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Abstract

Privately owned cars are an unsustainable mode of transportation, especially in cities. New
Mobility-on-Demand (MoD) services should offer a convenient and sustainable alternative to
privately owned cars. Notable in this field is the recent uprise of ride-sharing services such as
offered by companies like Uber and Grab. Such services, especially when allowing for multiple
passengers to share a vehicle, could potentially be a valuable addition to existing modes of
public transport to offer fast and sustainable door-to-door transportation.

The optimisation of vehicle routes for a MoD fleet is a complex task, especially when allowing
for multiple passengers to share a vehicle. Recent studies have presented algorithms that can
optimise routes in real-time for large scale ride-sharing systems, but have left opportunities
to further enhance fleet performance. The redistribution of idle vehicles towards areas of high
demand and the utilisation of high capacity vehicles in a heterogeneous fleet has received little
attention. This work presents a method to continuously redistribute idle vehicles towards
areas of expected demand and an analysis of fleets with both buses and regular vehicles.
Furthermore, a method is proposed to optimise vehicle routes while taking into account
vehicle capacities and the future locations of vehicles in anticipation to predicted demand.

In simulations with historical taxi data of Manhattan, 99.8% of transportation requests can
be served with a fleet of 3000 vehicles with an average waiting time of 57.4 seconds, and an
average in-car delay of 13.7 seconds. Compared to earlier work with a fleet of 3000 vehicles,
a decrease in ignored requests of 95% is obtained, with a 86% decrease in average in-car
delay and a 37% decrease in average waiting time. For a small fleet of 1000 small buses of
capacity 8 still 84.6% of requests can be served with an average waiting time of 141 seconds
and an average in-car delay of 269 seconds. In comparison to prior work, a decrease in ignored
requests of 15% is obtained, with a 14% decrease in average in-car delay and a 2% decrease
in average waiting time. A heterogeneous fleet of 1000 vehicles consisting of 500 buses and
500 regular vehicles using this new approach can serve approximately the same number of
passengers as a homogeneous fleet of 1000 buses using earlier presented algorithms.
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Preface

Most of us experience the struggles of commuting. The often uncomfortable time we spend
every day to travel back and forward between our work. Time which we would much rather
like to spend in other ways. My motivation to improve the way we travel around lies in exactly
this experience. This document is the graduation thesis for my Master of Science at the Delft
University of Technology (TU Delft) and is one of the results of a year long endeavour to
make urban mobility a bit more efficient and comfortable.

From August 2017 to June 2018 I have researched and implemented ideas to make ur-
ban transportation more efficient at the Singapore-MIT Alliance for Research and Tech-
nology (SMART) in Singapore. Why Singapore? Because Singapore is a country where
transportation initiatives thrive. A place where autonomous vehicles are allowed to drive
among the public and a place where it is very affordable to take rides with Grab drivers to
get first hand experience of the strengths and weaknesses of these platforms.

This document is merely a report of the results of my year long research, and covers just the
tip of the iceberg of the journey that I went through to complete this document. A journey
that has been though at times and included many failed experiments, crashed computers,
and relentless days of debugging. I hope it offers you, the reader, some interesting insights
and a contribution to your knowledge in the possibilities of improving the efficiency of urban
mobility.
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Chapter 1

Introduction

In modern society, transportation is responsible for a significant part of the total energy
consumption. In 2016, transportation in the USA was responsible for roughly 29% of the
total USA energy consumption. In that same year, 92% of the energy used by the USA
transportation sector was provided by non-renewable petroleum products [3]. The transition
to sustainable methods of transportation pose a serious challenge. Urban centres depend on
transportation systems for their economic prosperity and liveability. This comes at a cost:
transportation leads to air pollution, green house gas emissions, congestion and road accidents.
It is estimated that air pollution is responsible for 800,000 deaths annually in urban centres
[4]. Also, urban transport accounts for 40% of the total emission of CO2 [5]. Furthermore,
road accidents are responsible for 1.25 million deaths annually and are the primary death
cause among people aged between 15 and 29 years old [6].
The primary cause of these issues is the use of private motor vehicles [4]. The number
of motor vehicles in the world is increasing explosively. The reason is a combination of
inadequate public transportation and increasing accessibility of vehicles due to dropping price
and increasing income in large parts of the world. The major advantage of personal cars over
other modes of transportation is that it offers comfortable, efficient, anytime door-to-door
transportation. For this reason, many people who can afford it choose to buy a car. In the
USA, approximately 0.8 cars are registered for every inhabitant [7]. Approximately 20% of all
cars are registered in the USA, while the USA only comprises 5% of the world population [8].
If the rest of the world would follow this trend, this would most likely make the detrimental
effects of motor vehicles much worse. Indications are that this is already happening. The six
largest cities in India for example saw a doubling in their population between 1981 and 2001,
yet in the same period, the number of motor vehicles increased by a factor 8 [4].

1-1 Mobility-on-Demand

Recent developments in Mobility-on-Demand (MoD) such as ride-sharing and car-pooling
have focussed on services offering the convenience of a privately owned car without the asso-
ciated detrimental effects. Transportation by road vehicles could be a valuable part of urban
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2 Introduction

transportation infrastructure, filling the gaps where public transportation is not time effi-
cient. It can either be used as a first/last mile alternative, complementing existing modes of
public transportation, or as a dedicated door-to-door transportation mode. The development
of autonomous vehicles further amplifies the interest in such services.
Perhaps most notable in the field of MoD is the recent uprise of ride-sharing services. Ride-
sharing companies such as Uber, Lyft, DiDi and Grab have seen significant growth in recent
years. Ride-sharing companies have transformed the taxi industry by the introduction of
e-hailing. These companies promise to alleviate congestions by taking cars off the road by
dissuading the use of privately owned cars. Yet it seems that rather the contrary is true.
Ride-sharing companies lead to more vehicles on the road and actually slow down traffic in
many places [9, 10]. In the major cities in the USA, 49% to 61% of trips made with ride-
sharing would not have been made at all, or by bike, on foot or by public transportation.
This has lead to a drop in bus and rail usage of 6% and 3% respectively [10]. It furthermore
causes an increase in vehicles on the road. Since the uprise of ride-sharing, an increase of 59%
of vehicles and an increase of 81% of vehicles without passengers was reported in the central
business district of Manhattan [9].
It seems therefore that ride-sharing is an ineffective and unsustainable alternative to privately
owned cars. It is also apparent however that the vehicles in ride-sharing fleets are inefficiently
used, since [9] reports that many vehicles are driving around empty. Ride-sharing companies
are trying to increase fleet efficiency by combining multiple passenger trips in a single vehicle,
and indicating to drivers where demand is high. A significant challenge remains however
in computing vehicle routes to efficiently serve demand, and to allow multiple passengers to
share vehicles.

1-2 Research Objective

The objective of this work is to develop an enhanced algorithm to dynamically route vehicles in
a large scale MoD system in which multiple passengers can share the same vehicle. The focus
is on improving the fleet performance in comparison to prior work in an urban environment
with high densities of transportation requests and a fleet with a limited number of vehicles.
The primary performance indicator is the number of passengers that can be served by the
fleet, subject to a set of service constraints. To achieve this, the focus in this work more
specifically is on:

• Continuous redistribution of idle vehicles towards areas of expected demand.

• Utilisation of both regular vehicles and high capacity buses in a heterogeneous fleet.

• Optimisation of vehicle routes which takes into account vehicle capacities and anticipates
future demand.

1-3 Contributions

The contributions presented in this work expand on earlier published algorithms for real-time
dynamic route optimisation for a MoD fleet in which vehicles can be shared among multiple
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1-4 Chapter Overview 3

passengers. For this work, the state-of-the-art was reimplemented and enhanced with several
features to improve fleet performance. Specifically, this work presents:

• A method to continuously optimally redistribute idle vehicles over an operating area in
anticipation to estimated future demand.

• A study into the effect of combining high capacity buses and regular vehicles in a single
fleet.

• A method to assign candidate vehicle routes while taking into account estimated future
demand and vehicle capacities.

1-4 Chapter Overview

In Chapter 2, an overview is given of the existing literature. Chapter 3 formally introduces
the problem in mathematical terms and gives an overview of the implemented algorithms that
are used throughout this thesis. In Chapter 4 a method is presented to effectively distribute
idle vehicles over an operating region according to estimated demand. In Chapter 5 the effect
of different vehicle capacities in the fleet is studied in both heterogeneous and homogeneous
fleets. In Chapter 6 an improved method is presented to assign schedules to vehicles while
taking into account vehicle positioning in anticipation to future predicted requests and vehicle
capacities in a heterogeneous fleet. Finally in chapter 7 conclusions and recommendations for
future work are presented.

Master of Science Thesis M. J. van der Zee
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Chapter 2

Related Works

The problem to optimally route a fleet of vehicles is far from new and a rich variety of
literature is available on solutions to such problems.

2-1 Vehicle Routing Problem

The problem studied in this work is related to so called vehicle routing problems (VRPs),
which are concerned with finding optimal vehicle routes. The VRP is a widely studied problem
that was first introduced in [11] in 1959 as the truck dispatching problem. The problem is
concerned with finding the optimal route for a fleet of vehicles to visit a set of customers from
a depot. In this case it is presented as a set of gasoline delivery trucks required to visit a
set of gas stations. Each gas station has a specified demand, and the vehicles have a limited
capacity. In a VRP, vehicles have to visit a number of nodes, and the problem is to find a
feasible optimum order in which vehicles visit these nodes subject to some cost function. Such
a cost function could be distance travelled or time until completion. A solution to a VRP is
illustrated in Figure 2-1.

The VRP is a combinatorial optimisation problem and can be formulated as an integer linear
programming (ILP). Many different ILPs formulations have been proposed for the VRP. The
VRP is defined for m heterogeneous vehicles with capacity Q and n customer nodes with an
associate demand qi on a complete undirected graph G = (V,E). The graph contains the
set of vertices V = {0, . . . , n} and the set of edges E = {(i, j) : i, j ∈ V, i 6= j}. Vertex 0
represents the depot node at which all routes of the vehicles start. The edges E represent the
routes between the nodes. Every edge has an associated cost, which is denoted as ci,j . This
cost can for example be the travel time, or route distance. Notice that in this case, the cost
matrix is symmetric. This means that the route between nodes i and j has the same cost
regardless of direction (ci,j = cj,i). Would this not be the case, then the problem is defined
on a directed graph G = (V,A). The problem is now to find routes for all m vehicles that
satisfy the following constraints:

Master of Science Thesis M. J. van der Zee



6 Related Works

1. All routes start and finish at the depot (vertex 0).

2. Each customer node is visited once by one vehicle.

3. The vehicle capacities are not exceeded.

4. The total cost of the routes is minimised.

VRPs are NP-hard [1] and are notoriously hard to solve. Exact solutions can generally only
be found for problem instances with limited numbers of vehicles and customers. A lot of the
proposed methods for solving VRPs therefore rely on heuristics. An overview of both exact
formulations and formulations based on heuristics and their performance is given in [1] and
[12]. A review of this problem where requests dynamically enter the system is given in [13].

Figure 2-1: A solution to the VRP with 14 customer nodes and 4 vehicles with capacity 10. The
demand at each customer is shown next to the customer nodes. The different vehicle routes are
represented by different line styles. Taken from [1].

2-2 Dial-a-ride Problem

The problem that is subject of study in this thesis is a special case of the VRP. Instead of
distributing agents from a single depot to many different locations, it involves no depot and
agents that are both picked-up and drop-off. This is a special kind of VRP referred to as the
vehicle routing problem with pick-up and delivery (VRPPD). Another important difference
is that people are transported instead of freight. This requires strict constraints on pick-up
and drop-off time. This special subclass of VRPPDs is often referred to as the dial-a-ride
problem (DARP). The vehicle capacities are constrained, but multiple passengers can be
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in a vehicle at the same time. An example is illustrated in Figure 2-2. Additionally, the
problem is dynamic meaning that not all transportation requests are known beforehand but
dynamically enter the system. Examples of formulations are presented in [14], [15], [16] and
[17]. An overview of the dynamic DARP is presented in [18].

The problem instances that can be solved using the formulations proposed for the DARP are
limited. The problem instances that can be solved to optimality using exact formulations
are in the order of 50 requests. Even when relying heavily on heuristics it takes a matter of
minutes to solve problem instances of roughly 100 requests and 10 vehicles [17].

Figure 2-2: An example of a solution to the DARP with a fleet of 2 vehicles and 5 transportation
requests. The humans represent the request origins and the red markers represent their respective
destinations.

2-3 Large Scale Ride-Sharing

In cities, the problem sizes that can be solved using the proposed exact or heuristic approaches
to the VRP are not sufficient. The number of vehicles in a fleet and number of transportation
requests are presumably much larger. Several publications have looked into formulations that
can handle such large problem instances.

One of the first practical attempts of a routing algorithm for large scale taxi-sharing is pre-
sented in [19] and later elaborated in [20]. The algorithm proposed is focused on a rush hour
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situation when the number of vacant vehicles is low. When a request is placed, the proposed
algorithm searches among vehicles that are already serving another request, taking into ac-
count the destination of the passenger. It finds the vehicle that can serve the request with the
minimum added travel distance to the request that it is already serving. It does this for every
new request in order of the time that the request was placed (a greedy strategy). Although
this is a greatly simplified approach, it reports that in a simulation based on real taxi data,
3 times as many requests could be served and the total distance travelled by the vehicles was
decreased by 11%.

A greatly improved algorithm for ride-sharing was proposed by [21]. This paper presents a
case study of Manhattan which shows that a large fraction of rides could potentially be shared
among customers with minimum time delay. The notion of shareability is introduced. Trips
are said to be shareable if there exists a route connecting the origins and destinations of the
individual requests with a delay no more than a preset value. In the paper, the maximum
number of requests to be combined in a single vehicle is limited to 2 to limit the computational
complexity. It is stated that the problem can be solved heuristically for a maximum number
of requests to be combined of 3, and that the problem is intractable for 4 or more. With
a limit of 2 shared trips, the problem can be solved exactly. The algorithm searches for
all possible pairs of requests that can be combined under the maximum delay constraint to
construct a shareability network. Using this shareability network, the actual trips are then
chosen to optimise for either maximum number of shared trips, or minimum total travel
time. To do this, the algorithm computes either a maximum matching or weighted maximum
matching on the shareability network. This work furthermore uses historical taxi data and
introduces an Oracle model in which all past and future requests are known which serves as
an upper bound of the possible performance of such a Mobility-on-Demand (MoD) system.
Using this Oracle model, the sharing of a maximum of 2 requests, and a maximum allowed
delay time of 1 minute, this paper claims that 94.5% of all trips are shareable. In a dynamic
application (without the Oracle model), using a horizon of 1 minute, this value drops to less
than 30%. Using a maximum allowed delay of 5 minutes however, the total vehicle travel
time is decreased by 32%.

The advantage of sharing vehicles in a MoD service was further emphasised by [2]. This work
presents a greatly enhanced algorithm compared to earlier work that handles high capacity
vehicles (up to 10 passengers) in real-time and rebalances idle vehicles to high demand areas.
Furthermore it handles large numbers of requests and vehicles. Like in the work of [20], the
proposed algorithm is capable of rerouting vehicles that are already en-route whenever new
requests come in. The algorithm works in four steps of which part is based on the work by [21].
Firstly it is determined which requests can be pairwise combined while satisfying a maximum
delay constraint, and which vehicle can serve which request individually based on a maximum
waiting time constraint and a vehicle capacity constraint. Secondly, this information is used
to explore which larger groups of requests can be combined in a vehicle while still meeting the
delay, waiting time and vehicle capacity constraints. Thirdly, an ILP is performed to find the
optimal vehicle routes among the found feasible routes. Here, the cost function is defined as
the sum of all delays with a large penalty for unassigned requests. Finally, possible remaining
idle vehicles are sent to areas of high demand. In this case this is tractable for large numbers
of vehicles and requests (both in the thousands). This is because the problem is decoupled
into first checking for feasible trips, and subsequently solving the resulting ILP of reduced
dimensionality. This algorithm was tested in a case study on Manhattan, New York using
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real taxi data and showed that 3000 vehicles (current fleet size is 13000) with a capacity of 4
could serve 98% of all taxi rides in Manhattan with a mean waiting time of 2.7 minutes and
a mean delay of 2.3 minutes.

A reimplementation of the work presented in [2] is used as the basis for further studies
in this work. A more elaborate overview of the method is presented in Chapter 3. The
above mentioned works only take into account requests currently placed in the vehicle route
optimisation, but do not take into account how these routes affect vehicle positioning for
serving future requests. A new method to optimise vehicle routes, which takes into account
requests currently in the system while also anticipating future requests is presented in Chapter
6.

2-4 Heterogeneous Fleet

The work discussed so far has focussed on route optimisation for a fleet with only one type
of vehicle. The problem which involves vehicles with varying route costs and capacities is
known as the heterogenous fleet VRP. Several methods have been proposed in literature
to generalise the VRP so that it allows for a heterogeneous fleet. An early overview and
comparison of methods is given by [22]. All algorithms presented in this work are based on
heuristics though, as it was found at the time that even for moderate problem sizes it is too
difficult to solve exactly. A more recent overview of the approaches to solve the heterogenous
fleet VRP is given by [23], and alternative formulations are presented in [24] and [25]. In [17] a
compact ILP for the DARP is formulated with multiple depots and a heterogeneous fleet that
is solved to optimality in a matter of seconds using an exact branch and cut (BC) algorithm.
The problem instances that can be solved using these strategies however are too small for
a realistic MoD fleet. The large scale MoD algorithm presented in [2] handles vehicles of
different capacities, and shows results for homogeneous fleets of varying capacities. It does
not present results however for heterogeneous fleets, or a method to optimise vehicle routes
that takes vehicle capacities into account. An analysis of heterogeneous fleets for a large
scale MoD system is presented in this work in Chapter 5. A strategy to assign vehicle routes
based on anticipated future requests which takes into account vehicle capacities is presented
in Chapter 6.

