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Abstract

Controller tuning is commonly performed to improve the closed loop response. The tuning of
a controller can be done through either manual or numerical methods. Unfortunately manual
tuning of controllers can be both cumbersome and time consuming. Furthermore one can’t
give any guarantees with respect to the optimality of a, manually, tuned controller. A com-
monly used numerical method for optimizing controller in closed loop is Iterative Feedback
Tuning (IFT). It accomplishes controller optimization by estimating the gradient of a cost
function by using two dedicated (closed loop) experiments. The original IFT framework, as
proposed by Hjalmarsson, was conceived to deal with LTI systems & control.

This thesis investigated the extension of the IFT framework to include LPV systems/control.
This would extent the applicability of the framework from merely LTI control to LPV control
(of which LTI control can be considered a subset). In the literature it has already been shown
that to integrate LPV control into the IFT framework through an LPV state space model will
lead to the curse of dimensionality. Therefore an I/O approach was investigated in this thesis.
Two modelling approaches were used in this thesis namely; an LPV-ARX model structure
and a lifted representation of the LPV-ARX model.

When an LPV-ARX model structure is used the integration of LPV control into the IFT
framework is very intuitive. This extension is made possible through the use of an extended
regressor. It will be shown that the algorithm needs the scheduling sequence to be the same
in both experiments. Fortunately by augmenting the gradient experiment, through the intro-
duction of extra signals, the algorithm is capable of compensating changes in the scheduling
sequence. Unfortunately this capability comes at the cost of needing a model of the plant.
The advantage of this algorithm is that a single gradient experiment is needed for any number
of controller parameters for an arbitrarily scheduled LPV system. This result will be shown
to apply to LPV-MIMO systems for both degrees of controller freedom.

The second model structure which was investigated is the lifted representation of the LPV-
ARX model. For the lifted representation of the LPV-ARX model structure the key challenge
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is the dimensionality of the factorization matrix. The factorization matrix is needed to com-
pensate for a change in the scheduling sequence. This approach has the advantage that one
doesn’t need a model of the plant, but it does suffer from the curse of dimensionality. To mit-
igate the curse the LPV system can be approximated as a LPV-FIR filter which will reduce
the curse of dimensionality from exponential to linear. Furthermore it will be shown that
when a lifted representation is used the gradient experiment needs to be performed per basis
function and multiple times to ensure a unique solution. Therefore even though the lifted
representation preserves the model free nature of linear IFT, it does suffer from a significant
increase in the amount of experiments.

To numerically verify the algorithms a case study, based on a numerical model of a smart
aerofoil, was performed. Performance results for this LPV system were obtained for a set
of LTI controllers and LPV controllers optimized by linear IFT and the novel algorithms,
respectively. The linear IFT algorithm was used to tune a set of LTI controllers for a frozen
scheduling variable. The set of optimized LTI controllers were gain scheduled afterwards. A
comparison of the LPV and gain scheduled LTI controllers’ performance showed that they
were only comparable for a small portion of the wind speeds. Although this was to be ex-
pected when observing the optimal LTI controllers’ parameters evolution for increasing wind
speeds. It was observed that the novel algorithms are capable of optimizing LPV controllers
for realistic LPV systems as convergence of the performance was observed. However as the
structure of the LPV controller is suboptimal the data has been inconclusive whether the
algorithms would be capable of reaching comparable performance for the entire scheduling
space if the structural bias would be removed.

Thus both algorithms are capable of optimizing LPV controller for realistic LPV systems
and extend the applicability of the IFT framework to LPV systems. The best prospects
are given to the extended regressor-based algorithm as acquiring a LPV model of the plant
is preferable to the curse of dimensionality. However without the ability to optimize the
underlying structure of the LPV controller it might still be outperformed by gain scheduled
LTI controllers in terms of optimal performance.
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Chapter 1

Introduction

Nowadays controllers are mostly synthesized using model-based controller synthesis methods.
The model-based approach uses, as the name implies, a model to synthesize the control
law. Acquiring this model can be done using either system identification techniques or first
principles modelling. Subsequently the controller can be synthesized through use of the
identified model. The large body of literature for Linear Time Invariant (LTI) systems, or
systems that can be approximated as such, show that model-based controller synthesis can
lead to adequate performance in a significant number of applications.

The downside is that one must identify an accurate model through the use of a finite set of
I/O data. Afterwards the identified model can be used to synthesize the control law to achieve
adequate closed loop performance. The identification & controller synthesis problem must
therefore be solved successively. However another class of synthesis methods exists which
solves the controller synthesis problem directly. These direct data-driven controller synthesis
approaches use the I/O data directly to synthesize the controller. This is in contrast to the
model-based approach which takes the detour of first identifying a model. A natural question
would then be; are there classes of systems in which either acquiring an accurate model and/or
model-based controller synthesis is challenging? These kind of systems can be interesting to
examine from a direct data-driven perspective as it condenses the identification and controller
synthesis sub-problems into a direct synthesis problem. Solving the direct synthesis problem
might be simpler than solving the two sub-problems separately. The class of Linear Parameter
Varying systems is a class of systems which might benefit from this approach.

1-1 Linear Parameter Varying Systems

Linear Parameter Varying (LPV) systems are a special class of nonlinear systems. This class
of systems can be defined as a set of gain scheduled linear models (two common representations
of LPV systems are discussed in Appendix A). The temporal variation of the system dynamics
are quantified through the scheduling variables which can be either endogenous or exogenous.
Examples of LPV systems include pick & place manipulators and wafer stages which both
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2 Introduction

show position dependent dynamics [1]. The position dependency of their dynamics implies
that they can be modelled as LPV systems with the position as a scheduling variable. Other
application areas of LPV systems are flight control, magnetic bearings and many more e.g.
[2][3].
An interesting feature of LPV systems is that when the scheduling variable is frozen, i.e. the
scheduling variable stays constant in time, value the LPV system reduces to a LTI system.
Although LPV systems are still a simplification of the true nonlinear problem it allows for
a significant increase in modelling accuracy when compared to LTI systems. This increase
in accuracy makes it possible to compensate nonlinear properties of the system dynamics
which opens up new possibilities for control engineers. Thereby paving the way to higher
performance than approximating the system as an LTI system and/or LTI control can achieve.

Modelling LPV systems by hand is, unfortunately, still a challenging problem [4]. Luckily the
field of LPV system identification has developed a number of successful techniques. For an
overview of the different LPV system identification techniques the interested reader is referred
to [5][6][7][8]. In this section the class of LPV systems was discussed and references were
given to LPV system identification literature. At the onset of this chapter two problems were
introduced namely; the identification and controller synthesis problems. The first problem
(identification) has been discussed briefly, but the LPV controller synthesis problem is still
left untouched.

1-2 Linear Parameter Varying Controller Synthesis

Directly synthesizing a control law from an identified LPV plant is more difficult than for
LTI plants. Mainly due to the significant increase of the complexity of the LPV plant which
is introduced due to its gain scheduled nature. An instance of unwanted, but significant
side-effect, is the notion that two individually stable LTI systems can become unstable when
they are gain scheduled [9]. Even though these challenges for the LPV system class exist two
main branches for synthesizing LPV controllers are present in the literature e.g. [2][3][4];

• Conventional gain scheduling: This method is a general approach for nonlinear control
problems. It consists of synthesizing LTI controllers for a set of operating points. The
controllers at these operating points are then interpolated in such a way that (hopefully)
stability and performance are preserved over the entire state space.

• Model-based Optimization: This approach formulates the LPV controller synthesis
problem as an optimization problem based on an identified LPV model of the plant. In
the literature it is often (re-)formulated as a Linear Matrix Inequality (LMI) [3].

In the literature there are examples of LPV controllers increasing the performance of LPV
systems when compared to LTI control. For instance in [4] the application of an LPV controller
to a wafer stage was shown to improve the closed loop performance. Even though this success
was reported the same paper also discussed the difficulties present in current LPV controller
synthesis methods, namely:

• LPV modelling is still difficult.

N. Willemstein Master of Science Thesis



1-3 The Promise of Iterative Feedback Tuning and Linear Parameter Varying Systems 3

• Model-Based Optimization: LMIs show numerical problems for higher order systems.

The main challenges present for LPV controller synthesis are therefore both related to the
model-based approach (i.e. the LMIs and modelling). As discussed before another type of
controller synthesis methods uses a more direct approach. The question which remains is
therefore; what kind of direct data-driven approach exist that can be used?

1-3 The Promise of Iterative Feedback Tuning and Linear Param-
eter Varying Systems

Iterative Feedback Tuning (IFT) is a direct data-driven algorithm which tunes the controller
parameters iteratively [10]. IFT uses a model-free framework in which I/O data, acquired in
dedicated experiments, is used to estimate the gradient of a desired performance measure. The
controller parameters are updated through the use of the aforementioned gradient estimate.
In Chapter 2 the IFT framework for LTI systems will be discussed in-depth. Currently there
are two interesting results for IFT w.r.t. nonlinear systems namely; the ability of linear IFT
to handle (slowly varying) nonlinear systems and the, successful, integration of LPV state
space control into the IFT framework [11] (referred to as IFT-LPV). Unfortunately IFT-LPV
suffers from the curse of dimensionality therefore the problem of integrating LPV control into
the IFT framework is still an open issue.

The two primary bottlenecks, as discussed in the previous section, in model-based LPV con-
troller synthesis can be solved through the use of the IFT framework. As IFT is a model free
approach LPV modelling is not necessary. Due to it being an optimization approach based
on the Newton method and I/O data the need for solving an LMI through numerical tech-
niques is also circumvented. This combined with the favourable prospects in the literature,
i.e. IFT-LPV [11], makes IFT a viable candidate for use in direct data-driven LPV controller
synthesis.

1-4 Goal Of This Thesis

The goal of this thesis is to extend the applicability of the IFT framework from merely
LTI control to LPV control. In the literature a LPV state space approach was already
investigated [11]. Unfortunately it was shown to suffer from the curse of dimensionality.
Therefore in this thesis an I/O approach will be investigated in hopes of circumventing the
curse of dimensionality. The problem this thesis aims to tackle is therefore the development
of a novel data-driven controller tuning algorithm based on the IFT framework to be able
to iteratively optimize an LPV controller. Usage of the IFT framework seems to be a viable
choice for LPV controller synthesis mainly due to two aspects namely;

• Current bottlenecks present in model-based approaches to LPV controller synthesis are
circumvented (as discussed in the previous section).

• The IFT framework has already shown potential for LPV controller synthesis [11].
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4 Introduction

Algorithm LTI Regulated µ Arbitrary µ

Linear IFT [10] Yes Yes* Yes*
IFT-LPV [11] Yes YesC YesC
ILPVFT (Chapter 3) Yes Yes Yesm
A2S-ILPVFT (Chapter 4) Yes Yes YesC

Table 1-1: Predicted applicability of the algorithms for different types of systems. Meaning of
symbols; µ: scheduling variables, *=only for slowly varying µ, C= works but suffers from the
curse of dimensionality, m = needs a model (Section 3-5).

The aforementioned reasons make the IFT framework a viable candidate for usage as a data-
driven LPV controller synthesis method. The two methods present in the literature, i.e. IFT
and IFT-LPV, both suffer from their own drawbacks, namely; only slowly varying scheduling
variables (IFT) and the curse of dimensionality (IFT-LPV). Thus it is still an open problem
in the literature to integrate LPV control into the IFT framework. Finding a solution to this
problem and, numerically, verifying that it works as desired will be the main subject of this
thesis. It can formally be defined as:

Extending the applicability of the IFT framework to LPV control whilst being able to handle
arbitrary scheduling sequences and without suffering from the curse of dimensionality.

In Table 1-1 the algorithms and their predicted applicability for different types of systems
are shown. The three classes of systems which are considered in this thesis are LTI systems,
LPV systems with regulated and arbitrary scheduling sequences.

The problem will be decomposed in two parts, namely; a part consisting of mathematical
proofs and afterwards the numerical verification of the developed algorithms.

1-5 Structure Of The Thesis

This thesis is concerned with developing the mathematical foundations as well as providing
numerical verification for two novel LPV controller tuning algorithms. The first three chap-
ters, i.e. Chapters 2, 3 and 4, are concerned with developing the mathematical foundations.
In Chapter 5 a numerical case study concerning the optimization of a LPV controller for a
realistic LPV system will be discussed and evaluated.

Chapter two discusses the IFT framework for LTI systems, as conceived by Hjalmarsson. It
will re-formulate the controller synthesis problem as an optimization problem. Subsequently
the optimization problem will be solved through the use of an estimate of the gradient. The
estimation of the gradient, using only I/O data, will be derived using a lifted representation
of the LTI system. The estimated gradient can then be used to update the controller param-
eters through use of the Newton method. Other properties which are discussed include; the
drawbacks of the IFT framework and its performance for general nonlinear systems.

Chapter three starts out from the assumption that the scheduling sequence can be regulated.
This is a simplification of the physical reality of most LPV systems. Through the use of
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1-5 Structure Of The Thesis 5

the "regulated scheduling"-assumption LPV control can be integrated intuitively into the IFT
framework. A key component for this integration will be the extended regressor (which is
also used in LPV system identification [8]). A numerical verification of the algorithm will be
provided through the use of a simple case study. Afterwards the algorithm will be augmented
to be able to not need the "regulated scheduling"-assumption. This augmentation will come
at the cost of needing a model of the LPV plant.

Chapter four integrates LPV control into the IFT framework by modelling the LPV plant
as a lifted LPV-ARX model. It will be shown that a factorization matrix is necessary to
compensate changes in the scheduling sequence. The factorization matrix must be able to
divide a Toeplitz matrix into a scheduling variable matrix and a matrix filled with scalars. It
will be shown that its dimensionality is the main problem when using the LPV-ARX model
structure. The chapter is finalized with a case study which verifies the algorithm through
numerical simulation.

Chapters three and four provided the mathematical foundations and verified them numerically
through a simple LPV system. However this system was simplistic and not very challenging
from a control perspective. The fifth chapter will discuss a much more challenging case
namely the control of a smart airfoil [12]. This LPV system has the challenging feature of
becoming unstable when the scheduling variable, in this case the wind speed, exceeds a certain
threshold. A second challenge is to evaluate whether the algorithms are capable of optimizing
a LPV controller in such a way that comparable, to a set of gain-scheduled LTI controllers,
performance is achieved.

Chapter six will provide conclusions with regards to both the mathematical foundations and
the numerical results and will also discuss what points might be interesting for future work.
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Chapter 2

Linear Iterative Feedback Tuning

Data-driven control methods have the advantage to be able to adapt their behaviour and con-
troller parameters online. This can, for instance, be beneficial when compensating controller
gains for a change in the system dynamics due to wear of the components over time. The
optimization capabilities, inherent to most data-driven control methods, make it possible to
start from an initial, non-optimal, controller and tune it to become an optimal controller.
Thereby reducing time spent on, manual, tuning as it can be done in an automated fashion
on the plant itself. Multiple methods for the online optimization of the controller parameters
exist in the literature [13]. One of these methods is Iterative Feedback Tuning (IFT) first
proposed by Hjalmarsson [10]. The IFT framework is able to optimize a controller using solely
I/O data. It achieves this feat by using two dedicated experiments to estimate the gradient.
IFT for the optimization of LTI controllers is the primary subject of this chapter to provide
the reader with an overview of the original (LTI) framework.
Section 2-1 re-formulates the controller synthesis problem as an optimization problem. Opti-
mization problems can be solved efficiently through gradient information. IFT estimates the
gradient by performing a dedicated experiment. In Section 2-2 the gradient will be derived
from a lifted representation of the LTI system. The estimated gradient can be used to obtain
iterative improvements of the cost function through the use of the Newton method (Section
2-3). In Section 2-4 the drawbacks, which can have significant effects on the closed loop per-
formance, of the IFT are reviewed. As the goal of this thesis is extending the IFT framework
to LPV systems it will be interesting to examine how well linear IFT performs for general
nonlinear systems (Section 2-5).

2-1 Formulating the Optimal LTI Control Problem

For optimization algorithms, like IFT, to correctly function the control problem must be re-
formulated as an optimization problem. The optimization problem the IFT framework must
solve can mathematically be defined as (with θ the controller parameters and J(θ) a cost
function)

arg minθ J(θ) (2-1a)

Master of Science Thesis N. Willemstein



8 Linear Iterative Feedback Tuning

An example of a, commonly used, cost function for IFT is the tracking cost function defined
as (for a SISO system):

minθ J(θ) = minθ
1
N

N∑
i=1

(yi(θ)− ri)2 (2-1b)

In Equation 2-1b N stands for the amount of measurements. This can be generalized to the
cost function below with Td the desired closed loop response

minθ J(θ) = minθ
1
N

N∑
i=1

(yi(θ)− Tdri)2 (2-1c)

The controller synthesis problem is now properly formulated as an optimization problem.
But how can one solve the optimization problem? A natural, but very inefficient, approach
would be to check all possible sets of controller parameters. IFT solves the optimal control
problem very efficiently, and elegantly, by using an iterative optimization procedure. This
feat is accomplished through the use of an estimate of the gradient of the cost function of
Equation 2-1c. How to estimate this gradient using solely I/O data will be discussed next.

2-2 Gradient Estimation: A Lifted Approach

To efficiently solve the controller optimization problem one can use the gradient for updating
the controller parameters. This section will derive an estimate of the gradient by using a
lifted representation of the LTI system. In Hjalmarsson’s original work, see for example [10],
transfer functions were used. The modelling paradigm which will be used is an LTI ARX
model as defined below

yk =
na∑
i=1

aiyk−i +
nb∑
j=0

bjuk−j (2-2a)

The output of the ARX model can be put into the following lifted representation

Y = AY + BU (2-2b)

With the matrix B defined as follows (derived from the ARX model in Equation 2-2a)

B =



b0 0 . . . 0 0 0 0
b1 b0 . . . 0 0 0 0
... . . . . . . ...

...
...

...

bnb bnb−1
. . . b0 0 . . . 0

0 bnb
. . . b1 b0 . . . 0

...
... . . . . . . . . . . . . ...

