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Abstract  

In this contribution a new development in probability, reliability and sensitivity 
modelling is presented. The Core Probability Model (CPM) is a full probabilistic 
model for modelling variations in capacity and traffic demand in macroscopic traffic 
flow. The CPM extends a base model, such as the Cell Transmission Model (CTM), 
by considering each traffic variable as a discrete stochastic variable denoted as a 
probability distribution of values for each traffic variable in time and space. Traffic is 
propagated along a link using the base model and through a larger network with the 
application of probability merging algorithms at the nodes. Due to the incorporation 
of probability in the core of traffic propagation, the necessity for multiple simulations 
diminishes, as the CPM makes use of a one-shot approach. This leads in theory to a 
shorter simulation time and computational load. Another major advancement is the 
explicit handling of spatiotemporal dependence. Furthermore the use of complete 
probability distributions allows for a detailed overview of variable probabilities at any 
given time and place in the model with a greater degree of accuracy. In this 
contribution the conceptual design of the CPM is given along with a description of the 
main issues it tackles. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Keywords  
Stochastic traffic flow modelling, Macroscopic traffic flow models, probabilistic 
modelling  
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1 Introduction 

Stochastic variations and uncertainty typify human life and equally the world around 
us, and are no less integral to the world of traffic flow. Application of traffic flow 
analysis carried out using traffic flow models aims to represent the world of traffic 
flow in simulation. Traffic models are simplifications of reality and make assumptions 
to allow for a fast and efficient modelling of situations. These assumptions should 
however have minimal effect on the deviation of results to what would be expected in 
reality. In the case of stochastic variations and the inclusion of uncertainty, many 
assumptions are made that have a greater effect on model outcomes than may be 
desirable.  
 
In many traffic models stochastic variation is ignored or assumed to be of limited 
importance to the outcome of simulations. In many cases reducing the input of 
variables in a traffic model to average or representative values can have detrimental 
effect of the simulation results, and may lead to biased outcomes in relation to what 
may be found from empirical data (Calvert et al. 2012; Mahmassani et al. 2012; van 
Lint et al. 2012). It is argued that the stochasticity in traffic cannot be reduced prior to 
traffic flow simulation and cannot be expected to give the same outcome as if the 
reduction had not taken place. Instability in traffic, including network effects in 
congestion, lead to a non-linear propagation of stochastic variation, especially for the 
more extreme cases. In turn greater traffic flows and congestion will lead to higher 
values for travel times and delays than can be derived from averaged or representative 
input values (Calvert et al. 2012). It is therefore imperative to explicitly consider 
stochastic variation in traffic flow modelling, when this variation is present in the 
considered scenarios and networks.  
 
In this contribution a new stochastic macroscopic model is introduced which tackles 
many challenges in macroscopic modelling and is developed with a view for easy and 
efficient application in practice. The Core Probability Model (CPM) is a full 
probabilistic model for modelling multi-dimensional variations in capacity and traffic 
demand in macroscopic traffic flow. The CPM extends a base model, such as the Cell 
Transmission Model (CTM), by considering each traffic variable as a stochastic 
variable denoted as a probability distribution of the chance of values for each traffic 
variable.  
 
In section 1.1 the existing literature on this topic is reviewed, while in section 2 the 
main issues concerning stochastic macroscopic traffic flow modelling are described. 
This is followed in section 3 by a description of the conceptual design of the CPM and 
in section 4 how the model addresses these issues. Section 5 shows a demonstration 
case of the model in practice. Finally, section 6 describes the current developments of 
the model. 

1.1 Stochastic macroscopic traffic modelling  

Since the 1990’s there has been a gradual increase in effort towards improving traffic 
flow modelling through the explicit inclusion of stochastic variation. Initially a focus 
was placed on Monte Carlo simulation to include variation in macroscopic traffic 
modelling and later the focus shifted more towards internalised stochastics. In Monte 
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Carlo simulation varied input values for the traffic variables would be sampled and 
applied in simulation for a N number of simulation to approach a distribution of 
possible outcomes. Although Monte Carlo simulation has been widely applied, mainly 
due to its relative simplicity and effectiveness, the method has its drawbacks. Main 
concerns in traffic modelling in the past have been the computational load of the 
method (Chang et al. 1994; Chen et al. 2002; Sumalee et al. 2011) and the presence of 
correlation between input variables. The incorporation of variance reduction methods, 
such as Importance sampling or Latin Hypercube sampling, have helped to reduce the 
computational effort of such models as well as the use of more powerful computers 
(Jonnalagadda et al. 2001; Hess et al. 2006; van Lint et al. 2012; Calvert et al. 2014) . 
Recent developments in marginal simulation approaches further offer an alternative 
solution to a heavy computational load in Monte Carlo approaches (Corthout et al. 
2011). In marginal simulation a significant overlap between traffic flow in successive 
simulation iterations is presumed. By only simulating the marginal difference in 
traffic flow, repetitive network loading with a full dynamic macroscopic model is not 
required. Therefore the marginal simulation method only requires a single full initial 
model simulation and thereafter simulates the marginal differences using Monte Carlo 
simulation with a first-order based kinematic model, leading to a gain in 
computational efficiency. Correlation between input variables may be considered 
prior to simulation at the sampling stage (Chen et al. 2002). Variables with 
dependencies may also have probabilities which rely on the values sampled from 
other variables. In this way correlation between two or more variables is included and 
allows for a realistic simulation. However calculating non-bias outcomes in situations 
in which correlations are more complex and, furthermore, have dependencies on 
variables in the model, becomes much more difficult (Chang et al. 1994). In many 
approaches the extent of bias is presumed to be limited and therefore little attention is 
spent on this difficulty. 
 
