
Position and orientationdetermination of aprobe with use of theIMU MPU9250 and aATmega328microcontroller
Charlotte TreffersLuc van Wietmarschen
June 15, 2016

Position and orientationdetermination of aprobe with use of theIMU MPU9250 and aATmega328microcontroller
by

Charlotte TreffersLuc van Wietmarschen
June 15, 2016

Students: Charlotte Treffers 4270134
Luc van Wietmarschen 4313496

Project duration: April 18, 2016 – July 1, 2016
Supervisor: dr. Marco Spirito, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

4

Abstract

This paper gives an overview of the position and orientation determination system made in context of
the final project of the bachelor Electrical Engineering at Delft University of Technology. By combining
the measurements of the accelerometers, gyroscopes and magnetometer from the Intertial Measurement
Unit MPU9250 in a complementary filter, the orientation of the MPU9250 was determined. The dis-
placement of the MPU9250 was determined by using the trapezoidal integrating method to integrate the
acceleration measured with the accelerometers. This displacement was combined with the orientation
to determine the position of the MPU9250. With the knowledge of the relative orientation and distance
between the MPU9250 and the probe-tip, the orientation and the position of the probe-tip was determined
with use of quaternions. Pitch and Roll angles were determined with an accuracy of 2 degrees. The yaw
angle determination was incorrect due to the inaccuracy of the magnetometers. The position determined
did not drift, but was off due to imprecise filtering and integration. For better results a microcontroller
with more programmable space is suggested.

5

CONTENTS

Abstract 4

1 Introduction 7
1-A Tissue Imaging Probe System . 7
1-B State of the art . 7

2 Programme of Requirements 9
2-A Functional requirements . 9
2-B Environmental compatibility . 9
2-C System requirements . 9

2-C1 Utilisation features . 9
2-C2 Production and putting into use features 9
2-C3 Discarding features . 9

2-D Testing Requirements . 9
2-E Development of manufacturing methodologies . 9
2-F Business strategies, marketing and sales opportunities 9

3 Design overview 10
3-A Overall design . 10
3-B 3D model of handle . 10
3-C MPU9250 . 11
3-D System overview . 12

4 I2C and sensor readout 13
4-A Theory . 13
4-B Implementation . 13
4-C Testing . 14

5 Calibration 15
5-A Theory . 15

5-A1 Gyroscope offset . 15
5-A2 Accelerometer offset . 15
5-A3 Magnetometer offset . 15

5-B Implementation . 16
5-B1 Gyroscope offset measurement . 16
5-B2 Accelerometer offset measurement . 17
5-B3 Magnetometer offset measurement . 17

5-C Results . 17

6 Noise filter 19
6-A Theory . 19
6-B Implementation . 20

6-B1 Filtering measurements accelerometers 20
6-B2 Filtering measurements magnetometers 20
6-B3 Filtering measurements gyroscopes . 20

6-C Results . 21
6-C1 Filtered accelerometer and magnetometer 21
6-C2 Filtered gyroscopes . 21

7 Complementary filter 22
7-A Theory . 22
7-B Implementation . 24
7-C Testing . 24
7-D Discussion . 25

6

8 Position and orientation calculation 26
8-A Theory on orientation . 26

8-A1 Reference frame . 26
8-A2 Quaternions . 26
8-A3 Calculations on model . 28

8-B Theory on converting acceleration to displacement 28
8-C Uncertainties . 30
8-D Implementation . 30
8-E Testing . 30
8-F Results . 31
8-G Discussion . 33

9 Determination of distance and orientation between MPU9250 and probe-tip 34
9-A Theory . 34

9-A1 Distance estimation . 34
9-A2 Orientation estimation . 34

9-B Implementation . 36
9-B1 Distance estimation . 36
9-B2 Orientation estimation . 36

9-C Testing . 36

10 Output 37
10-A Theory . 37
10-B Implementation . 37
10-C Testing . 37

11 Implementation on ATmega328 38
11-A Libraries . 38
11-B Auxiliary functions . 39
11-C Initialisation . 41
11-D Main loop . 41

12 Testing overall system 43
12-A Testing plan . 43
12-B Results . 43

13 Discussion 44

14 Conclusion 45

References 46

Appendix 48
A Figures . 48
B Tables with results complementary filter . 49
C Used libraries . 49
D Source code . 49

7

1. INTRODUCTION

A. Tissue Imaging Probe System

This paper will cover the position and orientation system of the Tissue Imaging Probe System (TIPS).
The TIPS was made in context of the finale project of the bachelor Electrical Engineering at Delft
University of Technology. The TIPS will provide a method to detect skin cancer without relying on
visual inspection. To do this the permittivity of the skin is measured with use of the TIPS. In short
the TIPS works by placing the probe on the skin. Then EM-waves with different frequency are send to
the skin and the reflections of these EM-waves are measured. The permittivity will then be determined
with use of an algorithm [1]. The visualisation-software combines the permittivity-measurements and
the location and orientation of the probe to make a 3D-sketch. The doctor can now easily see if there is
a skin cancer cell and where this cell is located. The position and orientation system described in this
paper will track the position and orientation of the probe during the permittivity-measurements and will
provide this information to the visualisation-software. The system needs to satisfy the requirements set
in section 2.

B. State of the art

There exist a lot of possible ways to determine the position of an object, each with its own advantages
and disadvantages. There are two ways to give a position, the absolute position or the relative position
to a starting point. To determine absolute position an observer is needed for reference, such as a camera
or for example in GPS a satellite network.

Absolute position detection is already done in commercially available products, such as the Microsoft
Kinect [2], and poses a method with a sufficient accuracy for this project. However, the object needs
to be visible to the observing device during measurements. This could be inconvenient for the doctor
and patient, especially since the probe-tip needs to be known which will be very close to the body and
thus the doctor will easily be between the camera and the probe-tip. Another option would be to make
a marker on the far side of the probe where the line of sight of the camera is less blocked by the doctor
and patient. However, this would require a fairly large handle to make sure the line of sight is kept and
that would not make the probe very user-friendly.

An already used way to determine equipment locations in medical care is trough magnetic resonance
imaging [3]. However, this method requires large and expensive machinery that also influences the
magnetic field and would thus influence the measurements of the probe. Due to these disadvantages
absolute positioning is not used. Relative positioning will also work for the end result and will be less
expensive.

To measure relative position one only needs to detect change in position from a starting point. For this
product the starting point is set when the instrument is touching the subject and the operator (doctor)
presses a button on the instrument. Two ways for determining relative position were found to be of a
reasonable price and implementation complexity: optical mice systems and an IMU-system containing
accelerometers, gyroscopes and magnetometers.

The use of an optical mouse sensor will give a two dimensional displacement of the probe. There
already exist methods for optical mouse position determination [4]. This requires to place a sensor on
the subjects surface and thus require the sensor to be as low as the probe-tip. This would make the
probe wider at the tip and unsuitable to move across small surfaces or sharp curves. On top of that there
would be two optical sensors needed, since the sensor cannot be placed on the tip of the probe and the
exact position of the probe can only be guessed to be to the side of the optical mouse. Also when the
probe rotates the mouse sensor only sees a change in position, but the position of the probe-tip stays the
same. This problem can be solved with using two optical mouse sensors on both sides, but this make
the probe even wider.

By using an IMU-system with accelerometers, gyroscopes and magnetometers one can measure the
relative position and orientation of an object in all three dimensions [5]. With those parameters known
one can calculate any other point on the device attached to this sensor. This will give the possibility
to place the IMU away from the probe-tip (although not too far to conserve accuracy). This will allow

8

the probe to be placed on the subject without any other materials near the probe-tip. Thus this will not
influence the measurement and will allow the probe-tip to be moved along sharp curves. On top of that
these sensors are small, cheap and easily integrated with other electronics.

Thus the IMU-system containing gyroscopes, accelerometers and magnetometer will be used in this
paper as a basis to track the position and orientation. This position-system must satisfy the requirements
given in section 2. In section 3 the design based on the position-system will be given. In sections 4 up to
and 10 the different elements of this design are explained. In these sections the implementation of these
elements are given and tested. Section 11 gives an overview of how those elements are implemented
together on the microprocessor. After testing the individual elements the whole position-system is tested
and the results are given in section 12. The results of the testing are discussed in section 13. To end
with there will be given a conclusion in section 14.

9

2. PROGRAMME OF REQUIREMENTS

The position-system will track the movements and orientation of the probe and return an accurate
position and orientation to the visualisation-software.

A. Functional requirements

[1,1] The position-system must give the position of the probe to the visualisation system.
[1,2] The position-system must give an orientation of the probe to the visualisation system.
[1,3] The position-system must work during a measurement performed by a doctor in a hospital or

practice.

B. Environmental compatibility

[2,1] The position-system must not influence the surrounding equipment.
[2,2] The position-system must not have any negative side effects on the user and on the patient.

C. System requirements
1) Utilisation features:

[3,1,1] The position-system must give a position in x,y,z in cm to the visualisation-software.
[3,1,2] The position-system must give the position with an accuracy of 1 cm.
[3,1,3] The position-system must give the orientation in a normal vector to the visualisation-software.
[3,1,4] The position-system must give the orientation with an accuracy of 2 degrees.
[3,1,5] The position-system must be insensitive to the rotation of the probe.
[3,1,6] The position-system must not influence the permittivity measurement.
[3,1,7] The position-system must be user-friendly.
[3,1,8] The position and orientation tracking must start/stopped when a button is pressed.

2) Production and putting into use features:
[3,2,1] The position-system must be attached to the probe, but must not limit the movability of the

probe.
[3,2,2] Matlab must be pre-installed on the user’s premise and must have the needed license.
[3,2,3] The handle must be printable by 3D-printer and made to be assembled by hand.
[3,2,4] The position determination device, including a button, must fit in the handle.
[3,2,5] The operational software must be installed on the microcontroller ATmega328.
[3,2,6] The wiring of the device must be done before delivery.
[3,2,7] The system may not stop sending data within 12 hours of active use.

3) Discarding features:
[3,3,1] It must be possible to dismantle the device by hand.
[3,3,2] The microprocessor must be reprogrammable and reusable.

D. Testing Requirements

[4,1] All subsystems must be able to communicate with each other.
[4,2] All filters will not filter out data that is needed for the accuracy described in requirements [3,1,2]

and [3,1,4].
[4,3] All filters will filter out distortions that would otherwise cause inaccuracy greater than described

in requirements [3,1,2] and [3,1,4].
[4,4] All offsets needs to be completely removed, the mean after removal must be zero.

E. Development of manufacturing methodologies

[5,1] The position-system must run on a microcontroller ATmega328. The ATmega328 must pass the
position of the probe to the visualisation-software, which is written in Matlab.

[5,2] The operational software must be developed in standard ANSI C. The employed compiler must
be validated according to the ANSI/ISO/IEC standards.

F. Business strategies, marketing and sales opportunities

[6,1] The product must be delivered and installed within 3 months when ordered.

10

3. DESIGN OVERVIEW

A. Overall design
The design of the position-system is based on an Intertial Measurement Unit (IMU) with gyro-

scopes, accelerometers and magnetometers. For this project the MPU9250 from InvenSense is used. The
MPU9250 is discussed in section 3-C. The MPU9250 is placed at the side of the probe, a short distance
from the probe-tip. The MPU9250 is not placed too close to the tip to meet requirement [3,2,1], which
states that the position-system may not limit the freedom of movement of the probe. The MPU9250 and
the probe are placed in a handle which also contains a button. The 3D design of the handle is presented
in section 3-B.

The button will be used to start and stop the tracking of the position, meeting requirement [3,1,8]. The
position of the probe-tip at that start moment will be the reference point to the positioning measurement.
In figure 3.1 an overview of the position-system is given. The MPU9250 will be connected to the
microcontroller (ATmega328, Arduino Nano, requirement [5,1]) with use of the I2C-bus. The button
will also be connected to the microcontroller. The microcontroller calculates the orientation of the probe
and position of the probe-tip. After the calculation the orientation and position will be given to the
visualisation-software, meeting requirements [1,1] and [1,2]. Section 3-D gives a more detailed overview
of the design.

Figure 3.1: Large overview of the position-system

B. 3D model of handle
The MPU9250 and button will be placed in a handle, which is designed using Solidworks. The handle

encloses the probe and therefore contains a hole where the probe can pass trough. To attach the MPU9250
to the handle there are two screw holes and to attach the button there is a square hole, this to meet
requirement [3,2,4]. The handle was 3D printed (requirement [3,2,3]) in two parts, this is to allow the
user to place the components at the inside. The two parts can be put together by two screws, allowing
for assembly by hand. The Solidworks model and 3D printed handle are shown in figure 3.2.

(a) Solidworks model
back side

(b) Solidworks model
front side

(c) 3D printed handle

Figure 3.2: Solidworks model and 3D print of handle

11

C. MPU9250

For the position-system based on a IMU-system, containing accelerometer, gyroscopes and magne-
tometers, the MPU9250 will be used (figure 3.31).

Figure 3.3: MPU9250

The MPU9250 is an IMU that combines the MPU6050, which contains accelerometers and gyroscopes
in a single chip [6], and the AK8963, which is a 3-axis digital compass (also known as magnetometers)
[7]. The MPU6050 has an onboard Digital Motion Processor (DMP). The DMP processes the complex
6-axis MotionFusion algorithms. Those algorithm can calculated the orientation of the MPU9250, but
only uses the accelerometers and gyroscopes, to do this. Because it doesn‘t use the magnetometers the
yaw angle is not calculated very accurate and therefore the DMP is not used in this project. In section 7
it is explained why the measurements of the magnetometers are needed to calculated the yaw angle.
Further the MPU6050 works with a 1024 byte First In First Out (FIFO) buffer and the MPU9250
can communicate with the ATmega328 with an I2C bus at 400kHz. The ATmega328 can read out the
measurements of the MPU6050 by using the FIFO buffer and read out the AK8963 by enabling a
bypass, this will later be made clear in section 4. In appendix A in figure A.1 the Block Diagram of the
MPU6050 given by InvenSense is shown.