0 0 . . . bnb . . . b1 b0


(2-2c)

The matrix A is defined similarly but with a0 = 0. The loop will be closed by using the
following control law

U = H(R− Y ) (2-2d)

N. Willemstein Master of Science Thesis



2-2 Gradient Estimation: A Lifted Approach 9

The matrix H can be defined similar to that of matrix B in Equation 2-2c. This leads to the
following lifted closed loop representation

Y = (A−BH)Y + BHR (2-2e)

As the gradient with respect to the i’th controller parameter (θi) must be uncovered it is
important to know which matrices depend on the controller parameters. Thus let’s explicitly
add this dependency (with Θ a vector containing all the controller parameters)

Y (Θ) = (A−BH(Θ))Y (Θ) + BH(Θ)R (2-2f)

This experiment, referred to as the reference experiment, is visualized in Figure 2-1. The
terms, in Figure 2-1,

∑na
i=1 aiq

−i,
∑nb
j=0 bjq

−i are condensed to B(q) and A(q) (Equation 2-2a
for one time step) and

∑nh
i=0 hiq

−i to H(q). After performing the experiment of Figure 2-1
the I/O data will contain R and Y which will be needed in the second experiment.

Figure 2-1: The Reference Experiment using an ARX model representation.

The derivative of Equation 2-2f for an arbitrary controller parameter θi is equal to

∂Y (Θ)
∂θi

= (A−BH(Θ)) ∂Y (Θ)
∂θi

+ B∂H(Θ)
∂θi

(R− Y (Θ)) (2-2g)

From Equation 2-2g it can be observed that one must use ∂H(Θ)
∂θi

(R − Y ) as a feedforward
input for the second experiment. The second experiment, which will be referred to as the
gradient experiment, is visualized in the block diagram shown in Figure 2-2 with ygk = ∂y

∂θi

and uffk = ∂H(Θ)
∂θi

(rk − yk).

Note that the block diagram (Figure 2-2) is merely an experiment with a feedforward input
∂H(Θ)
∂θi

(rk − yk), which is known from the reference experiment, with the reference rgk set to
zero. By performing the experiment of Figure 2-2 one acquires the term ∂Y (Θ)

∂θi
which is related

to the gradient of the cost function (i.e. Equation 2-1c). As the gradient, in lifted form, of
Equation 2-1c is equal to (with Y d the desired output)

∂J(θ)
∂θi

= 1
N

(
Y (θ)− Y d

)T ∂Y (Θ)
∂θi

(2-2h)

Master of Science Thesis N. Willemstein



10 Linear Iterative Feedback Tuning

Figure 2-2: Gradient Experiment using the ARX model representation.

All the necessary I/O data seen in Equation 2-2h can be obtained by performing the refer-
ence and gradient experiments (which give Y (θ) and ∂Y (Θ)

∂θi
, respectively). Thereby making

it possible to estimate the gradient of the cost function of Equation 2-1c through the usage
of the I/O data of both experiments.

Equation 2-2g will now be used to show that only one, gradient, experiment needs to be
performed to find the gradients with respect to every controller parameter. First rewrite
Equation 2-2g to the format below (with I an identity matrix of appropriate dimension)

∂Y (Θ)
∂θi

= (I−A + BH(Θ))−1 B∂H(Θ)
∂θi

(R− Y (Θ)) (2-2i)

The equation above can be simplified by noting that the controller derivative matrix ∂H(Θ)
∂θi

is a (scalar) transfer function (Fi) times an identity matrix (I)

∂Y (Θ)
∂θi

= (I−A + BH(Θ))−1 FiIB(R− Y (Θ)) (2-2j)

∂Y (Θ)
∂θi

= Fi (I−A + BH(Θ))−1 B(R− Y (Θ)) (2-2k)

Equation 2-2k shows that filtering the data of a single gradient experiment through Fi is
enough to estimate the gradient of θi. Therefore only one gradient experiment has to be
performed to uncover the gradient for all controller parameters.
The results of this section have provided a means to estimate the gradient based solely on I/O
data of two dedicated experiments. So the question becomes; how can the estimated gradient
be used to improve the closed loop performance?

2-3 Controller Parameter Update

The controller parameters should be adjusted in such a way that the cost function improves.
If every set of control parameters would have to be evaluated this would take a considerable

N. Willemstein Master of Science Thesis



2-4 Drawbacks of The IFT Framework 11

time. As not all sets of controller parameters will lead to an improvement of the cost function.
Luckily an experimental method for estimating the gradient has been derived in the previous
section. The gradient points in the direction of the largest increase of the cost function,
therefore "moving" in the opposite direction will yield the largest decrease. This is the basis
for the Newton update method defined as:

θi+1 = θi − γi
∂J(θi)
∂θ

(2-3a)

With θi & θi+1 vectors containing (respectively) the current and next iteration’s controller
parameters, γ the step length and ∂J(θi)

∂θ the gradient estimate. This parameter update scheme
allows for an iterative improvement of the cost function. The Newton update method can be
improved by introducing a matrix H

θi+1 = θi − γiH−1∂J(θi)
∂θ

(2-3b)

The matrixH is often chosen to be an approximation of the cost function’s Hessian. Examples
of methods used in the Hessian approximation are; trust region, BFGS or the Gauss-Newton
methods [10]. To improve convergence the Hessian can be regularized [14]. Although this
iterative improvement of the performance is advantageous there are some notable drawbacks
inherent to the IFT framework.

2-4 Drawbacks of The IFT Framework

Although IFT is capable of iteratively improving the closed loop performance based on data
collected online it is not without its drawbacks. Some of these drawbacks can make physi-
cal implementations considerably more difficult. Three known drawbacks of the linear IFT
scheme are (the need for an initial stabilizing controller is not something the author constitutes
as a drawback)

• The time specification Td must be chosen carefully to ensure that the algorithm improves
w.r.t. the desired performance [10].

• The gradient-based Newton method can lead to an unstable closed loop [10]. Results
in the literature indicate that this risk can be minimized by introducing a stability
constraint [15].

• The Newton update method doesn’t guarantee that the cost function will improve in
every iteration [16].

The first one can make the formulation of the cost function challenging as it might be difficult
to convert a performance measure to time domain specifications. The other two points are
related as both imply a worsening of the closed loop performance. But whereas the stability
problem can be solved using constraints, guarantees that the cost function decreases in every
iteration can’t be given.
These drawbacks can have a significant effect on the closed loop performance and should
therefore be taken into account. The last property which will be discussed is the performance
of linear IFT for nonlinear systems.
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12 Linear Iterative Feedback Tuning

2-5 Nonlinear Systems

The goal of this thesis is extending the applicability of the IFT framework to LPV control.
Therefore it is interesting to observe how well IFT performs in the literature for general
nonlinear systems. In [17] it was shown that the IFT framework can also handle nonlinear
systems. This is a very notable result as it implies that the IFT scheme can actually com-
pensate some nonlinearities in the dynamics of the system. Even though it wasn’t developed
to incorporate this "robustness" to nonlinear dynamics [10].

Unfortunately there is a catch namely; IFT can only handle nonlinear plants when the dy-
namics don’t vary too quickly [17][18]. This makes linear IFT unviable for LPV systems as
the scheduling variable can vary rapidly. Take for example the large accelerations present in
wafer stages which change the scheduling variable, i.e. the position, very rapidly. This makes
the capability for handling arbitrarily fast scheduling sequences a must.

The capability to compensate for arbitrarily fast scheduling sequences will be an essential part
of the novel algorithms. In the literature the results in [11] indicate that this capability is
possible to integrate into the IFT framework. Unfortunately the extension of the IFT frame-
work in the aforementioned paper suffers from the curse of dimensionality. Thus integrating
LPV control into the IFT framework is still an open issue.

This concludes the discussion on the properties of the original IFT framework. The next
chapter will integrate LPV control whilst modelling the LPV plant as an LPV-ARX system.
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Chapter 3

LPV-ARX Model Structure

This chapter revolves around the integration of LPV control into the IFT framework by using
a LPV-ARX model structure. The LPV-ARX model structure is a gain scheduled extension
of the LTI-ARX model. This thesis will show that through usage of the extended regressor
representation, which is also used in LPV system identification [8], of the LPV-ARX model
structure an elegant extension of the IFT framework is possible. The extended regressor
approach has been shown to be able to handle arbitrarily fast scheduling sequences and does
not suffer from the curse of dimensionality when used for LPV system identification [8]. In
Sections 3-1 to 3-4 it will be assumed that the scheduling sequence is regulated. Under
this assumption the integration of LPV control into the framework will be intuitive. The
regulated scheduling sequence assumption will then be shown to be unnecessary through
an augmentation of the gradient experiment. The aim of this chapter is to provide the
mathematical foundations and numerical verification of a novel data-driven controller tuning
algorithm based on the extended regressor and the IFT framework.

The first section (3-1) will formulate the optimal LPV control problem which the novel al-
gorithm should solve. Section 3-2 will introduce the extended regressor and its modelling
structure. The extended regressor will be used in the construction of the mathematical foun-
dations of the algorithm in Section 3-3. To numerically verify the algorithm the optimization
of a LPV PI controller is performed for a simple LPV system (Section 3-4). The final section
(3-5) will generalize the preceding results to arbitrary scheduling sequences.

3-1 Formulating the Optimal LPV Control Problem

For the optimal control law one would want to optimize the LPV controller’s structure as
well as the controller parameters. A general LPV controller would be of the form (with θi the
controller parameters, Nθ controller parameters, Nf basis functions and ek the error signal
at time k):

H(µk) =
Nθ∑
j=0

Nf∑
i=1

θij(µk)ek−j (3-1a)
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14 LPV-ARX Model Structure

Such a LPV control law would be able to properly compensate the time varying dynamics of
the LPV system. The optimization problem one wants to solve is then an LPV extension of
Equation 2-1c

arg minΘ J(µk,Θ) = minθ
1

2N

N∑
i=1

(yi(θ, µk)− Td(µk)ri)2 (3-1b)

Note that the cost function can depend on the scheduling variables. An important question
left unanswered is; how should the structure of the LPV controller’s basis functions look like?
This question will not be answered in this thesis and it is just assumed that one can select a
proper set of basis functions. The next section will discuss the extended regressor which has
also seen success in LPV I/O system identification [8].

3-2 The Extended Regressor

In the LPV system identification literature, specifically [12], the same curse of dimensionality
was found as in IFT-LPV [11]. Both used a LPV state space model representation as their
basis. Therefore the author conjectures that using a modelling strategy from the field of LPV
I/O system identification which doesn’t suffer from the curse of dimensionality can be a viable
option. The modelling approach which will be investigated is the extended regressor. This
modelling strategy doesn’t suffer from the curse and can handle arbitrarily fast scheduling
sequences [8]. The extended regressor will now be introduced to familiarize the reader with
its notation and properties.

Definition: Extended Regressor - Control Law

The extended regressor representation is an extension of the LTI regressor representation.
One of the definitions which is important for the extended regressor is the inner product of a
matrix

< A,B >= trace(ATB) (3-2a)

Assume a control law of the following format

uk = H(µk)ek (3-2b)

The controller H(µk) is defined in Equation 3-2c. Note that the shift operator q−n is modelled
to only affect the error signal ek although this might seem ambiguous in the expression below
(as also discussed in Appendix A).

uk(µk) =
(
θ0(µk) + θ1(µk)q−1 + θ2(µk)q−2 + . . .+ θnH (µk)q−nH

)
ek(µk) (3-2c)

A single term θi is a linear combination of the multiplication of a controller parameter θji and
basis function ψj(µk) (for instance θi = θ1

i ψ1(µk) + θ2
i ψ2(µk)). Define the matrix containing

all controller parameters Θ as

Θ =


θ1

1 . . . θ
Nf
1

θ1
2 . . . θ

Nf
2

... . . .
...

θ1
n . . . θ

Nf
n

 (3-2d)
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3-2 The Extended Regressor 15

The second matrix Φk is defined in Equation 3-3e. The shift operators can be replaced with
any causal filter (based on shift operators) the only constraint is that one must be able to
write the input uk as uk =< Θ,Φk > ek.

Φk =


1
q−1

...
q−n


[
ψ1(µk) ψ2(µk) . . . ψNf (µk)

]
(3-2e)

The subscript of the basis function ψn(µk) signifies its column in the row vector. Even though
all the matrices Φk are functions of the scheduling parameter this will not be indicated for
clarity.

The incorporation of multiple scheduling variables can be achieved by adding basis functions
in the row vector dependent on another scheduling variable. The extended regressor will now
be explained using an example to understand how the recasting can be done.

Example: LPV-PI Controller

The extended regressor will now be used to re-formulate a LTI-PI to a LPV controller to help
visualize the approach. First the transformation of a LTI-PI controller into a regressor format
will be discussed. Subsequently it will be shown how to introduce LPV elements. Define the
LTI PI control law as (with ek the error signal (rk − yk))

uk =
(
Kp +Ki

Tsq
−1

1− q−1

)
ek (3-3a)

This can be written in a regressor representation as

Φk =
[

1
Tsq−1

1−q−1

] [
1
]

(3-3b)

Θ =
[
Kp

Ki

]
(3-3c)

By extending the Θ-matrix of Equation 3-3c and Φk’s row vector LPV elements can be
introduced

Φk =
[

1
Tsq−1

1−q−1

] [
1 ψ1(µk) ψ2(µk) . . . ψNf (µk)

]
(3-3d)

Θ =
[
Kp θ2

1 . . . θ
Nf
1

Ki θ2
2 . . . θ

Nf
2

]
(3-3e)

Thus by using the regressor representation the original PI controller can easily be extended
to encompass LPV behaviour.

An important note is that if a fixed structure controller structure is used wherein not all basis
functions are used by all rows of the Φk matrix (for example Kp + Tsq−1

1−q−1 (Ki + θ2
2µk))ek) then

the extend regressor can be defined as a superposition of multiple Φk matrices and the matrix
Θ;

Φk =
[

1
0

] [
1 0

]
+
[

0
Tsq−1

1−q−1

] [
1 µk

]
(3-3f)
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16 LPV-ARX Model Structure

Θ =
[
Kp 0
Ki θ2

2

]
(3-3g)

The extended regressor representation therefore allows for an intuitive transformation from a
LTI to a LPV controller.
End of Definition
For LPV system identification the extended regressor approach is able to fulfil the goals which
were formulated in Section 1-4. This leads to the following conjecture this chapter hopes to
validate:
By reformulating the optimization problem as an extended regressor problem the ensuing ma-
trix representation can be used within the IFT framework. The resulting Newton update law
can then be verified to work without suffering from the curse of dimensionality.
Mathematically this means solving the question whether we can transform the triplet of an
LPV controller, gradient experiment and a regulated LPV system into a Newton update law
of the form

Θj+1 = Θj − γif(Φk, ?) (3-4)

Observe that the function f is an, as of yet unknown, but conjectured to be a function of the
regressor matrix Φk and possibly other variables. The algorithm developed in this chapter
will be dubbed ILPVFT. In the next section the mathematical foundations will be developed
for the novel algorithm.

3-3 The Mathematical Foundations

This section details the proofs related to the extended regressor approach to IFT for a SISO
LPV system. The derivation starts from an open loop representation of the LPV plant.
Afterwards the controller and its parameterization will be defined. This controller will be
used to close the loop. Subsequently the closed loop system will be used to fully define the
cost function (whose gradient will be derived afterwards). Extensions of this result to MIMO
systems and feedforward control are discussed in Appendix B-2 and B-3. In Section 3-5 the
results will be generalized to arbitrary scheduling sequences.

Open Loop Representation

The LPV system will in open loop be defined as

yk(µk) = B(q, µk)
A(q, µk)

uk = P (q, µk)uk (3-5a)

With q the shift operator and µk the scheduling variable at time k. Define A and B as follows

A(q, µk) = 1 + a1(µk)q−1 + a2(µk)q−2 + . . .+ ana(µk)q−na (3-5b)

B(q, µk) = b0(µk) + b1(µk)q−1 + b2(µk)q−2 + . . .+ bnb(µk)q
−nb (3-5c)

The factors nb and na are equal to the amount of shift operators present in A and B, respec-
tively. Before closing the loop the controller must be defined.
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3-3 The Mathematical Foundations 17

Controller Definition

The controller parameterization will play a significant role in deriving the gradient. The con-
troller parameter matrix Θfb has the superscript fb as it pertains to the feedback controller.
The input will be defined as follows with H the LPV controller

uk = H(µk,Θfb)(rk − yk) = H(µk,Θfb)ek (3-6a)

The controller H(µk,Θfb) will be defined as

H(µk,Θfb) = (θ0(µk) + θ1(µk)q−1 + θ2(µk)q−2 + . . .+ θnH (µk)q−nH )ek (3-6b)

Or in regressor representation

uk = H(µk,Θfb)ek =< Θfb,Φk > ek (3-6c)

In the final subsection of this section a generalization will be shown from this LPV-FIR
controller to general LPV controllers. With the controller defined the loop can now be closed.

Closing The Loop

Figure 3-1: Block diagram for the closed loop SISO LPV system.

A visualisation of the closed loop LPV system is shown in Figure 3-1. The closed loop system
representation can be computed as follows

yk(µk) = B(q, µk)
A(q, µk)

uk (3-7a)

uk = H(µk,Θfb)(rk − yk) (3-7b)

yk(µk) = B(q, µk)
A(q, µk)

H(µk,Θfb)(rk − yk) (3-7c)(
1 + B(q, µk)H(µk,Θfb)

A(q, µk)

)
yk = B(q, µk)H(µk,Θfb)

A(q, µk)
rk (3-7d)

A(q, µk) +B(q, µk)H(µk,Θfb)
A(q, µk)

yk = B(q, µk)H(µk,Θfb)
A(q, µk)

rk (3-7e)

This leads to the closed loop system

yk(µk) = B(q, µk)H(µk,Θfb)
A(q, µk) +B(q, µk)H(µk,Θfb)rk (3-7f)

With the closed loop representation now known the cost function can be fully defined.
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18 LPV-ARX Model Structure

IFT Framework: Cost Function Analysis

In the previous subsection the closed loop system (Equation 3-7f) was found. This closed
loop system shows dependency of the controller parameters on the previous output(s), the
reference and (more problematically) on the scheduling variables. As shown in Equation 3-1b
the general cost function is equal to

J(Θfb) = 1
2N

N∑
i=1

(
yi(Θfb, µk)− Td(µk)ri

)2
(3-8a)

The gradient of this cost function is equal to the following expression

∂J(Θfb)
∂Θfb

= 1
N

N∑
i=1

(yi(Θfb, µi)− Td(µk)ri)
∂yi(Θfb, µi)

∂Θfb
(3-8b)

This gradient will now be evaluated using the closed loop system of Equation 3-7f.

