
A contrast source method for nonlinear acoustic wave fields
in media with spatially inhomogeneous attenuation

L. Demia) and K. W. A. van Dongen
Laboratory of Acoustical Imaging and Sound Control, Faculty of Applied Sciences, Delft University
of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands

M. D. Verweij
Laboratory of Electromagnetic Research, Faculty of Electrical Engineering, Mathematics and Computer
Science, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands

(Received 24 June 2010; revised 21 December 2010; accepted 26 December 2010)

Experimental data reveals that attenuation is an important phenomenon in medical ultrasound.

Attenuation is particularly important for medical applications based on nonlinear acoustics, since

higher harmonics experience higher attenuation than the fundamental. Here, a method is presented

to accurately solve the wave equation for nonlinear acoustic media with spatially inhomogeneous

attenuation. Losses are modeled by a spatially dependent compliance relaxation function, which is

included in the Westervelt equation. Introduction of absorption in the form of a causal relaxation

function automatically results in the appearance of dispersion. The appearance of inhomogeneities

implies the presence of a spatially inhomogeneous contrast source in the presented full-wave

method leading to inclusion of forward and backward scattering. The contrast source problem is

solved iteratively using a Neumann scheme, similar to the iterative nonlinear contrast source

(INCS) method. The presented method is directionally independent and capable of dealing with

weakly to moderately nonlinear, large scale, three-dimensional wave fields occurring in diagnostic

ultrasound. Convergence of the method has been investigated and results for homogeneous, lossy,

linear media show full agreement with the exact results. Moreover, the performance of the method

is demonstrated through simulations involving steered and unsteered beams in nonlinear media with

spatially homogeneous and inhomogeneous attenuation. VC 2011 Acoustical Society of America.
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I. INTRODUCTION

Nonlinear acoustics play a key role in the development

of new medical diagnostic and therapeutic applications of

ultrasound. For example, nonlinear ultrasound is known to

significantly improve the quality of echographic images1 and

the heat deposition during acoustic ablation therapy.2 These

effects are due to the higher harmonic wave fields that come

along with a high amplitude fundamental wave field in case

of nonlinear propagation.

Among the peculiarities of the higher harmonic wave

fields of an acoustic beam are a reduction of the axial and

lateral size of the focal spot, clutter, and side and grating

lobes,1 as compared to the fundamental wave field. A well

known ultrasound imaging modality is tissue harmonic

imaging (THI).3,4 This technique takes advantage of the

mentioned benefits by imaging only the reflection of the sec-

ond harmonic component. To further exploit the benefits of

higher harmonics, researchers currently investigate ultra-

sound imaging based on the reflection of the third to the fifth

harmonic component. In the literature this is referred to as

superharmonic imaging (SHI).5,6

Experimental data reveal that attenuation or loss is

another phenomenon of substantial importance in medical

applications of ultrasound. At ultrasonic frequencies, attenu-

ation in biological tissue is mainly due to absorption, i.e., the

irreversible conversion of acoustic energy into heat, and to a

lesser extent to scattering of the acoustic energy in arbitrary

directions. The attenuation coefficient in biological tissue

may usually be described by a frequency power law with a

positive exponent.7,8 Consequently, the higher harmonics ex-

perience a greater attenuation than the fundamental wave

field. For a given penetration depth, this effect limits the fre-

quency that can be applied for echographic imaging, and

thus the attainable resolution. On the other hand, the same

effect increases the deposited heat of an applicator for

acoustic ablation.2,9

The design and optimization of a new ultrasound modal-

ity or device that is based on nonlinear acoustics, e.g., a

phased array transducer intended for SHI, requires the ability

to accurately simulate and understand the corresponding

nonlinear phenomena. A particular challenge is to accurately

compute the higher harmonic contents of beams that are

steered over large angles and that extend over large, three-

dimensional spatial domains. The iterative nonlinear contrast

source (INCS) method10,11 is capable of performing such

simulations. This method is based on the full-wave Wester-

velt equation,12 and considers its nonlinear term to describe

a distributed contrast source that operates in a linear and

homogeneous background medium. The contrast source

depends nonlinearly on the total wave field, and the wave
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field generated by the contrast source is the nonlinear part of

the total wave field. Starting with the linear wave field gener-

ated by the primary source (i.e., the transducer) in the back-

ground medium, the contrast source and the total wave field

are iteratively updated by way of a Neumann scheme. The

result of the first iteration is the quasilinear solution. Next,

the solution is iteratively improved toward the full nonlinear

wave field. As a rule of thumb, for weak to moderate nonli-

nearity, nþ 1 iterations suffice for an accurate computation

of the nth harmonic. The key step in each iteration is a spa-

tiotemporal convolution of the distributed contrast source

with the Green’s function of the background medium. This

is performed with the filtered convolution method,10,13

which employs a priori filtering and fast Fourier transform

(FFT) techniques to allow for a spatiotemporal grid with

only two points per wavelength and per period. Due to the

contrast source approach and the applied convolution tech-

nique, the INCS method shows no directional dependence.

