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ABSTRACT 
Collecting accurate and precise emotion ground truth labels for 
mobile video watching is essential for ensuring meaningful predic-
tions. However, video-based emotion annotation techniques either 
rely on post-stimulus discrete self-reports, or allow real-time, con-
tinuous emotion annotations (RCEA) only for desktop settings. 
Following a user-centric approach, we designed an RCEA tech-
nique for mobile video watching, and validated its usability and 
reliability in a controlled, indoor (N=12) and later outdoor (N=20) 
study. Drawing on physiological measures, interaction logs, and 
subjective workload reports, we show that (1) RCEA is perceived 
to be usable for annotating emotions while mobile video watch-
ing, without increasing users’ mental workload (2) the resulting 
time-variant annotations are comparable with intended emotion 
attributes of the video stimuli (classification error for valence: 
8.3%; arousal: 25%). We contribute a validated annotation tech-
nique and associated annotation fusion method, that is suitable 
for collecting fine-grained emotion annotations while users watch 
mobile videos. 

Author Keywords 
Emotion; annotation; mobile; video; real-time; continuous; labels 

CCS Concepts 
•Human-centered computing → Human computer interac-
tion (HCI); Graphical user interfaces; User studies; 

INTRODUCTION 
Mobile video consumption can take place both inside and outside 
the home [74], where it has become a common practice across 
countries (e.g., in China [56]) to consume mobile video while in 
transit (walking, commuting, or awaiting transit), especially in 
(<10 min.) short-form [11]. Whether the end goal is to create pos-
itive associations with short form video [65], quantify emotion re-
sponses to mobile advertisements [78], or improve learning gains 
in mobile MOOC videos [112], it is important to collect accurate 
and precise ground truth labels throughout the user’s watching 
experience. However, this poses challenges for real-time and 
continuous mobile annotation, as performing typical tasks (e.g., 
mobile video) related to mobile contexts (e.g., crowded bus con-
text) taxes attention and demands users to multi-task [27,75,99], 
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Figure 1. Our real-time, continuous emotion annotation (RCEA) method 
for mobile devices. 

especially since cognitive resources are reserved partly for mon-
itoring the outside context [106]. This necessitates new tools 
for continuous annotation of affective reactions of users while 
they watch mobile videos, whereby such annotations can only be 
generated in such a setting, so must be provided in real-time. 

While there has been much research on real-time, continuous emo-
tion annotation techniques (e.g., FEELtrace [23], DARMA [37], 
CASE [92]) that allow users to input their valence and arousal [55] 
continuously, most of these tools are designed for static, desk-
top environments, which require additional devices such as a 
mouse [23] and physical joystick [91]. This makes them unsuit-
able for mobile interaction. Facial expressions are also commonly 
used for continuous emotion annotation [78,95], however in ad-
dition to privacy concerns, such expressions do not always overtly 
show emotion [8]. On the other hand, research on mobile emo-
tion sensing has focused on implicit sensing methods (e.g., touch 
interactions [69] or typing patterns [36]) to both free the user from 
manual annotation and sense affective states automatically. How-
ever, these works still require a ground truth to compare against 
[51,80], where these are typically provided via post-interaction 
or post-stimuli self-reports, that are discrete in nature (e.g., Self-
Assessment Manikin (SAM) [16]). However, post-stimuli self-
reports are temporally imprecise for mobile video watching, due 
to the time-varying nature of human emotion [70,95]. Moreover, 
the mobile form factor with corresponding smaller screen displays 
can lead to higher mental workload and distraction while watching 
mobile videos [19,112]. This requires addressing the challenge of 
how to minimize the mental workload of users while they annotate 
their emotions continuously on a mobile device on the go. 

In this paper, we ask: RQ1: How can we design a mobile anno-
tation method that is suitable for collecting continuous emotion 
self-reports while users watch mobile videos in a mobile setting? 
Here, we followed a user-centric approach [73], and designed 
a real-time, continuous emotion annotation (RCEA) technique for 
mobile devices (Figure 1). To evaluate our method, we conducted 
a controlled, indoor laboratory experiment (N=12) and later a con-
trolled, mobile experiment (N=20), and drawing on subjective and 
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physiological measurements we compare the usability and mental 
workload of our RCEA method against discrete emotion input 
methods. RQ2: Are the continuous emotion labels collected in a 
mobile setting using our real-time continuous annotation method 
suitable for building accurate and precise emotion ground truth 
labels? Here, we use the annotations collected from our mobile 
study. We first compare them with the post-stimuli annotations 
collected through discrete emotion input, and thereafter test their 
consistency with the validated emotion annotations for the tested 
video stimuli from the MAHNOB database [82,97]. To ensure 
such continuous emotion annotations can be used for building 
accurate and precise ground truth emotion labels, we propose an 
annotation fusion method to aggregate annotations across users. 

Our work offers two primary contributions: (1) We design and 
evaluate a real-time, continuous emotion annotation technique 
for mobile video watching that can be used while mobile. Our 
technique enables researchers to collect fine-grained, temporal 
emotion annotations of valence and arousal while users are 
watching mobile videos (e.g., experiencing >1 emotion when 
entire video is labeled ’happy’). Through controlled indoor and 
outdoor evaluations, we show that our method generally does 
not incur extra mental workload (measured through subjective 
and physiological measures) over discrete input. (2) We verify 
and explain the consistency and reliability (classification errors 
of 8.3% and 25% for valence and arousal, respectively) of our 
continuous annotation labels, and provide an annotation fusion 
method that enables researchers to aggregate continuous ratings 
across users for building accurate and precise ground truth labels. 
Below, we start with a survey of related work. 

RELATED WORK 
Several research strands influenced our approach of continuous 
annotation: emotion models, existing emotion annotation software 
and tools, and lastly, mobile emotion annotation techniques. 

Emotion models 
Researchers primarily use two kinds of emotion models for 
collecting emotion annotations from users [93]: categorical and 
dimensional. Categorical emotion models divide emotions into 
discrete categories. For example, Ekman’s classic six-basic-
emotion model [31] distills emotions into six basic emotions: 
happy, sad, anger, fear, surprise, and disgust. More complex emo-
tions are viewed as combinations of these basic ones. To this end, 
Plutchik [79] proposed a wheel model that describes emotions as 
a combination of eight basic emotions, with some (semantic) over-
lap to Ekman’s. Dimensional models, also known as continuous 
emotion models, describe emotions using a multi-dimensional 
space. Compared with discrete models, these have a finer level 
of granularity by introducing continuous variables to describe 
emotions [93]. These models, such as Russell’s Circumplex Model 
of Emotions [85] or the Pleasure-Arousal-Dominance model [86] 
are used by many contemporary annotation tools [23,37,92]. For 
post-stimulus annotation, multiple dimensions (d≥2) are usually 
used [52,97]. Linear mapping techniques between discrete and 
dimensional models have previously shown high correspondence 
along valence and arousal for annotating emotions in music, with 
the major difference being the poorer resolution of discrete models 
in characterizing emotionally ambiguous examples [30]. In our 
work, we draw on dimensional models (due to finer granularity of 

annotations), and consider only two dimensions, given our task of 
simultaneous video watching and annotation in a mobile setting. 