IFT Framework: Gradient Estimation

The most important information the ILPVFT algorithm must find using the I/O data is an
estimate of the gradient of the cost function (Equation 3-8b). The gradient consists of data
known from the reference experiment (yk,rk) and the desired closed loop response (Td(µk)).
Thus the only term left to compute is ∂yk(Θfb,µk)

∂Θfb . By using Equation 3-7f it can be shown to
be equal to

∂yk(Θfb, µk)
∂Θfb

= ∂

∂Θfb

(
B(q, µk)H(µk,Θfb)

A(q, µk) +B(q, µk)H(µk,Θfb)

)
rk (3-9a)

The result of this differentiation is equal to (for the proof see Appendix B-1)

∂yk(Θfb, µk)
∂Θfb

= ∂H(µk,Θfb)
∂Θfb

B(q, µk)
A(q, µk) +B(q, µk)H(µk,Θfb)(rk − yk(µk)) (3-9b)

This is the same result as in the LTI case for IFT. However there is one property not present
in the LTI case. Namely the dependence of the output on the scheduling variables. This leads
to the following important observation;
For ILPVFT the scheduling variable should be the same in the reference and gradient experi-
ment for every time index.

The final part for estimating the gradient is finding an expression for the partial derivatives
of the controller itself. To compute the derivative of the controller the extended regressor will
be used. First rewrite the previously obtained equation by setting the output of the gradient
equal to (the superscript g indicates the gradient experiment)

ygk(Θfb, µk) = B(q, µk)
A(q, µk) +B(q, µk)H(µk,Θfb)(rk − yk(µk)) (3-9c)

This will lead to the derivative, Equation 3-9b, being rewritten in the more compact way
shown below

∂yk(Θfb, µk)
∂Θfb

= ∂H(µk,Θfb)
∂Θfb

ygk(Θfb, µk) (3-9d)
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As observed previously this can be rewritten to an extended regressor representation. With
Φk a matrix consisting of shift operators and basis functions (Section 3-2)

∂yk(Θfb, µk)
∂Θfb

= ∂trace(Θfb,Φk)
∂Θfb

ygk(Θfb, µk) (3-9e)

By using the property ∂ trace(XTB)
∂X = B

∂yk(Θfb, µk)
∂Θfb

= Φky
g
k(Θfb, µk) (3-9f)

To round up this subsection it can now be seen that the gradient of the cost function is equal
to (for an arbitrary time step k)

∂J(Θfb
k )

∂Θfb
=
(
yk(Θfb, µk)− T dk (µk)rk

) (
Φky

g
k(Θfb, µk)

)
(3-9g)

This result is the same as for the LTI case with two key differences namely the notion that
the expression is now a matrix instead of a vector and there is a dependence on the scheduling
sequence.
This result shows that by using an extended regressor modelling approach no curse of dimen-
sionality is introduced for a LPV-FIR controller. This controller type is far from the most
versatile control methodology in the arsenal of the control engineer. Thus let’s generalize the
result to a general LPV controller.

Generalization: From LPV-FIR Filters to General LPV Controllers

The penultimate step in this proof is to generalize this section’s proof for a FIR filter to a
general LPV controller. Define the general LPV controller as follows

uk(µk) = H2(µk,Θfb)ek(µk) = G(q, µk)
1 + F (q, µk)

ek(µk) (3-10a)

Define G(q, µk) and F (q, µk) as

G(q, µk) = θg0(µk) + θg1(µk)q−1 + θg2(µk)q−2 + . . .+ θgng(µk)q
−ng (3-10b)

F (q, µk) = θf1 (µk)q−1 + θf2 (µk)q−2 + . . .+ θfnf (µk)q−nf (3-10c)
Using the same parameterization as before this can be rewritten as an extended regressor

uk(µk) =< Θg,Φg
k > ek(µk)+ < Θf ,Φf

k > uk−1(µk−1) (3-10d)

Under the assumption that both Φ-matrices have the same basis function it can be rewritten
as a stacked matrix. This means that a stacking can be performed (e.g. ek and uk−1 data)
as done below

Φf,g
k =



uk−1
...

uk−nf
ek
ek−1
...

ek−ng


[
ψ1(µk) ψ2(µk) . . . ψNf (µk)

]
(3-10e)
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The stacking of the controller coefficients can be performed as

ΘH2 =



θ1
f,1 . . . θ

Nf
f,1

θ1
f,2 . . . θ

Nf
f,2

...
...

...
θ1
f,nf

. . . θ
Nf
f,nf

θ1
g,1 . . . θ

Nf
g,1

θ1
g,2 . . . θ

Nf
g,2

...
...

...
θ1
g,ng . . . θ

Nf
g,ng



(3-10f)

Thus the general LPV control problem can be rewritten in the same structure as Equation
3-9f. Although the input is now also needed, but this data is readily available from the I/O
data. There is however one remaining problem with the formulation of our control objective
(Equation 3-8a) namely that it doesn’t penalize the control input. This drawback will now
be compensated for by re-formulating the control objective.

Penalizing The Control Input

High controller inputs can be a problem due to for instance actuator saturation. This can be
compensated for by penalizing high controller inputs in the control objective itself. The new
cost function will be defined as (with a scalar λ ≥ 0)

J2(Θfb) = 1
2N

N∑
i=1

(yi(Θfb, µi)− ydi )2 + λu2
i (Θfb, µi) (3-11a)

The gradient of this cost function is equal to

J2(Θfb) = 1
N

N∑
i=1

(yi(Θfb, µi)− ydi )∂yi(Θ
fb, µi)

∂Θfb
+ λ

∂ui(Θfb, µi)
∂Θfb

uk(Θfb, µi) (3-11b)

The gradient of the first term has already been discussed extensively in this chapter. There-
fore let’s concentrate our attention to the term ∂ui

∂Θfb . The input’s (Equation 3-6b) partial
derivative is equal to

∂uk(Θfb, µk
∂Θfb

= ∂H(µk,Θfb)
∂Θfb

(rk − yk(Θfb))−H(µk,Θfb)∂yk(Θ
fb)

∂Θfb
(3-11c)

It can be seen that this partial derivative consists of data which is known from the two dedi-
cated experiments. So one can penalize higher control inputs within the estimated gradient
through usage of the I/O data from both experiments.
The final important property of linear IFT is the unbiased nature of the estimate of the gradi-
ent [10]. This result also holds, for output noise, in the ILPVFT algorithm as by vectorization
of the Θ-matrix the expression of linear IFT returns and so the same results as in [10] can
be shown to hold. The mathematical foundations regarding the ILPVFT algorithm have now
been discussed. To verify the theoretical claims of Section 3-3 a numerical case study will
now be performed.
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3-4 Case Study

In this chapter the integration of LPV control into the IFT framework has been discussed.
In the next section the mathematical foundations will be extended to general scheduling
sequences. However before this generalization is discussed a numerical verification under the
assumption of regulated scheduling sequences will be performed to verify that it works as
intended.

Case Description

The numerical example will be a SISO LPV system, which was introduced in [19]. This SISO
LPV system is defined as

xgk+1 = µkx
g
k + uk (3-12a)

yk = xgk (3-12b)

The control law will be a LPV-PI controller defined in I/O format as

uk = uk−1 + θ0(µk)(rk − yk) + θ1(µk)(rk−1 − yk−1) (3-12c)

With θi for i = 1, 0 defined as
θ0(µk) = θ0

0 + θ1
0µk (3-12d)

θ1(µk) = θ0
1 + θ1

1µk−1 (3-12e)

With the desired closed loop LPV behaviour, in state space, defined as

A(µk) =
[

−1 1
−1− (µk − µk−1) 1

]
(3-12f)

B(µk) =
[

1 + µk
1 + (µk − µk−1)

]
(3-12g)

C =
[

1 0
]

(3-12h)

D = 0 (3-12i)

Which in state space form is equal to (with the state defined as xk = [xgk, xuk ]T , with the
second state related to the input)

xk+1 = A(µk)xk +B(µk)rk (3-12j)

yk = Cxk (3-12k)

In [19] the following set of controller parameters was shown to attain the desired closed loop
behaviour precisely

θ0(µk) = θ0
0 + θ1

0µk = 1 + µk (3-12l)

θ1(µk) = θ0
1 + θ1

1µk−1 = −µk−1 (3-12m)

Therefore verifying the algorithm is equal to stating that they should converge to these optimal
values.
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Deriving the Controller Parameter Gradient

For the IFT framework the partial derivatives of the controller w.r.t. the controller parameters
are needed. As discussed in Section 3-2 the input (Equation 3-12c) needs to be rewritten to a
form wherein F (q)uk =< Θfb,Φk > ek as to fit the developed extension of the IFT framework.
Therefore let’s rewrite it using shift operators and rk − yk = ek

uk = uk−1 + θ0(µk)(rk − yk) + θ1(µk)(rk−1 − yk−1) (3-13a)

As discussed earlier the extended regressor assumes that the shift operator doesn’t operate
on the controller parameters (i.e. θji (µk)yk(µk)q−1 = θji (µk)yk−1(µk−1))

uk = ukq
−1 + θ0(µk)ek + θ1(µk)ekq−1 (3-13b)

(1− q−1)uk = (θ0(µk) + θ1(µk)) ekq−1 (3-13c)

uk = θ0(µk) + θ1(µk)q−1

1− q−1 ek = H(µk)ek (3-13d)

The partial controller derivatives are therefore equal to

∂H(µk)
∂θ0

0
= 1

1− q−1 (3-13e)

∂H(µk)
∂θ1

0
= µk

1− q−1 (3-13f)

∂H(µk)
∂θ0

1
= q−1

1− q−1 (3-13g)

∂H(µk)
∂θ1

1
= µk−1q

−1

1− q−1 (3-13h)

The extended regressor can be written as

Φk = ∂H(µk)
∂Θfb

= 1
1− q−1

[
1
0

] [
1 µk 0

]
+ q−1

1− q−1

[
0
1

] [
1 0 µk−1

]
(3-13i)

This concludes the necessary preliminary derivations, so it is time to examine the results
acquired from numerical simulations.

Results

The algorithm used the optimization parameters shown in Table 3-1. Two termination criteria
were implemented namely; a minimum gradient norm and a maximum number of iterations.
The reference signal shown in Figure 3-2 was used during the simulation.

The algorithm was tested for two initial conditions for both a deterministic and stochastic
version of the LPV system (output noise only). The first initial condition is equal to

Θ0,1 =
[

0.2 0 0
0.5 0 0

]
(3-14)
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Parameter Numerical Value
Amount of measurements N 200
Learning rate γ 0.5
Output (white) noise variance (0.1)2 (stochastic only)
Scheduling noise Not Implemented
Scheduling sequence (Dedicated) 0.4 sin(2π

N k)
Maximum number of iterations 3500
Minimum norm gradient 10−9

Hessian Identity Matrix

Table 3-1: Optimization Parameters for the ILPVFT algorithm.

Figure 3-2: Reference signal used in the reference experiment.

Initial Condition I

The outputs of interest are the performance and the controller parameters (Figures 3-3 to
3-5). For the deterministic system, Figures 3-3 and 3-4, it can be observed that the controller
parameters converge to the globally optimal parameters and the performance converges to
zero. When output noise is added the performance stabilizes around 0.02 (due to noise in
the reference experiment) but as seen in the controller parameters plot, Figure 3-5, it con-
verges to the globally optimal parameters (showing oscillatory behaviour around the optimal
parameters).

The second initial condition will now be discussed which is equal to

Θ0,2 =
[

1.5 0.1 0
0.2 0 −0.1

]
(3-15)

Initial Condition II

The same outputs as before are of interest and are shown in Figures 3-7 to 3-10 (γ was reduced
to 0.25). It can be seen that the same properties in terms of convergence and unbiasedness of
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24 LPV-ARX Model Structure

Figure 3-3: Evolution of the controller parameters per iteration when using a deterministic
system.

Figure 3-4: Evolution of the performance per iteration when using a deterministic system.

the gradient estimate are present. There is however one important property of the underlying
Newton method which was not visible in the previous example namely; no guarantee of a
decrease in the performance function. This can be seen in Figure 3-8 which shows that in the
first iterations the performance jumps from approximately 0.14 to 0.2. But as seen in Figure
3-7 the controller parameters still eventually converge to the globally optimal parameters.

The numerical results verify that the algorithm works as designed. However there is one draw-
back present in the algorithm which once solved extends its application range tremendously
namely; the need for regulated scheduling sequences. This will be done by augmenting the
gradient experiment and using a model of the plant.
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Figure 3-5: Evolution of the controller parameters per iteration when using a stochastic system.

Figure 3-6: Evolution of the performance per iteration when using a stochastic system.

3-5 Model Based Scheduling Compensation

The previous section of this chapter assumed that the scheduling sequences were regulated
as a simplification of the problem. In this section the results will be extended to arbitrary
scheduling sequences by augmenting the gradient experiment which will come at the cost of
needing a model of the plant.

The desired gradient experiment is equal to (with gk = rk − yk as derived earlier in this
chapter)

yrk(µrk) =
Np∑
i=1

pi(µrk)yrk−i +
Nb∑
j=0

bj(µrk)gk−j (3-16a)
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26 LPV-ARX Model Structure

Figure 3-7: Evolution of the controller parameters per iteration when using a deterministic
system.

Figure 3-8: Evolution of the performance per iteration when using a deterministic system (only
showing the first ten iterations).

In general the gradient experiment will be equal to

ygk(µgk) =
Np∑
i=1

pi(µgk)y
g
k−i +

Nb∑
j=0

bj(µgk)gk−j (3-16b)

Equality between both experiments (Equations 3-16a and 3-16b) is only true if µgk = µrk for
all k. Let’s now augment the gradient experiment by introducing two compensating signals
uck and f ck . The aforementioned signals should guarantee equality between the desired and
the performed gradient experiment even when the scheduling sequences are not the same.

ỹgk(µgk) =
Np∑
i=1

pi(µgk)ỹ
g
k−i +

Nb∑
j=0

bj(µgk)
(
gk−j + uck−j + f ck−j

)
(3-16c)

N. Willemstein Master of Science Thesis



3-5 Model Based Scheduling Compensation 27

Figure 3-9: Evolution of the controller parameters per iteration when using a stochastic system.

Figure 3-10: Evolution of the performance per iteration when using a stochastic system.

The input signal gk will be corrected through uck to acquire the same effect, on the dynamics,
as gk has in Equation 3-16a. For proper compensation the following equality must then hold

Nb∑
j=0

bj(µrk)gk−j =
Nb∑
j=0

bj(µgk)
(
gk−j + uck−j

)
(3-16d)

Nb∑
j=0

(
bj(µrk)− bj(µ

g
k)
)
gk−j =

Nb∑
j=0

bj(µgk)u
c
k−j (3-16e)

At time k the signal uck−i for all i > 0 have already been computed and are thus part of the
I/O data. Therefore only computation of uck is needed which leads to

b0(µgk)u
c
k =

Nb∑
j=0

(
bj(µrk)− bj(µ

g
k)
)
gk−j −

Nb∑
n=1

bj(µgk)u
c
k−n (3-16f)
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uck = 1
b0(µgk)

 Nb∑
j=0

(
bj(µrk)− bj(µ

g
k)
)
gk−j −

Nb∑
n=1

bj(µgk)u
c
k−n

 (3-16g)

By defining uck in this fashion the gradient experiment, Equation 3-16c, can be rewritten as

ỹgk(µgk) =
Np∑
i=1

pi(µgk)ỹ
g
k−i +

Nb∑
j=0

(
bj(µrk)gk−j + bj(µgk)f

c
k−j

)
(3-16h)

The second signal f ck will be used to compensate the LPV system dynamics. Let’s derive
the expression for f ck by computing the output for the time steps k = 0, 1, 2 and generalize
afterwards. For k = 0 it is assumed that the initial conditions are equal

ỹg0(µg0) = yr0(µr0) = 0 (3-16i)

Evaluation of time step k = 1 gives

ỹg1(µg1) = p1(µg1)ỹg0 + b0(µr1)g1 + b0(µg1)f c1 = b0(µr1)g1 + b0(µg1)f c1 (3-16j)

yr1(µr1) = p1(µr1)yr0 + b0(µr1)g1 = b0(µr1)g1 (3-16k)

It can be observed that equality is attained when f c1 = 0. Time step k = 2 gives

ỹg2(µg2) = p1(µg2)ỹg1 + p2(µg2)ỹg0 + b0(µr2)g2 + b1(µr2)g1 + b0(µg2)f c2 + b1(µg2)f c1 (3-16l)

This can be simplified by noting that ỹg1 = yr1, ỹ
g
0 = 0 and f c1 = 0 (as derived earlier)

ỹg2(µg2) = p1(µg2)yr1 + b0(µr2)g2 + b1(µr2)g1 + b0(µg2)f c2 (3-16m)

The output of the "correct" gradient experiment is equal to

yr2(µr2) = p1(µr2)yr1 + b0(µr2)g2 + b1(µr2)g1 (3-16n)

To acquire the equality yr2 = ỹg2 the signal f c2 must be equal to

p1(µg2)yr1 + b0(µr2)g2 + b1(µr2)g1 + b0(µg2)f c2 = p1(µr2)yr1 + b0(µr2)g2 + b1(µr2)g1 (3-16o)

p1(µg2)yr1 + b0(µg2)f c2 = p1(µr2)yr1 (3-16p)

b0(µg2)f c2 = (p1(µr2)− p1(µg2)) yr1 (3-16q)

f c2 = 1
b0(µg2) (p1(µr2)− p1(µg2)) yr1 (3-16r)

This can be generalized to

f ck = 1
b0(µgk)

Np∑
i=1

(
pi(µrk)− pi(µ

g
k)
)
yrk−i −

Nb∑
n=1

bj(µgk)f
c
k−n

 (3-16s)

Evaluating this function for Equations 3-16r and 3-16j leads to the correct results. Based on
these theoretical results the following augmented gradient experiment can be defined.
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Augmented Gradient Experiment

The arbitrarily scheduled gradient experiment can be defined as

ygk(µgk) =
Np∑
i=1

pi(µgk)y
g
k−i +

Nb∑
j=0

bj(µgk)u
ff
k−j (3-17a)

With the feedforward signal uffk set equal to

uffk = gk + uck + f ck (3-17b)

The three individual signals are defined as follows (with µrk the scheduling variable at time k
of the reference experiment)

gk = rk − yk (3-17c)

uck = 1
b0(µgk)

 Nb∑
j=0

(
bj(µrk)− bj(µ

g
k)
)
gk−j −

Nb∑
n=1

bj(µgk)u
c
k−n

 (3-17d)

f ck = 1
b0(µgk)

Np∑
i=1

(
pi(µrk)− pi(µ

g
k)
)
yrk−i −

Nb∑
n=1

bj(µgk)f
c
k−n

 (3-17e)

This augmented gradient experiment can be used for any LPV system. The author con-
jectures that qLPV systems can also be tuned in this fashion. A better analysis might be
needed to evaluate whether unwanted vibrations or other side-effects might occur in practical
applications. Because the signal uffk can be large, for example when the scheduling variable
changes from 1 to 105, which can potentially lead to actuator saturation.