In addition to nonlinearity, medical applications require

the effects of attenuation and dispersion to be included in the

simulations of the acoustic wave field. With the INCS

method, attenuation has already been taken into account by

using a Green’s function for a background medium with fre-

quency power law losses.10,14 However, this approach can-

not deal with situations where the attenuation varies

throughout the spatial domain, as commonly occurs in bio-

medical situations. For the linear case, methods have been

applied that take these inhomogeneities into account.15 The

purpose of this paper is to show how spatially inhomogene-

ous attenuation may be incorporated in the INCS method.

To deal with the stated problem, the attenuation is mod-

eled via a causal compliance relaxation function that

describes how the pressure history up to a particular moment

contributes to the cubic dilatation rate at that

moment.10,14,16,17 Inhomogeneous losses are incorporated in

the model of nonlinear acoustics by including a spatially de-

pendent compliance relaxation function in the Westervelt

equation. This equation is then considered to describe two

distributed contrast sources in a linear, homogeneous, and

lossless background medium;18 the nonlinear contrast source

provides the nonlinear contribution to the wave field, and the

attenuation contrast source yields the correction due to the

spatially inhomogeneous losses. Finally the resulting con-

trast source problem is solved for the unknown wave field in

an iterative way by using a Neumann scheme and the filtered

convolution method.10,13

In the literature, several other methods have been

described for the incorporation of attenuation in the equa-

tions of nonlinear acoustics. One approach includes a series

of simple relaxation terms in the KZK equation19 or in the

Westervelt equation.20 Another approach introduces a loss

operator in the Burgers equation21 or in the Khokhlov–Zabo-

lotskaya–Kuznetsov (KZK) equation.22 In the current paper,

preference is given to the application of a compliance relaxa-

tion function because it allows for a compact way of model-

ing the frequency power law attenuation shown by many

biological tissues, and it automatically provides the associ-

ated dispersion. More importantly, by including a spatially

dependent relaxation function in Westervelt equation, the

resulting full-wave method can cope with attenuation that

varies in all three spatial directions, and it yields both the

forward and backward scattering generated by this.

In Sec. II, the theory is formulated through the introduc-

tion of the basic equations and the spatially dependent com-

pliance relaxation function. The iterative solution method

will be presented in Sec. III. In Sec. IV, the convergence of

the method is investigated, next numerical results obtained

for homogeneous, nonlinear, and lossy media are compared

with the results obtained for homogeneous, nonlinear, and

lossless media to emphasize how attenuation acts differently

with respect to the fundamental component of the wave field

and the higher harmonics. Moreover, results obtained for a

nonlinear medium with spatially inhomogeneous losses are

presented to show the capability of the method to model

forward and backward scattering effects. Conclusions of the

presented research are given in Sec. V.

II. THEORY

A. Extending the wave equation to nonlinear and
attenuating media

In this subsection, the wave equation for a homogene-

ous, linear, and lossless medium will be extended to deal

with nonlinearity, spatially inhomogeneous attenuation, and

a combination of both effects. The resulting equations will

be cast in a form involving a contrast source.

1. Linear wave equation

In a homogeneous, linear, and lossless medium the

propagation of the acoustic pressure field p(x, t) is described

by the wave equation

r2pðx; tÞ � 1

c2
0

@2
t pðx; tÞ ¼ �Sprðx; tÞ: (1)

Here, the vector x contains the coordinates of a position in a

three-dimensional Cartesian domain D, and t is the time

coordinate. The symbol r2 ¼ r � r indicates the Laplace

operator, and @t indicates differentiation with respect to

time. The behavior of the homogeneous, linear, and lossless

acoustic medium is described via the ambient speed of sound

c0 and the ambient volume density of mass q0. The acoustic

wave field is generated by the primary source Spr(x, t). This

source depends on the volume density of injection rate

source q(x, t) and the volume density of volume force source

f(x, t) according to

Sprðx; tÞ ¼ q0@tqðx; tÞ � r � fðx; tÞ: (2)

Equation (1) yields an accurate description of the acous-

tic pressure field for small-amplitude disturbances, i.e., when

nonlinear effects are negligible.

2. Inclusion of nonlinearity

In medical applications where high amplitude wave fields

are used, the wave propagation becomes inherently nonlinear

and Eq. (1) must be extended to cope with this fact. A
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suitable wave equation for a homogeneous, nonlinear, and

lossless acoustic medium is the Westervelt equation12

r2pðx; tÞ � 1

c2
0

@2
t pðx; tÞ ¼ �Sprðx; tÞ �

b
q0c4

0

@2
t p2ðx; tÞ;

(3)

in which the nonlinear behavior of the acoustic medium is

described via the coefficient of nonlinearity b. This equation

is exact up till the terms of second order in the acoustic dis-

turbance quantities, takes into account the global nonlinear

effects, and neglects local nonlinear effects.23

In medical diagnostic applications, the effect of the nonlin-

ear term on the total wave field remains small, but noticeable.