More recent developments in stochastic macroscopic modelling are found in 
stochastic extensions of existing mainstream traffic models. Boel and Mihaylova 
(2006) proposed an extension to the CTM with stochastic elements. Rather than 
reconstructing the CTM as piece-wise structure based on traffic states, they defined 
the sending and receiving functions from the CTM as random variables in which the 
dynamics of the average speed in each cell is stochastically varied. The purpose was 
to incorporate stochasticity in the heart of the model at link level, which may 
propagate through an entire network through cell interaction. However, as their 
approach only considers a single stochastic scenario at a time, repetitive simulations 
are required to compose a probability distribution of the outcomes. Similar 
approaches were proposed by Sun et al. (2003) focussing on the explicit defining of 
traffic states. A main reason for considering multiple traffic states is the avoidance of 
nonlinearity in the fundamental relation, which is difficult to quantify otherwise. 
Jabari and Liu (2012) argued that presuming non-linearity, while being 
mathematically beneficial, may lead to inconsistency with the original deterministic 
dynamics. Therefore Jabari and Liu (2012) proposed to include stochasticity as a 
function of the uncertainty in the driver gap choice, represented by the random vehicle 
headway. In doing so, they argue that non-linearity is avoided in continuous time as 
all traffic dynamics may be derived to the longitudinal car following behaviour. 
(Sumalee et al. 2011) proposed a further extension of the CTM in which traffic states 
are explicitly defined as a stochastic bilinear system.  Their Stochastic CTM (S-CTM) 
avoids non-linearities in the original CTM and considers variation through 
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propagation of the probability of traffic states and corresponding densities as the 
likely values and surrounding standard deviation. The S-CTM also demonstrated 
computational efficiency as a one shot model in which multiple iterations using a 
Monte Carlo routine are avoided. This greater efficiency is however also achieved 
through the simplification of the probability distributions to the aforementioned 
Gaussian characteristics. Although a legitimate choice, this reduces the accuracy of 
the probabilistic estimation by presuming a set distribution, which in many not be the 
case. 
 
Analysis of stochastic variation due to randomness in driver behaviour has led to 
developments in stochastic modelling for both microscopic and macroscopic models. 
Variations in traffic flow are easily viewed empirically from fundamental diagram 
plots. Therefore it is unsurprising that stochastics are also being included in 
(macroscopic) traffic models by means of a stochastic fundamental diagram. Li et al. 
(2009) make a strong argument that a simple, but effective manner of probabilistic 
modelling is to make use of a stochastic fundamental diagram. Such a diagram is 
constructed through a flux function obtained from random elements observed from 
speed-density data. Kim and Zhang (2008) also previously described stochasticity in 
the fundamental diagram by defining the growth and delay of perturbations from 
random fluctuations in both the gap time and transitions between traffic states. In their 
work they closely examined fluctuations in car following to derive their defined gap 
time. Boel and Mihaylova (2006) also make use of similar fundamental diagrams in 
their stochastic switching traffic state model, previously mentioned. While these 
models address the incorporation of variation in the model, this is performed in a 
simplified fashion, such that traffic states are not all well defined (Sumalee et al. 
2011), or fail to fully deal other stochastic modelling challenges, such as 
spatiotemporal correlations. 
 
Other models involving stochastic variation relate to a wide number of analytical 
approaches that have been suggested, especially in relation to travel time reliability 
(Du and Nicholson 1997; Clark and Watling 2005), however these are not purely 
considered as stochastic traffic flow models and are therefore not considered here.  
 
Despite recent developments, challenges remain for the development of stochastic 
macroscopic traffic flow models and more so for their practical application. The 
important issues still facing stochastic macroscopic modelling, and yet not completely 
addressed in a single model, are discussed in the following section. 
 

2 Important issues 

In the theoretical development, but also for the practical application of dynamic 
stochastic macroscopic traffic flow models, there remain a number of issues that have 
not been solved in full or in combination with each other. It may be that one issue is 
addressed at the expense of another. In this section four important issues are 
discussed: 

1. Computational efficiency 
2. Spatiotemporal dependency 
3. Stochastic propagation of probability 
4. Generality 
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2.1 Computational efficiency 

Originally the issue of computational efficiency arose with the application of Monte 
Carlo simulation in traffic models. Often performing hundreds of simulations was 
time consuming and acted as a deterrent to apply stochastic variation. Even through 
the application of variance reduction techniques and faster and more powerful 
computers, this remains an issue. A trend that counteracts such advancements 
originates from a desire to apply more complex traffic models on larger and more 
detailed networks. Also an increasing number of (stochastic) variables demand a 
greater computational effort that somewhat undermines hardware and software 
advancement.  
The development of one shot models, which largely do away with the necessity for 
repetitive simulations have a great potential to allow for stochastic simulation at a 
lesser computational cost. Such models as the S-CTM (Sumalee et al. 2011) and that 
of Jabari and Liu (2012) are at the forefront of these developments. A danger however 
is that a simplification of the stochastic input or propagation may  be required to allow 
one shot models to be effective. The opposite effect may be an over-complicated 
model without simplification, but at a cost computational efficiency and even possible 
application. Therefore the challenge is not just in reducing computational load, but 
doing so in a way that a model is not reduced in stochastic and modelling accuracy. 
This is a balance that is still in the process of being optimised for stochastic 
modelling. 
 

