominant
land-use types, leading to an inevitable loss of some information. According to scholarly consensus, while the
CLC proves extremely useful for small-scale studies, its reliability wanes when applied to larger-scale analyses.
Therefore, despite its numerous advantages, the utility of the CLC should be evaluated in the context of these
constraints Cieślak et al. (2020). Overall accuracy in the CORINE data is reported as ≈ 85% accurate.

3.5 HILDA+

A novel long-term hybrid product for land cover change analysis is the HILDA+ (HIstoric Land Dynamics
Assessment+) Winkler et al. (2020). Harmonising multiple open source datasets, the dataset has been im-
pactful on a global scale since 1899 and has been four times greater than previous estimates and more than a
third (32%) of land surfaces have been impacted by LCC since 1960. Accuracy is reported to be consistently
near 85%, similar to the CORINE data. Globally landcover change is observed to accelerate before 2005 before
decelerating into 2019, and the primary driver is due to global trade on agricultural production. The report
accompanying the release of this data estimates an overall forest gain in the East of North America since 1960,
a lesser proportion of afforestation is apparent in northern Europe.

Significant stability of pasture and rangeland is similarly reported in the period Winkler et al. (2021). The
paper discusses the harmonisation of various datastreams reducing uncertainty by change allocation. The data
is provided in annual TIFF images since 1899, globally with a scale of 1 degree and constitutes the medium-
resolution land cover change product that can be run in parallel to the high-resolution Landsat classification
product. HILDA+ reportedly estimates levels of land use change above those of other more common products.
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Figure 4: A flowchart depicting a high-level view flow of the processes and flow of data employed to achieve the
methodology detailed in this paper. The blue branch indicates hydrometeorological analysis and variables, the
green branch of the chart indicates the landcover change-related analysis, and the yellow is the final stages of
combining and reporting for this paper.

4 Methodology

This research aims to characterise catchments potentially impacted by land cover change (LCC), focusing on
the residual change component of the evaporative index, ∆EIr. This component has been largely attributed to
various near-surface processes, particularly LCC. Our study challenges the assumption that residual deviations
in the evaporative index (∆EIr) mainly result from land surface changes like deforestation. Combining water
balance-based methodologies after Jaramillo et al. (2018), Tempel (2023) and van Noppen (2022) indices are
derived on a decadal basis. We develop and employ a bespoke machine-learning and remote-sensing workflow
to provide a multi-scale, historical characterisation of annual land cover changes in each catchment. Through
regression analysis, hydroclimatic indices are compared to satellite-based observations of LCC to evaluate the
significance of LCC influences on ∆EIr. The overall flow of methods and data is depicted in the flowchart
attached as figure 4.

4.1 Decadal Hydro-climatic variables

The initial focus is on separating the land cover from the climate shifts effecting hydrologic extremes and on
rootzone storage capacity, which is calculated on a decadal basis,this leads to loss of intra-seasonal variation
which is important for understanding phenology. Different indices that describe seasonality over longer terms
are employed here instead.

4.1.1 Root Zone Storage Capacity (Mass-Curve Technique)

The root zone storage capacity plays a critical role in understanding land-atmosphere interactions, as it mediates
between surface runoff and groundwater recharge, impacts drought occurrence and severity, and influences the
transpiration process. This research will calculate root zone storage capacity using a mass balance approach
based on annual maximum soil moisture deficits (SMD).

The method, as discussed by Gao et al. (2014), is predicated on three core assumptions: first, the principle
of least work suggests that plants do not root deeper than necessary, optimising their growth strategy according
to resource availability. Second, all hydrologically active roots are utilised in the event of a water deficit. Lastly,
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Figure 5: Two complementary subplots are relevant to the entire time series for La Meuse Goncourt. Top: The
Budyko framework is presented, where the points represent the positions in the framework corresponding to
each decade’s respective aridity index (AI) and evaporative index (EI) values. The curves are fitted to the x-y
positions and are represented by a derived Fu value (ω) for each decade (Equation 8). Bottom: The derived
Meuse dataset is plotted as a time series of soil moisture deficit (Equation 4) in mm and the resulting root zone
storage capacity (plotted as negative for overlay purposes, denoted as −Sr,20y, represented by a horizontal line).
Three decades are demarcated in the time series by separate colours: green for the decade ending in 1998, light
green for 2008, and yellow for 2018.
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ecosystems tend to develop the root zone storage capacity needed to handle droughts with specific return periods,
reflecting an adaptation to local climate conditions.

To calculate the root zone storage capacity, a mass balance analysis to yield annual SMD maxima. This
approach requires obtaining or estimating the SMD for each year, finding the maximum value, and using it
as an estimate of the root zone storage capacity. Long-term mean variables in this case are assumed to be a
minimum of 10 years to allow for the water balance (equation 1) to close (i.e. dS

dt = 0):

P − Ea −Q− dS

dt
= 0 (1)

Over a sufficient period, this study assumes 10 years, the fluctuations in storage dS
dt are negligible such that

the input (precipitation, P ) is fully accounted for in actual evaporation (soil, interception, and transpiration)
(Ea) and discharge/streamflow (Q). This allows for a representative catchment-scale estimate of ET :

Ea = P −Q (2)

With reliable timeseries of daily meteorological data, providing the EP an estimation of the daily Ez(t) is
possible whereby the observed potential daily evaporation (EP (t)) results in a representative approximation
that is water balance compliant:

Ea(t) =
EP (t)

EP

· Ea (3)

Cumulative storage deficits are calculated where the estimated ET (t) exceeds the precipitation inputs:

SD(t) = min(0,

∫ t2

t1

(P (t) − Ea(t))dt) (4)

Storage deficits are always negative and are assumed to start from 0 at t=0. Over a select 10-year period
the annual maxima of storage deficits are calculated to which a Gumbel distribution is fit yielding a consistent
estimate of the storage deficit 20-year return-period. The Gumbel distribution is a common choice of kernel
density equations for estimating the probability density function within hydrological data Bakouch et al. (2021).
Gao et al. (2014) report that the root zone storage capacity corresponding to the 20 year soil moisture deficit
(SMD), (SR20Y ) most closely correlated to the unsaturated zone capacity (R2 = 0.75) of a catchment (SU,Max)
as well as seasonality index (SI, R2 = 0.69), interstorm duration (ID, R2 = 0.57), and weakly to the aridity
index (AI, R2 = 0.28). Results from this study show that the plant’s available capacity depends on wetness char-
acteristics with deep roots compensating for more arid climates with longer periods between precipitation events.

One of the key benefits of this method is that it is model-independent and indirectly observation-based
(Zhao et al., 2016). It uses historical climate and soil moisture data rather than relying on potentially uncertain
model outputs. The approach also obviates the need for specific land cover or soil information, which can often
be challenging to obtain with sufficient accuracy and spatial resolution. This is especially beneficial in regions
where such data are limited and available. By reducing dependency on these factors, the method becomes more
universally applicable and cost-effective.

4.1.2 Budyko Framework and Decadal Trajectory Analysis

The Budyko framework, first proposed by Budyko (1974) as a method of organising catchments based on long-
term energy and water balance, has become a useful tool in the study of changing hydroclimatic conditions
Heidari et al. (2020), this is contains influences from land processes. The x axis describes the ratio of potential
evaporation to precipitation, known as the aridity index (AI, equation 5), this is primarily a climate sensitive
axis. The y-axis is the evaporative index (EI, equation 7) or evaporative ratio defined as the ratio of actual
evaporation (Ea) to precipitation (P ).

AI =
EP

P
(5)

Ea = 1 − Q

P
(6)
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Figure 6: The Budyko framework with a schematic of potential trajectory resulting from inter-decadal changes in
the water balance derived variables, adapted from Jaramillo et al. (2018). In this example one catchment moves
from its position 1 at t1, toward its actual position b at t2 based on the long-term hydroclimatic indices, AI
and EI (in this study dt = 10y). The interdecadal movement has an expected, curvilinear, climatic trajectory
actual trajectory 1 → a (vector v∗) defined by equation 8. The positional change defines an actual linear
trajectory 1 → b (vector v) that emerges from the hydroclimatic indices. The EI residual change (∆EIr) value
for each catchment is then determined by considering the expected climatic change (∆Ea

P c
), component and the

additional (∆Ea

P a
). Working in all directions, it is best to consider the residual (∆Ea

P r
= ∆EIr) as the length

of the vector a → b.
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EI =
Ea

P
(7)

The framework is bound by two upper limits, the first is the water limit, a 1:1 line from the origin to an
AI < 1 that represents the energy limit, a physical boundary that implies a catchment cannot evaporate more
water than there is energy available. Beyond an AI of 1, with more energy available, the upper limit is con-
stant at an EI of 1, this limit is the water limit, meaning that the evaporation (Ea) cannot exceed the water
available. Please note that from this point AI is used for the aridity index of 5 and EI is used exclusively for
the evaporative index.

The collective influence of climate, topography, soil and vegetation contribute to the location and changes
within the framework. The original Budyko method of determining the actual evaporation (equation 6) did not
take into account the influences of these factors which are especially relevant in the context of climate projection
(Bouaziz et al., 2022). Introduction of a new equation for Ea that implements the exponential ”Fu” parameter
ω that better represents the expected climatic shift trajectory Fuh (1981); Tang and Wang (2017); Zhang et al.
(2015). This equation (8) forms results in the parametric Budyko curve (green in 6), the subscript c is used to
denote the climatic portion of EI that it describes.

EIc =
Ea

P c
= 1 + AI − (1 + (AI)ω)

1
ω (8)

Equation 8 is solved for the Fu parameter is solved every decade per catchment yielding the same potential
trajectory in the absence of additional land surface-driven deviations. After Velde et al. (2014) and Jaramillo
et al. (2018) the method for separation of the land surface driven deviations, denoted as ∆Ea

P a
(additional) and

∆Ea

P c
(climatic), is first achieved by calculating the magnitude (r(EIc, AI)) and angle (Θ, in degrees) of the

movement in the Budyko space:

r =

√
∆
(Ea

P c

)2
+ ∆

(EP

P

)2
(9)

Θ = b− arctan

(
∆(Ea/P )c
∆(EP /P )

)
(10)

b is a constant, (b = 270o if ∆AI > 0, or b = 270o if ∆AI < 0), this vector is graphically represented in
figure 6 as v∗. The trajectory of v is achieved by replacing ∆Ea

P c
with ∆EP

P . Vectors can be plotted in polar
histogram (wind rose) plots to allow for first order understanding of the general tendency of the data. Finally
the residual, ∆Ea

P r
is determined by:

∆EIr = ∆
Ea

P r
= ∆

Ea

P
− ∆

Ea

P c
(11)

It is important to note that the omega value is held constant in time for these calculations. The direction and
distribution can be plotted in the wind rose diagrams to visualise general tendencies in the space. For a more
quantitative view of surface-driven evaporation error, we use the distributions of ∆EIc vs ∆EIr. Primarily we
focus on the Meuse, secondarily we focus on the rest of the larger data sample to substantiate any emergent
results.

The residual effect will be compared with the climatic effect in the results and discussion with additional
consideration for the distribution of a population of change values. The datasets will be compared with regards
to their overall tendencies and then the tendencies of different aridity groups will be examined. aridity groups
are brackets of the aridity index used to slice the data based on the assumption that humid catchments (e.g.
group 1) respond differently with respect to arid catchments (e.g. group 5). This can be useful with the Meuse
data to compare with catchments of similar characteristics, by analogy of water and energy supply. The brackets
used are the same as those employed by Tempel (2023):
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Table 4: AI grouping for analysis and the relative number of values available in the dataset

Group 1 Group 2 Group 3 Group 4 Group 5
Bracket of AI 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1 1.0-1.2
n Catchments 22 39 110 92 10
n Decadal Datapoints 88 145 358 292 30
n Decadal Change Datapoints 66 104 245 200 20

Further groups were delineated to cluster the data but increasing aridity reduces the frequency of catchments
to the point of having no meaningful sample size. After aridity of 1, where catchments are more limited by
water than energy availability, group 5 (table 4) drops to a size of 10 and with increasing aridity, using constant
bin width, there are no more than 5 catchments per class beyond 1.2.

4.1.3 Flow Duration Curves and Low-Flow Decadal Indices

In light of uncertainties highlighted in the recent paper by Tempel (2023), we compute water balance metrics
for the Meuse basin to investigate potential deviations in actual evaporation, denoted as Ea, and concurrent
groundwater losses or gains. To this end, we focus on deriving decadal low-flow indices, vital for understanding
hydrological variability. These indices are derived from the Flow Duration Curve (FDC), a well-established
graphical representation of river flow characteristics.