Emotion annotation techniques 
Widely used annotation techniques, such as the Self-Assesment 
Manikin (SAM) [16], allows users to annotate their emotions 
using a discrete scale. These methods [17, 97], which are 
known as discrete and post-stimulus methods, compartmentalize 
annotations, which could yield inconsistency in inter-rater agree-
ment [67]. Importantly, these post-stimulus, discrete annotation 
techniques cannot capture the temporal nature of emotions that can 
occur within temporal media (e.g., video). This led researchers to 
develop real-time, continuous emotion annotation techniques to 
obtain finer-grained emotion ground truth labels. Previous work 
in this space aimed to measure valence and arousal in real-time, 
however they require auxiliary devices such as a mouse (e.g., 
FEELTrace [23], GTrace [24], PAGAN [67]) or a physical joystick 
(e.g., DARMA [37], CASE [92]) that allow users to continuously 
input their emotions. An important requirement shared amongst 
these is to lower users’ mental workload while annotating, which 
necessitates the usage of auxiliary devices. Additionally, most of 
these techniques [14,23,53] require an additional interface to the 
video player for providing feedback of which emotion the user 
is annotating. For example, Girard et al. [37] used an additional 
coordinator to give users feedback about which emotion they are 
annotating. However, Melhart et al. [67] argued that additional 
information could lead to potential distraction to annotators. 
Thus, recent research by David et al. [67] and Lopes et al. [59] 
have proposed to drastically simplify the feedback interface, by 
displaying only the necessary information for real-time annotation 
(video player and state feedback on which emotion users are 
entering). Given our mobile setting and mobile form factor, 
we draw on this work to also ensure that users can accurately 
annotate their emotional state in real-time and do so precisely in 
a continuous manner, without incurring further mental workload. 

Mobile emotion annotation techniques 
While many such emotion annotation techniques are designed 
for static, desktop settings; techniques for mobile annotation are 
still in their infancy [80]. The use of color has been important 
in ensuring usability of an annotation method: Morris and 
Guilak [68] designed a mobile application Mood Map that used 
Russel’s Circumplex model [85] to allow users to report their 
emotion using four colors for the model’s quadrant in an intuitive 
manner. Apart from color-based methods, photo-based (e.g., 
Movie+ [32], Photographic Affect Meter Input (PAM) [81]) 
and text-based (e.g., mirrorU [103]) methods have also been 
used for mobile emotion annotation. Wallbaum et al. [101] 
compared such emotion input methods on mobile devices and 
found that using different colors resulted in the shortest inputting 
time compared with using PAM [81], SAM [16], and text-based 
methods. Furthermore, while such mobile emotion annotation 
techniques focus on collecting in-situ emotions in daily life 
(cf., [32, 43, 81, 103]), these works rely on post-interaction or 
post-stimuli self-reports. For example, in Movie+, Fedosov et 
al. [32] ask users to select an image which best represents their 
experience after watching a mobile video. While these methods 
are suitable for collecting the overall emotion after experiencing 
some stimuli (e.g., video), they do not account for the dynamic 
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nature of human emotion [70,95]. To this end, our work attempts 
to address this by allowing users to continuously enter in real-time 
their emotional state while viewing a (video) stimuli. 

DESIGNING OUR MOBILE ANNOTATION METHOD 
To design our real-time, continuous emotion annotation (RCEA) 
method, we draw on the body of related work alluded to earlier, 
and follow an iterative, user-centric approach [73]. We use 
Russell’s Circumplex model as a starting point, given it is 
widely used, and offers a finer level of granularity for describing 
emotions [93]. Following prior work [23, 37, 67, 92] and given 
the focus on mobile video, we only use dimensions of valence 
and arousal (and not dominance). Our design underwent several 
prototyping rounds, where we drew on prior work and our 
own experience of developing for mobile screens. This process 
additionally involved several feedback rounds from three senior 
HCI researchers at our institute, and systematic reviewing by two 
visual designers. To narrow down the design space, we followed 
three primary design principles as heuristics, however other 
indirectly related factors (e.g., user body motion) were considered: 

C1 - Design for small screen displays. Considering the small 
screen size of mobile devices (typically 3-6" [46, 90, 111]), the 
design should be as simple as possible to minimize distraction 
on video watching. Furthermore, it should account for the fat 
finger problem [94] so as not to occlude neither the content nor 
the annotation interface. 

C2 - Design for mobile device ergonomics: Our design should 
support two-handed mobile interaction, since that is how users typ-
ically watch videos [47]. Here, we consider asymmetric bimanual 
smartphone input with thumb, which has been shown to be sup-
ported by standing postures [28]. This means action items (in this 
case the annotation interface) should be within the functional area 
of the thumb. Since distinctive body postures use distinctive sets 
of muscles [3], we ensured that at least for standing interaction, 
asymmetric bimanual input with thumb is comfortable [29]. 

C3 - Design for mobile divided attention. Prior work has 
shown that mobile divided attention can adversely impact users 
during multi-tasking [108] and decrease learning gains in mobile 
MOOC video learning [109,112]. Adverse performance impact 
has been shown to be greater for larger displays [20]. Therefore, 
our design should minimize any increase of mental workload 
since users will annotate their emotions while mobile, and watch 
a video at the same time on a mobile device. This requires both 
ensuring easy and intuitive annotation input that can be done 
in real-time while abiding by ergonomic constraints, as well as 
receiving real-time feedback about which emotion state has been 
entered. To this end, we draw on peripheral visual interaction 
research [4,64] to provide subtle state feedback to users. 

Based on these constraints, we prototyped three initial designs, 
shown in Figure 2 (a-c). Since we draw on Russell’s Circumplex 
model of emotion [85], each annotation component (a-d) is 
designed according to the valence and arousal dimensions. 
As shown in Figure 2, the horizontal and vertical axis of the 
Circumplex model represent valence and arousal, respectively. 
Simultaneous annotation of valence and arousal using a 2D 
circle allows for more comprehensive reporting of emotional 
experience [37,70,91]. Below we discuss each UI element: 
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(a) Colorless joystick with emoji (b) Color joystick with labels 

(c) Color joystick with emoji (d) Color joystick with frame 
Figure 2. Three initial designs (a-c) and the final interface (d) of RCEA. 

Figure 3. Annotating from positive valence and neutral arousal (left) to 
positive valence and high arousal (right). 