2-5 Rebalancing

Rebalancing is the redistribution of idle vehicles from areas of low demand towards areas of
high demand. This is required since vehicles tend to build up in areas of low demand, and
are depleted in areas of high demand. Rebalancing should lead to a better match between
demand and supply of vehicles. The redistribution of idle vehicles has been covered in several
other works. The majority of this work has focussed however on rebalancing vehicles in
one-way car sharing schemes such as car2go and Zipcar. Such systems experience similar
mismatches between vehicle supply and demand. Many of these works however focus on
infrequent rebalancing (in the order of several times a day) [26], the practical implications
of the use of human operators to rebalance vehicles [27], or on theoretical formulation and
experimentation of the optimisation problem [28]. Prior work has also studied how vehicles

Master of Science Thesis M. J. van der Zee



10 Related Works

can be redistributed to fixed stations by drivers employed by a fleet manager [29, 30]. The
most important difference is that vehicles in such systems are parked after usage by the users,
and require a human operator to physically move to the vehicle to perform rebalancing. The
applicability of these prior studies to a MoD service with continuous route optimisation as
studied in this work is therefore limited.

Other studies have focussed on rebalancing in a MoD system, in which vehicles can redistribute
themselves without intervention of a human operator. Much of this research shows that using
such a strategy leads to a significantly reduced required fleet size to serve a fixed demand
with a similar quality of service [31, 32]. However, these works often use long rebalancing
intervals [31] or use simplified models to simulate demand and vehicle movement [32].

Rebalancing strategies for the same MoD system as discussed in this work are presented
in [2] and in [33]. In both works, idle vehicles are continuously rebalanced. In [2] a simple
strategy is used which rebalances idle vehicles to areas with ignored requests. If idle vehicles
are available, an idle vehicle is dispatched towards the location of every request that could
not be picked-up within a specified maximum waiting time. A more advanced rebalancing
strategy is presented in [33]. This approach dispatches idle vehicles towards predicted demand
learned from historical taxi data. This strategy however requires elaborate historical data on
taxi rides to be available. Furthermore in both works, a relatively large number of ignored
requests remain even when idle vehicles are available in the operating area. An enhanced
rebalancing strategy is presented in Chapter 4. This method does not require historical taxi
data, and yields a significant decrease in ignored requests, average passenger waiting time
and delay over the methods presented in [2] and [33].
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Chapter 3

Preliminaries

At the time of writing, the algorithm presented in [2] yields the best results and is the
closest to a practical implementation for a real time ride-sharing application. To conduct
experiments, the work of [2] was reimplemented. This was primarily implemented in Go,
which was chosen for its combination of performance and brevity. Parts of the codebase are
implemented in C++ in combination with the Gurobi optimisation library to solve the integer
linear programmings (ILPs) (since no Gurobi interface is available for Go). In this chapter,
the problem is formulated more formally in mathematical terms, and an overview is given of
algorithms used in further experimentation.

3-1 Problem Formulation

A set of transportation requests R = {r1, . . . , rn} is considered. A transportation request is
defined as a person wanting to travel from an origin to a destination. In this work, requests
are considered that are placed in real-time. A request r is defined by a tuple {or, dr, trr}, in
which or is the request origin, dr is the request destination and trr is the time that the request
was placed.

A fleet of vehicles V = {v1, . . . , vm} is considered. Each vehicle v has an associated capacity
κv and a state defined by the tuple {qv,Pv}. Here, qv is the location of the vehicle, and Pv
is a set of passengers that it has on board. A passenger is a request that has been picked up
by a vehicle.

Furthermore, a schedule S is defined. All feasible schedules are collected in the set S. Vehicles
move according to their assigned schedules. A schedule is defined by a sequence of request
pick-up and drop-off events. This is an abstraction level above the actual route that a vehicle
is following, and serves as a set of waypoints that are visited by the vehicle in order.

Also, a trip T ⊆ R is defined as a set of requests. All feasible trips are collected in the set
T . This is an abstraction level higher than a schedule, and defines requests to be served in
a combined schedule by a single vehicle. There may be many possible schedules that can be
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assigned to a vehicle to serve a specific trip. Also, a trip may have more than one candidate
vehicle by which it can be served.

An operating area is considered which comprises a road network. This is the region within
which requests are considered, and vehicles operate. Vehicles travel only within the boundaries
of this area and all request origins and destinations are in the operating area. The travel time
between two locations qi and qj in the operating area is denoted by τ(qi, qj).

Furthermore a waiting time ωr and a delay δr are defined for all requests. The waiting time
for a request r is defined as δr = tpr−trr, in which tpr is the pick-up time. The delay is defined as
δr = tdr − trr− τ(or, dr), in which tdr is the request drop-off time. This is the difference between
the theoretical earliest arrival time at the request destination and the actual drop-off time.
The theoretical earliest arrival time at destination occurs when there is a vehicle available
exactly at the location of a request at the time that the request is placed, and this vehicle
transports the request directly from the origin to its destination.

Requests are placed continuously. Schedules are assigned to vehicles in ψ intervals. At the
time of an assignment, all requests in the system are considered that have not yet been picked
up and have not yet been ignored. An ignored request, or walk-away, takes places when a
request has to wait longer than a predefined time before a vehicle can come to pick it up.
Because vehicles can be assigned new schedules every assignment time, the vehicle that comes
to pick up a specific request can change until it is actually picked up.

Three different vehicle statuses are defined. A vehicle can remain idle, it can be assigned a
schedule to pick-up and drop-off passengers, or it can be assigned to rebalance. A rebalancing
vehicle is assigned a location in the operating area to which it will travel without serving
requests.

The problem is to find an assignment of schedules to vehicles, and vehicles to rebalancing
locations so that the vehicle fleet serves the requests in an optimal way while respecting a
possible set of service constraints. That is, the vehicle assignment minimises a defined cost
function.

3-2 Simulation

To asses the performance of a fleet using new routing algorithms, the fleet must be simulated
under realistic circumstances. Firstly, demand is simulated over an operating area. Simply
spawning requests uniformly randomly over some road map would not suffice for this purpose,
since this does not capture strong fluctuations in demand such as encountered in the real
world during for example rush hour. Secondly, the motion of the vehicles over a road map is
simulated. For this purpose a simulator was implemented. A visualisation of the simulator
can be found in Figure 3-1.

3-2-1 Demand

For the simulation of demand, a real Manhattan taxi data set is used, which stores the
coordinates of origins and destinations and the pick-up time of taxi trips in Manhattan for
several years [34]. Since the dataset only contains the actual pick-up time, request placement
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Figure 3-1: A snapshot of the simulator. Green dots represent vehicles that either have passengers
on board or are on their way to pick up passengers. Pink dots represent vehicles that are driving
towards areas of expected demand with no passengers on board. Grey dots represent vehicles that
are idle. The snapshot furthermore shows the location and history of one of the vehicles in the
fleet (represented by the red car).

time is simulated at the time of the pick up in the dataset. Requests are spawned at the pick-
up time and origin stored in the dataset. It is furthermore assumed that every trip contains
only 1 passenger.

3-2-2 Vehicle Movement

The Manhattan taxi data set contains no information on the route that is taken by the
vehicle. It does however contain information on the travel time between the request origin
and destination. This data allows to estimate travel times between nodes in the city. A
graph of Manhattan with estimated travel times is provided by the authors of [21]. This
graph contains 4091 nodes at intersections between roads and 9452 edges between connected
nodes. Every edge has an associated stored average travel times for every hour of the day
for weekdays, and Saturdays and Sundays. The path of the vehicles is found by performing
a shortest path search on this graph.

3-2-3 Vehicle Path And Travel Time

For the optimisation, it is necessary to compute the shortest paths and associated estimated
travel times between different locations in the city. To obtain these travel times, one option
would be to store the road network offline and to store an average travel time over different
sections in to road network. When the travel time between two points is queried, a search
algorithm could then search for the shortest path between the points. Modern computers
should be able to compute this in a relatively short time. A problem with this method however
is that route optimisation requires the computation of paths and travel times between a lot

Master of Science Thesis M. J. van der Zee



14 Preliminaries

of points. This is partially solved by memoisation, since a lot of travel times are repeatedly
queried for different schedules. Still however this makes the algorithm very slow. To overcome
this problem, all the travel times are precomputed. For this, the graph provided by [21] is
used. From this graph, a new, complete graph is created offline that stores the shortest
paths and associated travel times between all 40912 pairs of nodes at every hour of weekdays
and Saturdays and Sundays. This data can subsequently be queried during online route
optimisation.

3-3 Base Method

As discussed in Chapter 2, the most promising algorithm for large scale ride-sharing is pre-
sented in [2]. The algorithm makes the problem tractable by splitting up the finding of
schedules in several decoupled problems. Given enough time, this method returns guaranteed
optimal vehicle routes. This is done by defining service constraints in the form of a maximum
waiting time Ω and a maximum delay ∆, so that ωr ≤ Ω ∀r ∈ R and δr ≤ ∆ ∀r ∈ R.
Any schedules that cannot meet these constraints are not further considered and this allows
in steps to effectively prune possible schedules. The finding of schedules is then split up in
the following steps:

1. Construction of the Request-Vehicle (RV) graph: check which vehicles can serve which
requests individually while respecting the maximum waiting time, and which pairs of
requests could potentially be combined in a trip.

2. Construction of the Request-Trip-Vehicle (RTV) graph: from the RV graph incremen-
tally collect requests in larger trips and check if feasible schedules exists by which these
trips can be served.

3. Assignment of vehicles to trips: using the RTV graph, find the optimal assignment of
trips to vehicles so that a certain cost function is minimised.

4. Redistribute idle vehicles: Optimally assign remaining idle vehicle to rebalancing loca-
tions so that a separate rebalancing cost function is minimised.

These steps are also visualised in Figure 3-2. The graphs created in these steps store trips.
For every linked trip-vehicle pair, a specific schedule is stored that is optimised against a
specific cost function. These steps will be further elaborated in the subsequent section.

3-3-1 Schedule Computation

The most important and computationally expensive step in the algorithm is to compute
feasible and optimal schedules for a trip-vehicle pair. For every trip-vehicle pair there are
often many possible different schedules by which that vehicle can serve the trip. The number
of possible schedules increases when the trip size increases. As an example, for a trip {r1, r2}
two equally valid candidate schedules are (o1, d1, o2, d2) and (o1, o2, d1, d2). There are however
several requirements that every schedule should meet:
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Figure 3-2: Schematic overview of the method used for the assignment of vehicles to requests.
(a) Example of a street network with two requests (orange human = origin, red triangle =
destination), two predicted requests (blue human = origin, red triangle = destination) and two
vehicles (yellow car = origin, red triangle = destination of a passenger). Vehicle 1 has one
passenger and vehicle 2 is empty. (b) Pairwise shareability RV-graph of requests and vehicles.
Cliques of this graph are potential trips. (c) RTV-graph of candidate trips and vehicles which
can execute them. A node (yellow triangle) is added for requests that can not be satisfied. (d)
Optimized assignment given by the solution of the ILP, where vehicle 1 serves requests 2 and 3
and vehicle 2 serves requests 1 and 4. (e) Planned route for the two vehicles and their assigned
requests. Vehicles that have no requests assigned at this stage either remain idle or are sent to
rebalancing stations. This is computed using the rebalancer ILP. Taken from [2].
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• The vehicle capacity is not exceeded

• A request drop-off never occurs before its pick-up

• The maximum delay and maximum waiting time of the requests is not to be exceeded

A schedule is vehicle specific, meaning that it is not necessarily true that a schedule that is
feasible for one vehicle is also feasible for another. This is due to their different locations,
passengers already on board, and due to potentially different vehicle capacities. In the imple-
mentation, a function schedule(T, v) is defined which returns for a given trip T and a vehicle
v according to the current state the optimal schedule and associated schedule cost. If no
feasible schedule exists, it returns false.

In [2], this function is implemented using a backtracking algorithm. In this algorithm, can-
didate schedules for a trip are incrementally generated, adding schedule events to a schedule
until all schedule events in a trip are added to the schedule. A candidate schedule is aban-
doned whenever one of the constraints cannot be met, or when the candidate schedule has a
higher cost than a potentially already found full schedule. The cost function used is the sum
of delays of all requests (including passengers) in the schedule.

To make the formulation more general, and to make it easier to allow for adding different con-
straints this function was also implemented as a mixed integer linear programming (MILP)
based on vehicle routing problems (VRPs). This formulation and some results on the perfor-
mance can be found in Appendix A. This was implemented in C++ using the state-of-the-art
Gurobi solver. Although functional, this implementation surprisingly showed to be signifi-
cantly slower compared to backtracking implemented in [2]. Therefore, a new backtracking
algorithm was implemented similar to the work of [2] in Go.

3-3-2 Request-Vehicle Graph

The RV graph is defined as an undirected graph G = (V,E), in which a vertex is defined
for every vehicle and request in R and V. By the definition of a maximum waiting time, it
is immediately possible to check which vehicles could potentially serve which requests and
which cannot. To do so, the travel time of all vehicles to all requests are determined. An
edge is added added between every vertex associated with vehicle v and request r for which
schedule(r, v) returns a feasible schedule. Notice that this is essentially a trip of size 1.
Subsequently an edge is added between all vertices associated with request pairs ri and rj
that can potentially be served together in a schedule by a single vehicle. This is tested by
creating a virtual vehicle vvirtual which is initialised at the location of ri and rj . If a feasible
schedule can be computed for the virtual vehicle initialised either at ri or rj which serves
both ri and rj , an edge is added between ri and rj .

3-3-3 Request-Trip-Vehicle Graph

Using the RV graph, an RTV graph is now constructed which contains trips larger than 1
request. The RTV graph is an undirected graph for which again a vertex is defined for all
requests and vehicles. Subsequently a vertex is added for every trip for which a feasible
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schedule exists for at least one vehicle. The vertex of this trip is connected to all vertices
associated with requests within that trip, and all vertices associated with vehicles that can
serve that trip. This is done by computing for every vehicle incrementally larger trips. Size 2
trips are constructed using all the individual requests that a vehicle can serve and by looking
at which request can potentially be joined in a trip (from the RV graph). Subsequently, size
3 trips are formed from finding cliques in the trips of size 2 that are feasible for the particular
vehicle. These steps are repeated up to trips of a maximum defined trip horizon |T |max. In
this process, for every feasible vehicle and trip combination the optimal schedule and the
associated cost is stored.

Important to notice is that |T |max can be larger than the vehicle capacities. There are feasible
schedules for trips that are larger in size than the remaining capacity of the vehicle, as long as
not all pick-up events occur consecutively without any intermediate drop-offs. The potential
benefit of allowing for trips larger than the remaining capacity is demonstrated in Figure 3-3.
Increasing |T |max has a profound impact on the computation time however, since this increases
the number of schedules that need to be considered. Making |T |max very small makes the
schedules more myopic. The schedule generation however can only take into account requests
that are placed currently. Since requests enter the system continuously, it might not necessary
be very wise to compute very long schedules. The chance that a schedule will actually be
executed until the end and not change as a result of a re-optimisation in a future time step is
small. In this work, |T |max| is set at 4 regardless of total vehicle capacity and the remaining
vehicle capacity. This is a rather arbitrary value, which was chosen as a tradeoff between fleet
performance and computational time.

(a) Trip size limited to vehicle capacity. (b) No limit on trip size.

Figure 3-3: A comparison of schedules for two vehicles of capacity 1 with |T |max = 1, and
with |T |max = ∞. The cost function in this case is the distance travelled by the vehicles. Two
passengers, their associated destinations and two vehicles are placed in the plane. In the second
case, the fact that the destination of passenger 1 is near to the origin of passenger 2 is used as an
advantage. Both requests are handled by vehicle 2, because of which the total distance travelled
by both vehicles is significantly smaller. This comes at a marginal increase of waiting time for
passenger 2.
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3-3-4 Trip-Vehicle Assignment

By the construction of the RTV graph, all feasible schedules are computed. It is now necessary
to select the optimal assignment of vehicles to feasible schedules. This is performed using
an ILP. In the original algorithm presented by [2], the cost that is minimised is the sum of
delays of all requests. Any request that is not served and is ignored is penalised with a cost
cig.

A set of binary decision variables εi,j ∈ {0, 1} is defined for every edge between a vehicle j
and a trip i in the RTV graph. An additional set of binary decision variables χk ∈ {0, 1} is
defined for rk ∈ R. The value of this variable is 1 if a request is not in any assigned schedule
and is not to be served. Let εTV be the indices {i, j} for all edges e(Ti, vj) in the RTV graph.
Let IVj be the indices i for which an edge e(Ti, vj) exists, let ITi be the indices j for which an
edge e(Ti, vj) exists, and let IRk be the indices i for which an edge e(rk, Ti) exists.

