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Facial 3D data acquisition in critically ill =
children for production of personalized non-
invasive ventilation masks: a feasibility study

Rosemijne R.W. P Pigmans'?", Lyé Goto®, Rens Wientjes*, Dick G. Markhorst', Job B. M. van Woensel'?,
Michael A. Gaytant®, Toon Huysmans®, Coen D. Dijkman® and Reinout A. Bem'

Abstract

Background Non-invasive ventilation is commonly used to support critically ill children with acute respiratory failure
in the pediatric intensive care unit. However, non-invasive ventilation treatment is often hindered by poorly fitting
masks due to limited commercially available options. Personalized non-invasive ventilation masks are a promising
solution, yet research on the feasibility of their production in real-world clinical settings, particularly regarding facial
data acquisition, remains limited. This study aims to assess the feasibility of using a handheld 3D scanner for facial data
acquisition in critically ill children admitted to the pediatric intensive care unit.

Methods In this single-center pediatric intensive care unit feasibility study, facial 3D data was obtained from children
(age 0-18 years) receiving non-invasive respiratory support for acute respiratory failure, using a handheld 3D scanner.
Feasibility outcomes included the scan process and quality factors. Scan quality was evaluated based on scan errors
and removed movement frames. Facial 3D data acquisition was defined as feasible if >80% of patients had a complete
scan whereof >90% frames had a scan error <0.5.

Results We included 33 patients with a median (IQR) age of 2.0 (1.0-16.0) months. Full facial 3D data could be
acquired within a short scanning period of 30 s, which did not induce patient clinical deterioration, with a success rate
of 31 (94%) usable scans with good quality (98% good frames).

Conclusion Our results show that facial data acquisition using a handheld 3D scanner is feasible in critically ill
children receiving non-invasive respiratory support in the pediatric intensive care unit. These findings are essential for
developing and implementing a workflow process for personalized non-invasive ventilation masks for children with
acute respiratory failure.
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Background

Non-invasive ventilation (NIV) is a frequently used treat-
ment in critically ill children with acute respiratory fail-
ure admitted to the pediatric intensive care unit (PICU)
[1, 2]. Yet, NIV in this setting is not always successful,
necessitating intubation and invasive mechanical ventila-
tion which is associated with additional harm [3, 4]. One
of the major challenges of pediatric NIV, contributing
to treatment failure, is obtaining a properly fitting inter-
face [5, 6]. Commercially available pediatric NIV masks
are currently limited in sizes and dimensions, posing
an important risk factor for NIV failure, particularly in
young children and those with specific facial features. To
overcome this challenge, mask personalization is believed
to be a promising future approach to improve pediatric
NIV efficiency [5-13].

Several studies have investigated the assembly and/or
performance of personalized masks for children in bench
testing [11, 14, 15]. However, there is a scarcity of data
that address the feasibility of the production and imple-
mentation process of such customized masks in a real-
world acute clinical setting, such as the PICU. This also
applies to facial data acquisition, which is a crucial first
step in the production cycle of mask personalization.
Handheld 3D scanners are currently advised for immo-
bile patients, as these have high accuracy, reaching up to
0.1 mm, while being relatively quick with reported scan-
ning times between 1 and 10 min [11, 16—19]. However,
whether such handheld scanners can be used in the accu-
rate facial data acquisition of critically ill, mobile children
in need of respiratory support in the PICU is unknown.

The aim of this study is to examine the feasibility of
facial data acquisition in critically ill patients admitted to
the PICU for acute respiratory failure using a handheld
3D scanner. Knowledge derived from this study can be
used to establish a clinical workflow for the rapid produc-
tion of pediatric personalized NIV masks.

Methods

This was a single-center, feasibility study conducted in
the PICU of the Emma Children’s Hospital, Amster-
dam UMC, Amsterdam, the Netherlands. The study
was determined to not fall within the scope of the Medi-
cal Research Involving Human Subjects Act by the
local research medical ethics board (W22_330#22.408).
Informed consent for the use of data was obtained from
the parents or caretakers. Recruitment and data collec-
tion took place from November 2022 to January 2025.

