
1

A voxel-based methodology to 

detect (clustered) outliers in aerial 

LiDAR point clouds

Mentors:

• Ravi Peters

• Hugo Ledoux

• Maarten Pronk (Deltares)

Co-reader:

• Martijn Meijers

P5 MSc thesis Geomatics for the built 
environment

Simon Griffioen



2

Main goal of study:

• From: raw aerial LiDAR point clouds
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Main goal of study:

• To: cleaned datasets without outliers
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How to do this?

• Research Motivation

• Related Work

• A Voxel-based Methodology

• Results & Quality Assessment

• Discussion & Future Work

• Conclusions
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Research motivation (1/2)

• Raw 3D point cloud data often includes errors 

(outliers);

• Outliers need to be removed to effectively analyze 

point cloud data;

• Deltares makes extensive use of point cloud data. 
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Data: Aerodata
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Type-1: Isolated (high and low) outliers Type-2: Clustered outliers

Type-3: Randomly scattered with high and low densities

Data: Aerodata
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Research motivation (2/2)

Existing tools have limitations

• Can only detect isolated points 

(type-1)

• Fail to detect clusters of 

outliers (type-2,  -3)

• Can remove features with low 

densities

Example: LAStools/lasnoise
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Research scope and goals

• Automatically detect outliers

– Isolated, clustered and random

– Using a voxel-based solution

– Fully automatic

• In Aerial Laser Scanned (ALS) point clouds

– Natural environments (vegetation, forest) & urban

– Terrestrial/Mobile Laser Scanned data is not considered

• Scalability

– Outperform existing tools in terms of accuracy, not speed

– How to handle massive datasets (>100MM points)?  
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Related work: 

Neighborhood- vs. Cluster-based

1. Local Neighborhood-based

– Density-based

– Distance-based

– Mathematical morphology

• Works well for isolated outliers

• Trade-off between false positives and true positives

• Only considers geometric features
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Related work: 

Neighborhood- vs. Cluster-based

1. Local Neighborhood-based

– Density-based

– Distance-based

– Mathematical morphology

• Works well for isolated outliers

• Trade-off between false positives and true positives

• