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Abstract

In 1961 Kasteleyn solved the dimer problem. With the use of Pfa�ans he managed to �nd a
formula to enumerate the number of perfect matchings on a la�ice graph. In this thesis we take
another look at the methods Kasteleyn used. Besides that, we prove that for an m × n la�ice graph
on the torus, where m and n are even, there does not exist a Pfa�an orientation. Instead, we prove
that for an m × 2 and 2 × n la�ice graph on the torus, where m and n are even, there does exist a
Pfa�an orientation. For the m×n la�ice graph on the torus, where m is even and n odd we present
an orientation together with an algorithm with which we can simplify cycles. With this algorithm we
prove that our orientation is Pfa�an. We will now describe the Pfa�an orientation. All horizontal
edges are aimed to the right, all vertical edges switch between all going down for the �rst column, then
up for the second column and so on. �e edges that are on the border all have orientation opposite of
the ongoing orientation. A�er calculating the Pfa�an the �nal formulas are as follows:
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m
2∏
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1 Introduction
Consider a normal 8 × 8 chessboard and a set of 32 blank dominoes. Finding a tiling of the dominoes
where the entire chessboard is �lled is not that di�cult. Placing all dominoes horizontally would be
one solution, placing them all vertically would be another. A much more di�cult problem is �nding
all possible tilings, or at least �nding how many tilings exist. �e next step would then be to �nd the
number of tilings for every m× n rectangle. In 1961, Kasteleyn, among others, solved this problem [1]
by �nding the number of perfect matchings of the la�ice graph. �is result was achieved by the use of
Pfa�an orientations. Not only did Kastelyen solve this problem for the la�ice graph in the plane but
also for the la�ice graph embedded on the torus. In this thesis we will take a look at Kasteleyn’s original
results. Furthermore, we will �nd Pfa�an orientations for speci�c cases of them×n la�ice on the torus.

We will start by giving some de�nitions and properties in Chapter 2. �ese will make the thesis
more easily readable. In Chapter 3, we will introduce the Pfa�an together with the properties for a
Pfa�an orientation. A�er that, in Chapter 4, we will take a look at Kasteleyn’s original result for the
la�ice graph. We will �nd the same result using a di�erent method found in [2]. Chapter 5 contains the
proof that for the m × n la�ice graph on the torus where both m and n are even there does not exist
a Pfa�an orientation. Furthermore, we present an algorithm which will help us prove there does exist
a Pfa�an orientation for the m × n la�ice graph on the torus where m is even and n is odd. Using
these orientations we will construct the formulas for enumerating the number of perfect matchings for
the m× n la�ice graph on the torus. Here we will use almost the same method Kasteleyn used for the
torus, where we also �ll in some gaps that were le� open.
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2 De�nitions
In this chapter we will present some de�nitions that will serve as an introduction for the later chapters.
Most de�nition will be very important in the next chapter where we will address the Pfa�an.

2.1 Perfect Matchings
�is section will focus on the �rst of two very import aspects of the Pfa�an, which is the perfect
matching. But, to know what a perfect matching is we �rst need to know what a matching is.

De�nition 2.1.1 (Diestel [3]) A setM of independent edges in a graph G = (V,E) is called a match-
ing.

De�nition 2.1.2 A perfect matching of a graphG = (V,E) is a matching where the set of independent
edgesM matches all vertices in V .

We could see a perfect matching of a graph as a partitioning of it’s vertices into pairs, where every
pair of vertices is connected. Since, every edge has to connect two vertices and no two edges share
vertices. Knowing this, it is straightforward that a graph can only have a perfect matching if it has an
even number of vertices. We will call such a graph an even graph. In the same way we shall call a cycle
with an even number of edges an even cycle.

If we take the adjacency matrix A = (aij)
2n
i,j=1 of some graph G we could take the following equa-

tion ∑
P

ai1j1ai2j2 · · · ainjn (1)

Here, the sum is taken over all partitions P = {{i1, j1}, . . . , {in, jn}} of the 2n vertices into pairs.
Equation (1) will give us the number of perfect matchings of the graph G. �is is because every term
in the sum corresponds to a pairing of the vertices and is either 1, if all pairs in the partitioning are
connected, or 0, when a pair is disconnected. Take for example the graph G with adjacency matrix A
below.

1

3

2

4

A =


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 , G =

Equation 1 would result in a12a34 + a13a24 + a14a23 = 1 + 1 + 0 = 2. Here we see that the �rst
two terms correspond to the two perfect matchings ofG. �e third term will be zero in the sum because
vertices 1 and 4 are not connected and neither are vertices 2 and 3. Now, the only problem with equa-
tion 1 is that it takes a long time to calculate because we have to go through every partition. Because
of this, we will be looking at the Pfa�an in the next chapter, which looks a lot like equation 1 but will
be much simpler to calculate.

2.2 Orientations and Cycles
In this section we will hone in on two other aspects of the Pfa�an, those being orientations and cycles.
We will denote −→G as an orientation of a graph G. To be able to work with orientations of graphs we
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will �rst describe the skew adjacency matrix of −→G just like in Lovasz Plummer [2].

As(
−→
G) = (aij)

n
i,j=1,

where aij =


1, if (ui, uj) ∈ E(

−→
G),

−1, if (uj , ui) ∈ E(
−→
G),

0, otherwise.
(2)

As can be easily checked, and as the name implies, the skew adjacency matrix is skew-symmetric.
�is means that ATs = −As.

We will use the skew adjacency matrix a lot when we are looking at orientations and cycles. As for
the Pfa�an, cycles will be very important and more speci�cally the parity of cycles. What we mean
by this is given a routing of the cycle, for how many edges on the cycle the routing agrees with the
orientation in−→G . Of course, such a routing is not unique since there are always two possible ways to go
around a cycle. However, for an even cycle the parity of the number of edges agreeing or disagreeing
with the routing will always be the same. �is gives rise to the following de�nition.

De�nition 2.2.1 An even cycle C of G is evenly oriented if it has an even number of edges agreeing (or
disagreeing) with the routing relative to

−→
G . Otherwise, C is oddly oriented.

�ere are two special types of cycles for which we will frequently check their parity. �ese are the
following.

De�nition 2.2.2 Let F be a (perfect) matching of graph G. �en, an F -alternating cycle is a cycle
whose edges alternate between edges in F and edges in E(G)− F .

De�nition 2.2.3 A cycle C of G is a nice cycle if G− V (C) contains a perfect matching

Note that an alternating cycle is always an even cycle, since it alternates between two groups of
edges. A nice cycle is not always even but we do know the following result.

Lemma 2.2.1 An even graph can only have nice cycles which are even.

Although, this lemma isn’t a big result, it will make it easier to prove future results.
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3 Pfa�an
In this chapter we will introduce the Pfa�an. We will give some examples together with some of its
properties.

3.1 De�nition
�e Pfa�an of a skew-symmetric matrix A = (aij)2n×2n is de�ned as

pf(A) =
∑
P

aP

where we have

aP = sgn
(
1 2 · · · 2n− 1 2n
i1 j1 · · · in jn

)
ai1,j1 · · · ain,jn

Here, P is a partition of the set {1, . . . , 2n} into pairs, such that

P = {{i1, j1}, . . . , {in, jn}}

with ik < jk and i1 < i2 < · · · < in. Furthermore,(
1 2 · · · 2n− 1 2n
i1 j1 · · · in jn

)
is a permutation of the elements 1, . . . , 2n. �e sign of a permutation is 1 or −1 if the permutation is
even or odd respectively. As we can see, the Pfa�an is very similar to equation 1. �e only di�erence
is that we have an extra sign in the aP terms. �is might make the equation more complicated, but the
following lemma is what makes the Pfa�an so useful for us.

Lemma 3.1.1 (Muir [4]) If A is a skew symmetric matrix, then det(A) = (pf(A))2

�is is also why orientations are so important for the Pfa�an. Since, for an oriented graph we can
construct its skew-adjacency matrix. �is way, we only need to calculate its determinant to know its
Pfa�an.

As an example of the Pfa�an, lets take the following skew-symmetric matrix B of graph G with
orientation −→G

1

3

2

4

B =


0 1 −1 0
−1 0 0 1
−1 0 0 −1
0 −1 1 0

 ,
−→
G =

We have the following partitions, P1 = {{1, 2}, {3, 4}}, P2 = {{1, 3}, {2, 4}} and
P3 = {{1, 4}, {2, 3}}. �is gives us permutations(

1 2 3 4
1 2 3 4

)
= ( ),

(
1 2 3 4
1 3 2 4

)
= (2 3),

(
1 2 3 4
1 4 2 3

)
= (2 4)(4 3)
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�us, we get

pf(B) = sgn
(
1 2 3 4
1 2 3 4

)
b12b34 + sgn

(
1 2 3 4
1 3 2 4

)
b13b24

+ sgn
(
1 2 3 4
1 4 2 3

)
b14b23

= b12b34 − b13b24 + b14b23

= −1 + 1 + 0 = 0

Of course, this calculation is just to demonstrate. We could have far more easily calculated the
determinant. However, although the calculation of the Pfa�an is a lot easier than that of Equation 1
we have now seen that the Pfa�an does not always calculate the number of perfect matchings. �is is
because we now deal with the signs of the permutations. It is, however, quite straightforward to realise
that the absolute value of the Pfa�an is always smaller or equal to the number of perfect matchings of
its corresponding graph. �erefore we have the following de�nition

De�nition 3.1.1 For a graph G with orientation
−→
G , if the Pfa�an of As(

−→
G) enumerates all perfect

matchings of G then
−→
G is a Pfa�an orientation. Furthermore, we also call a graph G for which such

an orientation exists Pfa�an.

3.2 Pfa�an Orientation
In this section we give some lemma’s and the theorem which states what makes an orientation Pfa�an.
All of these have been gathered from Lovász-Plummer [2].