The total set of variables is then represented as: X = {εi,j , χk | ∀i, j ∈ εTV , ∀rk ∈ R}. The
cost function is given by:

C(X ) =
∑

i,j∈εTV
ci,jεi,j +

∑
k∈{0,...,n}

cigχk (3-1)

In this cost function, ci,j is the cost of the assignment of vj to Ti. Finally the ILP can be
formulated as:

min
X

C(X ) (3-2)

subject to: ∑
i∈IVj

εi,j ≤ 1 ∀vj ∈ V (3-3)

∑
i∈IR

k

∑
j∈ITi

εi,j + χk = 1 ∀rk ∈ R (3-4)

(3-5)

The number of binary variables in this ILP is equal to the number requests plus the number
of edges between trips and vehicles in the RTV graph. In the worst case, all vehicles can
serve all requests individually and all requests can be combined in trips. Although unlikely,
this occurs when all vehicles and requests are close to each other and Ω and ∆ are sufficiently
large. The number of possible trip-vehicle pairs to explore in that case is equal to:

∑
i∈{1,...,|T |max}

m
n!

i!(n− i)! (3-6)

In which n is the number of requests and m is the number of vehicles. In the worst case, the
complexity of the trip-vehicle assignment is therefore O(mn|T |max).
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3-3-5 Rebalancing

After the trip-vehicle assignment, often vehicles remain that are not assigned a schedule. This
could be because there are no requests near the vehicle, or because other vehicles can serve
all nearby requests at a lower cost. Instead of leaving these vehicles idle at their location, it
might be beneficial for the fleet performance to send these vehicles to places where requests
are to be expected in the near future. In the original algorithm presented in [2], idle vehicles
are sent towards any requests that are ignored. Locations where requests are ignored have
too few vehicles available, and so this is a simple way to redistribute vehicles towards regions
where the supply of vehicles does not meet the demand. This however also means that vehicles
are rebalanced after requests are already missed. It should therefore be possible to make a
more effective rebalancing algorithm. Such an improved algorithm is presented in Chapter
4.
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Chapter 4

Rebalancing

The text presented in this chapter is an adapted version of a paper that is under review at
the time of writing of this thesis. The original version of the paper can be found in Appendix
B. The author of this thesis worked together closely with authors of the named paper on the
development of the codebase and implementation of the demand estimation and rebalancing
algorithm.

4-1 Introduction

Besides the computation of efficient vehicle schedules, the proactive relocation of idle vehicles
can have a significant influence on the fleet performance. Since the demand for vehicles is
often not uniformly distributed, vehicles tend to build up in regions of low demand while
vehicles are depleted in regions of high demand. For example in Manhattan, there are many
trips to Harlem at night, but fewer back to Midtown in the morning. This mismatch in vehicle
supply and demand means that vehicles often have to travel further than necessary to pick
up customers, which leads to higher waiting times and more customer walk-aways. It also
means that the number of passengers which a fleet can transport in a given time is less than
optimal. Vehicle rebalancing focuses on positioning the idle vehicles so that future demand
can be served with increased efficiency.

In this chapter the schedule optimisation algorithm presented in [2] and described in Chapter
3 is used and expanded with a method to continuously rebalance idle vehicles. A method
is presented to determine an optimal discretisation of the operating area into well defined
rebalancing regions. Furthermore a method is presented to estimate, from incoming trans-
portation requests, a real-time demand per region. Using this estimation, subsequently the
rebalancing of idle vehicles towards rebalancing regions is optimised. Finally, a case study is
presented using real taxi data from Manhattan to demonstrate the benefits of the proposed
rebalancer and to compare it to the previous state-of-the-art.

Master of Science Thesis M. J. van der Zee



22 Rebalancing

4-1-1 Contribution

Working further on the earlier work presented in [2] that computes an optimal assignment of
a fleet of autonomous or human-driven vehicles to a set of requests, a method is presented
that continuously rebalances the remaining idle vehicles over the operating area according to
estimated real-time demands. This comprises:

• A method to optimally discretise the operating area into a set of rebalancing regions.

• A method to estimate vehicle demand for every rebalancing region using only the real-
time request stream.

• An algorithm to assign idle vehicles to rebalancing regions using the estimated demand.

• Experimental validation comparing the performance of using no rebalancer, the rebal-
ancer presented in prior work, and the new proposed rebalancing strategy.

4-2 Preliminaries

In this chapter, the same notations are used as introduced in Chapter 3. Furthermore, the
operating area is partitioned into a set of rebalancing regions, G, with region centres, C
(described in Section 4-3-1). All locations closer to a region centre c ∈ C than any other
region centre in C belong to the associated region.

4-2-1 Problem Formulation

After every predetermined time interval ψ, schedules are computed and assigned to vehicles
so that the sum of delays of all requests is minimised. This step is referred to as the schedule
assignment. For this the method presented in [2], and which is discussed in more detail in
Chapter 3 is used. In some cases, not all vehicles in the fleet are assigned a schedule. This
is either because there are no requests within a travel time smaller than Ω or because there
are other vehicles available that are able to serve the requests more efficiently. This set of
unassigned vehicles is denoted by Vr ⊆ V. These are the vehicles that are considered for
rebalancing. In both cases, there is an oversupply of vehicles in those particular regions. At
the same time, other regions might have an under supply of vehicles. In that case, requests in
those regions might have to wait significantly longer before they are picked up and eventually
might not be able to be serviced while respecting the constraints set by Ω and ∆.

The focus in this chapter is to determine how to distribute the unassigned vehicles over the
operating area such that the request delay and waiting time is reduced, the number of ignored
requests is minimised, and to do this dynamically over time.

4-2-2 Method Overview

The method to assign vehicle schedules and rebalance idle vehicles is split up into multiple
steps. First, using an integer linear programming (ILP), the operating area is discretised into
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Algorithm 1 Overview of the rebalancing method
1: G ← DiscretizeOperatingArea(tmax)
2: for all g ∈ G do
3: InitializeRateEstimateg()
4: end for
5: for every time interval,ψ do
6: R ← IncomingRequests()
7: AssignVehicleSchedules(V,R)
8: Qg ← 0 ∀g ∈ G
9: for all r ∈ R do

10: g ← GetRebalancingRegion(r)
11: Qg ← Qg + 1
12: end for
13: for all g ∈ G do
14: UpdateRateEstimateg(Qg, ψ)
15: end for
16: Vr ← GetRebalancingVehicles()
17: RebalanceVehiclesToRegions(Vr,G)
18: end for

the set of regions G with region centres C. The regions are computed once offline, and remain
constant during the online schedule assignment. This process is explained in Section 4-3-
1. A schematic overview of the steps performed at every assignment interval ψ is shown in
Figure 4-1. The following steps are performed:

1. Vehicles are assigned schedules to pick up and drop off requests using the algorithm
presented in [2].

2. Using the real-time request information, the current demand at every rebalancing region
is estimated using a particle filter. See Section 4-3.

3. The vehicles that remained unassigned in the vehicle-schedule assignment (step 1) are
assigned to rebalance towards regions in G. This rebalancing assignment is computed
using an ILP. See Section 4-4.

All vehicle schedules and rebalancing assignments are reconsidered at every assignment inter-
val. Previously assigned vehicle schedules can change at each subsequent schedule assignment,
and vehicles on the way to a rebalancing region can instead be assigned a schedule to pick up
passengers. A detailed description of the method overview can be found in Algorithm 1.

4-3 Demand Estimation

During the execution of the algorithm, the rate is estimated at which incoming requests are
being introduced at different locations in the operating area. This is done by first partitioning
the operating area into a number of regions and for each region, utilising a particle filter to
estimate the demand.
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(a) Initial state (b) Schedule assign-
ment

(c) Demand estimation (d) Rebalancer assign-
ment

Figure 4-1: Schematic overview of the method used for the assignment of vehicles to requests
and the rebalancing of vehicles in the order as they are performed. (a) Example for a part of a
road network with three regions (white marker = region centres), 5 vehicles, and three requests
(yellow human = origin, red marker = destination). (b) Assignment of schedules to vehicles,
the schedule trajectories are shown by the green dotted lines. Three of the five vehicles are not
assigned a schedule. (c) The estimation of demands for every region according to the request
information. In this figure, high demand is represented by the red marker, intermediate demand by
the yellow marker and low demand by the green marker. (d) Optimised assignment of unassigned
vehicles to rebalancing regions. The rebalancing vehicles move towards the region centres. The
rebalancing trajectories are shown in the purple dotted lines.

4-3-1 Discretisation Into Regions

Given a directed graph, G = (V,A), representing the road network where V is the set of
vertices, and a matrix T where Tij represents the travel time between vertex i and j, the
problem is to select a subset of vertices C ⊆ V as region centres that can be used to aggregate
demand. A request is in region g ∈ G if its origin is closer to the region centre c of region g
than any other region centre in C.
The operating area is discretised into regions using given parameter tmax which represents
the maximum travel time between any vertex in the graph and the closest region centre. To
determine the minimum number of regions for a given tmax, the problem is formulated as an
ILP.
First a reachability matrix, R, is defined where Rij = 1 if Tij ≤ tmax and Rij = 0 otherwise.
This describes whether vertex j is reachable from vertex i given the time limit. Furthermore
a set of binary variables x is defined where xi = 1 if vertex Vi is used as a region centre and
0 otherwise. Using the reachability matrix and the binary variables, an ILP can be defined
to determine the minimum number of region centres such that every vertex in the graph is
reachable from at least one region centre as:

min
x

|V |∑
i=1

xi (4-1)

s.t.
|V |∑
i=1

xi ·Rij ≥ 1 ∀j ∈ [1, |V |] (4-2)

Constraint (4-2) ensures that every node in the road network graph is reachable within tmax
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travel time by at least one region centre selected from the nodes in the graph. To extract the
region centres, from V all vertices Vi are selected such that xi = 1.
The region centres are computed a priori and are used to aggregate requests together so the
rate of requests for each region can be computed. These region centres are also used for
rebalancing as they are the locations that vehicles are proactively sent to.

4-3-2 Determining The Rate Of Requests

The vehicle demand is estimated online in each rebalancing region using only the real-time
request stream. The vehicle demand is defined as the rate at which requests are originating
from a given region over time.
The rate of requests at each region g ∈ G is modelled as an inhomogeneous Poisson point
process with a stochastic time-varying rate, λg(t). These rates are assumed to drift over a short
time horizon according to a Wiener process. This means that for each region g, the change in
rate of requests over time follows a Gaussian distribution, i.e. λg(t′)−λg(t) ∼ N (0, ν · (t′− t))
for t′ > t and some given volatility parameter, ν. The rate, λg(t), for each region is estimated
using a sequential importance resampling particle filter as described in [35]. The particle filter
is updated with the number of requests observed, n, within a time interval, t− εt to t. The N
particles, {λ̂(i)

0 : 1 ≤ i ≤ N}, are initialized uniformly at random within an given upper and
lower bound at time 0. Their weights, {w(i)

0 : 1 ≤ i ≤ N}, are all set to 1/N . The particles
are updated in four steps.

1. N samples, {λ̂(i)
t−εt} with weights, {w(i)

t−εt}, are drawn with replacement from the particles
with probabilities proportional to their weights.

2. Random noise is applied to each particle according to the Wiener process: λ̂(i)
t = λ̂

(i)
t−εt+

ελ, where ελ ∼ N (0, ν · εt)

3. The weights are updated with the observation of n requests in εt time: w̃(i)
t = w

(i)
t−εt ·

Pr[k = n; εt · λ̂(i)
t ], where Pr[k = n; εt · λ̂(i)

t ] is the Poisson probability of n events with a
rate εt · λ̂(i)

t

4. The weights are normalised: w(i)
t = w̃

(i)
t∑
k
w̃

(k)
t

The estimate of the stochastic rate, λg(t), for a region g at time t is then defined as the
weighted average of the particles, λg(t) =

∑
iw

(i)
t · λ̂

(i)
t . The particle filter produces an

estimate of the rate of requests for a given region by estimating the likelihood of a fixed
number of candidate rates and returning the likelihood weighted average over the candidate
rates.

4-4 Rebalancing

Due to the fact that demand is not equally distributed over the operating area, vehicles will
tend to build up according to a spatial distribution that does not match the distribution of
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demand. Due to this undesirable distribution of vehicles, it is possible that some vehicles
remain idle while there are requests that are not served. This takes places when there are
no vehicles that can reach these requests within the maximum waiting time Ω, or when
the demand in a specific region is very high and there are not enough vehicles to serve all
the requests in that specific region. In order to mitigate this problem, idle vehicles should
be proactively rebalanced over the operation area so that their distribution matches the
distribution of demand. This furthermore decreases waiting time since for incoming requests,
the probability of having a nearby vehicle available is higher. A novel vehicle rebalancer is
proposed that models the problem as an ILP to match the supply of vehicles to each area
with the demand.

4-4-1 Implementation

The proposed rebalancer seeks to match the supply of idle vehicles in each region to the
expected demand for a given time horizon H. Vr ⊆ V is defined as the set of idle vehicles
that are available for rebalancing. These are the vehicles that are not assigned to pick up or
drop off requests in the vehicle-schedule assignment. Furthermore C is defined as the set of
region centres as described in Section 4-3-1. The goal is to find an assignment from vehicles
in Vr to region centres in C such that the amount of requests the vehicles are able to serve is
maximised, while not oversaturating or undersaturating regions with vehicles.
To solve this assignment, the problem can be formulated as an ILP. First a set of binary
variables is defined as X = {xij | ∀i ∈ [1, |Vr|], ∀j ∈ [1, |C|]}, where xij = 1 if vehicle i
is assigned to rebalance to region centre j and zero otherwise. Also a travel time matrix
T is defined, where Tij is the travel time from vehicle i to the region centre j and a rate
vector λ̃ where λ̃i is the current rate of requests at region i computed using the particle filter
described in Section 4-3-2. With these variables, the objective function for the ILP which is
to be maximised can be defined as:

J (X ) =
|Vr|∑
i=1

|C|∑
j=1

xij · λ̃j · (H− Tij) (4-3)

This objective represents the sum of the expected number of requests each vehicle would
observe in its assigned rebalancing region for the given time horizon, H. The expected number
of requests observed by vehicle i is expressed as the rate of requests at the assigned region,
λ̃j , multiplied by the time remaining in the time horizon after the vehicle reaches the region,
H− Tij .
A valid rebalancing assignment must guarantee that each vehicle is assigned to at most one
station. This is described in the constraint:

|C|∑
j=1

xij ≤ 1 ∀i ∈ [1, |Vr|] (4-4)

Also, due to the formulation, the solution is constrained to assign vehicles to rebalancing
regions that are reachable within the time horizon, H, i.e. H ≥ Tij . This constraint is
formulated as:

xij · (H− Tij) ≥ 0 ∀i ∈ [1, |Vr|], ∀j ∈ [1, |C|] (4-5)
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In order to obtain an adequate dispersion of vehicles and limit the oversaturation of vehicles
in rebalancing regions, the assignment needs to be constrained such that the supply of vehicles
in a rebalancing region is less than some factor of their demand. The supply of vehicles in
region j ∈ [1, |C|] for a given time horizon can be written as:

|Vr|∑
i=1

xij ·
H − Tij
H

(4-6)

The supply of vehicles is weighted by the percent of time in the next time horizon a vehicle
would be able to sit idle at the assigned station. The time weighting is used to give a more
accurate estimation of the vehicle supply. For example, if a vehicle takes 8 minutes to reach
a region and the time horizon is set to 10 minutes, that vehicle’s supply is only available for
20% of the time.
The demand for vehicles for some region j ∈ [1, |C|] and a given time horizon is defined as:

λ̃j · H (4-7)

Putting Equation (4-6) and (4-7) together a constraint can be formulated to limit the over-
saturation of vehicles in rebalancing regions as:

|Vr|∑
i=1

xij · (H− Tij) ≤ λ̃j · H2 · ρ ∀j ∈ [1, |C|] (4-8)

Note that for a more concise description, the time horizon, H, was multiplied on both sides
of the inequality. Also note that a tuning parameter ρ was introduced that allows to specify
an acceptable level of oversaturation at a rebalancing region.
Combining the objective function from Equation (4-3), J (X ), with the constraints described
in this section, an ILP can be formulated that finds an assignment of vehicles to rebalancing
regions that maximises the expected number of requests observed by all vehicles while obtain-
ing an adequate dispersion of vehicles to limit the oversaturation of vehicles in rebalancing
regions. This ILP is then:

max
X

J (X ) (4-9)

s.t. constraints (4-4), (4-5), (4-8)

This optimisation will be executed repeatedly after every time interval ψ, after vehicles have
been assigned schedules to pick up and drop off requests.

4-5 Evaluation

The proposed informed rebalancer is validated using historical taxi request data from Man-
hattan [34] and the performance is compared to the state-of-the-art. Since the rebalancing
and scheduling algorithms use timeouts to prematurely exit from the optimisation, a more
powerful computer can lead to much better results. To ensure a fair comparison to previous
work, the rebalancer described in [2] was reimplemented and experiments were conducted
on the same machine using the proposed informed rebalancer, the naive rebalancer from [2],
without rebalancing and compared the performance of the Mobility-on-Demand (MoD) fleet.
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Figure 4-2: The computed location of region centres in Manhattan using the algorithm presented
in Section 4-3 for a maximum reachability time tmax = 150 seconds.
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Figure 4-3: A comparison of several performance metrics for experiments with a fleet of 1000,
2000 and 3000 vehicles and no rebalancing, naive and informed rebalancing.