In that case it makes sense to consider this term to describe a

distributed pressure dependent secondary or contrast source

Snl pðx; tÞ½ � ¼ b
q0c4

0

@2
t p2ðx; tÞ: (4)

This is referred to as the nonlinear contrast source.10,11,13

The left-hand side of Eq. (3) represents the wave operator cor-

responding to a homogeneous, linear, and lossless medium. In

this linear background medium, the nonlinear contrast source

Snl generates an additional field that is equal to the nonlinear

part of the total acoustic field in the nonlinear medium.

3. Inclusion of attenuation

In most medical applications of ultrasounds, the me-

dium cannot be considered lossless and attenuation must be

accounted for. Usually, the attenuation of the medium

depends on the position. To describe pressure fields in a lin-

ear medium with spatially inhomogeneous attenuation, a

spatially dependent loss mechanism should be incorporated

in the wave equation. A pragmatic approach is to start with

a known expression for the lossless wave field. This lossless

expression is turned into a lossy one by simply adding an

imaginary part to the frequency, or by incorporating a real

attenuation coefficient a(x) in the propagation coefficient

c(x). This pragmatic approach, however, can hardly be

used to model spatially inhomogeneous losses. A more fun-

damental approach is to extend the equation of deformation

and motion, or the wave equation, by adding loss terms

with a higher order time derivative, or by introducing relax-

ation in the medium behavior. Solution of these equations

directly provides the lossy wave field. In this paper, a causal

relaxation function is employed because it provides a com-

pact way of modeling frequency power law attenuation, it

automatically yields the associate dispersion, and it allows

for a straightforward extension to spatially inhomogeneous

losses.

Using the relaxation function approach, the lossless

deformation equation,

r � vðx; tÞ þ j0@tpðx; tÞ ¼ qðx; tÞ; (5)

may be turned into its lossy counterpart16,17

r � vðx; tÞ þ j0@t½vðx; tÞ�tpðx; tÞ� ¼ qðx; tÞ: (6)

Here, j0 is the ambient compressibility, v is the particle velocity,

and v(x, t) is the so-called normalized compliance (or memory)

relaxation function. The latter function depends on x to model

spatially dependent attenuation. It may be separated into

vðx; tÞ ¼ dðtÞ þ Aðx; tÞ; (7)

where the Dirac delta function represents the instantaneous

medium behavior, and the relaxation function A(x, t) repre-

sents the delayed reaction of the medium on events that hap-

pened in the past. The latter behavior is associated with the

occurrence of losses. Because of its physical role, the relaxa-

tion function A(x, t) is real valued. Moreover, it may not pre-

dict the future and it may not contribute to the instantaneous

medium behavior. This implies that A(x, t) is a causal function

that does not include a function d(t) or functions with a higher

singular behavior at t¼ 0. The real-valuedness and causality

of A(x, t) imply the real-valuedness and causality of v(t).
In the same way, the equation of motion,

rpðx; tÞ þ q0@tvðx; tÞ ¼ fðx; tÞ; (8)

may be turned into its lossy version by convolving v with a

normalized inertia relaxation function l(t).16,17 However, it

is usually assumed that in biological tissue attenuation is

dominant due to relaxation in the compliance, while the iner-

tia shows negligible relaxation effects.

Combination of Eqs. (6) and (8) yields the following

wave equation for linear acoustic media with spatially

inhomogeneous losses:

r2pðx; tÞ � 1

c2
0

@2
t ½vðx; tÞ�tpðx; tÞ� ¼ �Sprðx; tÞ; (9)

with c0 ¼ ðq0j0Þ�
1
2. Substitution of Eq. (7) into Eq. (9)

allows the latter to be rewritten as

r2pðx; tÞ � 1

c2
0

@2
t pðx; tÞ

¼ �Sprðx; tÞ þ
1

c2
0

@2
t ½Aðx; tÞ�tpðx; tÞ�: (10)

Similar to the nonlinear term in Eq. (3), an attenuation

term now appears at the right-hand side of Eq. (10). In medi-

cal applications, the effect of the attenuation term on the

total wave field usually remains small, and it makes sense to

consider it to describe a distributed pressure dependent sec-

ondary or contrast source

Sat pðx; tÞ½ � ¼ � 1

c2
0

@2
t ½Aðx; tÞ�tpðx; tÞ�: (11)

This will be referred to as the attenuation contrast source.