�eorem 3.2.1 (Lovász-Plummer) Let G be any even graph and
−→
G , an orientation of G. �en the

following four properties are equivalent:

1.
−→
G is a Pfa�an orientation of G.

2. Every perfect matching of G has the same sign relative to
−→
G .

3. Every nice cycle in G is oddly oriented relative to
−→
G .

4. If G has a perfect matching, then for some perfect matching F , every F -alternating cycle is oddly
oriented relative to

−→
G .

We will be using this theorem a lot in this thesis when proving an orientation is Pfa�an or not.

Lemma 3.2.2 If
−→
G is a connected plane directed graph such that every face’s boundary, except possibly

the in�nite face, has an odd number of lines oriented clockwise, then in every cycle the number of lines
oriented clockwise is of opposite parity to the number of points of

−→
G inside the cycle. Consequently,

−→
G is

Pfa�an.

It is easy to see that a graph with the properties described in Lemma 3.2.2 would indeed be Pfa�an.
As when the number of points inside of some cycle C is even, which includes all nice cycles according
to Lemma 2.2.1, then C is always oddly oriented. �is means condition 3 of �eorem 3.2.1 is satis�ed
and thus the graph is Pfa�an. �is lemma will make �nding a Pfa�an orientation and checking if an
orientation is Pfa�an a lot simpler later on.
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Lemma 3.2.3 Let
−→
G be an arbitrary orientation of an undirected graph G. Let F1 and F2 be any two

perfect matchings ofG and let k denote the number of evenly oriented alternating cycles formed in F1∪F2.
�en sgn(F1) sgn(F2) = (−1)k .

Here, the sign of a perfect matching is de�ned as the sign of its corresponding term in the Pfa�an.
�is lemma can be very useful because if we know the sign of a perfect matching we can then very
easily �nd the sign of other perfect matchings by looking at their alternating cycles.
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4 Dimer Problem on a Square Lattice
In this chapter we will discuss the orientation given by Kasteleyn. Using this orientation we will �nd a
formula to calculate the number of perfect matchings of a la�ice graph in the plane.

4.1 Pfa�an Orientation of the Lattice Graph
We will now construct the formula found by Kasteleyn for the number of dimer coverings of an m× n
la�ice or the number of perfect matchings of the m × n la�ice graph. For this, we will look at two
slightly di�erent methods, which both result in the same outcome. We will look at the method Kaste-
leyn came up with and the method found in Lovasz Plummer [2].

Kasteleyn, in his calculations, made a distinction between vertical and horizontal dimers. He indicated
the number of horizontal dimers by N2 and the number of vertical dimers by N ′2. To not only be able
to calculate the number of ways to fully cover the la�ice but also calculate how many horizontal and
vertical dimers are needed for each covering Kasteleyn used the con�guration generating function

Zmn(zh, zv) =
∑
N2,N ′2

g(N2, N
′
2)z

N2
h zN

′
2

v

where the sum runs over all combinations N2 and N ′2 such that 2(N2 +N ′2) = mn and zh and zv are
two variables. Here, g(N2, N

′
2) is the combinatorial factor. �is is the number of ways to cover the

la�ice with N2 vertical and N ′2 horizontal dimers. Also, because we need to have an even number of
vertices for Zmn(zh, zv) to not be zero we let m be even. �is means that, for example, for the 2 × 3
la�ice we would have

Z23(zh, zv) = z3h + 2zhz
2
v

since we have 1 covering with 3 horizontal dimers and 2 coverings with 1 horizontal and 2 vertical
dimers.

1

3

5

2

4

6

1

3

5

2

4

6

1

3

5

2

4

6

Figure 1: Coverings given by Z23(zh, zv)

We can also see now that if we chose zh and zv to be equal to 1 we will simply get the total number
of coverings.
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Kasteleyn has constructed a skew adjacency matrix of the la�ice. In this matrix the entries are the
following

D(i, j ; i+ 1, j) = zh for 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n
D(i, j ; i, j + 1) = (−1)izv for 1 ≤ i ≤ m, 1 ≤ j ≤ n− 1

D(i, j ; i′, j′) = −D(i′, j′ ; i, j) for 1 ≤ i, i′ ≤ m, 1 ≤ j, j′ ≤ n
All other entries = 0

(3)

In the graphs corresponding to these entries we label the vertices by

p := (j − 1)m+ i for 1 ≤ i ≤ m, 1 ≤ j ≤ n (4)

as we have done before. �is means we label the graph le�-to-right, bo�om-up. �e matrix D now looks
like this

D =



zhQm zvFm
−zvFm zhQm zvFm

−zvFm
. . .

zvFm
−zvFm zhQm


where Qm and Fm are the m×m matrices

Qm =



0 1
−1 0 1

−1
. . .

1
−1 0


, Fm =



−1 0
0 1 0

0
. . .