Numerical Verification

In the preceding section the claim was made that compensation can be achieved by augmenting
the gradient experiment. This will now be numerically verified by comparing the controller
parameter evolution when comparing dedicated and non-dedicated scheduling. The initial
controller parameter matrix is set equal to

Θ0 =
[

0.2 0.1 0
0.1 0 −0.1

]
(3-18)

The scheduling sequence was changed to µgk = −0.4 cos
(

2π
N k
)
for the augmented gradient

experiment. All other experiments were performed with µrk = 0.4 sin
(

2π
N k
)
. The numer-

ical results are shown in Figures 3-11 and 3-12 for the augmented and dedicated gradient
experiments, respectively. Comparing both resulting controller parameters over all itera-
tions,through the use of a norm, gave a discrepancy in the order of 10−15. Thereby verifying
the claim that compensation is possible through the proposed method. In Appendix B-7
proofs are provided for the augmented gradient experiment w.r.t. the stochastic properties
and LPV MIMO systems.
The compensation method can therefore be considered a success and extends the applicability
of the ILPVFT algorithm to a much wider range of LPV systems. The question which now
remains is; can the same feat be accomplished without a model? Succeeding in this feat will
be the topic of the next chapter through the use of a lifted form of the LPV-ARX model.
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30 LPV-ARX Model Structure

Figure 3-11: Evolution of the controller parameters per iteration for the augmented gradient
experiment.

Figure 3-12: Evolution of the controller parameters per iteration for the gradient experiment
with dedicated scheduling.
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Chapter 4

Lifted LPV-ARX Model

In the previous chapter an algorithm was developed based on a LPV-ARX representation of
the system. It was shown that through the use of an extended regressor that LPV control can
be embedded in the IFT framework. Unfortunately to be able to compensate for a change
in the scheduling sequence an augmentation of the gradient experiment was necessary. This
augmentation meant that a LPV model of the plant is needed to properly compensate for the
change in scheduling sequence.

In this chapter a lifted representation of the LPV-ARX model will be used to integrate LPV
control into the IFT framework (dubbed A2S-ILPVFT ). Through the use of a lifted repre-
sentation it will be shown that a model-free integration of LPV systems is possible. The
algorithm will be developed using a factorization strategy similar to [11]. As the matrices
involved are banded (Appendix C-2) it was hoped that, when compared to [11], a less signifi-
cant curse of dimensionality would be incurred. Unfortunately the same curse will be shown
to appear for the LPV-ARX model.

The first section (4-1) will discuss the modelling of the LPV system dynamics and the math-
ematical tools needed for integrating LPV control with a lifted LPV-ARX model structure.
Through the use of the mathematical tools from the first section a new set of dedicated
experiments will be developed (4-2). This new set of experiments will be shown to need a
factorisation matrix to compensate for a change in scheduling sequence. The factorisation
matrix will be derived and analyzed in Section 4-3. Special interest will be in the dimen-
sionality of the factorisation matrix. As the dimensionality of the factorization matrix was
the source of the curse of dimensionality in [11]. The final section (4-4) of this chapter will
numerically verify the developed algorithm.

4-1 The System Dynamics & Mathematical Tools

The modelling paradigm which will be used is a lifted representation of the LPV ARX model.
This derivation will have similarities with its lifted LTI counterpart of Chapter 2. The, not
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32 Lifted LPV-ARX Model

lifted, model of the system which will be used is equal to

yk(µk) =
na∑
i=1

ai(µk)yk−i +
nb∑
j=0

bj(µk)uk−j (4-1a)

The Toeplitz structure shown in Equation 4-1b will be used (based on the LPV-ARX model).
The superscript n indicates which set of scheduling variables is used. For example if n = r it
indicates usage of reference experiment’s scheduling variables.

Y n(µn) = A(µn)Y n(µn) + B(µn)Un(µn) (4-1b)

With the matrix B as defined in Equation 4-1c (derived from the LPV-ARX model). The
matrix A is defined in a similar fashion (with a0(µk) = 0 for all k).

B(µn) =



b0(µn1 ) 0 . . . 0 0 . . . 0
b1(µn2 ) b0(µn2 ) . . . 0 0 . . . 0

... . . . . . . ...
...

...
...

bnb(µnnb) bnb−1(µnnb)
. . . b0(µnnb) 0 . . . 0

0 bnb(µnnb+1) . . . b1(µnnb+1) b0(µnnb+1) . . . 0
...

... . . . . . . . . . . . . ...
0 0 . . . . . . . . . . . . b0(µnN )


(4-1c)

The control law will be defined as (H(µn) will have a structure similar to B(µn))

Un = H(µn)(Rn − Y n(µn)) (4-1d)

Therefore the closed loop Toeplitz representation will be equal to

Y n(µn) = (A(µn)− BH(µn))Y n(µn) + BH(µn)Rn (4-1e)

To compute the gradient it must be known which matrices depend on the controller parameters
(Θ) thus let’s explicitly add this dependency

Y n(Θ, µn) = (A(µn)− BH(µn,Θ))Y n(Θ, µn) + BH(µn,Θ)Rn (4-1f)

The derivative with respect to the i’th controller parameters is equal to

∂Y n(Θ, µn)
∂θi

= (A(µn)− BH(µn,Θ)) ∂Y
n(Θ, µn)
∂θi

+ B∂H(µn,Θ)
∂θi

(Rn − Y n(Θ, µn)) (4-1g)

This can be rewritten to the variant below (with I an appropriately sized identity matrix)

∂Y n(Θ, µn)
∂θi

= (I−A(µn) + BH(µn,Θ))−1 B∂H(µn,Θ)
∂θi

(Rn − Y n(Θ, µn)) (4-1h)

The last important mathematical tool is the ability to factorize LPV Toeplitz matrices. This
factorisation must "divide" the LPV Toeplitz matrix in two matrices namely; one dependent
solely on the scheduling variables and the second filled with only scalars. It can be shown
that LPV Toeplitz matrices can, in general, be factorized as

T (µ) = M(µ)T̂ (4-1i)
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Applying this factorization to the gradient, i.e. Equation 4-1h, gives

∂Y n(Θ, µn)
∂θi

= Mn(µn)
(

(I− Â+ B̂Ĥ(Θ))−1B̂
∂H(µ,Θ)

∂θi

)
(Rn − Y n(Θ, µ)) (4-1j)

Through use of the mathematical knowledge gained in this section LPV control will be inte-
grated into the IFT framework for a lifted representation of the LPV-ARX system.

4-2 Integration into the Iterative Feedback Tuning Framework

In the previous section the mathematical tools needed for integrating LPV control into the
IFT framework have been derived. The goal of A2S-ILPVFT is estimating the gradient of
the cost function in an efficient manner. The, lifted, cost function is equal to

J(Θ) = 1
2N

(
Y r(µr,Θ)− Y d(µr)

)T (
Y r(µr,Θ)− Y d(µr)

)
(4-2a)

The gradient which must be estimated, for an arbitrary controller parameter θi, is therefore
equal to

∂J(Θ)
∂θi

= 1
N

(
Y r(µr,Θ)− Y d(µr)

)T ∂Y r(µr,Θ)
∂θi

(4-2b)

The first experiment which must be performed is the reference experiment which is defined
as

Y r = (I−A(µr) + BH(µr))−1 BH(µr)Rr (4-2c)

A visualization of the reference experiment is shown in the block diagram of Figure 4-1. After
performing the reference experiment the known I/O data will be; Rr, µr and Y r(µr).

Figure 4-1: Reference Experiment using a LPV-ARX model structure.

The correct gradient, as derived in Equation 4-1g, which must be estimated will then be (note
the explicit dependency on the reference experiment’s scheduling sequence µr!)

∂Y r(µr,Θ)
∂θi

= (A(µr)− BH(µr,Θ)) ∂Y
r(µr,Θ)
∂θi

+ B∂H(µr,Θ)
∂θi

(Rr − Y r(µr,Θ)) (4-2d)
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The feedforward input is equal to ∂H(µr,Θ)
∂θi

(Rr−Y r) which consists of known data; the partial
derivative w.r.t. one of the controller parameters is known from the controller definition and
the I/O data (Rr, µr and Y r) from the reference experiment. This experiment can, as shown
in Equation 4-1j, be factorized as

∂Y r(µr,Θ)
∂θi

= M(µr)
(

(I− Â+ B̂Ĥ(Θ))−1B̂
∂H(µr,Θ)

∂θi
(Rr − Y r(µr))

)
(4-2e)

However performing the gradient experiment with an arbitrary scheduling sequence leads to
(note the explicit dependency of the output on the different scheduling sequence µg!)

∂Y r(µg,Θ)
∂θi

= (A− BH(µg,Θ)) ∂Y
r(µg,Θ)
∂θi

+ B∂H(µr,Θ)
∂θi

(Rr − Y r(µr)) (4-2f)

The gradient experiments of Equation 4-2d and 4-2f are only equal if µg = µr. Therefore
one must compensate the output of Equation 4-2f. In Figure 4-2 the gradient experiment is
visualised. The signals, in Figure 4-2, can be equated to the following signals in Equation
4-2f ygk = ∂yk

∂θi
and uffk = ∂H(µrk,q)

∂θi
(rk − yk(µrk)).

Figure 4-2: The LPV Gradient Experiment in LPV-ARX model representation.

The gradient experiment with the scheduling sequence µg can be factorized as (the superscript
j indicates the experiment number the reason why will be apparent later on)

∂Y r,j(µg,Θ)
∂θi

= M j(µg,j)
(

(I− Â+ B̂Ĥ(Θ))−1B̂
∂H(µr,Θ)

∂θi
(Rr − Y r(µr))

)
(4-2g)

Thus by comparing the factorized gradient experiment output of Equation 4-2g with the
desired factorized gradient, i.e. Equation 4-2e, it can be seen that the left (pseudo-)inverse
of the matrix M j(µg,j) is needed (with X+ the pseudo-inverse of matrix X)

∂Y r,j(µr,Θ)
∂θi

= M(µr)
(
M(µg,j)+∂Y

r,j(µg,Θ)
∂θi

)
(4-2h)

The problem with solving this equation is that the solution is, in general, not unique when
only a single gradient experiment is performed. Because to have a unique solution to the
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equation A+b = x the matrix A must have full column rank. To solve this rank problem
define the matrix M(µg) which stacks a set of L factorization matrices M j(µg,j)

M(µg) =


M1(µg,1)
M2(µg,2)

...
ML(µg,L)

 (4-2i)

Equation 4-2h can then be rewritten to the one below with ∂Y r(µg ,Θ)
∂θi

a stacked vector

∂Y r(µr,Θ)
∂θi

= M(µr)
(
M(µg)+∂Y

r(µg,Θ)
∂θi

)
(4-2j)

To guarantee that there is only one unique solution to Equation 4-2j one needs to ensure that
the matrix M(µg) has full column rank. This rank condition can be fulfilled by performing
the gradient experiment multiple times. Under the assumption that every row is independent
this is equal to stating that the amount of rows must be at least equal to the amount of
columns.

The minimum amount of "repeated" experiments required will then be equal to (with n and
m the amount of columns and rows of the, as of yet undefined, factorization matrixM j(µg,j))

ceil
(
n

m

)
= L (4-2k)

Therefore by performing an amount of L repeated gradient experiments will ensure that
Equation 4-2j has a unique solution (under the assumption of full column rank). Thereby
compensating the outputs for the change in scheduling sequence.

An interesting observation is that this condition disappears if and only if M r(µr) = M r(µr,j)
because then (by using a property of the pseudo-inverse)

M r(µr)M j(µg,j)+M(µg,j) = M r(µr)M j(µr,j)+M j(µr,j) = M r(µr) (4-2l)

This makes factorization redundant when the scheduling sequence is the same in both exper-
iments.

One of the key advantages of linear IFT and ILPVFT (Chapter 3) is that only two experiments
need to be performed to acquire the entire gradient. In Section 2-2 it was shown that the
partial derivative w.r.t. a controller parameter, for an LTI controller, is a LTI filter. This
result was used to prove that only one gradient experiment needs to be performed.

The same approach can be used for an LPV controller when its, partial, derivative is equal
to (with ψik the scalar basis function belonging to θi)

∂H(µk,Θ)
∂θi

= Fi = Fiψ
i
k (4-2m)

The partial derivative, shown in Equation 4-2m, is a multiplication of an LTI-ARX filter Fi
and a scalar basis function ψik. An example of a controller which fulfils this criterion is the
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LPV PI controller from Section 3-2. The Toeplitz matrix of ∂H(µk,Θ)
∂θi

representation can then
be written as

∂H(µ,Θ)
∂θi

= Fi


ψ(µ1) 0 . . . 0

0 ψ(µ2) . . . 0
...

... . . . ...
0 0 . . . ψ(µN )

 = FiΨr(µ) (4-2n)

The result of Equation 4-2n can be incorporated into Equation 4-2e

∂Y r(µr,Θ)
∂θi

= Fi (I−A(µr) + BH(µr,Θ))−1 BΨg(µ)(Rr − Y r(µr,Θ)) (4-2o)

From Equation 4-2o it can be observed that only one gradient experiment per basis function
needs to be performed. This is a considerable improvement as the number of basis functions
will always be lower than or equal to the amount of controller parameters. The partial
derivative of Equation 4-2m is a general type of nonlinear controller namely an affine LPV
controller which has a form similar to

uk = (H1(q)θ1 +H2(q)θ2)ψ1(µk) +H3(q)θ3ψ2(µk) (4-2p)

For a controller of this format the amount of experiments can therefore be reduced. The
factorized gradient experiment will then look like

∂Y r(Θ, µg)
∂θi

= FiM(µg)
(
(I− Â+ B̂Ĥ(Θ))−1B̂Ψr(Rr − Y r(µr))

)
(4-2q)

When the controller derivative can’t be written in the form of Equation 4-2m then one gradient
experiment per controller parameter must be performed. The derivation in this section rely
heavily on the factorization matrix Mn(µn) however it has not yet been formally defined.
Special interest is in the dimensionality of the factorization matrix as it was the key problem
in IFT-LPV [11].

4-3 The Factorisation Matrix M(µn)

The previous section showed the integration of LPV control into the IFT framework from a
lifted I/O representation. Although one important matrices which was only slightly touched
upon is the factorisation matrix M(µn). It was observed that this matrix must have full
column rank to compute a unique solution of the gradient. The amount of columns of
M(µn) therefore directly affects the magnitude of the amount of repeated gradient exper-
iments (Equation 4-2k). This section will show that by modelling the system as a LPV-FIR
filter that the dimensionality will scale linearly.
Factorization of Equation 4-2g is needed. First re-write Equation 4-2g (for brevity) to

∂Y r(Θ, µg)
∂θi

= (I− P(µg))−1B(µg)G (4-3a)

With P(µg) = A(µg)− BH(µg,Θ) and G = ∂H(µr,Θ)
∂θi

(Rr − Y r(µr)). Unfortunately Equation
4-3a’s factorization matrix shows the same exponential increase in dimensionality as in [11]
when P(µg) 6= 0 (for the proof see Appendix C-2).
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4-3 The Factorisation Matrix M(µn) 37

For a more favourable, in terms of dimensionality, factorization a LPV-FIR filter (i.e. P(µg) =
0) is used. By modelling the system in this fashion the banded structure can be preserved
(Appendix C-2). The LPV-FIR filter will be defined as follows

yk =
Nc∑
i=0

ci(µk)gk−i (4-3b)

The amplitudes ci(µk) can then be defined as (with Nf the amount of basis functions, dji
some scalar and ψj(µk) the basis function)

ci =
Nf∑
j=0

djiψj(µk) (4-3c)

The LPV-FIR filter can now be rewritten into the form

yk =
Nc∑
i=0

Nf∑
j=0

djiψj(µk)gk−i (4-3d)

Note that the series of Equation 4-3d is finite for every time step k. Factorizing a single time
step for the input gk−i leads to

Nf∑
j=0

djiψj(µk)gk−i =
[

1 ψ1(µk) ψ2(µk) . . . ψNf (µk)
]


d0
i

d1
i
...

d
Nf
i

 gk−i (4-3e)

An extension to incorporate a second input gk−i+1 leads to

i+1∑
n=i

Nf∑
j=0

djiψj(µk)gk−n =
[

1 ψ1(µk) ψ2(µk) . . . ψNf (µk)
]


d0
i d0

i+1
d1
i d1

i+1
...

d
Nf
i d

Nf
i+1


[

gk−i
gk−i+1

]

(4-3f)
This can be written compactly as

i+1∑
n=i

Nf∑
j=0

djiψj(µk)gk−n =Mk

[
d̂i d̂i+1

] [ gk−i
gk−i+1

]
(4-3g)

The matrixM’s subscript indicates the time step which it factorizes. The variable d̂i consti-
tutes a vector containing all the amplitudes belonging to the set of amplitudes d0

i , d
1
i , ..., d

Nf
i .

