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A B S T R A C T

Sandy beach-dune systems make up a large part of coastal areas world wide. Their function as an eco-system
as well as a protective barrier for human and natural habitat is under increased threat due to climate change.
A thorough understanding of change processes at the sediment surface is essential to facilitate prediction of
future development and management strategies to maintain their function. Especially slow and small scale
processes happening over several days up to weeks at cm level, such as aeolian sand transport are difficult
to identify and analyse. Permanent laser scanning (PLS) is a useful tool in the study and analysis of coastal
processes as it captures a data representation of the evolution of the sediment surface over extended periods of
time (up to several years) with high detail (at cm-dm level). The PLS data set considered for this study, consists
of hourly acquired 3D point clouds representing the surface evolution of a section of the Dutch coast during
three years. However, it is challenging to extract concrete information on specific change processes from the
large and complex PLS data set. We use multiple hypothesis testing in order to reduce the PLS data set to a
so-called inventory of trends, consisting of 12.8 million partial time series with associated rate of change and
elevation. The inventory of trends proofs to be a suitable tool to identify natural processes such as storms and
aeolian sand transport in our test area in the aeolian zone of a sandy beach-dune system on the Dutch coast.
We identify these processes and provide a tool to derive summarising data from the complex PLS data set. We
find that all partial time series identified as most likely representing aeolian sand transport, result in 1354 m3

of sand deposition in our study area over the course of three years. We also show a comparison with transects
from JarKus data and find a correlation between anthropogenic activities and erosion in our test area with a
correlation coefficient of 0.3.
1. Introduction

Coastal areas worldwide serve a multitude of purposes. Specifically
sandy beach-dune systems (SBDS), which make up 31% of non-iced
coast (Luijendijk et al., 2018), serve as a protective barrier to prevent
flooding, as habitat for a large number of species, and as recreational
areas. The resilience of SBDS is under increasing pressure due to both
natural and human driven climate change (Intergovernmental Panel on
Climate Change (IPCC), 2014; Grabemann and Weisse, 2008). While
sea level rise and increased severity of storm events are foreseen, the
growing human population continues to develop infrastructure on and
near coastal areas worldwide, which under improvisational planning
can lead to coastal squeeze (Vousdoukas et al., 2020). To mitigate
these effects, predictions of the development of SBDS are needed,
which require a thorough understanding of topographic changes at the
sediment surface of SBDS.

∗ Corresponding author.
E-mail address: m.kuschnerus@tudelft.nl (M. Kuschnerus).

Topographic coastal changes at SBDS are driven by anthropogenic,
ecologic and geomorphological processes at different spatial and tem-
poral scales. These driving influences also interact. While a storm can
cause significant erosion of the beach-dune profile over the course
of several hours (van Wiechen et al., 2023), wind driven sediment
transports may only cause significant accretion of the dune profile of
comparable extent over the course of several decades (de Vries et al.,
2012). In addition, the net result of the interaction between erosive
and accretive processes is sensitive to even small changes in any of the
influencing factors (Stive et al., 2002). Thus, human interventions, like
shore nourishment, frequent beach maintenance or buildings on the
beach might influence these as well (Schipper et al., 2016; Poppema
et al., 2021). The knowledge needed to analyse past and present
development in order to make viable predictions of the future, can be
gained by observing, quantifying and subsequently interpreting these
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dynamics and interactions at the sediment surface at different time
scales.

Given the difference in scale, processes and interactions may be
challenging to identity and analyse through sparse observations of
surface beach dynamics. Regular and frequent observations at high
level of detail are desired to cover all temporal and spatial scales.
Optical as well as radar remote sensing are suitable observation tools,
as well as in-situ measurements with sensors and through inspections.

Yearly observation of the Dutch coast with airborne laser scan-
ning provide a tool to monitor the long term development of surface
dynamics in the Dutch beach-dune system. The resulting JarKus tran-
sects (Rijkswaterstaat - Dutch Ministery of Infrastructure and Water
Management, 2022) were for example analysed by van IJzendoorn et al.
(2021). These transects, regularly spaced at 250 m, are used to study
the location of the coastline (quantified as momentary coastline (MKL))
and for decision making in coastal management in the Netherlands.

Several other studies use incidental terrestrial laser scanning to
observe the effect of one specific event or process (see for example
Ackerley et al., 2016; Schubert et al., 2015). Permanent laser scanning
is a tool to continuously monitor a section of coast over a longer period
at high temporal frequency (up to hourly) and small spatial resolution
(up to cm) (see Vos et al., 2017; Anders et al., 2019). Permanent
laser scanning has been used in combination with analysis of video
images to detect bulldozer activities on the beach (Barbero-García et al.,
2023) and for several other applications, for example glacier observa-
tion (Voordendag et al., 2021) and rock fall monitoring (Schröder et al.,
2022).

Anders et al. (2019) developed the so-called 4D-objects by change to
find spatially connected areas in which time series behave in a similar
way. Each 4D object by change can then be associated with a physical
process, that would typically cause this pattern. Their method favours
prominent changes and only finds affected areas that are connected,
like for example bulldozer works or the appearance of a sand bar. A
method to group and classify the 4D-objects by change was developed
by Hulskemper et al. (2022). In our previous study on a similar data set
of shorter length (covering six months), we used clustering algorithms
to group time series with similar change behaviour to identify areas
affected by the same physical processes (Kuschnerus et al., 2021).
This method turned out to be useful for finding areas affected by
bulldozer works as well as different erosion rates in the intertidal
area. However, it is less suitable to process our entire three year data
set. Winiwarter et al. (2023) used Kalman filtering to process long time
series containing gaps and found those time series to be a suitable input
to feature based clustering methods.