Virtual joystick for rating valence and arousal. The use of a 
joystick as an emotion input method is considered to be advan-
tageous as it allows for continuous and simultaneous acquisition 
of valence-arousal (V-A) annotations. It also helps mitigate 
the mental workload of the annotation procedure by providing 
proprioceptive feedback to the annotator, when such a joystick is 
physical [91]. While we tested the use of an analog joystick, this 
raised several issues: (a) it occluded the screen (b) it increased 
calibration efforts for mounting (c) it made the smartphone device 
bulkier (d) it was less adaptable given the range of mobile analog 
joystick controllers. While we experimented with haptic feedback 
around the radial boundaries, this is not desirable as it invokes an 
extra sensory channel and can cause annoyance during watching. 

Quadrant colors. Four colors (HEX values = #eecdac, #7fc087, 
#879af0, #f4978e for quadrants one to four respectively) provided 
feedback to users on which emotion they were currently anno-
tating (C3). Compared with colorless Circumplex (Figure 2(a)), 
Healey et al. [43] showed that colored Circumplex was preferred 
by users. Following this, we selected four colors based on a 
simplified version of Itten’s color system [49,98], which has been 
shown to be intuitive and easy for users to understand [13,40]. 

Frame. We additionally experimented with including a color 
frame around the screen display as additional peripheral 
feedback [4,64] to the user (C3). We mapped the frame colors 
(as well as emojis) to each V-A quadrant. Initially, we used 
emojis (Figure 2 (a,c)) or text labels (Figure 2 (b)) as additional 
feedback [84,91]. However, compared with large desktop screens 
(typically 14-30" [58,89,100]), the small screen size of mobile 
devices have reduced screen estate to an extent that it adversely 
impacts the mobile video watching experience. Within several 
feedback rounds, it was clear that providing additional emoji or 
textual feedback will greatly distract users (C1,C3). The frame 
however, can provide additional feedback in a subtle, peripheral 
manner, without drawing up screen real estate. 
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Transparency. As mentioned earlier, we initially experimented 
with using a mobile analog joystick as an input device, however 
this provided occlusion of the video content. This led us to switch 
to a virtual joystick and designed a gradual transition for the colors 
across the four quadrants to make it less distracting for users (C1, 
C3). We included a gradual transparency from the origin (0% 
opacity) to the edge (100%) of the wheel. This was done for two 
reasons: (a) to minimize the overlapping area between the video 
player and the virtual joystick, given research on the benefits of 
transparent displays on dual-task performance [41,57] (C1, C3) 
(b) to indicate the transition of V-A intensity, which means the 
less transparent the colors are, the stronger the emotions (C3). 

Position and size. The center of the virtual joystick is placed at 
the bottom right corner of the screen (coordinates: (233 dp, 233 
dp)), considering right-hand dominance of users. However, users 
can choose to use either thumb to annotate. Joystick position 
automatically switches to left or right corner (e.g., left corner for 
left-handed users) by flipping the mobile device. The radius of 
the virtual joystick is 168 dp. On our testing device (Huawei P9 
Plus, 32GB, 5.5 inches, resolution=1920×1080), it is 23.8mm, 
which is comfortable for the thumb to move continuously [110] 
(C2). Touchpoint range radius from the bottom screen edge is 
56.8mm, and was determined based on screen size (5.5") and 
the functional thumb area (e.g., Lehtovirta et.al. [12] determined 
58mm is a suitable reach zone). Touchpoint size is 7.14mm, as 
a size of minimum 7mm provides the best touch performance 
for time-related measures [76], in our case continuous touch. 

Horizontal device orientation. We focus only on landscape (hor-
izontal) orientation, as prior work [47] has shown that watching 
mobile video trailers is typically done in this manner. However, 
our interface can be easily extended to portrait (vertical) mode, 
whereby the joystick controller module will be placed on the bot-
tom third of a mobile screen display. Since this view is shown to be 
the most common device orientation mode [72] for watching live 
videos (e.g., Instagram Stories [71]), it can be easily adapted while 
still abiding by ergonomic constraints of standing postures [28]. 

To use the annotation tool, users need to place their thumb on 
the virtual joystick for inputting their valence and arousal levels 
continuously. Sampling rate of the virtual joystick is 10Hz, 
because according to [60] the upper frequency limit of human 
joystick control is 5Hz and doubling this ensures robustness. As 
shown in Figure 3, users can adjust their ratings through dragging 
the joystick head. Both V-A values and corresponding video 
timestamps are recorded in real-time. 

EXP 1: CONTROLLED, INDOOR EVALUATION OF RCEA 
To answer RQ1, we firstly evaluated the usability of our RCEA 
technique in a controlled, laboratory experiment. To this end, 
we examine users’ mental workload between annotating their 
emotions using our RCEA method, annotating after watching 
videos using a 9-point Self-Assessment Manikin (SAM) [16] 
scale, and a baseline approach of no annotations. We measure 
NASA-Task Load Index (NASA-TLX) [42] scores, and users’ 
physiological signals (electrodermal activity (EDA), heart rate 
variability (HRV), and pupil diameter (PD)). This is followed by 
a semi-structured interview. 
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Figure 4. Experiment 1 controlled, lab environment (left) and participant 
using our method (right). 

Study Design 
Our experiment is a 2 (IV1: Annotation Method: Real-time, 
Continuous Emotion Annotation (RCEA) vs. Post-Stimuli, Dis-
crete Emotion Annotation (PSDEA)) × 3 (IV2: Video Emotion: 
Positive vs. Negative vs. Neutral) within-subjects design, tested 
in a controlled, indoor environment. We evaluated two videos per 
Video Emotion, paired with each annotation method, resulting 
in six videos (2 positive, 2 negative, 2 neutral). Participants 
annotated three of them using RCEA and another three using 
PSDEA. Our experiment was approved by our institute’s ethics 
committee. Experiment details are explained below. 

Video stimuli. Our videos were selected from the 20 clips with 
emotional labels from the MAHNOB database [97]. We selected 
MAHNOB as it is widely used [33,34,38], and contains emotion 
self-reports from >30 subjects. We selected six videos and 
separated them into two groups. Both groups consist of three 
videos (M=91.3s, SD=11.4s) with positive (laughter scenes: 80 
(96s), 90 (85s)1), negative (crying scenes: 111 (113s), 55 (76s)1) 
and neutral (weather broadcasting: dallasf (89s), detroitf (89s)1) 
emotion labels. Participants were asked to annotate the two groups 
of the videos separately using RCEA and PSDEA. This was done 
to avoid carry over effects from one condition to the other. 