This is shown in the lifted representation in Equation 4-3h (the (desired) structure Y =
M(µ)T̂G is clearly visible). Note that Y is a column vector containing the outputs (i.e.
[y1, y2, ...., yN ]T )
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Y =



M1 0 . . . 0 0 . . . 0
0 M2 . . . 0 0 . . . 0
...

... . . . ...
... . . .

...
0 0 . . . MNc 0 . . . 0
0 0 . . . 0 MNc+1 . . . 0
...

... . . .
...

... . . . ...
0 0 . . . 0 0 . . . MN





d̂0 0 . . . 0 0 . . . 0
d̂1 d̂0 . . . 0 0 . . . 0
...

... . . . ...
... . . .

...
d̂Nc d̂Nc−1 . . . d̂0 0 . . . 0

0 d̂Nc . . . d̂1 d̂0 . . . 0
...

... . . .
...

... . . . ...
0 0 . . . 0 0 . . . d̂0





g1
g2
...
gNc
gNc+1

...
gN


(4-3h)

In Equation 4-3h it can be observed that the dimensionality scales linearly using this factor-
ization. As a maximum of (Nf + 1)(Nc + 1) extra columns are added per measurement. The
linear scaling of dimensionality is a significant improvement over the exponential scaling seen
in the LPV-ARX model (Appendix C-2) or IFT-LPV.

This concludes the mathematical foundations of the A2S-ILPVFT algorithm. A proof regard-
ing the unbiasedness of the gradient estimate is provided in Appendix C-1. The final section
of this chapter will provide a numerical verification of the A2S-ILPVFT algorithm.

4-4 Case Study

In the previous sections it was shown that based on a lifted representation of the LPV-ARX
model that one can embed LPV control in the IFT framework without needing a model.
Based on the mathematical foundations the algorithm was implemented in Matlab. By using
the same LPV plant as discussed in Section 3-4 a numerical verification will be performed.
To verify whether the algorithm compensates the scheduling sequence change the following
adaption was made (dk a random number ∈ [−0.075, 0.05]):

µrk = sin
(2π
N
k

)
(4-4a)

µgk = sin
(2π
N
k

)
+ dk (4-4b)

The same initial conditions (Equations 3-14 and 3-15), reference signal (Figure 3-2) and
optimization parameters (Table 3-1) were used as in the previous chapter. The general type
of correct factorization is equal to (derived from the full factorization of a LPV-ARX model
in Appendix C-2)

i+1∑
n=i

 3∑
j=0

djiψj(µk)

 gk−n =
[

1 µk µk−1 µkµk−1 µk−2 µkµk−2 µk−1µk−2
]


d0
i d0

i+1
d1
i d1

i+1
d2
i d2

i+1
d3
i d3

i+1
d4
i d4

i+1
d5
i d5

i+1
d6
i d6

i+1


[

gk−i
gk−i+1

]

(4-4c)
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The factorization matrix was implemented as in Equation 4-6 using µk−4 through µk. The
controller as defined in Equation 3-12c is in control affine form therefore the reduced number
of experiments can be used. The filters needed were already derived in the previous chapter
in Section 3-4. The numerical results will now be discussed.

Numerical Results

The results for the initial condition of Equation 3-14 are shown in Figures 4-3 and 4-4 for a
deterministic system. It can be observed that the algorithm performs as desired as it converges
to the global optimum. In Figures 4-5 and 4-6 the stochastic system’s results are shown. It
can be noted that three of the four controller parameters converge to the, deterministically,
optimal controller parameters. However the lower right controller parameter implies a bias
as it oscillates above the, optimal, -1 value. The author conjectures that a bias might be
introduced due to the combination of the LPV-FIR filter approximation and noise. The
converged performance for the stochastic system is equal to that found in Chapter 3 implying
that the algorithms perform equally well.

In Figures 4-7 to 4-10 the same conclusions can be drawn for the numerical results for the
second initial condition (Equation 3-15). Thereby providing a numerical verification of the
algorithm working as conceived.

Figure 4-3: Evolution of the controller parameters per iteration when using a deterministic
system.

The numerical and mathematical results of this chapter and the preceding one indicate that
both algorithms work as conceived. The lifted representation has succeeded in providing a
model free integration of LPV control into the IFT framework. Unfortunately the increased
dimensionality of the problem and considerable increase in the amount of experiments makes

Master of Science Thesis N. Willemstein



40 Lifted LPV-ARX Model

Figure 4-4: Evolution of the performance per iteration when using a deterministic system.

Figure 4-5: Evolution of the controller parameters per iteration when using a stochastic system.

Figure 4-6: Evolution of the performance per iteration when using a stochastic system.
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Figure 4-7: Evolution of the controller parameters per iteration when using a deterministic
system.

Figure 4-8: Evolution of the performance per iteration when using a deterministic system.

it much less efficient than the ILPVFT algorithm (which requires two experiments and a
model of the plant).

The numerical example was not a realistic LPV system and not very challenging from a
control perspective. Therefore to conclude this thesis the final chapter will be dedicated to a
numerical case study with a realistic LPV model of a smart airfoil.
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42 Lifted LPV-ARX Model

Figure 4-9: Evolution of the controller parameters per iteration when using a stochastic system.

Figure 4-10: Evolution of the performance per iteration when using a stochastic system.
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Chapter 5

Case Study: Data-Driven Flutter
Control

Flutter is a phenomenon in the field of aero-elastic dynamics which occurs whenever the
wind speed increases beyond a threshold value. The basic explanation of flutter is that the
aerodynamic forces, which increase in conjunction with the wind speed, cancel out, or are
higher than, the internal damping of the mechanical structure. This will lead to the structure
exhibiting vibrations which can be sustained, by the aerodynamic forces, and even worsen
as long as the wind speed is beyond the threshold value. A well known example of its
destructive potential is the Tacoma Narrows Bridge which exhibited flutter and eventually
collapsed due to structural failure due to the, flutter-induced, vibrations. This makes flutter
an interesting type of LPV system as it exhibits the property of becoming unstable beyond
a certain threshold value of the scheduling variable (i.e. the wind speed). The ability to
control this phenomenon is needed for instance to accommodate for faster aircraft, in which
the relative wind speed will increase, and wind turbines (to work even in higher wind speeds
which could otherwise lead to structural failure/damage).

This case study will use a continuous time LPV model of a two-dimensional airfoil, from [12],
which exhibits flutter after a certain wind speed is exceeded. A discretized version of the
continuous time model will be used as the plant. The aforementioned modelling aspects will
be discussed in Section 5-1. In Section 5-2 the linear IFT algorithm will be used to optimize
a set of LTI controllers. This set of LTI controller will be gain scheduled and its performance
will be compared to the LPV controllers (Section 5-3).

5-1 State Space Description

The state space model for this case study and its parameters are based on a model of a smart
2-D airfoil from [12]. The continuous time LPV state space model is equal to (in Table 5-1
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the parameters are explained and their numerical values presented)
ḣ
α̇

ḧ
α̈

 = (A1 +A2V +A3V
2)


h
α

ḣ
α̇

+B3V
2β (5-1a)

[
h
]

= C1


h
α

ḣ
α̇

 (5-1b)

The states are plunge h and the pitch α (and their derivatives w.r.t. time) and the scheduling
variable V is the wind speed (in m/s). The individual state space matrices are equal to

A1 =


0 0 1 0
0 0 0 1

Iα
q1
kh

−mwxab
q1

kα
Iα
q1
ch

−mwxαb
q1

cα
−mwxαb

q1
kh

mt
q1
kα

−mwxα
q1

ch
mt
q1
cα

 (5-1c)

A2 =


0 0 0 0
0 0 0 0
0 0 Iα

q1
q2 + mwxαb

q1
q4

Iα
q1
q2q6 + mwxαb

q1
q4q6

0 0 −mt
q1
q4 − mwxαb

q1
q2

−mt
q1
q4q6 + mwxαb

q1
q2q6

 (5-1d)

A3 =


0 0 0 0
0 0 0 0
0 Iα

q1
q2 + mwxαb

q1
q4 0 0

0 −mt
q1
q4 − mwxαb

q1
q2 0 0

 (5-1e)

B3 =


0
0

Iα
q1
q3 + mwxαb

q1
q5

−mt
q1
q5 − mwxαb

q1
q3

 (5-1f)

C1 =
[

1 0 0 0
]

(5-1g)

The only variables left to define are qi for i = 1, 2, 3, 4, 5, 6 which can be defined as

q1 = −mtIα +m2
wx

2
αb

2 (5-2a)

q2 = ρbspclα (5-2b)

q3 = ρbclβsp (5-2c)

q4 = ρb2spcmα (5-2d)

q5 = ρb2cmβsp (5-2e)

q6 = (0.5− α) b (5-2f)
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Variable Meaning Value
β Control Surface Deflection n/a
b Semi-chord of the wind 0.135 m
kh,kα Thickness coefficients of plunge and pitch 2844.4 & 3.84 N/m
ch,cα Damping coefficients of plunge and pitch 27.43 & 0.036 Ns/m
cmα,clα Lift and moment coefficient per angle of attack -1.1599 & 6.28
cmβ,clβ Lift and moment coefficient per control surface deflection -0.635 & 3.358
mw,mt Wing mass & Total mass 2.049 & 12.387 kg
Iα Moment of Inertia 0.0558 kgm2

ρ The air density 1.225 kg/m3

a Non-dimensionalized distance from the midchord to the elastic axis -0.6847
xα Non-dimensionalized distance of the center of mass 0.3314
sp Span 1 m
Ts Sampling time 0.08 s

Table 5-1: Numerical values of parameters and their physical meaning.

This fully defines the continuous time LPV state space system for the 2D smart airfoil which
exhibits flutter. A discretization of the LPV model can be computed using [12]

Ad(V, V 2,
1
V
, . . .) =

(
I + Ts

2 A(V, V 2)
)(

I− Ts
2 A(V, V 2)

)−1
(5-3a)

Bd(V, V 2,
1
V
, . . .) =

√
Ts

(
I− Ts

2 A(V, V 2)
)−1

B(V 2) (5-3b)

Cd(V, V 2,
1
V
, . . .) =

√
TsC

(
I− Ts

2 A(V, V 2)
)−1

(5-3c)

Dd(V, V 2,
1
V
, . . .) = Ts

2 C
(

I− Ts
2 A(V, V 2)

)−1
B(V 2) (5-3d)

This case study will use the discrete time LPV model as the LPV plant which must be
controlled and for which the LTI/LPV controller should be optimized. The next section
will derive the optimal controllers for multiple LTI plants, i.e. the scheduling variable is kept
constant. This will lead to a set of LTI controller which will be gain scheduled as a benchmark
for the LPV controllers of Section 5-3.

5-2 Linear Time Invariant Control

The original linear IFT algorithm, as conceived by Hjalmarsson, allows for the optimization of
LTI controllers. If the scheduling sequence encompasses all the linear plants, i.e. all possible
scheduling variables, during the experiment then a robust LTI controller will be acquired for
all the individually linear plants [20]. This property of linear IFT will not be made use of in
this chapter instead the optimization will revolve around optimizing LTI controllers for a set
of wind speeds. By gain scheduling these LTI controllers a benchmark for the LPV controllers

Master of Science Thesis N. Willemstein



46 Case Study: Data-Driven Flutter Control

Variable Value
Initial Controller [θP , θI , θD] = [−4,−3, 1]
Learning rate γ 0.5
Hessian Identity matrix
Amount of measurements 200
Noise None
Minimum performance decrease 10−6

Table 5-2: Numerical values used during the optimization of the LTI controllers.

of Section 5-3 will be obtained. In the ideal case the LPV controllers will reach performance
levels comparable to the optimal, gain scheduled, LTI controllers.

The set of wind speeds for which the LTI controllers will be optimized are V = 5, 7, 9 and 11
m/s. By defining the set in this manner one can compare the wind speeds from 4 to 12 m/s as
one will have a new optimized LTI controller per 2 m/s. The desired closed loop performance,
i.e. the cost function, will be equal to

ydk = 1
q2

0.0305q + 0.027
q2 − 1.6346q + 0.6921rk (5-4)

The input will be defined as

uk =
(
θP + 1

1− q−1 θI + (1− q−1)θD
)
ek (5-5)

The important numerical parameters used during optimization are defined in Table 5-2. The
optimization results of the performance versus iterations for the LTI plants are shown in Figure
5-1. It can be seen that all four controller have attained considerably better performance than
their respective initial controllers had. Convergence can be observed for all the individual
LTI controllers.

The second point of interest is how well the LTI controllers perform over the entire spectrum
of 4 to 12 m/s (Figure 5-2). The optimal LPV controllers should, in the ideal case, reach
comparable performance. Figure 5-2 shows that comparable performance over the entire
spectrum of wind speeds is attained. Although a slight decreasing trend can be observed for
increasing wind speeds.

The final point of interest is how the optimal LTI controller parameters evolve for increas-
ing wind speeds. This knowledge gives insight in the optimal structure which can achieve
comparable performance over the entire spectrum of wind speeds (Figure 5-3). As to be able
to predict how well the fixed structure, i.e. θ0 + θ1µk, of the next section will perform. It
can be seen that the linear structure is not optimal but comparable performance should be
possible for a subset of wind speeds. However due to the nonlinear relation present in all
controller parameters the LPV controller will not attain comparable performance throughout
the spectrum of 4 to 12 m/s.

This section has shown that gain scheduled LTI controller can attain decent performance
throughout the entire spectrum of wind speeds. But the question that we want to answer is;
are the novel algorithms are capable of attaining approximately the same performance?
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Figure 5-1: Performance versus iteration for the LTI controller for the set of wind speeds.

Figure 5-2: Performance of the optimized LTI controllers throughout the entire spectrum of wind
speeds.
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Figure 5-3: Controller parameters versus wind speed based on the optimal LTI controllers.

5-3 Linear Parameter Varying Control

This thesis has primarily been concerned with extending the applicability of the IFT frame-
work from merely LTI control to LPV control. Due to the inherent gain scheduled nature of
LPV controllers the performance, in terms of amount of experiments, of the IFT framework
is improved in the following fashion:

The time spent on tuning, through use of the IFT framework, is significantly reduced as
instead of optimizing an LTI controller for a set of wind speeds one only needs to optimize
a single LPV controller. If the underlying structure of the LPV controller is also optimal
than the performance of the gain scheduled LTI controllers can be comparable for the entire
scheduling space.

Unfortunately as observed in the previous section the structure of the LPV controller (i.e.
θ0 + θ1) will not be able to fit the optimal LTI controller parameters throughout the entire
spectrum of wind speeds. So even though a gain scheduled controller is acquired after one
run of the IFT framework, comparable performance throughout the entire scheduling space
will not be possible.

The terms of the LPV controller will be defined as (based on an LPV variant of Equation
5-5)

θp(µk) = θ0
P + θ1

PKµk (5-6)

With K a scalar, equal to 1/8, which allows for a better scaling of the scheduling dependent
parameters’ gradients (see Appendix D-2). The other terms, i.e. θi and θd, are defined
similarly. The scheduling sequence used for the ILPVFT algorithm and the A2S-ILPVFT’s
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reference experiment will be
µk = 8 + 3 sin

(2π
N
k

)
(5-7)

In the A2S-ILPVFT’s gradient experiment it is set to (with φk and dk two random numbers
in the intervals [-0.1,0.5] and [-0.5,0], respectively)

µk = 8 + 3 sin
(2π
N
k + φk

)
+ dk (5-8)

Other parameters which are relevant for the IFT framework are defined in Table 5-3. The
factorization was kept the same as in Chapter 4. Four initial controllers were used as defined
below (sorted by row as θP , θI , θD)

Θfb,1
0 =

 0 0
0 0
0 0

 (5-9)

Θfb,2
0 =

 −3 0
−4 0
1 0

 (5-10)

Θfb,3
0 =

 1.5 0.1
0.2 −0.1
0 0

 (5-11)

Θfb,4
0 =

 1.5 0
0 −1
−1 1

 (5-12)

The performance evolution per iteration is shown in Figure 5-4 for two initial controllers (for
both algorithms). Figure 5-4 shows that the algorithms are capable of optimizing the LPV
controllers in a fashion such that overall performance increase can be observed.
The non-smooth behaviour in the A2S-ILPVFT algorithms’ performance evolution, Figure
5-4, was introduced due to the low order of the LPV-FIR filter. The low order approximation
created problems which caused the gradient estimate to, in some iterations, become too large
which subsequently could destabilize the algorithm. To filter out this problem a Gauss-Newton
approximation of the Hessian was used per controller parameter as follows

(θji )new = (θji )old − γ

( ∂J
∂θji

)2

+ 1

−1
∂J

∂θji
(5-13)

This update law prevented large steps whereas small steps are nearly unaffected (as the
Hessian is then approximately 1).

Three of the four initial controller parameters showed a similar nature when comparing their
optimal controller parameters (for the ILPVFT algorithm). The two least similar, per the
Euclidean norm, optimal controller parameters are shown in Equation 5-14 and 5-15. Because
they are not alike it is implied that the cost function exhibits a non-convex behaviour. The
other two initial controller parameters gave results very similar to the optimal parameters
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shown in Equation 5-14. The optimal controller parameters obtained by the A2S-ILPVFT
algorithm show more dissimilarity between each other as seen in Equations 5-16 and 5-17.
But interestingly Figure 5-4 indicates that both algorithms perform comparably well in terms
of performance.

