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Abstract

In this contribution a new development in probapjlireliability and sensitivity
modelling is presented. The Core Probability Mo@@@PM) is a full probabilistic
model for modelling variations in capacity and fimfiemand in macroscopic traffic
flow. The CPM extends a base model, such as theT€aismission Model (CTM),
by considering each traffic variable as a discitechastic variable denoted as a
probability distribution of values for each traffiariable in time and space. Traffic is
propagated along a link using the base model amigih a larger network with the
application of probability merging algorithms atthodes. Due to the incorporation
of probability in the core of traffic propagatiathe necessity for multiple simulations
diminishes, as the CPM makes use of a one-shobagipr This leads in theory to a
shorter simulation time and computational load. #weo major advancement is the
explicit handling of spatiotemporal dependence.tif@rmore the use of complete
probability distributions allows for a detailed oview of variable probabilities at any
given time and place in the model with a greategrele of accuracy. In this
contribution the conceptual design of the CPM iegialong with a description of the
main issues it tackles.

Keywords

Stochastic traffic flow modelling, Macroscopic fraf flow models, probabilistic
modelling
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1 | ntroduction

Stochastic variations and uncertainty typify hunitsmand equally the world around
us, and are no less integral to the world of teaffow. Application of traffic flow
analysis carried out using traffic flow models aitosrepresent the world of traffic
flow in simulation. Traffic models are simplificatis of reality and make assumptions
to allow for a fast and efficient modelling of stions. These assumptions should
however have minimal effect on the deviation oltessto what would be expected in
reality. In the case of stochastic variations amel inclusion of uncertainty, many
assumptions are made that have a greater effechamtel outcomes than may be
desirable.

In many traffic models stochastic variation is iggw or assumed to be of limited
importance to the outcome of simulations. In maages reducing the input of
variables in a traffic model to average or repréestére values can have detrimental
effect of the simulation results, and may lead iss&d outcomes in relation to what
may be found from empirical data (Calvert et all20Mahmassani et al. 2012; van
Lint et al. 2012). It is argued that the stochaistim traffic cannot be reduced prior to
traffic flow simulation and cannot be expected teegthe same outcome as if the
reduction had not taken place. Instability in ti@ffincluding network effects in
congestion, lead to a non-linear propagation aftsetic variation, especially for the
more extreme cases. In turn greater traffic flowd aongestion will lead to higher
values for travel times and delays than can beve@firom averaged or representative
input values (Calvert et al. 2012). It is therefomgoerative to explicitly consider
stochastic variation in traffic flow modelling, wiehis variation is present in the
considered scenarios and networks.

In this contribution a new stochastic macroscopaxet is introduced which tackles
many challenges in macroscopic modelling and iekbged with a view for easy and
efficient application in practice. The Core Prolisbi Model (CPM) is a full
probabilistic model for modelling multi-dimensionariations in capacity and traffic
demand in macroscopic traffic flow. The CPM exteadsase model, such as the Cell
Transmission Model (CTM), by considering each tcaffariable as a stochastic
variable denoted as a probability distribution loé thance of values for each traffic
variable.

In section 1.1 the existing literature on this tof@ reviewed, while in section 2 the
main issues concerning stochastic macroscopiddridéiw modelling are described.
This is followed in section 3 by a description loé ttonceptual design of the CPM and
in section 4 how the model addresses these isSeetion 5 shows a demonstration
case of the model in practice. Finally, sectiore6alibes the current developments of
the model.

1.1 Stochastic macroscopic traffic modelling

Since the 1990’s there has been a gradual increaféort towards improving traffic
flow modelling through the explicit inclusion ofosthastic variation. Initially a focus
was placed on Monte Carlo simulation to includeiateon in macroscopic traffic
modelling and later the focus shifted more towandsrnalised stochastics. In Monte
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Carlo simulation varied input values for the traffiariables would be sampled and
applied in simulation for a N number of simulatibm approach a distribution of
possible outcomes. Although Monte Carlo simulatias been widely applied, mainly
due to its relative simplicity and effectivenedse imethod has its drawbacks. Main
concerns in traffic modelling in the past have b#ées computational load of the
method (Chang et al. 1994; Chen et al. 2002; Swnetlal. 2011) and the presence of
correlation between input variables. The incorporabf variance reduction methods,
such as Importance sampling or Latin Hypercube $agpave helped to reduce the
computational effort of such models as well asuke of more powerful computers
(Jonnalagadda et al. 2001; Hess et al. 2006; vainetial. 2012; Calvert et al. 2014) .
Recent developments in marginal simulation appresdarther offer an alternative
solution to a heavy computational load in Monte I€approaches (Corthout et al.
2011). In marginal simulation a significant overlagtween traffic flow in successive
simulation iterations is presumed. By only simulgtithe marginal difference in
traffic flow, repetitive network loading with a fullynamic macroscopic model is not
required. Therefore the marginal simulation metbaty requires a single full initial
model simulation and thereafter simulates the matglifferences using Monte Carlo
simulation with a first-order based kinematic modé&ading to a gain in
computational efficiency. Correlation between inmariables may be considered
prior to simulation at the sampling stage (Chenakt 2002). Variables with
dependencies may also have probabilities which oglythe values sampled from
other variables. In this way correlation between tw more variables is included and
allows for a realistic simulation. However calculgtnon-bias outcomes in situations
in which correlations are more complex and, fumiene, have dependencies on
variables in the model, becomes much more diffi(Ghang et al. 1994). In many
approaches the extent of bias is presumed to btirand therefore little attention is
spent on this difficulty.