The MPU9250 uses 16-bit analog-to-digital converters (ADC’s) for digitizing the gyroscopes, ac-
celerometers and magnetometers outputs. The gyroscopes of the MPU9250 has an adjustable full scale
range. Dependent on the full range scale the sensitivity of the gyroscopes are between 16.4 and 131
LSB/◦/sec, corresponding with a sensitivity of between 0.00763 and 0.06098◦/sec (LSB meaning
Least Significant Bit). The full scale range of the accelerometers are also adjustable and the sensitivity is
between 2048 and 16384 LSB/g, corresponding with a sensitivity between 0.00060 and 0.00479m/s2.
The magnetometer has a full scale range of +/- 4800 µT and a sensitivity of 0.6 µT/LSB.

There is an ATmega328 library provided by J. Rowberg to readout the MPU9250 with use of the
I2C bus [8]. To use this library it is necessary to use the I2C library as well [9]. The MPU9250 library
helps to initialize the I2C bus and give different functions to read out the FIFO buffer. Also the library
provides some functions to help with 3D position calculation, some of those will be used to make the
implementation of the calculation of the position and orientation of the probe, described in section 8-D.
A list with used libraries can be found in appendix C. More about the I2C bus and readout of the sensors
can be found in section 4.

The reason to select this IMU over others is because of its wide implementation in combination with
the ATmega328, meaning that they work together as demanded by requirement [4,1] and there are many
examples and libraries that can be used for our needs. The specifications also indicate it is accurate
enough with respect to requirements [3,1,2] and [3,1,4]. On top of that it is small enough to fit in the
handle as demanded by requirement [3,2,4].

1Figure from http://www.hotmcu.com/9dof-imu-module-with-mpu9250-p-172.html

12

D. System overview

In appendix A in figure A.2 the pin diagram of the position-system is shown. The MPU9250 is
connected to the ATmega328 with a level-shifter in between. This is done because the MPU9250 works
at a DC voltage of 3.3V and the ATmega328 works at a DC voltage of 5V. The button is also connected
to the ATmega328 and uses the pull up resistor of the Arduino Nano.

The calculation of the orientation and position of the probe are done by the ATmega328, as determined
by requirement [1,1] and [1,2]. In figure 3.4 an overview of the different elements of the calculation is
given. First the values of the MPU9250 are read out with use of the I2C bus, see section 4. The values of
the measurements are noisy, especially from the accelerometers and magnetometers. To prevent the noise
from affecting the position and orientation calculation the values of the sensors are first noise filtered,
using the noise filter described in section 6. After the noise filtering the filtered values are combined in
the complementary filter to gain the orientation of the MPU9250. The complementary filter is described
in section 7. Thereafter the noise and high-pass filtered measurements of the accelerometers and the
orientation of the MPU9250 are combined to calculate the position and orientation of the probe-tip, see
section 8. To calculate the position and orientation of the probe-tip, the distance between the probe-tip
and the MPU9250 and relative orientation between the probe-tip and the MPU9250 must be known,
section 9 describes an algorithm to determine this distance and orientation. Section 10 describes how
the orientation and position of the probe is given to the visualisation-software. In section 11 is described
how all the named sub-elements work together in code that will be programmed on the ATmega328.

Figure 3.4: System overview

13

4. I2C AND SENSOR READOUT

A. Theory

The ATmega328 communicates with the MPU9250 with use of the I2C bus. I2C is a serial protocol
for a two-wire interface [10]. The I2C communication makes use of the Serial DAta (SDA) and Serial
CLock (SCL) pins of the MPU9250. The SCL provides the serial clock and the SDA provides the serial
data. The address of the MPU9250 is set by pin AD0, this address is 0x68 when the pin is connected
to ground, which is done in this project. The address of the AK8963 is by default 0x0C. Before the
communication starts the SCL and SDA are both high, caused by pull-up resistors. These pull-up resistors
are placed to make certain both pins become high when not being defined by the ATmega328, this will
prevent communication problems when the ATmega328 is waiting for incoming data.

When the communication between the ATmega328 (master) and the MPU9250 (slave) starts the start
condition is created. This is done by making SDA low, see figure 4.12. Then the serial clock (SCL)
begins to generate clock pulses and the first byte is send by the master. This first byte contains the 7-bit
address of the slave and a read/write bite. When the read/write bit is 0 the master will write to the slave
and when the bit is 1 the master will read from the slave. The bits are send when the serial clock is
high. When the serial clock is low the bit value are allowed to change. The number of bytes sent is not
limited but each byte must be followed by an acknowledge bit, see figure 4.1. When the master is done
writing/reading then the stop condition is created, see figure 4.1.

Figure 4.1: I2C protocol

B. Implementation

The I2C communication is implemented by using the I2Cdev library [9] and the MPU9250 library from
J.Rowberg [8]. With use of especially the functions writeBytes, writeWords, readBytes and readWords
from the I2Cdev library the I2C is initialized and used to read out the MPU9250.

To collect data from the MPU6050 the ATmega328 first indicates which registers are needed to be
read out. The MPU6050 then puts these registers bytes in the FIFO buffer to be accessed by the I2C
bus. The ATmega328 then reads out the First In First Out (FIFO) buffer and puts the right bytes in the
corresponding variables. A bit shift operation is required to gather the data since the measurements are
stored as 16-bit values divided into two bytes, the higher byte must be shifted 8 bits to make room for
the lower byte in the 16 bit space that is allocated on the ATmega328 for the measurement.

Next is the readout of the magnetometers, located on the AK8963. To interact with the AK8963 the
MPU9250 must allow the AK8963 to directly connect to the I2C bus, this is done by enabling the
I2C bypass on the MPU9250. After this the AK8963 is activated by setting its mode to single readout
mode. In this mode the AK8963 will do one readout, put that in its readout registers and ends by
putting itself into sleep mode again. Next time the ATmega328 accesses the MPU9250 the I2C bypass
is automatically disabled, so this needs to be enabled every readout of the AK8963. The decision to use
the single readout mode on the AK8963 is also chosen because of the automatic resetting of the I2C
bypass by the MPU9250. The AK8963 also contains a continuous readout mode, but that requires the

2Figure from datasheet MPU9250 [10]

14

I2C connection to remain open, thus it is not possible to read out both the MPU9250 and AK8963 in
continuous mode. If the AK8963 is left in continuous mode while the I2C connection is terminated it
will overflow its own buffer and it becomes unpredictable what value will be read out when accessed.
One small advantage to the single readout mode is that the readout frequency of the MPU6050 and
AK8963 are synchronised since the AK8963 data is only read when the MPU6050 has new data ready.
The exact code implementing this can be found in the MPU9250.h library.

C. Testing

To test if the I2C communication works, the value of the accelerometer, gyroscopes and magnetometers
were read out and printed on the serial monitor of de arduino interface. When reading out the data the
MPU9250 was turned in various directions, to check if the readouts were as expected. The output of
the accelerometers, gyroscopes and magnetometers corresponded with the expected values. This is as
required by requirement [4,1] and therefore it was concluded that the I2C communication works.

15

5. CALIBRATION

A. Theory

In this section the accelerometer, gyroscope and magnetometer offsets are explained. Other errors,
such as drift and noise, are explained and corrected in section 6 and section 7.

Offset is defined as the DC offset of the measurement. The DC component is the mean value of the
waveform. If this mean value is zero, there is no DC offset. All three sensor types use Micro Electrical
Mechanical System (MEMS) hardware, which is less precise than for example ring lasers. Which are
not used because of requirement [3,2,4], since they are too large. This hardware means that even when
the device is lying still the accelerometers, gyroscopes and magnetometers still output a value other than
zero. Each device has its own reasons to have this offset and sometimes it is even the offset that must
be monitored for orientation determination. Each device therefore needs its own offset calculation and
correction method.

1) Gyroscope offset: Gyroscopes have the simplest offset form of the three methods. It is simply
due to manufacturing and the fact that MEMS hardware is not so precise. It is also easy to measure
and correct. The device is locked in place so that it doesn‘t move and should therefore measure zero
angular velocity. If the raw data does have a non-zero DC component, it is the offset of the gyroscope.
To correct for these offsets these non-zero values must always be subtracted from the raw data. In this
way the waveform is centred around the time-axis and all reading correspond to movements (or other
forms of noise).

2) Accelerometer offset: For the accelerometers the offset is quite large, because there is always the
gravitational field of the earth which is measured by the accelerometers. This gravitational pull is however
known, namely the gravitational constant, and by placing the MPU9250 level with upwards facing z-axis
this gravitational offset can be easily subtracted. After this and locking the MPU9250 in place, so that
there is no movement, there will still be a DC offset noticeable in the raw output as a mean in the output
waveform. This offset must then always be subtracted from the raw accelerometer output to get accurate
data, even during movements. For orientation determination the accelerometer data is used to measure
gravity. In this case the DC offsets must still be subtracted, but the gravity component should be left
standing. This is further explained in section 7. In case of the displacement determination the gravity
should also be subtracted from the measurements of the accelerometers, to gain the real acceleration of
the MPU9250, this is explained in section 8.

3) Magnetometer offset: Similarly to the accelerometers the magnetometers always sense a, smaller
but still noticeable, offset. The magnetometers will only be used to determine orientation and for that
they need to sense the magnetic field of the earth. This earth magnetic field has a approximate strength
of 40µT in The Netherlands. Most electrical devices contain components that interact with this field.
This poses a problem when trying to precisely measure the earth magnetic field. These disturbances are
divided into two groups, the hard iron losses and the soft iron losses [11]. The hard iron losses are
due to the chips permanently magnetized components and soft iron losses are due to the geomagnetic
field inducing currents onto normally unmagnetized components. The hard iron losses are easy to be
calculated and corrected, because they are constant regardless of orientation and position of the device.
One easy way to determine this offset is to measure the raw data from the magnetometers when the
device is lying level on the surface before and after a rotation of 180 degrees. The hard iron losses are
turned with the device, whereas the earth magnetic field stays in the same reference frame. Thus one first
measures the magnetometer offset and the earth magnetic field in positive direction and after the turns
measures the magnetometer offset with the negatively oriented earth magnetic field. The sum of the two
reading is twice the magnetometer offset. This is illustrated in figure 5.1 and the following equations:

A = Devicefield+ Earthfield (5.1a)
B = Devicefield− Earthfield (5.1b)

A+B = 2 ∗Devicefield (5.1c)

16

Here the device field is the hard iron offset that must always be subtracted from the raw data to measure
the magnetic field apart from the device. Doing this for each axis gives the corresponding hard iron
offsets.

Figure 5.1: Illustration of hard iron losses determination

The soft iron offsets are harder to detect and correct for because they vary with the orientation of the
device. The magnetic field of the earth is enhanced or blocked out by different types of metal in the
chip. These metals rotate along with the chip, but the earth magnetic field does not, resulting in different
offsets in different orientations. These soft iron losses result in a scaling error in each magnetometers
data respectively to each other. One method to measure and correct for this error is to rotate the device
around all axes and plotting the measurements of the magnetometers on each corresponding axis creating
a ellipsoid of the measured magnetic field. This ellipsoid is due to the different scaling of the magnetic
field in the chip, where a certain orientation induces a stronger field than others. To correct the error,
the difference between the ellipsoid and a perfect sphere must be calculated. This gives scaling for
all three axes and thus for the magnetometers. This scale must always be applied to the raw data to
compensate for the soft iron losses. To calculate this scale the ellipsoid must first be aligned with the
magnetometer axes. This is done by finding the major axis of the ellipsoid and aligning it with one of
the axes using a quaternion rotation. After this the scaling can be reverse calculated from the difference
between the ellipsoid and a perfect sphere. This scaling is the ratio between the major and minor axis
for each magnetometer axis. After all these scales are found they must be rotated back into the actual
measurement frame with the reverse quaternion rotation that was done to align the major axis with one
of the magnetometer axes. To get the corrected data from the raw data, the raw data must be rotated
using the previously found quaternion, then scaled using the found scales and rotated back into the
measurement frame. A more compact way of doing this is using a matrix that contains the quaternion
rotation and scales, such that only a multiplication of the raw data with this matrix needs to be done to
get the corrected data. The calibrated data is then given by the following equation [12]:Mx

My

Mz

 =

C1 C2 C3

C4 C5 C6

C7 C8 C9

Mrawx −Bx
Mrawy −By
Mrawz −Bz

 (5.2)

In this equation the M matrix represents the offset corrected data, the C matrix is the soft iron losses
correction matrix, the B matrix represents the biases induced by hard iron losses and the Mraw are the
raw magnetometer values.

B. Implementation

The calibration is implemented as a procedure performed apart from the normal operation of the
device. During this procedure the device is placed and moved in specific orientations and patterns. The
raw data from these orientations or patterns is then put into Matlab where simple calculations are done.

1) Gyroscope offset measurement: To measure gyroscope offset the device is locked in one single
orientation, it does not matter in what orientation since the gyroscope does not measure any external
forces. 1000 samples are then taken from all three gyroscopes to prevent noise errors. The mean of these
samples represents the DC offset. During normal operations this offset is always subtracted from the
raw data to give the corrected data.

17

2) Accelerometer offset measurement: The accelerometer offset is measured similarly to that of the
gyroscopes. The device is locked on a level surface with the z-axis pointing upwards. 1000 samples of
the raw outputs from each accelerometer are taken. An integer value representing the gravitational pull
of the earth (in this case 16384) is subtracted from all z-axis samples. Hereafter the mean of the data
is calculated in Matlab. This mean is the DC offset and will be subtracted from the raw data during
normal operations.