Physiological measures. To assess mental workload, we employ 
three different physiological measures that have been shown 
to correlate with mental workload: PD, HRV, and EDA. PD is 
considered to be an accurate indicator of mental workload across 
different tasks. Several works [45, 48, 50] have shown that PD 
will increase if the user’s mental workload is also increasing. 
However, PD is also quite sensitive to light conditions [77]. To 
this end, for our first study shown in Figure 4 (left), we ensured 
steady and fixed illumination levels. The illumination in the 
lab was fixed (350± 5lx), to ensure that users’ pupil diameters 
would be unaffected due to illumination changes. HRV is a 
highly sensitive marker of mental workload, which is lowered 
when mental workload increases [21]. As a measure of HRV, 
the mean Inter-Beat Interval (IBI) has been shown to be the 
most sensitive measure of mental workload according to recent 
studies [18,25,44], therefore we used this. Finally, EDA reflects 
activity within the sympathetic axis of the autonomic nervous 
system (ANS), which is highly correlated to users’ arousal [35]. 
Previous work has shown that an increase in mental workload 
can also increase the physiological arousal of users [9,66]. We 
use all three objective measures of mental workload. 

Hardware setup. We used the Pupil Core wearable eyetracker 
2 and Empatica E43 wristband to collect pupillometry data, and 

1MAHNOB database video ID (duration in seconds). 
2https://pupil-labs.com/products/core/ 
3https://www.empatica.com/en-eu/research/e4/ 
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Figure 5. Experiment 1 study procedure. 

EDA and HR from participants, respectively. Data from these 
two sensors were stored on one mobile device (the recording 
device, Nexus 5, 32GB, 5 inches, 1920×1080). The eye tracker 
was connected to the recording device with a USB-C cable and 
the E4 wristband through low-power bluetooth. Given the two 
sensors are connected to the recording device using different 
ports, their data do not interfere with each other. Another mobile 
device (the displaying device, Huawei P9 Plus, 32GB, 5.5 inches, 
resolution=1920×1080) was used for showing the videos and col-
lecting annotations. A noise-cancelling headphone was connected 
to the displaying device via bluetooth. Timestamps of both devices 
were set according to the clock of the recording device, where all 
data is synchronized via an NTP server (android.pool.ntp.org). 

Procedure. Our experiment procedure is shown in Figure 5. 
Before the experiment, an introduction and tutorial on using 
RCEA and PSDEA was given to familiarize participants with the 
operation of annotating. The tutorial lasted for about 15 minutes. 
Users were told to use the thumb instead of index finger for 
annotation given asymmetric bimanual thumb input. During the 
tutorial, if the user incorrectly positions the joystick to indicate 
an emotion corresponding to a quadrant, the experimenter would 
correct them (until no more errors were made) by showing the cor-
rect quadrant and position. Afterwards, participants had to watch 
each video and use either RCEA or PSDEA to annotate each 
video, depending on the condition. Following prior work [62], we 
ensured there were 10s black screens before and after each video 
to decrease the effects of emotions overlapping among different 
videos. Participants had to fill in a NASA-TLX questionnaire 
twice, one after annotating all 3 videos within a condition. When 
participants annotated the video using PSDEA, they rated their 
overall emotion after watching a video using a 9-point discrete 
SAM scale. Conditions were counterbalanced across all partici-
pants, with the remainder trials randomized. After the experiment 
session, participants were given a brief semi-structured interview, 
asking about their overall impression of annotating videos con-
tinuously using RCEA, providing their annotation using PSDEA, 
and what distraction effects (if any) they felt in using our method. 
Experiment lasted approximately 30 minutes. Participants were 
provided with a monetary benefit for participation. 

Participants. Twelve4 participants (5m, 7f) aged between 23-32 
(M=26.3, SD=3.4) were recruited. Participants were recruited 
from our institute, and spanned varied nationalities. All were 
familiar with watching videos on smartphones, and none reported 
visual (including color blindness), auditory or motor impairments. 

Results 
We analyze the collected data from NASA-TLX, physiological 
measures, and semi-structured interviews to evaluate the usability 
of RCEA. NASA-TLX workload scores, PD, IBI, and EDA 
changes boxplots are shown in Figure 6. 

4For effect size f=0.35 under α = 0.05 and power (1-β) = 0.85, with 
6 repeated measurements within factors, we need 12 participants. 
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Figure 6. Boxplots for NASA-TLX workload score, PD changes, EDA 
changes, and IBI changes for our different conditions. 

NASA-TLX 
The modified NASA-TLX5 responses were analyzed within 
groups, per type of annotation method. A Shapiro-Wilk test 
showed that our data is not normally distributed (p<0.05). We 
therefore run a Wilcoxon signed-rank test, however we do not find 
a significant difference (Z = 1.77,p = 0.081,r = 0.36) between 
workload scores of RCEA (Md=52.5, IQR=25.4)6 and PSDEA 
(Md=37.5, IQR=20.8). This indicates that the subjective workload 
from NASA-TLX for RCEA is comparable with PSDEA. 

PD, IBI, and EDA 
PD, EDA and IBI changes for each of the three conditions were 
compared: RCEA vs. PSDEA vs. watching videos without 
annotation (NONE). PD data was first filtered by deleting the 
dilation speed outliers and artifacts [54]. Then the mean of PD 
was used to calculate the PD changes using: 

PDCi =PDi −PDBi (1) 

where PDi stands for the mean of PD when the participant watches 
a video i. PDBi is the mean of PD when a participant watches 
a 10s black screen before video i, which is used as a baseline for 
PD changes. PDCi is the PD change we used for analysis. 

PD changes means and standard deviations for 3 conditions are: 
RCEA=-0.12(0.72), PSDEA=-0.49(0.97), NONE=-0.11(0.71). 
A Shapiro-Wilk test showed that PD changes are not normally 
distributed (p < 0.05). As we compare three matched groups 
within subjects, we directly performed a Friedman rank sum test. 
Here we found a significant effect of annotation on PD changes 
(χ2(2) = 9.50, p < 0.05). A post-hoc pairwise comparison test 
using Wilcoxon signed-rank test did not show significant differ-
ences between RCEA and NONE (Z =−0.46,p=0.66,r=0.07), 
however did show significance between RCEA and PSDEA 
(Z = 2.23,p < 0.05,r = 0.36) and between PSDEA and NONE 
(Z =−3.05,p<0.05,r=0.37). 

We calculated the IBI changes using the same method for 
PD changes. IBI changes means and standard deviations 
for the three conditions are: RCEA = 0.016(0.056), PS-
DEA=0.031(0.060), NONE=0.007(0.054). A Shapiro-Wilk test 
showed that IBI changes are normally distributed (p > 0.05). 
As we compare three matched groups within subjects, we 
performed a repeated-measures ANOVA. Here we did not 
find a significant effect of annotation method on IBI changes 

2(F(2,34)=2.838,p=0.072,Pillia0strace=0.143,np =0.054). 

