]
TUDelft

Technische Universiteit Delft
Faculteit Elektrotechniek, Wiskunde en Informatica
Delft Institute of Applied Mathematics

De rooster graafs Pfaffiaanse orientaties, vlak en
toroidaal

The lattice graph’s Pfaffian orientations, planar and
toroidal

Verslag ten behoeve van het
Delft Institute of Applied Mathematics
als onderdeel ter verkrijging

van de graad van

BACHELOR OF SCIENCE
in
TECHNISCHE WISKUNDE

door
EMIEL FREDRIKSZ
Delft, Nederland

Juli 2021

Copyright © 2021 door Emiel Fredriksz. Alle rechten voorbehouden.







]
TUDelft

BSc verslag TECHNISCHE WISKUNDE

“De rooster graafs Pfaffiaanse orientaties,
vlak en toroidaal ”

“The lattice graph’s Pfaffian orientations,
planar and toroidal ”

EMIEL FREDRIKSZ

Technische Universiteit Delft

Begeleider

Prof. Dr. D.C. Gijswijt

Overige commissieleden

Dr. ir. W.G.M. Groenevelt

Juli, 2021 Delft






Abstract

In 1961 Kasteleyn solved the dimer problem. With the use of Pfaffians he managed to find a
formula to enumerate the number of perfect matchings on a lattice graph. In this thesis we take
another look at the methods Kasteleyn used. Besides that, we prove that for an m x n lattice graph
on the torus, where m and n are even, there does not exist a Pfaffian orientation. Instead, we prove
that for an m X 2 and 2 x n lattice graph on the torus, where m and n are even, there does exist a
Pfaffian orientation. For the m X n lattice graph on the torus, where m is even and n odd we present
an orientation together with an algorithm with which we can simplify cycles. With this algorithm we
prove that our orientation is Pfaffian. We will now describe the Pfaffian orientation. All horizontal
edges are aimed to the right, all vertical edges switch between all going down for the first column, then
up for the second column and so on. The edges that are on the border all have orientation opposite of
the ongoing orientation. After calculating the Pfaffian the final formulas are as follows:
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1 Introduction

Consider a normal 8 x 8 chessboard and a set of 32 blank dominoes. Finding a tiling of the dominoes
where the entire chessboard is filled is not that difficult. Placing all dominoes horizontally would be
one solution, placing them all vertically would be another. A much more difficult problem is finding
all possible tilings, or at least finding how many tilings exist. The next step would then be to find the
number of tilings for every m X n rectangle. In 1961, Kasteleyn, among others, solved this problem [[]]
by finding the number of perfect matchings of the lattice graph. This result was achieved by the use of
Pfaffian orientations. Not only did Kastelyen solve this problem for the lattice graph in the plane but
also for the lattice graph embedded on the torus. In this thesis we will take a look at Kasteleyn’s original
results. Furthermore, we will find Pfaffian orientations for specific cases of the m x n lattice on the torus.

We will start by giving some definitions and properties in Chapter [2 These will make the thesis
more easily readable. In Chapter [3| we will introduce the Pfaffian together with the properties for a
Pfaffian orientation. After that, in Chapter [4| we will take a look at Kasteleyn’s original result for the
lattice graph. We will find the same result using a different method found in [2]. Chaptercontains the
proof that for the m X n lattice graph on the torus where both m and n are even there does not exist
a Pfaffian orientation. Furthermore, we present an algorithm which will help us prove there does exist
a Pfaffian orientation for the m x n lattice graph on the torus where m is even and n is odd. Using
these orientations we will construct the formulas for enumerating the number of perfect matchings for
the m x n lattice graph on the torus. Here we will use almost the same method Kasteleyn used for the
torus, where we also fill in some gaps that were left open.



2 Definitions

In this chapter we will present some definitions that will serve as an introduction for the later chapters.
Most definition will be very important in the next chapter where we will address the Pfaffian.

2.1 Perfect Matchings

This section will focus on the first of two very import aspects of the Pfaffian, which is the perfect
matching. But, to know what a perfect matching is we first need to know what a matching is.

Definition 2.1.1 (Diestel [3]]) A set M of independent edges in a graph G = (V, E) is called a match-
ing.

Definition 2.1.2 A perfect matching of a graph G = (V, E) is a matching where the set of independent
edges M matches all vertices in V.

We could see a perfect matching of a graph as a partitioning of it’s vertices into pairs, where every
pair of vertices is connected. Since, every edge has to connect two vertices and no two edges share
vertices. Knowing this, it is straightforward that a graph can only have a perfect matching if it has an
even number of vertices. We will call such a graph an even graph. In the same way we shall call a cycle
with an even number of edges an even cycle.