The aim of this paper is to identify topographic changes at the sedi-
ment surface of the beach-dune system using permanent laser scanning
on a section of the Dutch coast. The permanently installed instrument
measures with high frequency (hourly) and covers a section of about
800 m length in high detail (cm to dm level of elevation change). The
acquired data set captures the surface dynamics but its structure of 3D
point clouds is cumbersome and information is not easily extracted.
We propose a method to extract elevation time series and their rates
of change and collect them as an inventory of trends in order to reduce
and simplify the data set. The trend inventory allows to identify and
analyse observed dynamics over a period of three years. We demon-
strate the link but also the additional value compared to the JarKus data
set by relating the observations in the respective matching locations.
Specifically we aim to answer the following research questions:

1. What elevation trends at the sediment surface can be derived
from the PLS data set?

2. How do high resolution PLS data compare to yearly JarKus-data?
3. How can small and slow changes at the sediment surface be

identified and quantified with PLS?
4. How can the effect of anthropogenic activities on the dynamics

at the sediment surface be analysed using PLS data?
2

Fig. 1. The study site on the Dutch coast in Noordwijk, The Netherlands with the laser
scanner mounted on a hotel balcony without (A) and with (B) protective cover.

The novelty of the proposed work is, firstly, the presented method
to generate a simpler representation of our data set for efficient data
mining. Secondly, we process for the first time the entire hourly three-
year data record from permanent laser scanning, which has proven
to be challenging with previously developed methods. Finally, our
methods allow to identify surface dynamics in the aeolian zone, which
are difficult to study with other types of data and methods (see for
instance Uphues et al., 2022). Especially our new method is capable
of capturing long term but small-scale changes due to aeolian sand
transport.

2. Field site and data set

The study area is part of a typical example of a Dutch urban beach
and provides the infrastructure needed for the instrumental set-up. The
Dutch beach-dune system is orientated from south-southwest to north-
northeast and consists of quarts sand (van IJzendoorn et al., 2023).
The coast is driven by meso-tidal tides of about 2 m height (Wijnberg,
2002), waves of about 1.7 m height during average conditions and
5 m height during storm conditions (Luijendijk et al., 2017) and with
south westerly winds (Vos et al., 2024). The Dutch coast is maintained
regularly (Maij-Weggen, 1990) with (underwater) sand nourishments
resulting in an accreting environment around Noordwijk (de Vries
et al., 2012). The observed area includes a sandy beach and dunes,
covered with vegetation and is about 1 km long and 250 m wide. The
beach varies in width between 80 m and 140 m under normal weather
conditions. In rare occasions, storm reduces the width of the beach even
further. Fig. 2 shows an overview of the study area with an aerial image
and the top view of a point cloud as an example. In the point cloud the
colours are based on elevation. We focus in this study on a 400 m long
part of the aeolian zone and do not include the intertidal zone or dunes.
Within the study area there is often a beach scarp of up to 1 m height,
see Fig. 2B, which can lead to sudden changes in elevation observations.

To identify and analyse change processes, we use an exemplary
data set from permanent lasers scanning (PLS) consisting of point
clouds collected hourly during a period of three years from July 2019
to June 2022. The entire data set is published and can be accessed
through 4TU.ResearchData (Vos et al., 2023). A summary of parameters
describing the data set can be found in table Table 1. The point
clouds processed for this study are acquired with a Riegl VZ-2000 laser
scanner, which is permanently mounted on the balcony of Grand Hotel
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Fig. 2. Overview of study area: Point cloud of the sandy beach (A), photo of a beach scarp formed at the edge of the aeolian zone (B) and aerial image of Grand Hotel Huis
ter Duin with the adjacent dunes and beach (C, by Google maps). In the point cloud the colours are based on elevation. White areas appear because of missing data in the point
clouds in the shadow zones of dunes and buildings, or because of water present in the intertidal zone. The test areas are marked with a square: test area 1 is next to a beach cafe
and influenced by many anthropogenic changes (i.e. bulldozer works, frequent visitors) and test area 2 is mostly influenced by natural processes. In photo (B) the beach marker
at location of Jarkus transect with ID 8225 is visible. The location of the laser scanner is marked with a star in the aerial image.
Table 1
Data properties considering all hourly scans between 11 July 2019 and 21 June
2022.

Total number of files 20 875
Number of good quality files 19 386
Days scanned 954
Interruptions (>24 h) 21
Number of points in study area 800 000
Range 145–500 m
Point density 1–40 pt/m2

Footprint size 0.02–0.1 m2

Inclination angle 70–90 deg

Table 2
Specifications of Riegl VZ-2000 laser scanner according to documentation.

Range accuracy (at 150 m range) [m] 0.008
Angular spacing [deg] 0.003
Beam divergence [mrad] 0.3
Inclination sensor frequency [Hz] 1
Measurement accuracy [deg] 0.008

Huis ter Duin in Noordwijk, The Netherlands. The laser scanner is
mounted on a metal frame at 55.757 m height above NAP that is fixed
to the balcony to maximise stability and covered with a protective cover
(see Fig. 1).

2.1. Instrument settings

The settings of the laser scanner are summarised in Table 2. Data is
collected by running a scan of nearly 180 horizontal degrees covering
a stretch of beach of just under 1 km long every hour with an angular
spacing of 0.03 degree.