4-5-1 Experimental Setup

For the experiments one day of historical taxi data is used from 00:00 to 23:59 on May 1st,
2013. This data is publicly available and contains all taxi trips in Manhattan [34]. The data
contains the origin, destination, and associated pick up and drop off time for each taxi trip.
As discussed in Chapter 3, it is assumed that the request time and pick up time are equal
since the request time is not available. The experiments are executed using a simulator that
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Fleet
Size

Rebalancer Avg.
Delay
[s]

Avg.
Wait
Time
[s]

Avg.
Dist.
[km]

Avg.
Comp.
Time
[s]

N. Ig-
nored

% Ser-
viced
Reqs.

1000 No Rebalancing 185.94 113.70 300.14 0.61 239154 42.83
1000 Naive 180.03 109.76 590.02 0.84 107462 74.31
1000 Informed 169.20 106.81 683.75 2.08 103022 75.37
2000 No Rebalancing 180.53 109.00 261.39 0.84 127796 69.45
2000 Naive 110.68 95.09 441.57 1.29 22196 94.69
2000 Informed 58.36 76.74 675.55 3.31 8108 98.06
3000 No Rebalancing 117.32 97.93 237.72 1.16 72048 82.78
3000 Naive 97.11 91.40 303.24 1.44 17669 95.78
3000 Informed 13.72 57.85 612.56 3.85 964 99.77

Table 4-1: A detailed overview of the performance metrics for 1000, 2000 and 3000 vehicles for
experiments with no rebalancer, and for the informed and naive rebalancer

simulates the movement of the vehicles, and to which requests are added according to the
historical taxi data. The vehicle routes and travel times are determined using a stored road
network of Manhattan. Like [2], travel time for each road segment are estimated using daily
mean travel time computed by the method in [21] and a shortest path for every pair of nodes
in the road network is pre-computed. A computer with a 2.6 GHz (overclocked to 4.0GHz), 18
core (36 threads) Intel i9 processor and 128GB of memory was used to run the experiments.
The performance is assessed for the rebalancing algorithm with a fleet size of 1000, 2000,
and 3000 vehicles and a capacity of four passengers. A fixed maximum waiting time of
Ω = 3 minutes and maximum delay of ∆ = 6 minutes is used. All requests that cannot be
served within these defined constraints on waiting time and delay are ignored (considered
walk-aways), and dropped from the request pool. 100 particles are used to estimate the
rate of requests in each region. The vehicle locations are initialised uniformly on vertices in
the road network. The assignment interval was chosen as ψ = 30 seconds as in [2]. This
means that vehicle schedules and the assignment of rebalancing stations are optimised every
30 seconds. At assignment time, all requests are considered that have not yet been picked
up. To discretise the operating area into rebalancing regions, a maximum reachability time
of tmax = 150 seconds is used which produced 61 regions. The centres of these regions are
shown in Figure 4-2.
Two rebalancing techniques are evaluated: the proposed informed rebalancing algorithm and
the naive rebalancing algorithm presented in [2]. The rebalancing algorithm in [2] assigns an
idle vehicle to move to the locations of unassigned requests. The assignment minimises the
sum of the distances travelled by the vehicles. The results of these rebalancing techniques are
compared to a case were no rebalancing is performed.

4-5-2 Results

Several metrics are collected to assess the performance of the rebalancers including the service
rate, in-car travel delay, waiting time, number of ignored requests, distance travelled per
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vehicle, fleet utilisation, and computation time. The service rate is defined as the percentage
of the total number of requests that were successfully served within the waiting time and
delay time constraints. The in-car travel delay for a request is defined as δr − ωr. The fleet
utilisation is defined as the average percent of the fleet with assigned schedules throughout
the day. The computational time includes the time required to compute schedules, estimate
demands, and compute the rebalancing assignment. These metrics are plotted in Figure 4-3.
The associated raw data is shown in Tab. 4-1.

It is observed that the service rate improves for all fleet sizes when using the proposed informed
rebalancer rather than the naive rebalancer (See Figure 4-3a). Most notably, for a fleet size
of 3000 vehicles, the service rate increases by 4%. Also the proposed rebalancer achieves a
higher service rate with a fleet size of 2000 vehicles (98.1%) than the naive rebalancer with
a fleet size of 3000 vehicles (95.8%). This means that by switching to the new proposed
rebalancing algorithm, it is possible to reduce the fleet size by over 33% while maintaining
the same service rate. Also a drastic reduction in walk-aways for all fleet sizes is observed (See
Figure 4-3d). In particular, for a fleet size of 3000 vehicles, the proposed algorithm reduces
the number of ignored requests by 95% compared to the naive approach.

The in-car travel delay and waiting time also benefit from informed rebalancing (See Figure 4-
3b and 4-3c). For all fleet sizes, the average in-car travel delay and waiting time decreases
when using the proposed rebalancer. For 3000 vehicles, the average delay drops from 97.1
to 13.7 seconds (86% improvement) and the average waiting time drops from 91.4 to 57.9
seconds (38% improvement).

Furthermore, a higher vehicle utilisation is observed for the informed and naive rebalancers
compared to not rebalancing for all fleet sizes (See Figure 4-4). The informed rebalancer
achieves the highest vehicle utilisation for all fleet sizes. The naive and informed rebalancers
achieve similar utilisation for a 1000 vehicle fleet, but for 2000 and 3000 vehicle fleets, the
informed rebalancer performs much better. This can be explained by the fact that both the
naive and informed rebalancer for a 1000 vehicle fleet utilise almost all vehicles continuously
over the duration of the experiment.

As in [2] and [33], it is observed that the advantages by using a rebalancer come at the cost
of an increased distance travelled by the vehicles. This is apparent from Figure 4-3e. This
might lead to higher fuel consumption, but the initial vehicle costs and costs of potential
human drivers are much lower when using a smaller fleet with comparable performance. The
reason for the larger travel distances is partly because more vehicles are being rebalanced and
are moving when they are not assigned. This is also enforced however by the fact that the
cost function used for assignment prefers using as many vehicles as possible with an as low
as possible occupancy rate when feasible to serve requests to minimise the delay. This cost
does not take into account the collective distance travelled by the vehicles.
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Figure 4-4: Vehicle utilisation for 1000, 2000, and 3000 vehicle fleet sizes. The vehicle utilisation
is defined as the average percent of vehicles assigned to trips over the entire experiment. For each
fleet size, the vehicle utilisation is measured without rebalancing, using the naive rebalancer, and
using the proposed informed rebalancer.
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Chapter 5

Fleet Composition

In the experiments presented in the previous chapter, the fleet comprised vehicles of capacity
4 exclusively. This is motivated by the fact that this corresponds to the capacity of regular
taxi vehicles. In current public transportation systems however, often a significant part of
urban transportation on roads is served by high capacity buses. These buses generally operate
on static routes which are preplanned and do not take into account actual demand. The goal
is to see if this can be replaced by buses that serve transportation requests according to
dynamic routes which are computed in a similar way as already demonstrated for capacity 4
vehicles. In such a system, high-capacity buses could serve routes where demand is high, while
regular vehicles serve requests in areas of lower demand where a bus would be inefficient. For
this purpose, the effect of introducing high capacity vehicles to a fleet is investigated using
the currently implemented routing and rebalancing algorithm. The implications on fleet
performance are studied for both homogeneous fleets of high capacity vehicles as well as
heterogeneous fleets comprising both buses and regular vehicles.

5-1 Method

In order to study the effect of introducing buses to the fleet, the same implementation is used
as presented in Chapter 4 on the Manhattan taxi data set. A fixed fleet size of 1000 vehicles
is chosen, since the number of served requests for a fleet of 2000 and 3000 vehicles is already
close to 100% even for a fleet of regular sized vehicles (from the results presented in Section
4-5-2). A fleet of 1000 vehicles of capacity 4 using this implementation is only capably of
serving roughly 75% of the requests. This means that there is still room for improvement,
and that possible improvements will be visible in the results.

Other than their capacity, vehicles of different capacities are assumed to have exactly the same
characteristics. In order to test the effect of larger vehicle capacities on fleet performance,
the performance is first tested for several capacities of vehicles in homogeneous fleet of size
1000. This allows to identify if and to what extend larger vehicle capacities have an influence
on fleet performance. From these results, an optimal bus capacity can be selected.
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Subsequently, for a fleet of 1000 vehicles, experiments are conducted with varying ratios of
vehicles of two different capacities. Part of the fleet will consist of regular sized capacity 4
vehicles, and part of the fleet will consist of larger capacity buses. These experiments allow
to identify for the current implementation how vehicles of different capacities in a single fleet
cooperate, and what the effect is of different ratios of both vehicle types on fleet performance.

5-2 Results

In order to asses the fleet performance, several service metrics are collected. Specifically the
service rate, average in-car delay, average waiting time, number of ignored requests and the
average distance travelled per vehicle are recorded for a simulation of 24 hours starting and
ending at midnight. These metrics were defined in Chapter 4. The experiments are conducted
under similar circumstances and with the same dataset as used in Chapter 4.

5-2-1 Homogeneous Fleet

Simulations are conducted for a homogeneous fleet of 1000 vehicles with capacities varying
from 1 to 10 seats. Results are collected for a maximum waiting time of Ω = 3 and Ω = 5
minutes, with a maximum delay of ∆ = 2Ω. The results of these experiments are shown in
Figure 5-1, and a detailed overview of the metrics is shown in Tables 5-1 and 5-2.
From the results, it can be seen that for both time constraints the effect of increasing vehicle
capacity is largest at low vehicle capacities. Increasing the vehicle capacity from 1 to 4 seats
leads to a significant increase in service rate (and a decrease in number of ignored requests)
from approximately 45% to 75% for both time constraints. Furthermore, a significant decrease
in waiting time and increase in average in-car delay is observed. The average distance travelled
fluctuates slightly around 700 km, and is minimised for capacity 4.
For capacities over 6, all performance metrics stay relatively constant. The service rate settles
around 79% for a maximum waiting time of 3 minutes, and at 83% for a maximum waiting
time of 5 minutes. The waiting time and in-car delay for a maximum waiting time of 3 minutes
settles at approximately 170 seconds and 100 seconds respectively. For the experiments with
a maximum waiting time of 5 minutes, the waiting time settles at 137 seconds and the in-car
delay settles at 292 seconds. For both time constraints, the average delay (which is the sum
of the in-car delay and waiting time) approaches the maximum defined delay of 6 and 10
minutes. In the experiments with ∆ = 6 minutes, the average delay settles at approximately
4.5 minutes while in the experiments with ∆ = 10 minutes, the average delay settles around
7.2 minutes.
Furthermore, the difference in service rate between the experiments for Ω = 3 and Ω = 5 for
experiments up to capacity 4 is small. The average waiting time and delay for the experiment
with a maximum waiting time of 5 minutes however is significantly higher compared to the
experiments with a maximum waiting time of 3 minutes. An additional experiment was
conducted with a fleet of 1000 vehicles of capacity 4 with Ω = 7 minutes and ∆ = 14 minutes.
Compared to the experiments with the same fleet but with a lower maximum waiting time and
delay, this degrades fleet performance even further. These time constraints yield a service
rate of 71.28% (4.1% lower than with Ω = 3 minutes), with a significantly higher average
waiting time and in-car delay of 187.60 seconds and 375.04 seconds respectively.
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Figure 5-1: A comparison of several performance metrics for experiments with a homogeneous
fleet of 1000 vehicles with different vehicle capacities. Results are shown for Ω = 3 minutes and
Ω = 5 minutes. In the experiments ∆ = 2Ω.

5-2-2 Heterogeneous Fleet

Results are collected for a heterogeneous fleet of vehicles of regular sized vehicles of capacity 4
and buses of capacity 8. The fleet size is 1000 vehicles in all experiments, but the ratio of buses
to regular vehicles is varied from 0 (no buses) to 1 (only buses). The performance metrics of
the experiments are shown in Figure 5-4, and the corresponding detailed overview is shown
in Table 5-3. Furthermore a plot of the number of vehicles with more than 4 passengers on
board in a fleet of 1000 buses of capacity 8 over time is shown in Figure 5-2. A plot of the
number of vehicles utilised per type for passenger transport over time in a fleet of 500 buses
of capacity 8 and 500 regular vehicles is shown in Figure 5-3.

From Figure 5-4 it can be seen that the service rate increases approximately linearly with an
increased fraction of vehicles of capacity 8. The service rate varies from 75.31% with a fleet of
only regular vehicles, to 82.82% with a fleet of only buses. The waiting time and in-car delay
both do not change dramatically. The waiting time and in-car delay change respectively from
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Vehicle
Capacity

Average
In-Car
Delay [s]

Average
Waiting Time
[s]

Average Dis-
tance [km]

Number
Ignored

Serviced Re-
quests [%]

1 1.93 128.12 710.15 229487 45.14
2 117.49 127.75 690.73 165453 60.45
4 169.3 106.74 683.35 102954 75.39
6 170.57 102.06 698.43 89251 78.67
8 170.19 101.66 703.107 87702 79.04
10 170.19 101.50 705.62 86915 79.22

Table 5-1: A detailed overview of the performance metrics for a homogeneous fleet of 1000
vehicles with different vehicle capacities with Ω = 3 minutes and ∆ = 6 minutes.

Vehicle
Capacity

Average
In-Car
Delay [s]

Average
Waiting Time
[s]

Average Dis-
tance [km]

Number
Ignored

Serviced Re-
quests [%]

1 1.93 186.27 708.05 224127 46.42
2 146.26 188.03 679.98 169799 59.41
4 281.61 152.82 676.08 103157 75.34
6 291.14 140.25 690.52 76208 81.78
8 292.39 137.80 694.99 71318 82.95
10 292.40 137.56 697.20 71287 82.96

Table 5-2: A detailed overview of the performance metrics for a homogeneous fleet of 1000
vehicles with different vehicle capacities with Ω = 5 minutes and ∆ = 10 minutes.

approximately 153 seconds and 282 seconds to 138 seconds and 292 seconds. It is seen that
the performance metrics of the heterogeneous fleet are bounded by the performance metrics
obtained with a homogeneous fleet of vehicles of capacity 4 and 8.

From Figure 5-2 it can be observed that many vehicles have more than 4 passengers on board
from 08:00 to approximately 16:00 and from approximately 17:00 until midnight. The times
of high numbers of vehicles with more than 4 passengers on board starts roughly at the
morning and evening rush. From midnight until before the morning rush, barely any vehicles
have more than 4 passengers on board. The maximum number of vehicles with more than 4
passengers on board during the experiment is 423, this occurs between 19:00 and 20:00.

Figure 5-3 shows the number regular vehicles and buses of capacity 8 in use for passenger
transportation. It can be seen that almost all vehicles in the fleet are either moving towards
a pick-up, or have passengers on board during most of the day. Only during the middle of
the night, from 00:00 to 7:00, there are a large number of vacant vehicles. It can be observed
that throughout the simulation, the number of vehicles of both types that are used is always
approximately equal.

Additionally, an experiment was conducted with the same implementation, but where vehicles
of different capacities have a different maximum waiting time and maximum delay for the
passengers travelling on these vehicles. In this experiment, for buses of capacity capacity 8
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Figure 5-2: Number of vehicles with more than 4 passengers on board for a fleet of 1000 vehicles
of capacity 8 for an experiment of 24 hours starting at midnight with Ω = 5 minutes and ∆ = 10
minutes.

Ω = 5 minutes and ∆ = 10 minutes. For regular vehicles of capacity 4 in this case Ω = 3
minutes and ∆ = 6 minutes. For a fleet of 1000 vehicles with 500 buses and 500 regular
vehicles, this yields a service rate of 79.87%, an average in-car delay of 239.87 seconds and
an average waiting time of 124.43 seconds. This is a slightly higher service rate with a
significantly lower average waiting time and delay compared to an experiment with the same
fleet, but where Ω = 5 and ∆ = 10 for all vehicles.

5-3 Discussion

From the experiments with different vehicle capacities in a homogeneous fleet, the most
important observation is that increasing vehicle capacity only has a beneficial effect on the
number of served requests up to a certain capacity. It can be seen that average waiting time
decreases with increased vehicle capacity. The decrease in waiting time can be explained by
the fact that with high capacity vehicles, it is more likely that a vehicle close to a new request
still has a vacant seat available and can pick the request up quickly. The average passenger
delay however increases with increasing vehicle capacity. Combining multiple requests in a
single vehicle generally introduces a larger delay compared to serving them individually due
to the detours required to serve all of the passengers in a combined schedule. This explains
the fact that more passengers can be served with a fleet of high capacity vehicles, but at the
cost of a higher average delay. This however also explains why the increase in service rate
with increasing vehicle capacity is bounded. Apparently it is rare to find vehicle schedules in
the Manhattan dataset in which more than 8 passengers are in the same vehicle at the same
time while all passengers have a delay lower than 10 minutes. This motivates the decision to
limit the capacity of buses in a fleet to capacity 8.

Master of Science Thesis M. J. van der Zee



38 Fleet Composition

00
:00

04
:00

08
:00

12
:00

16
:00

20
:00

00
:00

0

200

400

Time

N
um

be
r
of

ve
hi
cl
es

Capacity 4
Capacity 8

Figure 5-3: Number of vehicles of capacity 4 and capacity 8 that are assigned to schedules in a
fleet of 500 vehicles of capacity 4 and 500 vehicles of capacity 8 for an experiment of 24 hours
starting at midnight with Ω = 5 minutes and ∆ = 10 minutes. Vehicles are assigned schedules
when they are either moving towards a request pick-up or are transporting passengers.