3) Magnetometer offset measurement: The magnetometers have the most complex procedure for offset
calculation and correction. For the hard iron losses the device is locked in place on a level surface and
1000 samples are taken. Then the device is rotated exactly 180 degrees around the z-axis and another
1000 samples are taken. These 2000 samples are then used to calculate the offset for the x- and y-axis
using equation 5.1. For the z-axis the device is put exactly at a 90 degrees angle with the level surface
and 1000 samples are taken. The device is than turned 180 degrees on the surface and again 1000
samples are taken. The same method for the x- and y-axis then determines the hard iron offset for the
z-axis. These hard iron offsets are always subtracted from the raw data during normal operations.

To measure the soft iron losses a third party program is used, called MagMaster. This program
uses specific orientations of the device. First the device is put with upwards facing x-axis, the second
measurement is with the device turned exactly 180 degrees around the x-axis. This is then repeated when
the x-axis is facing downward and after that also performed with the other axes. These sampled data
is then put into calculations to determine the transformation matrix. This matrix multiplication is done
after the hard iron offsets are subtracted and give the corrected values during normal operations. The
hard iron losses can also be calculated using this program and yielded similar results as calibration by
hand

C. Results

The results of gyroscope offset calibration are given in figures 5.2 and 5.3. In the first figure the
uncorrected values are given, it can be seen that these values are not centred around value zero. The
corrected data in figure 5.3 shows the data around the zero value and thus without DC-offset and with
this requirement [4,4] is met.

Figure 5.2: Raw gyroscope data Figure 5.3: Gyroscope data corrected for offset

18

The accelerometer calibration results are given in figures 5.4 and 5.5. These results are similar to that
of the gyroscopes.

Figure 5.4: Raw accelerometer data Figure 5.5: Accelerometer data corrected for offset

The magnetometers are harder to represent, since they are not calibrated around a zero axis versus
time. They are calibrated to form circular data when two magnetometers axes are plotted and the device
is rotated around the remaining axis. In figures 5.6, 5.7 and 5.8 the raw magnetometer data when the
device is rotated is given. It can be seen that the circles do not circle around the center of the plane,
these are the hard iron losses. Also it can be seen that these circles are slightly elliptic, this is due to
the soft iron losses. The corrected data are given in figures 5.9, 5.10 and 5.11. The circles are almost
centred around the origin and far less elliptical. Unfortunately this calibration does not meet requirement
[4,4], since the offset are not completely removed.

Figure 5.6: Raw magnetometer
X vs Y data

Figure 5.7: Raw magnetometer
X vs Z data

Figure 5.8: Raw magnetometer
Y vs Z data

Figure 5.9: Corrected
magnetometer X, Y data

Figure 5.10: Corrected
magnetometer X, Z data

Figure 5.11: Corrected
magnetometer Y, Z data

19

6. NOISE FILTER

A. Theory

The measurements of especially the accelerometers and magnetometers are very noisy. To prevent the
noise from having influence on the position-calculation the measurements are filtered. The reason to not
use a normal low-pass filter is that a low-pass filter is slow. In some cases of significant change in value
the system must response fast and therefore the low-pass filter is not used in all cases.

The noise filter make use of the following if-statements:

if (Value < CompareValue - NP | Value > CompareValue + NP)
{

FilteredValue = Value;
}
else
{

if (Value < CompareValue - NPS | Value > CompareValue + NPS)
{

FilteredValue = (Value + PreviousCorrect)/2;
}
else
{

FilteredValue = (1 - NPL)*PreviousCorrect + NPL*Value;
}

}

The if-statement uses 6 parameters. Value, CompareValue, PreviousCorrect, NoiseParameter (NP), NoiseP-
arameterSen (NPS) and NoiseParameterLow (NPL). The difference between Value and CompareValue
is first compared with the value of NoiseParameter. If the difference between the two values is more
than the NoiseParameter then the FilteredValue, the outcome of the filter, becomes Value. The difference
between Value and CompareValue is then so significant that there is a real change and in that case the
Value is not altered before passing it to FilteredValue. If the difference is less than the NoiseParameter the
difference between Value and CompareValue is compared with NoiseParameterSen. If the difference is
more than NoiseParameterSen the FilteredValue becomes the average of Value and PreviousCorrect. Then
difference between Value and CompareValue is too big to ignore but too small to change the FilteredValue
to Value and therefore the average is taken. If the difference is less than NoiseParamaterSen the value
is low-pass filtered, with use of the parameter NoiseParameterLow.

20

B. Implementation

1) Filtering measurements accelerometers: The measurements of the accelerometers are very noisy,
so to prevented the system from this noise the measurements of the accelerometer are filtered. The
parameter Value is the output of the accelerometer. CompareValue is in this case the previous outcome of
the filter. So the previous outcome of the filter is compared with the value of the current measurement.
If the difference is more than the NP, the FilteredValue becomes the value of the measurement. If
the difference is less than the NP the difference is compared with NPS. When the difference is less
than NPS the FilteredValue is low-pass filtered with as reference the previous outcome of the filter, so
PreviousCorrect is the previous outcome of the noise filter. A NPL of 0.025 is used in this case, which
correspond with a cut-off frequency of Fc = NPL

(1−NPL)∗2π∗∆T = 0.27Hz, where ∆T is the time between
the samples, in this case about 0.015 seconds, in section 11-B the timer of the system is explained. The
calculated cut-off frequency is quiet low but this low-pass filter is only applied when a strong low-pass
filter is needed. When the difference is more than NPS the FilteredValue becomes the average of Value
and the previous outcome of the noise filter. To determine NP and NPS a measurement with a stationary
accelerometer was done, the output data was observed using Matlab and the parameters were determined.
In figure 5.5 in section 5-C it is clearly visible that the accelerometers are very noise and so it was
determined to make NP 200 which corresponds which a acceleration of 0.119m/s2 and to make NPS
150 which corresponds which a acceleration of 0.0898m/s2. The filtering doesn‘t influence the velocity
calculation because it filters the negative and positive acceleration.

2) Filtering measurements magnetometers: The magnetometers are like the accelerometers also a
bit noisy. The magnetic field of the earth is constant enough for our accuracy, but the environment
causes small changes in the measured magnetic field and this is visible in the measurement of the
magnetometers. Therefore the magnetometers are also filtered using the noise filter. Like the noise filter
of the accelerometers the Value is the value of the measurement, in this case from the magnetometers.
The CompareValue and the PreviousCorrect are the previous outcome of the filter. The noise of the
magnetometers were measured when staying stationary and observed using Matlab. The NP and NPS
were set as (3,3,3), for the x, y and z magnetometers. NPL was set at 0.025 and thus a cut-off frequency
of 0.27 Hz.

3) Filtering measurements gyroscopes: The gyroscope tend to drift, to prevent this from impacting
the orientation calculation during a rotation the complementary filter is used, see 7. To prevent the
gyroscope from drifting when stationary the noise filter is used. The parameter Value is the output from
the gyroscopes. This is compared with CompareValue which is in this case a NullVector. PreviousCorrect
and NPL are in this case also zero. Also there is no need to make use of the average function of the noise
filter so NP and NPS are chosen to be the same value. Which means that when the difference between
the gyroscope output and zero is more than NP and NPS, the FilteredValue becomes the outcome of the
gyroscope. When the difference is less than NPS and NP the FilteredValue simply becomes zero because
PreviousCorrect and NPL are zero. When analysing the output of the gyroscope with use of Matlab it
became clear that when stationary the drift/noise gives a maximum deviation of 30. The NP and NPS
becomes then (30,30,30). This corresponds which a rotation of 0.267◦/sec. Maybe this sound like much,
but remember that the gyroscope is only filtered when the output of the gyroscope is between -30 and
30. When the MPU9250 is really rotating the rotation is much faster than 0.267◦/sec and the output of
the gyroscope is then not filtered by the noise filter.

In table I all the parameters of the noise filter are shown.

Table I: Overview parameters used in the noise filter

Value CompareValue PreviousCorrect NP NPS NPL
(x, y, z) (x, y, z)

Accelerometers Value measurement Prev. outcome filter Prev. outcome filter (200,200,200) (150,150,150) 0.025
Magnetometers Value measurement Prev. outcome filter Prev. outcome filter (3,3,3) (3,3,3) 0.025

Gyroscopes Value measurement ’0’ ’0’ (30,30,30) (30,30,30) 0

21

C. Results

The noise filter was tested during movement of the MPU9250 and during a stationary state. This is
done to observe if the noise filter works for all the different ways it was implemented and demanded
by requirements [4,2] and [4,3].

1) Filtered accelerometer and magnetometer: The filtering of the accelerometer and magnetometer
were done in the same way, but with different parameters. In figure 6.1 the figure taken with Matlab is
showing the data of the accelerometer in x when the accelerometer was in stationary state. The working
of the low-pass filter can be clearly seen. The filter was also tested during movement, the result of this
is shown in figure 6.2. It shows the working of the low-pass filter when not changing orientation to the
gravity and it shows that it follows the acceleration when it changes it orientation to the gravity. In figure
6.3 the working of the filter is shown on the data of magnetometer x during a movement. Also here the
working of the low-pass filter becomes clear and the following of the magnetic field when moving.

Figure 6.1: Filtering accel. x
during stationary state

Figure 6.2: Filtering accel. x
during a movement

Figure 6.3: Filtering magneto. x
during a movement

2) Filtered gyroscopes: The filtering of the gyroscopes was tested during stationary state and during
a movement. The results of the stationary state are shown in figures 6.4, 6.5 and 6.6. As becomes clear
from the figures the gyroscopes have a little offset and are noisy. The noise filter filters the gyroscopes
when the measured value is between -30 and 30. The gyroscopes were also tested during a movement.
A very slow rotation gives a much greater measured value than 30 and the output of the filter were, as
designed, the same as the measured value.

Figure 6.4: Filtering gyro. x
during stationary state

Figure 6.5: Filtering gyro. y
during stationary state

Figure 6.6: Filtering gyro. z
during stationary state

22

7. COMPLEMENTARY FILTER

A. Theory

In order to calculate the orientation and position of the probe the angle/orientation in which the
MPU9250 is standing must be known. It is possible to calculate the relative orientation of the sensor by
integrating the value of the gyroscopes, but the gyroscopes tend to drift over time. The accelerometers
and magnetometers can be used to determine an orientation with respect to the gravity and the earth
magnetic field but they are very noisy. The complementary filter is used to compensate the gyro drift
by using the accelerometers and magnetometers measurements. Where measurements of the gyroscopes
are reliable on the short term and unreliable after a period of time, due to drift, the accelerometers
and magnetometer are unreliable on the short term, due to noise, but they are reliable on the long
term. Therefore combining the reliability of the gyroscopes on short term with the reliability of the
accelerometers and magnetometer on long term with use of a complementary filter gives an accurate
orientation estimation.

Another filter that can be used is the Kalman filter [13]. The Kalman filter calculates the orientation
with the knowledge of the noise of the system and measurements. Unfortunately it hard to determine
these noise parameters and the Kalman filters requires a lot of computations, making it slow. It is
therefore hard to implement this filter on a microcontroller. On the other hand the complementary filter
is simple to implement and requires no knowledge of the noise. The complementary filter gives the same
or even better results than the Kalman filter [14]. Also the Madgwick filter [15] could be used to estimate
the orientation. The Madgwick filter produces an orientation quaternion by using the measurement data
from all sensors and two filter parameters. Calculations done by the Madgwick are more intense than the
complimentary filter, but are less intense than the calculation done by the Kalman filter. The Madgwick
filter achieves more accuracy than the Kalman filter and complementary filter. Nevertheless the orientation
determination is done by using the complementary filter. The Madgwick and Kalman filter requires to
many calculations, this can‘t be done on an ATmega328 when there are also other calculation that must
be done on the ATmega328, as stated in requirement [5,1].

The orientation will be determined in the angles yaw, pitch and roll. Yaw (ψ) gives the rotation around
the z-axis in world frame. Pitch (θ) gives the elevation with the horizontal plane and will in our case
be the rotation around the y-axis of the MPU9250. Roll (φ) gives the rotation around the x-axis of the
MPU9250, see figure 7.13. With those angles a quaternion will be constructed, which will be used for
calculation the orientation of the probe, see section 8.

Figure 7.1: yaw ψ, pitch θ and roll φ

First pitch and roll are calculated with the use of the complementary filter, which combines the
measurement of the accelerometers and the gyroscopes. The complementary filter applies a low-pass
filter on the measurements of the accelerometers and applies a high-pass filter on the measurements

3Figure from https://en.wikipedia.org/wiki/Euler angles

23

of the gyroscopes. It combines the angular velocity measured by the gyroscopes with the orientation
estimated by the accelerometers. The measurement of the accelerometers are already low-pass filtered
by the noise filter when change in acceleration is not too high, but when making a real movement the
measurements are not filtered by the noise filter but by the complementary filter. The same is true for
the gyroscopes, when not rotating the drift is filtered by the noise filter, when rotating the drift is filtered
by the complementary filter.

The gyroscopes measures the angular velocity in degree per sec (dps). By integrating the angular
velocity the angle of the MPU9250 can be determined. This angular velocity is given in 16 bits and
with a full rate scale of -/+ 250 degrees. Therefore the LSB/deg/sec is 216

500 = 131, in which LSB means
the Least Significant Bit. The measured value of the gyroscopes must therefore by divided by this LSB
value in order to get the angular velocity in degrees per second. The angular velocity is then given by
equation 7.1.

angularvelocity = value gyro/131 (7.1)

The accelerometers measure acceleration and therefore also the gravity of the earth. By determining
the ratio of the different amount of gravity measured by the individual accelerometers the orientation
with respect to the gravity can be calculated. This is done by equations 7.2 and 7.3 [16]. The variables
ax, ay and az represent the acceleration measured by the individual accelerometers for the x-, y- and
z-axis of the chip respectively. Equation 7.2 is computed with the arctan2 computer math function, which
makes the output of the arctan go from (-π, π] where the normal function arctan goes from (-π2 ,

π
2).