If we take the adjacency matrix A = (aij)%‘»:l of some graph G we could take the following equa-
tion
Z Qi jy Qiggip ** " Wiy, (1)
P

Here, the sum is taken over all partitions P = {{i1,51},...,{én,jn}} of the 2n vertices into pairs.
Equation (1) will give us the number of perfect matchings of the graph G. This is because every term
in the sum corresponds to a pairing of the vertices and is either 1, if all pairs in the partitioning are
connected, or 0, when a pair is disconnected. Take for example the graph G with adjacency matrix A
below.

, G=
D O

Equationwould result in a19a34 + a13a24 + a14a03 = 1 + 1 + 0 = 2. Here we see that the first
two terms correspond to the two perfect matchings of G. The third term will be zero in the sum because
vertices 1 and 4 are not connected and neither are vertices 2 and 3. Now, the only problem with equa-
tion (1] is that it takes a long time to calculate because we have to go through every partition. Because
of this, we will be looking at the Pfaffian in the next chapter, which looks a lot like equation [1| but will
be much simpler to calculate.

O = = O
—_o o -
= O O
O = = O

2.2 Orientations and Cycles

In this section we will hone in on two other aspects of the Pfaffian, those being orientations and cycles.

We will denote 8 as an orientation of a graph G. To be able to work with orientations of graphs we



will first describe the skew adjacency matrix of 8 just like in Lovasz Plummer [2]].
Au(C) = (@),

1, if (uuy) € B(Q),
where a;; = ¢ -1, if (uj,u;) € E(G), @)
0, otherwise.

As can be easily checked, and as the name implies, the skew adjacency matrix is skew-symmetric.
This means that AT = —A,.

We will use the skew adjacency matrix a lot when we are looking at orientations and cycles. As for
the Pfaffian, cycles will be very important and more specifically the parity of cycles. What we mean
by this is given a routing of the cycle, for how many edges on the cycle the routing agrees with the

orientation in 8 Of course, such a routing is not unique since there are always two possible ways to go
around a cycle. However, for an even cycle the parity of the number of edges agreeing or disagreeing
with the routing will always be the same. This gives rise to the following definition.

Definition 2.2.1 An even cycle C' of G is evenly oriented if it has an even number of edges agreeing (or
disagreeing) with the routing relative to 8 Otherwise, C' is oddly oriented.

There are two special types of cycles for which we will frequently check their parity. These are the
following.

Definition 2.2.2 Let F' be a (perfect) matching of graph G. Then, an F -alternating cycle is a cycle
whose edges alternate between edges in F' and edges in E(G) — F.

Definition 2.2.3 A cycle C of G is a nice cycle if G — V(C') contains a perfect matching

Note that an alternating cycle is always an even cycle, since it alternates between two groups of
edges. A nice cycle is not always even but we do know the following result.

Lemma 2.2.1 An even graph can only have nice cycles which are even.

Although, this lemma isn’t a big result, it will make it easier to prove future results.



3 Pfaffian

In this chapter we will introduce the Pfaffian. We will give some examples together with some of its
properties.

3.1 Definition

The Pfaffian of a skew-symmetric matrix A = (a;;)2nx2n is defined as

3
where we have
apzsgn(1 2 2“.71 2n> @iy gy - iy
troJr o in In
Here, P is a partition of the set {1, ..., 2n} into pairs, such that

P = {{i1)j1}5 R {ijn}}

with i < jp and iy < 19 < --- < 1. Furthermore,

1 2 - 2n—1 2n
il jl in jn

is a permutation of the elements 1, ..., 2n. The sign of a permutation is 1 or —1 if the permutation is
even or odd respectively. As we can see, the Pfaffian is very similar to equation (1} The only difference
is that we have an extra sign in the ap terms. This might make the equation more complicated, but the
following lemma is what makes the Pfaffian so useful for us.

Lemma 3.1.1 (Muir [4]]) IfA is a skew symmetric matrix, then det(A) = (pf(A))?>

This is also why orientations are so important for the Pfaffian. Since, for an oriented graph we can
construct its skew-adjacency matrix. This way, we only need to calculate its determinant to know its
Pfaffian.