Θfb,4
ILPV FT =

 −5.11109735263185 −7.95010262164501
−11.8006151598837 −7.74308950227149
−4.69744545968179 −3.85602810050835

 (5-14)

Θfb,2
ILPV FT =

 −7.98371858658402 −6.04379075838753
−13.9406274629084 −5.22520566037331
−2.27334166957201 −4.31601239432479

 (5-15)

Θfb,4
A2S =

 −9.63242421157763 −2.15890532442709
−13.662715507876 −4.52094326744164
−8.51924305931301 −0.243746506361507

 (5-16)

Θfb,2
A2S =

 −11.6294361786087 −1.43912142979108
−16.4632911618522 −1.37865655083784
−5.16249047024916 −1.12323217325337

 (5-17)

Figure 5-4: Performance Versus Iteration for two initial controllers, upper: ILPVFT and lower:
A2S-ILPVFT.

The performance over the entire spectrum of wind speed for both the LPV and the LTI
controllers are shown in Figures 5-5 and 5-6 for ILPVFT and A2S-ILPVFT, respectively. The
author conjectures that altering the internal structure of the LPV controller could improve the
optimal performance of the LPV controllers possibly making them viable. Unfortunately the

N. Willemstein Master of Science Thesis



5-3 Linear Parameter Varying Control 51

Variable A2S− ILPVFT ILPVFT
Amount of Measurements 200 200
Learning rate γ 1 0.2
Maximum number of iterations 10000 n/a
Minimum cost function decrease n/a1 10−6

Hessian Approximation Gauss-Newton Identity Matrix
Regularization Identity matrix n/a

Table 5-3: Optimization Parameters for the A2S-ILPVFT and ILPVFT algorithms of Section
5-3.

chosen structure of the LPV controllers is only capable of near LTI performance for ≈ 7− 9.5
m/s as elsewhere the LPV controller is not comparable to the gain scheduled LTI controllers.
However an improvement is notable as instead of a quadratic degradation of the performance
a slower decline is visible. Figures 5-5 and 5-6 also allow us to conclude that none of the
LPV controllers are capable of stabilizing the unstable region (observe the rapid performance
decrease when approaching 12 m/s).

Figure 5-5: Performance versus Wind speed (5 to 11 m/s) for linear IFT & ILPVFT.

The numerical results indicate that the algorithms are both capable of tuning a LPV con-
troller even for realistic LPV systems. The main problem which has arisen is the effect of
the internal structure of the LPV controller. If this hurdle could be solved only then it might
become possible for the LPV controller to acquire comparable performance to its gain sched-
uled LTI counterpart throughout the entire spectrum of wind speeds. Additionally it might
make it possible to stabilize the unstable region which did not occur for this structure.
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52 Case Study: Data-Driven Flutter Control

Figure 5-6: Performance versus Wind speed (5 to 12 m/s) for linear IFT & A2S-ILPVFT.

The combination of the numerical results (this chapter) and the mathematical derivations
(Chapters 3 & 4) will now be used to see whether the goal set in Section 1-4 has been
fulfilled.
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Chapter 6

Conclusions & Recommendations

This thesis has presented the mathematical foundations for extending the applicability of
the IFT framework to LPV control. Two algorithms were developed based on I/O LPV
model structures. The first was based on a LPV-ARX model and the second on a lifted
representation of the LPV-ARX system.

Both were shown to be capable of handling any scheduling sequence for general LPV systems
(including MIMO LPV system and both degrees of controller freedom). However both suffered
from distinct disadvantages. The ILPVFT algorithm (Chapter 3) needs a model of the plant
to compensate for a change in scheduling sequence, whereas the A2S-ILPVFT algorithm
(Chapter 4) needs a lot of experiments due to the curse of dimensionality.

The goal of the thesis was to extend the applicability of the IFT framework to LPV control.
In addition the goal was to develop an algorithm which can handle arbitrarily fast scheduling
without suffering from the curse of dimensionality. It can be concluded from the above
paragraph that the ILPVFT algorithm succeeds in accomplishing all the aforementioned
goals. The drawback is that the identification of a LPV model is required to compensate for
a change in scheduling sequence.

Through a case study regarding the control of a smart airfoil a comparison of the optimal
performance of LPV (novel algorithms) and gain scheduled LTI (linear IFT) controllers was
made. The fixed LPV controller structure which was assumed was unable to fit the nonlinear
relation underlying the controller parameters’ relation with the scheduling variable. Because
of this structural bias the optimal LPV controllers were only able to have performance com-
parable to the gain scheduled LTI controllers for a small subset of wind speeds. It can be
concluded that the algorithms are capable of optimizing LPV controllers for realistic LPV
systems. However the case study was inconclusive to whether an optimally structured LPV
controller would have been able to reach comparable performance for the entire spectrum of
wind speeds.

It can be concluded that the algorithms work as designed but without the optimization of
the LPV structure the acquired optimal LPV controllers will, in general, not perform as well
as gain scheduled LTI controllers. Especially the ILPVFT algorithm shows potential of being

Master of Science Thesis N. Willemstein



54 Conclusions & Recommendations

a viable choice for extending the IFT framework to LPV control as it is able to handle any
scheduling sequence without suffering from the curse of dimensionality. The author’s personal
recommendations will now be stated which could benefit the algorithms.

Recommendations

As seen in the previous chapters LPV control can be embedded into the IFT framework.
Unfortunately either an accurate model (Chapter 3) or a large amount of experiments (Chap-
ter 4) is needed. Therefore a more efficient integration of LPV control might be possible
which suffers from neither problem. The following points of interest are subjects which, in
the author’s opinion, could make the algorithms (more) viable:

1. Performance Function: An improvement would be a performance function formulated
as a convex optimization problem (for instance an LMI). This will guarantee global
optimality and makes multi-start unnecessary.

2. Structural bias: The structure of the LPV controllers, in Chapter 5, was not based on
any specific property of the system nor control objective. Incorporating methods to
optimize the structure could increase performance. The author conjectures that the
solution might be found through the combination of the ILPVFT algorithm and radial
basis functions (which are capable of approximating any function [21]).

3. Constraints: Often in industrial applications certain safety requirements must be met,
for example an overshoot of less than 5%. Currently the original framework has been
shown to be able to incorporate constraints [22]. Extending this capability to LPV
control can for instance guarantee stability throughout the optimization process. This
was already shown to be possible for LTI systems [15]. The author conjectures that
through the use of LMI’s and the use of penalty functions (Appendix D-3) an efficient
implementation can be achieved.

4. Scheduling Noise: The question remains whether scheduling noise would introduce a
bias into the gradient estimate.

5. Efficient Factorization: A more efficient factorization method might make the algorithm
of Chapter 4 viable.

6. Effects of model mismatch: Section 3-5 showed that by augmenting the gradient experi-
ment an extension to arbitrary scheduling sequences is possible. However an unanswered
question is how model mismatches affect the gradient estimate.
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Appendix A

LPV Modelling Paradigms

The goal of this appendix is to introduce two LPV modelling paradigms which are used in
this thesis.

LPV systems can be considered a set of gain scheduled linear systems. When the scheduling
variable doesn’t vary in time, i.e. µk = µ for all k, then a LPV systems reduces to a LTI
system. Therefore LTI systems can be considered a special case of LPV systems. Due to
the inherent gain scheduled nature the class of LPV systems can be considered a class of
nonlinear systems.

The first modelling paradigm which will be discussed is the LPV state space representation.

LPV State Space Representation

LPV state space matrices can be defined as

A(µk) = A0 +
Nf∑
i=1

Aiψi(µk) (A-1a)

In Equation A-1a the function ψi(µk) is a basis function. This basis function produces a scalar
value for example; µk or (µk)2. These basis functions can be considered a set of functions
which together form the gain scheduling underlying the LPV system. The total set is assumed
to consist of Nf basis functions.

B(µk) = B0 +
Nf∑
i=1

Biψi(µk) (A-1b)

The C(µk) and D(µk) matrices are defined in a similar fashion. These matrices can be used
to construct a LPV state space system defined as

xk+1 = A(µk)xk + B(µk)uk (A-1c)
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yk = C(µk)xk +D(µk)uk (A-1d)

From Equation A-1d it can be observed that when µk = µ the LPV system will reduce to a
LTI system. This makes LPV state space systems an intuitive extension of LTI state space
systems.

The second major type of LPV modelling paradigms is the LPV-ARX model structure which
will be defined next.

The LPV-ARX Model

Another common way of modelling LPV systems is using an LPV-ARX model structure which
can be defined as

yk(µk) =
na∑
i=1
−ai(µk)yk−i +

nb∑
j=0

bj(µk)uk−j (A-2a)

It can be observed that the LPV-ARX model reduces to a LTI-ARX model only when µk = µ
for all k. The variables bj and ai are defined as linear combinations

ai(µk) = a0
i + a1

iψ1(µk) + a2
iψ2(µk) + . . .+ a

Nf
i ψNf (µk) (A-2b)

bi(µk) = b0i + b1iψ1(µk) + b2iψ2(µk) + . . .+ b
Nf
i ψNf (µk) (A-2c)

Equation A-2a can be condensed into the following shorthand notation which replaces the
summation signs through the use of shift operators (i.e. q)

yk(µk) = B(q, µk)
A(q, µk)

uk (A-2d)

Define A(q, µk) and B(q, µk) as

A(q, µk) = 1 + a1(µk)q−1 + a2(µk)q−2 + . . .+ ana(µk)q−na (A-2e)

B(q, µk) = b0(µk) + b1(µk)q−1 + b2(µk)q−2 + . . .+ bnb(µk)q
−nb (A-2f)

Although this notation is used in for example [8] it should be pointed out that the shift
operator becomes ambiguous as a(µk)yk(µk)q−1 could be solved as either; a(µk)yk−1(µk−1)
or a(µk−1)yk(µk).

Throughout this thesis the shift operator will be modelled as only operating on the output
yk(µk):

a(µk)yk(µk)q−1 = a(µk)yk−1(µk−1) (A-2g)

Another modelling approach encountered in the literature are quasi-LPV (qLPV) systems
which approximate general nonlinear systems as LPV systems. This is done by setting the
scheduling variable equal to a part of the state. An example of a qLPV system is a robotic
manipulator in which the scheduling variable is set equal to the position [1]. For a more
in-depth treatment of qLPV systems the reader is referred to [3].
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Appendix B

Proofs: ILPVFT

This appendix contains proofs related to the ILPVFT algorithm of Chapter 3. These proof
were omitted in the chapter itself to preserve clarity. In this appendix proofs are provided
which show the gradient estimation, omitted in Section 3-3, and the extension of the algorithm
to; MIMO systems, feedforward control, gradient experiments with a non-zero reference signal
and related to the augmented gradient experiment (Section B-1 to B-5).

B-1 Gradient Estimation: Feedback Control

To estimate the gradient for the feedback controller the following derivative must be evaluated
(Section 3-3)

∂yk(Θfb, µk)
∂Θfb

= ∂

∂Θfb

(
B(q, µk)H(µk,Θfb)

A(q, µk) +B(q, µk)H(µk,Θfb)

)
rk (B-1a)

This differentiation will be evaluated by using the quotient rule for derivatives. With Q1 and
Q2 the to be calculated derivatives as per the quotient rule.

∂

∂Θfb

B(q, µk)H(µk,Θfb)
A(q, µk) +B(q, µk)H(µk,Θfb)rk = Q1 −Q2

(A(q, µk) +B(q, µk)H(µk,Θfb))2 rk (B-1b)

The first term Q1 is computed in Equation B-1d. In this case B(q, µk) acts as a scalar due
to it not being dependent on Θfb which allows for the simplification

∂H(µk,Θfb)B(q, µk)
∂Θfb

= ∂H(µk,Θfb)
∂Θfb

B(q, µk) + ∂B(q, µk)
∂Θfb

H(µk,Θfb) = ∂H(µk,Θfb)
∂Θfb

B(q, µk)
(B-1c)

Thus Q1 can be written as

Q1 = ∂B(q, µk)H(µk,Θfb)
∂Θfb

(
A(q, µk) +B(q, µk)H(µk,Θfb)

)
(B-1d)
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Q1 = ∂H(µk,Θfb)
∂Θfb

B(q, µk)
(
A(q, µk) +B(q, µk)H(µk,Θfb)

)
(B-1e)

The second term Q2 is equal to

Q2 = ∂(A(q, µk) +B(q, µk)H(µk,Θfb))
∂Θfb

B(q, µk)H(µk,Θfb) (B-1f)

By observing that ∂A(q,µk)
∂Θfb = 0

Q2 = ∂H(µk,Θfb)
∂Θfb

B(q, µk)H(µk,Θfb)B(q, µk) (B-1g)

The terms of Equation B-1e and B-1g seem unrelated to any experiment. However one can
acquire a dedicated experiment by filling them into Equation B-1b. The term Q1 gives

Q1
(A(q, µk) +B(q, µk)H(µk,Θfb))2 rk = ∂H(µk,Θfb)

∂Θfb

B(q, µk)(A(q, µk) +B(q, µk)H(µk,Θfb))
(A(q, µk) +B(q, µk)H(µk,Θfb))2 rk

(B-1h)
Q1

(A(q, µk) +B(q, µk)H(µk,Θfb))2 rk = ∂H(µk,Θfb)
∂Θfb

B(q, µk)
A(q, µk) +B(q, µk)H(µk,Θfb)rk (B-1i)

The second part involving Q2 can be evaluated as

−Q2
(A(q, µk) +B(q, µk)H(µk,Θfb))2 rk = −∂H(µk,Θfb)

∂Θfb

B(q, µk)H(µk,Θfb)B(q, µk)
(A(q, µk) +B(q, µk)H(µk,Θfb))2 rk

(B-1j)
This equation can be rewritten, as per the original LTI derivation [10], through use of

yk(µk) = B(q, µk)H(µk,Θfb)
A(q, µk) +B(q, µk)H(µk,Θfb)rk (B-1k)

This definition of yk(µk) can be used to rewrite Equation B-1j to

−Q2
(A(q, µk) +B(q, µk)H(µk,Θfb))2 rk = −∂H(µk,Θfb)

∂Θfb

B(q, µk)
A(q, µk) +B(q, µk)H(µk,Θfb)yk(µk)

(B-1l)
Thus to estimate the gradient the following experiment must be performed

∂yk(Θfb, µk)
∂Θfb

= ∂H(µk,Θfb)
∂Θfb

B(q, µk)
A(q, µk) +B(q, µk)H(µk,Θfb)(rk − yk(µk)) (B-1m)

B-2 Multi-Input Multi-Output Systems

Chapter 3 has shown that the ILPVFT algorithm doesn’t suffer from the curse of dimen-
sionality for SISO LPV systems. This section will generalize the result of Chapter 3 to LPV
MIMO systems with any amount of controllers and sensors. This proof will show that a
strategy present in the literature for LTI MIMO systems, see for example [23], also works for
LPV MIMO systems. The general cost function for MIMO system is equal to

J(Θfb) = 1
2N

N∑
k=1

(Yk − TdY d
k )TWk(Yk − TdY d

k ) (B-2a)
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In Equation B-2a the column vectors Yk are Y d
k are stackings of all the acquired and de-

sired outputs, respectively. The matrix W is a positive definite matrix which allows for the
weighting of the different outputs at time step k. The general parameterization for the MIMO
controller is shown below (for a system with two in- and outputs)

H(Θfb, µk) =
[
H11(Θfb

11, µk) H21(Θfb
21, µk)

H12(Θfb
12, µk) H22(Θfb

22, µk)

]
(B-2b)

These controllers are, as seen in equation B-2b, all parameterized by their own controller
coefficient parameter matrix Θfb

ij . The controller Hij is the controller from output yi to input
uj . The controller Hij will be referred to as a controller block. This parameterization of the
controller can be visualized using the block diagram of Figure B-1 (for simplicity the reference
is not shown in this block diagram).

Figure B-1: Block diagram of the MIMO controller parameterization.

In [23] it was shown that, for LTI systems, one reference experiment is sufficient for both
MIMO and SISO systems. The main difference is due to the amount of gradient experiment.
For SISO systems one gradient experiment must be performed to acquire the gradient w.r.t.
every controller parameter whereas MIMO systems need one gradient experiment per con-
troller block [10][23]. This result for LTI MIMO systems will be extended to LPV systems.
The MIMO LPV system will be modelled as (for a plant with two inputs)

Yk =
[
G11 G12 Gff1
G21 G22 Gff2

] u1
k(µk)
u2
k(µk)
uffk

 = G(µk, q)
[
Uk(µk)
uffk

]
(B-2c)

Uk(µk) = H(µk,Θfb)(Rk − Yk) (B-2d)

The parameterization of the MIMO controller into independently parameterized controller
blocks (Figure B-1) allows us to transform the LPV system into a "new" plant for an arbitrary
controller block Hij

yik = Ĝ(µk, q)
[
ujk(µk)
uff,ijk

]
(B-2e)

ujk(µk) = Hij(µk,Θfb
ij )(rijk − y

i
k) (B-2f)
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The "new" plant Ĝ(µk, q) is equal to the interconnection of the plant G(µk, q) and all controller
blocks except the controller block Hij . This transforms the LPV MIMO gradient estimation
problem to an equivalent LPV SISO gradient estimation problem for controller block Hij .

Therefore to obtain an estimate of the gradient for controller block Hij one must perform the
gradient experiment with all references set to zero and uff,ijk = rik− yik. Afterwards to obtain
the gradient of every controller parameter in the controller block matrix Θfb

ij one merely needs
to perform the appropriate filtering. Therefore to acquire the gradient for every controller
block one must perform the gradient experiment (of Equation B-2e) per controller block.

So the amount of experiments needed increases to 1 +Ncb with Ncb the amount of controller
blocks. The ILPVFT algorithm therefore shows a linear nature in terms of experiments for
MIMO systems.

The A2S-ILPVFT algorithm of Chapter 4 shows a slightly different nature. If the condition
of Equation 4-2n is fulfilled then one has N ij

f gradient experiments extra for controller block
ij (with N ij

f the amount of different basis functions). When this condition is not fulfilled the
amount of extra experiments for controller block ij is equal to N ij

c (with N ij
c the amount of

controller parameters).