2.2 Spatiotemporal dependency 

Incorporation of spatial and temporal dependant variation from different sources 
brings a further issue of correlation on a number of levels. On a temporal plane it is 
clear that a stochastic element will affect traffic during a certain time frame, possibly 
with differing severity. A basic example is that of an accident that reduces road 
capacity. At the time an accident occurs, the capacity is affected differently than 
during the aftermath and the clean-up, but nevertheless the capacity reduction is 
correlated in time, as a natural consequence of a chain of events. In the same way 
there is also a spatial correlation. The capacity reduction affects the location of the 
accident, but due to congestion propagation, also affects both upstream capacity and 
traffic flow. A further complexity in dependence comes from not only considering a 
single stochastic influence variable, such as the capacity, but also the traffic demand. 
In the case of an accident, drivers may reroute, shift departure time, etc. This does not 
only affect traffic flow in time, but also in space. Furthermore, correlation effects also 
exist between the traffic demand and road capacity in some instances. When 
considering a greater number of variables, the dependency relations explode.  
In many cases some of these dependencies are presumed non-existent for ease of 
modelling (Clark and Watling 2005; Sumalee et al. 2011). Especially for the 
interdependent correlations between variables this is readily the case, while 
spatiotemporal dependencies must be considered on some level to avoid disutility of a 
model. Even then, these correlations may be simplified by means of presumptions or 
transformations (Clark and Watling 2005; Jabari and Liu 2012). It should not 
immediately be presumed that a less than full consideration of dependency will have 
large detrimental effects on model outcomes, as there are cases in which this is clearly 
the case (Calvert et al. 2012), however the possibility thereof should always be 
considered.  
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2.3 Stochastic propagation of probability 

In traffic flow models it is commonplace for traffic to propagate through a link and 
network. However upon including stochastic probability in traffic flow modelling, 
these probabilities also propagate in time and space with traffic (Lebacque et al. 2007; 
Hoogendoorn et al. 2008). For Monte Carlo simulation this is not an issue, as each 
simulation is a single probability value. For one shot models there is a challenge to 
allow as much information and as full as possible probability range without 
compromising model accuracy or one of the other important issues, such as 
computational efficiency.   
In models which apply stochastic effects through the fundamental diagram, traffic 
flow is presumed to propagate in an identical fashion to that of the base model, 
however application of a stochastic fundamental diagram, probabilities are derived in 
accordance with the stochastic form of the diagram. In the S-CTM, median and 
standard deviations of traffic variables are propagated through time and space, 
dependent on the relevant traffic state. It is not uncommon to only consider a median 
and standard deviation, as this requires the least computational effort and still gives a 
good estimation of variational spread. However more in-depth analysis is harder as 
the underlying distribution is not preserved. Furthermore, such an approach often 
presumes probability distributions to be symmetrical according to a presumed shape, 
which is not always the case. In such a case biases are allowed, which may not 
accurately represent the underlying distribution. It should however be noted that these 
biases may be small compared to the overall error level.  

2.4 Generality 

Inclusion of stochastic variation does not only demand solid and accurate modelling, 
but also realistic and correct model input. The level of stochastic input depends on 
which variables are considered stochastic. These may be the time headway (or gap 
time) between vehicles, capacity values, traffic demand values, or even ‘lower level’ 
variables, such as vehicle population or probability of accidents. Depending on how a 
model processes the stochastic variables, these may be offered to the model as a 
complete distribution, either of a specific form or empirical, or as a description of 
variations, such as median, standard deviation and possibly a shape parameter. The 
difficulty with this issue is that of generality. A set distribution of probable values for 
a set variable may not be valid for every location on a network or under certain other 
conditions. Furthermore, such variables may not pertain to a set distribution type. 
Often presumptions are made to how general distributions or variations are. In many 
instances white noise may be applied to known representative values to imitate 
variation (Helbing et al. 2001; Jabari and Liu 2012). The validity of such approaches 
is not often considered and is taken as a model assumption. However here there is also 
room for improvement, when applying stochastic variation to traffic flow models. In 
the case of stochastic fundamental diagrams, the difficulty of generality may also 
arise. In some cases allowing specific local data to influence the extent of stochastic 
variation can help solve this. 
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3 Basic Design CPM  

In this section the basic design of the Core Probability Model is explained. The Core 
Probability Model (CPM) extends existing macroscopic traffic flow models to allow 
stochastic behaviour in traffic to be internalised in the traffic flow model which it 
extends. Internalisation here refers to the manner in which stochasticity is present in 
the model, where Monte Carlo simulation is a clear example of external stochastic 
influence. Initial application of the CPM makes use of the Cell Transmission Model 
(CTM) as base model. The basic concept entails replacing single traffic variables in 
time and space, such as the density, in a model with a discrete distribution of that 
same traffic variable, also in space and time. The distribution, denoted as a vector, 
consists of equally spaced probabilities of various possible values of the considered 
traffic variable at a certain time and location. The general dynamics of the base model 
are kept the same as the deterministic version of the model. In such a way, traffic is 
propagated through a link (or network) considering possible valid values of each 
traffic variable with a set probability, using already validated traffic flow dynamics 
from the base model. The input distributions are empirically determined for specific 
locations and/or scenarios or from generic empirical analysis (Calvert et al. 2014; van 
Stralen et al. 2014). 
 