Furthermore it was found that increasing the maximum waiting time and delay does not
necessarily lead to an increase in service rate, while it does generally lead to an increased
average waiting time and delay. For a fleet of 1000 vehicles of capacity 4, it was found that
the fleet performs best for Ω = 3 and ∆ = 6. When this is increased to Ω = 7 and ∆ = 14, this
fleet performs significantly worse in terms of service rate, average waiting time and average
delay. This is most likely due to the fact that a large part of the vehicle seats are already
utilised during the experiment with this limited fleet size even with a low maximum waiting
time and delay. Increasing the maximum waiting time and delay initially allows for more
requests to be served. Since the cost of ignoring a request is high, schedules with higher
request delays that are now feasible are also assigned. Therefore requests on average occupy
vehicle seats for a longer time. This inhibits the vehicle’s ability to serve future requests due
to its limited capacity. Since the vehicle capacity was already effectively fully utilised even
for lower time constraints for this fleet, this leads to a degradation in fleet performance.

The experiments with a heterogeneous fleet of capacity 8 buses and regular sized vehicles
demonstrate how vehicles of different types cooperate in a fleet with the current method for
vehicle routing. The performance metrics change approximately linearly when introducing
more buses to a fleet of a fixed number of vehicles from 0% buses to 100% buses. In all
experiments, the number of buses and regular vehicles utilised for passenger transport is
always approximately equal in ratio to the number of vehicles of both types in the fleet,
regardless of demand. It seems therefore that there is no bias towards the utilisation of
a certain type of vehicle at any time. It is furthermore apparent that the buses are used
ineffectively. The number of buses that have more than 4 passengers on board (and could
therefore not be served by a regular vehicle) is always relatively low. The highest number is
obtained in simulations for a fleet of 1000 buses, in which at the busiest time less than half
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Figure 5-4: Performance metrics for a 24 hour simulation for a fleet of 1000 vehicles of capacity
4 and capacity 8 in varying ratios with the delay schedule cost function. In the experiments Ω = 5
minutes and ∆ = 10 minutes.

of the buses have more than 4 passengers on board. This indicates that in theory, it could
be possible to get the same service rate of a homogeneous fleet of 1000 buses with a fleet
consisting of closer to 500 buses and 500 regular vehicles. This would mean that most buses
are used for schedules in which the capacity of regular vehicles would have been exceeded.
In that case, the performance metrics should change steeply when increasing the number of
buses from 0 to 500, while it remains approximately constant when increasing the number of
buses from 500 to 1000. In practice this is difficult to obtain, since it is not known where
these schedules occur in the operating area, and if these can be served by the same vehicles.

Finally, it was shown that for performance of a heterogeneous fleet it can be advantageous to
define a different maximum waiting time and delay for buses and regular sized vehicles. As
demonstrated in the experiments with a homogeneous fleet, it can be detrimental for service
rate, average waiting time and average delay to increase the maximum waiting time and delay
when fleet size and vehicle capacity is limited. Whether increasing the maximum waiting
time and delay is beneficial depends however on vehicle capacity. For a fleet of 1000 buses
of capacity 8, among the conducted experiments the best service rate is obtained for Ω = 5
and ∆ = 10. For a fleet of 1000 regular vehicles of capacity 4, the best fleet performance is

Master of Science Thesis M. J. van der Zee



40 Fleet Composition

Vehicles
of Ca-
pacity 8

Average
In-Car
Delay [s]

Average
Waiting Time
[s]

Average Dis-
tance [km]

Number
Ignored

Serviced Re-
quests [%]

0 281.97 152.78 675.62 103305 75.31
100 284.18 150.36 675.60 98641 76.42
200 286.34 148.13 676.91 94686 77.37
300 287.16 146.17 680.47 90963 78.26
400 288.34 144.47 682.70 87631 79.05
500 289.91 143.18 686.73 85393 79.59
600 290.2 141.94 688.60 82324 80.32
700 290.68 140.46 691.38 79749 80.94
800 291.06 139.91 692.27 76476 81.72
900 291.98 138.89 694.55 74170 82.27
1000 291.57 138.08 694.78 71747 82.85

Table 5-3: A detailed overview of the performance metrics for a heterogeneous fleet of 1000
vehicles with capacity 4 and 8 in varying ratios with Ω = 5 minutes and ∆ = 10 minutes.

obtained for Ω = 3 and ∆ = 6. Consequently, for a fleet of 500 buses and 500 regular vehicles
a higher service rate, lower average waiting time and lower average delay is obtained when
Ω = 3 and ∆ = 6 for regular vehicles, and Ω = 5 and ∆ = 10 for buses compared to when
Ω = 5 and ∆ = 10 for all vehicles.
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Chapter 6

Demand Predictive Schedule
Assignment

From the results presented in the previous chapter, it seems that buses in a heterogeneous
fleet can be used more effectively. In the implementation used so far, vehicle routes are
optimised based on requests currently placed. The vehicle-schedule assignment does not
anticipate requests that will be placed in the future. By using estimates on future demand
per region in the operating area, the assignment of vehicle routes could be changed so that
vehicles are positioned more optimally to serve future requests. In this chapter a model is
proposed to optimise the assignment of schedules to vehicles while taking into account the
vehicle positioning for serving future requests. This should also help to route buses towards
areas of high demand, where their extra capacity can be most effectively utilised.

6-1 Motivation

There are several reasons to take into account predicted future requests in the assignment of
schedules to vehicles. In the previous chapter it could be seen that buses were not utilised
effectively. A limited fraction of buses was serving schedules that could not be served by
regular vehicles even in case of an undersupply of vehicles. Buses are most efficient when
they are driving in areas of high demand, where the probability is high that multiple requests
can be combined in one vehicle. By taking into account predicted future requests, these buses
can be assigned schedules that take the buses into areas of high demand.

The advantage is not only limited to buses however. Even for regular vehicles it can be
beneficial to favour schedules that take a vehicle through areas of high demand instead of
low demand. When a vehicle can choose between two similar schedules with approximately
the same schedule costs, it is almost always favourable to choose the schedule that leads the
vehicle through the areas of highest demand. This will maximise the chance of being as close
as possible to future request and thus being able to serve these future request as efficiently as
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42 Demand Predictive Schedule Assignment

possible. Sometimes it might even be desirable to select schedules with substantially higher
costs if these schedules improve the position of vehicles for serving future requests.

A simple example is illustrated in Figure 6-2. In this example it might be better to assign the
blue schedule than the orange schedule although the latter might have a higher cost. Since
the blue schedule leaves the vehicle in an area of high predicted demand, and the orange
schedule in a region of low demand it is more likely that the vehicle will be closer to future
placed requests and will be able to serve those faster compared to when it follows the orange
schedule. Furthermore, during both schedules the vehicle has a remaining capacity of 3 seats
for most of the schedule. Therefore, requests that might appear while this schedule is served
might potentially also be picked up immediately. Such pick-ups are more likely with the blue
schedule than the orange schedule since the blue schedule traverses an area of higher demand.

It seems that this issue could also be addressed by simply rebalancing idle vehicles to the
areas of high demand, to make sure there are always vehicles available in the busy areas
and to make sure that buses are specifically sent to areas of high demand. In the previous
experiments however it is observed that for a limited fleet size of 1000 vehicles, service rate
decreases at the most busy times. At these moments virtually all vehicles are assigned to
schedules and none of them are rebalancing. This can be verified in Figure 6-1, which shows
the service rate and the number of rebalancing vehicles for two different experiments for a full
day. It is therefore expected that changing the rebalancing strategy will have little effect on
fleet performance for a limited fleet size. This is supported by the results found in Chapter 4
as well. For a fleet of capacity 4 vehicles, large improvements in service rates were obtained
for fleets with 2000 and 3000 vehicles with the new rebalancer, but a limited increase in
service rate was obtained for a fleet of 1000 vehicles. The focus is therefore on improving the
vehicle-schedule assignment.

6-2 Method

In this section a method is described that attempts to optimise the vehicle-schedule assign-
ment so that requests currently in the system are served efficiently, while vehicles are also
positioned favourably for serving future requests. This method computes two schedule costs:
a cost which expresses how efficiently requests currently in the system are served, and a cost
which expresses how well the schedule positions the serving vehicle for future requests. The
assignment of schedules to vehicles is performed using an integer linear programming (ILP)
with a cost function expressing the trade-off between schedule value based on current re-
quests, and anticipated future requests. The method can be split into several steps that are
performed at every assignment time ψ. These steps are described in detail in Algorithm 2.
Briefly, these steps are:

1. The current demand is estimated for every region g ∈ G in the operating area according
to the method presented in Chapter 4.

2. Feasible schedules are computed for all vehicles v ∈ V, and the cost of each schedule
according to the requests currently in the systems is stored. This is done using the same
method as presented in Chapter 3.
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(b) Number of rebalancing vehicles
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Figure 6-1: Service rate and vehicle status over time for an experiment with a homogeneous
fleet of 1000 vehicles of capacity 4 and capacity 8. The experiment runs for 24 hours starting at
midnight. The number of rebalancing vehicles for both experiments is similar and largely overlaps
in the plot.

3. A cost is computed for every feasible schedule expressing how well it enables the vehi-
cle to serve future predicted demand. This cost is computed according to the model
described in Section 6-2-1.

4. Schedules are assigned using an ILP with a cost function expressing the trade-off between
the cost of the schedule for serving current requests and the cost of the schedule in
anticipation to future requests.

5. Remaining unassigned vehicles are assigned to rebalance towards regions g ∈ G accord-
ing to estimated demand using an ILP. The rebalancing is performed using the same
method as described in Chapter 4.

6-2-1 Anticipated Future Demand Schedule Cost

In this section a cost model is described which is used to evaluate the quality of a schedule
for serving predicted future requests. This model predicts the number of additional future
requests a vehicle serving a certain schedule can pick up while executing the schedule. It is
difficult to make a model that accurately predicts this since it depends on a lot of factors.
The goal however is to make a simple model which demonstrates that such an approach can
yield a benefit for fleet performance. The number of expected future pick-ups in a schedule
is assumed to depend on the number of vacant seats in a vehicle, the passengers already on
board of the vehicle, and the demand in the regions that the vehicle traverses. For a given
schedule, the number of expected pick-ups is computed for every subsection of the schedule
and summed up to a predefined horizon of 15 minutes. A subsection of the schedule is the

Master of Science Thesis M. J. van der Zee
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Figure 6-2: A situation where one empty vehicle of capacity 4 is available and two requests
appear at the same time. The request origins are represented by the yellow humans, and their
destinations are represented by the red markers. The road map is split into three regions with
region centres represented by the crosshairs. Their colours represent the demand in those regions
(green = low demand, yellow = medium demand and red = high demand). The dashed orange
and blue lines represent two possible schedules for the vehicle. The vehicle has to choose between
serving one of the two requests.

route between every pair of subsequent schedule events. This includes the subsection from
the vehicle’s current location to the first schedule event. If a total schedule duration is less
than 15 minutes, the expected number of pick-ups are computed and added as if the vehicle
would remain idle in the region of the last event. A detailed overview of the method is given
in Algorithm 3. The number of expected pick-ups between two schedule events is defined as:

π = ne · ρl · ρs (6-1)

In which ne is the number of empty seats on the vehicle (which is constant between two
schedule events), ρl is a correction factor for the number of passengers already on board,
and ρs is a correction factor for the demand in the region which the schedule traverses. The
computation of the correction factors will be discussed in the subsequent sections.

Demand

The number of expected additional pick-ups of a vehicle moving according to an assigned
schedule most importantly depends on the demand in the regions that it traverses during
schedule execution. The demand in regions in the operating area is computed in real-time as
described in Chapter 4. The demand is computed for all events in the schedule, according to
the region that this event is in. To approximate the demand in the route between two events,
the average is taken of the demand at the two adjacent events. The number of seen requests
during the execution of a section of the schedule is defined as the average demand multiplied
by the duration of that schedule section.

The larger the number of seen requests, the larger the probability that among these seen
requests, there are requests that the vehicle can pick up. This is represented by a seen
request multiplier. This multiplier is equal to one for infinitely many seen requests. The
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Algorithm 2 Overview schedule assignment with current schedule cost and anticipated future
request schedule cost.

1: for every time interval ψ do
2: R ← IncomingRequests()
3: G ← UpdateRateEstimate(R)
4: S = ∅
5: for all v ∈ V do
6: Sv ← ComputeFeasibleSchedules(v,R)
7: S ← Sv
8: for all S ∈ Sv do
9: πS ← EstimateAdditionalPickups(v, S)

10: end for
11: end for
12: AssignVehicleSchedules(V,S, π)
13: Vr ← GetRebalancingVehicles()
14: RebalanceVehiclesToRegions(Vr,G)
15: end for

probability is then 100% that the vehicle will be able to fill all its seats with passengers in
that section. It is defined as:

ρs = Rseen
Rseen + α

(6-2)

In this equation, α is a model tuning parameter and Rseen is the number of seen requests.
The factor as a function of the number of seen requests is shown in Figure 6-3 for α = 80.
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Figure 6-3: Expected pick-up multiplier as a function of the number of seen requests.
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Algorithm 3 Future pick-up estimation for a vehicle v ∈ V and a feasible schedule S ∈ S.
1: gv ← GetRegion(v)
2: d0 ← GetRateEstimate(gv)
3: p0 ← GetNumberOfPassengers(v)
4: t0 ← 0
5: tf ← 15 minutes
6: l← Length(S)
7: for i = 0 to i < l do
8: gi ← GetRegion(S[i])
9: di+1 ← GetRateEstimate(gi)

10: ti+1 ← GetEventTime(S[i])
11: if S[i] = pick-up then
12: pi+1 ← pi + 1
13: else
14: pi+1 ← pi − 1
15: end if
16: end for
17: π ← 0
18: for i = 0 to i ≤ l do
19: if ti+1 ≤ tf then
20: Rseen ← 1

2(di+1 + di)(ti+1 − ti)
21: π ← π + ρs(Rseen)× ρl(pi)× (GetCapacity(v)− pi)
22: else if ti+1 > tf and ti ≤ tf then
23: d̂← LinearInterpolation(di+1, di, ti+1, ti, tf )
24: Rseen ← 1

2(d̂+ di)(tf − ti)
25: π ← π + ρs(Rseen)× ρl(pi)× (GetCapacity(v)− pi)
26: end if
27: end for
28: if GetEventTime(S[l − 1]) < tf then
29: Rseen ← dl × (tf − tl)
30: π ← π + ρs(Rseen)×GetCapacity(v)
31: end if

Passengers On Board

The more passengers a vehicle has on board, the harder it gets to pick up additional pas-
sengers. This is because passengers on board might have already experienced a long waiting
time, making the route very inflexible, or they might have destinations that are far apart,
also making the schedule very rigid. It is difficult to determine exactly what the effect is
on the number of additional passengers a vehicle can pick up, but a simple model can be
constructed that roughly approximates the relation. A multiplication factor based on the
number of passengers on board is defined as:

ρl = e
− l

2
β (6-3)

In which l is the number of passengers on board of the vehicle, and β is a tuning parameter.
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The load factor ρl is not vehicle specific, and should generalise for any vehicle capacity. For
zero passengers on board, this factor is 1, and for infinite passengers on board it approaches
0. This expresses that for infinite passengers on board, the vehicle schedule is already so
rigid that it becomes impossible to add any additional passengers to the vehicle while still
respecting the time constraints of all passengers. The relation is shown in Figure 6-4 for
β = 80.
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Figure 6-4: Expected pick-up multiplier as a function of the number of passengers on board.

Feed-back

In the proposed expected pick-up model, the individual positioning of vehicles is taken into
account with respect to demand. It does not take into account how many other vehicles are
also in a specific region. This could have as effect the oversupply of vehicles in specific areas
of high demand, while too few vehicles are available in areas of relatively low demand. The
number of vehicles available in a region has an effect on the number of pick-ups a vehicle can
expect. For a given demand, the higher the number of vehicles in a certain region, the lower
the chance that a request will end up in one particular vehicle. To avoid this, the expected
number of pick-ups of a particular vehicle should also depend on the number of other vehicles
in a region.

It is hard to model this effect in the cost for schedules. More importantly, it also has a profound
impact on the way this problem can be solved. The schedule costs now depend on the vehicle
distribution. Since vehicle distribution depends on the vehicle-schedule assignment, and the
vehicle-schedule assignment in turn depends on the schedule costs, this problem cannot be
solved using ILP methods. Although there are methods available to solve such non-linear
integer programming problems, these are generally much slower.

There are several options to simplify this problem into a linear problem. A simple way of
getting information of areas with an oversupply of vehicles, is to check the number of walk-
away requests per region. The assumption is that in areas where requests are not served, there
are too few vehicles available. This is implemented by keeping a list of requests that were
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ignored in the previous 5 minutes. This list is updated before every schedule assignment. For
every request in this list, it is determined in which region the origin of the request lies. The
original estimated demand for the region is subsequently artificially increased linearly to the
number of missed requests in that region. Since the estimated number of pick-ups depends
on the demand in a region, this action will favour routes through these regions.

6-2-2 Cost Function

The vehicle-schedule assignment optimisation is now a multi-objective problem that should
take into account both the cost of schedules according to the information currently available
to the system and according to a predicted uncertain future state of the system. A new cost
function can be formulated that expresses the trade-off between current schedule cost and the
positioning for future requests as follows:

ctotal = cschedule − σ · π (6-4)

Where cschedule is the current schedule cost (sum of requests delays in previous chapters)
and π is the predicted number of pick-ups over a given horizon according to the schedule.
Furthermore σ is a weighing factor that determines the influence of the predicted requests
relative to the influence of the current schedule cost. The trade-off expressed with σ is how
much higher current schedule cost is acceptable if such a schedule is likely to yield future
pick-ups. For every predicted future pick-up during the schedule, σ is subtracted from the
schedule cost.