B-3 LPV Feedforward Control

The IFT framework can also be used to tune feedforward controllers as shown in [24]. This
section will show that LPV feedforward control is also possible albeit with a slight twist. The
block diagram of the feedforward control problem is shown in Figure B-2.

Figure B-2: Block diagram for the two degree of freedom LPV control plant.

This section will be focused solely on optimizing the LPV feedforward controller

uffk = K(µk,Θff )rk (B-3a)

The feedforward control law K(µ,Θff ) will be defined as

K(q, µk) =
(
θff0 (µk) + θff1 (µk)q−1 + θff2 (µk)q−2 + . . .+ θffnK (µk)q−nK

)
rk (B-3b)

In regressor representation it can be defined as

K(q, µk) =< Θff ,Φ > rk (B-3c)
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The purpose of the feedforward controller is improving tracking performance therefore its cost
function can be defined as

J(Θff ) = 1
2N

N∑
i=1

(
ri − yi(Θff , µi)

)2
= 1

2N

N∑
i=1

(
ei(Θff , µi)

)2
(B-3d)

An important equation is the relation between the tracking error ek and the reference rk

ek(Θff , µk) = 1− P (q, µk)K(µk,Θff )
1− P (q, µk)H(q, µk)

rk (B-3e)

The gradient of Equation B-3d is equal to

∂J(Θff )
∂Θff

= 1
N

N∑
i=1

ei(Θff , µk)
∂ei(Θff , µk)

∂Θff
(B-3f)

Thus we need a way to estimate ∂e(Θff ,µk)
∂Θff . For this estimation let’s use Equation B-3e and

use the quotient rule

∂ek(Θff , µk)
∂Θff

= Q1 −Q2
(1− P (q, µk)H(q, µk))2 rk (B-3g)

The term Q2 drops out, but the term Q1 will not be equal to zero

Q2 = ∂ (1− P (q, µk)H(q, µk))
∂Θff

(
1− P (q, µk)K(µk,Θff )

)
= 0 (B-3h)

Q1 =
∂
(
1− P (q, µk)K(µk,Θff )

)
∂Θff

(1− P (q, µk)H(q, µk)) (B-3i)

Q1 = −∂K(µk,Θff )
∂Θff

P (q, µk)(1− P (q, µk)H(q, µk)) (B-3j)

Filling this into Equation B-3g and simplifying gives

∂ek(Θff , µk)
∂Θff

= −∂K(µk,Θff )
∂Θff

P (q, µk)
1− P (q, µk)H(q, µk)

rk (B-3k)

This result implies that a second experiment is necessary. However by multiplying with the,
known, term H(q,µk)+K(µk,Θff )

H(q,µk)+K(µk,Θff ) = 1 as proposed in [24] leads to

∂ek(Θff , µ)
∂Θff

= −∂K(µk,Θff )
∂Θff

H(q, µk) +K(µk,Θff )
H(q, µk) +K(µk,Θff )

P (q, µk)
1− P (q, µk)H(q, µk)

rk (B-3l)

∂ek(Θff , µk)
∂Θff

= −∂K(µk,Θff )
∂Θff

1
H(q, µk) +K(µk,Θff )

P (q, µk)(H(q, µk) +K(µk,Θff ))
1− P (q, µk)H(q, µk)

rk

(B-3m)
Through use of the closed loop system, Equation B-3n, it can be observed that Equation
B-3m can be rewritten as a mixture of I/O data and a scaling as shown in Equation B-3o

yk(Θff , µk) = P (q, µk)(H(q, µk) +K(q, µk,Θff ))
1− P (q, µk)H(q, µk)

rk (B-3n)
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∂ek(Θff , µk)
∂Θff

= −∂K(µk,Θff )
∂Θff

1
H(q, µk) +K(µk,Θff )yk(Θ

ff , µk) (B-3o)

This can be rewritten using the extended regressor representation and ∂trace(XTB)
∂X = B

−∂ek(Θ
ff , µk)

∂Θff
= < Θff ,Φk >

∂Θff

1
H(q, µk) +K(µk,Θff )yk(Θ

ff , µk) = Φ
( 1
H(q, µk) +K(µk,Θff )yk(Θ

ff , µk)
)

(B-3p)
Therefore only the reference experiment must be performed to estimate the gradient

∂J(Θff )
∂Θff

= ek(Θff , µk)Φ
( 1
H(q, µk) +K(µk,Θff )yk(Θ

ff , µk)
)

(B-3q)

B-4 Gradient Experiment with rgk 6= 0

The results of Chapter 3 show that two experiments must be performed with the gradient
experiment equal to

ygk(Θfb, µk) = B(q, µk)
A(q, µk) +B(q, µk)H(µk,Θfb)(rk − yk(µk)) (B-4a)

It might not be possible to perform the gradient experiment with the reference set to zero.
In that case the gradient experiment which is performed is equal to

ỹgk(Θfb, µk) = B(q, µk)
A(q, µk) +B(q, µk)H(µk,Θfb)(rk− yk(µk)) + B(q, µk)H(µk,Θfb)

A(q, µk) +B(q, µk)H(µk,Θfb)r
g
k

(B-4b)
This experiment can be considered a "corrupted" gradient experiment and can be rewritten
to

ỹgk(Θfb, µk) = ygk(Θfb, µk) + B(q, µk)H(µk,Θfb)
A(q, µk) +B(q, µk)H(µk,Θfb)r

g
k (B-4c)

If the equality rgk = rk holds then the "corruption" is equal to the reference experiment (see
Chapter 3). One might then be tempted to use the equality

ygk(Θfb, µk) = ỹgk(Θfb, µk)− yk(Θfb, µk) (B-4d)

In a deterministic system this would be an appropriate compensation. Unfortunately in a
stochastic system one would acquire (with vgk and vrk the output noise in the gradient and
reference experiment respectively)

ŷgk(Θfb, µk) = ỹgk(Θfb, µk) + vgk − yk(Θ
fb, µk)− vrk (B-4e)

This will introduce a bias into the gradient estimate as shown below (the bias test is based
on [10])

E
[
∂Ĵ(Θfb)
∂Θfb

]
= 1
N

(
E
[
N∑
i=1

(yi(Θfb, µi)− ydi )∂yi(Θ
fb, µk)

∂Θfb

]
+ E

[
N∑
i=1

(yi(Θfb, µi)− ydi )δi(Θfb)
])

(B-4f)
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Which when considering that vrk is now also present in the gradient experiment’s noise, per
Equation B-4f, we acquire (with qv 6= 0)

E
[
∂Ĵ(Θfb)
∂Θfb

]
= ∂J(Θfb)

∂Θfb
+ qv (B-4g)

Therefore the "simple" solution, of Equation B-4d, makes the gradient estimate biased. The
proper solution (i.e. which preserves unbiasedness) to this problem is performing a third
experiment, namely;

ytk(Θfb, µk) = B(q, µk)H(µk,Θfb)
A(q, µk) +B(q, µk)H(µk,Θfb)r

g
k (B-4h)

Then by filling in Equation B-4e as before (but now with vtk the third experiments’ noise)

ygk(Θfb, µk) = ỹgk(Θfb, µk) + vgk − y
t
k(Θfb, µk)− vtk (B-4i)

Now if one assumes that the noise is not correlated between the three experiments then the
unbiasedness property returns. This can be seen by again using equation B-4f as the starting
point but now with no correlation between the gradient estimate and the reference experiment

E
[
∂Ĵ(Θfb)
∂Θfb

]
= ∂J(Θfb)

∂Θfb
+ 1
N

E
[
N∑
i=1

(yi(Θfb, µi)− ydi )
]
E
[
δi(Θfb)

]
(B-4j)

Which if one assumes zero mean white noise gives

E
[
∂Ĵ(Θfb)
∂Θfb

]
= ∂J(Θfb)

∂Θfb
+ 0 (B-4k)

Therefore the conclusion which can be drawn is;
If the gradient experiment needs to be performed with a reference unequal to zero. Then to
preserve unbiasedness a third experiment needs to performed.

B-5 Model-Based Compensation: Stochastic Properties & MIMO
Systems

Noisy Gradient Estimates

A key advantage of the IFT framework (and the ILPVFT extension) is the unbiased nature
of the gradient estimate. This section will provide a proof which will show that the unbi-
ased nature is preserved for the augmented gradient experiment. The augmented gradient
experiment with output noise can be defined as

ŷgk(µgk) =
Np∑
i=1

pi(µgk)y
g
k−i −

Nc∑
n=0

cj(µgk)vk−j +
Nb∑
j=0

bj(µgk)u
ff
k−j (B-5a)
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Note the addition of the, zero mean, white noise term vk. The term cj(µg) represents the
controller gains with c0(µg) = −1 (which models ŷk = yk + vk). The feedforward signal uffk
is equal to

uffk = gk + uck + f ck (B-5b)

The three aforementioned individual signals are defined as in Equation B-5c. The noise of
the reference experiment vrk is assumed to be independent from the noise in the gradient
experiment vk.

gk = rk − yk − vrk (B-5c)

uck = 1
b0(µgk)

 Nb∑
j=0

(
bj(µrk)− bj(µ

g
k)
)
gk−j −

Nb∑
n=1

bj(µgk)u
c
k−n

 (B-5d)

f ck = 1
b0(µgk)

Np∑
i=1

(
pi(µrk)− pi(µ

g
k)
)
ŷrk−i −

Nb∑
n=1

bj(µgk)f
c
k−n

 (B-5e)

In the preceding equations (B-5a to B-5e) it is implied that one can ignore gk and uck to draw
conclusions w.r.t. the bias as those signals are not dependent on vk. This conjecture will now
be verified in a more formal setting.

The initial conditions are set equal to

yg0 = yr0 = 0 (B-6a)

Evaluation for the first time step k = 1 gives

ŷg1(µg1) = p1(µg1)yg0 − c0(µg1)v1 + b0(µr1)g1 + b0(µg1)f c1 (B-6b)

This can be rewritten by using Equation B-5a and the notion that c0(µk) = −1 and f c1 = 0
(see Section 3-5)

ŷg1(µg1) = v1 + b0(µr1)g1 (B-6c)

The correct stochastic output is equal to

ŷr1(µr1) = v1 + b0(µr1)g1 (B-6d)

One can therefore conclude that the outputs are equal for k = 1. However it will now be
shown that this doesn’t hold for k ≥ 2

ŷg2(µg2) = p1(µg2)yg1 − c
g
0(µg2)v2 − cg1(µg2)v1 + b0(µr2)g1 + b0(µg2)f c2 (B-6e)

ŷg2(µg2) = p1(µr2)yr1 + v2 − cg1(µg2)v1 + b0(µr2)g1 + (p1(µr2)− p1(µg2)) v1 (B-6f)

ŷr2(µr2) = p1(µr2)yr1 − c
g
1(µr1)v1 + v2 + b0(µr2)g2 + b1(µr2)g1 (B-6g)

It is easy to see that ŷr2(µr2) 6= ŷg2(µg2). Although one can make the observation that ŷg2(µg2) is
a noisy estimate of ŷr2(µr2). The unbiased nature will be proven by showing that the expected
values of the compensated and real gradient experiment are equal

E [ŷr2(µr2)] = E [p1(µr2)yr1 − c
g
1(µr1)v1 + v2 + b0(µr2)g2 + b1(µr2)g1] (B-6h)
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Through use of the additive property of the expected value: E[x+ y] = E[x] + E[y]

E [ŷr2(µr2)] = E [p1(µr2)yr1 + b0(µr2)g2 + b1(µr2)g1] + E [−cg1(µr1)v1 + v2] (B-6i)

Assuming that the scheduling variable and the output noise are not correlated (i.e. E[xy] =
E[x]E[y]) and usage of the definition of yr2 leads to

E [ŷr2(µr2)] = yr2(µr2) + E [−cg1(µr1)] E[v1] + E[v2] (B-6j)

By the assumption that vk is zero mean white noise

E [ŷr2(µr2)] = yr2(µr2) + 0 (B-6k)

For the compensated gradient experiment it can be written as

E [ŷg2(µg2)] = E [p1(µr2)yr1 + v2 − cg1(µg2)v1 + b0(µr2)g1 + (p1(µr2)− p1(µg2)) v1] (B-6l)

This can be rewritten by again using the additive property of the expected value function

E [ŷg2(µg2)] = E [p1(µr2)yr1 + b0(µr2)g2 + b1(µr2)g1] + E [−cg1(µr2)v1 + v2 + (p1(µr2)− p1(µg2)) v1]
(B-6m)

The first important observation is that the first term is the definition of yr2 (see Section 3-5).
Then under the assumption that the scheduling variable and output noise are uncorrelated

E [ŷg2(µg2)] = yr2(µr2) + E [−cg1(µr1)− p1(µg2)] E[v1] + E[v2] (B-6n)

By the assumption that vk is zero mean white noise gives

E [ŷg2(µg2)] = yr2(µr2) + 0 (B-6o)

Therefore the expected values of both signals are equal. So the unbiasedness property is also
present for the augmented gradient experiment. This can be generalized to an arbitrary time
step by noting that by the definition of f ck one never multiplies two noise terms but only scale
them with terms associated with the dynamics.

For practical applications it should be noted that the noise does increase in magnitude (com-
pare Equation B-6f and B-6g). This can be taken into account by either increasing the SNR
and/or the amount of measurements. A numerical verification is provided in Figure B-3
which shows that, for the same LPV system and optimization parameters as in Section 3-5,
convergence to the optimal values is again visible (for a zero mean white noise with a variance
of (0.2)2).

Multi-input Multi-Output Systems

For the augmented gradient experiment one needs to compensate the LPV system dynamics.
In a SISO system this means adapting through the only input the system has, but in a MIMO
system compensation of every output must be achieved through a set of inputs. Deriving an
expression for the compensation signal for LPV MIMO systems is the subject of this section.

The LPV-ARX model structure will be used for deriving an expression of the two compen-
sating signal vectors (i.e. U ck and F ck). The MIMO LPV-ARX model for the desired gradient
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66 Proofs: ILPVFT

Figure B-3: Evolution of the controller parameters per iteration for the compensated stochastic
gradient experiment.

experiment is shown below in Equation B-7a with ny outputs and nu inputs. In Equation
B-7a the notation is as follows; bold capital letters are matrices, non-bold capital letters are
vectors. The sizes of the vectors and matrices are; Y r,n

k ∈ Rny and Gnk ∈ Rnu , Bi(µrk) and
Pj(µrk) are respectively ny-by-nu and ny-by-ny matrices.

Y r,n
k (µrk) =

Np∑
j=1

Pj(µrk)Y
r,n
k−j +

Nb∑
i=0

Bi(µrk)Gnk−i (B-7a)

The superscript n indicates the controller block n whose gradient experiment is performed
(see Appendix B-2). It will be assumed that the system is fully actuated and B0(µrk) (i.e.
ny = nu) is invertible for all µk. The signal Gnk is defined as a zero vector except for the n’th
row which is defined as

{Gnk}n = rnk − ynk (B-7b)

The superscripts in the above definition refers to the n’th controller block’s reference and
output signal of the reference experiment. The compensated gradient experiment will be
defined as

Y g,n
k (µgk) =

Np∑
j=1

Pj(µgk)Y
g,n
k−j +

Nb∑
i=0

Bi(µgk)U
ff,n
k−i (B-7c)

The compensation signal Uff,nk is a superposition of three signals (of which Gnk was already
defined in Equation B-7b)

Uff,nk = Gnk + U c,nk + F c,nk (B-7d)

A method similar to the derivation of the compensation signal in Section 3-5 will be used,
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therefore let’s start with U c,nk

Nb∑
i=0

Bi(µrk)Gnk−i =
Nb∑
i=0

Bi(µgk)
(
Gnk−i + U c,nk−i

)
(B-7e)

Solving for U c,nk gives

B0(µgk)U
c,n
k =

Nb∑
i=0

(
Bi(µrk)−Bi(µgk)

)
Gnk−i −

Nb∑
i=1

Bi(µgk)U
c,n
k−i (B-7f)

U c,nk = B−1
0 (µgk)

Nb∑
i=0

(
Bi(µrk)−Bi(µgk)

)
Gnk−i −

Nb∑
i=1

Bi(µgk)U
c,n
k−i

 (B-7g)

Equation B-7g shows why B0(µgk) was assumed to be invertible. By introducing the definition
of U c,nk in the compensated gradient experiment one acquires

Y g,n
k (µgk) =

Np∑
j=1

Pj(µgk)Y
g,n
k−j +

Nb∑
i=0

(
Bi(µrk)Gnk−i + Bi(µgk)F

c,n
k−i

)
(B-7h)

The following equality should hold to ensure proper compensation

Y r,n
k (µrk) = Y g,n

k (µgk) (B-7i)

Np∑
j=1

Pj(µrk)Y
r,n
k−j+

Nb∑
i=0

Bi(µrk)Gnk−i =
Np∑
j=1

Pj(µgk)Y
g,n
k−j+

Nb∑
i=0

(
Bi(µrk)Gnk−i + Bi(µgk)F

c,n
k−i

)
(B-7j)

Np∑
j=1

Pj(µrk)Y
r,n
k−j =

Np∑
j=1

Pj(µgk)Y
g,n
k−j +

Nb∑
i=0

Bi(µgk)F
c,n
k−i (B-7k)

The results of Section 3-5 for LPV SISO systems imply that the following equality will hold;
Y g,n
k−j = Y r,n

k−j for j ≥ 1. Therefore the problem can be written as follows (while preserving
generality)

Np∑
j=1

Pj(µrk)Y
r,n
k−j =

Np∑
j=1

Pj(µgk)Y
r,n
k−j +

Nb∑
i=0

Bi(µgk)F
c,n
k−i (B-7l)

B0(µgk)F
c,n
k =

Np∑
j=1

(
Pj(µrk)−Pj(µgk)

)
Y r,n
k−j −

Nb∑
i=1

Bi(µgk)F
c,n
k−i (B-7m)

The signal F ck is therefore equal to

F c,nk = B−1
0 (µgk)

Np∑
j=1

(
Pj(µrk)−Pj(µgk)

)
Y r,n
k−j −

Nb∑
i=1

Bi(µgk)F
c,n
k−i

 (B-7n)

To sum it up the augmented gradient experiment for general LPV systems will be defined.
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Augmented Generalized Gradient Experiment

For an arbitrarily scheduled LPV system (with an arbitrary amount of inputs and outputs)
the augmented gradient experiment is equal to

Y g,n
k (µgk) =

Np∑
j=1

Pj(µgk)Y
g,n
k−j +

Nb∑
i=0

Bi(µgk)U
ff,n
k−i (B-8a)

The compensation signal Uff,nk is built up of three individual signals

Uff,nk = Gnk + U c,nk + F c,nk (B-8b)

The signal Gnk is defined as a zero vector except for the n’th row which is equal to

{Gnk}n = rnk − ynk (B-8c)

The other two signals are defined as

U c,nk = B−1
0 (µgk)

Nb∑
i=0

(
Bi(µrk)−Bi(µgk)

)
Gnk−i −

Nb∑
i=1

Bi(µgk)U
c,n
k−i

 (B-8d)

F c,nk = B−1
0 (µgk)

Np∑
j=1

(
Pj(µrk)−Pj(µgk)

)
Y r,n
k−j −

Nb∑
i=1

Bi(µgk)F
c,n
k−i

 (B-8e)

This will now be generalized for the three different degrees of actuation.