A more detailed description of the CPM is given in the subsequent subsections. This 
begins with a short explanation of the applied base model (3.1), explains the manner 
in which probability is included in the model and is propagated (3.2 & 3.3), and how 
congestion and traffic states are dealt with (3.4). The applied fundamental diagram, as 
used in the test case, is given in 3.5 and a simple numerical example is shown to 
conclude the section (3.6). 

3.1 Base model   

The Core-probability approach considers stochastic probabilities in the core of a 
macroscopic traffic model. The base model for this is the first order Cell Transmission 
Model (CTM) model (Daganzo 1994; Daganzo 1995). The CTM describes traffic 
using the law of conservation of vehicles (eq.(1)), and the fundamental relation 
(eq.(2)): 
 
 ��(�, �)�� + �	(�, �)�� = 0	 (1) 

   
 	(�, �) = �(�(�, �))	 (2) 

 

Here ��(�, �) denotes the change in density in time, t, and space, x. �	(�, �) denotes 
the same for the intensity, while � is the fundamental relation between the density 
and flow, which is explained in more detail later on. 
The traffic flow at the interfaces between two cells, q,  is determined by a sending and 
receiving function, denoted here as the demand, D, and supply, S, which closely 
represent the available capacity in a cell and the desired traffic flow into a cell: 
 
 	��→����(�(�, �)) = min	(��(�(�, �)), ����(�(�, �)))	 (3) 
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The demand function D is calculated by the largest flow or capacity of cell � in 
relation to eq. (2), and the supply function S by the desired outflow from the previous 
cell  according to the fundamental traffic characteristics of the preceding cell.   The 
base model is applied in its discrete form for use in the Core Probability Model and 
governs the main dynamics of traffic flow. 

3.2 Inclusion of probability 

In classical first order models, each variable is represented by a single value for each 
point in time, �, and space, �. In the core-probability approach a further variable is 
added, which represents the probability of the density occurring, and sequentially the 
traffic flow, �, and the speed, �. This further transforms the variables from a single 
value in time and space into a probability distribution in the same time and space, 
represented by their corresponding vector. Each value in the probability vector has 
identical probability by definition to agree with the element-to-element propagation, 
explained in section 3.3. 
The random variable �(�, �) denotes the random variable that reflects the density on a 
cell [x, x+dx] and during time interval [t, t+dt]. Let  !(�, �)  denote the accompanying 
probabilities. Normally such a relation is given as: 
 
 "(�(�, �) = �) =  !(�, �)   (4) 
 
Note that the values of � are discrete and hence a discrete probability function can be 
used. However such a notation indicates a variable probability as a function of given 
densities. The CPM presumes set probability elements, and therefore the random 
density variable �(�, �) is defined as a function of set probabilities instead.   
 
So for example �(�, �),  now written as vector #(�, �|%), denotes all possible values 
of the density for a moment in time and a location, given the probabilities of these 
densities. The density vector can also be written as: 
 
 #(�, �|%) = &��(�, �)	'(�ℎ	 *+,-,(.(�/	 0.��2(�, �)	'(�ℎ	 *+,-,(.(�/	 0.2…�!(�, �)	'(�ℎ	 *+,-,(.(�/	 0.! 4   

 
(5) 

 
From now on we will only use the short form for the density vector. The addition of 
the vector p includes all possible values of the appropriate variable with identical 
probabilities of each value in time and space, so that: 
 
 % = 	 � +  2+	. . . +	 ! = 1 (6) 
 

 
Here, ( is further limited to a finite value, which is applied as an input parameter of 
the model.  
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The equations for the conversation of vehicles (eq. (1)) and the fundamental relation 
(eq. (2)) now incorporate a further dimension for the probability in time and space, 
and become dependent on the probability of their value: 
 

 �#(�, �|%)�� + ��(�, �|%)�� = 0 
(7) 

   
 �(�, �|%) = �(#(�, �|%)) (8) 

 
The conservation  of vehicles therefore remains intact by definition, as each 
considered element in the probability distribution vector acts as an individual case of 
the CTM for which conservation has been proven (Daganzo 1994). 

3.3 Application of stochastic demand and traffic propagation 

External stochastic traffic demand is applied in the model at the peripherals of a 
network on the inflowing cells. From there on traffic may propagate applying eq (7) 
and (8) according to the dynamics of the base model. The initial traffic demand 
contains 60	times 67 number of elements in the probability vector %, where 60	is the 
number of probability elements in the vector for the demand and 67 is the number of 
probability elements for the capacity, such that each probability vector % is 
constructed of all possible combinations of  80 and  80. The initial flow at the 
network peripheral is therefore: 
 
 �(�9, ��|%) = {	;�, 	;2, … 	;(80∙87)}	 (9) 
 
Where the probability vector % exists of 60 	times 67 elements. This multiplication is 
performed to accommodate a position in the probability distribution for the outcomes 
of all combinations of each traffic demand and capacity variation. 
 