−1 0
0 1


�e matrices we use to represent the orientations might di�er somewhat from what Kasteleyn has

done. However, the Pfa�an only depends on it’s partitions P so we will still get the same results. As
will not be very surprising, the coe�cients Kasteleyn chose correspond to a Pfa�an orientation. If we
look at the graph corresponding to these coe�cients, where zh and zv are the weights of horizontal and
vertical edges respectively, it would look like �gure 2 below.
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8

12

16

Figure 2: La�ice Graph with Orientation

Using Lemma 3.2.2 we can now easily verify that this orientation is indeed Pfa�an. Since the ori-
entation is very repetitive we only have two kinds of faces. �ese faces have either 1 or 3 edges in the
direction of the orientation making them oddly oriented. �us, Lemma 3.2.2 tells us that this orientation
is Pfa�an.

4.2 Enumerating Perfect Matchings of the Lattice Graph
Since D is a skew-symmetric matrix we can calculate its Pfa�an by �nding its determinant according
to Lemma 3.1.1. To do so we will use the method found in Chapter 8 of Lovasz Plummer [2] using
Kronecker products. To use this method we will rewrite our matrix D somewhat by multiplying rows
and columns by−1. We multiply the �rst column, third and fourth row, fourth and ��h column, seventh
and eight row, and so on. �is way the absolute value of the determinant stays the same so we don’t
change the Pfa�an. �e changes to D result in the following matrix

D1 =



zhAm zvIm
−zvIm zhAm zvIm

−zvIm
. . .

zvIm
−zvIm zhAm


, for m = 4r, (r = 1, 2, ...)

D2 =



zhAm −zvIm
zvIm zhAm −zvIm

zvIm
. . .

−zvIm
zvIm zhAm


, for m = 4r − 2, (r = 1, 2, ...)

We will see that both matrices produce the same result so we can choose either one to work with.
We wil continue with D1. We can write D1 as the sum of two Kronecker products

D1 = zh(In ⊗Am) + zv(Qn ⊗ Im)

14



where Am is the m×m matrix

Am =



0 1
1 0 1

1
. . .

1
1 0


Because we can write D1 in this sum of Kronecker products it is now fairly easy to �nd its mn

eigenvalues. �is is due to the following property, also shown as a slight variation in Lovasz Plum-
mer. Let Am have eigenvalues λ1, . . . , λm with eigenvectors a1, . . . ,am and let Qn have eigenvalues
µ1, . . . , µn with eigenvectors q1, . . . , qn. �en, because we have

D1(qi ⊗ aj) = (zh(In ⊗Am) + zv(Qn ⊗ Im))(qi ⊗ aj)

= zh(Inqi ⊗Amaj) + zv(Qnqi ⊗ Imaj)

= zh(qi ⊗ λiaj) + zv(µjqi ⊗ aj)

= (zhλi + zvµj)(qi ⊗ aj)

D1 has eigenvectors qi ⊗ aj with eigenvalues zhλi + zvµj . �us, to calculate the eigenvalues of
D1 we only need to �nd the eigenvalues of our matrices Am and Qn. �is is also why we could freely
choose betweenD1 andD2 because if we choseD2 we would have had−Qn which has the same eigen-
values in absolute value as Qn.

We will start with our matrix Am and calculate it’s characteristic polynomial. We will do this by
replicating a solution found in Lovasz Combinatiorial Problems and Excercises [5] for problem 1.29.
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pm(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −1
−1 λ −1

−1
. . .

−1
−1 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(5)

= λ

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −1
−1 λ −1

−1
. . .

−1
−1 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
m−1

+

∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 0
−1 λ −1

−1
. . .

−1
−1 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
m−1

(6)

= λ

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −1
−1 λ −1

−1
. . .

−1
−1 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
m−1

−

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −1
−1 λ −1

−1
. . .

−1
−1 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
m−2

(7)

= λpm−1(λ)− pm−2(λ) (8)

We will set p0(λ) = 1 and p−1(λ) = 0 so the equation holds for all m ≥ 1. We will solve pm(λ) =
λpm−1(λ)−pm−2(λ) by substituting in xm for pm(λ) and dividing by xm−2. �is gives us the following
equation

x2 − λx+ 1 = 0

whose roots are
ϑ1 =

λ+
√
λ2 − 4

2
, ϑ2 =

λ−
√
λ2 − 4

2
,

�en
pm(λ) = c1ϑ

m+1
1 + c2ϑ

m+1
2 .

Taking m = −1 and 0 we get

c1 + c2 = 0

c1ϑ1 + c2ϑ2 = 1.

Hence
c1 =

1√
λ2 − 4

, c2 =
−1√
λ2 − 4

and
pm(λ) =

1√
λ2 − 4

(ϑm+1
1 − ϑm+1

2 ).
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�us if
pm(λ) = 0,

then
ϑm+1
1 = ϑm+1

2

or, equivalently,
ϑ1 = ε2ϑ2,

where
ε = e

kπi
m+1 , 0 ≤ k ≤ m.

Solving ϑ1 = ε2ϑ2 for λ we obtain

λ = ±(ε+ 1

ε
) = ±2 cos kπ

m+ 1
.