The laser scanner generates a 3D point cloud per scan, made up of
x,y,z-coordinates which are calculated by the Riegl proprietary software
out of recorded range, horizontal and vertical angle data, as well as
3

intensity of the backscatter signal, per point. The internal inclination
sensor records inclination values during each scan, with a frequency
of 1 Hz (not matching the scanning frequency). A mean value and the
standard deviation of these inclination angles is used for correction of
tilts in the scanner (see Section 3.1).

There are some temporal gaps in the data set, of which the two
largest are the following: in the spring of 2020 during a period of 1.5
months the scanner underwent maintenance and was not recording
while on 19th December 2021 the scanner stopped recording data
unnoticed for a period of 18 days due to the holiday season (see
Table 1).

The JarKus data set is collected yearly based on different measure-
ment techniques. Every 250 m along the Dutch coast a transect is
measured to determine the current beach and dune profile as well as the
current position of the coastline with respect to a reference coastline.
In our observation area in Noordwijk two transects (with ID 8200 and
8225) are located (see Fig. 2A). We focus our comparison on the part
on the sandy beach in the aeolian zone. In this part the JarKus data
is collected with airborne laser scanning. Findings on these transects,
interpretation of data and summary of most relevant parameters are
summarised in reports by the Dutch ministry of infrastructure and
water management (Rijkswaterstaat, Rijksinstituut voor Kust en Zee,
2022). A visualisation of the trend of the momentary coastline (MKL)
in 2022 is shown in Fig. 3.

Additionally data from weather stations of the Royal Netherlands
Meteorological Institute Koninklijk Nederlands Meteorologisch Insti-
tuut (KNMI) (2022) in IJmuiden and Hoek van Holland is used to
compare our findings to meteorological properties, such as wind speed
and direction and precipitation.

3. Generation of inventory of trends

In order to simplify the 3D point clouds, we rasterize each one into a
grid. Then we generate the so called inventory of trends out of time series
at the grid locations on the beach. The resulting database of trends is
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Fig. 3. Location of JarKus transects around Noordwijk in the Netherlands with current
trend of MKL in 2022 as a bar plot at each transect location (Rijkswaterstaat,
Rijksinstituut voor Kust en Zee, 2022).

then used for further analysis of specific regions and time periods as
well as to come up with overall statistics of the entire field site.

The method is explained in several steps as visualised in Fig. 4.
In a first step a data set of corrected point clouds is generated from
the raw data, see Section 3.1. Then, digital elevation models (DEMs)
are used to derive a set of elevation time series located at regular
grid points, as discussed in Section 3.2. With the help of these time
series and multiple hypothesis testing (MHT) a trend inventory is built,
Section 3.3, which allows then to derive the results for interpretation
of natural and anthropogenic processes, compare Section 3.4.

3.1. Corrected point clouds and filtering

The laser scanner data is in a local coordinate system with the
location of the laser scanner as its origin. The height of the scanner was
determined when mounted with a GPS receiver. This constant elevation
is added to the z-coordinate, to process actual height above sea level
instead of negative elevation with respect to the scanner’s location.

In a next step the inclination data from the laser scanner is averaged
for each scan and the mean pitch and roll inclination are extracted.
These values are then used to calculate rotation matrix 𝑅, given by:

𝑅 =
⎛

⎜

⎜

⎝

cos(𝜑) 0 sin(𝜑)
sin(𝜑) ⋅ sin(𝜃) cos(𝜃) − cos(𝜑) ⋅ sin(𝜃)

− sin(𝜑) ⋅ cos(𝜃) sin(𝜃) cos(𝜑) ⋅ cos(𝜃)

⎞

⎟

⎟

⎠

(1)

with 𝜑 the pitch angle and 𝜃 the roll angle. Rotation matrix 𝑅 is
calculated for each point cloud separately and applied, if the standard
deviation of the pitch and roll values during the entire scan is below
a threshold. This is to ensure that data that was e.g. obtained during
a heavy storm is not corrected with a rotation based on erroneous
inclination values. If the threshold is not met, a mean pitch and roll
value based on the other scans in that month is used for correction.
A constant general tilt of the point cloud is removed in this way, as
well as the main part of deviations of the laser scanner’s position due
to temperature changes (heat expansion of supporting materials) or
strong winds. We do not use any ground control points for correction
of individual point clouds. For validation, some ground control points
were measured at the start of data acquisition.

Subsequently the data set is filtered for low quality or erroneous
point clouds. The mean elevation as well as the sum of residuals
4

Fig. 4. Flow chart of the methodology. The numbers refer to the four data processing
steps, 1: generation of corrected point cloud, 2: reformatting as elevation time series, 3:
data reduction to inventory of trends and 4: Reporting of statistical trend parameters.

deviating from a fitted plane through a reference surface are estimated
for each point cloud. If the mean elevation deviates more than 10 cm
or the summed residuals are larger than 10 cm the point cloud is
not considered for our study. This threshold was determined during a
previous study, Kuschnerus et al. (2024), considering the error sources
and influences on data quality. This is to exclude point clouds with
large variations/noisy data caused by instrument failure or storms.
Point clouds recorded during low visibility weather conditions, which
do not contain data on the sandy beach, are excluded from further
analysis as well. This leaves a data set of 19 386 good quality point
clouds acquired between 11 July 2019 at 14:00 and 21 June 2022 12:00
(midday).