Subjects

The eligible study population consisted of all children (age
0-18 years) with acute respiratory failure admitted to the
PICU receiving non-invasive respiratory support for >2 h
in the form of NIV (mode NIV/NIV-spontaneous timed,
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nasal continuous positive airway pressure (with pressure
support)) on a Hamilton-G5 or Hamilton-C6 ventilator
(Hamilton Medical, Bonaduz, Switzerland) using a con-
ventional, commercially available face mask (total, oro-
nasal or nasal) or had been switched to high flow nasal
cannula (HFENC) treatment after an episode of NIV.
Patients with chronic or acute-on-chronic respiratory
failure already receiving NIV through their home venti-
lation machine and interface were excluded. We aimed
for a sample size of 30-34 subjects for this feasibility
study, based on the guidelines for designing and evaluat-
ing feasibility pilot studies [20]. We collected age, gender,
height, weight, respiratory support mode, and settings at
the moment of the scan, etiology of respiratory failure,
and use of sedation as the patient characteristics.

Scanning protocol

A single trained observer scanned all the subjects using
the structured light Artec Leo 3D scanner (Artec 3D,
Luxembourg). This scanner has an accuracy of 0.1 mm
and a data acquisition speed of 35 million points per sec-
ond. The timing of the scan was planned together with
the PICU nurses to select a moment for the 3D-scan to
align with a routine mask change or caring moment. For
this moment, patients were positioned on their back and
remained in this position during scanning. The room
lights were adjusted and the head was positioned in an
upward position in order that the mouth-nose region
could be scanned from one side of the bed, without the
use of markers. When ready, the nurse removed the
mask and the scan was made with a scanning distance of
0.7 m. A single scan was limited to a maximum of 30 s
with a scanning speed of 60 frames per second and the
function ‘optimize project size, which only stores suffi-
ciently novel captured frames with at least 3 frames per
second, enabled [21]. Data is locally stored on the scan-
ner under a study code, and displaced to a secured stor-
age system. If the visual inspection of the resulting scan
indicated missing data an additional scan was performed
to ensure completeness. During scanning, the subjects
continued to receive standard PICU monitoring of vital
signs. In the case of patient agitation, clinical distress,
or oxygen desaturation (SpO,<93%), the scan could be
paused, postponed, or canceled and the non-invasive
respiratory support was restarted, in accordance with the
normal protocol during a routine mask change or caring
moment. In none of the patients any residing nasogastric
tubes were removed for the scan.

Post-processing

All scans were post-processed with the software accom-
panying the scanner (Artec Studio, Artec 3D, Luxem-
bourg) in two ways: once by a manual process (manual
method) and, alternatively, once using the autopilot
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function. This function is a simplified form of post-pro-
cessing which is more time efficient and objective, valu-
able for workflow development, but can have difficulties
in successfully processing scans with movement. For both
methods, first the surroundings were removed and frame
alignment with global registration was performed. Next,
for the manual process, the scans were examined per
frame. The frames that contained evident facial expres-
sions (e.g. frowning, talking, crying) were removed,
and the remaining frames were grouped with similar
head positions. Subsequently, the scans were manually
aligned and after global registration and outlier removal,
the scans were fused with smooth fusion with all holes
smaller than 10 mm filled. For the autopilot method, the
software reconstructed the faces automatically. If a first
round of the autopilot function was not sufficient in cre-
ating a fusion, the function was repeated with a maxi-
mum of three tries. Additionally, the manual process
was repeated for only the first scan of the sessions which
required multiple scans (first scan method). Figure 1 pro-
vides an overview of the post-processing workflow.

Outcomes

Primary study outcomes were related to feasibility of
scanning, including scanning process and quality factors.
We predefined that facial data acquisition by a handheld
3D scanner in the PICU setting was considered feasible

Post processing
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if>80% of the patients can be successfully scanned in one
session resulting in a complete scan with >90% of the
frames of good quality.

For the scanning process outcomes, we gathered infor-
mation on patient clinical status, the need of scan post-
ponement, and the number of scans per session and
complete scans. Any event of patient clinical deteriora-
tion during scanning with the non-invasive respiratory
support interface removed was noted. Scans were noted
as scan postponement if the initiation needed to be
delayed due to agitation, restlessness or a critical clinical
situation. These patients were scanned at another occa-
sion, within the next 24 h. The number of scans per ses-
sion was collected as well as the reason for needing any
additional scan (e.g. patient became agitated, moved, or
the scan seemed incomplete). A scan was marked com-
plete if there were no missing data, visible as holes, upon
post-processing in the oronasal mask region. Incom-
plete scans with holes <10 mm that could be filled, were
marked as repairable. Finally, incomplete scans with
holes > 10 mm were marked as unrepairable.