More recent developments in stochastic macroscopadelling are found in
stochastic extensions of existing mainstream traffiodels. Boel and Mihaylova
(2006) proposed an extension to the CTM with stetibaelements. Rather than
reconstructing the CTM as piece-wise structure dasetraffic states, they defined
the sending and receiving functions from the CTMaslom variables in which the
dynamics of the average speed in each cell is asticlally varied. The purpose was
to incorporate stochasticity in the heart of thedemloat link level, which may
propagate through an entire network through ceiraction. However, as their
approach only considers a single stochastic saeara time, repetitive simulations
are required to compose a probability distributioh the outcomes. Similar
approaches were proposed by Sun et al. (2003) douen the explicit defining of
traffic states. A main reason for considering npldtitraffic states is the avoidance of
nonlinearity in the fundamental relation, which dgficult to quantify otherwise.
Jabari and Liu (2012) argued that presuming nosality, while being
mathematically beneficial, may lead to inconsisyenith the original deterministic
dynamics. Therefore Jabari and Liu (2012) propasedhclude stochasticity as a
function of the uncertainty in the driver gap cl&icepresented by the random vehicle
headway. In doing so, they argue that non-lineasitgvoided in continuous time as
all traffic dynamics may be derived to the longinad car following behaviour.
(Sumalee et al. 2011) proposed a further extersidhe CTM in which traffic states
are explicitly defined as a stochastic bilinearteys Their Stochastic CTM (S-CTM)
avoids non-linearities in the original CTM and caoess variation through
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propagation of the probability of traffic statesdacorresponding densities as the
likely values and surrounding standard deviatiohe IS-CTM also demonstrated
computational efficiency as ene shot model in which multiple iterations using a
Monte Carlo routine are avoided. This greater efficy is however also achieved
through the simplification of the probability dibmtions to the aforementioned
Gaussian characteristics. Although a legitimateiaghahis reduces the accuracy of
the probabilistic estimation by presuming a setrithistion, which in many not be the
case.

Analysis of stochastic variation due to randomniesslriver behaviour has led to
developments in stochastic modelling for both nscapic and macroscopic models.
Variations in traffic flow are easily viewed empiily from fundamental diagram
plots. Therefore it is unsurprising that stochastmre also being included in
(macroscopic) traffic models by means of a stoethdshdamental diagram. Li et al.
(2009) make a strong argument that a simple, dectfe manner of probabilistic
modelling is to make use of a stochastic fundaneditegram. Such a diagram is
constructed through a flux function obtained froamdom elements observed from
speed-density data. Kim and Zhang (2008) also pusly described stochasticity in
the fundamental diagram by defining the growth aethy of perturbations from
random fluctuations in both the gap time and titznss between traffic states. In their
work they closely examined fluctuations in car daling to derive their definedap
time. Boel and Mihaylova (2006) also make use of similsadamental diagrams in
their stochastic switching traffic state model, yioesly mentioned. While these
models address the incorporation of variation i@ thodel, this is performed in a
simplified fashion, such that traffic states ara ath well defined (Sumalee et al.
2011), or fail to fully deal other stochastic mduog challenges, such as
spatiotemporal correlations.

Other models involving stochastic variation rel&dea wide number of analytical
approaches that have been suggested, especialyaiion to travel time reliability

(Du and Nicholson 1997; Clark and Watling 2005)whwer these are not purely
considered as stochastic traffic flow models amdtherefore not considered here.

Despite recent developments, challenges remainthirdevelopment of stochastic
macroscopic traffic flow models and more so forith@actical application. The

important issues still facing stochastic macroscopodelling, and yet not completely
addressed in a single model, are discussed irotlosving section.

2  Important issues

In the theoretical development, but also for thacpcal application of dynamic
stochastic macroscopic traffic flow models, thesmain a number of issues that have
not been solved in full or in combination with eaather. It may be that one issue is
addressed at the expense of another. In this sedtior important issues are
discussed:

1. Computational efficiency

2. Spatiotemporal dependency

3. Stochastic propagation of probability

4. Generality
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2.1 Computational efficiency

Originally the issue of computational efficiencyose with the application of Monte
Carlo simulation in traffic models. Often perforrgitundreds of simulations was
time consuming and acted as a deterrent to appbhastic variation. Even through
the application of variance reduction techniques &aster and more powerful
computers, this remains an issue. A trend that tepacts such advancements
originates from a desire to apply more complexfitahodels on larger and more
detailed networks. Also an increasing number obqsastic) variables demand a
greater computational effort that somewhat undessiimardware and software
advancement.

The development obne shot models, which largely do away with the necessuty f
repetitive simulations have a great potential fovalfor stochastic simulation at a
lesser computational cost. Such models as the S-(Sivhalee et al. 2011) and that
of Jabari and Liu (2012) are at the forefront @fst developments. A danger however
is that a simplification of the stochastic inputppopagation may be required to allow
one shot models to be effective. The opposite effieay be an over-complicated
model without simplification, but at a cost compidaal efficiency and even possible
application. Therefore the challenge is not justaducing computational load, but
doing so in a way that a model is not reduced aclsstic and modelling accuracy.
This is a balance that is still in the process efnf optimised for stochastic
modelling.