This results in a roll angle that can go from -180 degrees to 180 degrees.

aRoll = arctan(
ay√

ax2 + az2
) (7.2)

aPitch = arctan(
−ax√

ay2 + az2
) (7.3)

The angles roll and pitch can now be calculated with the complementary filter equations 7.4 and
7.5. In these equations the dT is the time between two iterations and roll/pitch on the right side of
the equation is the result of the roll/pitch calculation of the previous iteration. The aRoll and aPitch
estimated with the accelerometers needs to be converted to degree since they are calculated in radians.
α is the filter parameter and must be between 0 and 1. The lower the α the more the roll/pitch listens to
the accelerometers. Because the gyroscopes are more reliable on the short term and the accelerometer
and magnetometer more on the long term a high α is preferred.

roll = α ∗ (angularvelocity[x] ∗ dT + roll) + (1− α) ∗ aRoll ∗ 180

π
(7.4)

pitch = α ∗ (angularvelocity[y] ∗ dT + pitch) + (1− α) ∗ aPitch ∗ 180

π
(7.5)

The yaw rotation cannot be calculated with only the use of the accelerometer. This is because the
z-axis is defined in the direction of the gravity. A rotation around this axis does not change the readout
of the accelerometer because the angle with respect to the gravitational field of the earth stays the same.
To calculate a yaw rotation the magnetometers are used. The magnetometers measure the earth magnetic
field, which is perpendicular to the gravity, and can therefore determine rotation in the horizontal plane.
Because the magnetometers are align with the axis of the sensor the measurements of the magnetometer
needs to be corrected for any pitch or roll to get the yaw rotation. The yaw rotation is calculated by
equations 7.6, 7.7 and 7.8, where mx, my and mz are the normalized value of the magnetometers and
roll and pitch are in radian [17]. The yaw equation 7.8 is computed by the same arctan2 computer math
function as aRoll, to let the yaw go from -180 degrees to 180 degrees.

magx = mz ∗ sin(roll)−my ∗ cos(roll) (7.6)

magy = mx ∗ cos(pitch) +my ∗ sin(pitch) ∗ sin(roll) +mz ∗ sin(pitch) ∗ cos(roll) (7.7)

yaw = arctan(magx/magy) ∗ rad2deg (7.8)

24

So with the use of the gyroscopes and the accelerometers the complementary filter calculates the pitch
and roll angles. Due to the fact that the yaw angle can‘t be determined by the accelerometer the yaw
angle is calculated with the use of the measurements of the magnetometers.

B. Implementation

The complementary filter was implemented as a function in the code. The function uses the given
equations in section 7-A and has as input the calibrated and filtered values of the accelerometers,
gyroscopes and magnetometers. The gyroscope inputs were also corrected with the LSBvalue and the
magnetometer and accelerometer inputs were normalized. The parameter α was set at 0.9. This was
determined by looking to the results of different values of α.

C. Testing

The complementary filter was first tested during a horizontal stationary state, see figure 7.2. Roll
and pitch are around zero which is as expected. They are not completely zero, because the chip was
not perfectly aligned with the gravity. The yaw is hovering around some value that indicates the earth
magnetics field direction, this is as expected because the set up was not aligned with a compass. Then
a roll movement was made, first a movement from horizontal state to a roll of about 90 degrees, around
samples 120 to 180 in figure 7.3, then back to horizontal (samples 150 to 200) and then a movement
to a roll of about -90 degrees and back (samples 350 to 500), see figure 7.3. The accelerometers and
gyroscopes are working perfectly together to get the right angles without drift or noise. Then a movement
in pitch was tested. First a movement from horizontal to about -90 degrees pitch and then back to
horizontal (samples 40 to 220) and then a movement to about 90 degrees pitch and back (samples 350
to 500), see figure 7.4.

Figure 7.2: Horizontal stationary
state Figure 7.3: A roll movement Figure 7.4: A pitch movement

To measure the accuracy of the roll and pitch the MPU9250 was rotated with an angle of 90 degrees
in roll, figure 7.5, and pitch, figure 7.6. The mean of the samples 200 to 300 of the roll movement was
88.7 degrees, this is between the 2 degrees accuracy needed by requirement [3,1,4]. All the samples
between 200 and 300 had the right accuracy. The mean of the samples 200 to 300 of the pitch movement
was 88.4 degrees, also this meets requirement [3,1,4]. Some of the values of the samples between 200
and 300 are given in appendix B in table III.

A problem occurred when testing the yaw. When testing the yaw under the same condition as where it
was calibrated the yaw seemed to work fine. But after some testing it was discovered that a small change
in position between the MPU9250 and the wires of the device changes the magnetic field significantly
and also electronic devices influenced the measurement too much to do a good estimation of yaw rotation.
It was concluded that in the world of today, which lot of electronic devices, it is hard to measure only
changes in the earth magnetic field since the earth magnetic field is not very strong. From now on the
yaw rotation is set on 0 degrees and the MPU9250 is only rotated in roll and pitch.

To make sure that the problem really is the measurements of the magnetometer, the equation for
calculating the yaw was tested with the use of Matlab. Different value of normalized magnetometer
values by different angle of pitch and roll were tested. The outcome of the testing were as expected. In

25

Figure 7.5: A roll movement of 90
degrees

Figure 7.6: A pitch movement of 90
degrees

table IV in appendix B the results are shown. The Matlab-code testyaw.m can be found on GitHub as
indicated in appendix D.

D. Discussion

In section 7-C it is shown that the determination of the roll and pitch angles works fine and that the
determination of the yaw angle works fine in theory, but that there is a problem with the determination of
the yaw with the real measurements. It occurred that nowadays an one time calibration is not enough to
corrected for the changing magnetic field produced by electronic devices. To corrected for the changing
magnetic fields it is an option to calibrate before every measuring session, this can be done by using
an algorithm [18]. The algorithm asks the user to move/rotate the magnetometer in all direction and
determines the calibration values from the measurements done during those movements. This algorithm
works fine when the surrounding area doesn’t have a varying magnetic field, but when moving an
electronic device a little bit closer the calibration becomes incorrect. To eliminate the influence of the
magnetic field of the wires of the MPU9250, the wires can also be shielded. This eliminates the influence
of the magnetic field of the wires, but does‘t eliminated the influences of other surrounded magnetic
fields.

Another option to determine the yaw rotation is by reading out the quaternion of the dmp of the
MPU9250. A problem with the dmp is that it only uses the measurements of the accelerometer and
gyroscope. InvenSense doesn‘t give any information on how the dmp calculates the yaw rotation and
after reading out the quaternion and calculating the yaw from this quaternion, it became clear that the
yaw calculated with the dmp didn’t give a very precise rotation. Therefore the decision was made to let
the user only rotate in roll and pitch and to set the yaw rotation to zero for now.

For future developments of the orientation and position system it would be preferable to implement
the Madgwick filter. The Madgwick filter needs more calculations to estimated the quaternion of the
rotation but is more accurate than the complementary filter. When implementing the Madgwick filter
another microcontroller is needed to do the calculation, the ATmega328 cannot do the Madgwick filter
calculations and also calculate the position and orientation of the probe.

26

8. POSITION AND ORIENTATION CALCULATION

A. Theory on orientation

The design given in section 3 indicates that the position of the probe tip and the MPU9250 are
different. In this section a mathematical model for this system of two points is given which will describe
the location and orientation of the probe tip as function of the MPU9250 position and orientation
change. For this the acceleration measured by the accelerometers is converted to displacement and the
orientation of the MPU9250, calculated by the complementary filter (section 7), is transformed to a
quaternion (a sort of vector). With this displacement and quaternion the position and orientation of the
probe is then calculated. This position and orientation can then by fed to the visualisation-software. In
this section the main mathematical theory about the method that is used to trace the orientation of the
probe. Subsection 8-B goes into details on the theory behind displacement tracking of the probe by the
use of accelerometers.

1) Reference frame: First the reference frame and starting position of the device. The MPU9250 will
not be placed precisely on the tip of the probe, the point that must be tracked. So an offset vector
from the MPU9250 to the probe-tip is needed. An overview of the system is given in figure 8.1. In this
reference frame the x,y,z axes are defined by the right hand rule and three rotations parameters defined
as the rotation over either the x, y or z axis are also defined by the right hand rule around those axes.
The chip itself calculates its orientation using pitch, roll and yaw as described in section 7-A.

Figure 8.1: Reference frame of probe tip and positioning sensor model

In figure 8.1 Probe-tip and MPU9250 are respectively the position vector of the probe-tip and the
MPU9250. Offset is a vector from the MPU9250 to the Probe-tip, the normal is the normal vector of
the probe and last is the orientation quaternion given by the chip, calculated from the pitch, roll and
yaw. During operations the position and orientation of the MPU9250 are calculated and from this given
position, the known offset vector and the orientation of the normal to the MPU9250, the position of the
tip and the normal are calculated. At the start of operations the position of the MPU9250 is taken as the
zero point and the position of the tip is calculated, with as reference the position and orientation of the
MPU9250. In section 9 the algorithm to determine the offset vector and the orientation of the normal
with respect to the MPU9250 are explained.

2) Quaternions: To determine the orientation of the normal quaternions are used. Quaternions are a
number system that extends the complex number. A quaternion is made off 4 numbers, one real and
three complex ones called [i,j,k], these parameters are defined as follows:

i2 = j2 = k2 = ijk = −1 (8.1)

It is important to note that quaternion multiplication is non commutative and most other operations
are not as simple as they seem. Luckily, for this project quaternions are only needed for their unique

27

rotational properties as vectors and will thus described as vectors from this point on. However, the math
behind the operations remains completely different from normal vector math.

Quaternions [19] are defined as three dimensional vectors that also track their spin, making it a 4
parameter object. These parameters are: [w,x,y,z], wherein the w is the rotation around its own axis in
respect to the reference frame in radians and x,y,z are the familiar coordinates to indicate a vector in
three dimensions. The rotation (w) is important to track the orientation of objects. In most mechanical
models rotation of a vector is tracked by the amount of rotation around the reference frame axes, so an
x rotation being a rotation of the vector around the x-axis. A full three dimensional rotation can then
be given by three rotations around axes, for example a rotation around the x-axis, z-axis and x-axis
again. In this project the order is unknown as the rotation is measured only as start orientation and final
orientation, whether the first rotation was around the x-axis or not is not known, but does matter. For
example a rotation around the x-axis does not affect the vector if the vector is located along the x-axis
and thus a rotation around the z-axis afterwards yields a different result if the order is inverted. This
problem is known as Gimbal-Lock [20]. The quaternion does not have this problem. This makes the
quaternion very suited for calculations with our device. Normally the euler angles will suffice if the
device is not rotated more than 180 degrees over one axis, however, the device will track along three
dimensional objects that could have all sorts of shapes. It is therefore needed that the device can track its
orientation under all conditions and shapes, as demanded in requirement [1,2]. This is why quaternion
representation of the orientation is chosen over euler angles.

Next are some basic quaternion operations that are needed to calculate orientation. First to construct
a quaternion from angles the following expressions can be used:

w = cos(pitch/2) ∗ cos(yaw/2) ∗ cos(roll/2) + sin(pitch/2) ∗ sin(yaw/2) ∗ sin(roll/2) (8.2a)
x = sin(pitch/2) ∗ cos(yaw/2) ∗ cos(roll/2)− cos(pitch/2) ∗ sin(yaw/2) ∗ sin(roll/2) (8.2b)
y = cos(pitch/2) ∗ sin(yaw/2) ∗ cos(roll/2) + sin(pitch/2) ∗ cos(yaw/2) ∗ sin(roll/2) (8.2c)
z = cos(pitch/2) ∗ cos(yaw/2) ∗ sin(roll/2)− sin(pitch/2) ∗ sin(yaw/2) ∗ cos(roll/2) (8.2d)

In this equation the roll, pitch and yaw are the angles calculated in section 7. The w, x, y and z are
the quaternion parameters.

In quaternion maths a vector is rotated around a quaternion and not around the reference frame. The
x,y,z of the quaternion indicate the axis around which the vector will be rotated and the w is the amount
of rotation around this axis. A rotation around a reference frame axis can now be done without ever
gimbal locking, since the rotation quaternion will never be on the same axis as the vector in question.
Furthermore there exist no order of rotations any more because only one rotation is done. Rotation and
orientation quaternions are unit vectors and for this project only those two types are used. To rotate a
vector v around a quaternion q the following calculation is used:

vout = q ∗ vin ∗ conj(q) (8.3a)
conj(q) = [w,−x,−y,−z] (8.3b)

With vin the input vector, vout the output vector and conj(q) the conjugate of quaternion q. The
multiplication here is a quaternion multiplication, only done with quaternions, so the vector must be
temporary stored in a quaternion. To make the vector a (temporary) quaternion the x,y,z are copied
and the w is left 0. Afterwards the x,y,z of the quaternion are restored in the new vector and the w
is abandoned, since the vector does not need to remember its rotation around its own axis. Quaternion
multiplication of quaternion p(w,x,y,z) and quaternion q(w,x,y,z) is as follows per parameter:

w = p.w ∗ q.w − p.x ∗ q.x− p.y ∗ q.y − p.z ∗ q.z (8.4a)
x = p.w ∗ q.x+ p.x ∗ q.w + p.y ∗ q.z − p.z ∗ q.y (8.4b)
y = p.w ∗ q.y − p.x ∗ q.z + p.y ∗ q.w + p.z ∗ q.x (8.4c)
z = p.w ∗ q.z + p.x ∗ q.y − p.y ∗ q.x+ p.z ∗ q.w (8.4d)

28

In this equation the dots indicate the quaternion (p or q) followed by the parameter (w, x, y or z).
To rotate a quaternion around another quaternion they are multiplied (this is non commutative). Thus
rotating quaternion p around quaternion q is:

pout = q ∗ pin (8.5)

In which pin is the input quaternion and pout is rotated quaternion. Note that the order of multiplication
matters. To calculate the rotation quaternion q that rotates quaternion pin to quaternion pout the inverse
multiplication must be used:

q = pout ∗ inv(pin) (8.6a)

inv(pin) =
conj(pin)

abs(pin)
(8.6b)

With abs(pin) the absolute of pin, which is calculated the same way as for normal vectors. Since this
project only uses unit quaternions abs(pin) will always be one and can be removed from the equation.
These equations give the basics of quaternion maths that will be needed to track the orientation of the
device.

