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Impedance of a planar solenoid with a thin magnetic core
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The high-frequency impedance of a planar solenoid with a thin magnetic core is theoretically
investigated using the magnetostatic Green’s function formalism. It is shown that the electrical
behavior of the solenoid depends on how the magnetic field induced by the current-carrying coil is
coupled to the different magnetostatic modes of the core. The magnetic response of the core in each
mode is determined by an effective susceptibility matrix which depends on exact, but
mode-dependent demagnetization factors. Those factors determine the frequency of the
magnetostatic excitations of the core, manifested as resonances in the impedance of the solenoid.
Using the formalism developed, the effect of the core width and magnetic loss on the impedance of
the device is studied. © 2007 American Institute of Physics. [DOI: 10.1063/1.2715760]

I. INTRODUCTION

The need for miniaturized components for radio fre-
quency (rf) and microwave integrated circuits has led to a
surge of interest in devices utilizing thin, high-permeability,
magnetic films. In particular, integrated planar inductors with
thin magnetic cores' have attracted much attention, in view
of their potential application in rf filters, resonators, and
matching circuits. Spiral,zf4 sandwiched stripe,5 and planar
solenoid®’ designs using thin magnetic films have already
been proposed and studied. Compared to spirals, sandwiched
stripes and planar solenoids benefit more from the incorpo-
ration of the magnetic film, due to the favorable direction of
the magnetic rf field with respect to the orientation of the
magnetization in the core.®

For the design and analysis of magnetic inductors,
knowledge of the rf susceptibility of the magnetic core used
is essential. The susceptibility of a magnetic element with a
general nonellipsoidal shape is usually described in terms of
its averaged demagnetization factors,” " in analogy with the
description of the uniform precessional mode of a magnetic
ellipsoid.12 The demagnetization factors are determined by
averaging the demagnetization field generated by a uniform
magnetization profile in the nonellipsoidal sample.13 This ap-
proach, however, cannot be justified in miniature magnetic
inductors where the field generated by the current-carrying
wires is highly nonuniform. Furthermore, it is not obvious
how one should take into account the effect of the magneto-
static excitations'*™'® of the magnetic core on the electrical
characteristics of the inductor.

In this paper we present a theoretical analysis of the
high-frequency impedance of a planar solenoid with a core
built from a thin, long magnetic stripe.é’7 Using the thin-film
approximation of the magnetostatic Green’s function
formalism,'® the high-frequency behavior of the core is de-
scribed in terms of its magnetostatic modes. It is shown that
the magnetic response of the core in each mode is deter-
mined by an effective susceptibility matrix. The latter is ex-
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pressed in terms of exact, but mode-dependent demagnetiza-
tion factors. The impedance of the solenoid is found by
evaluating the degree of coupling of the magnetic field of the
current-carrying coil to each mode. The magnetostatic exci-
tations of the core are manifested as resonances in the im-
pedance of the solenoid, with the resonance frequencies de-
termined by the mode-dependent demagnetization factors.
Using the formalism developed, examples are given to illus-
trate the effect of the core width and magnetic loss on the
impedance of the device.

This paper is organized as follows. In Sec. II the thin-
film approximation is used to determine the high-frequency
response of a magnetic stripe. The results are used in Sec. III
to calculate the impedance of a planar solenoid. In Sec. IV
we employ the formalism developed to analyze the electrical
characteristics of several solenoids. The paper is concluded
in Sec. V.

Il. SUSCEPTIBILITY OF A THIN MAGNETIC STRIPE

Figure 1 shows a planar solenoid consisting of a planar
coil enclosing a thin, long magnetic stripe. The conductors
comprising the coil are electrically isolated from the mag-
netic core by dielectric layers. The magnetic stripe is satu-
rated in the z direction with the uniform static magnetization
Mz, under the influence of an effective static field H 2.

A r1f current flowing through the windings of the coil
generates a time harmonic rf field, which we call the external
field. For simplicity, we assume the length of the solenoid to
be much larger than its width and neglect the variations in
the z direction. The rf field of the coil causes the forced
oscillation of the magnetization inside the stripe. Under
small signal conditions, where the magnitude of the induced
rf magnetization m is much smaller than M, the longitudinal
component of the rf magnetization can be neglected, i.e., m
=mxfc+my)3.l7