As an example of the Pfaffian, lets take the following skew-symmetric matrix B of graph G with

orientation

10 O 0

We have the following partitions, P, = {{1,2},{3,4}}, P, = {{1,3},{2,4}} and
P; = {{1,4},{2,3}}. This gives us permutations

G ; g i)_()’ G ; g i>—(?3)7 G Z g g)—(24)(43)



Thus, we get

1 2 3 4 1 2 3 4
pf(B) = sgn (1 2 3 4> b12b34 + sgn <1 3 9 4> b13b24
1 2 3 4
+ sgn (1 1 9 3> b14b23
= b12b34 — b13bas + b14b23
=—-14+1+0=0

Of course, this calculation is just to demonstrate. We could have far more easily calculated the
determinant. However, although the calculation of the Pfaffian is a lot easier than that of Equation
we have now seen that the Pfaffian does not always calculate the number of perfect matchings. This is
because we now deal with the signs of the permutations. It is, however, quite straightforward to realise
that the absolute value of the Pfaffian is always smaller or equal to the number of perfect matchings of
its corresponding graph. Therefore we have the following definition

Definition 3.1.1 For a graph G' with orientation 8, if the Pfaffian of As(a) enumerates all perfect

matchings of G then 8 is a Pfaffian orientation. Furthermore, we also call a graph G for which such
an orientation exists Pfaffian.

3.2 Pfaffian Orientation

In this section we give some lemma’s and the theorem which states what makes an orientation Pfaffian.
All of these have been gathered from Lovasz-Plummer [2]].

Theorem 3.2.1 (Lovasz-Plummer) Let G be any even graph and 8 an orientation of G. Then the
following four properties are equivalent:

1. 8 is a Pfaffian orientation of G.
2. Every perfect matching of G' has the same sign relative to 8

3. Every nice cycle in G is oddly oriented relative to 8

4. If G has a perfect matching, then for some perfect matching F, every F-alternating cycle is oddly
oriented relative to

We will be using this theorem a lot in this thesis when proving an orientation is Pfaffian or not.

Lemma 3.2.2 If 8 is a connected plane directed graph such that every face’s boundary, except possibly
the infinite face, has an odd number of lines oriented clockwise, then in every cycle the number of lines

oriented clockwise is of opposite parity to the number of points of 8 inside the cycle. Consequently, 8 is

Pfaffian.

It is easy to see that a graph with the properties described in Lemma 3.2.2) would indeed be Pfaffian.
As when the number of points inside of some cycle C is even, which includes all nice cycles according
to Lemma [2.2.1] then C is always oddly oriented. This means condition [3| of Theorem is satisfied
and thus the graph is Pfaffian. This lemma will make finding a Pfaffian orientation and checking if an
orientation is Pfaffian a lot simpler later on.

10



Lemma 3.2.3 Let 8 be an arbitrary orientation of an undirected graph G. Let Fy and Fs be any two
perfect matchings of G and let k denote the number of evenly oriented alternating cycles formed in Fy U F.
Then sgn(F) sgn(Fy) = (—1)*.

Here, the sign of a perfect matching is defined as the sign of its corresponding term in the Pfaffian.
This lemma can be very useful because if we know the sign of a perfect matching we can then very
easily find the sign of other perfect matchings by looking at their alternating cycles.

11



4 Dimer Problem on a Square Lattice

In this chapter we will discuss the orientation given by Kasteleyn. Using this orientation we will find a
formula to calculate the number of perfect matchings of a lattice graph in the plane.

4.1 Pfaffian Orientation of the Lattice Graph

We will now construct the formula found by Kasteleyn for the number of dimer coverings of an m x n
lattice or the number of perfect matchings of the m x n lattice graph. For this, we will look at two
slightly different methods, which both result in the same outcome. We will look at the method Kaste-
leyn came up with and the method found in Lovasz Plummer [2]].

Kasteleyn, in his calculations, made a distinction between vertical and horizontal dimers. He indicated
the number of horizontal dimers by Ny and the number of vertical dimers by N. To not only be able
to calculate the number of ways to fully cover the lattice but also calculate how many horizontal and
vertical dimers are needed for each covering Kasteleyn used the configuration generating function

Zmn(zhyzv) = Z g(Ng,Né)z;y?zfﬁ
N2,N}

where the sum runs over all combinations Ny and N/ such that 2(Ny + NJ) = mn and z, and z, are
two variables. Here, g(N2, N)) is the combinatorial factor. This is the number of ways to cover the
lattice with N vertical and N horizontal dimers. Also, because we need to have an even number of
vertices for Z,,,, (2, z,) to not be zero we let m be even. This means that, for example, for the 2 x 3
lattice we would have

Zo3(zn, 20) = 2 + 22,22

since we have 1 covering with 3 horizontal dimers and 2 coverings with 1 horizontal and 2 vertical
dimers.

Figure 1: Coverings given by Zas(zy,, 2y)

We can also see now that if we chose 2, and z, to be equal to 1 we will simply get the total number
of coverings.