The FDC plots the percentage of time that a given flow rate is equalled or exceeded in a stream. The curve,
representing exceedance probability against discharge value, provides valuable information for water resource
planning and low-flow classification. Indices can be extracted from the FDC in various ways: either by directly
referencing a value at a certain probability, by calculating the ratio between two values, or by measuring the
area under the curve relative to a specific flow value.

We begin by focusing on the most typical index, the discharge exceeding 50% of the time, denoted as Q50
(Smakhtin, 2001). This index is indicative of the overall groundwater contribution to streamflow. A steep slope
in this section of the FDC suggests a significant groundwater influence, as shown in Figure 7.

Two other indices are introduced to assess decadal and interdecadal variability. The first is the ratio of Q50
to Q90 (Q50/Q90), which measures the variability in low-flow discharges, as per (Smakhtin, 2001). The second
is the reverse ratio (Q90/Q50), which can be interpreted as an index representing the proportion of streamflow
contributed by groundwater while discounting the effects of the catchment area.

In summary, we include three simple decadal changes in common low-flow indices to assess the likelihood
that groundwater contribution fluctuations are similarly concurrently acting on the actual evaporation. For
example, in the event of a significant anomaly in the derived ∆EIr, aside from the contributions of landcover
change, we would need to assess the possibility of groundwater contribution to the streamflow per decade. If
sufficient additional Q (∆Q50 ≥ 0) from subsurface/groundwater then that would contribute to a negative
∆EIr anomaly according to Equation 2.

4.2 Remote Sensing and Spatial Data Processing

The novel remote-sensing methodology implemented in this study takes advantage of extensive satellite and spa-
tial data available through Google Earth Engine (GEE). GEE provides open access to large geospatial datasets,
enabling the monitoring and analysis of land surface changes (Gorelick et al., 2017). Data are accessed, pro-
cessed, and analysed in a Python Jupyter Notebook environment, making extensive use of API bridging tools
from the Geemap package Wu (2020). Utilising the Geemap package, we create custom 35-year time series
from 1984 to 2019 for each catchment. Timeseries creation is achieved using a customised JavaScript module
that is a derivative of the LandTrendr module code on the GEE open-access repository and released unde an
APACHE license. Initially developed by Kennedy et al. (2018) for the United States Forest Service, LandTrendr
has succeeded in creating the maximal continuous timeseries from 30m Landsat imagery further reducing the
burden of image processing on the user. From this image time series, we extract decadal variables related to
land cover change that could influence the residual evaporative index values.
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Figure 7: A line chart showing the Frequency Duration Curve from observations at La Meuse Goncourt, a
headwater catchment in the Meuse basin. Two additional lines (Q50 and Q90) denoting the positions on the
curve where the values for the decadal indices are gathered.

Spatial scale is a critical factor in investigations of land cover change. The three datasets employed in this
study—HILDA+, CORINE, and Landsat—operate at vastly different spatial scales. Unlike hydrometeorological
data, land cover datasets, especially those with distinct classifications, are often sparser. Users of contemporary
datasets commonly face trade-offs among various factors such as data frequency (annual or otherwise), duration
(long versus short time series), spatial resolution (measured in meters), geographic coverage (global or local),
and accuracy (number of classes and rate of misclassification). An ideal dataset would cover an extended time
span and offer high spatial resolution. High-resolution data are particularly desirable as they allow for more
accurate characterisation of changes; landscape alterations like landslides and deforestation are more precisely
detected at finer scales. Conversely, coarser scales may only detect larger disturbances.

As mentioned previously, the Landsat mission stands out as an attractive option, particularly due to its
recent availability for open research. In this section, we explore the land cover data obtained from the annual
summer period time series provided by Landsat, spanning the years 1984–2019 and offering a 30m resolution.
We will characterise changes in this dataset in three distinct ways.

• Changes to catchment-scale zonal statistics: For example, variations in the mean Normalized Difference
Vegetation Index (NDVI) across a catchment.

• Changes in area exceeding a specific threshold: For instance, alterations in the area of a catchment where
an index value (e.g., NDVI) is greater than or equal to a specified threshold (≥ 0.2).

• Shifts in land cover classification: For example, modifications in the urban fraction of a catchment area
resulting from discrete classifications.

These three characterisation methods offer diverse perspectives on land cover changes, thereby providing a
variety of metrics to test our hypthesis against while providing a comprehensive understanding of landscape
alterations over time.

4.2.1 Landsat Surface Reflectance Band Arithmetic, Statistics and Areal Calculation

Surface reflectance bands are commonly combined to examine the relationships between bands and to leverage
the diverse spectral responses from heterogeneous surfaces. Several indices are added to the six-band time

16



Michael O’Hanrahan MSc Thesis 4 METHODOLOGY

series, chosen based on their sensitivity to the presence of vegetation or moisture. For each index, mean and
standard deviation values per catchment are calculated at a 30m native resolution. Additionally, the area within
a catchment exceeding a critical threshold (i.e., area ≥ threshold) is calculated and returned on an annual, per-
catchment basis. These indices are valuable for the study as they combine bands to capitalise on differences in
spectral character between surfaces, such as water and vegetation. The chosen thresholds aim to be physically
meaningful; for example, an NDVI value above the threshold will correspond to an area that increases when
the vegetation is sufficiently healthy.

Among the indices used, the Normalised Difference Vegetation Index (NDVI) stands out as a dimensionless
indicator that is widely utilised in satellite remote sensing. It monitors phenological changes in vegetation and
is directly related to vegetation productivity (Kriegler et al., 1969; Reed et al., 1994). The NDVI captures
variations in chlorophyll levels in plant leaves, indicative of growth or water stress over a season. Healthy plants
with dense cell structures typically show increased photosynthetic activity, absorbing red light while reflecting
green and infrared light. We implement a threshold value of NDV I ≥ 0.2 for areal calculations, providing an
estimate of the vegetated proportion of the basin. NDVI is calculated using Landsat bands 3 (R) and 4 (NIR).:

NDV I =
NIR−RED

NIR + RED
(12)

Another noteworthy index is the Normalised Difference Moisture Index (NDMI), which provides information
regarding the equivalent water thickness of vegetation (Cahyono et al., 2022; Hardisky, 2008). Using a threshold
value of NDMI ≥ 0.2, we perform areal calculations on the NDMI band, identifying areas with moderate to
high canopy cover and low water content. A lower threshold value is favourable in this application, as it allows
the index to be more effectively used to investigate its relation to root zone storage. The NDMI employs Landsat
bands, specifically TM and ETM band 5 (SWIR).

NDMI =
NIR− SWIR

NIR + SWIR
(13)

The Normalized Burn Ratio (NBR) is used to identify burned areas by harnessing the difference in the near
and (mid) short infrared EM spectrum (Eidenshink et al., 2007). A critical NBR threshold of ≥ 0.1 is used,
where any value above this threshold indicates an increasing severity of burned ground. NBR calculations utilize
Landsat (TM, ETM) band 7 (MIR, 2080 - 2350 nm). NBR is calculated as follows:

NBR =
NIR + MIR

NIR + MIR
(14)

The Enhanced Vegetation Index (EVI) was developed to mitigate substantial errors inherent to NDVI, es-
pecially under varied (thicker) canopy conditions (Liu and Huete, 1995). The adaptation of NDVI to account
for its open-loop structure and the incorporation of coefficients upon conversion to LAI units have reduced the
error by up to seven times compared to the original NDVI. Areal calculations are performed using an areal
threshold ≥ 0.2. EVI is calculated as follows:

EV I = G · NIR−RED

NIR + C1 ·Red− C2 ·BLUE + 1
(15)

Where G is a gain factor (2.5), c1 and c2 are coefficients of the aerosol resistance resistance term (6 and 7.5,
respectively). The coefficients enable the use of the blue band to compensate for aerosol influence in the red band.

The ”Green” Normalized Difference Vegetation Index (GNDVI) is incorporated due to its sensitivity to the
”greenness” of a land surface. The GNDVI utilizes the difference between green and infrared reflectance and
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Table 5: Tasselled Cap constants for each axis and band

Axis B1 B2 B3 B4 B5 B7
Brightness 0.2043 0.4158 0.5524 0.5741 0.3124 0.2303
Greenness -0.1603 -0.2819 -0.4934 0.7940 -0.0002 -0.1446
Wetness 0.0315 0.2021 0.3102 0.1594 -0.6806 -0.6109

Table 6: Areal thresholds per band, pixel values above the threshold are summed to an areal value.

Index Relation Threshold
NDVI ≥ 0.2
NDMI ≥ 0.2
NBR ≥ 0.1
EVI ≥ 0.1

GNDVI ≥ 0.2
TCB ≥ 0.15
TCG ≥ 0.1
TCW ≥ 0.15
TCA ≥ 0.2

shows higher sensitivity to chlorophyll variation than the NDVI, by having a higher saturation point ?.

GNDV I =
NIR−GREEN

NIR + GREEN
(16)

The tasselled cap transform was originally derived by Kauth and Thomas (1976) commenting that ”The
time trajectories of agricultural data points as seen in the Landsat signal space form a pattern suggestive of
a tasselled woolly cap.”. The tasseled cap transform is a case of principal component analysis originally de-
veloped on the Landsat imagery that has been employed in continuous change detection in the forestry space
(Cohen et al., 2016). Images are transformed to a new coordinate space with orthogonal axes. Primary axes
are Brightness, greenness, wetness and another ”angle” index component first derived by (Powell et al., 2010).
Brightness is associated with bare soil, rock, and man-made features. Greenness relates to vegetation and wet-
ness is associated with soil moisture. The tasseled cap angle refers to the relative reflectance change magnitude.
Huang et al. (2002) derived the coefficients (table 5) for the transform that is applied with code adapted from
(Kennedy et al., 2018).

Images are composited to annual summer images, corresponding with peak vegetation and minimal cloud
cover. All the photos (approximately six) between June 20th and September 20th per year between 1984 and
2019. The compositing is accomplished via a medoid best pixel approach whereby each pixel band value is
compared to the median six-band values of that season, and the values are chosen using Euclidian distance as
described in and using modified code from (Kennedy et al., 2018).

4.2.2 Landsat Timeseries Quality Assurance and Control

The resulting Landsat timeseries spanning 1984 to 2019 could allow for direct LCC observations to be attributed
to some of these observed changes in EI and specifically EIr. Over time, the mission instrumentation has been
updated or renewed, varying sensitivities and spectral bandwidth with each refresh. To accomplish the time-
series, these must be blended to achieve a continuous timeseries. It is imperative to check for biases in the
resulting data for their stability and variance in time across the dataset.

Trends across a dataset should be relatively weak or their frequency of trend occurrence well-balanced
with increasing, decreasing and ’no-trend’ detected. We test for this stationarity using the mann-kendall non-
parametric test for trends in timeseries data (Hu et al., 2020). Any single band should be relatively stable in
time or display sufficient variance over the large dataset (all catchments) to avoid a false attribution of the
trend from timeseries generation to actual land surface changes. The testing is necessary because the ’new’
Landsat Collection 2 reprocessing has managed to remove much of the burden of preprocessing (cloud or cloud
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shadow detection and removal) effort from the user. Still, the stability of bands for timeseries generation across
all missions has yet to be fully understood.

For each catchment, maximum-length annual timeseries of band values (B1-7 mean and standard deviation)
and derived indices (NDVI etc., mean and standard deviation) are generated each component is tested for
significant trend, are reported in section 5.2.1. Controls for random errors are implemented in preprocessing
the form of a cloud percentage filter (cloudy images over 20% are discarded from the composites) and cloud
masking (cloud and cloud shadow pixels are made transparent and filled with the pixel closest in time).

4.2.3 Random Forest Image Classification

Each image in the Landsat consists of multiple bands, which can be envisioned as layers in a three-dimensional
data set that is highly heterogeneous laterally, from pixel to pixel, and variable through time. Each pixel in the
image series generated per catchment is likely to be dissimilar from its neighbour. This dissimilarity increases
as the depth of the image grows, forming a more individual profile for that pixel. By adding bands, we increase
the depth and variance of this profile. In addition to the bands described in the above section (Section 4.2.1), to
achieve a more individual profile for the image, two more bands are added to the images in the series: elevation
and slope, computed from NASA’s Shuttle Radar Topography Mission (SRTM) at a 30m resolution.