For EDA changes, we follow previous work [35,102], which use 
the first-order differential of the EDA signal to represent arousal 
5We omit Annoyance and Preference. 
6Md = Median, IQR = Interquartile range 

Paper 679 Page 5

android.pool.ntp.org
https://�3.05,p<0.05,r=0.37
https://�0.46,p=0.66,r=0.07
https://NONE=-0.11(0.71
https://PSDEA=-0.49(0.97
https://RCEA=-0.12(0.72


 CHI 2020 Paper

changes. The raw EDA signals were first filtered using a low-pass 
filter with a 2Hz cutoff frequency to remove noise [35, 102]. 
Then, EDA changes were calculated using the mean of the 
non-negative first-order differential of EDA signals. EDA 
changes means and standard deviations for the three conditions 
are: RCEA = 0.452(0.047), PSDEA = 0.462(0.054), NONE 
= 0.447(0.056). A Shapiro-Wilk test showed that the changes 
of first-order differential of EDA is not normally distributed 
(p<0.05). As we compare three matched groups within subjects, 
we directly performed a Friedman rank sum test. Here we did not 
find a significant effect of annotation method on EDA changes 
(χ2(2)=0.225,p=0.893). 

Semi-structured Interviews 
Audio recordings of our semi-structured interviews were 
transcribed and coded following an open coding approach [87]. 
Slightly more than half of participants (58%) expressed that the 
method is easy and convenient to use (P2; F, 23) : "I think it’s very 
easy to use that and it’s more convenient than the overall rating."). 
Participants (75%) who gave an overall positive assessment of 
the method said it is more precise than PSDEA (33%) because 
it allows inputting multiple emotions during a video. Thus, they 
(33%) believe this method is useful when the video is long 
because their emotions could change (P1; M, 32):"It maybe 
makes more sense if the video was longer and different emotions 
appeared in the same video."). However, participants (25%) who 
gave an overall negative assessment of the method complained 
that they needed to exert effort to enter their emotions with the 
joystick (P6; M, 27):"I feel like there is a lot of effort to pinpoint 
my emotions in real time."). Moreover, some participants (33%) 
said they sometimes do not know where to put their fingers. Most 
participants (83%) said RCEA could pose distractions. Only a 
few participants said they were quite distracted (17%), due mainly 
to the extra work they had to put apart from video watching 
(58%) (P2; F, 23):"It might separate me from concentrating on 
the video because I should control the joystick."). 

Some (17%) also complained the virtual joystick sometimes 
blocks the screen and impedes watching the video clearly (P4; 
F, 23): "I’m a little bit distracted because the joystick sometimes 
overlaps with the screen."). Few participants (25%) said PSDEA 
is easier than RCEA (P5; F, 27): "It’s an easier decision because 
you get it only after watching the movie, you have your overall 
impression already."). In terms of precision, some (25%) said it is 
precise if the video is short while more participants (58%) argued 
it only reflects the emotion at the end of the video (P11; M, 28):"It 
just can reflect the feedback of watching the video afterward, but 
it cannot reflect your emotions when the scene is on the move."). 

RCEA Validation 
Results from both our NASA-TLX and physiological measure-
ments (except for PD) did show no significant differences, which 
indicates that annotating emotions using our RCEA method in our 
given experimental setup does not increase the mental workload 
of users over PSDEA methods. However, for PD changes, we 
saw that both RCEA and NONE significantly differed from 
PSDEA. An explanation for this could be that since in both 
RCEA and NONE were watching videos, participants’ PD was 
affected not by emotional state, but rather by illumination levels 
the video has on the eyes. Interview responses indicated that 
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Figure 7. Participants watching mobile videos while outdoors. 

our RCEA method is simple, intuitive and easy to use. However, 
PSDEA was also reported to be useful to rate overall emotions, 
especially when videos were of shorter duration. Despite that 
some participants said they needed additional effort to use RCEA, 
it was a balance between extra effort exerted and being able to 
annotate videos which may be of longer duration and straddle 
multiple emotions. Together, our findings indicate that RCEA 
is usable and has potential for annotation precision, and does 
not significantly increase users’ mental workload over discrete 
mobile annotation methods (RQ1). 

EXP 2: CONTROLLED, MOBILE EVALUATION OF RCEA 
To answer RQ2, we conducted a controlled, outdoor study to 
evaluate RCEA, and subsequently examined the quality of the 
collected emotion annotations. Similar to the indoor study, we 
firstly investigated mental workload of using RCEA in such a 
setting. We then compare the mean V-A ratings obtained from 
RCEA with both the emotion labels of the video stimuli, as 
well as the V-A ratings obtained from PSDEA. Furthermore, we 
employ a temporal analysis to further test consistency of RCEA 
annotations with the intended emotion labels from MAHNOB. 
We additionally classify the collected wrist-based accelerometer 
data to determine the amount of time users spent walking versus 
standing across each method. Finally, we present an annotation 
fusion method to fuse continuous annotations from multiple users 
in order to collect ground truth labels using this method. 

Study Design 
We ran an experiment in a controlled, outdoor environment. Our 
experiment is a 2 (IV1: Annotation Method: Real-time, Contin-
uous Emotion Annotation (RCEA) vs. Post-Stimuli, Discrete 
Emotion Annotation (PSDEA)) × 4 (IV2: Video Emotion: Joy 
vs. Fear vs. Sadness vs. Neutral) within-subjects design, tested 
in a controlled, outdoor mobile environment. For this study, we 
tested four specific emotions of video instead of three, to collect 
a wider representative sample of evoked emotions across the 
Circumplex model. While we tried to include videos for each 
quadrant, the videos in the MAHNOB database did not contain 
a sufficient number of positive valence, low arousal videos, 
and instead we additionally test Neutral videos (neutral valence, 
low arousal). Stimuli details are explained below under Video 
Stimuli. Our dependent variables were: physiological measures, 
acceleration data, and NASA-TLX subjective workload. 

Participants watched 12 video stimuli (three for each emotion) on 
a mobile device (Huawei P9 Plus, 5.5 inches) while walking or 
standing in an outdoor environment. Participants were instructed 
to move around freely, which should correspond to their mobile 
video watching habits. However their walking area was limited 
to the outdoor campus of our institute. Our experimental setting 
parallels watching mobile videos while walking or waiting 
for a bus or train, which is a common phenomenon in mobile 
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Figure 8. Experiment 2 study procedure. 

Figure 9. PD changes, EDA changes and IBI changes for RCEA and 
PSDEA in Experiment 2. 

video consumption [56,65,74]. Our study was approved by our 
institute’s ethics committee. However, to ensure safety measures 
and prevent participants from running into obstacles or other 
people, the experimenter was always in near proximity. Figure 
7 shows the study environment. 