12



Kasteleyn has constructed a skew adjacency matrix of the lattice. In this matrix the entries are the

following
D(i,j;i+1,7) =z for1<i<m-1, 1<j<n
D(i,j;i,5+1) = (=1)'z, for1 <i<m, 1<j<n-1 )
D(i,j;i',j) =-D(',j'si,5) forl<idi'<m, 1<jj <n
All other entries = 0
In the graphs corresponding to these entries we label the vertices by
p=G—1m+i for1<i<m, 1<j<n (4)

as we have done before. This means we label the graph left-to-right, bottom-up. The matrix D now looks

like this

Zth Zva
_Zva Zth Zva
_Z'uFm

ZoFom,
—Zy Fm Zh Qm

where (),, and F},, are the m X m matrices

0 1
-1 0 1
-1

O =
O = O
o

Il
5
[

Qm ;

1 -1 0
-1 0 0 1

The matrices we use to represent the orientations might differ somewhat from what Kasteleyn has
done. However, the Pfaffian only depends on it’s partitions P so we will still get the same results. As
will not be very surprising, the coefficients Kasteleyn chose correspond to a Pfaffian orientation. If we
look at the graph corresponding to these coefficients, where zj, and z,, are the weights of horizontal and
vertical edges respectively, it would look like figure 2| below.

13
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Figure 2: Lattice Graph with Orientation

Using Lemma we can now easily verify that this orientation is indeed Pfaffian. Since the ori-
entation is very repetitive we only have two kinds of faces. These faces have either 1 or 3 edges in the
direction of the orientation making them oddly oriented. Thus, Lemma tells us that this orientation
is Pfaffian.

4.2 Enumerating Perfect Matchings of the Lattice Graph

Since D is a skew-symmetric matrix we can calculate its Pfaffian by finding its determinant according
to Lemma To do so we will use the method found in Chapter 8 of Lovasz Plummer [2] using
Kronecker products. To use this method we will rewrite our matrix D somewhat by multiplying rows
and columns by —1. We multiply the first column, third and fourth row, fourth and fifth column, seventh
and eight row, and so on. This way the absolute value of the determinant stays the same so we don’t
change the Pfaffian. The changes to D result in the following matrix

ZhAm Z'Ulm
_Zva ZhAm Zva
_ZUIm

D, = JJorm =4r,(r=1,2,...)

Zolm
—Zy Im ZhAm

ZhAm —Zy Im
Z'UIm ZhAm —Zy I’m
2yl

Dy = Jorm=4r -2 (r=1,2,...)

— 2ol
Zolm  ZhAm

We will see that both matrices produce the same result so we can choose either one to work with.
We wil continue with D;. We can write D; as the sum of two Kronecker products

14



where A,,, is the m X m matrix

—= O
—_O
—_

1
10

Because we can write D; in this sum of Kronecker products it is now fairly easy to find its mn
eigenvalues. This is due to the following property, also shown as a slight variation in Lovasz Plum-
mer. Let A,, have eigenvalues A1, ..., \,, with eigenvectors a1, ..., a,, and let Q),, have eigenvalues
W1, .., Uy With eigenvectors q4, . .., q,,. Then, because we have

D, (qi ® aj) = (Zh(In ® Am) + Z’U(Qn & Im))(q,» &® aj)
2n(Ing; ® Apmaj) + 2 (Qng; ® I;aj)
= zn(q; ® Niay) + 20(1159; @ ay)

= (znAi + zop5)(q; @ ay)

D has eigenvectors q; ® a; with eigenvalues z,A\; + z, ;. Thus, to calculate the eigenvalues of
D1 we only need to find the eigenvalues of our matrices A, and @Q,,. This is also why we could freely
choose between D, and D5 because if we chose D2 we would have had —(@),, which has the same eigen-
values in absolute value as @),,.

We will start with our matrix A,, and calculate it’s characteristic polynomial. We will do this by
replicating a solution found in Lovasz Combinatiorial Problems and Excercises [5] for problem 1.29.

15



A =1
—1 A =1
—1
pm(A) =
—1
-1 A
-1 -1 0
-1 A =1 —1 A =1
—1 —1
—1 —1
-1 A -1 A
m—1 m—1
~1 A -1
-1 A -1 ~1 A -1
~1 ~1
=\ —
-1 -1
-1 A -1 A
m—1 m—2

= )\pmfl()\) - pm—z()\)

We will set po(A) = 1 and p_1(A\) = 0 so the equation holds for all m > 1. We will solve p,,(\) =
APm—1(A) —Dm—2()\) by substituting in 2™ for p,, (\) and dividing by ™~2. This gives us the following

equation

whose roots are

Then

Taking m = —1 and 0 we get

Hence

and

22— dx+1=0

A+ VA2 —4
S T e

pm(A) = 611971%—’_1 + 021972n+1.

c1+c=0
191 + ey = 1.