4. Combination of nonlinearity and attenuation

The attenuation contrast source in Eq. (11) may be com-

bined with the nonlinear contrast source in Eq. (4) to obtain
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the following wave equation for nonlinear media with

spatially inhomogeneous losses

r2pðx; tÞ � 1

c2
0

@2
t pðx; tÞ

¼ �Sprðx; tÞ � Snl pðx; tÞ½ � � Sat pðx; tÞ½ �: (12)

This may be written as

r2pðx;tÞ� 1

c2
0

@2
t pðx;tÞ ¼�Sprðx;tÞ� Scs pðx;tÞ½ �; (13)

in which the total contrast source term equals

Scs pðx; tÞ½ � ¼ Snl pðx; tÞ½ � þ Sat pðx; tÞ½ �: (14)

Equations (13) and (14) form an extended version of

Westervelt equation, which is solved in Sec. III.

B. Compliance relaxation function

In this subsection, the general properties of a compli-

ance relaxation function are derived. Moreover, a suitable

relaxation function is proposed that yields a frequency power

law attenuation.

1. General properties

For convenience it is first assumed that the attenuation

is spatially independent, i.e., the considered compliance

memory function is v(x, t)¼ v(t). If in that case, Eqs. (6)–(8)

are subjected to a temporal Laplace transformation and the

proper substitutions are performed, the following wave

equation may be obtained:

r2p̂ðx; sÞ � s2

c2
0

v̂ðsÞp̂ðx; sÞ ¼ �Ŝprðx; sÞ; (15)

where the hat indicates that a quantity has been transformed

by means of the Laplace transformation with parameter s.

At this stage, the Laplace transformation is preferred

over the Fourier transformation. This is because Lerch’s the-

orem24–26 for the Laplace transformation provides a stronger

and simpler way of keeping track of causality than the

Paley–Wiener27 theorem does for the Fourier transformation.

From Lerch’s theorem it may be deduced that a sufficient

condition for a transform domain function f̂ ðsÞ to correspond

to a unique, causal time domain function f(t) is that f̂ ðsÞ
should remain bounded for all real s � s0 � 0, where s0 may

be chosen arbitrary large (but not infinite).

Like any of the transformed quantities, v̂ðsÞ is the Lap-

lace transform of a real function v(t), so v̂ðsÞ must be real for

real values of s. Moreover, v̂ðsÞ is the Laplace transform of a

unique, causal function v(t). As explained in the previous

paragraph, this is certainly satisfied if v̂ðsÞ remains bounded

on the real axis for s � s0 � 0.

Upon solving Eq. (15), the obtained wave field will

have a propagation coefficient

cðsÞ ¼ s

c0

v̂
1
2ðsÞ; (16)

in which c0 is the wave speed in the lossless medium. In the

lossless case there is no dispersion and every part of the wave

has the same speed c0. This speed also applies to the wave

front. The speed of the wave front always follows from the

high-frequency behavior of c as c0 ¼ limjsj!1 s=cðsÞ for

Re(s)> 0. In case of losses, ÂðsÞ will be at most of order sn

with n< 0 since A(t) is less singular at t¼ 0 than a delta func-

tion. Consequently, limjsj!1 v̂ðsÞ ¼ 1 and the wave front will

travel with the same speed c0 as in the lossless case.

When replacing s by jx, the propagation coefficient

may be written as

cðjxÞ ¼ aðxÞ þ jbðxÞ; (17)

in which a(x) is the attenuation coefficient and b(x) is the

phase coefficient. In view of the causality of v(t), the real

and imaginary parts of v̂ðjxÞ must now satisfy the Kramers–

Kronig relations.28 As a consequence of causality, a(x) can-

not be chosen independent from b(x), and attenuation and

dispersion will be interlinked phenomena.

The above theory is easily extended to the case of inhomo-

geneous losses by taking a spatially dependent compliance

relaxation function v(x, t).17 From the above, it is possible to

derive the general properties of any causal function v̂ðx; sÞ:10,14

(1) v̂ðx; sÞ is real for real values of s,

(2) v̂ðx; sÞ remains bounded for all s � s0 � 0, and

(3) limjsj!1 v̂ðx; sÞ ¼ 1 for Re(s)> 0.

2. Compliance relaxation function for frequency
power law losses

A function v̂ðsÞ that for s¼ jx provides the power law

attenuation coefficient a(x)¼ a1|x|b as observed in many

measurements,7,8,29 is

v̂ðsÞ ¼ 1þ c0a1sb�1

cosðpb=2Þ

� �2

; (18)

with positive real parameters a1 and b (b may not be an odd

integer). Some typical values are given in Table I, and more

extensive data may be found in the literature.8,29–31 The

given function yields the same attenuation and phase

coefficient as obtained by Szabo.32

In the current context, two changes will made to Eq.