Here we may omit± since−cos kπ
m+1 = cos (m+1−k)π

m+1 . It is easily see by substitution that these numbers
are roots of pm(λ) for k = 1, . . . ,m; therefore, it is not a root for k = 0. �us the eigenvalues of Am
are

λk = 2 cos kπ

m+ 1
, k = 1, . . . ,m.

For the eigenvalues of our matrix Qn we can use the same procedure giving us the eigenvalues

µl = 2i cos lπ

n+ 1
, l = 1, . . . , n.

Since the eigenvalues of our matrix D1 are zhλi + zhµj , these are equal to

2

(
zh cos kπ

m+ 1
+ izv cos lπ

n+ 1

)
, k = 1, . . . ,m; l = 1, . . . , n. (9)

�e determinant ofD1 is now the product of these eigenvalues. However, what we want to know is the
determinant of matrix D and to do so we need to calculate the absolute value of the determinant of D1.
Because of this, we can use the absolute values of equation 9. Giving us

2mn
m∏
k=1

n∏
l=1

(
z2h cos2 kπ

m+ 1
+ z2v cos2 lπ

n+ 1

) 1
2

. (10)

Hence, because of Lemma 3.1.1

Zmn(zh, zv) = 2
1
2mn

m∏
k=1

n∏
l=1

(
z2h cos2 kπ

m+ 1
+ z2v cos2 lπ

n+ 1

) 1
4

. (11)
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5 Torus Extension
In this section we will �nd a formula for the number of perfect matchings of the la�ice graph on a torus.
We will again take m to be even here. Firstly we will prove that for an m × n la�ice where n is even
there is no Pfa�an orientation. A�er that, we will show an orientation that we prove to be Pfa�an for
m × n la�ices where m or n are equal to 2, or when n is odd. Lastly, we will calculate the respective
formulas for the enumeration of the perfect matchings of these la�ice graphs.

5.1 No Pfa�an Orientation for Even n

To prove a graph does not have a Pfa�an orientation we need to look at �eorem 3.2.1 More precisely
we will look at condition 3 of this �eorem. �is condition states that every nice cycle in the graph has
to be oddly oriented relative to its orientation. �is means that, to prove that the m × n la�ice graph
on the torus with even n andm and n greater or equal to 4 does not have a Pfa�an orientation we only
need to �nd one nice cycle which is evenly oriented. To do this we will show a speci�c example where
a nice cycle is evenly oriented and prove that this holds for all la�ices with even n.

Consider the graph in �gure 3 with the labeled edges from a to i. We will be looking at the cycles
with the following edges: (a,b,c,d), (b,f,h,e), (c,g,i,f) and (a,e,h,i,g,d).

a b c dd

h i

e f g

1

5

9

13

2

6

10

14

3

7

11

15

4

8

12

16

5 6 7 8

2 3 4

Figure 3: Torus Graph with labeled edges

Note that edge d is shown twice but represents one edge because it loops around the torus. It can be
easily checked that these are nice cycles. Since they are nice cycles we would want all of them to be
oddly oriented to satisfy condition 3 of �eorem 3.2.1. Let’s say the edges can have a value of 0 or 1.
We’ll say going to the right and going down gets the value 1 where going le� or up gets the value of
0. We are interested in the number of edges that go with the orientation modulo 2 since we want to
know if it is even or odd. �is means that if we want to know this number of edges from, for example,
the cycle (b,f,h,e) we would write this as b + f + (1-h) + (1-e). �is is because for h and e to go with the
orientation they would get the value 0 but their terms would still need to contribute 1 to the number
of edges going with the orientation. Since we want all nice cycles to be oddly oriented we want all of
these sums to be equal to 1 mod 2. �is means we get the following system of equations.
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a+ b+ c+ d = 1mod 2
b+ f + (1− h) + (1− e) = 1mod 2
c+ g + (1− i) + (1− f) = 1mod 2

a+ e+ h+ i+ (1− g) + d = 1mod 2

�is can be simpli�ed to

a+ b+ c+ d = 1mod 2 (12a)
b+ f + h+ e = 1mod 2 (12b)
c+ g + i+ f = 1mod 2 (12c)

a+ e+ h+ i+ g + d = 0mod 2 (12d)

If we add all these equation together we will see that this gives a contradiction. Since all edges are
counted exactly twice, adding all equation gives

2(a+ b+ c+ d+ e+ f + g + h+ i) = 1mod 2 (13)

which can never be true. �is means that we cannot have an orientation where all nice cycles are
oddly oriented, thus we cannot have a Pfa�an orientation for this 4 × 4 la�ice on the torus. Now, we
can extend this la�ice with multiples of 2 vertically and the same thing still holds true. When we do
this in the horizontal direction we can look at our edge d as representing multiple edges. �is would
mean Equation 12a and 12d both get a multiple of 2 edges added to them. �is means Equation 13 will
still be of the same form and thus our result holds for all even m and n.