3) Calculations on model: With the knowledge of quaternions the mathematical model for the device
can be made. If the orientation of the MPU9250 changes (a rotation) all other object will rotate along
with the orientation quaternion. This is because the system is rigid and all objects are connected without
shifting parts. This means that given the previous and current orientation of the MPU9250 the rotation
quaternion that rotated the previous to current orientation can be calculated. The calculations described
in section 7 will give this previous and current orientation. Calculating this rotation vector is then done
using equation 8.6. Because the entire device turns in the same way, this rotation quaternion can be used
to rotate all other vectors and orientations of the device, such that they match the new orientation of the
entire device. Using equation 8.3 the new orientation of the normal and offset vectors are calculated.
Now that all necessary rotations are done the system can be translated.

B. Theory on converting acceleration to displacement

To determine the translation of the MPU9250 the change in place (displacement) must be know. This
displacement can be found using the accelerometers and the orientation found by the complementary
filter. The acceleration of the MPU9250 must still be converted into actual displacement in meters. This
subsection describes the maths behind this derivation. The MPU9250 provides the acceleration of the chip
in the x,y,z direction of the sensor frame. Knowing the orientation of the MPU9250 and the gravitational
constant the acceleration due to the gravity of the earth can be cancelled out. The orientation of the
device indicate how much each axis is pointing to the earth with respect to each other. Multiplying
the gravitational constant with these respects gives the offset for each accelerometer axis. Subtracting
this amount from the raw data then gives gravity free acceleration. The remaining acceleration needs to
be integrated down to distance. The acceleration is integrated down to a velocity vector that tracks the
velocity during the entire operation. This velocity vector is then integrated one more time to give the
position shift during one iteration. This is done using the following equations:

∆v = dT · a (8.7a)
∆s = dT ·∆v (8.7b)

Here v is the velocity vector, a the acceleration vector, s the distance shift vector and dT is the time
interval. This theory works for continuous data that is used after measurement. However the device
requires real time displacement updates and uses discrete input values. Therefore integration is done
using trapezoidal integration [21]. Trapezoidal integration is a discrete method that uses the current and
previous measurement to determine the integrand as follows:

y(n) = y(n− 1) +
1

2
· dT · [x(n− 1) + x(n)], n = 1, 2, 3... (8.8)

29

In this equation y(n) is the integrated output, y(n − 1) is the previous output, dT is the time interval
of measurements, x(n − 1) is the previous input and x(n) is the current input. This method is more
accurate than the standard rectangular integration and only requires one previous value to be saved. A
visualization of the difference between rectangular integration and trapezoidal integration is given in
figure 8.2. This integration method is then applied first to the acceleration and second to the velocity
to give the displacement. Using the trapezoidal integration method will work for noise-less data, which

Figure 8.2: Integration using rectangular and trapezoidal methods [21]

does not come from MEMS accelerometers. The greatest thread are DC components, because integrating
a constant gives a slope and the second integration will give a exponential function, quickly making the
output data unusable. To prevent this a high-pass filter must be applied to the input data, to correct this
even better a high-pass filter should be implemented between every integration step as well. Two of the
most common digital filtering methods are the Infinite Impulse Response filtering (IIR) and Fast Fourier
Transform filtering (FFT), unfortunately these cannot be applied real time and were therefore not used.
The Finite Impulse Response filtering (FIR) method can be used for its real time application and the
delay of the filter can be easily altered. The filtering method is described by the following non-recursive
difference equation:

y(n) = a0x(n) + a1x(n− 1) + a2x(n− 2) + ...+ aN−1x(n− (N − 1)) + aNx(n−N) (8.9)

In this equation y(n) is the filtered output, an are the filter parameters that give weight to each element,
x(n) are the inputs and N is the length of the filter. Making N large will make the filter use more
samples and thus become slower to change, a stronger high-pass filter. This will also make the response
slower. In this implementation the device must react real time to changes, but the sampling rate is 66Hz,
higher than the movement changes the doctor will make with the device. Thus the filter can be applied,
simply with a relatively low N. This filter would induce too many calculations and delay on the results
and, after testing, was chosen not to be used. The equation is left here to indicate the possibility to use
this in feature research where a bigger microcontroller can be used.

The final implementation took a different route, in stead of filtering with a high-pass filter that responses
strongly to change a slow low-pass filter is applied to determine the drift and then subtract the found
drift from the input data. In this way the overshoots by the high-pass filter do not occur, but drift is still
countered. The equation for a simple low-pass filter is as follows:

u(n) = (1− α) · u(n− 1) + α · x(n− 1) (8.10a)
y(n) = x(n)− u(n) (8.10b)

In equation 8.10a u(n) is the filter coefficient that indicates the drift of the input signal, α is the filter
constant, x(n) is the raw input and y(n) is the output. What differs this technique from the high-pass
filter is the fact that not the previous outputs, but the previous filter coefficient is looped. This means that
the drift solely depends on the input and thus there occur no overshoots due to high frequent changes
in the output. The filter constant is determined as follows:

α =
2 · π · fcut · dT

2 · π · fcut · dT + 1
(8.11)

30

Where fcut is the cut-off frequency and dT is the time constant, thus 1
f = 0.015s (for the sampling rate

of 66Hz). For this method of filtering in order to get displacement from acceleration a cut-off frequency
of 0.7Hz is taken [21]. This gives a constant of 0.0619. Very close to zero (the minimum) as expected,
because only drift must be detected by this filter.

C. Uncertainties
There exist a number of uncertainties that come from this mathematical model. First of the acceleration

is tracked at intervals, so not all changes in acceleration are recorded and thus not all changes in position
are calculated. Due to the fact that the system should not make too sudden motions compared to the
sampling rate of 66Hz this error should be minor. The next problem is that the measurements of the
accelerometers are corrected for the gravity they measure, this is done with the use of the calculated
orientation in section 7. A wrong calculated orientation will give a wrong correction of the measured
gravity, which will result in an acceleration measured, which is actually gravity. The last problem is
the order of rotating and translating. The order in which this is done matters, first translating and then
rotating yields different positions. In this implementation first rotating and then translating is chosen. This
is because the orientation must be known before subtracting the gravity factor from the accelerometer
data, so the displacement only makes sense after calculating the orientation. Also due to the high sampling
rate of 66Hz and the supposed calm motion of the doctors hand this error will be very minor.

D. Implementation
The model described above is implemented on the microcontroller and written in standard ANSI C.

The base code can be found, including helper headers to implement the quaternion math, on GitHub
as indicated in appendix D (TIPSMPU9250.ino). The readout values of the MPU9250 (accelerometers,
gyroscopes and magnetometers) will be processed to orientation and acceleration using the filters de-
scribed in sections 6 and 7. Thereafter the quaternion is determined using equation 8.2 and the translation
is calculated using equation 8.8 after filtering using equation 8.9. With the high-pass filter applied to
acceleration before integrating, velocity before the second integration and finally also to the displacement
after the second integration. These give the final orientation and position of the probe. An overview of
the program is given in section 11.

E. Testing
The mathematical theories proofs [22] have long been found and not made in this paper. In section

7 it was found that the orientation of the yaw was incorrect and thus testing displacement using this
orientation would give wrong results. What can and will be tested here is the tracking of position by the
accelerometers. In order to test this the orientation tracking is turned off, so that the wrong orientation
will not be reflected in the readout accelerations. This does mean that the gravity needs to be subtracted
from the raw data by hand. To do this the device is put level with the ground, so that gravity is only
seen in the z-direction and can then be easily subtracted. The device is then moved over one of the
three axes for 10cm. To see the effects of the high-pass filter both the unfiltered as the filtered data is
extracted during testing.

To see how much the outcomes vary over multiple measurements the displacement can be summed to
give a distance travelled during the measurement. This distance is then compared to the actual distance
travelled and the differences give the accuracy. For this the device is moved 10 centimetres 15 times.

To test the mathematical model a simulation is done using Matlab and the formulas described in the
theory subsection. This will solely test if the rotation and displacement merge together to give a position
in the world frame. To do this there will be two manual inputs: displacement measured in the x,y,z
directions of the chip and rotations with respect to the chips axes. The outputs will describe the location
of the probe tip and probe sensor assuming they are connected by a vector that is (0,1,0) from sensor to
tip for reading simplicity. This means the sensor starts in the origin and the probe-tip will be at (0,1,0).
Now four operations are done on the model, two translations and two rotations. These operations are
further explained in the results. The five resulting positions the device will undertake are visualised in
a 3D figure.

31

F. Results

First the results for moving in the x direction measured with the x accelerometer are given. The
acceleration is given in figure 8.3, the velocity in figure 8.4 and the displacement in figure 8.5. Next the
same is done for the y measurements in figures 8.6, 8.7 and 8.8 and for the z measurements in figures
8.9, 8.10 and 8.11. The red lines indicate the unfiltered values and the blue lines indicate the filtered
values. The unfiltered value of the velocity and the displacement are the integrated value of the filtered
value of respectively acceleration and velocity. The movement was started around sample 120 for each
axis and stopped around sample 150.

Figure 8.3: Acceleration x Figure 8.4: Velocity x Figure 8.5: Displacement x

Figure 8.6: Acceleration y Figure 8.7: Velocity y Figure 8.8: Displacement y

Figure 8.9: Acceleration z Figure 8.10: Velocity z Figure 8.11: Displacement z

What can be clearly seen from these figures is that the unfiltered values drift heavily. The filter corrects
this well as can be seen by the fact that the filtered values all originate and come back to zero after
a movement was made. However, there is one problem that occurs with the high-pass filtering. The
filtering induces a delay in the velocity and displacement that induces uncertainties. This is because the
change in acceleration is very sharp and this sharpness is lost due to integrating. These results mean
that the filter does not suffice requirement [4,2], but does suffice requirement [4,3].

The accuracy test gave a mean value travelled of 9.86 centimetres, so only 1,4 mm off target. The read
out summed displacements are given in table II. The first row of the table indicates the measurement

32

number, the second row the acquired sum and the third row the error of the measurement with respect
to the 10cm that was actually moved. As can be seen the error is greater than the precision said in
requirement [3,1,2].

Table II: Displacement test results

Measurement Sum (cm) Error (cm) Measurement Sum (cm) Error (cm)
Required 10 +- 0.5 10 +- 0.5
1 8.2600 1.7400 9 15.5500 -5.5500
2 7.2400 2.7600 10 12.6500 -2.6500
3 19.2800 -9.2800 11 10.0600 -0.0600
4 8.8200 1.1800 12 2.6900 7.3100
5 6.3900 3.6100 13 15.7200 -5.7200
6 10.1000 -0.1000 14 8.0400 1.9600
7 4.1800 5.8200 15 9.9500 0.0500
8 8.9800 1.0200

The testing of the theoretical orientation and displacement model results are given in figure 8.12. Five
vectors are given of which each has a separate colour and a X to indicate the sensor and a O to indicate
the tip. The staring position (red) has the device lying on the xy-plane with the sensor in the origin and
the tip at (0,1,0). At this point the sensor itself is aligned with the reference frame. The first operation is
a 90 degrees roll (around the x-axis of the sensor) of the device, this will place the probe upright without
moving the sensor point. The result of this is the second orientation (blue), where the sensor is still at
the origin and the tip is in (0,0,1). Next is a displacement of 1 in the positive x direction of the sensor.
Because the x-axis of the chip and the world frame align at this moment the result is easily recognised,
the sensor ends in (1,0,0) and the tip in (1,0,1). This is the third position (green). Now a pitch change of
negative 45 degrees is performed, placing the tip at (1√

2
,0,1− 1√

2
) and leaving the sensor at (1,0,0). This

is the fourth position (magenta). The last operation is a displacement of 1 in the negative y direction.
This is not aligned with the world frame, so this tests if the model correctly combines displacement with
orientation. The result is that the sensor is moved to (1+ 1√

2
,0,− 1√

2
) and the tip moves to (1,0,0). This is

the expected end position (black). The mathematical models works correctly and combines displacement
and orientation well.

Figure 8.12: Results of four operations on the mathematical model

33

G. Discussion

The results suggest the use of a better high-pass filter. This filter will have to cancel drift the same
way the current filter does, those results are good. But the main improvement needs to be in the filtering
on movements, currently this is done incorrectly and overshoots at reverse movements after a normal
movement cancel out the total movement, making the result unusable. A filter with more filter coefficients
as described in subsection 8-B would be a good first guess. Implementing this filter will cause more
delay in the results and will require more programmable space than is available on the ATmeaga328.

34

9. DETERMINATION OF DISTANCE AND ORIENTATION BETWEEN MPU9250 AND PROBE-TIP

A. Theory

In section 8 it was explained how to calculate the position and orientation of the MPU9250 and also
the position of the probe-tip and the orientation of the probe. To calculate this position and orientation,
the distance between the MPU9250 and the probe-tip and the orientation between those two must be
known. In this section the estimation of the distance and the orientation from MPU9250 to the probe-tip
will be explained.