(18). First, in order to satisfy the last two requirements at the

end of Sec. II B 1, a dominator is introduced that prevents

TABLE I. Acoustic medium parameters for water and several human

tissues (Ref. 30). The relation between a and a1 is a1¼ 100� a(2p)�b.

Medium

a b c0 b
[Np cm�1 MHz�b] [—] [ms�1] [—]

Liver 5.2 � 10�2 1.05 1578 4.38

Liver background 0 — 1578 4.38

Brain 6.7 � 10�2 1.3 1562 4.28

Brain background 0 — 1562 4.28

Blood 1.6 � 10�2 1.21 1584 4

Blood background 0 — 1584 4

Water 2.5 � 10�4 2 1482.3 3

Water background 0 — 1482.3 3
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the function to become infinite for |s|!1. Secondly, the

relevant loss coefficients are made spatially dependent. The

resulting function v̂ðx; sÞ is

v̂ðx; sÞ ¼ 1þ c0a1ðxÞsbðxÞ�1

cosðpbðxÞ=2Þ 1þ ðs=s1Þd
h i

0
@

1
A

2

: (19)

The parameters a1(x) and b(x) represent the spatially de-

pendent attenuative properties of the specific medium. Fur-

ther, s1 is a positive parameter that is larger than the largest

angular frequency of interest, and d is a positive integer pa-

rameter that satisfies d > maxx2DfbðxÞg � 1. The factor

1þ (s=s1)d in the denominator ensures that the compliance

relaxation function remains causal and that the wavefront

remains traveling with the finite wave speed c0 instead of the

infinite wave speed that is implied by Eq. (18). Since s1 is

larger than the largest frequency of interest, the influence of

the term will be practically negligible while theoretically

avoiding the occurrence of a noncausal compliance relaxa-

tion function and associated problems.

After substitution of Eq. (19) into Eq. (16) and setting

s¼ jx, it is easily shown that for |x|< s1, the function

c(x, jx) consists of an attenuation coefficient and a phase

coefficient that can be approximated by

aðx;xÞ � a1ðxÞ xj jbðxÞ; (20)

bðx;xÞ � x
c0

þ a1ðxÞ tanðpbðxÞ=2Þx xj jbðxÞ�1: (21)

In the spatially homogeneous case, these coefficients

correspond to those described by Szabo,32 and the propaga-

tion of a one way plane wave with angular frequency x is

just governed by these coefficients.

Equation (21) may be related to the phase speed c(x, x) at

angular frequency x by using the relation b(x, x)¼x=c(x, x).

This yields for |x|< s1 the following dispersion equation:

cðx;xÞ � 1

c�1
0 þ a1ðxÞ tanðpbðxÞ=2Þ xj jbðxÞ�1

: (22)

Spatially inhomogeneous attenuation is thus accompa-

nied by a spatially inhomogeneous phase speed. Both types

of inhomogeneities will influence the propagation and give

rise to scattering of an acoustic wave. By modeling the

attenuation via a compliance relaxation function, all relevant

physical effects are automatically included via the applied

attenuation contrast source.

From Eqs. (7) and (19) it follows that the function Âðx; sÞ
in the attenuation contrast source in Eq. (11) is given by

Âðx; sÞ ¼ 2c0a1ðxÞsbðxÞ�1

cosðpbðxÞ=2Þ 1þ ðs=s1Þd
h i

þ c0a1ðxÞsbðxÞ�1

cosðpbðxÞ=2Þ 1þ ðs=s1Þd
h i

0
@

1
A

2

: (23)

Frequency domain results for Âðx; sÞ are obtained by

taking s¼ j2pf, with f being the temporal frequency. As an

example, jÂðf Þj is plotted in Fig. 1 for liver, brain, blood,

and water.

III. SOLUTION METHOD

Equations (13) and (14) describe a contrast source prob-

lem with known acoustic medium parameters and primary

source, and an unknown acoustic pressure wave field. This

problem is identified as a forward wave problem in the litera-

ture. In this Section, this problem is solved by employing the

Neumann iterative solution.

A. Neumann scheme

Let the Green’s function G(x, t) be the solution of the

wave equation

r2Gðx; tÞ � 1

c2
0

@2
t Gðx; tÞ ¼ �dðxÞ dðtÞ: (24)

The Green’s function is the field that is generated by the

spatio-temporal impulsive source d(x)d(t) in a homogeneous,

linear, and lossless background medium. For the three-

dimensional case, the Green’s function equals

Gðx; tÞ ¼ d t� xj jj j=c0ð Þ
4p xj jj j ; (25)

with ||x|| being the length of the position vector x. Supposing

that the primary and contrast source in Eq. (13) are known,

the solution of this equation reads

pðx; tÞ ¼ Gðx; tÞ�x;t Sprðx; tÞ þ Scs pðx; tÞ½ �
� �

: (26)

Here, *x,t denotes a convolution over space and time. As the

contrast source Scs [p(x, t)] is a function of the unknown

pressure field p(x, t), Eq. (26) forms an integral equation.