3.2. Digital elevation models and elevation time series

The corrected point clouds are then cropped to the relevant part to
contain only the sandy beach. For further processing a grid of 1 m × 1 m
is formed and all elevations in each grid cell are averaged to obtain an
elevation at the centre of the grid cell, compare Fig. 5. The 1 m × 1 m-
grid size is a common standard for analysis of coastal spatial data and
models. Additionally, it was chosen in order to be as small as possible,
while still containing enough points to derive statistically significant
mean elevation on most locations in the study area. A sensitivity
analysis on point clouds from our data set in comparison with higher
resolution data at the same location was presented by Di Biase et al.
(2022). The square root of the summed residuals are calculated for each
grid cell:

𝜎𝑔 =

√

𝐞𝑇 𝐞
, (2)
𝑛𝑝 − 1
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Fig. 5. Schematic of time series generation: each point cloud is divided into grid cells. For each grid cell all recorded points are summarised by mean elevation and sum of
residuals. These values for all available point clouds then provide a time series of about 19 000 elevation values with associated sum of residuals for each grid cell location.
for the spatial residual vector 𝐞 and number of points 𝑛𝑝. The summed
residuals are then saved for each grid cell, as well as the number
of points per grid cell. Since the elevations in the DEMs are as a
consequence available at regular grid points, all files that meet quality
criteria are then collected to generate a time series of 19 386 epochs
for each grid cell location. For each grid cell location we have the
elevation time series with the mean elevation per time stamp and the
accompanying uncertainty time series with the summed residuals per
time stamp. Each time series may contain gaps for several reasons:

• a point cloud was not available because it was not recorded or of
bad quality,

• an object or pile of sand is temporarily blocking the view on the
grid cell, or,

• the tides cause the grid cell to be temporarily under water.

That last case is used to determine events, where high water reaches
the study area. For every day we determined the point cloud with
the narrowest beach width and save that moment of time and water
line at that time as our estimation for the high water line on that
day and the time of high tide. This method was described in more
detail in a previous study to determine the development of the beach
width (Kuschnerus et al., 2023).

3.3. 4D inventory of trends of surface elevations

Each time series is divided into partial time series. A break point
is recorded when there is a gap in the time series of more than three
hours or if a jump is recorded in the time series. To detect the jumps or
change point the so called Pruned Exact Linear Time (PELT) algorithm
is used, Killick et al. (2012). The PELT algorithm is using minus the
maximum log-likelihood as a cost function and adds a point as change
point, if it reduces the segmentation costs by more than a penalty term.
We used the implementation of the algorithm in the ruptures Python
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package, Truong et al. (2020). This will also split partial time series
with non-monotonic trends at the points where the trend changes.

After the time series is divided into partial time series we use
multiple hypothesis testing (MHT) to build the 4D inventory of trends.
Goal is to classify each partial time series as (i) stable, (ii) linearly
increasing or decreasing, or, (iii) without matching model.

As described in detail in Kuschnerus et al. (2024) and similar
to Lindenbergh and Hanssen (2003), we use MHT based on the method
presented by Chang and Hanssen (2016). Chang and Hanssen (2016)
use MHT to determine an appropriate deformation model for time series
of kinematic parameters from InSAR data. Here, we are interested in es-
timating linear trends for each of the partial time series. Therefore, we
choose a linear model as alternative hypothesis to the null-hypothesis.
The null-hypothesis, 𝐻0, states that there is no statistically significant
change in the respective time series segment.

We first test for the null-hypothesis (i.e. no statistically significant
change). If the null-hypothesis is accepted, we save the start and end
of the partial time series, slope value 0 and mean elevation over the
entire duration. The null-hypothesis is formulated as follows:

𝐻0 ∶ 𝐴0 =

⎛

⎜

⎜

⎜

⎜

⎝

1
1
⋮
1

⎞

⎟

⎟

⎟
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, 𝑥 = ℎ̂ (3)

𝑇0 ∼ 𝜒2(1, 0), (4)

For model matrix 𝐴0 and test value 𝑇0, which is centrally 𝜒2-distributed
with 1 degree of freedom, since we have one free parameter that is
estimated. The free parameter is here the mean elevation value, ℎ̂, of
the time series of elevation values ℎ.

As alternative hypothesis, 𝐻1, we consider a linear trend:
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𝑇1 ∼ 𝜒2(1, 𝜆) (6)

where ℎ0 is the intercept and 𝑣 the rate of change of the linear model
and therefore 𝐴1 ∈ R𝑚×2. The test value here follows a 𝜒2-distribution
with 1 degree of freedom and non-centrality parameter 𝜆 ≠ 0, since we
have a 2-dimensional model matrix and one additional free parameter
compared to the null-hypothesis. The covariance matrix 𝑄ℎ is defined
using the RMSE per grid cell 𝜎2𝑔 , which were saved for every grid cell
together with the elevation time series. We assume that there is no
correlation between subsequent measurements and therefore obtain the
diagonal matrix

𝑄ℎ = diag(𝜎2𝑔1,… , 𝜎2𝑔𝑚) = 𝜎2𝑔 ⋅ 𝐼𝑚, (7)

with

𝜎2𝑔 = (𝜎2𝑔1,… , 𝜎2𝑔𝑚) (8)

the vector of epoch dependent grid-wise variances 𝜎2𝑔𝑖, for 𝑖 = 1,… , 𝑚.
Following Chang and Hanssen (2016), the test value 𝑇1 for the

alternative hypotheses, is then calculated as

𝑇1 =
𝑚
∑

𝑖=1

(ℎ𝑖 − ℎ̂)2

𝜎2𝑖
, (9)

for modelled time series ℎ̂ = 𝐴1 ⋅ �̂�. The test value is then com-
pared to the critical value 𝑘𝛼 , determined by significance level 𝛼 and
non-centrality parameter 𝜆. The chosen parameters in our case are
significance level 𝛼 = 0.95 (determining a false alarm rate of 5%) and
the power of the test 𝛾 = 0.8 (80% probability of missed detection).
Since we are using the 𝜒2-distribution, the non-centrality parameter 𝜆
needs to be chosen in order to represent the significance value 𝛼 and
the power of the test 𝛾. More details on the determination and influence
of 𝜆 can be found in Kuschnerus et al. (2024). Here we use 𝜆 = 7.85 to
represent a statistical test set up with our chosen parameters, i.e. 5%
probability of detecting a trend, even though there is none, and 80%
probability of detecting a trend, when one is present.