Video Stimuli. Video stimuli were again selected from the MAH-
NOB database [97]. Duration of videos ranged between 34.9-
117s (M = 81.4s, SD = 22.5s). Psychology research recommends 
videos between 1 to 10 min. for elicitation of a single emotion [82, 
88]. The exact 12 videos were chosen according to the consistency 
between key words polled in [96] and the 2D emotion annotations 
from self-reports in [97]. For example, a video clip with the key-
word ‘fear‘ should be reported to have high arousal and negative 
valence. To check such consistency, we calculated the mean of the 
self-reported valence and arousal from the 30 subjects in [97]. We 
then select the video stimulus if its emotion keywords are coherent 
with the mean values of users’ self-reports. The four keywords we 
chose are: fear (horror movie trailers), sadness (crying scenes), joy 
(kissing and laughter scenes) and neutral (weather broadcasting). 
The order of these videos were counterbalanced and randomized 
across participants to avoid carry over effects or exposure bias. 

Procedure. Figure 8 shows the step-wise procedure for Exp 
2. Data collection and hardware setup were identical to Exp 
1. The task was also identical, where the only difference is that 
participants only filled the NASA-TLX questionnaire once, after 
watching all 12 videos. We do not administer the NASA-TLX for 
both conditions here to avoid interrupting users within sessions 
while outdoors. Moreover, we were interested in the workload of 
only RCEA here, as we already investigated NASA-TLX differ-
ences between annotation methods in Exp 1. They were instructed 
to fill in NASA-TLX while reflecting on their usage of RCEA. 
Experiment duration was approximately 60 min. Participants 
were provided with monetary compensation for participation. 

Participants. Twenty7 other participants (12m, 8f) aged between 
22-32 (M=26.7, SD=2.9) were recruited. Participants had diverse 
backgrounds and education levels. All reported to have watched 
videos on a smartphone while on the move, and none reported vi-
sual (including color blindness), auditory, nor motor impairments. 

7For effect size f=0.35 under α = 0.05 and power (1-β) = 0.85, with 
12 repeated measurements within factors, we need 8 participants. 

Figure 10. Boxplots for mean ratings of valence and arousal. 

Results and Analysis 
Below, we analyze the collected data from NASA-TLX and 
physiological measures, analyze the consistency and reliability 
of collected annotations, and classify our participant activities 
into walking or standing behavior. 

NASA-TLX 
The median subjective workload score for using RCEA in our 
mobile study (Md=82.5, IQR=32.1) was higher than the static 
environment (Md=52.5, IQR=25.4). However, since the two 
studies are different in experimental conditions, we do not further 
run inferential analyses. 

PD, IBI, and EDA 
We calculated the PD, IBI and EDA changes using the same 
method in Exp 1, and box plots are shown in Figure 9. A Shapiro-
Wilk test showed that PD, IBI and EDA changes are all not nor-
mally distributed (p<0.05). We therefore run a Wilcoxon signed-
rank test and find a significant difference between PD changes 
(Z =4.50,p<0.001,r=0.74) of RCEA (0.17(1.07)) and PSDEA 
(-0.30(0.90)). We also find a significant difference between EDA 
changes (Z = −3.66,p < 0.001,r = 0.61) of RCEA (0.41(0.04)) 
and PSDEA (0.43(0.06)). However, we do not find a significant 
difference between IBI changes (Z = 0.78,p = 0.432,r = 0.13) 
of RCEA (0.0027(0.08)) and PSDEA (0.0006(0.06)). 

Mean valence-arousal ratings of video emotions 
The mean V-A ratings across 20 participants for 12 videos 
spanning four emotions are shown as boxplots in Figure 10. 
To test the differences among the annotation patterns, we run 
inferential statistics. A Shapiro-Wilk test showed that both 
the mean of valence and arousal ratings are not normally 
distributed (p<0.05 for both V-A). As we compare four matched 
groups within subjects, we first performed a Friedman rank 
sum test. Here we found a significant effect of video emotions 
on V-A ratings (valence: χ2(3) = 117.86, p < 0.05, arousal: 
χ2(3)=70.7,p<0.05). Bonferroni pairwise comparisons using 
Wilcoxon rank sum test across video emotions for both valence 
and arousal ratings are shown in Figure 11. 

Consistency with PSDEA 
We compare the mean V-A ratings obtained from RCEA and 
ratings from PSDEA across 12 videos to test the consistency 
between these two methods. A Shapiro-Wilk test showed that 
the valence ratings are normally distributed (p > 0.05) while 
the arousal ratings are not (p<0.05). With a Welch’s t-test, we 
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Figure 11. Pairwise comparisons of the mean valence and arousal (p>0.05, 
not significant; 0.001< p<0.05 significant;p<0.001, highly significant). 

Figure 12. The comparison between classified V-A by temporal analysis 
on participant’s continuous annotation in our experiment and labeled V-A 
from the previous datasets [82,97] 

did not find a significant different between valence ratings from 
RCEA and PSDEA (t(21.4)= 0.49,p > 0.05, Cohen’s d=0.20). 
Similarly, the result from Wilcoxon signed-rank test also did 
not show significant differences (Z = 1.33, p = 0.20,r = 0.27) 
between arousal ratings for RCEA and PSDEA. 

Consistency of continuous valence-arousal ratings 
To test the consistency of the continuous V-A ratings, we 
implement a temporal analysis of each video annotation. We first 
segment the V-A rating temporally using a fixed sliding window 
(window size=4s, step=2s). Suppose Ani j is the mean arousal 
of video n,n ∈ [1,N], segmentation i,i ∈ [1,I] from participant 
j, j ∈ [1,J], if 50% of the [An1 j,An2 j,...,AnI j] have low (1-3), neu-
tral (4-6) or high (7-9) mean arousal, the arousal of the participant 
j for video n, Anj equals to the corresponding low/neutral/high 
label. We calculate the arousal labels for all N participants. At 
last, if 50% of the [An1,An2,...,AnJ] have low/neutral/high labels 
for video n, the overall classified arousal for video n equals to 
the corresponding low/neutral/high label. The classified valence 
for each video can be similarly calculated. Sliding window size 
should be as small as possible to avoid bias when averaging the 
V-A ratings inside the windows. This selected size is the smallest 
without breaking the consistency inside the window (none of the 
low/neutral/high labels could be more than 50% in one window). 

Figure 12 shows a confusion matrix for classified valence (left) 
and arousal (right) by temporal analysis and labeled V-A from 
previous datasets that also investigated continuous ratings [82,97]. 
These matrices show some consistency between our continuous V-
A ratings and labeled V-A ratings from previous work conducted 
in static, desktop environments (valence: 91.6 %; arousal: 75%). 

Walking vs. standing recognition 
Using the accelerometer data collected from the wrist-worn 
Empatica E4, we classify whether participants were standing 
or walking, while they annotate using RCEA, PSDEA, and 
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Standing Walking 

RCEA 73.17 % 26.83 % 
PSDEA 73.15 % 26.85 % 
Other 70.80 % 29.20 % 

Table 1. Wrist-worn accelerometer activity recognition for RCEA, PSDEA 
and not annotating. 

not annotating (other). We use two datasets HANDY [1] and 
mHealthDroid [6] to train our classifier. We choose these datasets 
because (a) both are widely-used datasets for wearable activity 
detection [39, 104] and (b) the wrist-based accelerometer data 
they collected are similar to data from the Empatica E4. We use 
two datasets to increase training example diversity. Only data 
labelled as walking or standing are chosen for pre-training. 