Time To Drop-Off

In all of the previous experiments, schedules are assigned to vehicles so that the sum of the
delays of all requests are minimised. This cost function yields a relatively high service rate
since this ensures that requests clear the system quickly and more seats are available sooner
for future requests. Other attempts, such as penalising empty vehicle seats, or minimising
schedule lengths has a detrimental effect on service rate. Doing so will pick up as many people
as possible at the current time, but future incoming requests in that case cannot be serviced
very well. Minimising delay in effect minimises the time requests spend in the system. A
better cost function however might be to instead minimise the sum of request time to drop-
offs (TTDs). The TTD is defined as the time between the schedule assignment and the time
at which the vehicle is projected to reach the request’s destination. In that case, schedules are
assigned to vehicles so that requests are served as quickly as possible and seats become vacant
as early as possible. The cost function is very similar to the delay cost function, however it
does not care about the individual requests incurred delays (as long as it stays within the
maximum specified delay constraint). Furthermore, whenever not all requests can be served,
this cost function prefers to serve requests with a short travel time between their origin and
destination. This cost function should yield better performance than the delay cost function.
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6-3 Results

Several experiments were performed using different versions of the predicted future pick-
up model. This was done to tune the model parameters and to determine the effect on
different fleets. This led to the use of the tuning parameters σ = 25 seconds, α = 80 and
β = 80. Detailed results of several experiments are shown in Table 6-1 for the time to drop-
off with predicted pick-ups (TTDPP) cost function. A comparison of the performance of
vehicle-schedule assignment with use of the TTDPP cost function to the original delay cost
function with both informed and naive rebalancing is presented in Figure 6-5 and Figure
6-6. These two rebalancing methods are described in Chapter 4. The method using delay
in combination with naive rebalancing (D-NR) corresponds to the current state-of-the-art
as presented in [2]. Figure 6-5 furthermore shows results for the TTD in combination with
informed rebalancing (TTD-IR).

It can be observed that the TTDPP in combination with informed rebalancing (TTDPP-IR)
outperforms all other implementations in all fleet configurations in terms of service rate. For
a fleet of 1000 buses, the service rate is 2.62% higher than the service rate obtained with the
D-NR, and 1.76% higher than delay in combination with informed rebalancing (D-IR). The
second highest service rate for all fleet compositions is obtained with the TTD-IR, followed
closely by the TTDPP in combination with naive rebalancing (TTDPP-NR). The TTD-IR
performs comparable but slightly worse in terms of service rate to the TTDPP-IR for a fleet
of only regular sized vehicles, but the TTDPP-IR outperforms the TTD-IR more significantly
as more buses are introduced to the fleet.

From Figure 6-6, it can be observed that for all experiments, the TTDPP-IR yields the lowest
in-car delay. The average in-car delay for a fleet of 1000 buses is approximately 45 seconds
(14%) lower than with the D-NR and 23 seconds (8%) lower than with the D-IR. It can
furthermore be seen that for the TTDPP with both the naive and informed rebalancer, the
in-car delay decreases as the number of buses in the fleet is increased. The average waiting
time varies only slightly between different methods. For a fleet of 1000 buses the average
waiting time with the TTDPP-IR is 2% higher than with the D-IR but 2% lower than with
the D-NR. The number of ignored requests, or walk-aways, for all fleet compositions is
lowest with the TTDPP-IR and highest with the D-NR. The number of walk-aways with the
TTDPP-IR is 15% lower than with the D-NR for a fleet of 1000 buses. Finally, the average
distance travelled per vehicle during the 24 hour simulation varies strongly, and is around
100 kilometres higher for all experiments with the informed rebalancer compared to the naive
rebalancer regardless of the vehicle-schedule assignment method.

Figure 6-7 shows the number of vehicles with more than 4 passengers on board over the whole
experiment with the D-IR and the TTDPP-IR for a fleet of 1000 buses. It can be observed
that the number of vehicles with more than 4 passengers on board is noticeably less with
the TTDPP-IR between the 8:00 and 17:00 and is approximately the same during the other
time in the experiment. The average occupancy of the vehicles in use is shown in Figure
6-8. A slight but noticeably lower average occupancy can be observed in many parts of the
experiments with the TTDPP-IR.
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Figure 6-5: Comparison of service rate with different vehicle-schedule assignment methods in
combination with different rebalancing methods. Service rates are shown for a heterogeneous
fleet of 1000 vehicles with varying ratios of regular vehicles (capacity 4) and buses (capacity 8).

6-4 Discussion

From the experiments it is clear that for most performance metrics, the newly implemented
TTDPP vehicle-schedule assignment method outperforms other strategies regardless of the
rebalancing strategy used. For all fleet compositions, the experiments conducted with the
TTDPP-IR yield the highest service rate and lowest in-car delay. The average distance
travelled per vehicle for this method is high, but this is due to the rebalancing strategy. Similar
improvements in service rate and in-car delay are obtained when comparing TTDPP-NR and
D-NR, but without a significant increase in distance travelled. The average waiting time is
marginally lower in comparison to the D-NR and marginally higher with the TTDPP-IR in
comparison to the D-IR. The increase in average waiting time of 2% for a fleet of 1000 buses
compared to the D-IR weighs up to the significant decrease in walk-aways and in-car delay.

An interesting result is that in the experiment with the TTDPP-IR with 1000 buses the
average occupancy and number of vehicles with more than 4 passengers on board during
most of the experiment is slightly lower in comparison to the D-IR. It seems therefore that
employing the TTDPP cost function makes the utilisation of high capacity vehicles worse.
This is unexpected since the TTDPP strategy should bias vehicle routes through areas of
high demand. In that case it seems that it is more likely that a vehicle can pick up more
requests at the same time, and that is the reason the service rate is better. Alternatively the
increase in service rate while having a decrease in average occupancy could be explained by
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Vehicles
of Ca-
pacity 8

Average
In-Car
Delay [s]

Average
Waiting Time
[s]

Average Dis-
tance [km]

Number
Ignored

Serviced Re-
quests [%]

0 277.64 155.36 676.54 95874 77.08
250 279.91 150.37 676.60 85435 79.58
500 277.16 146.75 682.98 77313 81.52
750 272.61 143.77 691.48 70337 83.19
1000 268.80 141.43 697.18 64402 84.61

Table 6-1: A detailed overview of the performance metrics for a heterogeneous fleet of 1000
vehicles with capacity 4 and 8 in varying ratios with Ω = 5 minutes and ∆ = 10 minutes. These
results are obtained using the TTDPP-IR.

the fact that the vehicles are more likely to be near future requests, because of which they can
serve them faster and clear them from the system faster. This cannot be concluded however
since the average waiting time varies only slightly with different implementations, and is even
consistently slightly higher with the TTDPP-IR than with the D-IR method. However, the
in-car delay obtained with the TTDPP-IR is significantly lower than with the D-IR, which
means requests clear the system faster and explains the lower vehicle occupancy. The lower
in-car delay is not due to the use of the TTD cost function instead of the delay cost function,
since the in-car delay obtained for all fleet configurations using the TTD-IR and D-IR is
almost the same. It seems that the effect is caused by the fact that the TTDPP-IR causes
more vehicles to be present in areas of high demand. The requests in these regions can be
served by more vehicles, which yields a larger number of feasible vehicle routes to choose from.
This allows to select routes with lower TTDs, which explains a lower in-car delay. This also
means that at any time in the simulation, more vehicle seats are vacant and more requests
can be served.

The improvements in performance metrics are not spectacular, but are significant enough
to demonstrate that the proposed vehicle-schedule assignment approach has a positive effect
on fleet performance. This is the case especially for fleets that are barely big enough to
serve demand, and in which there are few vehicles available for rebalancing (such as for
a fleet of 1000 vehicles with the Manhattan taxi dataset). The future pick-up estimation
model presented in this chapter is a very simple and inaccurate model that expresses to some
extend which schedules are favourable for serving future requests. It is expected that more
complex models, possibly trained using machine learning tools could improve the benefit of
this approach further.
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Figure 6-6: Comparison of several fleet performance metrics of a fleet of 1000 vehicles with
varying ratios of vehicles of regular vehicles (capacity 4) and buses (capacity 8) for different
vehicle-schedule assignment methods in combination with different rebalancing methods.
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Figure 6-7: Number of vehicles with more than 4 passengers on board for a fleet of 1000 buses
of capacity 8 for an experiment of 24 hours starting at midnight with Ω = 5 minutes and ∆ = 10
minutes with the D-IR, and with the TTDPP-IR.
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Figure 6-8: Average number of passengers on board for a fleet of 1000 buses of capacity 8 for
an experiment of 24 hours starting at midnight with Ω = 5 minutes and ∆ = 10 minutes with
the D-IR, and with the TTDPP-IR
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Chapter 7

Conclusion

The objective of this work was to develop an enhanced algorithm to dynamically route vehicles
in a large scale Mobility-on-Demand (MoD) system in which multiple passengers can share
the same vehicle. The focus was on improving the fleet performance in comparison to prior
work in an urban environment with high densities of transportation requests and a fleet with a
limited number of vehicles. For this work, the state-of-the-art in this field was reimplemented
and extended with several features to improve fleet performance. Using these new features,
significant improvements in fleet performance were obtained in terms of service rate, average
delay and average waiting time.

Firstly a new rebalancing algorithm was presented in Chapter 4. A significant improvement
in fleet performance was obtained by continuously rebalancing idle vehicles towards areas
of expected demand. For a fleet of 3000 vehicles, a reduction in average waiting time of
37%, a reduction in travel time of 86% and a reduction in walk-aways of 95% was observed in
comparison to the state-of-the-art. Furthermore it was shown that a fleet of 2000 vehicles with
the new rebalancing algorithm could serve more requests within the service time constraints
than a fleet of 3000 vehicles using the rebalancer used in the former state-of-the-art. This
comes however at the cost of a significantly higher average travel distance by the vehicles.

Secondly the effect of vehicle capacities in homogeneous and heterogeneous fleets was analysed
in Chapter 5. This work looked into the effect of increasing capacities in a homogeneous
fleet, and the effect of introducing high-capacity buses to a fleet of regular sized vehicles in
varying ratios. The experiments with a homogeneous fleet showed that for a given maximum
waiting time and delay, the effect on service rate by increasing vehicle capacity is bounded.
It was shown that for a fleet size of 1000 vehicles, a maximum waiting time of 5 minutes
and a maximum delay of 10 minutes, the service rate increases steeply by increasing vehicle
capacities from capacity 1 to 4. However, it does not improve significantly for capacities
higher than 8. In experiments with a heterogeneous fleet of regular vehicles of capacity 4 and
buses of capacity 8 in varying ratios, it was observed that with the current state-of-the-art
vehicles of different capacities are not effectively utilised. In the vehicle-schedule assignment,
vehicle capacities are not taken into account. A low number of buses is serving schedules that
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could not have been served by regular vehicles, because of which the increase in performance
by introducing buses to a fleet is relatively small.

Finally, motivated by the lack of performance increase by introducing buses to a fleet, this
work looked into the effect of evaluating and selecting vehicle routes in anticipation to future
requests which also takes into account the vehicle capacities. This was presented in Chapter
6. By favouring routes with high numbers of expected future pick-ups, vehicles of high
capacities are more effectively utilised. Although the results showed that this caused a lower
occupancy of high capacity vehicles, and an overall lower occupancy of all vehicles in the
fleet, the number of serviced requests was increased. Compared to the state-of-the-art, for a
fleet of 1000 vehicles the number of walk-aways was reduced by 15%. Furthermore a decrease
in in-car delay of 14% was observed, with a marginal decrease of waiting time of 2%. This
method in combination with the rebalancer from prior work furthermore outperforms the
results presented for the new rebalancer for small fleets in terms of service rate and delay,
without a significant increase in distance travelled. This new method is especially useful for
small fleets of vehicles, where rebalancing has little effect due to the small number of idle
vehicles.

7-1 Recommendations

The results presented in this work have demonstrated that significant theoretical fleet perfor-
mance improvements are possible in a large scale MoD system by enhanced route optimisation
algorithms. These improvements could contribute to the feasibility of such MoD systems as
an alternative to privately owned cars. These contributions help make such a system more
sustainable by decreasing the required number of vehicles, as well as more efficient from the
perspective of both the user and the service provider. There are however several shortcomings
and remaining opportunities in the methods presented in this work that should be addressed
in future work before these methods can be applied in practical applications.

Firstly the scope of the dataset. The experiments were conducted with datasets of Manhattan
only, for a limited time (Wednesdays for 24 hours) and with a limited number of different fleet
configurations. Undoubtedly the results would have been different for different cities and for
different days of the week. There are several reasons for the limited number of experiments
conducted. Firstly, the Manhattan dataset is conveniently available, and is used in previous
experiments as well, making it easier to compare results. The limited number of experiments
and duration per experiment is due to the fact that running simulations takes considerable
time. An average 24 hour simulation takes approximately 14 hours on a high-end consumer
computer. It is advisable to test on different cities, for longer extends of time and with more
fleet configurations to see how the results presented in this work generalise.

Secondly, a major shortcoming is that it is assumed in this work that there is no time required
for passengers to be picked-up and dropped-off. This is unrealistic, and could make the results
obtained better than what is possible in reality. Future work should take into account that
vehicles need to stop and wait for passengers to enter and leave the vehicle.

Thirdly, the time to drop-off with predicted pick-ups (TTDPP) cost function that was pre-
sented in this work employed a very simple model to evaluate schedules in anticipation to
future requests. This work has demonstrated that at least some improvement is possible
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by introducing even a simple model that expresses which schedules are desirable for serving
future requests. Further research should focus on the design of a more accurate model, pos-
sibly by using tools from machine learning. It is expected that further improvements in fleet
performance could be obtained using such an improved model.

Furthermore, the experiments presented in this work have only considered a fleet with a fixed
size and composition. It could also be possible to park vehicles that are not required at a
depot and adapt the fleet to the demand at each time of day. In this way, it can be possible to
utilise only the minimum required number of vehicles at any time to reach a certain minimum
service performance.

Finally, it was chosen in this work to focus on increasing the number of served passengers
with a given fleet. Other research should focus on the environmental and economic impact of
routes and fleet configurations, perhaps using a multi-objective cost function that allows to
trade-off between mileage, number of passengers served and number of required vehicles. In
particular the rebalancer proposed in this work was not optimised to minimise mileage.
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Appendix A

Alternative Schedule Function

This appendix shows the formulation of the schedule function as an integer linear program-
ming (ILP). The schedule function computes for a vehicle and a set of requests the schedule
with the lowest sum of delays to serve the requests. Let the following, known constants be
defined:

• Ω is the maximum allowed waiting time.

• ∆ is the maximum allowed delay.

• n is the number of requests.

• m is the number of passengers.

• Q is the capacity of the vehicle.

• R a set of indices {1, . . . , n} for all requests R.

• P a set of indices {n+ 1, . . . , n+m+ 1} for all passengers of the vehicle.

• Vp set of indices {i | i ∈ R} for all pick-up nodes.

• Vd set of indices {n+ i | i ∈ R ∪ P} for all drop-off nodes.

• v the index 0, which is the vehicle start node.

• V = Vp ∪ Vd ∪ v the set of indices for all nodes to be in the route.

• ti,j the travel time of a direct route between two nodes i, j ∈ V .

• tr,i the time at which request i ∈ R ∪ P was placed.

• αi the minimum pickup to drop-off node travel time of a request or passenger i ∈ R∪P .

• tp,i the time that a passenger i ∈ P was picked up.
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• di the service time of a node i. This could be defined for all pick-up and drop-off nodes
according to the average time it takes to pickup and drop-off passengers.

• qi is the load at every node i ∈ V . It is defined by how many people are picked up or
dropped off at every node. For all pickup nodes it is equal to the number of people in
the associated request, and for drop-off locations it is equal to the negative of that. For
the vehicle node it is equal to 0.

• tcur is the current time (the time at the start of the optimisation).

• [ei, li] is the time window between which every node should be visited for i ∈ V . Here,
ei and li respectively are the earliest and latest time that node i can be visited. For
all pick-up nodes i ∈ Vp these are defined as ei = tr,i and li = tr,i + Ω. For all drop-off
nodes i ∈ Vd these are ei = tr,i−n + αi−n (no earlier than the time at which the request
was placed plus the minimum travel time between pick-up and drop-off locations), and
li = ei + ∆ (no later than the earliest possible drop-off time plus the maximum delay).

Furthermore let the following ILP variables be defined:

• X = {xi,j | i ∈ V, j ∈ V \ v, i 6= j, j 6= i − n}, in which xi,j is equal to 1 if the vehicle
travels directly from node i to node j and 0 otherwise. This variable describes the
schedule.

• U = {ui | i ∈ V }, in which ui is the time at which each node is visited.

• W = {wi | i ∈ V }, in which wi is the number of passengers on board of the vehicle
when the vehicle leaves node i.