2.2 Spatiotemporal dependency

Incorporation of spatial and temporal dependantatian from different sources
brings a further issue of correlation on a numkdewels. On a temporal plane it is
clear that a stochastic element will affect tratfiering a certain time frame, possibly
with differing severity. A basic example is that ah accident that reduces road
capacity. At the time an accident occurs, the dapas affected differently than
during the aftermath and the clean-up, but nevle$kethe capacity reduction is
correlated in time, as a natural consequence dfamof events. In the same way
there is also a spatial correlation. The capa@&@tuction affects the location of the
accident, but due to congestion propagation, difexta both upstream capacity and
traffic flow. A further complexity in dependencerses from not only considering a
single stochastic influence variable, such as #pacity, but also the traffic demand.
In the case of an accident, drivers may rerouié, édparture time, etc. This does not
only affect traffic flow in time, but also in spadéurthermore, correlation effects also
exist between the traffic demand and road capaiitysome instances. When
considering a greater number of variables, the nidgrecy relations explode.

In many cases some of these dependencies are m@suom-existent for ease of
modelling (Clark and Watling 2005; Sumalee et al1P). Especially for the
interdependent correlations between variables thkisreadily the case, while
spatiotemporal dependencies must be consideredme kevel to avoid disutility of a
model. Even then, these correlations may be siragliby means of presumptions or
transformations (Clark and Watling 2005; Jabari dnd 2012). It should not
immediately be presumed that a less than full clamation of dependency will have
large detrimental effects on model outcomes, agthee cases in which this is clearly
the case (Calvert et al. 2012), however the pddgitihereof should always be
considered.
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2.3 Stochastic propagation of probability

In traffic flow models it is commonplace for traffto propagate through a link and
network. However upon including stochastic prohgpiin traffic flow modelling,
these probabilities also propagate in time andespath traffic (Lebacque et al. 2007,
Hoogendoorn et al. 2008). For Monte Carlo simutatibis is not an issue, as each
simulation is a single probability value. For orf®itsmodels there is a challenge to
allow as much information and as full as possiblebpbility range without
compromising model accuracy or one of the otheroimgmt issues, such as
computational efficiency.

In models which apply stochastic effects througé thndamental diagram, traffic
flow is presumed to propagate in an identical fashio that of the base model,
however application of a stochastic fundamentadrdian, probabilities are derived in
accordance with the stochastic form of the diagramthe S-CTM, median and
standard deviations of traffic variables are pr@ped through time and space,
dependent on the relevant traffic state. It isuratommon to only consider a median
and standard deviation, as this requires the masputational effort and still gives a
good estimation of variational spread. However mardepth analysis is harder as
the underlying distribution is not preserved. Farthore, such an approach often
presumes probability distributions to be symmelrazording to a presumed shape,
which is not always the case. In such a case biasesallowed, which may not
accurately represent the underlying distributiarshiould however be noted that these
biases may be small compared to the overall eexcal|

24 Generality

Inclusion of stochastic variation does not only deoh solid and accurate modelling,
but also realistic and correct model input. Theelesf stochastic input depends on
which variables are considered stochastic. Thesg meathe time headway (or gap
time) between vehicles, capacity values, traffimded values, or even ‘lower level’
variables, such as vehicle population or probabdftaccidents. Depending on how a
model processes the stochastic variables, thesebmagffered to the model as a
complete distribution, either of a specific form empirical, or as a description of
variations, such as median, standard deviationparsdibly a shape parameter. The
difficulty with this issue is that of generality. get distribution of probable values for
a set variable may not be valid for every locatona network or under certain other
conditions. Furthermore, such variables may notapgerto a set distribution type.
Often presumptions are made to how general digtoibsi or variations are. In many
instances white noise may be applied to known ssmative values to imitate
variation (Helbing et al. 2001; Jabari and Liu 2DIthe validity of such approaches
is not often considered and is taken as a modahg#son. However here there is also
room for improvement, when applying stochastic atzon to traffic flow models. In
the case of stochastic fundamental diagrams, tfieully of generality may also
arise. In some cases allowing specific local datafluence the extent of stochastic
variation can help solve this.
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3  Basic Design CPM

In this section the basic design of the Core PriibaModel is explained. The Core
Probability Model (CPM) extends existing macroscapaffic flow models to allow
stochastic behaviour in traffic to be internalisadthe traffic flow model which it
extends. Internalisation here refers to the mamerhich stochasticity is present in
the model, where Monte Carlo simulation is a cleeample of external stochastic
influence. Initial application of the CPM makes ugethe Cell Transmission Model
(CTM) as base model. The basic concept entailsacepl single traffic variables in
time and space, such as the density, in a modél avidiscrete distribution of that
same traffic variable, also in space and time. disé&ibution, denoted as a vector,
consists of equally spaced probabilities of varipossible values of the considered
traffic variable at a certain time and locationeTdeneral dynamics of the base model
are kept the same as the deterministic versiohehtodel. In such a way, traffic is
propagated through a link (or network) considerpassible valid values of each
traffic variable with a set probability, using ady validated traffic flow dynamics
from the base model. The input distributions argiecally determined for specific
locations and/or scenarios or from generic emgiacalysis (Calvert et al. 2014; van
Stralen et al. 2014).