Building this complexity within an image requires some algorithm to build probability based on the pixel
profile, whether it belongs within a certain class or another. A decision tree is a common decision-making tool
that assesses one option vs. another, moving down a branch of nodes (decisions) until the most probable out-
come is reached at the leaf (outcome). On their own, decision trees are poor models for dealing with complexity
and dimensionality. Still, combined in an ensemble via the random forest algorithm, it becomes a powerful
classification method.

The process begins by preparing training data. In this case, the CORINE land cover dataset is a 44-class
dataset with five levels. Five classes result by grouping all the training data into the highest level available.
Those classes are: 1; artificial, 2; agricultural, 3; forest and seminatural, 4; wetlands and 5; waterbodies. The
dataset is simplified to what are likely to be sufficiently separable classes, spectrally, meaning that the distinction
between broadleaf and conifer forests, for example, is not possible. Additionally, the largest areal proportions
in the catchments are training priorities, which are more relevant to the overall rainfall-runoff process. We
prioritise the urban, forest and agricultural fraction to the highest degree of accuracy. Serves as a ground truth
reference to train the Random Forest classifier. The different land cover types in the CORINE dataset are used
as labels for the training data.

Next, features (predictors or independent variables) are extracted from the Landsat imagery. These features
are the bands (e.g. B1-7), vegetation indices (e.g. NDVI), and principal components (e.g. TCW). Each pixel
in the Landsat image is associated with these features, creating a multidimensional feature space.

The RF classifier is then trained using the prepared dataset. The algorithm generates many decision trees,
each built from a random subset of the training data by bootstrap sampling or ’bootstrapping’. The RF algo-
rithm begins by creating several subsets of the original dataset using a method known as bootstrap sampling
(or bagging). This process involves randomly selecting observations with replacements, meaning some may be
selected multiple times while others might not. Each subset, known as the bootstrap samples, trains a separate
decision tree. The number of trees is a parameter set at the beginning (often in the hundreds or thousands). At
each node, a random subset of features is selected for each decision tree, and the best split from this subset is
chosen based on how much it reduces the impurity (for instance, Gini impurity). This introduces randomness
into the feature selection process and helps decorrelate the trees, making the model robust to noise and outliers.

The Random Forest (RF) algorithm has the distinctive capability to estimate its generalisation error (the
model’s ability to handle unseen data) without needing a distinct validation dataset. This estimation is accom-
plished through split sampling, in our case, a 70/30 train/test division. The allocated 5000 training points across
all classes are divided in such a manner, with 70% used for training. Once classified, the subset is contrasted
with the classified product, providing an image representing the model’s overall accuracy.

Landsat classification has great potential for landcover change investigation, owing to its speed and effective
performance. Zhu et al. (2016) demonstrated that an unbalanced training strategy with weighting proportional
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to occurrence is possible with Random Forest training. This means that training data is not evenly distributed
per class, but rather a strategy for prioritising one class above another is recommended. In this study, we
distribute 70% of 5000 training points between five classes proportional to the area each class in the training
data such that the least extensive class (usually wetlands) will receive minimal training prioritisation. The same
study further suggests approximately 20, 000 training points to adequately classify a complete Landsat scene,
with a minimum of 600 points per class. It becomes quickly apparent that an areally-prioritised imbalanced,
split training strategy will lead us to under distribute training to those classes that form a small percentage of
the catchments. Those catchments with the highest areal proportion, such as agriculture and forestry will be
the most reproducible and reliable.

The CORINE dataset, which includes the Meuse region in mainland Europe, only has data available for
1990, 2000, 2006, 2012, and 2018. These years are considered for model training, and the models generated in
these years classify the years not covered by the training data. Unfortunately, the accuracy of the models in
these years without training references cannot be directly assessed.

In the case of the Meuse basin, the entire basin is trained and classified during relevant years, and these
models are preserved for classification between the training years. For the CAMELS GB dataset, training data is
less available, lacking the 1990 set. Thus, the model from 2000 is utilised to classify every year from 1984 to 2003.

4.2.4 Model Calibration

The model calibration process is achieved through an integrated evaluation of overall accuracy and the kappa
score. Model hyperparameters are adjusted to locate an optimal parameter space that yields an optimal com-
bined kappa score and accuracy while keeping the model size low. The adopted weighting strategy maximises
accuracy on the most significant land cover classes. The 30% of points split from the original 5000 for training
are used to create an error matrix called a ’confusion matrix’ that compares the model performance by com-
paring the test split CORINE classes to the model classification prediction.

A confusion matrix is a table layout used in supervised learning for visualising the performance of an al-
gorithm, often a classification model, by showing the actual true instances of each class in the rows and the
outcome, or predicted classes, in the columns. The matrix includes four metrics: true positives (TP), false
positives (FP), true negatives (TN), and false negatives (FN), which provide insights into the model’s precision,
recall, F1-score, and accuracy. False positive (FP) values are the sum along the rows, not including the TP
value, FN values by contrast are calculated by summing the columns, less any TP values along the diagonal.

Precision =
True Positives (TP)

True Positives (TP) + False Positives (FP)
(17)

Recall =
True Positives (TP)

True Positives (TP) + False Negatives (FN)
(18)

The resulting model is then presented in its performance over time, with the use of the f1 score, a measure
of precision and recall:

F1 = 2 · precision ∗ recall
precision + recall

(19)

The F1 score is the harmonic mean of precision and recall, where precision is the number of true positive
results divided by the number of all positive results (including those not correctly identified). Recall is the
number of true positive results divided by the number of all samples that should have been identified as positive
(Chicco and Jurman, 2020). By maximising the F1-score and overall accuracy, we use both objective methods
for model calibration.

Hyperparameters are adjusted incrementally beginning with the most impactful on the size, accuracy and
significance of the model (generally referred to as ’performance’ herein). The hyperparameters calibrated in
this model are, in order:
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1. The number of trees in the forest; increasing the number of trees generally improves the model performance
and increases computational cost. Therefore, it is advisable to increase the number of trees until the
performance gain becomes negligible.

2. The number of variables per split ; adjusts the number of features considered when making the best split
at each node. Tuning this parameter can help in balancing overfitting and underfitting.

3. The minimum leaf population; this is the minimum number of samples required to form a leaf node. This
acts as a regularisation method, and higher values can help minimise overfitting.

4. The maximum number of nodes; specifies the number of leaf nodes for each tree in the random forest.
Limiting the tree to this number of nodes can speed up the training process and control overfitting, but
setting it too high may risk overfitting, while setting it too low may result in underfitting.

4.3 Linear Regression to Identify Correlation to Residual Effects

In the trajectory analysis carried out as part of this project, the primary derived variables of interest are ∆EIres
and ∆EIclim. Our main objective is to discern any meaningful and statistically significant patterns within the
extensive datasets gathered for the project. Specifically, we’re keen to identify any linear relationships between
decadal changes in the components of the evaporative ratio and variations in land cover change indices.

Our working hypothesis at this stage is that the residuals from these relationships can be attributed to one
or more changes in land cover occurring during the same periods. To test this, we’ve crafted a sophisticated
correlation strategy, designed to capture a broad range of correlation metrics across our independent data and
to mitigate the impact of outliers on our analysis.

We perform linear regression using all data or subsections, implementing a robust resampling methodology
to create a representative range, meaning mean and upper and lower bounds, of correlation coefficients (r2).
This bootstrap-based approach helps us build meaningful confidence intervals around our estimates of correla-
tion coefficients and significance values, enhancing the robustness and reliability of our results and reducing the
effect of homoscedasticity, where a sequence of variables may have homogeneity of variance that affects regres-
sion results (Jeong and Lee, 1999). All populations that are tested for a causal relationship in this manner are
normalised by standard deviation and tested for normality using the Shapiro-Wilk test for normality (Shapiro
and Wilk, 1965). Any population failing the test for normality (pthreshold > 0.05 is rejected and not included
in the final analysis.

For each set of decadal changes, we apply a Pearson’s p-test based on Pearson’s product-moment correlation
coefficient to assess the significance of our findings. To ensure rigorous statistical standards, we set a signifi-
cance threshold of p < 0.05 for our tests. This approach helps us not only to identify statistically meaningful
relationships but also to uphold stringent methodological standards, enhancing the credibility and validity of
our study. Finally, for visualisation a regression line is fit using the coefficients resulting from the ordinary least
squares method (OLS).
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(a) Three different subplots are shown with the same underlying data. All hydroclimatic ∆AI,∆EI pairs are displayed.
Plot one, the wind rose displays frequency and direction in polar space. Plot two, the histogram with KDE shows the
same in non-polar space. Plot three, the quiver, shows direction and magnitude. A deeper explanation of how to read
the graphs in section 5.0.1.

(b) This data is for all decades and the subsection of data relevant to the Meuse basin only.
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5 Results

Firstly, in the results section we discuss the data visualisation to aide in interpretability. Secondly, we comment
on the qualitative tendencies of the interdecadal changes calculated from the hydroclimatic variables. We report
the results of the Budyko trajectory decomposition analysis to answer research hypothesis 1. Subsequently, a
comparative assessment of the landcover data generated. Finally, the results of the regression relationship be-
tween land cover change observations and ∆EIr and ∆Sr,20y and other HC variables.

Firstly, we delve into data visualization techniques to aid in the interpretability of the results, thereby provid-
ing an intuitive understanding of the hydroclimatic variables under study. Secondly, we discuss the qualitative
and quantitative tendencies associated with interdecadal changes in the Budyko framework for different aridity
groups and datasets. This examination serves to identify long-term trends or patterns that have implications
for water resource management and climate change adaptation. Within this section we present the findings
of the Budyko trajectory analysis, specifically addressing research hypothesis 1. Subsequently, we conduct an
assessment of the resulting landcover data looking specifically at changes within the Meuse basin.

Finally, we report the results of the regression analysis, looking for any relationship between observed changes
in land cover and variations in the residual change component of the evaporative index (∆EIr), root zone stor-
age capacity change (∆Sr,20y ), and other hydroclimatic variables. This regression analysis seeks to establish
causal links or strong associations between land cover changes and hydroclimatic variables.

5.0.1 Interpreting Visualisations

Conveying and visualising change within a big-data comparative study is a challenge so it is necessary to explain
the unconventional data visualisations carefully. An important foundation is that we are visualising decadal
changes, so an interdecadal change for a variable in a catchment is one data point. The first decadal changes
are visualised to provide qualitative insight into the overall data tendencies and can be seen in 8a.

Displayed are all catchments from all decades, amounting to 663 data points for interdecadal change. The
first subplot, a wind rose diagram, shows a frequency distribution of movement in a specific direction within
the Budyko framework (a 2-D plane). The most frequent direction (angle) of movement within the plane is
defined by the larger peak in the bimodal distribution (to the left). Since this also corresponds to the Budyko
framework, the leftward movement indicates a frequent tendency toward a reduction in aridity (∆AI < 0),
which can result from a reduction in potential evaporation, Ep or an increase in precipitation P . The same
orientation principle can be applied to the vertical (90◦ or 270◦, Budyko y-axis), except this is relevant to EI
or ∆EI and hence Ea. The width of the red shading corresponds to the width of the ω value distribution in
the data displayed.

As detailed in section 4.1.2, the climate-driven path for a catchment is based on the parametric curve
described by 8. Figure ?? shows three decades with corresponding curves within an example catchment, in-
terdecadal variation. To visualise whether a catchment is complying with the expected curve direction, we
use a colour coding system, red for climate direction (curve) and green (y-axis, EI). Any of the 36 bins (10◦

tolerance) of the histogram that falls within the red shading imply that those catchments are close to complying
with their expected climatic trajectory. Otherwise, some change in the land surface process (LCC, for example)
affects actual evaporation Ea to deviate from the expected curve.

A second subplot plot in figure 8a is the more familiar histogram, showing an x-y visualisation of the same
directional data as the wind rose. The frequency is on the y-axis showing number of catchments changing
in that direction within one of the 36 directional bins. Similar red and green shading is implemented in the
histogram. A kernel density estimate (KDE) is plotted on the histogram (blue line), a method of estimating
the underlying probability density function of a dataset by smoothing the histogram using a kernel function. It
provides a continuous, smooth estimate of the distribution, allowing for a more nuanced analysis of the data’s
shape and density compared to the discrete representation of the histogram. The x-axis is given in fractions of
pi, with 0 (the theta direction) corresponding to a purely rightward direction on the wind rose.