We first segment accelerometer data for pre-training into blocks of 
0.25 second (sample size: HANDY =18588, mHealthDroid=4740) 
since small window sizes (0.25-0.5s) have been shown to lead 
to more precise recognition [5]. We then extract 23 features (16 
in time domain: mean, median, minimum value and its index, 
maximum value and its index, range, root mean square (RMS), 
interquartile range (IQR), mean absolute deviation (MAD), 
skewness, kurtosis, entropy, energy, power and harmonic mean; 
and 7 in frequency domain using fast Fourier transform: mean, 
maximum value, minimum value, normalized value, energy, 
phase and the band power [1]) for each block and pre-train a 
random-forest classifier. 

The data we used for pre-training have balanced samples for 
walking and standing. After pre-training, we extract the same 
features from the segmentation of our data and input these 
features into the pre-trained classifier. The window size used 
to segment our data is one second because (a) 1-2s is shown 
to provide the best trade-off between recognition speed and 
accuracy [5] and (b) it results in a similar sample size (29442) 
with the pre-training data (23328), which helps avoid overfitting. 
Percentage of time spent when participants were walking and 
standing when they annotate using RCEA (19345), PDSEA 
(4817) and without annotation (5280) are summarized in Table 1. 

Annotation fusion 
To ensure our annotations can be used for building ground truth la-
bels based on continuous ratings, we develop an annotation fusion 
method. By fusing emotion annotations from multiple participants, 
a continuous rating of valence and arousal can be obtained. 

Suppose Pi j is the annotation (valence or arousal) from participant 
i ∈ [1, I] at time point j ∈ [1, J]. The confidence measure 
matrix [61,63] Dj, where dlm 

j ∈Dj for time j by: 

xl −xm xm −xldlm 
j =er f ( √ ),dml 

j =er f ( √ ) (2) 
2σl 2σm 

where xm and xl are annotations for participant m and l 
respectively. σm and σl are the standard deviation of the whole 

2 R 0annotation for participant m and l respectively. er f (θ)= 
π θ e

−u2 

is the error function. Then the outliers for the annotations of time j 
are removed by setting a threshold (T =0.2) of dlm. Suppose the 
annotation after outlier elimination is Xj =[x1,x2,...,xK],K ≤20, 
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Figure 13. The fusion result of valence (left) and arousal (right) for videos 
with different intended emotion attributes. 

the fusion results of time j can be calculated as follows: 

K 
∑Dj 

kFj = ∑(1− )·xk (3) 
k=1 ∑Dj 

where Dk
j represents the k column of Dj. We calculate the fusion 

for all time points j ∈ [1,J] to get the fused annotation of an 
entire video. This method maintains the robustness of fusion 
by deleting outliers using a confidence measure distance. In 

∑Dj 

addition, the fitting coefficient (1− 
∑D

k
j ) in equation 3 is set to 

give more weight to users’ annotation with higher confidence. 
The pseudocode for our annotation fusion method is shown in 
Algorithm 1. Our fusion results for 12 videos with four kinds 
of emotion labels are shown in Figure 13. 

DISCUSSION 

Limitations and Future Work 
Given the challenges for designing for mobile and mobility, there 
were naturally limitations to our work. First, while our RCEA 
method is ultimately designed for use in real-world mobile 
interactions, we could not provide an in-the-wild longitudinal 
evaluation, which limits our ecological validity. This however was 
necessary as we first needed to validate our method in a controlled 
manner by equipping sensors on users. Since our results from 
a restricted mobility environment are promising with respect to 
workload and annotation quality, we believe our findings provide 
a first step towards collecting more precise emotion ground truth 
labels. Second, while we designed and iterated over alternatives 
for inputting real-time continuous annotation, we do not explore 
different modalities and techniques (e.g., using back of device 
interaction [10]) and test those systematically. However, our aim 
here was to firstly validate how well continuous ratings compare 
against the widely used SAM discrete annotation method. 
Similarly, we restrict ourselves to small mobile screen displays 
(3-6") using bimanual asymmetric input, even if larger devices 
(e.g., 7-10" tablets) do fall within the range of mobile form factors. 

Third, we do not compare different dimensional models of 
emotion (e.g., vector models [15] or PANAS model [105]) nor 
with other discrete methods (e.g., AffectButton [17]), and instead 
focus strictly on the Circumplex model [43,91] and SAM [16] 
method, respectively. This was done given that Circumplex (con-
tinuous) and SAM (discrete) are the most widely used, and have 
shown to exhibit good usability. Fourth, we restricted our work 
to mobile video trailers from the MAHNOB database [82, 97], 
and do not test other types of content (e.g., MOOC videos [109] 
or advertisements [78]). While MAHNOB is widely used and 
contains validated emotion annotation labels, it does limit the 
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Algorithm 1: Annotation Fusion 

Input: P∈RI×J 

for j =1 to J ←number of annotation samples 
for i = 1 to I ←number of participants 

Calculate Dj of Pi j using Eq. 2 
Xj ← delete Pi j in Pj which dlm 

j 
>T 

Fj ← fuse Xj using Eq. 3 
Output: F ∈R1×J 

inferences we can make about how our method is used for longer 
form video or across educational content. Similarly, we do not 
investigate the applicability of our technique for other domains, 
such as music annotation [70]. Since music is a solely time-based 
medium, it does not require visually attending to a screen 
(heads-down interaction), and therefore would benefit from 
continuous annotation using an auxiliary device with sufficient 
proprioceptive feedback. Finally, our current RCEA version did 
not consider color-blind users, as we used Itten’s color system 
which has been shown to map to emotional expressivity [98]. 
Future versions however should ensure a more accessible design. 

RCEA Usability in Mobile Contexts 
While most participants (75%) were positive about RCEA, our 
subjective reports also indicate that some participants found it re-
quired extra effort, which can adversely affect usability and usage. 
On the other hand, those that found RCEA easy and intuitive, can 
perhaps be indicative of variations in psychomotor and perceptual 
capabilities among individuals [2]. From the indoor experiment, 
we find that both NASA-TLX scores and physiological measures 
show no significant differences between annotating while watch-
ing and not annotating. This finding is in line with the finding from 
Sharma et al. [91], who found that their joystick based annotation 
technique helps reduce workload associated with annotating. How-
ever, if we look at the median NASA-TLX workload scores, we 
find these scores are higher for the mobile experiment. Similarly, 
we see PD, IBI, and EDA values which indicate high mental work-
load for the mobile condition. These results are consistent with 
Wicken’s Multiple Resource theory [107], where an additional 
task (performing activities while outdoors) will increase the men-
tal workload of users. According to this theory, the conflict value 
between two concurrent tasks (1=cannot be performed simulta-
neously; 0=can be performed) between watching a mobile video 
(visual spatial) and being on the move (response + spatial) is 0.4, 
which means conducting these two activities simultaneously is 
possible, however will give rise to a "cost of concurrence" on emo-
tions [106]. Indeed, from our activity classification, we see that 
participants (on average) spent roughly 27% of the time walking. 
This however should be expected given the cost of divided atten-
tion during mobile multitasking [108], whether standing or walk-
ing. Nevertheless, the findings do overall show that our RCEA 
method is usable (RQ1), even in (restricted) mobile settings. 