A more detailed description of the CPM is giverthe subsequent subsections. This
begins with a short explanation of the applied basedel (3.1), explains the manner
in which probability is included in the model arsdpropagated (3.2 & 3.3), and how
congestion and traffic states are dealt with (3[#g applied fundamental diagram, as
used in the test case, is given in 3.5 and a simpteerical example is shown to

conclude the section (3.6).

3.1 Basemod€

The Core-probability approach considers stochgstababilities in the core of a
macroscopic traffic model. The base model for ithithe first order Cell Transmission
Model (CTM) model (Daganzo 1994; Daganzo 1995). T¥M describes traffic
using the law of conservation of vehicles (eq.(Bpd the fundamental relation

(eq.(2)):

Ok(x,t) 0dq(x,t) (1)
ot T Tox 0
q(x,t) = Qg(k(x, 1)) (2)

Heredk(x,t) denotes the change in density in time, t, andespadq(x, t) denotes
the same for the intensity, whilg; is the fundamental relation between the density
and flow, which is explained in more detail later o

The traffic flow at the interfaces between two €et], is determined by a sending and
receiving function, denoted here as the demandarid, supply, S, which closely
represent the available capacity in a cell anditrsred traffic flow into a cell:

gFmxme (e (x, £)) = min(Dyy (K (X, £)), S (K (x, 1)) (3)
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The demand function D is calculated by the lardkest or capacity of cellm in
relation to eq. (2), and the supply function S g tlesired outflow from the previous
cell according to the fundamental traffic charastes of the preceding cell. The
base model is applied in its discrete form for uséhe Core Probability Model and
governs the main dynamics of traffic flow.

3.2 Inclusion of probability

In classical first order models, each variableejgresented by a single value for each
point in time,t, and spacex. In the core-probability approach a further vaeais
added, which represents the probability of the giecurring, and sequentially the
traffic flow, q, and the speed;. This further transforms the variables from a Eng
value in time and space into a probability disttibi in the same time and space,
represented by their corresponding vector. Eacheval the probability vector has
identical probability by definition to agree withet element-to-element propagation,
explained in section 3.3.

The random variabl& (x, t) denotes the random variable that reflects theijeos a
cell [x, x+dx] and during time interval [t, t+dtlet p;(x,t) denote the accompanying
probabilities. Normally such a relation is given as

P(K(x,t) = k) = pi(x,t) (4)

Note that the values d@f are discrete and hence a discrete probabilitytfomecan be
used. However such a notation indicates a variptdbability as a function of given
densities. The CPM presumes set probability elespeartd therefore the random
density variablé (x, t) is defined as a function of set probabilities éast.

So for exampl&K (x,t), now written as vectak(x, t|p), denotes all possible values
of the density for a moment in time and a locatigiven the probabilities of these
densities. The density vector can also be writken a

ki(x,t) with probability p, 4

K(x, t]p) = k,(x,t) with probability py » (5)
k;(x,t) with probability p, ;

From now on we will only use the short form for tihensity vector. The addition of

the vectorp includes all possible values of the appropriateaide with identical
probabilities of each value in time and spacehsat: t

P=pt+tp+...+p=1 (6)

Here,i is further limited to a finite value, which is diggl as an input parameter of
the model.
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The equations for the conversation of vehicles (&)).and the fundamental relation
(eq. (2)) now incorporate a further dimension foe probability in time and space,
and become dependent on the probability of thdireva

Ok(xtlp)  9qixtlp) _ 7)
at 0x
q(x, tlp) = Qe (k(x, tIp)) (8)

The conservation of vehicles therefore remainsacintby definition, as each
considered element in the probability distributis@ttor acts as an individual case of
the CTM for which conservation has been proven @dag 1994).

3.3 Application of stochastic demand and traffic propagation

External stochastic traffic demand is applied ie thodel at the peripherals of a
network on the inflowing cells. From there on tiafinay propagate applying eq (7)
and (8) according to the dynamics of the base mobe¢ initial traffic demand
containsj,; times j. number of elements in the probability vecigrwherej, is the
number of probability elements in the vector fog ttemand angl. is the number of
probability elements for the capacity, such thathegrobability vectorp is
constructed of all possible combinations mf; and p;;. The initial flow at the
network peripheral is therefore:

‘I(xo; tq |p) = {Qplx qp2; - qp(jd-jc)} (9)

Where the probability vectgw exists ofj,; timesj. elements. This multiplication is
performed to accommodate a position in the proligldistribution for the outcomes
of all combinations of each traffic demand and cégavariation.

The variation in the capacity of the network is lgggbfor each cell corresponding to
the probability of the capacity of that cell iniandar way to the traffic flowg. In a
simplified case only bottleneck cells will have iear capacity values, with the other
cells yielding identical capacity values for eatdngent inp. The capacity contains
probability elements for the capacity in both tiared space, although in many cases
the capacity will not vary in time:

{qcap.l(x: t) with probability pc.l\
Geay Cims ElD) = iqcap_z (x,t) with probability p.., f (10)

Qcap.i(X,t) with probability p.;

Once the stochastic traffic is on the network, tredfic propagates through the
network dependent on the corresponding demand alimiving the dynamics as
previously shown in eq. (7) and eq. (8).