1 = , C2 =

A2 —4 A2 —4

e 0 — i),

16

N—VATd

)

©)

(6)

(7)

®)



Thus if

then

or, equivalently,

where

Solving 9; = €21, for A we obtain

1 k
A==£(e+-)==+2cos T
€ m+1

Here we may omit + since —cos% = cos%. It is easily see by substitution that these numbers
are roots of p,,(A) for k = 1,...,m; therefore, it is not a root for k¥ = 0. Thus the eigenvalues of 4,,
are

km
A = 2cos———
m+
For the eigenvalues of our matrix (),, we can use the same procedure giving us the eigenvalues

I
=0 — l=1,...,n.
1 zcosn+17 R 7}

Since the eigenvalues of our matrix D; are zpA; + 2, /45, these are equal to

+ 12z, cOS

k l
2 ( zp cos T T , k=1,...oml=1,...,n. 9)
m+1 n+1

The determinant of D; is now the product of these eigenvalues. However, what we want to know is the
determinant of matrix D and to do so we need to calculate the absolute value of the determinant of D;.
Because of this, we can use the absolute values of equation[9] Giving us

o TT T km Ir \?
2 HH(zicost+1+zﬁcos2n+1) . (10)

Hence, because of Lemma|3.1.1

1
Ln T4 T km Im \*
Zmn(2h, 20) = 27 H H (Z;QL cos® T 22 cos® - ) : (11)
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5 Torus Extension

In this section we will find a formula for the number of perfect matchings of the lattice graph on a torus.
We will again take m to be even here. Firstly we will prove that for an m x n lattice where n is even
there is no Pfaffian orientation. After that, we will show an orientation that we prove to be Pfaffian for
m X n lattices where m or n are equal to 2, or when n is odd. Lastly, we will calculate the respective
formulas for the enumeration of the perfect matchings of these lattice graphs.

5.1 No Pfaffian Orientation for Even n

To prove a graph does not have a Pfaffian orientation we need to look at Theorem 3.2.1 More precisely
we will look at condition 3 of this Theorem. This condition states that every nice cycle in the graph has
to be oddly oriented relative to its orientation. This means that, to prove that the m x n lattice graph
on the torus with even n and m and n greater or equal to 4 does not have a Pfaffian orientation we only
need to find one nice cycle which is evenly oriented. To do this we will show a specific example where
a nice cycle is evenly oriented and prove that this holds for all lattices with even n.

Consider the graph in figure [3| with the labeled edges from a to i. We will be looking at the cycles
with the following edges: (a,b,c,d), (b,fh,e), (c,g,i,f) and (a,e,h,i,g,d).

"-_é‘) (Pg é) (119_ .....

_(q

\/
()
O/
()
O/
<|;>

[
\/
)
)
\/
o
(D)
\/
)
D)
T

) () () (D— ..
T T

Figure 3: Torus Graph with labeled edges

Note that edge d is shown twice but represents one edge because it loops around the torus. It can be
easily checked that these are nice cycles. Since they are nice cycles we would want all of them to be
oddly oriented to satisfy condition 3 of Theorem [3.2.1] Let’s say the edges can have a value of 0 or 1.
We’ll say going to the right and going down gets the value 1 where going left or up gets the value of
0. We are interested in the number of edges that go with the orientation modulo 2 since we want to
know if it is even or odd. This means that if we want to know this number of edges from, for example,
the cycle (b,fh,e) we would write this as b + f + (1-h) + (1-e). This is because for h and e to go with the
orientation they would get the value 0 but their terms would still need to contribute 1 to the number
of edges going with the orientation. Since we want all nice cycles to be oddly oriented we want all of
these sums to be equal to 1 mod 2. This means we get the following system of equations.

18



a+b+c+d=1mod2

b+ f+(1—h)+(1—e)=1mod2
c+g+(1—-49)4+(1—f)=1mod2
at+e+h+i+(l—g)+d=1mod2

This can be simplified to

a+b+c+d=1mod2 (12a)
b+ f+h+e=1mod2 (12b)
c+g+i+ f=1mod2 (12¢)
ate+h+itg+d=0mod2 (12d)

If we add all these equation together we will see that this gives a contradiction. Since all edges are
counted exactly twice, adding all equation gives

20a+b+c+d+e+f+g+h+i)=1mod2 (13)

which can never be true. This means that we cannot have an orientation where all nice cycles are
oddly oriented, thus we cannot have a Pfaffian orientation for this 4 x 4 lattice on the torus. Now, we
can extend this lattice with multiples of 2 vertically and the same thing still holds true. When we do
this in the horizontal direction we can look at our edge d as representing multiple edges. This would
mean Equation [I2a]and[12d| both get a multiple of 2 edges added to them. This means Equation [13| will
still be of the same form and thus our result holds for all even m and n.