A third subplot, the vector ’quiver’ (arrow) plot, is provided that gives conveys the magnitude (length) of
movements, as well as the direction. The vectors form arrows radiating from a common origin, with each arrow
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representing an interdecadal change. The quiver plot in 8a is colored by the dataset, with yellow representing
the Meuse data movements. The green represents the US data and the more blue color represents the GB data.
In a similar theme, movement within the confines of the red lines is indicative of movement along the expected
curve trajectory.

This section relies on a second type of subplot for a clear representation of the budyko separation results.
Boxplots like those in 9a illustrate for all changes measured in all catchments, the three evaporative index
components derived in section 4.1.2. The top row represents the distribution of movement and the bottom
row represents the distribution in the magnitude of those movements. Three components are presented for
consideration, ∆EI (eq:7) the total change in y axis, ∆EIc (eq:8) the change in y-axis due to a change in EP

(and Ea) and thirdly ∆EIr (eq:11) the residual, or the error introduced by some change in Ea.

Each plot sub-title provides the median value of the distribution and the standard deviation (σ). Boxplots
are constructed in such a way that the box contains the median in the middle (yellow line), the bounds define
the interquartile range (IQR, Q1 to Q3), and the whiskers define the IQR ±1.5(IQR). The dots are data points
that plot outside the whiskers, also known as fliers or outliers.

5.1 Budyko Framework Trajectory and Residuals in the Evaporative Index

5.1.1 Decadal Trajectories within the Budyko Framework

The figure ?? the wind rose shows that the most frequent movement for catchments to make is negative in
the aridity AI (left) and neutral to positive concerning the EI. Since most catchments do not fall within the
red ’expected’, we can see that there is a contribution of ∆EIr causing deflection. Most catchments display a
positive bias, such that we see the majority of movements occur with a positive ∆EI bias. This is seen where
most movements are distributed above the 0 − 180 line and where the KDE is higher in the left ’shoulder’ of
the middle histogram compared to the right half. The quivers show that the large datasets generally agree, but
the Meuse data (yellow) has a notable opposite character albeit a smaller sample of 31. The median catchment
will result in a 1.302e − 3 ± 5.581e − 2 displacement (table 7) which is twice the ∆EIc contribution from
climate-related changes.

5.1.2 Meuse Evaporative Change Component Results

The Meuse data wind rose for 22 catchments (France and Belgium) for all decadal changes is shown in figure
??. The wind rose, and quiver (vector) plots show a significant magnitude and directional deviation from the
expected, ω distribution defined red (expected) trajectory.

Notably, a large proportion of the data is plotting to the right (∆AI > 0) with a negative deviation in the
(∆EI < 0). All 13 catchments in the Belgian dataset exhibit this behaviour while only select French catchments
show similar magnitude deflections. It is worth noting that there are fewer catchments in the French dataset
(9), but there is sufficient data for two decadal changes to be calculated; they are more numerous in the vector
(quiver) figure (18 vs 13).

The distribution of the 2008 French data is less negative than the 2018 French (mean: ∆EIr,2008 = 0.022
vs ∆EIr,2018 = −0.125) data. Belgian results are challenging to directly compare where decadal periods do
not perfectly overlap with the French catchments. The timing and agreement are coincident with similarities
in the direction and magnitude of the move across the entire basin (mean: ∆EIr,2008 = −0.164). That is to
say, the deep negative deviation in the EI is an anomaly of the most recent decade (2009-2018). Overall the
∆EIr is deeply negative with a median −0.085 compared to an all data median +0.01 (7). The lower whisker
(Q1− 1.5(IQR)) for the 654 total decadal change pairs is ∆EIr = −0.1. These results align and expand on the
significant negative bias in the EI outlined by Tempel (2023).

Spatial distributions help with visualising the intensity of the residual effect revealing a geographic clustering
for the most recent anomalous ∆EIr values as shown in 10. Meuse basin sub-catchments along the Eastern
border of the basin showing a concentration of this negative evaporative deviation. La Chiers Carignan (map
10, number 10) followed by Jemelle (map 10, number 16) show the most negative deviations:∆EIr = −0.298[−]
and ∆EIr = −0.262[−], respectively. All catchments in this period are shown to deviate negatively for this
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(a) Six boxplots with the top row representing the decadal change across three evaporative index components and the
bottom row indicating the distribution of the magnitudes of the changes. The data presented is for all datasets for all
time, and a blue line is plotted at 0 for ease of reading on the top row. The first component ∆EI, the total change
in the evaporative index, the second ∆EIc the EI component contributed by climate change (∆EI) and third, ∆EIr,
the residual component supposedly resulting from a change in land surface processes. Per component, the median and
standard deviation (σ) is presented. On each distribution (boxplot) is a red dot representing the median Meuse value
for the corresponding component.

(b) A repeated figure with a subset of the data displaying only Meuse data (for all decades). The median values here
are the same as those plotted as red dots in (a)
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Figure 10: A map displaying the residual EI (∆EIr) component across the Meuse basin from the interdecadal
∆EI t1:1999-2008 to t2: 2009-2018

period with the exception of La Meuse Goncourt (19, ∆EIr = 0.001).

Considering appendix Figure 32 we can visually relate the concurrent decadal change in the evaporative
index ∆EI to a significant change in Sr,20y and the estimations clearly dependent. With such deviations
occurring ∆EIr is the most significant component, it is imperative to know if LCC is a significant contributor
to these decade-over-decade changes contributing to a median of −25mm or −13.7% in relative root zone storage
capacity change.

5.1.3 CAMELS Residual Component Comparison

The CAMELS datasets US and GB display a similar tendency to each other despite geographic separation giving
further evidence for this Meuse observation to be considered an anomaly. Visually the US and GB decrease in
aridity index (left) and are positively deviating (∆EIr > 0) from the expected climatic trajectory. Less than
10% of the CAMELS GB catchment changes calculated are closely compliant with that expected ω defined
direction. Similarly, no notable magnitude of changes are compliant with this path, meaning all major moves
(length of the vector) are not along the expected trajectory.

The CAMELS US dataset shows a much higher proportion, compared to GB or Meuse, of catchments
complying with the expected climatic shift also with a negative bias in the aridity index and a clear majority
positive bias in the evaporative index. The US data shows approximately seven change values complying with
an exclusively positive shift in the EI with notable magnitude. The median residual magnitude is higher at 0.07
than the climatic magnitude, and the median residual component of ∆EIr = 0.02 is moderately more (+0.01)
positive than the negative median climatic component (-0.01). The balance is in favour of the residual effects
of evaporation being more influential than the climatic effects.
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Figure 11: A map displaying the interdecadal change in flow volumes exceeding the 50% threshold t1:1999-2008
to t2: 2009-2018

Table 7: Decadal change groupings with the respective group tendencies summarised in terms of the median of
both the climatic and residual deviations. The third line is an approximate indication of the level of residual

component change vs climatic: |∆EIr|
|∆EIc| , the equation used to propagate errors is provided in the appendix as 29.

Dataset All Catchments Meuse
median(n = 663) σall median(n = 40) σMeuse

∆EIr 1.302e-02 5.581e-02 -8.436e-02 1.081e-01
∆EIc -6.366e-03 3.231e-02 4.587e-02 4.738e-02
|∆EIr|
|∆EIc| 2.045e+00 1.907e-03 1.839e+00 2.076e-02

Dataset GB US
median(n = 285) σGB median (n = 338) σUS

∆EIr 6.716e-03 4.494e-02 1.942e-02 4.114e-02
∆EIc -6.366e-03 2.524e-02 -8.989e-03 3.204e-02
|∆EIr|
|∆EIc| 1.055e+00 4.879e-04 2.160e+00 2.347e-03
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5.1.4 Aridity Grouping of The Evaporative Index Components

The datasets are combined and subsequently grouped by their aridity brackets, as discussed in the methodology
chosen to match those in the preceding study by Tempel (2023). From a qualitative standpoint, in order from
most humid to most arid, group 1 (entirely CAMELS GB) is biased toward negative ∆AI movements, i.e.
tending to become more humid (appendix figure 21 - 29), with some significant magnitude changes in outside of
the expected climate trajectory. The negative tendency in aridity per group is summarised in Appendix table:9
where catchment groups with AI < 1 exhibit decreases in between 51.14% and 40.69% of inter decadal changes.

Aridity group (AG) 1 seems more climatic-driven than the moderately more arid AG 2 (0.6-0.8) 65% vs
70% at as residual-driven than the less humid AG 2 further. Climatic effects are consistently negative, and the
proportion of residual prominence increases with aridity, except for the most arid (small sample n = 20) AG 5.
AG5 shows a majority positive climatic shift with a lesser dominance of the residual (table 8, figure 30).

Table 8: Decadal change groupings with the respective aridity group tendencies summarised in terms of the
median of both the climatic and residual deviations.

AI Bin 0.2-0.4 0.4-0.6 0.6-0.8
median(n = 66) σAI,1 median(n = 104) σAI,2 median(n = 245) σAI,3

∆EIr 3.807e-03 2.703e-02 2.757e-03 7.046e-02 1.548e-02 6.553e-02
∆EIc -5.848e-03 1.387e-02 -3.816e-03 3.363e-02 -9.844e-03 3.658e-02
|∆EIr|
|∆EIc| 6.510e-01 1.198e-04 7.226e-01 2.331e-04 1.573e+00 2.161e-03

0.8-0.1 1-1.2
median(n = 200) σAI,4 median(n = 20) σAI,5

∆EIr 2.236e-02 4.185e-02 8.547e-03 3.137e-02
∆EIc -9.316e-03 3.221e-02 5.279e-03 3.134e-02
|∆EIr|
|∆EIc| 2.400e+00 2.966e-03 1.619e+00 7.019e-04

5.1.5 Meuse Low Flow Analysis

Low flow analysis for each decadal period was accomplished for all Meuse sub-catchments by calculation of
the Flow Duration Curve as detailed in section 4.1.3, and a similar mapping visualisation to compare with the
residual map directly is attached in Figure 11. In this visualisation, we can interpret negative values as the
interdecadal percentage decrease in the sum of flows ≥ Q50, in other words, the relative change in groundwa-
ter/subsurface streamflow contribution.

From this map firstly, it becomes clear that by showing the spatial distribution of ∆Q50, the same spatial
pattern of clustering as in ∆EIr (Figure 10 is not present. Secondly, it is quite clear that inter-decadal changes
in groundwater/subsurface-related streamflow changes were commonly on the order of −30% with some showing
reductions of almost −76.16%. All sub-catchments within the Meuse basin express a negative change in base
flow contribution for this period.

In the same period, the change in the ratio of Q50 to Q90, the measure of low flow variability, had a median
change of +15% with a concurrent increase in IQR (appendix table A.4). The increases in the variability of low
flows are clustered spatially in a somewhat similar manner to the values associated with the residuals, in the
lower catchments and the headwater catchments in the steeper lands to the East. There is no linear relationship
between the residuals and this observed increase in variability but the significant spatial coincidence is notable.

5.2 Landcover Change

Generation of the landcover indices is paramount to testing whether the residual evaporative component is land
cover change-driven. Satellite observation data consists of two branches, those indices directly derived from
individual bands (catchment mean and area above threshold). Second is the discrete classification accomplished
via the random forest. First, the generated data is assessed, and the indices that pass the quality assessment
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are put forth for regression analysis.

5.2.1 Landsat Image Timeseries Quality assessment

Bands within the Landsat images form timeseries that we test for trend significance using the Mann-Kendall
non-parametric test for slope for all statistics and area calculations and surface reflectance zonal statistics
bands. Each catchment annual timeseries from 1984 to 2019 is assessed for trend significance (Pearsons p values
¡0.05) and the proportion of those trends qualifying as increasing (green) decreasing (red) or no trend (grey,
p > 0.05) see methodology section4.2.2 in figure 12. The decadal mean values are a rolling mean window
from 1994 to 2019 of the 30m index values in the catchment of interest. What is expected of a sample of 199
catchments over varied geographic zones is that a certain proportion of trends should be increasing or decreasing.

Calculations that accomplish zonal statistics-derived timeseries for each catchment are computationally ex-
pensive and slow, and for that reaso,n only 199 out of 286 catchments were successfully assessed for bias. This
size sample, however, was sufficiently large to prove the presence of bias and to discard a subsection of landcover
change metrics from direct applications. The calculated rend results are illustrated in 12 where the figure shows
the calculations only for the core bands and the indices that result from those bands. Trend significances are
shown, with red, green or grey indicating a proportion of all timeseries as significant decreasing, increasing or
no-trend, respectively.