Spatial dependence is applied as a conditionalgtibty at the entrance of a
network. This spatial dependence entails that edahent in the probability vector of
the density corresponds to the same place in thigapility vector of the density of
the following time step. This ensures an identreahber of elements in the resulting
probability vector for propagation through the netky and therefore avoids an
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explosion of marginal probability elements. Badicahis creates a set of values
which can be seen as scenarios of unique traffitathel and capacity combinations.

g m=xmi (k) k(x,, ta|p) grmirme2 (k)

— with capacity >
Qcap (X, talD)

Figure 1 Traffic propagation in the CPM

The process is explained as such: there is admddimandy (x;, t;) with a set of
possible valuegy,, corresponding to certain probabilities:

q(x1, t11D) = {qp1, Gp2s -+ Api} (11)

Calculations in the model are performed using thesdy, therefore q is transformed
using (2) to:

k(xq, t11p) = {kp1, kp2s - kpi} (12)

In the following time step there is a negwandk at locationx;, in line with traffic
flow in and out of the cell and in keeping with #t@nservation of vehicles (eq(1)) :

k(xy, t;lp) = {kp1 kpa, o Kpi} (13)

However the position of each element in #{e,, t,|p) corresponds only to that of
the element in the same position in the followimget step ink(x4, t,|p), so that for
each element, applies:

q(xq,tz|p;) follows q(xy, t1|p;) (14)

This strict ‘chain’ requirement, that for eachdtion in consecutive time steps the
same probability must apply, protects the validity the initial conditional
dependence between the capacity and traffic demmamoth time and space.

Although the base model, and therefore also CPMulzes traffic using the density,
it is often required to translate this to the i@affow q(x, t|p), for determination of
the flux for exampleThis is performed using the fundamental relatibaven in eq.
(2), in which each value of q is transformed usagleterministic fundamental
diagram. The resulting values @f(x,t|p) from k(x,t|p) maintain the same
probabilities for each time step and cell in space.

In the same way, the traffic flow on the subsequeilis is also calculated. The only
difference is that the supply and demand refehtse of the following cellsy;. In
such a way, one can speak of multiple scenarioa gingle procedure, as each
element of the marginal probabilities are considendividually for a single variable.
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3.4 Determination of Congestion

The sending and receiving functions, or rather dehand supplyd ands, are in part
determined by the traffic state. Traffic statesiareurn determined by the density of
traffic in a cell at a specific time. Under con@s, the demand function is equal to
the capacity, and the supply function of the outgdraffic flow:

d(xpm talp) = qcap(xm—li tnlp) (15)
S, tnlP) = (X, t, D) (16)

For uncongested states, the demand function isniteming traffic flow, and the
supply function is the available capacity:

d(xm, talD) = q(xpm1, tr|P) (17)
S(Xm, talp) = Acap (x, tlp) (18)

For the Core Probability model without capacityi@aon, congestion is determined
by comparison between the probable density andrttieal density of a cell:

Cong(x,t|p) = k(x, t|p) = kerie (%, £) (19)

However, when capacity is also varied, the congestiquation states a distribution
vector on either side of the operator:

Cong(x,t|p) = k(x, t|p) = Kerie(x, t|p) (20)

3.5 Fundamental relation

The fundamental relation, as given in eq. (8), mfithe relationship between the
density and the flow of traffic. The fundamentahgtiam in the CPM is a dynamic
diagram dependant on a static maximum speed aticatiensity values on a link,
and a dynamic capacity in time for a set locatiime applied fundamental relation in
the CPM is a piecewise diagram with a minor cagadigcontinuity. The exact form
of the diagram does not necessarily need to fotlmvapplied piecewise fundamental
diagram shown here. It is defined as such:

q(x,t) = Vppax - k(x, t) for k(x,t)< (21)
/3 acap sy
Vmax (22)
1/..
40,0 =2 qeapyy + | — LI ) k() for Lt
3 Kepis (0,6)— /39cap.ff Vmax
crit\X, Vmax (23)

k(x: t) < kcrit(x' t)

q(x, t) = Qcap.cong * (
kcrit(x' t)

1_(k(x;t)_kcrit(x't))> k(x t)

for k(x,t) >
kjam(x,t)_kcrit(x.t) (x,t)

Wherev,,,, is the maximum speed,,,, ¢ is the free-flow capacitygcqp cong is the
congested capacitit.i:(x, t) is the critical density, ankl,, (x, t) is the jam density.
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Note that eq. (21), (22) and (23) are given ingbalar notation as would correspond
to eq. (2). For the use as in eq. (8), the quastitix,t) and q(x,t) would be
represented as vectors. A graphical representafitms relation is given in Figure 1.