5.2 Pfaffian Orientation of the Lattice Graph on the Torus

The orientation we will prove to be Pfaffian is one that Kasteleyn partly used in his result for the dimer
problem on a torus. However, in his result this orientation wasn’t Pfaffian since it was for all n and all
even m. The orientation is the following

D(i,j;i4+1,7) =z forl<i<m-—1, 1<j<n
D(i,j;i,j+1) = (=1)'z, for1 <i<m, 1<j<n-1
D(m,j;1,j) = -z for 1<j<n

(

D(i,n;i, 1) = (=1)"z, for1<i<m
D(i,j;4,5") =-D("j";,5) for1 <i,i’<m, 1<j,j'<n
All other entries = 0

As we can see the orientation we use is the same on the torus as it was in the plane. The only thing
added is that the boundaries of the graph are now connected and are oriented opposite to the ongoing
orientation. If we look at the graph it looks like this

19



Figure 4: Orientation on the Torus

In Section [4.1| we have proven that our orientation is Pfaffian using Lemma However, this
Lemma stated that the graph has to be a planar graph, which our new graph clearly isn’t. Despite this,
we can still use Lemma [3.2.2]in smaller portions. Firstly, we know all even cycles that don’t go around
the torus are oddly oriented. We saw this before in section[4.1} where now the only thing that’s different
is the extra "border” edges. This hasn’t changed the orientation of the cycles in any way and by ignoring
these extra edges the graph becomes planar. This way the Lemma can still be used. In the same way this
holds true for cycles that go across the "border” of the torus, but don’t fully loop around it. This can be
done because if we redraw our lattice by shifting everything one step to the right we get the following
representation

~

. ._)G)(_G

0 M 11 )——preeet

Figure 5: Alternative Drawing of Figure

And now, we can again use Lemma for this graph by ignoring the border edges because all
face’s boundaries are oddly oriented. We can do this as many times as we need to, also by shifting up
or down, to find that all nice cycles that don’t loop around the torus are oddly oriented. This now only
leaves us to check nice cycles that loop the torus horizontally, vertically or in both directions. Now,
moving on we will look at these cycles for the two cases described earlier.

5.2.1 The 2 x nand m x 2 Case

We will start with the 2 X n and m x 2 cases where n and m are even. Proving an orientation is Pfaffian
takes a lot more steps than proving one is not. However, for these cases the proof stays quite concise.

20



For this proof we will use condition [4] of Theorem We will use two different perfect matchings,
one for each case. We will call these F, and F},,. Here, F), is the perfect matching consisting of only
horizontal edges and F,, the perfect matching consisting of only vertical edges. Figure 6| will clarify.

Figure 6: Perfect matchings F), and F,,, for 2 x n and m x 2 lattice graphs on the torus

It can be easily checked that the only F;,-alternating cycles are a square, a straight horizontal cycle
and two vertical cycles that flip sides. These are shown in figure

Figure 7: F),-alternating cycles for a 2 x 4 lattice graph on the torus

As we can see all of these cycles are oddly oriented making the orientation Pfaffian. When we extend
the graph vertically by a multiple of 2 we add an even number of edges that go with the orientation.
Because of this, the orientation is Pfaffian for all 2 x n lattice graphs on the torus with even n. The same
result can be found for the m x 2 lattice graph on the torus using perfect matching F,,.

5.2.2 The Odd n Case

As has been said before, proving an orientation is Pfaffian will take quite some steps. We will work in
the same way as before, meaning we will try to satisfy condition [4] of Theorem Since our graph
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can be much larger this time around there will be a lot more cycles that we will need to check. Because
of this, we want to be able to link a larger cycle of which we don’t know the parity to a simpler cycle
of which we do know the parity. When checking for the parity of alternating cycles we will be using
perfect matching F), as our alternating set.

We won’t have to check alternating cycles that lie in the plane since the orientation is made such
that the perfect matchings in the plane all have sign 1.

First of all, let us describe this simpler cycle. We will call the following cycle in red Hy.