MILP Formulation

With the defined constants and variables, the ILP can be formulated as follows:
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min
U

∑
i∈R

(ui+n − (tr,i + αi)) +
∑
i∈P

(ui − (tr,i + αi)) (A-1)

subject to: ∑
j∈V

xi,j = 1 ∀i ∈ Vp ∪ v (A-2)

∑
i∈V

xi,j + xj,i ≤ 1 ∀j ∈ V (A-3)

∑
i∈V

xi,j = 1 ∀j ∈ Vp ∪ Vd (A-4)

∑
j∈V

xi,j ≤ 1 ∀i ∈ Vd (A-5)

uj ≥ ui + di + ti,j −Mi,j(1− xi,j) ∀i, j ∈ V (A-6)
wj ≥ wi + qj −Wi,j(1− xi,j) ∀i, j ∈ V (A-7)
wv = m (A-8)
uv ≥ tcur (A-9)
ri ≥ ui+n − (ui + di) ∀i ∈ R (A-10)
ri ≥ ui − tp,i ∀i ∈ P (A-11)
ei ≤ ui ≤ li ∀i ∈ Vp ∪ Vd (A-12)
αi ≤ ri ≤ ∆ + αi ∀i ∈ R ∪ P (A-13)
ui+n ≥ ui ∀i ∈ R (A-14)
max(0, qi) ≤ wi ≤ min(Q,Q+ qi) ∀i ∈ V (A-15)
xi,j ∈ {0, 1} (A-16)

In this formulation, the objective function is the sum of delays of the passengers and requests.
Constraint A-2 ensures that from every pickup node and the vehicle node, there is exactly
one route going to another node (a pickup node can never be the final node to be visited in a
route). Constraint A-3 makes sure that a route between two nodes is never traversed twice.
This avoids the occurrence of loops. Constraint A-4 ensures that there is an incoming route
for all nodes, except the vehicle node (this is the start node of the route). Constraint A-5
ensure that at most 1 route leaves every destination node. This is at most because the last
node in the route (which can only be a destination node) has no outgoing route. Constraint
A-6 defines the service time ui of every node. It makes sure that if a node j is visited later
than node i, the time that node j is visited is always larger or equal to the sum of the time
that node i was visited, the service time of node i and the travel time between node i and node
j. Mi,j is used as a linearisation parameter and is defined as Mi,j = max(0, li + di + ti,j − ej)
[14]. Constraint A-7 defines the load of the vehicle at every node. It ensures that if in a route,
node j is visited directly after node i the load of a vehicle after visiting node j is greater or
equal to the sum of the load of the vehicle at node i and the number of people picked up
(or dropped off) at node i. Similar to constraint A-6, the variable Wi,j is a linearisation
parameter that is defined as Wi,j = min(Q,Q + qi). Constraint A-8 ensures that the initial
load of the vehicle is equal to the number of passengers already on board. Constraint A-9
ensures that the time the route starts is greater or equal to the current time. Constraint A-10
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defines the ride time of all requests. It ensures that this is larger or equal to the time the
request drop-off location was visited minus the time that the pick-up location was visited,
while taking into account the service time of the pickup node. Constraint A-11 defines this
for a passenger, where the pickup time is already known at the start of the optimisation.
Constraint A-12 ensures that all nodes are visited within the set time windows. Constraint
A-13 ensures that the ride time of all requests and passengers is larger or equal to the direct
pickup to destination travel time but smaller than the sum of the direct travel time and the
maximum allowed delay. Constraint A-14 ensures that for every request, the destination node
is always visited later than the origin node. Constraint A-15 ensures that the vehicle load
never becomes negative or that the capacity of the vehicle is exceeded. Finally constraints
A-16 limits the value of the binary variable xi,j to 0 and 1.

A-1 Performance

The performance of this new travel function was not as expected. Most likely due to the
overhead of defining the problem in Gurobi. For a trip of size 1, the computational time was
around 1 ms on an 2,3 GHz Intel Core i7. For trips of size 2 this is approximately 2 ms, size
3 is 5 ms and for size 4 is 26 ms. Especially the trip of size 1 with a computational time of 1
ms shows the inefficiency of using Gurobi. For a trip of size 1 there is only 1 possible route,
and the only thing that has to be checked is if the maximum waiting time is met. This should
take much shorter than 1 ms.
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Appendix B

Rebalancing

Often the demand for vehicles is not uniformly distributed over an operating area. Further-
more, since rides are often booked from areas of high demand to areas of low demand, vehicles
have a tendency to build up in areas with low demand. This mismatch between vehicle supply
and demand has a negative effect on passenger waiting time and potentially even leads to
requests that cannot be served within the maximum allowed time constraints. It is therefore
important to proactively rebalance idle vehicles towards areas of high demand. This thesis is
connected to a paper that is under review in which a method is proposed to estimate demand
over the operating area, and a method to optimally assign idle vehicles to travel to areas in
the operating area according to this estimated demand.

The paper was written in close cooperation in both writing and the development of the
software used for experimentation. The same software and the algorithms described in the
paper are also used in this thesis.
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Vehicle Rebalancing for Mobility-on-Demand Systems with
Ride-Sharing

Alex Wallar∗, Menno van der Zee†, Javier Alonso-Mora† and Daniela Rus∗

Abstract— Recent developments in Mobility-on-Demand
(MoD) systems such as ride-sharing and vehicle-pooling have
demonstrated the potential of road vehicles as an efficient mode
of urban transportation. Newly developed algorithms can com-
pute vehicle routes in real-time for batches of requests and allow
for multiple requests to share vehicles. These algorithms have
primarily focused on optimally producing vehicle schedules to
pick up and drop off requests. The redistribution of idle vehicles
to areas of high demand, known as rebalancing, on the contrary
has received little attention in the context of ride-sharing. In
this paper, we present a method to rebalance idle vehicles in
a ride-sharing enabled MoD fleet. This method consists of an
algorithm to optimally partition the fleet operating area into
rebalancing regions, an algorithm to determine a real-time
demand estimate for every region using incoming requests,
and an algorithm to optimally assign idle vehicles to these
rebalancing regions using an integer linear program. Evaluation
with historical taxi data from Manhattan shows we can service
99.8% of taxi requests in Manhattan using 3000 vehicles with
an average waiting time of 57.4 seconds and an average in-
car delay of 13.7 seconds. Moreover, we can achieve a higher
service rate using 2000 vehicles than prior work achieved with
3000. Furthermore, with a fleet of 3000 vehicles, we reduce
the average travel delay by 86%, the average waiting time by
37%, and the amount of ignored requests by 95% compared
to earlier work.

I. INTRODUCTION

Autonomous vehicles are enabling a new era of personal
mobility with the promise of transportation available any-
where, anytime. Scalable algorithms for motion planning
and fleet management that can cope with large request loads
are needed for urban deployments. Efficiencies provided by
the notion ride-sharing will help optimize those services.
In this paper we propose a scalable real-time algorithm for
large scale management of fleets of vehicles (autonomous or
human-driven), under the ride-sharing model. We build on
our previous work [1] and study the role of rebalancing in
optimizing a fleet management system.

Ride sharing services such as UberPool and Lyft Line have
demonstrated the potential for road vehicles to be used as a
sustainable and effective mode of passenger transportation in
urban environments. The introduction of e-hailing and global
vehicle dispatching in these Mobility-on-Demand (MoD)
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Fig. 1: A snapshot of the simulator. Green dots represent
vehicles that either have passengers on board or are on their
way to pick up passengers. Pink dots represent vehicles that
are rebalancing. Grey dots represent vehicles that are idle.
The snapshot furthermore shows the location and history of
one of the vehicles in the fleet (represented by the red car).

systems have opened up the opportunity to assign vehicles
to requests more efficiently. By allowing multiple passengers
to share a single vehicle and considering batches of requests
placed around the same time, vehicle routes can be opti-
mized so that less vehicles can serve more requests. This
makes the MoD fleet more affordable, sustainable and time-
effective, which will be further enhanced by the introduction
of autonomous vehicles.

Besides the computation of efficient vehicle schedules, the
proactive relocation of idle vehicles can have a significant
influence on the fleet performance. Since the demand for
vehicles is often not uniformly distributed, vehicles tend to
build up in regions of low demand while vehicles are de-
pleted in regions of high demand. For example in Manhattan,
there are many trips to Harlem at night, but fewer back to
Midtown in the morning. This mismatch in vehicle supply
and demand means that vehicles often have to travel further
than necessary to pick up customers, which leads to higher
waiting times and more customer walk aways. It also means
that the number of passengers which a fleet can transport in a
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given time is less than optimal. Vehicle rebalancing focuses
on positioning the idle vehicles so that future demand can
be served with increased efficiency.

In this work, we build on the vehicle schedule optimization
algorithm presented in [1] and expand it with a method to
continuously rebalance idle vehicles. We present a method to
determine an optimal discretization of the operating area into
well defined rebalancing regions and a method to estimate,
from incoming transportation requests, a real-time demand
per region. Using this estimation we subsequently optimize
the rebalancing of idle vehicles towards rebalancing regions.
Finally, we present a case study using real taxi data from
Manhattan to demonstrate the benefits of our rebalancer and
compare it to the previous state of the art.

A. Related works

Several works have looked into the redistribution of idle
vehicles in a fleet to meet future demand. Most have looked
into the redistribution of vehicles in one-way car sharing
schemes such as car2go and Zipcar, or bike-sharing schemes.
Such systems experience similar mismatches between vehicle
supply and demand. Many of these works however focus
on infrequent rebalancing (in the order of several times a
day) [2], the practical implications of use of human operators
to rebalance vehicles [3], or on theoretical formulation and
experimentation of the optimization problem [4]. Prior work
has also studied how vehicles can be redistributed to fixed
stations by drivers employed by a fleet manager [5], [6].
However these approaches do not directly apply to the
continuous pick up and delivery paradigm of mobility-on-
demand.

More relevant to this paper are rebalancing techniques
for autonomous mobility-on-demand systems, a car sharing
scheme in which vehicles are able to redistribute themselves
without the intervention of a human operator. Much of this
research shows a significantly reduced fleet size is required
to serve a fixed demand with a similar quality of service
[7], [8]. However, these works often use long rebalancing
intervals [7] or use simplified models to simulate demand
and vehicle movement [8].

A similar approach to the current work is presented in [9].
However, this approach used predicted demands learned from
historical data, which requires elaborate historical data to be
available, and presented a naive strategy for rebalancing idle
vehicles which assigned idle vehicles to ignored requests.

B. Contribution

Working further on the earlier work presented in [1] that
computes an optimal assignment of a fleet of autonomous
or human-driven vehicles to a set of requests, we present
a method that continuously rebalances the remaining idle
vehicles over the operating area according to estimated real-
time demands. Specifically, we present:
• A method to optimally discretize the operating area into

a set of rebalancing regions.
• A method to estimate vehicle demand for every rebal-

ancing region using only the real-time request stream.

• An algorithm to assign idle vehicles to rebalancing
regions using the estimated demand.

• Experimental validation comparing the performance of
using no rebalancer, the rebalancer presented in prior
work, and the new proposed rebalancing strategy.

II. PRELIMINARIES

In this section, all relevant notations used in this paper is
presented. Furthermore, we define the problem and present
a general overview of the methods employed.

A. Definitions

We consider a fleet of vehicles V which can either be
autonomous or human-driven. Every vehicle v ∈ V is defined
by the tuple {qv,Pv, κv}, in which qv is the vehicle’s current
location, Pv = {p1, . . . , pn} is a set of passengers, and κv
is the vehicle’s capacity. A passenger is defined as a request
that has been picked up by a vehicle.

We consider set of transportation requests R =
{r1, . . . , rn} defined by the tuple {or, dr, trr, tplr , t∗r}. Here,
or is the origin, dr is the destination, trr is the time that the
request was placed, tplr is the latest acceptable pickup time
and t∗r is the earliest possible time that the destination could
be reached. Furthermore, the actual request pick-up time is
denoted by tpr , and the drop-off time is denoted by tdr .

Vehicles move according to schedules that they are as-
signed. A schedule S is defined as a sequence of request
pick-up and drop-off events, and describes in which order
requests are picked up and dropped off.

We define an operating area comprised of a road network
as the region the vehicles will consider requests. This oper-
ating area is partitioned into a set of rebalancing regions, G,
with region centres, C (described in Sec. III-A). All locations
closer to a region centre c ∈ C than any other region centre
in C belong to the associated region.

Additionally, let us define for every request a waiting time
ωr = tpr − trr and a travel delay time δr = tdr − (trr + t∗r).
The waiting time and travel delay represent the total amount
of time a request waits to be picked up by a vehicle and
the time added to the request’s transit as opposed to directly
travelling to their destination respectively. We also define
maximum allowed wait time Ω and maximum allowed delay
time ∆ as in [1]. The values Ω and ∆ are used as service
metrics.

B. Problem Formulation

After every predetermined time interval ψ, schedules are
computed and assigned to vehicles so that the sum of delays
of all requests is minimized. This step will be referred to
as the schedule assignment. For a detailed explanation of
the algorithm used to assign vehicle schedules, we refer to
[1]. In some cases, not all vehicles in the fleet are assigned a
schedule. This is either because there are no requests within a
travel time smaller than Ω or because there are other vehicles
available that are able to serve the requests more efficiently.
Let us denote this set of unassigned vehicles by Vr ⊆ V .
These are the vehicles that are considered for rebalancing.
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G Set of rebalancing regions
C Set of rebalancing region centers
Tij Travel time from vertex i to j in road-network
λ̃j Current estimate of rate of requests in region j
Vr Set of vehicles to rebalance
H Time horizon for rebalancing
ψ Interval time for batch assignment
Ω Maximum waiting time
∆ Maximum travel delay

TABLE I: Notation used throughout the paper

In both cases, there is an oversupply of vehicles in those
particular regions. At the same time, other regions might
have an under supply of vehicles. In that case, requests in
those regions might have to wait significantly longer before
they are picked up and eventually might not be able to be
serviced while respecting the constraints set by Ω and ∆.

The focus of this paper is to determine how to distribute
the unassigned vehicles over the operating area such that the
request delay and waiting time is reduced, the number of
ignored requests is minimized, and to do this dynamically
over time.

C. Method overview

The method to assign vehicle schedules and rebalance idle
vehicles is split up into multiple steps. First, using an integer
linear program (ILP), the operating area is discretized into
the set of regions G with region centres C. The regions are
computed once offline, and remain constant during the online
schedule assignment. This process is explained in Sec. III-
A. A schematic overview of the steps performed at every
assignment interval ψ is shown in Fig. 2. The following steps
are performed:

1) Vehicles are assigned schedules to pick up and drop
off requests using the algorithm presented in [1].

2) Using the real-time request information, the current
demand at every rebalancing region is estimated using
a particle filter. See Sec. III.

3) The vehicles that remained unassigned in the vehicle-
schedule assignment (step 1) are assigned to rebalance
towards regions in G. This rebalancing assignment is
computed using an ILP. See Sec. IV.

All vehicle schedules and rebalancing assignments are re-
considered at every assignment interval. Previously assigned
vehicle schedules can change at each subsequent schedule
assignment, and vehicles on the way to a rebalancing region
can instead be assigned a schedule to pick up passengers. A
detailed description of the method overview can be found in
Algo. 1.

III. DEMAND ESTIMATION

During the execution of the algorithm, we estimate the rate
at which incoming requests are being introduced at different
locations in our operating area. We do so by first partitioning
our operating area into a number of regions and for each
region, utilizing a particle filter to estimate the demand.

Algorithm 1 Overview of the rebalancing method

1: G ← DiscretizeOperatingArea(tmax)
2: for all g ∈ G do
3: InitializeRateEstimateg()
4: end for
5: for every time interval,ψ do
6: R ← IncomingRequests()
7: AssignVehicleSchedules(V,R)
8: Qg ← 0 ∀g ∈ G
9: for all r ∈ R do

10: g ← GetRebalancingRegion(r)
11: Qg ← Qg + 1
12: end for
13: for all g ∈ G do
14: UpdateRateEstimateg(Qg, ψ)
15: end for
16: Vr ← GetRebalancingVehicles()
17: RebalanceVehiclesToRegions(Vr,G)
18: end for

A. Discretization into regions

Given a directed graph, G = (V,A), representing the road
network where V is the set of vertices, and a matrix T where
Tij represents the travel time between vertex i and j, our
problem is to select a subset of vertices C ⊆ V as region
centers that can be used to aggregate demand. A request is
in region g ∈ G if its origin is closer to the region center c
of region g than any other region center in C.

We discretize the operating area into regions using given
parameter tmax which represents the maximum travel time
between any vertex in the graph and the closest region center.
To determine the minimum number of regions for a given
tmax, we formulate the problem as an ILP.

First we define a reachability matrix, R, where Rij = 1 if
Tij ≤ tmax and Rij = 0 otherwise. This describes whether
vertex j is reachable from vertex i given the time limit. We
also define a set of binary variables x where xi = 1 if vertex
Vi is used as a region center and 0 otherwise. Using the
reachability matrix and the binary variables, we can define
an ILP to determine the minimum number of region centers
such that every vertex in the graph is reachable from at least
one region center as:

min
x

|V |∑

i=1

xi (1)

s.t.
|V |∑

i=1

xi ·Rij ≥ 1 ∀j ∈ [1, |V |] (2)

Eq. (2) ensures that every node in the road network graph
is reachable within tmax travel time by at least one region
center selected from the nodes in the graph. To extract the
region centers, we select from V all vertices Vi such that
xi = 1.