Intensity
(veh/hr)

e I1L0 (51 —
1

= b capdrop
(Jcap.congeeeesssneeeagfhnns x }
| :

2 .
%"q.c cap.ff .-

. V. max

K.crit Density (veh/hr) K jam

Figure2 Applied fundamental diagram for theinitial tests of the CPM

Uncongested traffic flow

The two piece construction of the fundamental m@tatfor the uncongested part
describes accurately the initial conditions officaflow for low densities and flows.
The speed for low densities and flows remains mtigarmaximum speed of a road,
which is defined in traffic theory as:

_q(x,t) (24)
~ k(x,t)

v(x, t)

And therefore the speed is represented by the stbpthe fundamental relation
through the origin. The first piece of the fundamaémelation follows this line
according to the maximum speed limit. As trafficpegaches critical density, the
speed decreases and the fundamental relation edlt the capacity flow. This is
represented in the second uncongested piece.

Congested traffic flow

The fundamental relation for congested traffic iespmed to follow a line from the

discharge capacity flow and critical density to jam density value at a zero flow.

This is a simplification, as in reality the congestlow will tend to be an area along
this line rather than specific points on the liteelf. Nevertheless this forms a good
representation of reality. The congested piece doexommence from the capacity
flow, but rather from the discharge capacity floov €ongested capacity flow). The
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difference between the capacity and the dischaagaaity is known as the capacity
drop. The capacity drop is included in the CPM wb tpoints. Firstly, in this
difference between the free flow capacity and tiselthrge capacity. The discharge
capacity is defined as a set factor of the free ttapacity:

Qcap.cong = € " Ycap (25)
wherec is defined as the capacity drop factor, for wheckialue of 1.0 denotes not
drop in capacity.

The second point of inclusion of the capacity drepn the sending and receiving
functions. When congestion occurs, it is the disghaapacity that is relevant to the
traffic flux, rather than free flow capacity. Théoee theq,,, term in the sending and
receiving functions is not the free-flow capacity,,, sf, but rather the discharge
capacity g cqp.cong. SO that eq. (18) becomes:

S(x, tlp) = qcap.cong(x: tlp) (26)

3.6 Simplenumerical example (both capacity and demand varied)

To demonstrate the manner in which the CPM worksmgple numerical example is
given as demonstration. The traffic demand at #i#vork peripherals is given as an
intensity with a set probability. In this exampiete is a 50% chance of two different
inflow values, and there is 50% of two differenpaeity values. Therefore there are 4
elements in the demand vector, because the sig€xot|p) is equal toj, timesj,
(see eq. (9)):

0.25 1900
0.25 1900

q\ X1 tP =3025( | = 12200 (A1)
0.25 2200

The capacity values of the cell are also giverha §j,; timesj. number of elements,
capacity flow vector:

0.25 2100
. 2300

deap | %1062 = 1055 ( | = {2100 (A2)
0.25 2300

Note that the sequences for the values of the ifothe demand vector (Eq Al) are
differently arranged over thg timesj. elements in comparison to the capacity flow
vector (Eq A2).

This flow vector,q(x, t|p), in eq. (Al) is transformed to a density veclqy, t|p),
using the fundamental relatign= Qz (k) in which the critical density i&.,;; = 25.
This gives:

0.25 22
. 20
k X1, tllp = 8%2 = 26 (A3)

0.25 24
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The probability of congestion is calculated usigg (€0):

0.25 22 0
20
Cong | xi,t1,p = {0521 | = kG tlp) = kere(ot) = 1500 2 25) =19
0.25 24 0
(A%)

Therefore, based on eq.(15) through eq. (18), #reathdD and supplyS can be
calculated as:

0.25 1900 0.25 2100
0.25 1900 0.25 2300
Dl xutuP=1055()=12200( @9 S| * P =1025(]= 2100
0.25 2200 0.25 2300
(AS)
The flux between two cells is defined and given as:
0.25 1900
q | Xy, ty,p = 8%2 = min(D(k), S, (k) = %288 (A6)
0.25 2200

The density therefore in the current and followgadjs in the following time steft,,

is given by the previous density adjusted by the fhto and out of that cell, during
the size of the time step, Here we presume an identical inflow into cglfor t;as in
1

0.25
e 20620 = {023 1) = kG, 1) + (@077 — 5772 -
0.25
22 1900 1900
20( . ()1900( _)1900( .,
26 2200( 2100
24 2200/ 12200

Similarly, the flow into the yet unoccupied cellig calculated:

0.25
ke 0,0 = {0224 | = kCey, talp) + (@07 — g7%) - h
0.25
0 1900y (0
B 1900 Jol)
=Yo( T {Y2100( Vo[ ] "
0 2200/ o

This same process repeats itself for each cetam éme step and so on.
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4  Addressing the main issues

This section describes the manner in which the ntapt issues from section 2 are
addressed in the CPM and improve on the curretd-sfaart.

For computational efficiency, the main challenge is to reduce computationatl loa
and in doing so, do it in a way that the model & reduced in stochastic and
modelling accuracy. Compared to a Monte Carlo satnh, the CPM does not
require multiple repetitive simulations before @mg at a distribution, as the
distribution of the traffic variables is explicib tthe methodology. Therefore the
computational load will be lighter if a single CP¥mulation run is quicker than the
sum of the required number of Monte Carlo simulaion the same base model. It is
hypothesised that this is the case, as the CPM Bagyle computational overhead for
the entire distributions, while a Monte Carlo siatidn has a computational overhead
for each simulation iteration. Furthermore, a lowdetail of discretisation is
hypothesised to be required for the CPM as the nmaleulates using distributions
throughout. Monte Carlo simulation makes use o$ lefficient random process of
sampling, which reduces the completeness of ailalision and therefore requires a
greater number of simulations to reach the samel le¥ accuracy, therefore
increasing the computational load. On simple netwar corridors, the efficiency
effect will be limited, however for larger networlksd for a greater spread of
variation the gains should be greater. As mentiptieel hypotheses have still to be
extensively tested and may only be attainable &wvarks rather than for corridors as
described in this contribution, however theoretigadains seem highly plausible.