1) Distance estimation: The distance between the MPU9250 and probe-tip cannot simply be measured
by hand, because the MPU9250 is in the handle and it is not known where exactly the MPU9250
measures. Also an estimation done with the output of the MPU9250 will be more accurate, since the
final measurements also will be done by the MPU9250. To estimate the distance between the MPU9250
and the probe-tip, the probe-tip will be fixed on one point. The probe will then be moved around, but
without moving the probe-tip. The positions of the MPU9250 will be on a sphere around the probe-tip,
since the distance between the MPU9250 and the probe-tip stays the same during the movement. The
calculated position of the MPU9250 will be read by Matlab and used to calculated the centre point and
radius of this sphere.

The centre and radius of a sphere can be calculated when four points lying on the sphere are given
[23]. Those four point must be different and must not lie in the same plane. The centre of the sphere
(x,y,z) can then be determined by calculating the determinant given in equation 9.1, where x1 is the x
value of point 1 etcetera. This determinant must be zero.∣∣∣∣∣∣∣∣∣∣

x2 + y2 + z2 x y z 1
x2

1 + y2
1 + z2

1 x1 y1 z1 1
x2

2 + y2
2 + z2

2 x2 y2 z2 1
x2

3 + y2
3 + z2

3 x3 y3 z3 1
x2

4 + y2
4 + z2

4 x4 y4 z4 1

∣∣∣∣∣∣∣∣∣∣
= 0 (9.1)

Stephen R. Schmitt [23] gives a method to rewrite this determinant into the different cofactors M11,
M12, M13, M14 and M15, which then gives equation 9.2. By using the general equation of a sphere this
equation can be rewriting to equations 9.3, 9.4, 9.5 and 9.6. Those equations give the centre of the sphere
and the radius (r) of the sphere. This radius is the distance between the MPU9250 and the probe-tip.

(x2 + y2 + z2)M11 − x ∗M12 + y ∗M13 − z ∗M14 +M15 = 0 (9.2)

x = 0.5 ∗ M12

M11
(9.3)

y = −0.5 ∗ M13

M11
(9.4)

z = 0.5 ∗ M14

M11
(9.5)

r2 = x2 + y2 + z2 − M15

M11
(9.6)

2) Orientation estimation: To estimate the orientation between the MPU9250 and the probe-tip the
probe is set in a vertical position. The probe is then rotated around the z-axis, thus staying vertical. The
MPU9250 then makes a circle around the probe. Matlab is used to read out the position and orientation of
the MPU9250 on this circle. With three points the radius and the centre of the circle can be determined.
This can be done by making a line between the first two points (A and B in figure 9.14) and between
between point 2 (B) and 3 (C) . The crosspoint of the perpendicular bisectors of those two lines is the
centre of the circle. Calculating the distance between the one of the point and the centre will give the

4Figure from http://xahlee.info/SpecialPlaneCurves dir/Circle dir/circle.html

35

radius of the circle. This works in 2D, in 3D you must first define the plane where the points are on
and then calculate the circle on this plane.

Figure 9.1: Calculation of a midpoint of a circle

In figure 9.2 an overview of the frame used to calculate the orientation is given. In this frame vector
Radius R is the vector pointing from the centre of the calculated circle to the position of the MPU9250.
The length and direction of this vector is known since the positions from the centre of the circle and
the MPU9250 are known. The vector Normal N points from the centre of the circle to the probe-tip
and is the normal of the probe in inverse. The direction of this vector is known, since it makes a 90
degree angle with the plane of the circle and is defined to be oriented in the direction of the negative
z-axis. The length of this vector is unknown. The vector Offset O is the vector from the MPU9250 to
the probe-tip. The length of this vector is determine in the previous subsection. The direction of this
vector is unknown.

Figure 9.2: Frame for calculation of the orientaion between the MPU9250 and the probe-tip

To determine the length of vector Normal the Pythagorean theorem is used, this can be done because
the vectors make a right-angle triangle. The length of Normal is then given by equation 9.7.

‖N‖ =
√
‖O‖2 − ‖R‖2 (9.7)

With the length and direction of the Normal and the position of the centre of the calculated circle, the
position of the probe-tip can be calculated. Now that the position of the MPU9250 and the probe-tip is
known the vector Offset O can be calculated. Now that the vectors O and N are known with respect to the
reference frame, the orientation of the Normal and Offset with respect to the MPU9250 can be calculated.
For this the orientation of the MPU9250 must be taken into account. The orientation is determined by
rotation the vectors around the MPU9250 with use of quaternions, described in section 8-A2. The vector
is rotated until the orientation of the MPU9250 is (0,0,0), then the direction of the vectors Normal and
Offset is the orientation of the probe and normal with respect to the MPU9250.

36

B. Implementation

1) Distance estimation: The implementation of method given in section 9-A1 was implemented in
Matlab. During the movement with the probe the position of the MPU9250 is read out by Matlab, more
on the readout with Matlab in section 10. During the measurement multiple positions were taken and
combined in sets of 4 points. Each of these sets was used to calculate a radius. The average of those
radius was taken to be the estimated distance between the MPU2950 and the sensor. The Matlab-codes
radius.m and CalibrationTipDistance.m can be found on GitHub as indicated in appendix D.

2) Orientation estimation: The implementation of the orientation determination was also done in
Matlab. The position and orientation of the probe were read out when the probe was rotating in a circle
around the probe. To calculate the radius and the centre of the circle the function circlefit3D [24] was
used. This function gives the centre and radius of the circle. After this the calculations described in
section 9-A2 were implemented. The Matlab-code CalibrationTipOrientation.m can be found on GitHub
as indicated in appendix D.

C. Testing

Due to the fact that orientation determination doesn’t work completely, the algorithm to determine the
distance and the orientation between the probe-tip and MPU9250 couldn‘t be tested using the position-
system, but it was tested with the use of Matlab.

To test the distance algorithm points laying on a sphere around point (0,0,0) were given as an input to
the algorithm. The blue dots in figure 9.3 indicate the given points. The algorithm calculated the centre
of the sphere correltly in (0,0,0) (red dot in figure 9.3). The radius in this case was

√
3, which was

correct since the given points were laying on a sphere with radius
√

3.

Figure 9.3: Results from distance algorithm; data
input (blue dots), calculated centre (red dot) and

radius (lines)

Figure 9.4: Results from orientation algorithm;
data input (blue dots), calculated centre(red dot),

radius (blue lines), Radius R (magenta line),
Normal N (green line) and Offset O (red line)

The orientation algorithm was also tested using Matlab, this was done by giving: 8 points on a circle
and the distance between the probe-tip and the MPU9250. With the 8 points the centre of the circle and
the radius was determined. Also the orientation of the Normal (green line) and the vector Radius were
determined, see figure 9.4. The length of Normal was determined with the length of Radius (magenta
line) and the given length of Offset. Then the position of the probe-tip (green dot) and the vector Offset
(red line) were calculated. This is all done correctly. The last step of the algorithm, the rotating of the
vectors until the orientation of the MPU9250 is (0,0,0), is not done in this code. The testing of rotating
with quaternions is already done in section 8-E.

37

10. OUTPUT

A. Theory
The purpose of the position-system described in this paper is to provide the visualisation-software with

the position of the probe-tip and the orientation of the probe. Requirement [3,1,1] states that the position
must be given in x,y,z and requirement [3,1,3] states that the orientation must be given as a normal
vector. The calculation of the position and orientation are described in section 8. Those calculations
are done on the microcontroller ATmega328, after the calculations the data needs to be read out with
Matlab according to requirement [5,1]. To read out the data from the ATmega328 to Matlab a serial
communication is used.

B. Implementation
To implement the serial communication between the ATmega328 and Matlab, Matlab first opens the

serial comport and also the ATmega328 opens the serial communication. Then every time Matlab sends a
request to read out data from the ATmega328 Matlab waits till the ATmega328 gets to a Serial.println();
line and then Matlab receive this data written by that line.

When the serial communication is opened, the ATmega328 doesn‘t start right away with sending the
position and orientation. It starts with sending this data when the button is pressed and the tracking is
started. To let Matlab know that the data is coming, the ATmega328 sends a StartFlag, which is in our
case done by the line: serial.println(F(”startStream”)); . After starting the serial communication Matlab
read out all the data the ATmega328 sends, but only start to pass through the data after he reads the
startStream. The data is then passed through to the visualisation-software. The ATmega328 sends his
information with beginning to say which variable he sends, for example position x, followed by the
value of that variable. This is to prevent a data skew, when one of the send data is not received correctly
by Matlab. After using the serial communication the serial comport needs to be closed. The output
Matlab script was written with use of the files Main.Script, setupSerial.m and readTemp.m provided by
gianluca88 [25].

The Matlab codes readout.m and getArduinoData.m written to read out data from the ATmega328
can be found on GitHub as indicated in appendix D. The readOut.m is the main function from where
the communication is started, data is acquired and the communication is stopped. The first part of the
code sets up the communication and waits for the start signal coming from the ATmega328. After the
signal the readout loop is entered where data is read out into position and normal. This loop uses the
second Matlab file getArduinoData.m. In this function the readouts from the ATmega328 are checked
for errors and then returned to the main program. There are three things that need to be checked during
data acquisition. First is detecting the start of an updated position and normal. The ATmega328 always
starts its message of position and normal by sending the x-position, so if this variable is seen the most
up to date message is send. If any other value is send first, the reading out happens in the middle of the
message and the data will not correspond.

The next thing that is checked for is skew data. If something goes wrong in the communications data
might end up in the wrong space in the message, to prevent this from happening every incoming value
is counted and if there are more received variables of one kind than of any other a data skew happened.
If data skew is detected the measured value is invalid and this is reported to the main program.

The last thing is the detection of a stop signal by the ATmega328, given by the string stopStream.
This happens when the button is pressed again and the device stops calculating new data. The program
will then stop and note the master program that it detected a stop sign and how many measurements it
recorded.

C. Testing
The serial communication between the ATmega328 and Matlab was also used to read out other data

from the ATmega328 during the development of the position-system. The graphics shown in the previous
sections were made with the use of Matlab. This shows that the communication between Matlab and the
ATmega328 works fine and requirement [4,1] is therefore met.

38

11. IMPLEMENTATION ON ATMEGA328

All theories and methods described in the above sections are small parts that must be brought together
to form one system that will be programmed onto the ATmega328. This master program will contain
multiple functions, an initialisation part, a main loop and accompanying libraries. This section will first
describe the libraries used and the changes made to these libraries in order to make them suit our needs.
Second are the auxiliary functions that are not described in other chapters, these are needed but so small
they do not deserve a separate section. After this the two main actions the ATmega328 will perform are
set apart, the initialisation and the main loop. These two subsections are where the real action of the
ATmega328 happens, such as acquiring data, communications with the computer and doing calculations.
An overview of the system from a hardware programmer point of view is given in figure 11.1. In this
figure the three main hardware components are the ATmega328, the MPU9250 and the Computer. The
MPU9250 is a combination of a MPU6050 and an AK8963, each has its separate I2C address and
setting methods, together these systems provide the accelerometer, gyroscope and magnetometer data.
Take note of the difference between the MPU9250 and the MPU6050, the MPU9250 is the overall chip
which will be addressed as the general controller and the MPU6050 is mentioned when speaking of the
accelerometer and gyroscope unit. The computer is the computer of the user that will use the device. On
the computer the position and orientation data arrive through serial interface to Matlab, where the data is
used in the visualisation-software (GUI) described in thesis [26]. The ATmega328 runs the initialisation
procedure on start-up once and then continues into the main loop, which it will run until shut-down.
The main loop uses the three libraries placed on the ATmega328. The ATmega328 communicates with
the MPU9250 through an I2C interface. The complete code TIPSMPU9250 can be found on GitHub as
indicated in appendix D and the used libraries are indicated in appendix C.

ATmega328

Initialisation

Main Loop

I2C library

MPU9250
communications

library

3D math helper
library

MPU9250

I2C interface

AK8963 MPU6050

Computer

Serial interface

Matlab GUI

Figure 11.1: System overview from a hardware programmers perspective

A. Libraries

There are three libraries used for this product. These libraries deal with I2C communications between
the ATmega328 and the MPU9250, the quaternion three dimensional maths and with the activation and

39

setting of the MPU9250. The main purpose and functioning of the I2C library is already discussed in
section 4 and is not altered for our needs.

The MPU9250 library first offers a register mapping for both the MPU6050 and AK8963, each
with their separate I2C address. These register numbers are needed to indicate to the I2C protocol
which value needs to be read or written. To properly use the MPU9250 a couple of settings must be
set. To start the MPU9250 offers multiple measurement accuracies that can be selected by setting the
corresponding registers to the desired accuracy. For this project the most precise, but with the least
range, accuracies are set. This is because the device will be handled with relatively slow movements and
needs high precision to match the requirements. The other library settings are to communicate with the
build in Digital Motion Processor (DMP) of the MPU6050. This DMP combines the accelerometer and
gyroscope data to generate its own orientation quaternion. Unfortunately, the DMP does not implement
the magnetometers in his calculations and there is no documentation on the exact operation that the
DMP performs, including filtering, gimball-lock prevention etc. So for this project the DMP is not used
to calculate orientation. This gives us the opportunity to calculate our own orientation using chosen
filters and calculation methods without being bound to a semi-working processor of which we do not
know the faults. Apart from mapping registers, the MPU9250 library also gives I2C functions to read
out measurements from the MPU9250. There was a small flaw that was altered in this project. The
magnetometer data is coming from two registers, one for the higher byte and one for the lower byte.
The function in the library that reads out these registers putted them in reverse order, making wrong raw
data readouts. The registers were set in the right order.