Scan quality outcome was assessed based on two cat-
egories: scan error and removed movement frames. Scan
error is given by the scanners’ post-processing software
and is the parameter that reflects frame registration
quality. Error values in the range of 0.0-0.5 are seen as
good results, 0.6—1.3 as acceptable, and 1.4 or higher as

3D scan

Surrounding removal

Y

h 4

First scan method

1. First scan selection

2. Frame alignment with movement grouping

3. Evident facial expressions removal

4. Global reqgistration

5. Outlier removal

6. Smooth fusion with hole filling radius <10mm

Manual method

1. Frame alignment with movement grouping
2. Scan alignment

3. Evident facial expressions removal

4. Global registration

5. Outlier removal

6. Smooth fusion with hole filling radius <10mm

) ( Autopilot method

1. Settings:
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© Hole filling by radius: <10mm
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Fig. 1 The post-processing workflow overview. All scans are post-processed, with the first step being the surroundings removal. There are three differ-
ent post-processing methods used: manual, autopilot, and first scan. The mean absolute distance (MAD) and root mean square (RMS) are defined by the
software in a comparison between the mask regions of the manual method and both the first scan and the autopilot method
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Table 1 Subject characteristics Table 2 Results on scanning feasibility (process and quality)
Characteristics N=33 Scan characteristics N=33
Age (months), median (IQR) 2.0(1.0-16.0) Successful scan, n of patients (%) 31(94)
Gender (male), n (%) 21 (64) Number of scans per patient, n of patients
Height (cm), median (IQR) 70.5 (55.0—111.5) 1 16
Weight (kg), median (IQR) 5.0(4.3-8.8) 2 16
Receiving sedatives (yes), n (%) 22 (67) 4 1
Intravenous administration, n 6 Reason additional scan needed (n=17), n of patients
Nasogastric tube (yes), n (%) 26 (79) Agitation 4
Non-invasive respiratory support mode, n (%) Patient movement 8
NIV 17 (52) External interference 1
nCPAP(+PS) 9(27) Incomplete scan 4
HFNC 7(21) Total frames per patient, median (IQR) 75 (49-181)
Reason for acute respiratory support, n Used frames per patient, median (IQR) 59 (41-117)
Acute lower respiratory tract infection 24 Percentage of frames with movement, median (IQR) 10 (0-35)
Post-extubation 4 Completeness of scans, n of patients (%)
Other 2 Complete 14 (42)
FiO, (%), median (IQR) 30 (25-45) Repairable 17 (52)
PEEP* (cmH,0), median (IQR) 6 (6-8) Unrepairable 2 (6)
APinsp/PS? (cmH,0), median (IQR) 10 (7-12) Scan quality per frame (scan error), median (IQR)
? in patients receiving NIV or nCPAP+PS only. NIV: non-invasive ventilation; Good 98 (86-100)
Pt Sl contnious posiv Ay resre I PSS MBEOY,  Acaptate e
APinsp/PS: pressure above PEEP Unusable 0(0-0)

unusable [22]. These values are an internal parameter of
Artec Studio and indicate the correct alignment in rela-
tion to each other [23]. The percentage of good, accept-
able, and unusable frames was noted per scan. The
percentage of removed movement frames is the number
of removed frames during post-processing.

Finally, the mean absolute distance (MAD) and root
mean square (RMS) between the manual method and the
first scan method, and between manual method and the
autopilot method were calculated at the oronasal mask
contour (shown in Supplemental eFigure 1). Further-
more, the maximal absolute distance was calculated for
the same comparisons and categorized into three groups:
<1.0 mm, between 1.0 and 2.0 mm, and >2.0 mm. The
maximal distance quantifies the deviation from the man-
ual method, defined as the accurate depiction of the facial
morphology, which would result in a misfit of a personal-
ized mask. To minimize these post-processing errors, we
chose strict distance categorizations.

Statistical analysis

All parameters were examined with explorative statis-
tics using IBM SPSS Statistics (version 28). Results are
reported as means (SD) or medians (IQR) where appro-
priate based on (non-)normal distributions.