The results show repeated, significant bias in the core bands 1-7, which form the core of some calculations
e.g. NDVI. Bands 1-3 (G, B and R), the visible spectrum bands consistently decrease 83 − 91% or register
no trend. The NIR (B4) band is likely the most stable through the series where 78% of the series display no
trend. The unfortunate knock-on effect of this artificial trend, resulting from stitching different sensors, is that
in the resulting data the proportion of trends in addisional band calculations. The GNDVI, for example, since
GNDVI is directly inverse to green reflectance (B2) 84% of the series recorded for 199 individual catchments
are increasing. Artificial trends are likely an artifact of stitching different generations of sensors resulting in
significant positive trends within the indices to which they are relevant.

The bias in the indices (band ratios) is not as overwhelmingly expressed in the trends of areas above thresh-
olds. Still, their direct dependence on these biased indices results means they are indeed also biased. The least
biased indices appear to be NBR, TCW and perhaps NBR, as they show a more balanced proportion of both
increasing and decreasing trends, these are retained for regression analysis though any resulting correlation from
these will be treated with a strong caveat. Bands and, by extension indices, that show strong bias (artificial
trends) are discarded from regression analysis. All bands are used within the random forest classification, the
bias in this context is mitigated/minimised by training on several years so that the bias is accounted for in the
model.

5.2.2 Landsat Classification Accuracy Assessment

Training and classification are assessed by confusion metrics. The data presented in figure 13 demonstrate
class-by-class accuracy metrics resulting from a the 30% split sub-sample of the original 5000 (100%) training
points versus what is the resulting classification. Model overall accuracy improved from a baseline ≤ 71%
unweighted, unbalanced reference to an impressive ≤ 83.95%. The main gain in classification accuracy is due
to the addition of the elevation and slope bands as is best illustrated in the ranked feature importance in
45. Feature importance is a useful metric, that can be calculated for Tree-Based Classifiers that indicates the
ranked significance of each band’s influence in the classification process. The most influential bands in an image
leading to successful classification are primarily elevation, followed by slope then EVI and approximate equal
importance for all other bands.

An upper accuracy limit is expected when the training data is a more coarse resolution than the resulting
classification product (50m to 30m). For example, a training set that classifies a city as a single homogeneous
area, then the higher resolution classification could possibly confuse a football field for and agricultural field
based on spectral similarity. Indeed that is apparent in an example confusion matrix in figure13. This confusion
matrix is from the year 2000 training, and classification instance (also available for 1990, 2006, 2012 and 2018
in appendix section A.5.10).
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Figure 12: Visualized proportion of significant trend from 1984-2019 in catchment (30m) mean values. A table
of each proportion is provided in the appendix as table 11.

An un-balanced approach is used in the sampling and we see that the 30% test split is given to each class,
the parentheses on the horizontal axis labels show that agricultural pixels receive the most (proportional to the
basin area occupied). True Artificial pixels have been tested over 184 points and commonly (10%) register false
negatives for agricultural pixels. This is likely because flat, bare soil and heterogeneous urban surfaces are often
spectrally, difficult to distinguish. A second reason is that some vegetation in parks and recreational areas can
be detected here due to the resolution in the classification being higher than the training data (30m vs. 50m,
respectively).

Classifying agricultural lands mis-classifies much less frequently, but occasional confusion occurs with ar-
tificial areas (2.3%) and more frequently with forest and semi-natural (FSN, 6.5%). Misclassifications occur
for any number of reasons, most likely vegetated areas are hard to distinguish as semi-natural (e.g. grassland)
versus agricultural (pasture).

Forest and Semi-natural pixels are the second most numerous as the second largest class with confusion
very occasionally occurring with artificial or agricultural areas. Of the agricultural class pixels tested, 15% are
estimated to be confused for agricultural for the same reason the reverse happens, as explained in the previous
paragraph. It could also be argued that any forest at low elevation and low slope will be more likely to be
confused for agricultural and vice versa for high elevation, steep ground agriculture, in a similar principle to
HAND (height above nearest drainage) land classification .
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Figure 13: The confusion matrix shows the classification performance on the Meuse basin for the year 2000.
The color scale corresponds to number of pixels.

Wetlands and waterbodies are such small proportions of the training area there results very few testing
points from the areally balanced training set. Wetlands especially are the least common class, because there is
so little training accurate classification is not acheived.

From an individual confusion matrix we can go beyond overall accuracy assessment and understand the
precision and recall of a machine-learning model based on its precision and recall of various classes. For this,
we present the timeseries of the ’f1’ score (figure 14). The maximum overall accuracy of 83.95% is clearly not
the most representative metric with an unbalanced multi-class training set as is presented here, some classes
are highly accurate and some less so. The true positive rates are higher in the agricultural and FSN classes, the
other classes suffer from the lack of training point allocation. It is worth noting that the confusion matrix and
the f1 score for artificial surfaces tell us that a significant proportion of the (15/184) points misallocated as a
false negative as agricultural, leading to a low f1 score in the artificial.

5.2.3 Resulting Land Classification Products

Three timeseries of classification products are presented for the Meuse basin and CAMELS GB. The areas are
the classified proportions of the basin per year above the Maastricht (Borgharen) gauging station. With data
from 122 catchments, the total area assessed totals 1.47 million square kilometers. A summary table of changes
is attached in the appendix as 12. We present similarly the other two products for HILDA and the Landsat
classification product (tables 13 and 14).

The HILDA+ data is the most coarse of the three datasets with a pixel resolution of 1km. Coarse classifica-
tion can result in large swings in a short time, which can be especially pronounced in smaller catchments where
a change in 1km2 from one year to the next is proportionally more than in a whole basin but the relevance of im-
pact on the evaporative balance is as yet unclear. Additionally the classes introduced by the HILDA+ product
are the same as the CORINE albeit with slight differentiation. For the FSN class, the corresponding HILDA+
class includes forest and shrubland. For the agriculture class, the corresponding HILDA+ class is a combined
cropland and pasture. We now assess the comparative changes in the major land class proportions in the Meuse.

The HILDA+ Forest and semi-natural decline since 1990 in the basin is −1.2% while the CORINE and
Landsat products result in −0.2% and −1% declines, respectively. Where HILDA+ estimates a +25% in-
crease in urban areas for the same period, CORINE and Landsat report 9.4% and 24.9% increases, respectively.
The Landsat product agrees best with HILDA+ for Artificial (urban) and forest proportion changes and with
CORINE on the agricultural decline. For those primary classes, the Landsat 30m product is in close agreement
with at least one other model. The tables on land class area changes are available for CORINE, HILDA+ and
Landsat in appendix tables (12, 13 and 14, respectively)
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Figure 14: F1 score as a measure of classification model performance with each class plotted as a line over time
within the span of the training data.

Agricultural landcover classifications are subject to errors between products. Hilda+ overestimates agricul-
tural landportions compared to Corine on average by 10%. The mean error of the Landsat product shows an
underestimation by −1.56% for this class. Removing the −32% error in 2012 which could be the result of a
random environmental interference (e.g. cloud), the error is −2.143% (figure 15). For forest and seminatural
CORINE is consistently higher in forest fraction than the other datasets, CORINE reports 25% higher forest
fraction (FSN) and greater change than HILDA+. HILDA+ and Landsat are in closer agreement regarding
mean error and trend, where CORINE shows a significant decrease since 1990 while the others are stably in-
creasing. For FSN Landsat underestimates HILDA+ by approximately 15%.

The mean relative error for Landsat versus CORINE for artificial surfaces for this period is between −36.26%
and −73.23%, meaning the higher resolution observations underestimate the urban land cover fraction by ap-
proximately half. Both HILDA+ and the Landsat product show to recreate the two vegetated classes reliably
for agricultural and forest and seminatural classes. This is important for the regression analysis as we hope
to test whether the derived ∆EIr is related to LCC. We should be able to conclude whether change in these
two high confidence classes is related to ∆EIr and test for other, lower confidence, variables such as artificial
surface change, EVI, NBR and NDMI.

5.3 Regression Relationships

Correlation between remote sensing observations and the hydroclimatic variables and this section reports the
most prominent results to aid in testing hypothesis 3. Correlation between the decadal changes in catchment
area normalised LCC indices and the dependent variable, primarily ∆EIr, test to establish causal relationships.

Figure 16 presents a joint plot (histograms of the individual populations tested and a scatter visualising
their potential linearity). The artificial Landsat decadal changes, normalised by individual catchment areas
are presented on the y-axis, this is for all catchments for all decadal changes. The bootstrapped approach
to eliminate outliers and homoscedasticity by sub-sampling the distributions for representative ranges returns
upper and lower limits of r2 and p. This is compared to the ∆EIr component that should contain some as
yet undetermined level of influence from changes in land cover. The choice of compared variables presented
are those resulting from the regression with the highest r2 = 0.142 value and the lowest ppearson = 5 × 10−7

value for explanatory variables . This pair is the testing the classified artificial change vs the residual changes,
it is likely that some large values highly influence the p where the r values are significantly higher due to the
center of mass, concentration of data pairs around 0. The two populations are different, as indicated by the
histograms on the border. In the data presented all populations compared are sufficiently normally distributed
(pshapiro < 0.05) for this analysis. Artificial surfaces show very large changes and a large proportion of almost
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Figure 15: Three models are presented for the Meuse basin and CAMELS GB (ncatchments = 122). HILDA+
model is in blue, the CORINE data is in red, the classified Landsat product is in green. Each bar is composed
of a range of area proportions estimated to be forest and semi-natural land, in the case of the Meuse, each bar
and standard error represents 22 catchments upstream of Borgharen.

no change, coinciding with a large bin at zero percentage change per decade.

In both plots the data for classified land cover changes are small and form a large center of mass near
around 0. The second example case of Landsat classified forest fraction change vs. the climatic component of
evaporation (∆EIc) has the second highest p and r2 values in the analysis, though they are even less . This
pair similarly shows that regression results can again be highly influenced by this center of mass.

A dashed 1 : 1 line is plotted for reference. The residual component shows a relatively normal distribution,
with a majority between ±10% residual deviation. A small population of outliers exist to the left (negative)
which will be the eastern Meuse catchments. Most catchments exhibit minimal residual and artificial surface
change, with a centre of mass close to zero for both variables. The largest changes in artificial surfaces are
not linearly related to the changes in artificial surfaces. The change in artificial catchment proportion decadal
change has poor explanatory power concerning ∆EIr.

A weaker correlation for all other variables is implied, with all correlations tested provided in the appendix
and further in the data repository. In reality, there are no linear relations between any hydroclimatic in-
dices included in this analysis. Weaker correlations are similarly implied where the same methods are applied
to subgroups, or clusters within the dataset, for example, when testing for relationships across all aridity classes.
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Figure 16: The sample with the highest r2 value compared to the ∆EIres

Figure 17: The sample with the highest r2 value (0.21) compared to the ∆EIclim
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6 Discussion

We began this study hoping to unravel the uncertain level of contribution of land cover change to changes
in evaporation within the Meuse basin, specifically whether observed LCC changes exhibit evidence of influ-
encing quantified changes in the evaporative index and, by extension our projections of ecosystem-scale root
zone storage capacity. As the landscape is modified through natural and man-made processes soil disturbance
and vegetation removal occur affecting water balance calculations are affected and following this introduces
uncertainties in projections of the future evaporative index. We discuss the possible implications of the results
presented for root zone storage capacity and streamflow modelling of the Meuse in general.

We initiated this study to explore the elusive relationship between land cover change (LCC) and unexplained
inter-decadal errors in actual evaporation within the Meuse basin. Specifically, we sought to determine whether
observed changes in land cover have a causal relationship with the residual component of these errors and,
consequently, on our projections of ecosystem-scale root zone storage capacity. The modification of the land-
scape, whether through natural or anthropogenic processes, leads to soil disturbance and vegetation removal,
which in turn affect water balance calculations. These changes introduce uncertainties in future projections of
the evaporative index. In the discussion that follows, we explore the ramifications of our findings on root zone
storage capacity and streamflow modeling in the Meuse basin.

6.1 Limitations

This study has attempted to include as many steps as possible to ensure the quality, robustness and repeata-
bility of the results presented. Exploratory analyses, like the one presented here, must assume an underlying
level of uncertainty that is inherent in all data. The first important consideration is the baseline uncertainty
inherent in all hydrologic data studies. ? found that data uncertainty magnitudes typically range from 10–40%
when dealing with hydrological data. Preprocessing steps taken in the preceding bodies of work have similarly
taken the utmost care to appropriately handle data and remove unreliable sources (van Noppen, 2022; Bouaziz
et al., 2022; Tempel, 2023).