The variation in the capacity of the network is applied for each cell corresponding to 
the probability of the capacity of that cell in a similar way to the traffic flow �. In a 
simplified case only bottleneck cells will have varied capacity values, with the other 
cells yielding identical capacity values for each element in %. The capacity contains 67 
probability elements for the capacity in both time and space, although in many cases 
the capacity will not vary in time: 
 
 �>?%(��, �@|%) = AB

C	7D;.�(�, �)	'(�ℎ	 *+,-,(.(�/	 7.�	7D;.2(�, �)	'(�ℎ	 *+,-,(.(�/	 7.2…	7D;.!(�, �)	'(�ℎ	 *+,-,(.(�/	 7.!EF
G

 

 
(10) 

 
Once the stochastic traffic is on the network, the traffic propagates through the 
network dependent on the corresponding demand and following the dynamics  as 
previously shown in eq. (7) and eq. (8).  
Spatial dependence is applied as a conditional probability at the entrance of a 
network. This spatial dependence entails that each element in the probability vector of 
the density corresponds to the same place in the probability vector of the density of 
the following time step. This ensures an identical number of elements in the resulting 
probability vector for propagation through the network, and therefore avoids an 
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explosion of marginal probability elements. Basically, this creates a set of values 
which can be seen as scenarios of unique traffic demand and capacity combinations.  
 
 

  
 
 
 
 
 

Figure 1 Traffic propagation in the CPM 

The process is explained as such: there is a traffic demand 	(��, ��) with a set of 
possible values, �;, corresponding to certain probabilities: 
 
 �(��, ��|%) = {	;�, 	;2, … 	;!}	 (11) 
 
Calculations in the model are performed using the density, therefore q is transformed 
using (2) to: 
 
 #(��, ��|%) = {�;�, �;2, … �;!} (12) 
 
In the following time step there is a new 	 and � at location ��, in line with traffic 
flow in and out of the cell and in keeping with the conservation of vehicles (eq(1)) : 
 
 #(��, �2|%) = {�;�, �;2, … �;!}	 (13) 
 
However the position of each element in the #(��, �2|%) corresponds only to that of 
the element in the same position in the following time step in #(��, �2|%), so that for 
each element, (, applies: 
 
 	(��, �2| !)	follows  	(��, ��| !)  (14) 
 
This strict  ‘chain’ requirement, that for each location in consecutive time steps the 
same probability must apply, protects the validity of the initial conditional 
dependence between the capacity and traffic demand in both time and space. 
 
Although the base model, and therefore also CPM, calculates traffic using the density, 
it is often required to translate this to the traffic flow �(�, �|%), for determination of 
the flux for example. This is performed using the fundamental relation shown in eq. 
(2), in which each value of q is transformed using a deterministic fundamental 
diagram. The resulting values of �(�, �|%)	from  #(�, �|%) maintain the same 
probabilities for each time step and cell in space. 
 
In the same way, the traffic flow on the subsequent cells is also calculated. The only 
difference is that the supply and demand refer to those of the following cells, �8. In 
such a way, one can speak of multiple scenarios in a single procedure, as each 
element of the marginal probabilities are considered individually for a single variable.  
 

���→����(#) �����→���H(#) #(��, �@|%)  
 

with capacity �>?%(��, �@|%) 
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3.4 Determination of Congestion   

The sending and receiving functions, or rather demand and supply, d and s, are in part 
determined by the traffic state. Traffic states are in turn determined by the density of 
traffic in a cell at a specific  time. Under congestion, the demand function is equal to 
the capacity, and the supply function of the outgoing traffic flow: 
 
 I(��, �@|%) 	= �>?%(��J�, �@|%) K(��, �@|%) = �(��, �@|%)	 (15) 

(16) 
 
For uncongested states, the demand function is the incoming traffic flow, and the 
supply function is the available capacity: 
 
 I(��, �@|%) 	= �(��J�, �@|%) K(��, �@|%) = �>?%(�, �|%) (17) 

(18) 
 
For the Core Probability model without capacity variation, congestion is determined 
by comparison between the probable density and the critical density of a cell: 
 
 LMNO(�, �|%) = #(�, �|%) ≥ �7Q!R(�, �) (19) 

 
However, when capacity is also varied, the congestion equation states a distribution 
vector on either side of the operator: 
 
 LMNO(�, �|%) = #(�, �|%) ≥ #>STU(�, �|%)	 (20) 

 

3.5 Fundamental relation 

The fundamental relation, as given in eq. (8), defines the relationship between the 
density and the flow of traffic. The fundamental diagram in the CPM is a dynamic 
diagram dependant on a static maximum speed and critical density values on a link, 
and a dynamic capacity in time for a set location. The applied fundamental relation in 
the CPM is a piecewise diagram with a minor capacity discontinuity. The exact form 
of the diagram does not necessarily need to follow the applied piecewise fundamental 
diagram shown here.  It is defined as such: 
 
 	(�, �) = V�D� ∙ �(�, �)	                                                     for   �(�, �) ≤	2 XY ∙Z[\].^^_�\`  

	(�, �) = 2X ∙ 	7D;.aa + b � XY ∙Z[\].^^c[def(�,R)JH gY ∙h[\].^^i�\`
j ∙ �(�, �)   for  		2 XY ∙Z[\].^^_�\` <

	�(�, �) ≤ 	�7Q!R(�, �) 	(�, �) = 	7D;.7l@m ∙ n�J(c(�,R)Jc[def(�,R))co\�(�,R)Jc[def(�,R)p 	�(�, �)         for   �(�, �) >�7Q!R(�, �) 

(21) 
 

(22) 
 
 

(23) 

 
where V�D� is the maximum speed, 	7D;.aa is the free-flow capacity, 	7D;.7l@m is the 
congested capacity, kstuv(x, t) is the critical density, and kyz{(x, t) is the jam density. 
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Note that eq. (21), (22) and (23) are given in the scalar notation as would correspond 
to eq. (2). For the use as in eq. (8), the quantities �(�, �) and 	(�, �) would be 
represented as vectors. A graphical representation of this relation is given in Figure 1. 
 