In order to analyze the response of the rf magnetization
inside the stripe to the field of the coil, we use the tensorial
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FIG. 1. Top: A planar solenoid built from a planar coil enclosing a thin
magnetic stripe. The coil is electrically isolated from the stripe by dielectric
layers. The stripe is assumed to have a uniform static magnetization M in
the +z direction. Bottom: The cross section of the magnetic stripe in the x-y
plane.
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Green’s functions formalism. The derivation is outlined

below in several steps. At each point inside the magnetic
stripe one has

m=x-h, (1)
where
- o) wy I
X=2—Mz{ - } @
- —io oy

is the 2 X 2 susceptibility tensor in which w is the (angular)
frequency of the 1f field, and wy,=yM, and wy=yH, with y
as the gyromagnetic constant.'” In Eq. (1) k is the total mag-
netic field, which in the magnetostatic approximation of the
Maxwell equations can be written as

h=h,+h,, (3)

where h,=h, X +h,,y is the transversal part of the external rf
field, and h,, is the transversal demagnetization field given
by

h,(r)=- Vf V'G(r,r')-m(r')ds’, (4a)
s

Gr.or')=- € In|r —r'|. (4b)

2
Here r=(x,y), V=(d,,d,), and S is the cross section of the
magnetic stripe in the x-y plane.

In practical solenoids with thin-film cores, the spatial
variation of the rf field generated by the coil (and the induced
rf magnetization) is negligible over distances comparable to
the magnetic film thickness. Thus, the field quantities can be
replaced by their values averaged over the thickness ¢ of the
magnetic film,

t/2
m) ="+ [ may (59)

—t/2

J. Appl. Phys. 101, 074904 (2007)

0.15

0.1

0.05

7/"k (69]

x {(pm}

FIG. 2. The first four eigenfunctions i;(x) (k=0,1,2,3) for a magnetic
stripe with a width of 100 um and a thickness of 0.2 um. The correspond-
ing eigenvalues are Ag=—0.997 68, \;=-0.994 47, A,=-0.991 31, and \;=
—0.988 11. The results were obtained by numerically solving Eq. (8).
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~ 1
henlr) = Fen9= 1 [ oy (5b)

—t/2

Upon averaging Eq. (4a) and using Egs. (1)—(3), one obtains
the following integral equation for the average magnetiza-
tion,

_ _ wi2 ~

Q- -m(x)+325- J G(x,x")m(x")dx" = h,(x), (6)

-w/2

where w is the width of the stripe (Fig. 1), and

= 1 |og+twy —iw

0= ‘U_M{ iw Wy }’ (7a)

- 1 0

3= {0 1 }, (7b)
1 )2

G(x,x") = % m{(x(—xx'%} . (7¢)

The dynamic response of the magnetic stripe, i.e., its
susceptibility, can be in principle found by directly solving
Eq. (6) for a given external field. Instead, however, we use
this equation to express the susceptibility of the magnetic
stripe in terms of its magnetostatic eigenmodes.20 The latter
are found by the solution of the equation21

wi2
f G, x")p(x")dx" = N (). (8)

-w/2

Figure 2 shows the first four normalized eigenmodes if,(x) of
a 100-um-wide and 0.2- um-thick stripe, obtained by the nu-
merical solution of Eq. (8).* Note that r(x) is an even/odd
function of x for even/odd values of the integer k.

The solution of Eq. (6) can now be found by expanding
the magnetization in the eigenmodes of the stripe,

in(x) = > i (x), (9a)
k=0
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wi2
= f m (x) g (x)dx, (9b)

-w/2

where mi* is a constant vector. By substituting Eq. (9a) into

Eq. (6), using Eq. (8) and the orthonormality of the eigen-
modes, it can be shown that

n* = x*- 1, (10a)

wil2
k= f B, () i (x)dx. (10b)

—-w/2

Here l?e‘ is the amplitude of the external field in the kth mode,
and ¥* is a mode-dependent, effective susceptibility matrix
given by

ik:{)/;x ix’;}

—iXa Xy
_wy |og +Nfa}M iw (11)
wi— »’ —iw wH+NkaM ’
where Nfﬁ: L+, N';:—)\k, and
wi: (wH+N§wM)(a)H+N§wM). (12)

In analogy with the effective susceptibility matrix for the
uniform precessional mode of a magnetic ellipsoid, one can
interpret N)’i and N’i as demagnetization factors in the x and y
directions, respectively, incorporating the effect of the de-
magnetization field. Those factors determine wy, the magne-
tostatic resonance frequency of the stripe in the kth mode.
The existence of modal susceptibility matrices has already
been discussed in Ref. 22 for magnetic samples of general
shape.