5.2 Pfa�an Orientation of the Lattice Graph on the Torus
�e orientation we will prove to be Pfa�an is one that Kasteleyn partly used in his result for the dimer
problem on a torus. However, in his result this orientation wasn’t Pfa�an since it was for all n and all
even m. �e orientation is the following

D(i, j ; i+ 1, j) = zh for 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n
D(i, j ; i, j + 1) = (−1)izv for 1 ≤ i ≤ m, 1 ≤ j ≤ n− 1

D(m, j ; 1, j) = −zh for 1 ≤ j ≤ n
D(i, n ; i, 1) = (−1)i+1zv for 1 ≤ i ≤ m
D(i, j ; i′, j′) = −D(i′, j′ ; i, j) for 1 ≤ i, i′ ≤ m, 1 ≤ j, j′ ≤ n
All other entries = 0

(14)

As we can see the orientation we use is the same on the torus as it was in the plane. �e only thing
added is that the boundaries of the graph are now connected and are oriented opposite to the ongoing
orientation. If we look at the graph it looks like this
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Figure 4: Orientation on the Torus

In Section 4.1 we have proven that our orientation is Pfa�an using Lemma 3.2.2. However, this
Lemma stated that the graph has to be a planar graph, which our new graph clearly isn’t. Despite this,
we can still use Lemma 3.2.2 in smaller portions. Firstly, we know all even cycles that don’t go around
the torus are oddly oriented. We saw this before in section 4.1, where now the only thing that’s di�erent
is the extra ”border” edges. �is hasn’t changed the orientation of the cycles in any way and by ignoring
these extra edges the graph becomes planar. �is way the Lemma can still be used. In the same way this
holds true for cycles that go across the ”border” of the torus, but don’t fully loop around it. �is can be
done because if we redraw our la�ice by shi�ing everything one step to the right we get the following
representation

1

5

9

2

6

10

3

7

11

4

8

12

Figure 5: Alternative Drawing of Figure 4

And now, we can again use Lemma 3.2.2 for this graph by ignoring the border edges because all
face’s boundaries are oddly oriented. We can do this as many times as we need to, also by shi�ing up
or down, to �nd that all nice cycles that don’t loop around the torus are oddly oriented. �is now only
leaves us to check nice cycles that loop the torus horizontally, vertically or in both directions. Now,
moving on we will look at these cycles for the two cases described earlier.

5.2.1 �e 2× n and m× 2 Case

We will start with the 2×n andm×2 cases where n andm are even. Proving an orientation is Pfa�an
takes a lot more steps than proving one is not. However, for these cases the proof stays quite concise.
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For this proof we will use condition 4 of �eorem 3.2.1. We will use two di�erent perfect matchings,
one for each case. We will call these Fn and Fm. Here, Fn is the perfect matching consisting of only
horizontal edges and Fm the perfect matching consisting of only vertical edges. Figure 6 will clarify.
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Figure 6: Perfect matchings Fn and Fm for 2× n and m× 2 la�ice graphs on the torus

It can be easily checked that the only Fn-alternating cycles are a square, a straight horizontal cycle
and two vertical cycles that �ip sides. �ese are shown in �gure 7.

1

3

2

4

1 2

1

3

5

7

2

4

6

8

3

5

7

9

4

6

8

10

Figure 7: Fn-alternating cycles for a 2× 4 la�ice graph on the torus

As we can see all of these cycles are oddly oriented making the orientation Pfa�an. When we extend
the graph vertically by a multiple of 2 we add an even number of edges that go with the orientation.
Because of this, the orientation is Pfa�an for all 2×n la�ice graphs on the torus with even n. �e same
result can be found for the m× 2 la�ice graph on the torus using perfect matching Fm.

5.2.2 �e Odd n Case

As has been said before, proving an orientation is Pfa�an will take quite some steps. We will work in
the same way as before, meaning we will try to satisfy condition 4 of �eorem 3.2.1. Since our graph
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can be much larger this time around there will be a lot more cycles that we will need to check. Because
of this, we want to be able to link a larger cycle of which we don’t know the parity to a simpler cycle
of which we do know the parity. When checking for the parity of alternating cycles we will be using
perfect matching Fn as our alternating set.

We won’t have to check alternating cycles that lie in the plane since the orientation is made such
that the perfect matchings in the plane all have sign 1.

First of all, let us describe this simpler cycle. We will call the following cycle in red H0.

1 2 3 4

Figure 8: Cycle H0

As we can see Cycle H0 is just the shortest horizontal cycle around the torus. Important to note
here is that H0 is always oddly orientated with this orientation. Because of the nature of an alternating
cycle, the only possible cycles that loop around the torus are cycles that loop the torus horizontally an
odd amount of times and vertically an even amount of times. Here, we also see not looping around a
side as an even amount of times. �at these are the only possible cycles has to do with the fact that we
can’t loop the torus vertically once when we have an odd number of vertical vertices. It is important to
remember that, since m is even and n is odd, these cycles always have an even number of horizontal
edges and an even number of vertical edges.