Spatiotemporal dependency is catered for in the CPM through the explicit
consideration of correlations at the peripherahefmodel and maintenance thereof in
propagation. Reduced to two dependant variables, tthffic demand and road
capacity, correlations between possible valuesoti bare explicitly considered in the
distributions entering a network at the peripher&alues in the initial distribution
vector of the traffic demand entering the networkrespond on an element-to-
element bases to that of values of the capacityilalision vector at the same element
location. This was explained in section 4. By eciflif maintaining this ‘chain’
connection throughout the traffic propagation, peledency between traffic demand
and capacity is maintained. Dependency in timebfith the demand and capacity is
also explicitly dealt with outside the model. Inpuatiues for certain elements in the
distribution vectors follow those of the preceditigpe step and therefore already
consider a logical and dependant propagation fioeniriput vectors in time. Spatial
dependency is dealt with in the same way as irb#fs® model and therefore requires
no further attention. Simplified, each element uistribution vector may be seen as a
single input value for a single Monte Carlo simuat therefore it may also be
considered as independent from other elementsagiat single Monte Carlo iteration
is from another Monte Carlo iteration.

Stochastic propagation of probability in traffic flow is performed as described in
section 3.3 and is also touched upon in the previparagraph on spatiotemporal
dependency. A complete distribution of possibleugalper traffic variable is present
as a distribution in the form of a vector. This tegaexists of more elements than is
necessary, so to allow each possible values of thator to correspond to the
elements of other vectors and therefore to avoidetadion difficulties. As these
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distribution vectors are propagated in space ame,tithere is no need to reduce
variables to a representation of the distributising a set distribution type, median,
standard deviation, shape parameter or such likboégh this may lead to a higher
computational effort, it maintains a guaranteeduescy of the propagation of the
traffic variables and their probabilities, as thestmbutions remain intact in the

process of propagation. Therefore a greater acgwac be achieved in comparison
to methods that do transform distributions to cbimastics of the distribution.

For the CPM, the question génerality is one that is less relevant to the model itself,
but rather to the quality of the data and distiiing that it is fed with. As the CPM
performs calculations using discrete distributicaseduction of the input data may
only happen in the case of rediscretisation forghke of computational efficiency.
Therefore the necessity to apply accurate inputiligions for the traffic demand
and road capacity is applicable for the local amstances or from a general
distribution if the local situation is not known.ofstruction of generic input
distributions for this purpose, taken from empiroggkes it easy to apply the CPM
without requiring extensive data analysis for eapplication of the model (Calvert et
al. 2014; van Stralen et al. 2014). Nevertheldss,issue is one that is less explicit to
the model, as the quality of input data is relevamtl independent to all models.
However the manner in which a model deals with eateuinput is important. The
CPM does not overly simplify input, therefore maintng high level of accuracy and
avoiding additional unnecessary biases, contrargany other models.

5 Test case

Demonstration of the application and validity o tGore Probability Model (CPM) is
given in a test case. The test case aims to shawtrtdfic propagation along a road
section in the CPM can accurately resemble traflibev found from empirical
observations.

The test case is carried out for the A12 motorwayhe Netherlands between Utrecht
and The Hague (see Figure 3). On this motorwayoi®92 a lane drop was present
from four to three lanes, which acted as a strattbottleneck at location A. Daily
congestion starting at this location near the tawfnWoerden would be present,
especially during the evening peak period. A sectf 11 kilometres is considered,
of which 10 km upstream and 1 km downstream oftibitleneck. The CPM is fed
with data from 63 afternoon peak period observatiohthe traffic flow between 2
PM and 9 PM from 2009 as a representation of tbbability of certain traffic flows
appearing. The input for the model is taken exgklgi from the most upstream
location. Therefore the validation is that of theckastic traffic propagation. Each
observation is considered as an equal probabifitg oeal traffic demand for this
location and is therefore given a 100/63 = 1.6%babdlity for the input at the inflow
of the corridor. These traffic flows are fed intoetnetwork at the most upstream
location.