Results

In total, 36 parents/guardians were approached for study
participations and 33 patients were included. The patient
characteristics of this cohort are shown in Table 1. The

most common etiology of acute respiratory failure was
lower respiratory tract infection. Most patients were
receiving some form of (mild) sedation through enteral
administration, and three patients received oral sucrose
for soothing during their mask change or caring moment.
NIV delivered by an oronasal or total face mask was the
most common non-invasive respiratory support mode. A
nasogastric tube was present in 26 (79%) patients and did
not induce scanning artifacts.

Scanning characteristics and outcomes are summarized
in Table 2. All 33 patients could be scanned without the
need to cancel the session due to events of patient clini-
cal deterioration during scanning (an example of a post-
processed scan is shown in Fig. 2). Nevertheless, two
patients were too agitated accompanied by a short period
of oxygen desaturation at the start of the caring moment
with the need to postpone the scanning process shortly.
In two other patients, scanning needed to be postponed
to another day due to a critical clinical situation and agi-
tation of the patient during routine care before the start
of the scanning session. A median (IQR) of 75 (49-181)
frames were saved by the ‘optimize project size’ function
per session whereof a median (IQR) of 10 (0-35)% of
the frames had to be removed due to patient movement.
After post-processing, the scans of two patients (6%) had
unrepairable missing data, thus having an unsuccessful
scanning attempt. Scans of 17 patients (52%) had repair-
able missing data. The scans of the remaining 14 patients
had complete scanning frames.
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Fig. 2 Example of a high quality, manually post-processed, 3D scan of a
patient. The scan can be saved as an .stl file. This scanning session con-
tained a single, 30 s scan. The outline of a nasogastric tube fixed with tape
at the left nostril can be observed

A total of 17 patients (52%) required an additional
scanning period during the same session after the first
try, whereof patient movement was the main reason in
8 (47%) patients. However, the additional scan did not
induce a difference>1.0 mm in 56% of patients (data
shown in Supplemental eTable 1). There were no differ-
ences between the group with and without an additional
scan regarding age, sedative use, ventilation pressure,
FiO, or ventilator mode (data shown in Supplemental
eTable 2). Only in the subgroup of four (23.5%) patients
with multiple scans due to agitation, all additional
scans improved the gathered information with differ-
ences> 1.0 mm. The median (IQR) MAD and RMS were
0.21 (0.10-0.40) and 0.28 (0.19-0.53), respectively. An
example of the post-processing of a session with multiple
scans, with head and facial movement, is shown in Fig. 3.

When using autopilot post-processing, the number of
patients with an unrepairable scan was 4 (12%), as com-
pared to the 2 patients with an unsuccessful attempt
using the manual method. In these additional two
patients, larger head deviation by movement caused the
autopilot function to be insufficient (an example is shown
in Fig. 3). The maximal distance between the two post-
processing methods was <1.0 mm in 18 scans, between
1.0 and 2.0 mm in 8 scans, and >2.0 mm in 3 scans, with
a MAD (IQR) of 0.11 (0.06-0.19) and a RMS (IQR) of
0.19 mm (0.10-0.30). The scan error value was consid-
ered good in 91% (IQR 65-99) of the frames, acceptable
in 8%, and unusable in 1% (see Table 3).
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Discussion

The main goal of this study was to evaluate the feasibility
of acquiring facial 3D data in critically ill patients receiv-
ing non-invasive respiratory support for acute respiratory
failure in the PICU. Our findings show that facial 3D data
can be captured successfully within a very short period
by a handheld scanner in more than 90% of patients in
this setting, with good scanning quality in over 95% of
the frames.