We will construct an algorithm to reduce Fn-alternating cycles to Cycle H0. Let C be any cycle on
the la�ice graph on the torus. If C surrounds a rectangle in such a way that three sides of the rectangle
connect to the same side split by the cycle, then we can remove the rectangle without changing the
parity of the cycle. �is may sound a li�le confusing considering technically a cycle looping the torus
doesn’t split the graph. �erefore, let’s look at a li�le example to clarify.

1 2 3 4

6 7

Figure 9: Cycle example

Let the black and red arrows represent our cycle. As we can see by drawing in the green arrow we
create a rectangle of which its three red edges connect to a di�erent ”side” than its green edge. Again,
this is technically the same side on the torus. Now, what we can do here is remove the red edges of
the rectangle and connect the green edge, oriented according to the orientation, to create H0. In doing
so we remove three edges agreeing with the orientation and we add one. �is way the parity of the
cycle hasn’t changed. Now because we have H0, of which we know is oddly oriented, we know that
our original cycle is also oddly oriented.

�ere are three types of rectangles for which we can use the above method. �ese are:

1. even × even
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2. odd × odd
3. even × odd

�e even×even and odd×odd rectangles can always be removed, without changing the parity of
the cycle, no ma�er on what side the green edge lays. �e even×odd rectangles however, can only be
removed when the green arrow lays on either of the odd sides. Because of the way alternating cycles are
made any Fn-alternating cycle that loops the torus horizontally once can be reduced to theH0 cycle by
removing all rectangles. �is means that all Fn-alternating cycles looping the torus horizontally once
are oddly oriented.

When we have Fn-alternating cycles looping the torus multiple times we always end up with the
same situation a�er reducing the cycle. Let’s say we loop the torus vertically e times and horizontally
o times. A�er all rectangles have been removed from the cycle we will see that all horizontal edges
will agree with the orientation, except the border edges. �is means that for the horizontal edges we
always have (m − 1) ∗ o edges agreeing with the orientation, which is odd. For the vertical edges, we
can pair edges that go along the same direction. What we will have le� is pairs on the borders which
will di�er in direction. �is means we will have an even amount of edges agreeing with the orientation,
the �rst pairs, together with the e edges, the second pairs. �is means for the vertical edges we have an
even amount of edges agreeing with the orientation. Pu�ing the horizontal and vertical edges together
we see that we always have an odd number of edges agreeing with the orientation, meaning that the
original cycle was oddly oriented.

Since we now have seen that all possible Fn-alternating cycles on the m × n (odd n) la�ice graph
on the torus are oddly oriented, we can conclude that our orientation at Equation 14 is indeed Pfa�an.

5.3 Kasteleyn’s Torus Result
As we have proven in Chapter 5.1 the m × n la�ice graph on the torus with even n does not have a
Pfa�an orientation. Despite this, Kasteleyn still managed to �nd a formula to enumerate the number
of perfect matchings. �e way he did this is by using four di�erent orientations. �e orientation we are
using is one of those. Except, as we already saw, none of those are Pfa�an for even n. �e problem with
the orientations is that their Pfa�ans count some perfect matchings with the wrong sign. We can check
which matchings are counted with which sign by using the method we used in the previous section.
Because, for even n, it is possible to loop around the torus vertically once it would be useful to use a
second simpler cycle V0. �is cycle would be the shortest cycle vertically around the torus.

Now that we can loop around the torus vertically we can have any combination of vertical and hor-
izontal loops around the torus. It can be checked that, for our orientation, all Fn-alternating cycles will
still be oddly oriented except for cycles that loop the torus an odd amount of times horizontally and
vertically. In that case we use the same method as before. �at way we get (m− 1) ∗ o horizontal edges
agreeing with the orientation, which is odd. For the vertical edges we have an even number of pairs
agreeing with the orientation again together with e edges. �is is odd as well, meaning that the whole
cycle is evenly oriented. According to Lemma 3.2.3 the perfect matchings creating these Fn-alternating
cycles will be counted with a negative sign in the Pfa�an. In the same way, the other orientations Kaste-
leyn presents in [1] could be checked to see which perfect matchings are counted with which signs.
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5.4 Enumerating Perfect Matchings on the Torus
We will now determine the formula to count the number of perfect matchings of the la�ice graph on the
torus for odd n. We use the following notation for our con�guration generating function on the torus:
Z(t)
mn(zh, zv). To do this we will �rst have a look at the skew adjacency matrix of the graph in Figure 4.

D(t) =



zhQ
(t)
m zvFm zvFm

−zvFm zhQ
(t)
m zvFm

−zvFm
. . .

zvFm

−zvFm −zvFm zhQ
(t)
m


where Q(t)

m is the m×m matrix

Q(t)
m =



0 1 0 1
−1 0 1 0

−1
. . .

0 1
−1 0 −1 0


,

As we can see the only di�erences are the added 1 and −1 in the top-right and bo�om-le� corners. To
calculate the Pfa�an of matrix D(t) we will, again, have to calculate its determinant. To do this we will
use the same method Kasteleyn used to calculate the Pfa�an in the plane. However, we will present a
li�le more details.