The region centers are computed a priori and are used to
aggregate requests together so the rate of requests for each
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(a) Initial state (b) Schedule assignment (c) Demand estimation (d) Rebalancer assignment

Fig. 2: Schematic overview of the method used for the assignment of vehicles to requests and the rebalancing of vehicles in
the order as they are performed. (a) Example for a part of a road network with three regions (white marker = region center),
5 vehicles, and three requests (yellow human = origin, red marker = destination). (b) Assignment of schedules to vehicles,
the schedule trajectories are shown by the green dotted lines. Three of the five vehicles are not assigned a schedule. (c) The
estimation of demands for every region according to the request information. In this figure, high demand is represented by
the red marker, intermediate demand by the yellow marker and low demand by the green marker. (d) Optimized assignment
of unassigned vehicles to rebalancing regions. The rebalancing vehicles move towards the region centers. The rebalancing
trajectories are shown in the purple dotted lines.

region can be computed. These region centers are also used
for rebalancing as they are the locations that vehicles are
proactively sent to.

B. Determining the rate of requests

We estimate the vehicle demand online in each rebalancing
region using only the real-time request stream. We define the
vehicle demand as the rate at which requests are originating
from a given region over time.

The rate of requests at each region g ∈ G is modelled as
an inhomogeneous Poisson point process with a stochastic
time-varying rate, λg(t). These rates are assumed to drift
over a short time horizon according to a Wiener process.
This means that for each region g, the change in rate
of requests over time follows a Gaussian distribution, i.e.
λg(t

′)−λg(t) ∼ N (0, ν · (t′− t)) for t′ > t and some given
volatility parameter, ν. The rate, λg(t), for each region is
estimated using a sequential importance resampling particle
filter as described in [10]. particle filter is updated with the
number of requests observed, n, within a time interval, t−εt
to t. The N particles, {λ̂(i)0 : 1 ≤ i ≤ N}, are initialized
uniformly at random within an given upper and lower bound
at time 0. Their weights, {w(i)

0 : 1 ≤ i ≤ N}, are all set to
1/N . The particles are updated in four steps.

1) N samples, {λ̂(i)t−εt} with weights, {w(i)
t−εt}, are drawn

with replacement from the particles with probabilities
proportional to their weights.

2) Random noise is applied to each particle according to
the Wiener process: λ̂(i)t = λ̂

(i)
t−εt + ελ, where ελ ∼

N (0, ν · εt)
3) The weights are updated with the observation of n

requests in εt time: w̃(i)
t = w

(i)
t−εt · Pr[k = n; εt · λ̂(i)t ],

where Pr[k = n; εt · λ̂(i)t ] is the Poisson probability of
n events with a rate εt · λ̂(i)t

4) The weights are normalized: w(i)
t =

w̃
(i)
t∑

k w̃
(k)
t

The estimate of the stochastic rate, λg(t), for a region g at
time t is then defined as the weighted average of the particles,
λg(t) =

∑
i w

(i)
t ·λ̂(i)t . The particle filter produces an estimate

of the rate of requests for a given region by estimating the
likelihood of a fixed number of candidate rates and returning
the likelihood weighted average over the candidate rates.

IV. REBALANCING

Due to the fact that demand is not equally distributed over
the operating area, vehicles will tend to build up according
to a spatial distribution that does not match the distribution
of demand. Due to this undesirable distribution of vehicles,
it is possible that some vehicles remain idle while there are
requests that are not served. This takes places when there
are no vehicles that can reach these requests within the
maximum waiting time Ω, or when the demand in a specific
region is very high and there are not enough vehicles to serve
all the requests in that specific region. In order to mitigate
this problem, idle vehicles should be proactively rebalanced
over the operation area so that their distribution matches the
distribution of demand. This furthermore decreases waiting
time since for incoming requests, the probability of having
a nearby vehicle available is higher. We propose a novel
vehicle rebalancer that models the problem as an ILP to
match the supply of vehicles to each area with the demand.

A. Implementation

Our rebalancer seeks to match the supply of idle vehicles
in each region to the expected demand for a given time
horizon H. Let us define, Vr ⊆ V as the set of idle vehicles
that are available for rebalancing. These are the vehicles that
are not assigned to pick up or drop off requests in the vehicle
schedule assignment. Let us also define C as the set of region
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centres as described in Sec. III-A. Our goal is to find an
assignment from vehicles in Vr to region centres in C such
that we maximise the amount of requests the vehicles are
able to serve, while not over saturating or under saturating
regions with vehicles.

To solve this assignment, we can formulate the problem
as an ILP. Let us first define a set of binary variables, X =
{xij : ∀i ∈ [1, |Vr|],∀j ∈ [1, |C|]}, where xij = 1 if vehicle i
is assigned to rebalance to region centre j and zero otherwise.
Let us also define a travel time matrix, T , where Tij is the
travel time from vehicle i to the region centre j and a rate
vector λ̃ where λ̃i is the current rate of requests at region
i computed using the particle filter described in Sec. III-B.
With these variables, we can define the objective function
for our ILP which we seek to maximize as:

J (X ) =

|Vr|∑

i=1

|C|∑

j=1

xij · λ̃j · (H− Tij) (3)

This objective represents the sum of the expected number
of requests each vehicle would observe in its assigned rebal-
ancing region for the given time horizon, H. The expected
number of requests observed by vehicle i is expressed as the
rate of requests at the assigned region, λ̃j , multiplied by the
time remaining in the time horizon after the vehicle reaches
the region, H− Tij

A valid rebalancing assignment must guarantee that each
vehicle is assigned to at most one station. This is described
in the constraint:

|C|∑

j=1

xij ≤ 1 ∀i ∈ [1, |Vr|] (4)

Also, due to our formulation, we constrain the solution
to assign vehicles to rebalancing regions that are reachable
within the time horizon, H, i.e. H ≥ Tij . This constraint is
formulated as:

xij · (H− Tij) ≥ 0 (5)
∀i ∈[1, |Vr|] and j ∈ [1, |C|]

In order to obtain an adequate dispersion of vehicles and
limit the oversaturation of vehicles in rebalancing regions,
we need to constrain the assignment such that the supply of
vehicles in a rebalancing region is less than some factor of
their demand. The supply of vehicles in region j ∈ [1, |C|]
for a given time horizon can be written as:

|Vr|∑

i=1

xij ·
H − Tij
H (6)

The supply of vehicles is weighted by the percent of time
in the next time horizon a vehicle would be able to sit idle
at the assigned station. The time weighting is used to give a
more accurate estimation of the vehicle supply. For example,
if a vehicle takes 8 minutes to reach a region and the time
horizon is set to 10 minutes, that vehicle’s supply is only
available for 20% of the time.

Fig. 3: The computed location of region centers in Manhattan
using the algorithm presented in Sec. III for a maximum
reachability time tmax = 150 seconds.

The demand for vehicles for some region j ∈ [1, |C|] and
a given time horizon is defined as:

λ̃j · H (7)

Putting Eq. (6) and (7) together we formulate a constraint
to limit the oversaturation of vehicles in rebalancing regions
as:

|Vr|∑

i=1

xij · (H− Tij) ≤ λ̃j · H2 · ρ ∀j ∈ [1, |C|] (8)

Note that for a more concise description, the time horizon,
H, was multiplied on both sides of the inequality. Also
note that we have introduced a tuning parameter, ρ, that
allows us to specify an acceptable level of oversaturation
at a rebalancing region.

Combining the objective function from Eq. (3), J (X ),
with the constraints described in this section, we formulate
an ILP that finds an assignment of vehicles to rebalancing
regions that maximizes the expected number of requests
observed by all vehicles while obtaining an adequate dis-
persion of vehicles to limit the oversaturation of vehicles in
rebalancing regions. This ILP is then:

max
X

J (X ) (9)

s.t. constraints (4), (5), (8)

This optimization will be executed repeatedly after every
time interval ψ, after vehicles have been assigned schedules
to pick up and drop off requests.

V. EVALUATION

We evaluate the proposed informed rebalancer using his-
torical taxi request data from Manhattan [11] and compare
the performance to the state of the art. Since the rebalancing
and scheduling algorithms use timeouts to prematurely exit
from the optimization, a more powerful computer can lead to
much better results. To ensure a fair comparison to previous
work, we reimplemented the rebalancer described in [1] and
ran experiments on the same machine using the proposed
informed rebalancer, the naive rebalancer from [1], without
rebalancing and compared the performance of the MoD fleet.

A. Experimental Setup

For the experiments we use one day of historical taxi data
from 00:00 to 23:59 on May 1st, 2013. This data is publicly
available and contains all taxi trips in Manhattan [11]. The
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(a) Service Rate (b) Avg. in-car travel delay (c) Avg. waiting time

(d) Number of ignored requests (e) Avg. distance travelled per vehicle (f) Computation time

Fig. 4: A comparison of several performance metrics for experiments with a fleet of 1000, 2000 and 3000 vehicles and no
rebalancing, naive and informed rebalancing.

data contains the origin, destination, and associated pick up
and drop off time for each taxi trip. We assume the request
time and pick up time to be equal since the request time is
not available. The experiments are executed using a simulator
that simulates the movement of the vehicles, and to which
requests are added according to the historical taxi data. The
vehicle routes and travel times are determined using a stored
road network of Manhattan. Like [1], we estimate the travel
time for each road segment using daily mean travel time
computed by the method in [12] and pre-compute the shortest
path for every pair of nodes in the road network. A snapshot
of the visualizer for this simulator is shown in Fig 1. A
computer with a 2.6 GHz (overclocked to 4.0GHz), 18 core
(36 threads) Intel i9 processor and 128GB of memory was
used to run the experiments.

We assess the performance of the rebalancing algorithm
with a fleet size of 1000, 2000, and 3000 vehicles and
a capacity of four passengers. We used a fixed maximum
waiting time of Ω = 3 minutes and maximum delay of
∆ = 6 minutes. All requests that cannot be served within
these defined constraints on waiting time and delay time are
ignored, and dropped from the request pool. We used 100
particles to estimate the rate of requests in each region. The
vehicle locations are initialized uniformly on vertices in the

road network. The assignment interval was chosen as ψ = 30
seconds as in [1]. This means that vehicle schedules and the
assignment of rebalancing stations are optimized every 30
seconds. At assignment time, all requests are considered that
have not yet been picked up. To discretize the operating area
into rebalancing regions, we used a maximum reachability
time of tmax = 150 seconds which produced 61 regions.
The centers of these regions are shown in Fig. 3.

We evaluate two rebalancing techniques: our proposed
informed rebalancing algorithm and the naive rebalancing
algorithm presented in [1]. The rebalancing algorithm in [1]
assigns an idle vehicle to move to the locations of unassigned
requests. The assignment minimizes the sum of the distances
travelled by the vehicles. We compare the results of these
rebalancing techniques to a case were no rebalancing is
performed.

B. Results

We collect several metrics to assess the performance of
the rebalancers including the service rate, in-car travel delay,
waiting time, number of ignored requests, distance travelled
per vehicle, fleet utilization, and computation time. The
service rate is defined as the percentage of the total number
of requests that were successfully served within the waiting
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Fleet Size Rebalancer Avg. Delay [s] Avg. Wait Time [s] Avg. Dist. [km] Avg. Comp. Time [s] N. Ignored % Serviced Reqs.
1000 No Rebalancing 185.94 113.70 300.14 0.61 239154 42.83
1000 Naive 180.03 109.76 590.02 0.84 107462 74.31
1000 Informed 169.20 106.81 683.75 2.08 103022 75.37
2000 No Rebalancing 180.53 109.00 261.39 0.84 127796 69.45
2000 Naive 110.68 95.09 441.57 1.29 22196 94.69
2000 Informed 58.36 76.74 675.55 3.31 8108 98.06
3000 No Rebalancing 117.32 97.93 237.72 1.16 72048 82.78
3000 Naive 97.11 91.40 303.24 1.44 17669 95.78
3000 Informed 13.72 57.85 612.56 3.85 964 99.77

TABLE II: A detailed overview of the performance metrics for 1000, 2000 and 3000 vehicles for experiments with no
rebalancer, and for the informed and naive rebalancer

time and delay time constraints. The in-car travel delay for a
request is defined as δr −ωr. The fleet utilization is defined
as the average percent of the fleet with assigned schedules
throughout the day. The computational time includes the time
required to compute schedules, estimate demands, and com-
pute the rebalancing assignment. These metrics are plotted
in Fig. 4. The associated raw data is shown in Tab. II.

We observe that the service rate improves for all fleet sizes
when using the proposed informed rebalancer rather than the
naive rebalancer (See Fig. 4a). Most notably, for a fleet size
of 3000 vehicles, the service rate increases by 4%. Also the
proposed rebalancer achieves a higher service rate with a
fleet size of 2000 vehicles (98.1%) than the naive rebalancer
with a fleet size of 3000 vehicles (95.8%). This means that
by switching to our rebalancing algorithm, you can reduce
the size of your fleet by over 33% while maintaining the
same service rate. We also see a drastic reduction in the
number of requests the algorithm is not able to satisfy for
all fleet sizes (See Fig. 4d). In particular, for a fleet size of
3000 vehicles, the proposed algorithm reduces the number
of ignored requests by 95% compared to the naive approach.

The in-car travel delay and waiting time also benefit from
informed rebalancing (See Fig. 4b and 4c). For all fleet sizes,
the average in-car travel delay and waiting time decreases
when using the proposed rebalancer. For 3000 vehicles,
the average delay drops from 97.1 to 13.7 seconds (86%
improvement) and the average waiting time drops from 91.4
to 57.9 seconds (38% improvement).

We also observe higher vehicle utilization for the informed
and naive rebalancers compared to not rebalancing for all
fleet sizes (See Fig. 5). The informed rebalancer achieves
the highest vehicle utilization for all fleet sizes. The naive
and informed rebalancers achieve similar utilization for a
1000 vehicle fleet, but for 2000 and 3000 vehicle fleets,
the informed rebalancer performs much better. This can
be explained by the fact that both the naive and informed
rebalancer for a 1000 vehicle fleet utilize almost all vehicles
continuously over the duration of the experiment.

As in [1] and [9], we observe that the advantages by
using a rebalancer come at the cost of an increased distance
travelled by the vehicles. This is apparent from figure Fig. 4e.
This might lead to higher fuel consumption, but the initial
vehicle costs and costs of potential human drivers are much
lower when using a smaller fleet with comparable perfor-
mance. The reason for the larger travel distances is partly

Fig. 5: Vehicle utilization for 1000, 2000, and 3000 vehicle
fleet sizes. The vehicle utilization is defined as the average
percent of vehicles assigned to trips over the entire experi-
ment. For each fleet size, the vehicle utilization is measured
without rebalancing, using the naive rebalancer, and using
the proposed informed rebalancer

because more vehicles are being rebalanced and are moving
when they are not assigned. This is also enforced however
by the fact that the cost function used for assignment prefers
using as many vehicles as possible with an as low as possible
occupancy rate when feasible to serve requests to minimize
the delay. This cost does not take into account the collective
distance travelled by the vehicles.

VI. CONCLUSION

In this paper, we presented a method to rebalance idle
vehicles in a mobility-on-demand fleet. We presented a
method to optimally partition the operating area into a
set of rebalancing regions, a method to compute filtered
demand estimates for each region based on real-time request
information, and a method to optimally assign idle vehicles
to rebalancing regions using these demand estimates. Our
rebalancing algorithm can be applied to human-driven or
autonomous vehicle fleets. We used this rebalancer to signif-
icantly improve the efficiency of the ride-sharing algorithm
presented in [1].

We demonstrated a significant improvement in fleet perfor-
mance using the proposed informed rebalancing strategy over
previous work. For a fleet of 3000 vehicles, we reduce the
average waiting time by 37%, the travel delay by 86%, and
the number of ignored requests by 95%. We show that a fleet
of 2000 vehicles using the proposed rebalancer services more
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passengers than a fleet of 3000 vehicles using the rebalancer
from previous work.

Future work will focus on developing a method to solve
for the assignment of trips to vehicles and idle vehicles to
rebalancing regions in a single optimization procedure and to
reduce the distance travelled by the vehicles. We also plan
to expand the ride-sharing algorithm to utilize fleets with
varying vehicle capacities and incorporate the existing public
transportation infrastructure.
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Glossary

List of Acronyms

SMART Singapore-MIT Alliance for Research and Technology

TU Delft Delft University of Technology

ILP integer linear programming

MILP mixed integer linear programming

VRP vehicle routing problem

VRPPD vehicle routing problem with pick-up and delivery

DARP dial-a-ride problem

BC branch and cut

RV Request-Vehicle

RTV Request-Trip-Vehicle

MoD Mobility-on-Demand

TTD time to drop-off

TTDPP time to drop-off with predicted pick-ups

TTDPP-IR TTDPP in combination with informed rebalancing

TTDPP-NR TTDPP in combination with naive rebalancing

TTD-IR TTD in combination with informed rebalancing

D-IR delay in combination with informed rebalancing

D-NR delay in combination with naive rebalancing
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78 Glossary

List of Symbols

∆ Maximum delay
δr Delay of a request r ∈ R
κv The capacity of a vehicle v ∈ V
λg The rate of incoming requests in a region g ∈ G
C The set of region centres
G The set of rebalancing regions
Pv The set of requests on board of vehicle v ∈ V
R The set of transportation requests
S The set of feasible schedules
T The set of trips
V The set of vehicles
Ω Maximum waiting time
ωr Waiting time of a request r ∈ R
πS The number of predicted additional pick-ups for a schedule S ∈ S
ψ The schedule optimisation interval
τ(qi, qj) The travel time between two locations qi and qj
tdr The drop-off time of a request r ∈ R
tpr The pick-up time of a request r ∈ R
trr The time of placement of a request r ∈ R
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