Generalization: Different Degrees of Actuation

There are different levels of actuation in MIMO systems namely; under-actuated (ny > nu),
fully actuated (ny = nu) and over-actuated (ny < nu). Due to the need for matrix inversion
in the computation of the compensation signals this is of interest as the matrices in both the
over- and under-actuated matrices are not square (as it is defined as a ny-by-nu matrix). The
inversion problem can be handled as follows:

• Under-actuated
In the under-actuated case the matrix B0 will have more rows than columns. In the
case wherein the matrix has full column rank the unique minimum norm solution can
be found (pseudo-inverse). Else a subset of input channels must be chosen which have
full column rank.

• Fully actuated
The matrix B0 will be square. If the matrix is non-singular the inverse can be used else
a subset much be chosen which has full column rank (pseudo inverse).

• Over-actuated
The process of ignoring of some input channels must be performed as the matrix can
never have column rank (as nu > ny). After acquiring full column rank a (pseudo-
)inverse can be performed to compute the compensation signals.
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Appendix C

Proofs: A2S-ILPVFT

This appendix contains proofs related to Chapter 4 which were omitted to retain clarity.
The proofs contained in this appendix are; the bias of the gradient estimate (C-1) and the
factorization of the LPV-ARX model (C-2).

C-1 The Bias of the Gradient Estimate

The IFT framework, for LTI control, had the property of providing an unbiased estimate
of the gradient for zero mean white output noise. This meant that some nice properties
from stochastic gradient descent theory are inherited by the linear IFT framework [10]. If the
unbiasedness also exists in the A2S-ILPVFT algorithm it will also inherit the same, beneficial,
properties.
The first, and only, type of noise which will be examined is output noise. Assume that the
output of the LPV system is equal to Y + V with V as a vector consisting of a stacking of
a zero mean Gaussian white noise signal. Then the following Toeplitz representation can be
used

Ỹ r = (A(µr)− BH(µr)) Ỹ r + BH(µr)(Rr − V r) (C-1a)
The partial derivative with respect to one of the controller parameters then becomes

∂Ỹ r(µr,Θ)
∂θi

= (A(µr)− BH(µr,Θ)) ∂Ỹ
r(µr,Θ)
∂θi

+B∂H(µr,Θ)
∂θi

(Rr−V r− Ỹ r(µr,Θ)) (C-1b)

The gradient experiment itself will be corrupted with output noise and thus the (noisy)
gradient experiment will be equal to

∂Ŷ r(µg,Θ)
∂θi

= G(µg)∂Ŷ
r(µg,Θ)
∂θi

+B∂H(µr,Θ)
∂θi

(Rr−V r− Ỹ r(µr,Θ))+BH(µg,Θ)V g (C-1c)

For brevity the following term was condensed: A(µg) − BH(µg,Θ) = G(µg). For simplicity
let’s rewrite the equation above to

∂Ŷ r(µg,Θ)
∂θi

= P(µg,Θ) + BH(µg,Θ)V g (C-1d)
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As derived in Chapter 4 a pseudo-inverse must be used. Therefore the gradient which will be
obtained is equal to

∂Ỹ r(µr,Θ)
∂θi

= M(µr)
(
M(µg)+∂Ỹ

r(µg,Θ)
∂θi

)
(C-1e)

Filling in the results of Equation C-1d

∂Ỹ r(µr,Θ)
∂θi

= M(µr)
(
M(µg)+(P(µg,Θ) + B̂Ĥ(µg,Θ)V g)

)
(C-1f)

The noise will be replaced by the following scaled variant of the noise (for brevity)

V g
2 = M(µr)

(
M(µg)+B̂Ĥ(µg,Θ)V g

)
(C-1g)

Let’s examine whether bias is introduced by V g
2

E
[
∂Ĵ

∂θi

]
= E

[
(Ỹ − Y d)T ∂Ỹ

∂θi

]
(C-1h)

E
[
∂Ĵ

∂θi

]
= E

[
(Ỹ − Y d)T

(
M(µr)

(
M(µg)+P(µg,Θ)

))]
+ E

[
(Ỹ − Y d)TV g

2

]
(C-1i)

Under the assumption that the output noise of the gradient experiment is uncorrelated with
both the state and scheduling variables

E
[
∂Ĵ

∂θi

]
= ∂J

∂θi
+ E

[
(Ỹ − Y d)

]T
E [V g

2 ] (C-1j)

The expected value of the right hand term, i.e. E [V g
2 ], is equal to zero as seen below

E[M(µg)+V g] = E[M(µg)+]E[V g] = E[M(µg)+]0 = 0 (C-1k)

Therefore the gradient is unbiased as

E
[
∂Ĵ

∂θi

]
= ∂J

∂θi
+ 0 (C-1l)

Thus the gradient estimate is unbiased for zero mean white output noise. For a more
general disturbance the author conjectures that the method described in [11] would work. So
the output noise itself will not introduce a bias into the system however what about a noise
source which is not present in LTI systems/control namely; scheduling noise? This will not
be examined in this thesis and will remain an open question.

C-2 Factorization of The LPV-ARX Model

In Section 4-3 it was stated that Equation C-2a suffers from the same curse of dimensionality
as the LPV state space approach of [11], this statement will now be proven. The results of
Section 4-2 indicate that one must factorize the equation shown below

∂Y r(Θ, µg)
∂θi

= (I−A(µg) + BH(µg,Θ))−1B(µg)∂H(µr,Θ)
∂θi

(Rr − Y r(µr)) (C-2a)
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The factorization should be of the following format

T (µ) = M(µ)T̂ (C-2b)

For this proof Equation C-2a will first be rewritten to (for brevity)
∂Y r(Θ, µg)

∂θi
= (I− P(µg))−1B(µg)∂H(µr,Θ)

∂θi
(Rr − Y r(µr)) (C-2c)

The matrices B and P will be defined as follows

B(µ) =



b0(µ1) 0 . . . 0 0 0 0
b1(µ2) b0(µ2) . . . 0 0 0 0

... . . . . . . ...
...

...
...

bnb(µnb+1) bnb−1(µnb+1) . . . b0(µnb+1) 0 . . . 0

0 bnb(µnb+2) . . . b1(µnb+2) b0(µnb+2) . . . 0
...

... . . . . . . . . . . . . ...
0 0 . . . bnb(µN ) . . . b1(µN ) b0(µN )


(C-2d)

P(µ) =



0 0 . . . 0 0 0 0
p1(µ2) 0 . . . 0 0 0 0

... . . . . . . ...
...

...
...

pnp(µnp+1) pnp−1(µnp+1) . . . 0 0 . . . 0

0 pnp(µnp+2) . . . p1(µnp+2) 0 . . . 0
...

... . . . . . . . . . . . . ...
0 0 . . . pnp(µN ) . . . p1(µN ) 0


(C-2e)

The inversion is the main source of problems, because as shown in Equation C-2f it changes
the structure of the matrix from a banded matrix to lower triangular matrix (for simplicity
the case for 4 measurements is written below with pi(µk) = 0 for i ≥ 3)

(I−P(µg))−1 =


1 0 0 0

p1(µ2) 1 0 0
p1(µ2)p1(µ3) + p2(µ3) p1(µ3) 1 0

p1(µ2)p1(µ3)p1(µ4) + p1(µ2)p2(µ4) + p2(µ3)p1(µ4) p1(µ3)p1(µ4) + p2(µ4) p1(µ4) 1


(C-2f)

An interesting feature is the fact that every column has the same structure. Therefore for
the remainder of this section only the first column will be considered. Because of the similar
structure between columns this will still lead to a result which can be generalized.
One could add rows, and thus measurements, indefinitely while the lower triangular structure
persists. A notable exception is the case wherein P(µk) = 0, i.e. a LPV-FIR filter, for all
k as then one inverts the identity matrix. To verify that when P(µk) 6= 0 that the banded
structure doesn’t return (after inversion). Consider the case wherein pi(µk) = 0 for i 6= 1.
Then Equation C-2f becomes

(I− P(µg))−1 =


1 0 0 0

p1(µ2) 1 0 0
p1(µ2)p1(µ3) p1(µ3) 1 0

p1(µ2)p1(µ3)p1(µ4) p1(µ3)p1(µ4) p1(µ4) 1

 (C-2g)
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One can intuitively verify that the lower triangular structure will persist and not revert back
to a banded matrix. If one now computes the remaining matrix multiplication of Equation
C-2f for the first column only

(I− P(µg))−1B(µg) =

 b0(µ1)
b1(µ2) + b0(µ1)p1(µ2)

b1(µ2)p1(µ3) + b0(µ1) (p2(µ3) + p1(µ2)p1(µ3))

 (C-2h)

To proof that the factorization suffers from the curse of dimensionality, as in [11], let’s assume
that the LPV system has the affine form equal to pi = p0

i + p1
iµk. Then for k = 1 one can

factorize Equation C-2h as follows

b0(µ1) = b00 + b10µ1 =
[

1 µ1
] [ b00

b10

]
(C-2i)

Time step k = 2 gives

b1(µ2)+b0(µ1)p1(µ2) = b01+b11µ2+(b00+b10µ1)(p0
1+p1

1µ2) =
[

1 µ1 µ2 µ1µ2
] 

b00p
0
1 + b01
b10p

0
1

b00p
1
1 + b11
b10p

1
1


(C-2j)

For time step k = 3

b1(µ2)p1(µ3) + b0(µ1)(p2(µ3) + p1(µ2)p1(µ3)) (C-2k)

(b01 + b11µ2)(p0
1 + p1

1µ3) + (b00 + b10µ1)
(
(p0

2 + p1
2µ3) + (p0

1 + p1
1µ2)(p0

1 + p1
1µ3)

)
(C-2l)

This can be factorized as

[
1 µ1 µ2 µ1µ2 µ3 µ1µ3 µ2µ3 µ1µ2µ3

]


b01p
0
1 + b00(p0

2 + p0
1p

0
1)

b10(p0
1p

0
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1
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1
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1
1


(C-2m)

This is the same exponential increase in dimensionality as seen in [11]. Therefore one can
conclude that the LPV-ARX and LPV state space model structures both suffer from the
same curse of dimensionality. So this modelling approach can be concluded to be infeasible
for circumventing the curse of dimensionality. However Equation C-2f does imply that using
a LPV-FIR filter might be a better alternative (i.e. P(µg) = 0).
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Appendix D

Optimization Theory & Iterative
Feedback Tuning

This appendix discusses general properties/ideas from optimization theory which are relevant
when using the IFT framework. Three relevant properties of interest will be discussed namely;
the initial value (D-1), the importance of scaling (D-2) and constraints (D-3).

D-1 Initial Controller

The initial controller is of significant importance to whether the algorithm fails, i.e. diverges,
or succeeds. The divergence, or failure, can be attributed to the combination of the IFT
framework and the Newton method. Luckily only two properties carry significance namely;

1. The initial controller must stabilize the closed loop [10].

2. The Newton method can diverge if the initial value is not in the neighbourhood of a
local minimum and the step length parameter γi be set appropriately [16].

The first property is, in the author’s opinion, not really a drawback. Because performing
experiments in closed loop when the plant is unstable is not really an option (due to potential
damage to the machine). Besides the damage argument results in the literature indicate that
the IFT framework will in, general, fail in such a situation [10].
The second property can be a problem but is inherent to the Newton method and should be
considered a word of caution.

D-2 Gradient Scaling

A proper scaling of the gradient is required to mitigate the difference in magnitude of the
different controller parameters (for a general discussion on scaling the reader is referred to

Master of Science Thesis N. Willemstein



74 Optimization Theory & Iterative Feedback Tuning

[16]). One method to directly scale the gradient is by scaling the reference signal. This can
be seen by looking at Equation D-1a (the LTI gradient experiment for time step k)

∂yk(Θ)
∂θi

= (1−A+BH(Θ))−1B
∂H(Θ)
∂θi

(rk − yk(Θ)) (D-1a)

If one would now scale the reference signal by a factor α the gradient experiment becomes
(note that the discussion is about LTI systems so yk will also scale with α)

∂yk,2(Θ)
∂θi

= (1−A+BH(Θ))−1B
∂H(Θ)
∂θi

α(rk − yk(Θ)) (D-1b)

It is easy to see that one has scaled the original gradient, of Equation D-1a, by the same
factor α

α
∂yk(Θ)
∂θi

= (1−A+BH(Θ))−1B
∂H(Θ)
∂θi

α(rk − yk(Θ)) (D-1c)

One problem which was present in the flutter system was the badly scaled nature of the cost
function for both algorithms. This problem can most intuitively be seen from the extended
regressor representation of the gradient (Chapter 3). Take for example the extended regressor
defined as

Φky
g
k = ygk

[
1
q−1

] [
1 µk

]
(D-1d)

The gradient is then equal to

∂J(Θ)
∂θi

= (yk − ydk)
[

ygk ygkµk
ygk−1 ygk−1µk

]
(D-1e)

Note that besides the influence of the difference between the desired and current output
signals signal that the gradient signal is also scaled by the basis function.

This observation poses a key issue as the inherent scaling can cause problems if, for instance,
|µk| >>1 for all k. The gradient of the controller parameters related to the basis functions of
the scheduling variable will then be much larger than those of the time-invariant controller
parameters. Unfortunately this might not be an accurate description of the proper gradient.
With a proper gradient defined as a gradient which is unaffected by the underlying signal
magnitudes and is thus proper ly corrected for the different scales of the controller parameters.

In my simulations of the flutter model this was compensated by scaling with a factor of 1
8

to let the scheduling variable vary between 5
8 (for a wind speed of 5 m/s) and 11

8 (11 m/s).
However the author does admit that the implementation could possibly be improved by using
a smarter scaling method.

D-3 Constraints

An important aspect of optimization problems in real applications is the addition of con-
straints. Examples of constraints in control systems are; the physical limitations of actuators
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(uk ≤ umax) or related to safety (for example an overshoot lower than 10%). The constrained
optimization problem can be formulated as

minΘfb J(Θfb) = minΘfb
1
N

N∑
i=1

(yi(Θfb)− ydi )2 (D-2a)

Under the constraints
h(Θfb) = 0 (D-2b)

g(Θfb) ≤ 0 (D-2c)

The constraints h(Θfb) and g(Θfb) are, respectively, the equality and inequality constraints.
It has been shown that the original IFT framework, for LTI systems has, can incorporate
constraints. Examples in the literature include; stability constraints as in [15] and robustness
constraints, related to prevention of machine damage, as in [22].

The general approach to implementing constraints in the IFT framework is transforming the
optimization problem of Equation D-2a to D-2c into an unconstrained optimization problem.
As an example the transformation of a constrained optimization problem will be performed
using penalty functions (based on [22]). Only inequality constraints will be considered in this
example.

minΘfb J̃(Θfb) = J(Θfb) + Jg(Θfb) (D-3a)

With J(Θfb) as in equation D-2a and Jg(Θfb) is a penalty function based on Equation D-2c
(with α a positive real number)

Jg(Θfb) = α

2 φ(g)g(Θfb)2 (D-3b)

With φ(g) = 0 if g ≤ 0 and φ(g) = 1 otherwise (i.e. only active when it is exceeded).

An important note is that one should have a model available to evaluate these constraints.
Therefore adding constraints does mean that IFT becomes a model-based, or rather model
dependent, method. The gradient of the transformed cost function (Equation D-3a) is equal
to

∂J̃(Θfb)
∂Θfb

= ∂J(Θfb)
∂Θfb

+ ∂Jg(Θfb)
∂Θfb

(D-4a)

The first term (i.e. ∂J(Θfb)
∂Θfb ) can be acquired using the dedicated experiments as discussed in

Chapter 2. The gradient ∂Jg(Θfb)
∂Θfb can be evaluated to be

∂Jg(Θfb)
∂Θfb

= αφ(g)g(Θfb)
(
φ(g)∂g(Θfb)

∂Θfb
+ g(Θfb) ∂φ(g)

∂g(Θfb)
∂g(Θfb)
∂Θfb

)
(D-4b)

This can be simplified by noting that ∂φ(g)
∂g(Θfb) = 0 (as shown in [22])

∂Jg(Θfb)
∂Θfb

= αφ2(g)g(Θfb)∂g(Θfb)
∂Θfb

(D-4c)

Computing the gradient of D-4c can be done through, for example, finite difference approxi-
mations of the derivative using an identified model of the plant.
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Although the addition of constraints is as of yet limited to LTI systems the author conjectures
that one can achieve the addition of constraints to LPV control in the IFT framework by
implementing them as LMIs. The addition of constraints will not be developed in this thesis
but LMIs, and their wide range of applicability for LPV systems and control, make them a
prime candidate [2][3].

The author conjectures that combining LMIs with the penalty transformation as described
in this section could allow for the addition of constraints in the developed algorithms. Note
that although LMIs are inherently matrices one can use the determinant to acquire a scalar
output from the constraints as needed for the, scalar, cost function.
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