The 3D helper math library contains functions and variables that are useful for quaternion calculations.
There are three introduced classes, the Quaternion, the VectorInt16 and the VectorFloat. The Quaternion
class contains four floats representing the four quaternion variables [w, x, y, z] and both Vector classes
contain the three vector variables [x, y, z] in Int16 or float format for the corresponding class. These are
used to work with the data coming from the MPU9250. Because the data coming from the MPU9250
is always from the three axes and given in integers, this data is easily put in the VectorInt16 class. The
classes also include functions that are common in quaternion maths, such as rotations and normalisations.
Some additional functions were made, such as vector multiplications and conversions between the three
class types. The math behind these additions are given in section 8.

B. Auxiliary functions

There are some smaller functions in the master program that are needed for the device to function, but
that do not require much calibration or precision. These functions are shortly described in this subsection
and their implementation in the program is indicated.

The first small function is the built-in timer of the ATmega328 that is used to track the time between
calculations. This timer is simply read out at the start of operations and the difference between the
previous value of the timer and the current value of the timer gives the corresponding interval time in
microseconds. This interval time is used to integrate the gyroscope angular rate to angular displacement
and to integrate the acceleration to displacement as described in subsection 8-B. The code for this is
implemented as follows:

timer = micros(); \\ start timer in initialization

\\ every iteration of the main program

dT = micros() - timer; \\ update the interval
timer = micros(); \\ reset timer

In this code snippet the timer saves the readout from the built-in micros function that tracks the duration
of operation of the ATmega328 since power-up. dT is the time interval in microseconds that is used as
integration constant and indicates the duration of the calculations and data fetching.

40

The second auxiliary function is a button debouncer that is needed to use the button described in
specification [3,1,8]. A button gives a noisy signal when being pressed and this noise needs to be filtered
to a simple on or off state for the device to start or stop. The button must function as a clicker button,
which means a press and release of the button changes the on or off state. This was chosen because
a press-and-hold button would be inconvenient for a doctor that has to take a long measurement. To
implement the debouncing and clicker function a simple piece of code is used that only reads inputs
after a small interval in which the button bounces and gives noisy data. The code looks as follows:

int buttonDebounce() {
int reading = digitalRead(buttonPin); // read the state of the

↪→ switch

if (reading == HIGH && lastButtonState == LOW && (micros() -
↪→ lastDebounceTime > debounceDelay)) {

if (state == HIGH) { // clicker function
state = LOW;}

else{
state = HIGH;}

lastDebounceTime = micros(); // reset timer
}
lastButtonState = reading; // save the reading
return state;
}

In this snippet the integer reading is the raw input from the button, it is either a 0 or 1, but due to
the bouncing of the button, it fluctuates heavily between those two during presses. The first if-statement
tests if the button went from low to high value and if we’ve waited long enough to ignore any noise on
the circuit. To do this it compares reading to the integer lastButtonState and compares the interval time
(micros() - lastDebounceTime) to the user set debounceDelay. The interval is calculated similar to that
of the interval described in the previous paragraph. If these conditions are met the state of the button is
updated to the reverse of its previous state, this ensures that the button works as a clicker button. Last
the reading is stored in lastButtonState for the next iteration of the function and state is returned to the
main program. The debounceDelay is set to 50 in the device, meaning that the button can change state
every 50µs.

The last function discussed here is a small function to convert floating point numbers to integers.
This function will be used as little as possible, because it induces round-off losses. It is still usable for
instance after noise filtering, since the input variables were integers and rounding them back to integers
after the filter only removes induced information that was not actually measured in the beginning. The
function is made as follows:

int float2int(float flo) {
int in; // output integer
if (flo < 0) { // check if negative number

in = (int)(flo - 0.5); //if negative round to nearest negative
}
else {

in = (int)(flo + 0.5); //if positive round to nearest positive
}
return in;
}

In this snippet the input floating point flo is checked on being positive or negative and on being negative
gets subtracted by 0.5 to round it to the nearest integer (since floating point to integer conversion always
rounds down). For positive numbers, the opposite is done.

41

C. Initialisation

When starting up the ATmega328 will first execute its initialisation routine. In this routine all devices
must be prepared for operations and all buffered values must be reset to their initial value. An overview
of the initialisation routine is given in figure 11.2.

Initialisation

Set all buffers to starting variables

Activate MPU9250

Start timers

Join I2C bus

· Select clock source
· Set accuracies
· Disable sleep mode
· Request FIFO buffer size

Check if activation is succeful

Figure 11.2: Initialisation routine overview

The first thing that is done is joining the I2C bus using the I2C library and then activating the serial
interface by setting the correct baut rate. After this the I2C interface is used to activate the MPU9250
by selecting the clock source for the MPU9250, setting the right accuracies for the gyroscopes and
accelerometers and finally disabling the sleep mode of the MPU9250. After this the size of the First In
First Out (FIFO) buffer is requested from the MPU9250. This FIFO buffer will contain the accelerometer
and gyroscope data that will later be requested from the MPU6050. The AK8963 needs no activation,
since it will be used in a mode that requests the readout directly at the data gathering moment. The last
operation performed is initialising the timers for the button debouncer and interval counter as described
in the previous subsection. During the initialisation of the MPU9250 a check is performed to see if the
connection was successful, otherwise the main routine is not executed and an error message is send to
the computer.

D. Main loop

The main loop is the part of the master program that will be run after initialisation until power
down. During this time the ATmega328 has three main tasks to perform: gather measurements from
the MPU9250, use these measurements to calculate orientation and position and send the calculated
orientation and position to the users computer. The calculations only needs to be done if the MPU9250
has new data ready in the FIFO buffer, at which moment the MPU9250 will set an interrupt flag. Because
of this the main loop consists of two parts: Firstly waiting for new data and reading that data in, secondly
the calculations and sending to the computer are done. An overview of the main loop routine is given
in figure 11.3.

The implementation of the main loop contains two subroutines, one that checks if the interrupt flag
is set and then gathers the new measurements from the MPU9250 and a calculations subroutine that
waits on a flag to be set by the other subroutine that indicates that the new measurements are ready for
calculations.

42

Main loop

Gather data on interrupt

Calculations when new available data

Buttonstate

Reset position and
orientation

LOW

Calculate new
position and
orientation

HIGH

Reset position and
orientation

Send position and
orientation to

computer

· Send request to MPU6050
· Read out FIFO buffer
· Bit shift high and low parts into 16 bit

· Enable I2C bypass on MPU9250
· Set AK8963 to single readout mode
· Read out mangetometer registers

Figure 11.3: Main loop routine overview

In the Data gathering subroutine the ATmega328 must communicate with both the MPU6050 (ac-
celerometers and gyroscopes) and AK8963 (magnetometers). This way of communicating is explained
in section 4-B. After the measurements are read from the MPU6050 and AK8963, the ATmega328 will
begin calculations on these measurements to produce an orientation and position. Before this is done,
the current state of the clicker button is checked. If the button is not activated the device will not give
an output orientation and position and the starting values of these must be determined. For position and
orientation this is simply the origin (0,0,0). However, the chip is not level at this moment and when
measurements start the orientation should not suddenly jump to that position. In subsection 8-A3 it is
explained that only the change in the orientation quaternion is required to determine the orientation of
the device and the translation. When the button is pressed the first rotation should be zero (not the
orientation) and thus the first orientation quaternion determination should not differ from the starting
orientation quaternion. In order to start this quaternion at the right orientation the accelerometers and
magnetometers are used to determine orientation as explained in section 7. The output orientation from
this will be used as starting orientation from where the rotation calculations can start. If the button is
pressed the position and orientation will be tracked. Doing this is explained in sections 7 and 8. The
last thing that is done in the main loop is sending to the computer which is explained in section 10.

43

12. TESTING OVERALL SYSTEM

In the previous sections tests were done for all sub-parts and the results were readily discussed. The
final step is now to test the entire system to see if the sub-parts work together correctly. As explained in
section 7 the orientation cannot be determined correctly for yaw rotations and as said in section 8-E the
position cannot be correctly detected with the current filter. To measure the entire system these values
are needed, thus making a complete test not possible at the moment. The method to test, however, can
already be described.

A. Testing plan

To test the overall system, first the communication between the ATmega328 and the MPU9250 and the
communication between the ATmega328 and Matlab is tested. To do this the values of the accelerometers,
gyroscopes and magnetometer are read out. Thereafter the orientation and displacement can be tested in
two different settings.

In the first setting the MPU9250 is clamped with a microclamp. First the MPU9250 is rotated around
its axis. Thereafter the MPU9250 is rotated around with the microclamp in a circle, the base of the
microclamp remaining in the same position. Around the base of the microclamp there are positions
marked corresponding to a certain angle, which will be used as reference for measurement points. These
circles are done with the MPU9250 in different orientations. During these movements the position of
the MPU9250 and probe-tip and the orientation of the imaginary probe are read out by Matlab. After
a circle is completed the results tells if the position of the sensor also follows a circle and if it comes
back to the same point as where it started. This outcome determines how well the position is tracked
and small noise can be seen as points that differentiate of the circle.

In the second setting the MPU9250 is hold by the tester. The tester follows the outline of a rectangular
sheet with the MPU9250 in different orientations. The tester follows the rectangular in different directions.
The position of the MPU9250 and probe-tip and the orientation of the imaginary probe are read out by
Matlab. After completing one lap around the sheet of paper the output data should also describe the
outline of a rectangle. The amount of misshaping gives the amount of error in position that the probe
has.

An overview of the test set-up is given in figures 12.1 and 12.2. In these figures the microclamp
holding the MPU9250 can be seen. There is a pointer also clamped that is used to see if the clamp (and
thus MPU9250) are aligned with one of the angles. The second set up is simply the tester holding the
chip and tracing around the white paper sheet that can be seen in the figures.

Figure 12.1: Top down view of testing Figure 12.2: side view of testing

B. Results

The first step of the testing plan indicates if the communication between the ATmega328, MPU9250
and Matlab is working well. This can be done by comparing the readout done by Matlab with the
expected values, if the values are as expected the communication works fine. This test was successfully
performed. The other tests were not done due to the known errors in sections 7-C and 8-E.

44

13. DISCUSSION

There are two problems that need to be solved in order for the device to work correctly, the determi-
nation of the yaw angle and the determination of displacement.

First the problem with yaw angle determination. As explained in section 7-D the magnetometers are
needed to determine the yaw angle. Due to inaccurate calibrating, the yaw angle didn‘t give the right
angle. To fix this there are two solutions proposed, either design a better calibration algorithm that can
be used before each operation or use the Madgwick filter. The Madgwick filter combines the orientation
techniques in a more accurate but also more complex way than the complementary filter and immediately
produces a quaternion orientation. The implementation will cause problems with the programmable space
on the ATmega328 however. So a larger microcontroller is suggested. Another option is to send the raw
data from the device to the users computer and let the computer calculate the orientation. This does
come with more delay and possibly unwanted stress on the users end. The best solution to get the right
yaw angle is the combination of the two solutions, so use a better calibration algorithm and use the
Madgwick filter.

Solving the problem with the displacement does not lie in the hardware but in the high-pass filter
that is applied. It is suggested in section 8-G that a more dedicated and larger filter could be used. The
downside to this is the delay that will be induced and the higher demand of programmable space. This
can be solved in the same way as for the yaw calculation by using a larger microcontroller or the users
computer. It might also be possible that other filtering techniques provide better results.

45

14. CONCLUSION

The functional requirements of this paper were to design a position-system that gives the position
and orientation of a probe during measurements with the probe by a doctor in a hospital or practice.
The theoretical basis for these requirements are given in this paper and is tested and proved to work for
ideal input variables. The roll and pitch determination techniques work in theory as well as in practise
and meet the requirements. Unfortunately it became clear that the determination of the yaw angle of
the device was not precise enough. For the other part of position determination, the displacement, the
filtering and integration work well to counter drift. But the actual displacement is off with a resulting
total displacement lower or higher than the actual distance travelled.

The error in yaw angle is either due to the wrong calibration of the magnetometers or due to the
hardware being unsuitable for these accuracy demands. The theoretical approach of the complimentary
filter does pass the requirements of combining magnetometer angle determination with gyroscope angle
determination. The problem lies in the angle determination of the magnetometer data, which is incorrect
due to the raw data not measuring the earth magnetic field correctly. It is therefore suggested to use a
better algorithm for magnetometer offset determination and correction. This calibration algorithm will
take up more computation time and space on the microcontroller. One other possible improvement is the
use of the Madgwick filter that combines the magnetometers and gyroscopes with a more precise method.
This filter is more complex and requires more programmable space than the ATmega328 offers. One
implementation option for now is to not measure yaw and instruct the user to not rotate the device around
the z-axis. Although it is primitive and errors due to the user are induced, this will give a orientation
output that can be used to determine position.

The error in the displacement is due to the filtering and integration method, those are not accurate
enough, the hardware does give enough precision. This must thus be solved by a better mathematical
solution for filtering and integrating. More precise filters and integrators will take up more computational
time and space on the microcontroller and induce a delay in the output. With better techniques it is
expected that the required accuracy can be met. For now the device can be used to indicate displacement
without drift, but the actual distance will be off.

The system in theory is still better than the use of optical mouse sensors. This is because optical mouse
sensors will not give three dimensional data, which is useful if interpolation over objects is needed. Also
the use of these sensors would obscure the probe-tip as they must be placed on the surface of the subject
as well, thus making the tip far larger. Lastly these sensors require that there is always surface under
them. When tracing weird shapes, such as limbs or organs, the sensors might miss this surface and the
position can then not be tracked.

With the use of another calibration method and the Madgwick filter there will be a good change that
the determination of the yaw angle will work well in future research. Also the use of a better filtering
and integration method will contribute to a better accuracy of the displacement determination. With those
adjustments to the current system a good step toward a working system can be made in future research.