If a statistically significant trend is detected, we save the value of
the trend in m/day together with the start and stop time of the partial
time series and the initial elevation (estimated as axis-intercept). In this
way we derive a table of start and stop times and slope values for each
grid cell location.

3.4. Parameter extraction

The trend inventory delivers a database of statistically significant
trends for each time step and each location in our field site. For specific
questions, for example the impact of one storm, we can now zoom in on
a time period and collect all available partial time series, the matching
trends, and the overall change in volume. Also, specific areas can be
highlighted, observed over the entire observational period as well as for
shorter time spans. To get a quick look on what could have happened
for different zoom-in situations (in space and/or time), we calculate the
total number of partial time series, the number of partial time series
with significant trends, the average duration of the partial time series
with significant trends and the average rate of change from the trend
inventory. Additionally we report on net volume and area change over
the time period, as well as the total sum of absolute volume change.
Together, these parameters provide indications on the net results of
erosion and deposition processes as well as a measure of how dynamic
an area has been.

4. Results

As results of our analysis we present statistics on the inventory of
trends of the entire area (Section 4.1) and a comparison with transects
from the JarKus data set (Section 4.2). Then we show how some
commonly occurring physical processes appear in the trend inventory
(Section 4.3). Finally we compare the trend inventory for an area with
frequent bulldozer works with an area that is dominated by natural
processes (Section 4.4).
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Table 3
Summary of statistics of trend inventory. Time series is denotes as ‘ts’.

Number of grid cells 41 000
Number of partial time series 12.8 million
Average duration of partial time series 45 h
Number of significant change rates 395 825
Average duration of ts with significant change rates 158 h
Max duration of ts with significant change rates 1209 h
Average change rate 0.0027 m/day
Number of stable ts 3.2 million

Fig. 6. Histograms of duration of partial time series (A) and of rates of change (B).

4.1. Inventory of trends

Following the above described procedure, we calculated the inven-
tory of trends for the entire data set covering three years of hourly
observations. The statistics on the entire area are listed in Table 3
together with the histogram of the rates of change in Fig. 6. We can see
in the table that over the entire area of 41 000 grid cells we have 12.8
million partial time series. For a large part of those time series (about
8 million) we cannot find a statistically significant linear model. The
reason for that is either that the shape of the partial time series does
not fit a linear model or that the partial time series is too short or has
too many gaps in order to be considered. About 3.2 million partial time
series appear to represent a period of time where there is no statistically
significant rate of change in elevation recorded. We also observe that
the average duration of partial time series is 45 h, but the average
duration of partial time series with a statistically significant trend is
more than three times longer (158 h), with a maximum duration of
1209 h (about 50 days). The minimum duration for all partial time
series is 10 h and was fixed as a setting in the processing.

In Fig. 7 we show a time line of all major storm events and data gaps
for three example time series of raw elevation data as well as fitted
linear models for the respective partial time series. The elevation at
the time of the JarKus data acquisition at the corresponding location
is marked with dots in the same colour as the respective time series.
Occurrences of measured wind speeds of 18 m/s and higher are indi-
cated with a yellow bar. The most prominent gaps in the time series
are due to failure in data acquisition or bad quality data. Major storms
during extreme wind speeds (as for example storms Ciara and Dennis in
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Fig. 7. Time line of data collection split up in the periods between JarKus campaigns (A: 2019/2020, B: 2020/2021, C: 2021/2022) for three example grid cells along the JarKus
transect with ID 8225. JarKus data collection is indicated by a dot at the acquisition time and measured elevation of the transect. The raw elevation data is shown for three grid
cells (blue, orange and green time series) along JarKus transect 8225. The fitted trends are shown in the same colour on top of the raw data. Hours with an average wind speed
≥18 m/s, are indicated by a yellow bar. The names of some prominent major storms are provided in italics and reasons for large gaps in the data are given in/next to a red box.
February 2020 and Eunice in February 2022) can be observed as well at
times where there are abrupt changes or gaps. Another possible reason
for sudden changes or jumps is a beach scarp that form on the beach as
shown in Fig. 2B. We observe lots of dynamics (up to 1 m in elevation
difference) in between two JarKus height estimates, which are missed
by interpolating data from yearly measurement campaigns for JarKus.

4.2. Comparison of trend inventory with JarKus transects

We use the JarKus data set as a reference since it is widely used
to monitor coastal dynamics. We compare the JarKus transects in our
study area with the trend inventory at the same locations and over the
same three-year observation period.