In Chapter 4 we could multiply some rows and columns to be able to write our matrix as a sum of
kronecker products containing two identity matrices. �is time around however, the terms that were
added now prevent us from performing this trick. �erefore, we have to use a di�erent method. We
will, however, write D(t) as a sum of Kronecker products again like so

D(t) = zh(In ⊗Q(t)
m ) + zv(Q

(t)
n ⊗ Fm). (15)

What we will now do is try to get D(t) into a more suitable form D̃(t) to calculate its determinant.
We will do this by diagonalizing the matrices Q(t)

m and Q(t)
n with the following matrix

Vn(v, h) =
1√
n
exp

v(2h− 1)πi

n
.

�e following result from [6] will show that D(t) is almost diagonalizable by Vn ⊗ Vm

D̃(t) = (V −1n ⊗ V −1m )D(t)(Vn ⊗ Vm) (16)

= (V −1n ⊗ V −1m )
(
zh(In ⊗Q(t)

m ) + zv(Q
(t)
n ⊗ Fm)

)
(Vn ⊗ Vm) (17)

= zh(V
−1
n InVn ⊗ V −1m Q(t)

m Vm) + zv(V
−1
n Q(t)

n Vn ⊗ V −1m FmVm) (18)

= zh(Ĩn ⊗ Q̃(t)
m ) + zv(Q̃

(t)
n ⊗ F̃m) (19)
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D(t) is almost diagonalizable because althoughQ(t)
m ,Q(t)

n and In are diagonalizable Fm is not. How-
ever, we will see that this won’t bring up any major issues.

We will write out the new matrices.

Q̃(t)
m =


λ1 0

λ2
. . .

0 λm

, Q̃(t)
n =


µ1 0

µ2

. . .

0 µn

 (20)

F̃m =


0 −1

−1

. .
.

−1 0

, Ĩn = In (21)

Writing out Q̃(t)
m and Q̃(t)

n we can easily see that their eigenvalues are equal to e
(2k−1)π

m − e−
(2k−1)π

m

and e
(2l−1)π

n − e−
(2l−1)π

n , thus

λk = 2i sin
(2k − 1)π

m
(k = 1, 2, . . . ,m), (22)

µl = 2i sin
(2l − 1)π

n
(l = 1, 2, . . . , n). (23)

If we write out D̃(t) using equation 19 we �nd that it consist of n nonzero m × m blocks on the
diagonal. �ese are the following

zhλ1 zvµl
. . .

. . .

zhλm2 zvµl

zvµl zhλm2 +1

. . .
. . .

zvµl zhλm


, for l = 1, 2, ..., n. (24)

We can switch two rows and two columns of D̃(t) to create a 2× 2 block on the diagonal. �is way
the determinant of D̃(t) doesn’t change. We can do this such that the entire matrix will be made up out
of the following 2× 2 blocks. [

zhλk zvµl
zvµl zhλk+m

2

]
(25)

�e determinant of a block diagonal matrix is the product of the determinants of the blocks. �us,
we now �nally get a simple to calculate equation. A�er �lling in the eigenvalues of Q̃(t)

m and Q̃(t)
n and

using the fact that sin(x+ π) = − sin(x) we get the following equation

det(D̃(t)) =

m
2∏

k=1

n∏
l=1

4

(
z2h sin

2 (2k − 1)π

m
+ z2v sin

2 (2l − 1)π

n

)
(26)

A�er applying Lemma 3.1.1 we �nd our desired equation
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Z(t)
mn(zh, zv) =

m
2∏

k=1

n∏
l=1

2

(
z2h sin

2 (2k − 1)π

m
+ z2v sin

2 (2l − 1)π

n

) 1
2

, for odd n (27)

For the cases where m or n are equal to 2 we use the same steps except our matrix D(t) will look a
li�le di�erent. By replacing Q(t)

m or Q(t)
n with (

0 2
−2 0

)
in Equation 15, depending on which is equal to 2, we get the correct matrix. �is will result in the
following two equations.

Z
(t)
2n (zh, zv) =

n∏
l=1

2

(
z2h + z2vsin2(

(2l − 1)π

n
)

) 1
2

, for n even (28)

Z
(t)
m2(zh, zv) =

m
2∏

k=1

4

(
z2hsin2(

(2k − 1)π

m
) + z2v

)
(29)
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6 Conclusion and Future Research
Using previous works from Kasteleyn and Lovász and Plummer we managed to create the formula to
enumerate the number of perfect matchings of la�ice graphs on the torus. To get to this result we made
sure to �ll in a lot of the things that Kasteleyn le� out in his proofs. We also used some variatons and
di�erent methods to get to our end results. We hope this has made the results more straightforward to
get to. Although this result is not a brand new thing, we hope that the algorithm we created can help
to �nd more Pfa�an orientations. Not only for the la�ice but also for the triangular and hexagonal
la�ices.
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