This equation may be solved via the Neumann iterative

solution

FIG. 1. The modulus of Âðf Þ versus frequency, for liver, brain, blood, and

water.
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pðnÞðx; tÞ ¼ 0; ðn < 0Þ; (27)

pðnÞðx; tÞ ¼ Gðx; tÞ�x;tStot pðn�1Þðx; tÞ
h i

; ðn � 0Þ; (28)

Stot pðnÞðx; tÞ
h i

¼ Sprðx; tÞ þ Scs pðnÞðx; tÞ
h i

; (29)

in which the total source term Stot[p
(n)(x, t)] represents the

combined primary and contrast sources. This scheme defines

the Neumann expansion33 of the acoustic pressure field.

After discretization with respect to space and time, the

following discrete Neumann scheme is obtained

pðnÞ ¼ 0; ðn < 0Þ; (30)

pðnÞ ¼ G Stot pðn�1Þ
h ih i

; ðn � 0Þ; (31)

Stot pðnÞ
h i

¼ Spr þ Scs pðnÞ
h i

; (32)

in which the vector p
(n) contains the nth order approximation

of the acoustic pressure field at discrete grid points that span

the spatiotemporal computational domain. Further, G is the

operator that convolves the discrete Green’s function with

the discrete total source term Stot [p(n)], which is the discrete

version of Stot [p(n)(x, t)].
For the actual implementation of the scheme, the filtered

convolution method10,13 is employed. This method uses fil-

tering of the Green’s function and the source terms to avoid

singularities and aliasing effects, and it allows for a course

discretization of only two points per wavelength and per pe-

riod at the highest frequency of interest. After discretization,

the spatiotemporal convolution is performed with the aid of

an efficient FFT technique.

B. Convergence

The convergence of the Neumann scheme is known to

depend on the magnitude and the spatial extent of the contrast

source. For a theoretical analysis of the convergence of the

scheme, the reader is referred to the literature.34 To verify the nu-

merical convergence of the Neumann scheme toward the exact
solution, a normalized error functional Err

ðnÞ
1 is introduced as

Err
ðnÞ
1 ¼

pex � pðnÞ
�� ��

pexk k ; (33)

FIG. 2. The geometry of the phased array source. The number of elements is

Nel¼ 10. The dimensions of each element are Wel¼ 0.25 mm by Hel¼ 1 mm,

and the pitch is Del¼ 1 mm.

FIG. 3. Cross-section of configuration 2 along the plane y¼ 0. Black indi-

cates the lossless background medium, white indicates the lossy objects.

FIG. 4. Normalized error functional Err1
ðnÞ for configuration 1 containing

“linearized” (b¼ 0) liver, brain, blood, and water.

FIG. 5. Normalized error functional Err2
ðnÞ for configuration 1 containing

“linearized” (b¼ 0) liver, brain, blood, and water.
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in which pex equals the exact solution as obtained from a

benchmarking program. When Err
ðnÞ
1 decreases toward zero

for increasing n, the obtained solution converges toward the

exact solution. To test the numerical convergence of the

Neumann scheme toward a steady solution, a second normal-

ized error functional Err
ðnÞ
2 is defined as

Err
ðnÞ
2 ¼

pðn�1Þ � pðnÞ
�� ��

pð0Þk k : (34)

When Err
ðnÞ
2 decreases toward zero for increasing n, the

obtained solution converges toward a steady solution. The

numerical convergence of the scheme is demonstrated in

Sec. IV B.

IV. RESULTS

A. Configurations

Two configurations are used to demonstrate the numeri-

cal performance of the presented method. In both configura-

tions, the source is a linear phased array. The origin of the

coordinate system is located at the center of the transducer.

A graphical representation of the source is given in Fig. 2.

The array consists of Nel¼ 10 elements. The dimensions of

the elements are Wel¼ 0.25 mm by Hel¼ 10 mm, and the

pitch is Del¼ 1 mm. The elements are excited with a pulse

consisting of an harmonic signal with a frequency f0¼ 1

MHz that is amplitude modulated by a Gaussian pulse with a

width tw¼ 3=f0. This envelope contains about six cycles of

the harmonic signal.11 The peak pressure at the surface of a

transducer element is P0¼ 0.5 MPa. No focusing is applied.

Configuration 1 may contain different types of homoge-

neous lossy media. No beam steering is applied, and the

dimensions of the spatial computational domain D are

(x� y� z)¼ (25 mm� 20 mm� 50 mm). Configuration 2

contains lossy objects embedded in a corresponding lossless

background medium. The transducer beam is steered over an

angle h¼ 45 , and the spatial computational domain D

FIG. 6. The normalized error functional Err
ðnÞ
2 ; (a) for configuration 1

(homogeneous lossy liver), (b) for configuration 2 (lossy liver objects in a

lossless liver background).