After conversion of the coordinate systems we can place a JarKus
transect on a point cloud collected on the same date and in this way
verify, that the profiles and locations largely match. The transects are
orthogonal to the basic coastline (BKL) and cover several cross sections
of our grid structure. That is why we use an area of 10 m width to
cover each of the two JarKus transects (see Fig. 2). Fig. 8 shows the
JarKus transects at the location with ID 8225 together with a transect
of a point cloud from the PLS data set acquired on the same day. We
use this to match the JarKus transects with our data and validate the
NAP elevation used for the calculation of the trend inventory. We are
able to show the variability in the same locations as the transects in
between measurement campaigns (as shown in Fig. 7).
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However, in Fig. 8 it becomes clear that the JarKus transects cover
a much larger area across shore, with large parts under water, while
our study area only represents a small part of the transects. Any con-
clusions that we can draw out of our data set are therefore difficult to
compare and match with the results on long-term coastal development
from JarKus data. JarKus data is used for a variety of applications
including the determination of the so-called MKL-trend, the trend of the
momentary coastline (MKL), describing the current state of the coast
compared to the previous years. A similar analysis with our data set
would be based on a much smaller area, covering only the aeolian zone,
as well as a relatively short time-span of three years. Therefore it proofs
to be challenging to draw direct conclusions out of the statistics of the
inventory of trends that are comparable to the MKL-trends based on
JarKus measurements.

4.3. Categorisation of different topographic change processes

To show in more detail the potential of the information captured
by our method, we discuss how three common process categories, a
major storm, aeolian sand transport and bulldozer work, show up in
our trend inventory. This demonstrates how our trend inventory can be
used to analyse dynamics in between the yearly JarKus measurements
with respect to different processes and at different time scales.
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Fig. 8. Jarkus transects for 2020, 2021 and 2022 with the transect from a point cloud from raw PLS data acquired on the same day. The high water line and the borders of our
study area are shown as well.
Fig. 9. A: Time series trends at 10 different grid cells indicated by 10 different colours in storm season 2021/2022 covering the major storms Corrie, Dudley and Eunice. B: Wind
speed in the same time period. The dotted red line at 18 m/s wind speed provides the threshold for a ‘major storm’. Occasions, where high water reaching up to the grid cells of
the shown time series was recorded in our data set, are indicated with a blue bar.
Major storms
In Fig. 9 we show the effects of two major storms, Corrie and Eu-

nice/Dudley in February 2022 exemplary at 10 grid cells. The example
grid cells are located along a line perpendicular to the coast at 𝑦 = −55
and −215 ≤ 𝑥 ≤ −197 in steps of 2 m. The bottom panel shows wind
speed at the same time with a threshold of 18 m/s as indication of a
‘major storm’.

Storm Corrie would not register as a major storm according to our
wind data collected at IJmuiden weather station. However, it occurred
together with high tide resulting in an exceptional high water level
which caused large parts of the beach to be temporarily flooded. In
Fig. 9A, the blue bars indicate where the high water reached up to
the location of the grid cells of the respective time series/fitted trends.
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Since all our study site is in the aeolian zone, flooding during tides
happens mostly during storm conditions.

Eunice and Dudley were overlapping in time and caused very strong
wind gusts but we did not register high water reaching our study
area. Both storms caused some loss of data, either because of tides
covering parts of the beach or through decreased data quality during
strong winds. With the trends at different locations on the beach,we
can clearly follow the erosion patterns that are caused by both storms.
Possible reasons for erosion are either wave run up reaching the study
area in between scans, high water covering the area during gaps in
the data or aeolian sand transport. We record high water reaching the
study area, when the smallest point cloud in one day shows the high
water line within the study area. It is possible that these events happen
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Fig. 10. A: Time series trends in March 2020 showing most likely occurrence of aeolian sand transport detected through the slow but continuous changes over several days
together with wind speeds above 8 m/s (red dotted line, B). The original time series are shown together with each fitted trend.
without being recorded or that wave run up reaches the area while the
high water line is just below the border of the study area.

Overall we estimate for the entire observation area a total pos-
itive volume change of 1667 m3 for storm Corrie (with a duration
of three days) and a total negative volume change of −3459 m3 for
Eunice/Dudley during six days. Our full observation area, compare
Fig. 2, is roughly 41 000 m2, thus resulting in an average gain of
4 cm per square meter during storm Corrie and an average loss of
8.4 cm per square meter during storms Eunice and Dudley. Most of
the accretion is happening during data gaps, but we suspect that high
water reaching the aeolian zone as well as wave run up are the main
causes for accretion. We remark here that the impact of both storms was
very different and even contrasting. The elevated water levels caused
by Corrie are a likely explanation, despite the corresponding relatively
lower wind speeds.

Aeolian sand transport
Additionally to large and sudden changes, the trend inventory is

suitable for the observation of slow elevation changes developing dur-
ing several hours or even days. For an example of aeolian sand transport
we show time series trends at nine locations along a profile perpendic-
ular to the coastline (𝑦 = 150 and −206 ≤ 𝑥 ≤ −198) in steps of 1 m
together with recorded wind speeds at that time (Fig. 10). The slow but
continuously observed erosion over several days in combination with
wind speeds higher than 8 m/s lead to the assumption that aeolian
sand transport is the most likely cause of the elevation changes in
these neighbouring grid cells. According to van Rijn (2022), dry sand
with wind speeds of 8 m/s and higher provides the conditions for
possible aeolian sand transport on the Dutch coast. We did not report
on precipitation here, because precipitation varies locally and data from
the weather stations at several 10 s of kilometres distance is not very
accurate especially in coastal areas.