In the last decade, 3D scanning as a novel form of med-
ical data acquisition, is a rapidly growing field [24, 25].
The applications of this method vary widely, from medi-
cal device adaptation to aiding diagnosis and treatment,
regularly complemented with 3D printing [24, 26]. How-
ever, studies on 3D data capture and 3D printing for the
purpose of personalized medical device development in
critical care have been relatively scarce [27]. In our study
cohort of critically ill patients one of the reasons for this
is the potential difficulty of implementing a rapid, bed-
side, 3D-based scanning and printing process. Fortu-
nately, the possibilities expand with the rise of handheld,
wireless 3D scanners [24, 25] and 3D printing of (flex-
ible) biocompatible materials [28-30]. Such advances
are reported in several recent studies pertaining to vari-
ous clinical care settings, including their use during facial
surgery [31], burn injury wound mapping and tracking
[32], and the production of artificial cardiac valves [33].
The current study contributes to this field by specifically
testing 3D scanning feasibility in critically ill children for
the development of personalized NIV masks. The combi-
nation of potential movement and the need for interrupt-
ing ongoing respiratory support to expose the face, in a
patient category that is not instructible, creates an obvi-
ous barrier for accurate data capture. Previously, pho-
togrammetry or even facial impressions were used for
facial data acquisition in personalized ventilation mask
production, limiting this application to clinically stable
and mobile patients [17, 18, 34, 35]. Three recent studies
looked into the 3D scanning of neonates for the develop-
ment of nasal masks. However, one of these studies com-
prised a case report, in another study testing occurred
in a simulated neonatal ICU setting, and the third study
did not provide information on the actual feasibility in
the clinical care setting [16, 36, 37]. With our study, we
show that short scanning times with a handheld struc-
tured light 3D scanner are sufficient to capture high qual-
ity facial data in the PICU setting, even in the presence of
movement. Previously, we have shown that such data can
be used for the 3D printing of pediatric NIV masks [15].
These feasibility data are essential to further develop and
implement a workflow process for the production of per-
sonalized NIV masks for children with acute respiratory
failure. In addition, they are potentially relevant for other
(medical device) applications in various acute clinical
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Fig. 3 Example of the post-processing steps in a session containing two separate scans. From top to bottom: (1) surroundings of scans A were removed,
frames with similar head positions grouped (color-coded), and global registration performed; (2) Scans 1 and 2 of B were combined and aligned; (3) From
combined scan C, facial expressions removed, an example of removed facial expressions is shown in C1; and (4) remaining frames of scan D were fused
into scan E. During the first scan, agitation caused head movement and facial expressions. Efficient post-processing using the Artec Studio Autopilot
function was not feasible in this case

care settings in the hospital, including the ICU and the = was performed, more than half did not provide relevant
emergency room. additional geometric information. Moreover, the median

The number of successful scans in our study was higher  of 75 frames per scan, indicates that most scans were
than anticipated. Although in 58% of cases a second scan  deemed sufficient before the 30 s threshold (90-1800
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Table 3 Results for the frame quality using the Artec Studio
autopilot function

Autopilot N=33
Quality autopilot (%)*
Good 91 (65-99)
Acceptable 8(1-31)
Unusable 1(0-4)
Successful execution, n(%) 29 (88%)
Comparison with manual N=29
MAD (mm), median (IQR) 0.11 (0.06-0.19)
RMS (mm), median (IQR) 0.19(0.10-0.30)
Max difference with manual method
<1.0mm 18 (62)
1.0-2.0mm 8(28)
>2.0mm 3(10)

MAD: mean absolute distance, RMS: root mean square

frames) was reached. The 25% IQR of 49 frames indicates
scanning time of even 15 s to be sufficient. Therefore,
we conclude that with sufficient training, the average
scanning time needed to obtain an accurate, high qual-
ity facial scan can be lowered to a maximum of 30 s. In
this study, all scans were performed by a single observer.
However, the Artec Leo has been scored as user-friendly
by clinicians, where a training time of less than 5 scans
was necessary to obtain performer confidence and qual-
ity scans [36]. This suggests that the 3D scans could be
performed by the clinical staff, improving workflow and
time management. Nevertheless, the post-processing of
the scan requires more time and expertise. During the
scanning period, no clinically relevant adverse events
occurred, and only a small portion (10%) of the frames
needed removal due to movement. The resulting scans
contained enough geometric data for reconstruction,
deeming this technique feasible even for critically ill
children in need of non-invasive respiratory support.
Here, it is relevant to note that a large part of the chil-
dren were receiving intermittent sedative medication to
help tolerate their non-invasive respiratory support. In
total, 18% of the population received continuous intrave-
nous medication for sedation, as is commonly observed
in NIV treatment in the PICU [3]. This will likely have
had a dampening effect on patient movements and
thus positively influenced our success rate of scanning.
Besides movement, the nasogastric tube was expected
to be a source of artifacts due to its translucent material.
In our cohort, a nasogastric tube was present in almost
80% of the patients as standard practice for enteral feed-
ing during NIV [38]. They are known to contribute to
air leakage during NIV [39]. Recent studies indicate that
modifying ventilation masks to accommodate the pres-
ence of nasogastric tubes can substantially reduce air
leakage in commercial masks [40, 41]. In our study, pres-
ence of a nasogastric tube did not result in failed scans,
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which could facilitate the integration of geometric tube
data into the design of personalized masks, potentially
further enhancing NIV efficiency. However, whether the
current scanning method is sufficient to facilitate ade-
quate information for tube integration should be further
investigated.