FIG. 7. The nonlinear pressure wave in configuration 1 with lossless (solid

line) and lossy (dashed line) liver; (a) time domain pulse, (b) normalized

frequency domain spectra. The observation point is (x, y, z)¼ (0 mm, 0 mm,

50 mm). The graphs apply to the fundamental (F0), second harmonic (2H),

and third harmonic (3H) components.
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measures (x� y� z)¼ (50 mm� 20 mm� 25 mm). For con-

figuration 2, a cross-section of the spatial domain D along

the plane y¼ 0 is shown in Fig. 3.

B. Convergence

The convergence of the Neumann scheme may be tested

using the normalized error functionals Err
ðnÞ
1 and Err

ðnÞ
2 .

These functionals are computed for configuration 1 contain-

ing different types of homogeneous lossy media taken from

Table I. In order to focus on the effect of attenuation, the

media are considered to be linear by setting b¼ 0.

For the homogeneous case, the convergence of the Neu-

mann scheme toward the exact solution is investigated using

error functional Err
ðnÞ
1 . Here, the exact solution pex is

obtained from the INCS method with a lossy Green’s func-

tion.10,14 The results are presented in Fig. 4 and show that a

normalized error of less than than 1% is achieved for all four

media within three iterations.

For arbitrary configurations as met in practice, the exact
solution is unknown. In these situations, only the conver-

gence of the Neumann scheme toward a steady solution may

be tested by using error functional Err
ðnÞ
2 . This functional is

computed for the same lossy linear media as used before,

and the results are presented in Fig. 5. The graphs show that

media with less attenuation require significant fewer itera-

tions to reach a normalized error Err
ðnÞ
2 � 10�16 than media

with strong attenuation; i.e., 5 iterations for weakly attenua-

tive water, and 14 iterations for highly lossy brain tissue. In

addition, it is shown that the error functional flattens after it

reaches this value.

Reaching convergence with respect to a steady solution

requires a multiple of the number of iterations as needed for

reaching convergence with respect to the exact solution.

Here, reaching convergence is defined as the moment from

where on the error functional flattens out. The field scatter-

ing of the boundaries of the applied computational domain

are negligible with respect to the amplitudes of the exact so-

lution, and it does not play a significant role in the conver-

gence toward the exact solution. This is why in the current

method no domain truncation with absorbing boundary con-

ditions is applied. However, this field is of importance for

reaching a steady solution, where changes between succes-

sive iterations are considered, resulting in the observed

increase in number of iterations.

Next, the convergence of the Neumann scheme for non-

linear and lossy media is investigated by considering config-

uration 1 containing lossy liver, and configuration 2

FIG. 8. The nonlinear pressure field in configuration 1 with lossless (solid

line) and lossy (dashed line) liver; (a) axial profile evaluated along the

z axis, (b) lateral profile evaluated along the line (y, z) ¼ (0 mm, 50 mm).

The graphs apply to the fundamental (F0), second harmonic (2H), and third

harmonic (3H) components.

FIG. 9. Two-dimensional spectral

profiles of the pressure wave field in

configuration 2 with lossless liver

and lossy inhomogeneities; (a) fun-

damental, (b) second harmonic, (c)

third harmonic. The observation

plane is y¼ 0 mm. The pressure

values are expressed in dB re 1 Pa.
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containing lossy liver objects in a lossless liver background.

The results are presented in Fig. 6. For configuration 1, the

flattening of Err
ðnÞ
2 is reached within 26 iterations, whereas

the inhomogeneous configuration 2 requires only 19 itera-

tions. The difference may likely be caused by the fact that,

unlike configuration 1, configuration 2 has an attenuation

contrast source that is zero outside the objects, resulting in a

smaller volume of the total contrast source.

C. In silico experiments

A numerical example of the nonlinear propagation of

the acoustic pressure wave is presented in Fig. 7. This figure

applies to configuration 1 with both lossless (indicated as

“background” in Table I) and lossy liver. Figure 7(a) shows

the time domain pressure pulse in the point (x, y, z)¼ (0 mm,

0 mm, 50 mm). The normalized frequency spectra of this

pulse are shown in Fig. 7(b), where the fundamental (F0),

the second harmonic (2H), and the third harmonic (3H) com-

ponent of the pressure wave field are clearly visible. Normal-

ization is performed with respect to the maximum absolute

value of the lossless spectrum. Both figures clearly show a

reduction of the amplitude of the pressure wave when attenu-

ation is taken into account. The frequency dependent nature

of the attenuation is visible in Fig. 7(b), in which an increase

in attenuation is observed for increasing frequency. This is

in agreement with the behavior of Âðf Þ for liver, as shown in

Fig. 1.