Fig. 10A shows how the slow erosion of a few centimetres over
the course of 10 to 20 days is captured very well by the inventory of
trends. Filtering the entire inventory of trends for partial time series
with statistical significant rate of change, 𝑣, in the range 0 m∕h < 𝑣 ≤
0.05 m∕h, that last at least 6 h, provides an estimate of all the potential
times and locations that aeolian sand transport caused changes in the
sediment surface. This amounts to just under 395 000 partial time series
with potential aeolian sand transport causing a deposition of sediment
of about 1354 m3 in our study area over three years time. This is
equivalent to an average gain in elevation of 3.3 cm per square meter
over three years.
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Bulldozer works
Our study site is subject to frequent bulldozer works, compare

Barbero-García et al. (2023) and Kuschnerus et al. (2022). Reasons
for bulldozer works are mostly clearance of access paths and prevent-
ing and removing storm damage. Generally the beach is maintained
frequently to facilitate recreational use. For the interpretation of the
data and derived trends it is important to take the potential effects of
bulldozer works into account. A prominent example found in our data
set is the set up of a beach tent in test area 1 (see Fig. 2) next to the
beach bar. Before the tent was set up in January 2020, a terrace was
formed and the entire month saw frequent bulldozer activities in that
area. We use this example to showcase how bulldozer works appears in
our trend inventory. In Fig. 11 we show time series trends for 10 grid
locations along the cross shore profile 𝑦 = 30 and −175 ≤ 𝑥 ≤ −156 in
January 2020. In the bottom panel we show the total number of sudden
changes per day (of 30 cm or higher) recorded in that area, which
are most likely caused by bulldozer works. A list of these potential
bulldozer activities was generated for Barbero-García et al. (2023), and
is used here as reference indication.

We see in Fig. 11 that the bulldozer works interrupt the ongoing
trends significantly. It takes almost two weeks until a regular situation
with stable trends appears again. At the same time the bulldozer works
lead to loss of data, due to occlusion and frequent interruption of time
series. If there are too many gaps in a time series, a trend is not fitted
by our method. The tent’s set up after the bulldozer works, as well as
sand piles can lead to occlusions in neighbouring grid cells.

4.4. Comparison of natural vs. anthropogenic processes

Bulldozer works are a common occurrence on the Dutch coast and
coasts worldwide but their long-term effects on natural processes are
difficult to study.

Here we use the list of instances most likely caused by bulldozer
works collected for a previous study (Barbero-García et al., 2023), for
a first assessment if a beach is affected by anthropogenic interventions
and how many times these interventions occurred. We then chose two
dedicated test areas (see Fig. 2), both of 760 m2: Test area 1, where
we suspect lots of anthropogenic influence (354 recorded incidences of
possible bulldozer works) and Test area 2, with few bulldozer works (95
recorded incidences of possible bulldozer works) and therefore mostly
natural influences but a similar location on the beach, close to the
dunes.

For the comparison of these two areas we show in Fig. 12 the
average rate of change of all fitted trends within the three year period
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Fig. 11. A: time series trends for 10 grid locations in January 2020 showing the effects of bulldozer works in the middle of test area 1. B: Number of sudden changes per day.
most likely caused by bulldozer works.
Fig. 12. Comparison of rates of change, net elevation change and absolute accumulated elevation change over the entire observation period in test area 1 and 2.
in that area (A and D) and the net elevation change that we derive out
of all the fitted trends in the area (B and E). The accumulated elevation
change (C and F) is calculated as the sum of all jumps that appear in
the trend inventory and the recorded slow changes both as absolute
values.

Test area 1, with lots of anthropogenic processes, shows lots of
variability, see Fig. 12A–C. Over the entire observation period, the net
volume change in that area was −257.5 m3 with an average rate of
change of 0.0071 m/day. Fig. 12B shows a clear pattern in both the
yearly and entire period accumulated change from the dunes towards
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the sea, with erosion closer to the sea (west) and no change or some
deposition closer to the dunes. The average rate of change however,
Fig. 12A, reveals different patterns.

For comparison, Test area 2 is dominated by natural processes. In
Fig. 12D–F we do not observe the patterns observed for Test area 1:
Over the entire observation period the net volume change in Test area 2
was 272 m3 with an average rate of change of 0.002 m/day. The overall
accumulated net change as well as the average rate of change over the
entire three-year period are visualised in Fig. 12E and F. This leads
to the hypothesis, that more frequent anthropogenic human activity
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Fig. 13. Comparison of number of bulldozer works with net elevation change per
square meter in the same area. The orange line shows a fitted trend.

occurs in areas where we also observe more erosion, compared to areas
with less human influences.

To relate the amount of human activity (i.e. bulldozer works) in
an area to the variability and erosion/deposition patterns in that area
for our entire observation period, we compare the number of potential
bulldozer works over the entire three year period to the variability,
quantified as net change: with a moving window of 20 m length across-
shore and 40 m length along-shore we collect for each window the
number of bulldozer work instances and the net change over the three
year period.

The result of this analysis is shown in Fig. 13, indicating a (small)
negative correlation between net change and number of bulldozer
works. The correlation coefficient of 0.3 supports this result. We there-
fore observe, that in our study site, most bulldozer works are happening
in areas that were eroding during the observation period.

5. Discussion

We conclude that with the large and complex PLS data set, it is
possible to observe interacting processes with unprecedented detail
and complexity. The comparison with JarKus transects provided the
opportunity to validate the elevation in the PLS data set. However, it
also showed that a simple question, such as ‘Is the coastline at a specific
location retreating or advancing?’ is not easily answered using our more
complex data. For this question the JarKus data set is more suited
to provide easily interpreted quantified answers. Generally speaking,
we find a trade-off between the opportunity to research increasing
complexity of a natural system vs. the need for clear and easy to
communicate answers on major challenges of coastal engineering and
monitoring. With the data from the trend inventory, we can provide
general indicators of variability and also if there is generally a dom-
inating trend of erosion or deposition. However, a direct comparison
with the indicator of for example the MKL-trend is difficult.