There are various techniques for 3D scanning patients
and they have become more easily accessible in recent
years [24, 42-45]. While the Artec Leo is often men-
tioned as one of the best options for handheld 3D scan-
ning [17, 36, 46, 47], cheaper options are undergoing
refinement and therefore increasingly used. A well-
known example is the iPhone (LiDAR and TrueDepth
function), which allows for easy and accurate scanning
[16, 36, 42, 48]. A major limitation of these functions,
however, is the lack of clear data protection regulations.
Furthermore, an advantage of more professional scan-
ners is the accompanying software, which improves the
possibilities of post-processing [42]. The autopilot func-
tion of Artec Studio is one such advantage, improving
the objectivity of post-processing steps and reducing the
time needed. We showed that almost 80% of the scans
could be post-processed immediately with this function,
with a minimal MAD compared to manual post-process-
ing. While manual processing could take up to an hour,
the autopilot method mostly took around 15 min. The
objectivity and reduction in time would be very useful for
process implementation. For optimal use of the function,
we advise removing frames with outspoken facial expres-
sions before using the autopilot function for performance
improvement.

A first limitation of this study is the absence of a con-
trol method to obtain 3D data of the patient, to compare
the accuracy with the handheld scanner. However, it
was deemed unethical to obtain more measurements in
this group, as other scanning options are impractical for
immobile patients or too time consuming for the criti-
cally ill patient in the PICU setting. Moreover, the accu-
racy of the Artec Leo has previously been shown to be
extremely precise [36, 46]. In addition, our captured 3D
data by this scanner was found of high quality, and easily
to be loaded in our semi-automated software application
as described before [15]. A second limitation is the tim-
ing of the scans, as we were not able to scan the patients
within the first few hours of NIV, which in a clinical
workflow for mask personalization would be desirable
to ensure quick mask production and thus adequate NIV
treatment. This was not feasible in the current study as
consent for data acquisition was necessary from the par-
ents. Yet, at this point, patients were still receiving a high
level of respiratory support. As such, we do not believe
this affected the feasibility of facial 3D data acquisition
in a meaningful way. A third limitation, is that the cat-
egories of the maximal absolute distance to compare scan
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post-processing methods were chosen semi-arbitrary.
Currently, there is limited knowledge that helps charac-
terize maximal allowable distances between masks and
between masks and the facial region of interest to define
an acceptable mask fit. The influence on mask perfor-
mance by any distance (misfit) is highly dependent on
materials, skin characteristics, and NIV settings. Visscher
et. al. [6], showed that even small distances of a few mm
are associated with skin erythema in children receiv-
ing NIV treatment. Moreover, the orifice flow equation,
based on Bernoulli’s principle, suggests that gaps/holes of
only 2 mm already results in a substantial and clinically
relevant leak air flow of 5 L/min at a peak amplitude pres-
sure of 10 cmH,O of ventilation, while a hole of 1 mm
will result in an air leak flow of 1 L/min. For this reason,
we choose the ranges for the maximal absolute distance
quite strict to strive for the most optimal setting in terms
of geometric fit. Lastly, as a fourth limitation, it should
be noted that facial morphology depends on position [49,
50], and may influence mask fit. During the use of total
and full face masks at the PICU, patients typically remain
in a supine position. Therefore, we recommend to make
the 3D scan of the patient in this position. A recent study
[49] shows higher age and body fat to increase the change
in morphology, probably limiting the gravitational effect
in our population. Nevertheless, the exact influence of
patient position and movement on the mask fit should be
explored in a clinical study.

In conclusion, facial 3D data capture of critically ill
patients receiving non-invasive respiratory support for
acute respiratory failure in the PICU, by using a handheld
structured light scanner, is feasible. This finding is crucial
for the implementation of a production workflow for per-
sonalized NIV masks for children in this setting.
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