46

REFERENCES

[1] M. H. Truong and A. W. Kremers, “Calibration procedure for complex permittivity extraction using
open-ended coaxial probe,” Bachelor thesis, TU Delft, June 2016.

[2] J. Smisek, M. Jancosek, and T. Pajdla, Consumer Depth Cameras for Computer Vision.
London: Springer, 2013, ch. 1, pp. 3–26. [Online]. Available: http://download.springer.
com/static/pdf/368/bok%253A978-1-4471-4640-7.pdf?originUrl=http%3A%2F%2Flink.springer.
com%2Fbook%2F10.1007%2F978-1-4471-4640-7&token2=exp=1461324572∼acl=%2Fstatic%
2Fpdf%2F368%2Fbok%25253A978-1-4471-4640-7.pdf%3ForiginUrl%3Dhttp%253A%
252F%252Flink.springer.com%252Fbook%252F10.1007%252F978-1-4471-4640-7*∼hmac=
5ca6961bc1271000bb63b437dd513c0299729a191f493117aa309ed6aed4bd67

[3] G. Ehnholm and E. Vahala, “Method and apparatus for determining probe location,” U.S. Patent
US 08/958,309, 10 27, 1997. [Online]. Available: https://www.google.com/patents/US5882304

[4] T. Ng, “The optical mouse as a two-dimensional displacement sensor,” Sensors and
Actuators A: Physical, vol. 107, no. 1, pp. 21–25, 10 2003. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0924424703002565

[5] T. H. H. U. . T. M. . T. Sato, “Portable orientation estimation device based on accelerometers,
magnetometers and gyroscope sensors for sensor network,” Multisensor Fusion and Integration for
Intelligent Systems, MFI2003. Proceedings of IEEE International Conference on, Augustus 2003.

[6] Mpu-6050 six-axis (gyro + accelerometer) mems motiontracking devices. [Online]. Available:
http://www.invensense.com/products/motion-tracking/6-axis/mpu-6050/

[7] Mpu-9250 nine-axis (gyro + accelerometer + compass) mems motiontracking device. [Online].
Available: http://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/

[8] J. Rowberg. Mpu9150 library. [Online]. Available: https://github.com/jrowberg/i2cdevlib/tree/
master/Arduino/MPU9150

[9] Arduino. i2c library. [Online]. Available: https://github.com/jrowberg/i2cdevlib/tree/master/Arduino/
I2Cdev

[10] “Mpu-9250 product specification,” April 2014. [Online]. Available: http://www.invensense.com/
products/motion-tracking/9-axis/mpu-9250/

[11] T. Ozyagcillar, “Calibrating an ecompass in the presence of hard- and soft-iron interference,”
Freescale Semiconductor, Inc, November 2015.

[12] Y. Matselenak, “Advanced hard and soft iron magnetometer calibration for dummies,” DIY Drones,
June 2014.

[13] R. E. Kalman, “A new approach to linear filtering and prediction problems,” Journal of Basic
Engineering 82, 1960.

[14] Kalman filter vs complementary filter. [Online]. Available: http://robottini.altervista.org/
kalman-filter-vs-complementary-filter

[15] S. O. Madgwick, “An efficient orientation filter for inertial and inertial/magnetic sensor arrays,” in
2011 IEEE International Conference on Rehabilitation Robotics, June 2011.

[16] Accelerometers. [Online]. Available: htp://www.hobbytronics.co.uk/accelerometer-info
[17] My imu estimation experience. [Online]. Available: https://sites.google.com/site/

myimuestimationexperience/sensors/magnetometer
[18] Simple and effective magnetometer calibration. [Online]. Available: https://github.com/kriswiner/

MPU-6050/wiki/Simple-and-Effective-Magnetometer-Calibration
[19] J. B. Kuipers, “Quaternions and rotation sequences: A primer with applications to orbits, aerospace

and virtual reality,” Princeton University Press, 1999.
[20] Gimbal lock. [Online]. Available: https://en.wikipedia.org/wiki/Gimbal lock
[21] L. D. Slifka, “An accelerometer based approach to measuring displacement of a vehicle body,”

University of Michigan, Dearborn, 2004.
[22] J. L. Weiner and G. R. Wilkens, “Quaternions and rotations in e4,” THE MATHEMATICAL

ASSOCIATION OF AMERICA, January 2005.
[23] Center and radius of a sphere from four points. [Online]. Available: http://www.abecedarical.com/

zenosamples/zs sphere4pts.html

http://download.springer.com/static/pdf/368/bok%253A978-1-4471-4640-7.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Fbook%2F10.1007%2F978-1-4471-4640-7&token2=exp=1461324572~acl=%2Fstatic%2Fpdf%2F368%2Fbok%25253A978-1-4471-4640-7.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Fbook%252F10.1007%252F978-1-4471-4640-7*~hmac=5ca6961bc1271000bb63b437dd513c 0299729a191f493117aa309ed6aed4bd67
http://download.springer.com/static/pdf/368/bok%253A978-1-4471-4640-7.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Fbook%2F10.1007%2F978-1-4471-4640-7&token2=exp=1461324572~acl=%2Fstatic%2Fpdf%2F368%2Fbok%25253A978-1-4471-4640-7.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Fbook%252F10.1007%252F978-1-4471-4640-7*~hmac=5ca6961bc1271000bb63b437dd513c 0299729a191f493117aa309ed6aed4bd67
http://download.springer.com/static/pdf/368/bok%253A978-1-4471-4640-7.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Fbook%2F10.1007%2F978-1-4471-4640-7&token2=exp=1461324572~acl=%2Fstatic%2Fpdf%2F368%2Fbok%25253A978-1-4471-4640-7.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Fbook%252F10.1007%252F978-1-4471-4640-7*~hmac=5ca6961bc1271000bb63b437dd513c 0299729a191f493117aa309ed6aed4bd67
http://download.springer.com/static/pdf/368/bok%253A978-1-4471-4640-7.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Fbook%2F10.1007%2F978-1-4471-4640-7&token2=exp=1461324572~acl=%2Fstatic%2Fpdf%2F368%2Fbok%25253A978-1-4471-4640-7.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Fbook%252F10.1007%252F978-1-4471-4640-7*~hmac=5ca6961bc1271000bb63b437dd513c 0299729a191f493117aa309ed6aed4bd67
http://download.springer.com/static/pdf/368/bok%253A978-1-4471-4640-7.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Fbook%2F10.1007%2F978-1-4471-4640-7&token2=exp=1461324572~acl=%2Fstatic%2Fpdf%2F368%2Fbok%25253A978-1-4471-4640-7.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Fbook%252F10.1007%252F978-1-4471-4640-7*~hmac=5ca6961bc1271000bb63b437dd513c 0299729a191f493117aa309ed6aed4bd67
http://download.springer.com/static/pdf/368/bok%253A978-1-4471-4640-7.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Fbook%2F10.1007%2F978-1-4471-4640-7&token2=exp=1461324572~acl=%2Fstatic%2Fpdf%2F368%2Fbok%25253A978-1-4471-4640-7.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Fbook%252F10.1007%252F978-1-4471-4640-7*~hmac=5ca6961bc1271000bb63b437dd513c 0299729a191f493117aa309ed6aed4bd67
https://www.google.com/patents/US5882304
http://www.sciencedirect.com/science/article/pii/S0924424703002565
http://www.sciencedirect.com/science/article/pii/S0924424703002565
http://www.invensense.com/products/motion-tracking/6-axis/mpu-6050/
http://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://github.com/jrowberg/i2cdevlib/tree/master/Arduino/MPU9150
https://github.com/jrowberg/i2cdevlib/tree/master/Arduino/MPU9150
https://github.com/jrowberg/i2cdevlib/tree/master/Arduino/I2Cdev
https://github.com/jrowberg/i2cdevlib/tree/master/Arduino/I2Cdev
http://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
http://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
http://robottini.altervista.org/kalman-filter-vs-complementary-filter
http://robottini.altervista.org/kalman-filter-vs-complementary-filter
htp://www.hobbytronics.co.uk/accelerometer-info
https://sites.google.com/site/myimuestimationexperience/sensors/magnetometer
https://sites.google.com/site/myimuestimationexperience/sensors/magnetometer
https://github.com/kriswiner/MPU-6050/wiki/Simple-and-Effective-Magnetometer-Calibration
https://github.com/kriswiner/MPU-6050/wiki/Simple-and-Effective-Magnetometer-Calibration
https://en.wikipedia.org/wiki/Gimbal_lock
http://www.abecedarical.com/zenosamples/zs_sphere4pts.html
http://www.abecedarical.com/zenosamples/zs_sphere4pts.html

47

[24] circlefit3d, fit circle to three points in 3d space. [Online]. Available: http://nl.mathworks.com/
matlabcentral/fileexchange/34792-circlefit3d-fit-circle-to-three-points-in-3d-space

[25] Arduino and matlab: let them talk using serial communication! [Online]. Available: http:
//www.instructables.com/id/Arduino-and-Matlab-let-them-talk-using-serial-comm/?ALLSTEPS

[26] B. Hettema and W. Bouwmeester, “Simulation environment for an open-ended coaxial probe and
visualisation of permittivity measurements,” Bachelor thesis, Delft University of Technology, June
2016.

[27] J. Rowberg. Mpu6050 library. [Online]. Available: https://github.com/jrowberg/i2cdevlib/tree/
master/Arduino/MPU6050

http://nl.mathworks.com/matlabcentral/fileexchange/34792-circlefit3d-fit-circle-to-three-points-in-3d-space
http://nl.mathworks.com/matlabcentral/fileexchange/34792-circlefit3d-fit-circle-to-three-points-in-3d-space
http://www.instructables.com/id/Arduino-and-Matlab-let-them-talk-using-serial-comm/?ALLSTEPS
http://www.instructables.com/id/Arduino-and-Matlab-let-them-talk-using-serial-comm/?ALLSTEPS
https://github.com/jrowberg/i2cdevlib/tree/master/Arduino/MPU6050
https://github.com/jrowberg/i2cdevlib/tree/master/Arduino/MPU6050

48

APPENDIX

A. Figures

Figure A.1: Block diagram of MPU9250

Figure A.2: Positioning pin diagram

49

B. Tables with results complementary filter

Table III: Value of some sample during a roll/pitch rotation of 90 degrees

Sample Roll (degrees) Pitch (degrees)
200 88.3543 88.6656
210 88.4393 88.7014
220 88.4555 88.7157
230 88.4491 88.7327
240 88.4372 88.7423
250 88.4205 88.7479
260 88.4194 88.7555
270 88.4182 88.7427
280 88.4107 88.7373
290 88.3897 88.7300
300 88.3633 88.7295

Table IV: Outcome of yaw calculation in degrees with Matlab, X are situations that don‘t occur in
reality

mx my mz pitch = 0◦ pitch = 90◦ pitch = 0◦
roll = 0◦ roll = 0◦ roll = 0◦

1 0 0 0◦ X 0◦

-1 0 0 180◦ X 180◦

0 1 0 -90◦ -90◦ X
0 -1 0 90◦ 90◦ X
0 0 1 X 0◦ 90◦

0 0 -1 X -180◦ -90◦

C. Used libraries

• I2Cdev.cpp [9]
• I2Cdev.h [9]
• MPU9150.cpp [8]
• MPU9150.h [8]
• MPU6050 6Axis MotionApps20.h [27]
• MPU6050 9Axis MotionApps41.h [27]
• helper 3dmath.h [27]
• circlefit3D [24]
• Main.Script, setupSerial.m and readTemp.m [25]

D. Source code

The source code for the ATmega328 and Matlab files can be found on Github at
https://github.com/LucvW/PositioningTIPS . The repository contains the following files:
• TIPSMPU9250.ino, the ATmega328 source code
• readOut.m, the main read out program
• getArduinoData.m, the data read out algoritm
• testyaw.m, the program used to test yaw
• radius.m, the radius and centre algorithm
• CalibrationTipDistance.m, the test of radius and centre algorithm
• CalibrationTipOrientation.m, the test of orientation algorithm

	Abstract
	Introduction
	Tissue Imaging Probe System
	State of the art

	Programme of Requirements
	Functional requirements
	Environmental compatibility
	System requirements
	Utilisation features
	Production and putting into use features
	Discarding features

	Testing Requirements
	Development of manufacturing methodologies
	Business strategies, marketing and sales opportunities

	Design overview
	Overall design
	3D model of handle
	MPU9250
	System overview

	I2C and sensor readout
	Theory
	Implementation
	Testing

	Calibration
	Theory
	Gyroscope offset
	Accelerometer offset
	Magnetometer offset

	Implementation
	Gyroscope offset measurement
	Accelerometer offset measurement
	Magnetometer offset measurement

	Results

	Noise filter
	Theory
	Implementation
	Filtering measurements accelerometers
	Filtering measurements magnetometers
	Filtering measurements gyroscopes

	Results
	Filtered accelerometer and magnetometer
	Filtered gyroscopes

	Complementary filter
	Theory
	Implementation
	Testing
	Discussion

	Position and orientation calculation
	Theory on orientation
	Reference frame
	Quaternions
	Calculations on model

	Theory on converting acceleration to displacement
	Uncertainties
	Implementation
	Testing
	Results
	Discussion

	Determination of distance and orientation between MPU9250 and probe-tip
	Theory
	Distance estimation
	Orientation estimation

	Implementation
	Distance estimation
	Orientation estimation

	Testing

	Output
	Theory
	Implementation
	Testing

	Implementation on ATmega328
	Libraries
	Auxiliary functions
	Initialisation
	Main loop

	Testing overall system
	Testing plan
	Results

	Discussion
	Conclusion
	References
	Appendix
	Figures
	Tables with results complementary filter
	Used libraries
	Source code