In practical cases one cannot neglect the effect of mag-
netic relaxation processes on the motion of the magnetization
inside a magnetic sample. The resulting dissipation can be
phenomenologically taken into account by making the re-
placement wy— wy—iaw in Egs. (11) and (12), where « is
the Gilbert damping constant."” Figure 3 shows the fre-
quency dependence of the in-plane susceptibility ,\/;x (k
=0,1,2,3) of a 100-um-wide and 0.2-um-thick stripe, with
M=1T, H,=1 Oe, and «=0.01. For each mode, Im[/\/)‘m]
peaks at w=w,, the magnetostatic resonance frequency. Note
that the frequency linewidth Aw of each resonance (defined
as the distance between the two frequencies at which Im[ /\/)‘CX]
acquires half its peak value) is almost mode independent. In
fact, it can be shown that Aw~ aw,, if a<1.**.

lll. IMPEDANCE OF A SOLENOID WITH A THIN
MAGNETIC CORE

Having provided an analysis of the rf susceptibility of a
thin magnetic stripe, we now proceed to calculate the imped-
ance of the solenoid. This is achieved by viewing the coil as
an impressed current source, generating an external magnetic
field h,. Thus, we assume that the distribution of the current
inside the windings of the coil is not affected by the presence
of the magnetic stripe. Now consider the total complex mag-
netic power delivered to the solenoid,
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FIG. 3. Real and imaginary parts of the in-plane susceptibility x*. of a

magnetic stripe as function of frequency for the first four modes (k
=0,1,2,3). The stripe is 100-um-wide and 0.2-um-thick, with M ;=1 T,
H,=1 Oe, and @=0.01. Modes with a larger Nﬁ: 1+\; have a higher mag-
netostatic resonance frequency.

Py = %Jk(r) -b"(r)ds, (13)

where ¢ is the length of the solenoid and b= puy(h+m) is the
magnetic induction with u, the permeability of vacuum. The
integration in Eq. (13) is carried out over the whole x-y
plane. The impedance of the solenoid can then be expressed
as

2P,

= |I|2 +Rm (14)

where I is the total current flowing through the coil. The term
R has been included to account for the series resistance of
the coil.

By substituting Eq. (3) into Eq. (13), exploiting the fact
that the demagnetization field &,, is a gradient function [see
Eq. (4a)], applying partial integration, and using the Maxwell
equation V-b=0, it can be shown that?
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Py = Woe f [k (r)dS + f h(r)-m'(r)ds |. (15)

The second integration in Eq. (15) is performed over the
cross section of the stripe only. From this equation, and the
definition of the impedance Z, it follows that

Z=R,+7Zy+7Z,, (16a)
iopol )
iopot .
Z, = W h,(r) -m (r)ds. (16¢)
s

Note that R;+Z, is the impedance of the coil in the absence
of the magnetic core, while Z,, is the extra impedance caused
by the inclusion of the latter.

Upon using the average field quantities defined by Eq.
(5), substituting Eq. (9a) into Eq. (16¢), and using Eq. (10),
one obtains

o]

Zm = 2 Zk’ (178.)
k=0
lwl’«of€ ik Wb

Therefore, Z,, equals the sum of the partial impedances Zj,

whose value depends on the amplitude h of the (averaged)
external field and the susceptibility matrlx X" in the corre-
sponding magnetostatic mode. It is possible to further sim-
plify Eq. (17b) by noting that in the magnetostatic limit of
the Maxwell equations, where electromagnetic wave propa-
gation effects are neglected, the x- and y- components of the
external field have the same phase everywhere. As a result,
the nondiagonal elements of x* are eliminated from the ex-
pression for Z;, yielding

iougtl o
Zi= = g Ol g e P (18)
where h" and hk denote the x- and y- components of the

amplitude he, respectlvely.

IV. NUMERICAL RESULTS

The overall behavior of the impedance of a solenoid as
function of frequency depends on how the magnetic field
induced by the coil is coupled to the different magnetostatic
modes of the core, each with its specific susceptibility. In
what follows we analyze the impedance of a few solenoids
by using Egs. (16a), (16b), (17a), and (18). In each case, the

field h, (and its average ﬁe) is computed in the absence of the
magnetic core, assuming a uniform distribution of current
density across the conductors comprising the coil. The mag-
netostatic eigenvalues and eigenfunctions are calculated by
the numerical solution of Eq. (8).

For our numerical experiments we consider a single-turn
planar solenoid where the two isolating dielectric layers have
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FIG. 4. Inductance (L) and resistance (R) of a 1-mm-long, single-turn so-
lenoid as function of frequency. The single-turn coil is made from two
parallel, 1-um-thick and 10-um-wide Al stripes. The core of the solenoid is
a 100-um-wide and 0.2-um-thick magnetic stripe with M=1T, H,
=1 Oe, and @=0.01. The thickness of the two dielectric layers separating
the coil from the stripe is 0.9 um. Markers show the result of the HFsS
simulation.

the same thickness. Due to the resulting symmetry of the
cross section of the solenoid with respect to y=0, and the
fact that electrical current flows in opposite directions in the
top and bottom conductors, the average vertical component

of the external field vanishes, i.e., ﬁe,y=0. Thus, only Eg,x
contributes to Z; in Eq. (18).