! Since 2009, this location has been upgraded to lfmes along the entire stretch to eradicate the
bottleneck.
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3 lanes

=S

Figure 3 Bottleneck location near Woerden at the considered road section on the
A12 used in the case study

A comparison is made based on the ability of thelehdo accurately predict the
propagation of the probabilities of traffic flow dncorresponding traffic states
between the outcome of the CPM simulation and theigcal data. For this, the
unfiltered traffic states in time and space arehgad on the entire corridor. The
comparison focusses on the time of traffic breakulavengestion duration, spill-back
distance, and the specific speed values in time spate. This is shown for the
median probability (most likely traffic situatiomnd a further demonstration of the
results are given in the form of a 3D congestioobpbility plot. The results of the
median probability are shown in the time-space fagu

CPM A12 scenario - 50% (speeds(kph))
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Figure 4 Modelled speed diagram for the median probability in the A12 test case
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Figure 5 Empirical speed data for the median observation in the A12 test case 2

The initial results shown in Figure 4 show the deted median (50%) results from
the model, compared to the median from the empidata shown in Figure 5. The
speed values are shown as these give a good idicat where congestion is
present, how extreme congestion is and how trdlffiw changes the time. Initially
the extent of congestion appears to be relatively modelled. Nevertheless there are
certain deviations in comparison to the empiricthd The onset of congestion occurs
approximately 10 minutes earlier in the simulatiarhile congestion lasts for 158
minutes compared to 190 minutes in the data. Horydlve spillback of congestion in
both is of a similar magnitude and deviates no ntlba®m 200 meters over a distance
of some 9 kilometres. The speed in the heavily estegl area of traffic is lower in the
empirical data compared to the model (ca. 30 kphuge40 kph). This may also be a
main reason why the duration of congestion diffesstraffic in the simulation may
proceed at a slightly higher speed and thereforecdémgestion disperse earlier.
Despite these minor deviations, this initial tease gives cause for optimism. A
further fine-tuning of the model parameters whempliad in practice may easily
compensate for the observed differences.

2 The red horizontal line indicates a location aichha faulty detector is present. The speed at this
location is returned as null.
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CPM A12 scenario - congestion probability(%))

2100 -
3 T | 1
@ T | ‘
o IR R | |
o S T
o R i 1
c 90 i 1
) RN 3
2 BEREEE |
S ERgy 1
c o
S o 141
O , g9
60 ~,567
240 4. 123 _
: : Location (kms)
Time (mins)

Figure 6 Modelled congestion probability in time and space for the A12 test case

The CPM method allows a vast amount of data to feeyzed and presented as a
probability distribution or in another forms as imedt consequence of the way the
CPM works. As each traffic variable is considersdalistribution of possible values,
each can therefore be calculated or shown as swedch time step and location. This
is demonstrated in Figure 6 in which the congesgpimybability at each location and
for every time step is given. Congestion is definsdgsuch when the critical density is
exceeded, while the probability thereof indicatee frequency that congestion is
expected to occur for an arbitrary location ancetefong the corridor. It is possible to
show more complex results in a greater number ofedsions, i.e. including the
probability as a variable in a diagram, howeverss tleads to difficulties in the
interpretation of diagrams. Nevertheless, broadyara are made much easier and
more extensive with the results from the CPM. As tmoment there is no reliable
estimation available on the possible efficiencyngan terms of computation. This is
mainly due to the experimental implementation @ mthethodology that first requires
restructuring before reliable computational efficg tests can be carried out.
Furthermore, significant computational gains aré expected on a single corridor,
but rather for networks and for greater variationstochastic variables.
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6  Conclusionsand current developments

6.1 Current developments

The basic concept of the Core Probability Model hasn explained and an initial
validation case has been shown in this paper. Tians the CPM has been

demonstrated on a single road stretch without extdit incoming or outgoing links

and traffic. Current developments are focussedhenetension of the CPM for use
on networks. This brings greater challenges thairemded thus far in this paper.
Propagation of traffic variable probabilities thgbu a network gives arise to
convergence and divergence of probability valueseath node. For this a
methodology has been developed to efficiently cojfth these transformation of

probabilities at nodes. We are currently in thecpss of implementing and testing the
methodology and plan to disseminate the developndrgfore long. Other

developments focus on the application of externathastic variations of traffic

influencing variables, and dealing with correlati@ffects therein. For traffic

propagation, correlation between variables is edesed as described in section 3,
however external preparation of variables requatesntion prior to application in the
CPM.

6.2 Conclusions

In this contribution the Core Probability Model (&Pis introduced as a new model
for dynamic macroscopic modelling of stochastidfizaflow. The CPM extends
current deterministic traffic flow models by redefig traffic variables in the core of
the model as distribution vectors of probable valiog each traffic variable. In such a
way stochastic variation in traffic is internalisedthe model and does away with the
necessity of repetitive Monte Carlo simulation. tRermore a greater degree of
flexibility in analysis is obtained, as each indival traffic variable in time and space
may be given as a function of their probability. idover, the underlying distribution
of each traffic variable in space and time is pnes@ such that the introduction of
distribution fitting errors is limited to a minimunimportant issues facing stochastic
traffic flow modelling are given in the contributip and are identified as
computational efficiency, spatiotemporal dependency, stochastic propagation of
probability, andstochastic generality. The CPM addresses each of these issues and in
doing so demonstrates the ability to advance dewedmts in the area of stochastic
traffic modelling. In particular the CPM aims tortloer the possibilities for reliable,
accurate, efficient, and most of all, practicallgpkcable stochastic macroscopic
traffic flow. At present, reliable calculation afg computational efficiency of the
model is not possible, but is expected in the hdare.

Future developments of the CPM are focussed opribigagation of stochastic traffic
on networks, for which a methodology has been apesl and is currently being
implemented and tested. Also methodologies foath@ication of external stochastic
variation from multiple variables are currently endlevelopment.
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