Disentangling Mobile Activities, Workload, and Physio-
logical Measurements 
For our first controlled, indoor experiment, the NASA-TLX 
and physiological measures show that annotating mobile videos 
using our RCEA method does not significantly increase mental 
workload of users compared with PSDEA and not annotating. 
This shows that our RCEA method does not incur higher mental 
workload than filling annotations using the widely-used SAM 

Paper 679 Page 9



 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

method [16]. However, we do find significant differences for PD 
between RCEA and PSDEA, and no annotation condition with 
PSDEA. This is surprising, as one would expect that PD change 
values are highest for the NONE condition. We can speculate 
that what we are observing is due to light emissions from 
video playback, as for both the RCEA and NONE conditions 
participants were watching videos, while for PSDEA not. This 
raises an important question of to what extent PD is a reliable 
index of cognitive load, when an individual is visually attending to 
a dynamic light emitting stimuli. While previous work has devel-
oped more advanced metrics (e.g., Index of Pupillometry Activity 
(IPA) [26]), these can be subject to the same measurement errors. 

Moreover, for Exp 2, we find that EDA changes are significantly 
higher for PSDEA. This is also surprising as one would expect 
that EDA-based arousal, which is indicative of higher mental 
workload [9], would be more prevalent in a multi-tasking setting. 
On the other hand, from our data it is difficult to pinpoint exactly 
why a participant’s EDA arousal was higher in one versus another 
condition.We have taken steps to provide a machine-based ap-
proximation of user activities (standing vs. walking), and find that 
our users spent considerable time standing. However, it remains a 
topic of study to pinpoint which exact activity and associated con-
text (e.g., social) resulted in which measured physiological change. 
The foregoing serve as a cautionary finding that relying on a sin-
gle physiological measure, such as PD or EDA only for mobile 
settings, may not be measuring the phenomenon of interest. 

Towards More Precise Emotion Ground Truth Labels 
Our second question (RQ2) asked if the continuous emotion 
labels collected in a mobile setting using our RCEA method are 
suitable for building accurate and precise emotion ground truth 
labels. From our collected annotations, we evaluated their reliabil-
ity by analyzing coherence and replicability of our emotion labels 
with previous work [82,97]. Our reasoning followed Sharma et 
al. [91], where if the V-A ratings from our method are reasonably 
consistent with the intended annotations of the videos, then this is 
indicative of the reliability of our method. Here, we use temporal 
segmentation to test the dynamic consistency between continuous 
V-A ratings and the emotion ground truth labels coming from the 
MAHNOB database. Our temporal analysis used an unsupervised 
classifier to predict the V-A ratings for videos according to the 
continuous annotations from users. The reasonably low classifi-
cation error (8.3% and 25% for valence and arousal, respectively) 
indicates the coherence and replicability of our continuous ratings. 

While we see a general consistency within mean V-A ratings, 
temporal analysis, and fused annotations, there are some key 
differences. While valence of fear video ratings were significantly 
different than sad ratings, they are still both correctly labeled as 
low valence. However for sad videos, while the original MAH-
NOB labels for sad videos were annotated with low arousal, our 
annotations show they have high arousal. We speculate why this 
could be so. Since our method is sensitive to temporal variations 
in video segments, the sad videos (some of which contain bloody 
scenes) could have made participants rate higher arousal for those 
segments, with a resulting aggregate rating skewed towards high 
arousal. Another explanation for this is that since participants 
were in a mobile setting, it could be that participants generally 
attributed their own arousal levels (from being outdoors) onto 

the video labels. This has been dubbed as the "semantic infusion 
effect" [83], whereby individuals report generalized beliefs about 
the self instead of the object of self-report. Given this, it further 
highlights the importance of momentary emotion capture and the 
usefulness of temporally precise emotion ground truth labels. 

Designing for Momentary Self-reports while Mobile 
Our work attempts to tie in together multiple research areas: small 
mobile form factor, mobility context, capturing emotion experi-
ence, and designing for divided attention. One can ask: why not 
automatically sense behavioral signals (e.g., facial emotional ex-
pressions [78]) given that smartphones have front-facing cameras 
that do not require users to annotate at all? While scientists gen-
erally agree that facial movements convey a range of information 
that serves to express emotional states, to use facial expressions as 
sole indicators of emotion is misleading. According to Barrett [8], 
similar configurations of facial movements can variably express in-
stances of more than one emotion category (e.g., a scowl can com-
municate something other than an emotional state). As Barrett [7] 
states, in the absence of an objective, external way to measure 
emotional experience, we can only examine emotions through self-
reports, and it is our role as researchers to ensure that our ratings 
are useful and valid indicators of what a person is experiencing. 

Indeed, previous work concerning ambulatory assessments in psy-
chosomatic medicine [22] found that it is important to draw on mo-
mentary self-report techniques in order to connect psychological 
with biologic processes. Our work attempts to offer a method for 
collecting not just temporally precise labels, but also emotion la-
bels that are representative of what people experience at an interval 
of time while performing a task. Through our annotation method 
design, and subsequent evaluations, we believe our RCEA method 
provides a starting point for emotion computing researchers to 
ensure that ground truth labels are collected during the moments 
of experience and measured continuously. This would provide a 
more detailed view into our emotional lives. By providing more 
accurate and precise human emotion ground truth labels, spawned 
through interactions with a mobile task such as video watching, 
it helps us train more sensible emotion recognition algorithms. 

CONCLUSION 
We presented the design of a real-time, continuous emotion 
annotation technique for mobile video watching that can be 
used while mobile. Our technique enables researchers to collect 
fine-grained, temporal emotion annotations of valence and arousal 
while users are watching mobile videos. Through controlled 
indoor and outdoor evaluations, we showed that our method 
generally does not incur extra mental workload (measured 
through subjective and physiological measures) over discrete 
input. Moreover, we verified the consistency and reliability of 
our continuous annotations, and provided an annotation fusion 
method that enables researchers to aggregate continuous ratings 
across users for collecting accurate and precise ground truth labels. 
Our work underscores the importance of collecting momentary 
emotion annotations, which is essential for ensuring meaningful 
emotion recognition while users freely watch mobile videos. 
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