The resistance R=Re[Z] and inductance L=Im[Z]/w of
the single-turn solenoid as functions of frequency are shown
in Fig. 4, where one can clearly observe the even mode reso-
nances of the magnetic stripe. Since the single-turn coil is

placed around the center of the stripe at x=0, /,(x) is an
even function of x. Therefore, the odd modes of the stripe are
not excited by the coil. Shifting the coil with respect to the
center of the stripe changes this picture, introducing odd-
mode resonances (the results are not shown here).

In order to verify our results, we have also computed the
inductance and resistance of the solenoid using Ansofts HFSS,
a commercial full-wave electromagnetic simulator. The HFSS
results, shown by markers in Fig. 4, are in good agreement
with those obtained from our method, even though we use a
thin-film, magnetostatic approximation. The deviation ob-
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FIG. 5. Inductance (L) and resistance (R) of a single-turn solenoid as func-
tion of frequency for w=100, 200, and 400 um. Other parameters of the
solenoid are identical to those of the solenoid in Fig. 4.

served in R at frequencies above 3 GHz is caused by mod-
eling the metallic coil as an impressed current source, as our
numerical HFSS experiments show. In reality, current distri-
bution in a conductor reacts to the magnetic field, partially
shielding it. This effect becomes stronger with increasing
frequency and influences the magnetostatic modes of the
stripe.

It is important to bear in mind that the multiple reso-
nances found in the electrical characteristics of the solenoid
cannot be reproduced by calculation methods based on aver-
aged demagnetization factors.”"! Instead, those methods pre-
dict a single resonance whose frequency, in the case of the
solenoid of Fig. 4, is found to be ~1.85 GHz (details of the
calculation are not given here). Furthermore, since such
methods assume a uniform magnetization profile, the pre-
dicted inductance is not accurate, in particular, when the coil
is placed close to the lateral edges of the stripe where the
magnetization drops to small values (see Fig. 2).

The effect of increasing the width w of the magnetic
stripe on the impedance of the solenoid is shown in Fig. 5.
Increasing w causes a downward shift in the eigenvalues \;
[Eq. (8)] and reduces the separation between subsequent ei-
genvalues. This effect is directly reflected in the resonance
spectrum of the device. The smaller zero-frequency induc-
tance observed for wider cores is due to the reduction of the
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FIG. 6. Inductance (L) and resistance (R) of a single-turn solenoid as func-
tion of frequency for a=0.01, 0.02, and 0.08. Other parameters of the sole-
noid are identical to those of the solenoid in Fig. 4.

demagnetization factors Nﬁ: 1+X\,. This can be clearly seen
by inspecting the contribution L,,=Im[Z,]/® of the mag-
netic core to the zero-frequency inductance, i.e.,

0 ~‘2
X

_ Hott D wM|h§,
- I 2 k >
I* 20 wp+ Nywy

L,(—0) (19)

where Eqgs. (11), (17a), and (18) have been used.

Increasing the thickness ¢ of the magnetic stripe yields
larger values of \; and Ni, resulting in higher resonance
frequencies (results are not shown). Despite larger values of
N];, however, the overall zero-frequency inductance of the
device increases with thickness. This is because an increase
in Nfc is overcompensated in Eq. (19) by the increase in .

The individual resonances in the frequency response of a
solenoid cannot be distinguished if their separation becomes
smaller than their linewidth. In Fig. 6 the impedance of the
single-turn solenoid is plotted for three values of the damp-
ing constant a. By increasing «, the detailed landscape of
resonances is gradually washed out. If « is sufficiently large,
a single, broad resonance peak is observed in the resistance,
while the inductance shows a continuous drop, starting from
zero frequency. This effect is, in particular, important for
solenoids with a conducting magnetic core.” The additional
dissipation caused by the flow of eddy currents in the latter
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leads to a significant broadening of the resonance linewidth,
smearing out the traces of magnetostatic resonances.

V. CONCLUSION

In this work we analyzed the rf impedance of a planar
solenoid built as a planar coil enclosing a thin magnetic
stripe. Employing the magnetostatic Green’s function for-
malism, it was shown that the impedance of the solenoid can
be expressed in terms of the magnetostatic eigenmodes of the
stripe. This approach does not require the use of averaged
demagnetization factors and naturally takes account of the
effect of the magnetostatic excitations of the core on the
electrical characteristics of the device. The electrical behav-
ior of the solenoid as function of frequency depends on how
the magnetic field induced by the coil is coupled to the dif-
ferent magnetostatic modes of the stripe, each with its spe-
cific susceptibility. The formalism developed was then used
to analyze the effect of the width of the magnetic stripe and
the magnetic loss on the resistance and inductance of a
single-turn solenoid.
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