One issue associated with this study and the exploration of limitations of a very individual technology is that
complimentary datasets are either non-existent or are themselves full of uncertainties. For the calculation of
changes in biomass to be allowed on the same timescale, the area of vegetation would need to be combined with
leaf-area-index values. While the Advanced very-high-resolution (AVHRR) radiometer provides 1km resolution
LAI imagery and has been available as a continuous timeseries since 1981 the quality of this sensor has been
noted to drift since 2013. We attempt to harmonise and replace the later years (from 2004) LAI timeseries with
newer, resampled resolution imagery from MODIS sensors (example timeseries are attached in Appendix 52).
Despite determining coefficients for harmonisation, the series produces unexplained, unpredictable discontinu-
ities consistent with difficulties encountered in the literature by Cao et al. 2008. The conclusion from this aside
is that only the area changes and not biomass have been used in this study, which is a limitation.

The method used for land classification in this study has presented various challenges. The workflow for
training the land classification models used CORINE data and was applied to classify Landsat imagery. How-
ever, due to limitations imposed by Google Earth Engine (GEE) servers, the model size had to be restricted,
primarily this resulted in a smaller number of trees in the model than was optimal. Additionally, the maximum
number of training points allowed by the server was relatively low, which may have additionally constrained
the quality of the results.

Under the current approach, we can effectively train and classify land in areas where adequate training
data are available. However, these smaller models do not generalise well to areas that lack training data. For
instance, a model trained on data from the Meuse basin would likely perform poorly if applied to a catchment
in the United States, even if the underlying conditions were similar. Improving the model size and increasing
the number of training points could offer a route to more universally applicable models, as discussed in the work
by (Jian et al., 2021).

The effectiveness and accuracy of the Landsat classification strategy are strongly influenced by unbalanced
training and by extension the choice of weighting strategy. The choice to weight the model by the areal extent
of the classes present was pragmatic and effective for the larger classes without more server computational
memory allowed for training. In an ideal case, with more training points a better weighting strategy could be
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considered to allow for a more general model that also represents smaller, less extensive classes such as wetlands.

Geologic factors underpin all the catchments in the study that can lead to leakage groundwater leakage and
losses or gains from subsurface flows in general Smakhtin (2001); Wit et al. (2001). We address the possibility
of subsurface flow influence by introducing some measures to estimate decadal low flow changes, these low-flow
results are subject to the same hydrologic errors as mentioned previously by Mc Millan et al. (2018) with the
addition that the FDC metric Q50 employed shows extreme values with as much as a 70% reduction in low
flows in some catchments. The extremity of these values are, as yet unexplained and should be treated with
caution.

In recent decades, there have been notable shifts in commercial forestry management practices, especially
within coniferous forests. Although our classification scheme does not distinguish between different tree species,
species type significantly influences water balance. Specifically, needle-leafed conifer plantations exhibit lower
interception capacities compared to broadleaved trees, potentially affecting runoff ratios during land conver-
sion. Modern forestry practices have not only altered surface drainage patterns but also have led to a trend of
thinning conifer plantations, thereby increasing the average age of standing trees (Fenicia et al. 2009). Another
potential factor influencing changes near the land surface could be shifts in vegetation phenology. Currently,
the most reliable indicator we can derive from the available data is the areal extent of vegetation, which does
not offer insights into internal processes specific to the FSN (Forest, Shrubland, and Natural Grassland) class.

Finally, the long-term (decadal) approach of our study was necessary to match the frequency of calculation
for the rootzone storage capacity. This has, however, resulted in smoothing over, or averaging over, inter-
seasonal variations in the data, especially those associated with land cover and vegetation dynamics. Rootzone
storage has been shown to correlate well with some remote sensing measures (Sriwongsitanon et al., 2016),
albeit intraseasonally. Implementation of new indexes that use interseasonal changes in phenology (vegetation),
such as differences in plant growth between seasons, could be more sensitive and more informative for continued
research.

6.2 Tendencies, Deviations and Residuals

283 catchments processed from three different regions form the backbone of this study. We processed the dis-
parate hydrometeorological data into a series of decadal hydroclimatic indices allowing a comparative approach
for catchments within varying geographic regions. The results show that over time the catchments are en-masse
becoming more humid and this trend is amplified amongst the more humid catchments than the more arid
catchments. Unfortunately, the inclusion of more arid catchments was not possible, therefore the representation
of water-limited arid (AI > 1) catchments is low (ncatchments,AI>1 = 20). Certainly, it can be seen that the
more energy-limited, humid catchments (AI < 1) over the 50-year span in observations from 1969 have tended
to become less arid. Increasing precipitation in the denominator of both the aridity and evaporative indices is
likely the driver (similar to Jaramillo et al. (2018)).

Our study areas area concentrated in the northern hemisphere mid-latitudes where precipitation has been
observed to increase echoing the “drier in dry, wetter in wet” (DIDWIW) paradigm, albeit without a lot of dry
catchment samples (AI > 1). This paradigm according to findings by ? describes an overall 48% of humid
regions becoming more humid. The similar proportion of catchments tending to become more humid (decreasing
AI) is generally higher in the less arid (more humid) groupings, the proportions of decreasing aridity below
AI < 1. Including more arid catchments would allow for a more globally representative sample, limiting the
observations in extending the opposite sentiment and seeing conclusively that dry catchments are becoming
drier. The Appendix table 9 summarises the per-group proportions.

This study focuses on the separation of a residual evaporative component from the concurrent climatic
effects in the evaporative index for all catchments using the Budyko framework. The estimation of future
actual evaporation of a catchment or basin using Budyko framework (and Fu-parameter) projections is a com-
mon underpinning for modelling streamflow and the hydro-ecological variable root zone storage capacity in
potential future climate scenarios. Residuals as a basket term for deviations from the expected curve have been
variably attributed to land cover change in the literature. We developed a landcover assessment to test this idea.

First, isolation of the deviating component ∆EIr was necessary to remove the climatic (expected) compo-
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nent of the change in EI to satisfy the initial research hypothesis 1. The relative contribution of this residual
component to the change in actual evaporation was surprisingly pronounced, meaning that catchments devi-

ated from the expected more than they adhered concerning the whole dataset ( |∆EIr|
|∆EIc| = 2.05) the significance is

more pronounced for the CAMELS US and Meuse data than with CAMELS GB. The residual effect is relatively
significant in deviating from the climatic projection.

The residuals were mostly positive with a concurrent reduction in aridity (AI). This implies that for most
catchments in the study, the trend over time has been to become relatively less arid and in response the actual
evaporation has increased significantly above expectations. The residual components for all data and subsec-
tions of the data such as aridity groups help to contextualise the Meuse basin within this large sample study.
The research hypothesis 1 is supported whereby the mathematically separated components are meaningful and
consistent across all data and subsets. If this successfully isolated residual effect is influenced heavily by LCC,
then such a positive deviation might be associated with increased areal proportions of vegetation or density
(biomass) within the landscape.

For all catchments inclusive the relative contribution of the residual component ∆EIr was twice that of
the climatic component ∆EIc and the relative contribution seems to be higher in the more arid catchments in
the sample. The relative contribution (Table 8) is an appealing, simple calculation introduced here that aids
in assessing change. It is intuitive based on the examples that a catchment moving along the ω curve within
the steep (left) portion would have more vertical displacement due to changing aridity than if it were far to
the right of the curve, but the relative size of the move should be insightful. The contrasts show that the
US data contains twice as much residual deviation (deviation from the expected) as GB. The Meuse residual
data is similar regarding the relative contribution to the evaporative index change. The CAMELS GB data is
significantly less arid on average than the US or to a lesser extent, the Meuse basin. Tempel (2023) calculated
that the relative median error in estimation for the root zone storage capacity for GB and US data was +1mm
and +14mm, or 0.8% and 14%, respectively.

The most unexpected and perhaps largest implication for the primary study area is concerning the anoma-
lous residual (∆EIr) component evident in the Meuse basin in the most recent period, the change from the
decade ending in 2009 to 2018. Evident here is a significant reduction in the evaporative index, a far deviation
from the expected. Considering the issue at hand, a slight aridity increase in for the anomalous Eastern cluster
of catchments, a median relative root zone storage the capacity error would be −25mm or −14% after Tempel
(2023). a severe overestimation of the capacity of the landscape to transpire water. A dramatic increase in
the runoff ratio (Q/P , Equation 2) inverse to the evaporative index EI must cause such a deviation, for the
interdecadal period ending in 2018. Uncertainty over the additional contribution to streamflow are evident and
concerning in the Meuse basin.

To eliminate the potential that an increase in streamflow (Q) has been contributed by subsurface or ground-
water flow indicators for decadal changes in the same period are introduced. The contribution of low flows by
the Q50 measure seems to indicate that, rather than additional contributions, the low flows have tended to
decrease across the Meuse basin, with some extreme reductions in the headwater catchments (e.g. 20 or 11
in Figure 11). No streamflow contributions are evident to explain the spatial pattern in the Meuse residual
anomaly. The most similarly spatially distributed metric to the anomalism observed is the measure of low flow
variability (Q50/Q90) which seems to increase on the order of 10% in similar catchments that exhibit residual
anomalies. The implications of this finding are uncertain, but the results show that groundwater/subsurface
contribution to the Meuse negative anomalism is not a factor.

Literature offers some potential plant physiological answers to explain a reduction in EI that include the
water use efficiency increase due to increased atmospheric CO2 essentially fertilizing plants Jaramillo et al.
(2018). Changing the imperviousness (infiltration capacity) of the landscape is likely to have a similar effect by
increasing the runoff ratio, this could be due to soil compaction from agriculture or increase urbanisation, for
example. Without leaf area index (LAI) data that is simultaneously sufficiently long and reliable (see ??). As
it stands, we are limited in assessing changes in imperviousness due to urbanisation (artificial surface change)
or vegetation change (agricultural or forest and semi-natural change ’FSN’) and whether these changes show
evidence for contribution to changes in EI, specifically the residual (deviation) component.

Based on the evidence collected so far, it seems improbable that the residual component is a result of ground-
water contributions. The impact of potential land cover changes has not yet been examined. Our preliminary
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findings suggest that for land cover changes to have a significant effect on the calculated residuals, the extent
of those changes would need to be much smaller in Great Britain (GB) compared to the Meuse region or the
United States. While variations in land cover changes could occur from one catchment area to another, it’s
unlikely that such disparities would be consistent across an entire country with a large population, like GB. To
accurately assess any potential contributions from land cover changes, we are conducting independent analyses
at various scales for all catchments.

6.3 Landcover Change

A big-data approach to a large sample study can be a complicated path to a simple, definitive answer. A trail
of spatial data provides additional insights and creates new value for those who may follow. What is certain is
that precise estimates of Land cover change over time continue to prove to be difficult to constrain precisely.
To offset this uncertainty a dual-scale, dual-model approach was preferred. Multi-scale studies help to mitigate
uncertainties around the scale of change and effects in hydrology. In answer to this, we employ two comparable
datasets of different scales (30m vs 1km) with a simplified class structure to form inter-annual timeseries to eval-
uate change with additional reference to the more intermittent EU standard 50m CORINE landcover dataset.
The data processed reveals new estimates for land cover change within the primary study area, the Meuse Basin.

Traditionally remote sensing studies will span much shorter timescales than is required in this 30+ year
project. It was necessary to create an unconventional dataset for this purpose that ties together several Landsat
sensors to satisfy this timescale and with that some issues became apparent. The results discussed show that
some of the bands that form the foundational remote sensing phenological indicators (e.g. NDVI, EVI etc.)
are consistently, artificially trending. This eliminates some of the insights that could promise potential FSN
class internal phenological insights that might replace LAI biomass calculations. With an artificially trending
NDVI, applied to a FSN area to indicate health over time, a false sense of increasing vegetation health would
be indicated and as such these insights are not reasonable to pursue.

For high-resolution insights, classification is preferred with regular training intervals over CORINE data
to avoid drift resulting from the aforementioned band biases. The outcome can be noisy, with certain years
exhibiting significant proportions of masked (unattributed transparent pixels). These unattributed pixels could
be allocated to any classes adding to uncertainties. While compositing is a common strategy to compensate
for masked pixels - as the images are already composited to form medoid ”summertime” images and produced
annually - no additional compositing (in other words, averaging or blending) would be responsible.