Figure 8 shows the axial and lateral spectral profiles of

the pressure field that is generated in configuration 1 with

lossless and lossy liver. The axial profile in Fig. 8(a) is

evaluated along the z axis, and the lateral profile in Fig. 8(b)

is evaluated along the line (y, z)¼ (0 mm, 50 mm). In both

panels, the increase of attenuation for the higher harmonics

is clearly visible. The cumulative nature of the nonlinear

effects may be observed in Fig. 8(a), which shows the

growth of the amplitudes of the harmonics with depth.

In Fig. 8(b), two effects are recognizable that are con-

nected to nonlinear propagation and that are utilized in

medical applications to improve the quality of ultrasound

images. First, if the ratio between the amplitude of the main

and side lobes is considered, a reduction of this ratio is

observed for increasing harmonics. Second, for increasing

harmonics, the main beam width decreases. In particular, the

�3 dB beamwidth is 6.9 mm for the fundamental, 4.3 mm

for the second harmonic, and 3.4 mm for the third harmonic.

Figure 9 shows the two-dimensional spectral profiles of

the nonlinear pressure field in the plane y¼ 0 mm for

configuration 2 with lossy (objects) and lossless liver

(background).

For increasing harmonics, the decreasing size of the focal

area and the grating lobes, and the clutter (near field) reduction

are clearly visible in these figures. Note that grating lobes and

related effects can only be modeled accurately when it is possi-

ble to compute pressure wave fields over a wide angle. The

INCS method allows to accurately do this since no a priori
assumption on the directivity of the wave field is employed.10,11

Two snapshots of the pressure wave propagating in

configuration 2 with lossy (objects) and lossless liver (back-

ground) are shown in Fig. 10. The fields are presented for the

plane y¼ 0 mm. In Fig. 11, pressure versus time at the origin

of the coordinate system is shown. In both 10 and 11, the

characters A to P are used to mark specific phenomena, see

Table II. The generated pressure wave field P originates from

the transducer and travels through the lossless background.

FIG. 10. Snapshots of the propagating pressure pulse in configuration 2

with lossless liver (background) and lossy inhomogeneities (dashed objects);

(a) early time, (b) late time. The observation plane is y¼ 0 mm. The labels

refer to the phenomena described in the text, and in Table II. The pressure

values are expressed in dB re 1 Pa.

FIG. 11. Pressure versus time at the origin of the coordinate system in con-

figuration 2 with lossless liver and lossy inhomogeneities. The observation

point is (x, y, z)¼ (0 mm, 0 mm, 0 mm). The labels refer to the phenomena

described in the text, and in Table II.

TABLE II. Acoustical phenomena present in Figs. 10 and 11.

Character Acoustical phenomenon

A Main beam

A’ Grating lobe

B Reflection from the front of the slab

C-D Reflection from the back of the slab

E Reflection from the front of the cylinder

F Reflection from the back of the cylinder

P Direct field of the transducer
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Part of the pressure wave field contributes to the formation of

the main beam A and another part to the formations of the

grating lobe A’. Furthermore, when the pressure wave field

encounters an interface between the background and the inho-

mogeneities, part of the field propagates through and part is

backscattered. In specific, B marks the backscattered pressure

wave field caused by the front of the lossy slab, C and D mark

the backscattered field caused by the back of the lossy slab

and E and F mark, respectively, the backscattered field caused

by the front and the back of the cylinder.

V. CONCLUSIONS

In this paper, a novel method has been presented to

accurately solve the wave equation for an acoustic nonlinear

medium with spatially inhomogeneous attenuation. This

wave equation is obtained by extending the Westervelt equa-

tion with a causal compliance relaxation function to incorpo-

rate attenuation. A specific form of the compliance

relaxation function has been proposed to provide the fre-

quency power law losses that are usually encountered in bio-

logical tissue. Spatially dependent attenuation has been

introduced by taking a spatially dependent relaxation func-

tion. The approach automatically provides the corresponding

spatially dependent phase speed. The spatial dependence of

both the attenuation and the phase speed gives rise to scatter-

ing of an acoustic wave. The resulting wave equation leads

to the formulation of a contrast source problem that has been

solved iteratively using a Neumann scheme. Since the pre-

sented method is an extension of the lossless INCS method,

it is able to accurately solve the full-wave equation for the

weakly to moderately nonlinear, wide-angle, pulsed acoustic

wave field in a large, three-dimensional domain. Conver-

gence of the method has been investigated and results for ho-

mogeneous, lossy, linear media show full agreement with

the exact results. Moreover numerical results have been gen-

erated to demonstrate the influence of the frequency-depend-

ent attenuation on a pulsed beam in a nonlinear medium

with homogeneous attenuation. For a nonlinear medium with

spatially inhomogeneous attenuation, the scattering from

attenuating objects has been shown as well.
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