 

Figure 2  Applied fundamental diagram for the initial tests of the CPM 

Uncongested traffic flow 
The two piece construction of the fundamental relation for the uncongested part 
describes accurately the initial conditions of traffic flow for low densities and flows. 
The speed for low densities and flows remains near the maximum speed of a road, 
which is defined in traffic theory as: 
 
 V(�, �) = 	 	(�, �)�(�, �)	 (24) 

 
 
And therefore the speed is represented by the slope of the fundamental relation 
through the origin. The first piece of the fundamental relation follows this line 
according to the maximum speed limit. As traffic approaches critical density, the 
speed decreases and the fundamental relation will near the capacity flow. This is 
represented in the second uncongested piece. 
 
Congested traffic flow 
The fundamental relation for congested traffic is presumed to follow a line from the 
discharge capacity flow and critical density to the jam density value at a zero flow. 
This is a simplification, as in reality the congested flow will tend to be an area along 
this line rather than specific points on the line itself. Nevertheless this forms a good 
representation of reality. The congested piece does not commence from the capacity 
flow, but rather from the discharge capacity flow (or congested capacity flow). The 

qcap.ff	qcap.cong		qcap.ff	
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difference between the capacity and the discharge capacity is known as the capacity 
drop. The capacity drop is included in the CPM at two points. Firstly, in this 
difference between the free flow capacity and the discharge capacity. The discharge 
capacity is defined as a set factor of the free flow capacity: 
 
 �>?%.>MNO = � ∙ �>?%	 (25) 

 
where c is defined as the capacity drop factor, for which a value of 1.0 denotes not 
drop in capacity. 
 
The second point of inclusion of the capacity drop is in the sending and receiving 
functions. When congestion occurs, it is the discharge capacity that is relevant to the 
traffic flux, rather than free flow capacity. Therefore the �>?% term in the sending and 
receiving functions is not the free-flow capacity, �>?%.��, but rather the discharge 
capacity, �>?%.>MNO, so that eq. (18) becomes: 
 
 �(�, �|%) = �>?%.>MNO(�, �|%)  (26) 

3.6 Simple numerical example (both capacity and demand varied) 

To demonstrate the manner in which the CPM works, a simple numerical example is 
given as demonstration. The traffic demand at the network peripherals is given as an 
intensity with a set probability. In this example there is a 50% chance of two different 
inflow values, and there is 50% of two different capacity values. Therefore there are 4 
elements in the demand vector, because the size of �(�, �|%) is equal to 60	times 67 
(see eq. (9)): 
 

�b��, ��, % = �0.250.250.250.25�j = �1900190022002200�  (A1) 

 
The capacity values of the cell are also given in the,  60	times 67 number of elements, 
capacity flow vector: 

�>?% b��, ��, % = �0.250.250.250.25�j = &21002300210023004  (A2) 

 
Note that the sequences for the values of the flow in the demand vector (Eq A1) are 
differently arranged over the 60	times 67 elements in comparison to the capacity flow 
vector (Eq A2). 
 
This flow vector, �(�, �|%), in eq. (A1) is transformed to a density vector,	#(�, �|%), 
using the fundamental relation 	 = �(�) in which the critical density is �7Q!R = 25. 
This gives: 

#b��, ��, % = �0.250.250.250.25�j = &222026244  (A3) 
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The probability of congestion is calculated using eq. (20): 

LMNOb��, ��, % = �0.250.250.250.25�j = #(�, �|%) ≥ �7Q!R(�, �) = �&222026244 	≥ 25� = �0010� 

 (A4) 
 
Therefore, based on eq.(15) through eq. (18), the demand D and supply S, can be 
calculated as: 

�b��, ��, % = �0.250.250.250.25�j = �1900190022002200�	    and    �b��, ��, % = �0.250.250.250.25�j = &21002300210023004
  (A5) 

 
The flux between two cells is defined and given as: 

��e→�e�� b��, ��, % = �0.250.250.250.25�j = min��(#), �!��(#)� = 	�1900190021002200�  (A6) 

 
The density therefore in the current and following cells in the following time step, t2, 
is given by the previous density adjusted by the flux into and out of that cell, during 
the size of the time step, h. Here we presume an identical inflow into cell x1 for t2 as in 
t1: 
 

#b��, �2, % = �0.250.250.250.25�j = #(��, ��|%) + (���→�� − ���→�H) ∙ ℎ
= &222026244 + b�1900190022002200� − �1900190021002200�j ∙ ℎ 

 
Similarly, the flow into the yet unoccupied cell x1 is calculated: 
 

#b��, �2, % = �0.250.250.250.25�j = #(��, ��|%) + (���→�� − ���→�H) ∙ ℎ
= �0000� + b�1900190021002200� − �0000�j ∙ ℎ 

 
This same process repeats itself for each cell in each time step and so on. 
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4 Addressing the main issues 

This section describes the manner in which the important issues from section 2 are 
addressed in the CPM and improve on the current state-of-art.  
 