Figure 8: Cycle Hy

As we can see Cycle Hj is just the shortest horizontal cycle around the torus. Important to note
here is that Hy is always oddly orientated with this orientation. Because of the nature of an alternating
cycle, the only possible cycles that loop around the torus are cycles that loop the torus horizontally an
odd amount of times and vertically an even amount of times. Here, we also see not looping around a
side as an even amount of times. That these are the only possible cycles has to do with the fact that we
can’t loop the torus vertically once when we have an odd number of vertical vertices. It is important to
remember that, since m is even and n is odd, these cycles always have an even number of horizontal
edges and an even number of vertical edges.

We will construct an algorithm to reduce F),-alternating cycles to Cycle Hy. Let C' be any cycle on
the lattice graph on the torus. If C' surrounds a rectangle in such a way that three sides of the rectangle
connect to the same side split by the cycle, then we can remove the rectangle without changing the
parity of the cycle. This may sound a little confusing considering technically a cycle looping the torus
doesn’t split the graph. Therefore, let’s look at a little example to clarify.

Figure 9: Cycle example

Let the black and red arrows represent our cycle. As we can see by drawing in the green arrow we
create a rectangle of which its three red edges connect to a different "side” than its green edge. Again,
this is technically the same side on the torus. Now, what we can do here is remove the red edges of
the rectangle and connect the green edge, oriented according to the orientation, to create Hy. In doing
so we remove three edges agreeing with the orientation and we add one. This way the parity of the
cycle hasn’t changed. Now because we have Hy, of which we know is oddly oriented, we know that
our original cycle is also oddly oriented.

There are three types of rectangles for which we can use the above method. These are:

1. even X even
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2. odd x odd
3. even X odd

The evenxeven and oddxodd rectangles can always be removed, without changing the parity of
the cycle, no matter on what side the green edge lays. The evenxodd rectangles however, can only be
removed when the green arrow lays on either of the odd sides. Because of the way alternating cycles are
made any F,,-alternating cycle that loops the torus horizontally once can be reduced to the Hy cycle by
removing all rectangles. This means that all F;,-alternating cycles looping the torus horizontally once
are oddly oriented.

When we have F),-alternating cycles looping the torus multiple times we always end up with the
same situation after reducing the cycle. Let’s say we loop the torus vertically e times and horizontally
o times. After all rectangles have been removed from the cycle we will see that all horizontal edges
will agree with the orientation, except the border edges. This means that for the horizontal edges we
always have (m — 1) x o edges agreeing with the orientation, which is odd. For the vertical edges, we
can pair edges that go along the same direction. What we will have left is pairs on the borders which
will differ in direction. This means we will have an even amount of edges agreeing with the orientation,
the first pairs, together with the e edges, the second pairs. This means for the vertical edges we have an
even amount of edges agreeing with the orientation. Putting the horizontal and vertical edges together
we see that we always have an odd number of edges agreeing with the orientation, meaning that the
original cycle was oddly oriented.

Since we now have seen that all possible F},-alternating cycles on the m x n (odd n) lattice graph
on the torus are oddly oriented, we can conclude that our orientation at Equation[14]is indeed Pfaffian.

5.3 Kasteleyn’s Torus Result

As we have proven in Chapter [5.1|the m x n lattice graph on the torus with even n does not have a
Pfaffian orientation. Despite this, Kasteleyn still managed to find a formula to enumerate the number
of perfect matchings. The way he did this is by using four different orientations. The orientation we are
using is one of those. Except, as we already saw, none of those are Pfaffian for even n. The problem with
the orientations is that their Pfaffians count some perfect matchings with the wrong sign. We can check
which matchings are counted with which sign by using the method we used in the previous section.
Because, for even n, it is possible to loop around the torus vertically once it would be useful to use a
second simpler cycle Vj. This cycle would be the shortest cycle vertically around the torus.

Now that we can loop around the torus vertically we can have any combination of vertical and hor-
izontal loops around the torus. It can be checked that, for our orientation, all F,-alternating cycles will
still be oddly oriented except for cycles that loop the torus an odd amount of times horizontally and
vertically. In that case we use the same method as before. That way we get (m — 1) * o horizontal edges
agreeing with the orientation, which is odd. For the vertical edges we have an even number of pairs
agreeing with the orientation again together with e edges. This is odd as well, meaning that the whole
cycle is evenly oriented. According to Lemma 3.2.3|the perfect matchings creating these F},-alternating
cycles will be counted with a negative sign in the Pfaffian. In the same way, the other orientations Kaste-
leyn presents in [[1]] could be checked to see which perfect matchings are counted with which signs.
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5.4 Enumerating Perfect Matchings on the Torus