In the introduction to the study we discussed the overall increase in land conversion for agriculture, usually
at the expense of natural grassland. This was a significant change in the European landscape as agriculture
became industrialised with conversion incentives beginning in 1960 and accelerating until 2006 primarily in-
creasing the proportion of pasture land for grazing (Milczarek-Andrzejewska et al., 2018; Winkler et al., 2021).
The model comparisons show that despite the contrasting scales overall proportions of classes are quite similar.
HILDA+ and Landsat show increasing forestry but opposing trends in agriculture. The Landsat data proves
to be more noisy and susceptible to spurious error, likely influenced by cloud interferences in the imagery. The
overall agreement between models shows that the scale consideration between products can produce differing
results. Interestingly, the urban fraction increase between HILDA+ and Landsat is closely in agreement ≈ 25%,
in contrast to the CORINE data reporting significantly less. This is encouraging, where the concern relating
to confusion of the random forest classification over the highly heterogeneous urban surfaces lead to doubts
about accuracy in this class. One major caveat is that while trend in urban fraction is highly similar the artifi-
cial/urban overall proportion of basins is underestimated by ≈ 40%. Offsets in landcover proportion could be
attributed to different reasons firstly, the mean error can be a consequence of contrasting scales and second, the
datasets share some similarities in their origin with HILDA+ incorporating much more diverse historical data
sources.

The two classification products differ slightly in some aspects (e.g. agricultural trend, urban proportion)
while agreeing well in crucial aspects (FSN proportion and trend). Using the continuous classification products
is likely a reasonable reflection of real land cover change. It is therefore deemed an appropriate approach to
consider both LCC products in testing for causal relationships by comparing proportional interdecadal changes
in land cover classes with the residual ∆EIr. In this case, we can accept the hypothesis proposed in 2 where
remote sensing has been useful in filling the data gap in land cover change information for this period.
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6.4 Regression Relationship

The land cover change data is tested for a direct relation between decadal changes in classes and the decadal
change in ∆EIr. The results show that a significant linear correlation between the decadal changes in residuals
and changes in artificial, agricultural or FSN do not exist. This is the primary objective of this thesis and stands
as a firm rejection of the hypothesis (3) that LCC is a significant driver of deviations from the Budyko curve,
eliminating a significant uncertainty using historical observations. Clustering the data into sub-populations
based on aridity

Linear relationships are not evident between the LCC values derived from observations in this study. If the
areal proportion of vegetation or change in vegetation type (agricultural vs FSN) does not exhibit sufficient
influence upon the evaporative index deviations, then the remaining unexplored options become the next logical
steps for research.
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7 Conclusions

Hydrological systems under changing climate present streamflow modellers and forecasters with clear problems
of non-stationarity Blöschl et al. (2017); Bouaziz et al. (2022); van Noppen (2022). To refine our ability to
predict and project one of the key sensitivities in hydrologic models is the root zone storage capacity, a bi-
ological parameter adapting to climate variability Tempel (2023). While Tempel was able to show that the
relative errors in the root zone storage capacity were not significant enough to dismiss the efficacy of the Fu
parameter projection method for significantly affecting the root zone storage capacity, the residual components
in the evaporative index remained unexplained.

The residual results from the framework showed that the evaporative index is highly variable over time for
all data in this study, and the relative contributions of residuals are twice as impactful as the climate-related
errors. Catchments that are already humid are becoming increasingly humid. The Meuse data proves to be an
outlier in this analysis concerning the residual error ∆EIr , the median root zone storage capacity errors were
calculated by Tempel (2023) to be −14%. Our analysis showed no evidence for the direct impact of changes in
decadal low flows on these residual values in this period. Still, the change in the variability of low flows showed
some spatial similarities.

Through the development and analysis of multi-scale classification products, it is clear that land cover change
has occurred in the Meuse basin. Both the HILDA+ and Landsat products agree that urban surfaces have in-
creased by an estimated 25% in the Meuse basin since 1990 and forest and semi-natural cover has decreased
by an estimated 1%. Despite the development of two multi-scale classification products for the assessment of
impacts on the residual values, it was clear from regression analyses that there were no causal relationships
would emerge. That is to say that none of the observed decadal land cover changes had any direct impact on
the derived evaporative components in the Budyko framework. In response to the overarching research question
for this broader project, land cover changes on the ecosystem scale have not been observed to contribute signif-
icantly to the changes in root zone storage capacity, while climate and affected seasonality will have a profound
effect (Tempel, 2023).

The unequivocal rejection of hypothesis (3) serves as a pivotal moment in our exploration of the drivers
affecting the Evaporative Index (EI). This result compels us to confront a difficult truth—that the role of
land cover change in influencing EI appears far less significant than previously presumed. The implication is
profound: the laborious process of gathering and managing land cover data may no longer be justified as a
priority, especially when there are other, less understood variables at play.

In particular, this study unearths a glaring lack of understanding of the residual components impacting
EI, especially evident in the Meuse basin. The reliability of future projections hinges on comprehending these
elusive elements. This begs the essential question: if land cover change isn’t the key factor, then what is?

As we venture forward, three avenues of research emerge as imperatives. First, a concerted effort must
be devoted to understanding the intra-annual dynamics of vegetation at the ecosystem level. This nuanced
investigation could provide invaluable insights into the enigmatic variables influencing EI. Second, the role of
forestry management practices and the standing age of trees, specifically in their alteration of the water balance
and root zone storage capacity in the Meuse basin, demands closer scrutiny. And finally, it is necessary to
better understand the intricate role of groundwater contributions and losses in the Meuse basin, as they could
hold the key to some of the unexplained discrepancies and errors that this study has highlighted.

In closing, while rejecting a hypothesis can often feel like a setback, it acts as a catalyst, compelling us to
reconsider established norms and inviting us to explore new questions.
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A Appendix

A.1 Potential Evaporation Equations

Included in this section are the various methods of evaporation employed by van Noppen (2022); Tempel (2023);
Bouaziz et al. (2022) to build the datasets

A.1.1 Penman-Monteith Equation

λvEa =
∆(Rn −G) + ρacp

(es−ea)
ra

∆ + γ(1 + rs
ra

)
(20)

The Penman-Monteith approach, as described, encompasses all the factors that influence energy exchange
and the resulting latent heat flux (evapotranspiration) from uniform vegetated areas. These parameters can
be measured or easily derived from weather data. This equation allows for the direct estimation of evapotran-
spiration for any specific crop by accounting for crop-specific surface and aerodynamic resistances Allen et al.
(1998). This formulation is standard within the CAMELS-GB data but replaced by the Makkink formulation
for Ep (equation 27).

A.1.2 Priestly-Taylor Formulation

The Priestly-Taylor equation was derived in 1972 to estimate potential evaporation over large, well-watered
areas B and J (1972). It evolved from the Penmann-Monteith method (equation 20) to reduce reliance on
observations, only radiation and α (experimentally α ≈ 1.34 ± 0.05) are required:

EP = α
∆

∆ + γ
− (Rn −G) (21)

This formulation is employed in CAMELS-US as standard but is replaced by the Makkink formulation (22).

A.1.3 The Makkink Formulation

The Makkink formulation was derived in 1957 to estimate potential evaporation from temperature and radiation:

EP = 0.65Rn · ∆

∆ + γ

Rn

λ · ρw
(22)

This formulation is used to calculate EP in the Meuse data in the form detailed in Hiemstra and Sluiter
(2011). For the sake of standardisation and remaining consistent with van Noppen (2022) and Tempel (2023)
all datasets are re-calculated with the Makkink equation. For the CAMELS-US we replace the 21 by applying
the equation 22 where ∆ is the slope of the saturation water vapor pressure curve:

∆ =
7.5 · 273.3

(273.3 + T )2
· log10(es) (23)

The saturated vapor pressure in [Pa]:

es = 0.6107 · 10
7.5·T

273.3+T (24)

The latent heat of vaporisation in [Jg−1]:

λv = (2501 − 2375 ∗ T ) ∗ 1000 (25)

The psychrometeric constant in [kPaK−1]:

γ = 0.0646 + 6e− 5 · T (26)

An alternative method is derived as elaborated in van Noppen (2022) to compensate for the unit difference
in the CAMELS-GB set, which is provided in Jm−2d−1, the modified form of 22:
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EP = 0.65Rn · ∆

∆ + γ

K

λ · ρw
(27)

To satisfy the units of 27, the slope of the saturated vapor pressure curve must be calculated as follows:

∆ =
abc

(c + T )2
· exp

( bT

c + T

)
(28)

where a is found experimentally to be 6.1078[mbar], b = 17.294, c = 237.3[oC].

A.2 Github Link for Python Scripts

https://github.com/manrahan/MOH_MSc_Thesis.git

The above link contains all Python scripts used in this analysis.

A.3 Hydroclimatic and Budyko Analysis Supplement

A.3.1 Dataset Grouping

The following images display the trajectory analysis, with frequency, direction and magnitude. Each image is a
dataset, GB and US where the Meuse image is attached in the main text.

Figure 18: CAMELS GB trajectory histograms and vectors

Figure 19: CAMELS US trajectory histograms and vectors
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A.3.2 Aridity Grouping

The following data displays two tables for the proportion of each aridity group that is increasing or decreasing
in either the aridity index or the evaporative index.

Table 9: Mean AI Change by Group

Group Mean AI Change Percentage of ∆AI > 0 Percentage of ∆AI < 0
0.2-0.4 -0.0098 23.86% 51.14%
0.4-0.6 -0.0018 27.86% 44.29%
0.6-0.8 -0.0055 27.79% 40.69%
0.8-1.0 -0.0087 26.03% 42.47%
1.0-1.2 0.0253 40.00% 26.67%
1.2-1.4 -0.0040 22.22% 44.44%
1.4-1.6 0.0353 55.56% 11.11%
1.6-1.8 -0.0325 20.00% 46.67%
1.8-2.0 NaN NaN% NaN%

Table 10: Mean EI Change by Group

Group Mean EI Change Percentage of ∆EI > 0 Percentage of ∆EI < 0
0.2-0.4 0.0003 34.09% 40.91%
0.4-0.6 -0.0092 35.00% 37.14%
0.6-0.8 0.0057 39.26% 29.23%
0.8-1.0 0.0139 44.86% 23.63%
1.0-1.2 0.0193 46.67% 20.00%
1.2-1.4 0.0162 55.56% 11.11%
1.4-1.6 0.0013 33.33% 33.33%
1.6-1.8 0.0038 40.00% 26.67%
1.8-2.0 NaN NaN% NaN%
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The following images are the boxplots and trajectory plots to analyse tendencies within the data. data are
grouped by aridity as in the previous table.

Figure 20: Aridity group 1 0.2 > AI < 0.4 boxplots of EI separations and overall magnitude of movements

Figure 21: Aridity group 1 trajectory histograms and vectors
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Figure 22: Aridity group 2 boxplots of EI separations and overall magnitude of movements

Figure 23: Aridity group 2 trajectory histograms and vectors
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Figure 24: Aridity group 3 boxplots of EI separations and overall magnitude of movements

Figure 25: Aridity group 3 trajectory histograms and vectors
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Figure 26: Aridity group 4 boxplots of EI separations and overall magnitude of movements

Figure 27: Aridity group 4 trajectory histograms and vectors

56



Michael O’Hanrahan MSc Thesis A APPENDIX

Figure 28: Aridity group 5 boxplots of EI separations and overall magnitude of movements

Figure 29: Aridity group 5 trajectory histograms and vectors

A.3.3 Error Propagation

Section 5.1.2 uses the law of error propagation to derive the following and estimate the error in relative contri-
bution e.g in table 7:

σ
|∆EIr|
|∆EIc|

=

∣∣∣∣ |a|
|b| · a

∣∣∣∣ · δa +

∣∣∣∣− |a|
b · |b|

∣∣∣∣ · δb (29)
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A.3.4 Residual Change Values per Aridity Class

Figure 30: Variance of the residual component with increasing aridity
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A.3.5 Additional Maps

Maps supporting the main maps included in the main text.