For computational efficiency, the main challenge is to reduce computational load 
and in doing so, do it in a way that the model is not reduced in stochastic and 
modelling accuracy. Compared to a Monte Carlo simulation, the CPM does not 
require multiple repetitive simulations before arriving at a distribution, as the 
distribution of the traffic variables is explicit to the methodology. Therefore the 
computational load will be lighter if a single CPM simulation run is quicker than the 
sum of the required number of Monte Carlo simulations on the same base model. It is 
hypothesised that this is the case, as the CPM has a single computational overhead for 
the entire distributions, while a Monte Carlo simulation has a computational overhead 
for each simulation iteration. Furthermore, a lower detail of discretisation is 
hypothesised to be required for the CPM as the model calculates using distributions 
throughout. Monte Carlo simulation makes use of less efficient random process of 
sampling, which reduces the completeness of a distribution and therefore requires a 
greater number of simulations to reach the same level of accuracy, therefore 
increasing the computational load. On simple network or corridors, the efficiency 
effect will be limited, however for larger networks and for a greater spread of 
variation the gains should be greater. As mentioned, the hypotheses have still to be 
extensively tested and may only be attainable for networks rather than for corridors as 
described in this contribution, however theoretically, gains seem highly plausible. 
  
Spatiotemporal dependency is catered for in the CPM through the explicit 
consideration of correlations at the peripheral of the model and maintenance thereof in 
propagation. Reduced to two dependant variables, the traffic demand and road 
capacity, correlations between possible values of both are explicitly considered in the 
distributions entering a network at the peripherals. Values in the initial distribution 
vector of the traffic demand entering the network correspond on an element-to-
element bases to that of values of the capacity distribution vector at the same element 
location. This was explained in section 4. By explicitly maintaining this ‘chain’ 
connection throughout the traffic propagation, independency between traffic demand 
and capacity is maintained. Dependency in time for both the demand and capacity is 
also explicitly dealt with outside the model. Input values for certain elements in the 
distribution vectors follow those of the preceding time step and therefore already 
consider a logical and dependant propagation from the input vectors in time. Spatial 
dependency is dealt with in the same way as in the base model and therefore requires 
no further attention. Simplified, each element in a distribution vector may be seen as a 
single input value for a single Monte Carlo simulation, therefore it may also be 
considered as independent from other elements just as a single Monte Carlo iteration 
is from another Monte Carlo iteration. 
 
Stochastic propagation of probability in traffic flow is performed as described in 
section 3.3 and is also touched upon in the previous paragraph on spatiotemporal 
dependency. A complete distribution of possible values per traffic variable is present 
as a distribution in the form of a vector. This vector exists of more elements than is 
necessary, so to allow each possible values of that vector to correspond to the 
elements of other vectors and therefore to avoid correlation difficulties. As these 
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distribution vectors are propagated in space and time, there is no need to reduce 
variables to a representation of the distribution using a set distribution type, median, 
standard deviation, shape parameter or such like. Although this may lead to a higher 
computational effort, it maintains a guaranteed accuracy of the propagation of the 
traffic variables and their probabilities, as the distributions remain intact in the 
process of propagation. Therefore a greater accuracy can be achieved in comparison 
to methods that do transform distributions to characteristics of the distribution.  
 
For the CPM, the question of generality is one that is less relevant to the model itself, 
but rather to the quality of the data and distributions that it is fed with. As the CPM 
performs calculations using discrete distributions, a reduction of the input data may 
only happen in the case of rediscretisation for the sake of computational efficiency. 
Therefore the necessity to apply accurate input distributions for the traffic demand 
and road capacity is applicable for the local circumstances or from a general 
distribution if the local situation is not known. Construction of generic input 
distributions for this purpose, taken from empirca, makes it easy to apply the CPM 
without requiring extensive data analysis for each application of the model (Calvert et 
al. 2014; van Stralen et al. 2014). Nevertheless, this issue is one that is less explicit to 
the model, as the quality of input data is relevant and independent to all models. 
However the manner in which a model deals with accurate input is important. The 
CPM does not overly simplify input, therefore maintaining  high level of accuracy and 
avoiding additional unnecessary biases, contrary to many other models.  

5 Test case 

Demonstration of the application and validity of the Core Probability Model (CPM) is 
given in a test case. The test case aims to show that traffic propagation along a road 
section in the CPM can accurately resemble traffic flow found from empirical 
observations.  
 
The test case is carried out for the A12 motorway in The Netherlands between Utrecht 
and The Hague (see Figure 3). On this motorway in 20091, a lane drop was present 
from four to three lanes, which acted as a structural bottleneck at location A. Daily 
congestion starting at this location near the town of Woerden would be present, 
especially during the evening peak period.  A section of 11 kilometres is considered, 
of which 10 km upstream and 1 km downstream of the bottleneck. The CPM is fed 
with data from 63 afternoon peak period observations of the traffic flow between 2 
PM and 9 PM from 2009 as a representation of the probability of certain traffic flows 
appearing. The input for the model is taken exclusively from the most upstream 
location. Therefore the validation is that of the stochastic traffic propagation. Each 
observation is considered as an equal probability of a real traffic demand for this 
location and is therefore given a 100/63 = 1.6% probability for the input at the inflow 
of the corridor. These traffic flows are fed into the network at the most upstream 
location. 
 