We will now determine the formula to count the number of perfect matchings of the lattice graph on the
torus for odd n. We use the following notation for our configuration generating function on the torus:
Z\U) (2, z,). To do this we will first have a look at the skew adjacency matrix of the graph in Figure

ZILQ%) 2o Fm zu Py
_Zva Zthrtl) Zva
_ZUFH'L
DO —
ZpFm,
_ _ (t)
ZUFm Zva Zth

where Qﬁ,? is the m X m matrix

0 1 0 1
-1 0 1 0
-1
QSEL) = )
0 1
-1 0 -1 0

As we can see the only differences are the added 1 and —1 in the top-right and bottom-left corners. To
calculate the Pfaffian of matrix D) we will, again, have to calculate its determinant. To do this we will
use the same method Kasteleyn used to calculate the Pfaffian in the plane. However, we will present a
little more details.

In Chapter [4f we could multiply some rows and columns to be able to write our matrix as a sum of
kronecker products containing two identity matrices. This time around however, the terms that were
added now prevent us from performing this trick. Therefore, we have to use a different method. We
will, however, write D(*) as a sum of Kronecker products again like so

What we will now do is try to get D) into a more suitable form D®) to calculate its determinant.
We will do this by diagonalizing the matrices Qg,t,) and Q%t ) with the following matrix

1 2h — 1)mi
V(v h) = \/ﬁexpv(h)m.

The following result from [6] will show that D®) is almost diagonalizable by V,, ® V;,

DY = (v, ' @ VY DOV, @ Vi) (16)
=V, eV, (zh(ln @ QW) + 2,(QY ® Fm)> (Vo @ Vi) (17)
= 2, (V' LV @ Vi ' QUV) + 20(V QDL @ Vi F Vi) (18)
( (19)

= Zh fn ®@7(7§)) +Zv(é£f) ®ﬁm)
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D® is almost diagonalizable because although Qg), ng ) and I,, are diagonalizable F}, is not. How-
ever, we will see that this won’t bring up any major issues.
We will write out the new matrices.

)\1 0 1251 0
~ A ~
oL = : Can=| " (20)
0 Am 0 Hn
0 -1
~ -1 -
Fm = ) In = In (21)
-1 0
Writing out @57? and @55’ we can easily see that their eigenvalues are equal to e eEr e~ Zholn
and e eoar e~ (2111)#, thus
2k —1
Ay = 2isin 2F= DT (k=1,2,...,m), (22)
m
20 —1
m:zz'sing (1=1,2,...,n). (23)

If we write out D®) using equation we find that it consist of n nonzero m x m blocks on the
diagonal. These are the following

B2 Zy
ZpAm Zu 4

, forl=1,2,...n. (24)
Ry Zh/\%-&-l

Zy ZhAm

We can switch two rows and two columns of D®) to create a 2 x 2 block on the diagonal. This way

the determinant of D(*) doesn’t change. We can do this such that the entire matrix will be made up out
of the following 2 x 2 blocks.

ZhAk Zutu (25)
Zofl 2Rkt

The determinant of a block diagonal matrix is the product of the determinants of the blocks. Thus,

we now finally get a simple to calculate equation. After filling in the eigenvalues of @5,? and @5{ ) and
using the fact that sin(z + 7) = — sin(z) we get the following equation
T n
~ .o (2k— D7 .o (20— D)
det(D®) = kli[l llj[14 <Z’21 sin? Yt 22 sin’ — (26)

After applying Lemma [3.1.1] we find our desired equation
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m,

1
(2k — 1) Lo 2 —1)m\?
Z0) (zn, 2 H H 2 (zh sin? + 22 sin? — ,for odd n (27)

k=11=1

For the cases where m or n are equal to 2 we use the same steps except our matrix D® will look a
little different. By replacing Q,(fL) or ng ) with
0 2
-2 0

in Equation [15] depending on which is equal to 2, we get the correct matrix. This will result in the
following two equations.

d 21— ) \*
Zéfl) (2h, 20) = H 2 (z,% + zgsinQ((n)?T)> , for n even (28)
I=1

m

kS (2k — 1
5(2h, 2v) H 4 (zhsm ) — )+ z?]) (29)
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6 Conclusion and Future Research

Using previous works from Kasteleyn and Lovasz and Plummer we managed to create the formula to
enumerate the number of perfect matchings of lattice graphs on the torus. To get to this result we made
sure to fill in a lot of the things that Kasteleyn left out in his proofs. We also used some variatons and
different methods to get to our end results. We hope this has made the results more straightforward to
get to. Although this result is not a brand new thing, we hope that the algorithm we created can help
to find more Pfaffian orientations. Not only for the lattice but also for the triangular and hexagonal
lattices.
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