Figure 31: Meuse basin 2008 preceeding the residual anomaly
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Figure 32: A map displaying the proportional change in root zone storage capacity (∆Sr,20y) component across
the Meuse basin from the interdecadal period t1:1999-2008 to t2: 2009-2018
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A.4 Low Flow Variability in The Meuse

Decade Ending Q50 sum Q50 sum Q50 90 Q50 90 Q90 50 Q90 50 n catchments
Metric Median IQR Median IQR Median IQR Sum

Unit (m3/decade) (m3/decade) [-] [-] [-] [-] [-]
1999 2.17 × 1016 9.04 × 1016 3.046 1.840 0.328 0.000 9
2009 3.53 × 1013 2.51 × 1013 2.943 1.654 0.340 0.000 22
2018 2.78 × 1013 1.24 × 1013 3.390 1.812 0.295 0.000 22

Figure 33: Boxplots for three decadal periods showing the range and variability of the low flow values over time
in the Meuse
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Figure 34: Meuse basin 2018 change values for the Q50 to Q90 ratio.

Figure 35: Meuse basin 2018 change values for the Q90 to Q50 ratio.
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A.5 Landcover Change and Random Forest Classification

A.5.1 Zonal Statistic Bias Assessment

Table 11: Surface reflectance index biases calculated by the mann-kendall test for trend (psig < 0.05. The tested
timeseries were for the full time period, the 199 total catchments tested is less than the total catchments in
the overall study data. Data collection for this phase was halted as it was computationally expensive and not
useable.

Index Increasing Decreasing No Trend Total
B1 mean 0 181 18 199
B2 mean 0 181 18 199
B3 mean 0 166 33 199
B4 mean 6 36 157 199
B5 mean 2 100 97 199
B7 mean 10 69 120 199
EVI mean 15 30 154 199
GNDVI mean 169 0 30 199
NBR mean 43 22 134 199
NDMI mean 40 12 147 199
NDVI mean 154 0 45 199
TCA mean 143 1 55 199
TCB mean 0 140 59 199
TCG mean 55 4 140 199
TCW mean 20 33 146 199
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Figure 36: Proportion of Landsat band timeseries showing significant trends
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Figure 37: Stacked bar plot with proportion of significant trends identified in the all bands, including trends in
standard deviations.
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A.5.2 Tables of land cover proportions within the Meuse Basin over time

Table 12: Corine Meuse basin above Maastricht (Borgharen) with area reported in square kilometers where
change is calculated in kilometers and percent (t1 = 1990, t2 = 2018)

1990 2000 2006 2012 2018 Change Change % Unit
1: Artificial 1228.8 1253.4 1288.9 1334.0 1343.8 115.0 9.4 kmˆ2
2: Agricultural 8701.2 8674.3 8647.1 8600.8 8592.1 -109.0 -1.3 kmˆ2
3: Forest and Semi Natural 5966.2 5968.7 5959.2 5957.1 5955.6 -10.5 -0.2 kmˆ2
4: Wetlands 11.5 8.3 8.5 9.9 9.9 -1.7 -14.5 kmˆ2
5: Waterbodies 48.0 51.0 51.9 53.9 54.3 6.3 13.1 kmˆ2

Table 13: HILDA+ Meuse basin above Borgharen Area and accurate change from 1990 to 2018

1990 2000 2006 2012 2018 Change % Change
Urban 1194.6 1311.7 1356.3 1437.4 1498.6 25.5 304.0
Agriculture 8123.2 8115.6 8036.6 7888.4 7891.4 -2.9 -231.8 Km2

Forest and Semi Natural 6633.2 6522.1 6552.7 6620.3 6557.7 -1.2 -75.5 Km2

Sparse/no vegetation 0.2 2.4 3.2 5.6 4.0 1900.0 3.8
Water 1.6 1.6 1.6 1.6 1.6 0.0 0.0

Table 14: Meuse basin above Borgharen Landsat Classification Area and accurate change from 1990 to 2018

1990 2000 2006 2012 2018 Change Change %
1: Artificial 826.87 756.203 871.75 930 1032.8 205.93 24.90
2: Agricultural 9259.27 8772.176 9215.86 9079 9108.8 -150.47 -1.63
3: Forest and Semi Natural 5812.435 5365.39 5803.77 5844 5752.4 -60.03 -1.03
4: Wetlands 0.1929 0.09521 1.13 1.08 0.7 0.51 237.21
5: Waterbodies 24.828 32.481 36.76 38.68 39.8 15.97 60.31
6: Masked 32.1 1029.3 26.4 62.9 21.2 -10.9 -33.93
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Table 15: Meuse Basin above Borgharen All CORINE classes with classification levels and corresponding areas
in square kilometers in 2018.

Area [km2] Level 1 Level 2 Level 3
4451.83 Agriculture Pastures Pastures
4258.65 Forest and semi natural areas Forests Broad-leaved forest
4176.05 Agriculture Arable land Non-irrigated arable land
2219.48 Forest and semi natural areas Forests Mixed forest
1841.35 Agriculture Heterogeneous agricultural areas Complex cultivation patterns
1777.83 Artificial surfaces Urban fabric Discontinuous urban fabric
1079.44 Forest and semi natural areas Forests Coniferous forest
724.59 Agriculture Heterogeneous agricultural areas Agriculture, with natural vegetation
247.35 Forest and semi natural areas Scrub and/or herbaceous vegetation associations Transitional woodland-shrub
171.06 Artificial surfaces Industrial, commercial, and transport units Industrial or commercial units
61.42 Artificial surfaces Artificial, non-agricultural vegetated areas Sport and leisure facilities
51.81 Artificial surfaces Mine, dump, and construction sites Mineral extraction sites
43.39 Wetlands Inland wetlands Peat bogs
38.41 Water bodies Inland waters Water courses
37.87 Water bodies Inland waters Water bodies
28.16 Forest and semi natural areas Scrub and/or herbaceous vegetation associations Moors and heathland
26.51 Artificial surfaces Industrial, commercial, and transport units Road and rail networks
18.79 Artificial surfaces Industrial, commercial, and transport units Airports
13.54 Agriculture Permanent crops Fruit trees and berry plantations
11.07 Wetlands Inland wetlands Inland marshes
10.87 Artificial surfaces Urban fabric Continuous urban fabric
7.42 Forest and semi natural areas Scrub and/or herbaceous vegetation associations Natural grasslands
5.98 Artificial surfaces Artificial, non-agricultural vegetated areas Green urban areas
3.81 Artificial surfaces Mine, dump, and construction sites Construction sites
3.73 Artificial surfaces Mine, dump, and construction sites Dump sites
1.40 Artificial surfaces Industrial, commercial, and transport units Port areas
0.41 Forest and semi natural areas Open spaces with little or no vegetation Sparsely vegetated areas
0.27 Forest and semi natural areas Open spaces with little or no vegetation Bare rocks
0.02 Agriculture Permanent crops Vineyards
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Figure 38: Sorted bar plot with all level 3 classes from CORINE 2012 data. Area is displayed in square
kilometers
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A.5.3 CAMELS GB Land Cover Changes

Median values for changes in all catchments considering the whole upstream area.

Table 16: Upstream Classification Normalized Change Landsat (CAMELS GB)

Landsat Classification Median Normalized Change (%)
Artificial -0.052%
Agricultural 2.735%
Forest 0.772%
Wetlands 0.179%
Waterbodies 0.142%

Table 17: Normalized Change (CAMELS GB)

HILDA+ Normalized Change (%)
HILDA + (Artificial) 0.237%
HILDA + (Cropland) -0.442%
HILDA + (Pasture/Rangeland) 0.617%
HILDA + (Forest) -0.218%
HILDA + (Grass/Shrubland) -0.018%
HILDA + (Sparse/No vegetation) 0.000%

A.5.4 CAMELS US Land Cover Changes

Table 18: HILDA+ Normalized Change by Upstream Classification (CAMELS US)

Upstream Classification Normalized Change (%)
HILDA + (Artificial) 0.063%
HILDA + (Cropland) -0.015%
HILDA + (Pasture/Rangeland) -0.140%
HILDA + (Forest) 0.276%
HILDA + (Grass/Shrubland) 0.000%
HILDA + (Sparse/No vegetation) 0.000%

A.5.5 Meuse Land Cover Changes

Table 19: Upstream Classification Normalized Change Landsat (Meuse)

Upstream Classification Normalized Change (%)
Classified (Artificial) 0.677%
Classified (Agricultural) 5.799%
Classified (Forest) -4.435%
Classified (Wetlands) 0.004%
Classified (Waterbodies) 0.004%
Classified (Masked cloud) -0.602%

Table 20: HILDA+ Upstream Classification Normalized Change (Meuse)

Upstream Classification Normalized Change (%)
HILDA + (Artificial) 0.181%
HILDA + (Cropland) 0.531%
HILDA + (Pasture/Rangeland) -0.940%
HILDA + (Forest) 0.263%
HILDA + (Grass/Shrubland) -0.237%
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A.5.6 Hyperparameter Tuning

Figure 39: Calibrating the number of trees hyperparameter

Figure 40: Calibrating the bag fraction hyperparameter

Figure 41: Calibrating the variables-per-split hyperparameter
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Figure 42: Calibrating the minimum leaf hyperparameter

A.5.7 Unbalanced Classification F1-Score Timeseries

Figure 43: Training and classification for all years in the CORINE dataset with model performance assesed by
F1-score
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A.5.8 Land Cover Class Timeseries

(a)

(b)

(c)

Figure 44: Three Dataset timelines illustrating the landcover change in the Meuse basin above Borgharen. Red
indicates artificial surfaces the classes of which are detailed in 12 (a) is the Copernicus CORINE dataset from
1990 (first available year in mainland Europe, see 2.
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A.5.9 Model Feature Importance

Figure 45: The random forest ranked classification importance of bands in contribution to determining classes.

Figure 46: Three models are presented for the Meuse basin and CAMELS GB (ncatchments = 122). HILDA+
model is in blue, the CORINE data in red, the classified Landsat classified product is in green. Each bar is
composed of the a range of area proportions estimated to be forest and semi-natural land, in the case of the
Meuse, each bar and standard error represents 22 catchments upstream of Borgharen.
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A.5.10 Confusion Matrices for Each Year Classified

For each training year, a model and associated classification confusion matrix is calculated.

Figure 47: Confusion matrix for the un-balanced, tuned classifier used for data around 1990

Figure 48: Confusion matrix for the un-balanced, tuned classifier used for data around 2000
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Figure 49: Confusion matrix for the un-balanced, tuned classifier used for data around 2006

Figure 50: Confusion matrix for the un-balanced, tuned classifier used for data around 2012
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Figure 51: Confusion matrix for the un-balanced, tuned classifier used for data around 2018
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A.6 Regression Results

Explanatory n Response Var R-squared p
HILDA + (Artificial) 333 dy res 0.0121 1.3160E-18
HILDA + (Cropland) 432 dy res 0.0285 2.6082E-05
HILDA + (Pasture/Rangeland) 494 dy res 0.0030 0.0267
HILDA + (Forest) 518 dy res 0.0188 3.5361E-05
HILDA + (Grass/Shrubland) 356 dy res 0.0022 0.4838
HILDA + (Sparse/No vegetation) 654 dy res 0.0033 0.2633
Upstream Classified (Artificial) 175 dy res 0.1366 0.1501
Upstream Classified (Agricultural) 213 dy res 0.0247 0.0012
Upstream Classified (Forest) 208 dy res 0.0656 0.0009
Upstream Classified (Waterbodies) 19 dy res 0.0681 0.2417
Upstream Classified (Masked cloud) 221 dy res 0.0041 0.0000
Aridity Index 654 dy res 0.3883 0.4052
Evaporative Index 654 dy res 0.0352 0.0758
Potential Evaporation 654 dy res 0.0955 2.1911E-20
Precipitation 654 dy res 0.3121 0.0003
Seasonality Index 654 dy res 0.0549 0.0029
Seasonality Timing 654 dy res 0.0134 0.2939
Root-zone Storage Capacity 654 dy res 0.0306 0.0014
Temperature 654 dy res 0.0845 4.5452E-80
Interstorm Duration 654 dy res 0.0445 0.1851
Budyko Curve (Fu) Parameter 654 dy res 0.0985 0.0002
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A.7 LAI Timeseries Issues

The leaf area index is a measure of vegetation density. Coupled with areal extent of vegetation, powerful insights
into ecosystem scale physiology can be employed. The timescale and spatial resolution of this investigation
prohibited the complete integration of LAI products available. It was attempted to use a regression model
to join the old FAPAR (AVHRR sensor) which is now defunct to the modis (VIIRS sensor) to establish a
sufficiently long timeseries (albeit with a coarse resolution. The result was substandard and determined to be
unusable. Of particular concern was the discontinuity in the region of the join at 2004. An example of some
select Meuse catchments is in the figure below.

Figure 52: LAI joined timeseries
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