                                                 
1 Since 2009, this location has been upgraded to four lanes along the entire stretch to eradicate the 
bottleneck.  
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Figure 3 Bottleneck location near Woerden at the considered road section on the 
A12 used in the case study 

A comparison is made based on the ability of the model to accurately predict the 
propagation of the probabilities of traffic flow and corresponding traffic states 
between the outcome of the CPM simulation and the empirical data. For this, the 
unfiltered traffic states in time and space are gathered on the entire corridor. The 
comparison focusses on the time of traffic breakdown, congestion duration, spill-back 
distance, and the specific speed values in time and space. This is shown for the 
median probability (most likely traffic situation) and a further demonstration of the 
results are given in the form of a 3D congestion probability plot. The results of the 
median probability are shown in the time-space Figure 4.   
 
 

 

Figure 4 Modelled speed diagram for the median probability in the A12 test case  
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Figure 5 Empirical speed data for the median observation in the A12 test case 2 

The initial results shown in Figure 4 show the simulated median (50%) results from 
the model, compared to the median from the empirical data shown in Figure 5. The 
speed values are shown as these give a good indication of where congestion is 
present, how extreme congestion is and how traffic flow changes the time. Initially 
the extent of congestion appears to be relatively well modelled. Nevertheless there are 
certain deviations in comparison to the empirical data. The onset of congestion occurs 
approximately 10 minutes earlier in the simulation, while congestion lasts for 158 
minutes compared to 190 minutes in the data. However, the spillback of congestion in 
both is of a similar magnitude and deviates no more than 200 meters over a distance 
of some 9 kilometres. The speed in the heavily congested area of traffic is lower in the 
empirical data compared to the model (ca. 30 kph versus 40 kph). This may also be a 
main reason why the duration of congestion differs, as traffic in the simulation may 
proceed at a slightly higher speed and therefore let congestion disperse earlier. 
Despite these minor deviations, this initial test case gives cause for optimism. A 
further fine-tuning of the model parameters when applied in practice may easily 
compensate for the observed differences.  
 

                                                 
2 The red horizontal line indicates a location at which a faulty detector is present. The speed at this 
location is returned as null. 
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Figure 6 Modelled congestion probability in time and space for the A12 test case 

The CPM method allows a vast amount of data to be produced and presented as a 
probability distribution or in another forms as a direct consequence of the way the 
CPM works. As each traffic variable is considered as a distribution of possible values, 
each can therefore be calculated or shown as such at each time step and location. This 
is demonstrated in Figure 6 in which the congestion probability at each location and 
for every time step is given. Congestion is defined as such when the critical density is 
exceeded, while the probability thereof indicates the frequency that congestion is 
expected to occur for an arbitrary location and time along the corridor. It is possible to 
show more complex results in a greater number of dimensions, i.e. including the 
probability as a variable in a diagram, however this leads to difficulties in the 
interpretation of diagrams. Nevertheless, broad analyses are made much easier and 
more extensive with the results from the CPM. At this moment there is no reliable 
estimation available on the possible efficiency gains in terms of computation. This is 
mainly due to the experimental implementation of the methodology that first requires 
restructuring before reliable computational efficiency tests can be carried out. 
Furthermore, significant computational gains are not expected on a single corridor, 
but rather for networks and for greater variations in stochastic variables.  
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6 Conclusions and current developments 

6.1 Current developments 

The basic concept of the Core Probability Model has been explained and an initial 
validation case has been shown in this paper. Thus far, the CPM has been 
demonstrated on a single road stretch without additional incoming or outgoing links 
and traffic. Current developments are focussed on the extension of the CPM for use 
on networks. This brings greater challenges than addressed thus far in this paper. 
Propagation of traffic variable probabilities through a network gives arise to 
convergence and divergence of probability values at each node. For this a 
methodology has been developed to efficiently cope with these transformation of 
probabilities at nodes. We are currently in the process of implementing and testing the 
methodology and plan to disseminate the developments before long. Other 
developments focus on the application of external stochastic variations of traffic 
influencing variables, and dealing with correlation effects therein. For traffic 
propagation, correlation between variables is externalised as described in section 3, 
however external preparation of variables requires attention prior to application in the 
CPM.  

6.2 Conclusions 

In this contribution the Core Probability Model (CPM) is introduced as a new model 
for dynamic macroscopic modelling of stochastic traffic flow. The CPM extends 
current deterministic traffic flow models by redefining traffic variables in the core of 
the model as distribution vectors of probable values for each traffic variable. In such a 
way stochastic variation in traffic is internalised in the model and does away with the 
necessity of repetitive Monte Carlo simulation. Furthermore a greater degree of 
flexibility in analysis is obtained, as each individual traffic variable in time and space 
may be given as a function of their probability. Moreover, the underlying distribution 
of each traffic variable in space and time is preserved such that the introduction of 
distribution fitting errors is limited to a minimum. Important issues facing stochastic 
traffic flow modelling are given in the contribution, and are identified as 
computational efficiency, spatiotemporal dependency, stochastic propagation of 
probability, and stochastic generality. The CPM addresses each of these issues and in 
doing so demonstrates the ability to advance developments in the area of stochastic 
traffic modelling. In particular the CPM aims to further the possibilities for reliable, 
accurate, efficient, and most of all, practically applicable stochastic macroscopic 
traffic flow. At present, reliable calculation of the computational efficiency of the 
model is not possible, but is expected in the near future.   
Future developments of the CPM are focussed on the propagation of stochastic traffic 
on networks, for which a methodology has been developed and is currently being 
implemented and tested. Also methodologies for the application of external stochastic 
variation from multiple variables are currently under development. 
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