The unique nature of the analysed data set lends itself to look for
systematic analysis of coastal dynamics, which are mostly ruled by
natural processes. The question if a ‘heavy storm’ causes more surface
changes depending on the strength of the wind speed, was considered
in this context. However, a consistent and systematic definition of
a storm, based on one or two observed parameters, such as wind
speed and wind direction proved to be difficult. As can be seen in our
analysis (Section 4.3 and Fig. 9) two major storms present themselves
differently in terms of wind speed as well as with their impact on the
beach. We decided not to present an attempt at correlating for example
sand volume change and wind speed in order to avoid a simplified
presentation of a complex system of interacting natural forces and their
effects. To improve this in similar future experiments, a weather station
next to the laser scanner as well as wind meters in several locations on
the beach would be recommended.

The PLS data set together with the inventory of trends provides
many opportunities for more research. We showed in Section 4.3 how
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specific physical processes that cause elevation change at the sediment
surface appear in the inventory of trends. Especially storm damage but
also the more gradual and difficult to monitor aeolian sand transport
appear with a clear pattern. Considering wind speed together with the
trend inventory both can potentially be detected in a data set of a large
long term study. There is also the opportunity to take a closer look
at different regions and/or time scales. For example the analysis of
seasonal changes in erosion/accretion patterns on the sediment surface
could be interesting. However, accretion seems to happen mostly dur-
ing storm conditions in our study area. Therefore the trend inventory
appears not to be the ideal method for the detection and identification
of accreting events. Adding additional means of observing the study
area, for example through video cameras, could help to confirm the
suspected causes of erosion/accretion during times of data loss and
improve this point.

The acquisition of more PLS data sets could lead to the opportunity
for the generation of training data for a possible supervised learning
algorithm to detect these processes. We still consider our three year
data set as insufficient for training an algorithm on the occurrence of
a specific process, such as aeolian sand transport or a storm. But, we
feel we have successfully demonstrated the possibility of identification
of such processes in a PLS data set.

For the evaluation of the impact of anthropogenic activities, data
from other locations and possibly specific long term experiments could
be useful. The slight correlation between erosion and amount of bull-
dozer works that we show in Section 4.4, could be an indication,
that frequent human interventions disturb the naturally occurring de-
position of sand. Another interpretation could be that larger erosion
requires more corrective bulldozer interventions. In any case it is im-
portant to consider the context, that all bulldozer works must be below
20 m3 per transect of 1 m width, according to the Dutch regulations.
This threshold is chosen in order to ensure that bulldozer works are in
the same order of magnitude as natural processes and do not disturb
them. However, the correlation that we show, could be an indicator
that either more bulldozer works are happening than the regulation
allows, or the threshold was based on a false assumption and there is
indeed an impact of the frequent anthropogenic activities on natural
processes. Both of these hypothesis need further research.

6. Conclusions

We analysed a three-year data set from permanent laser scanning
with the help of hypothesis testing, to find statistically significant
monotonic trends in elevation and reduce the complex data set to an
inventory of trends. We furthermore showcased applications of the
inventory of trends for the analysis of change patterns at the sediment
surface in the aeolian zone of a Dutch sandy beach by answering four
research questions:

• What elevation trends at the sediment surface can be derived from
the PLS data set?
We found about 380 000 thousand partial time series with statisti-
cally significant rates of change of 0.0027 m/day on average with
an average duration of 158 h. We therefore show dynamics on
the sediment surface that are difficult to study and to reveal with
other techniques. Especially slowly developing elevation changes
over longer periods of times (several days/weeks) and at cm level
can be captured with our method.

• How do high resolution PLS data compare to yearly JarKus-data?
The elevation from the PLS data set is validated at two locations of
the JarKus transects at the day of acquisition of the JarKus data.
Therefore our data set and method allows to show dynamics in
between the measurement campaigns at these specific locations
and in a small part of the JarKus transects. The comparison of
long-term (up to 10 s of years) trends concerning the coast line
proofs to be difficult. Our more complex and exhaustive data set,
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on a smaller area does not allow to draw simple conclusions com-
parable to coastline trends from JarKus data, but shows dynamics
that are missed by the yearly JarKus measurements.

• How can small and slow changes at the sediment surface be
identified and quantified with PLS?
We show that large elevation changes, for example caused by
storms as well as slow, small-scale changes in elevation over
longer periods of time can be identified and analysed with the
inventory of trends. Especially small-scale, long term elevation
changes, which are associated with aeolian sand transport are
well captured within the inventory of trends. Anthropogenic ac-
tivities such as bulldozer works can be found as well, but are
easier detected with other methods, for example by considering
sudden changes as presented by Barbero-García et al. (2023).

• How can the effect of anthropogenic activities on the dynamics
at the sediment surface be analysed using PLS data?
By comparing the number of bulldozer sightings in an area with
the net elevation change in the same area and time frame we
find a connection between erosion and bulldozer works with a
correlation coefficient of 0.3. This leads to the hypothesis that
bulldozer works negatively affect natural processes on the beach
and might lead to more erosion. Further research is needed to
confirm this hypothesis.

We presented a new method to gain information on change pro-
esses at the sediment surface on a sandy beach from a PLS data set.
o extend this research we suggest comparison with similar data sets
t other locations, as well as collection of more environmental vari-
bles (for example in situ wind speed and direction) in future similar
xperimental set-ups. The trend inventory is a tool that could poten-
ially be used for many other applications and case studies, such as
nalysis of seasonal patterns in erosion/deposition, study of intertidal
ar dynamics or dune growth.
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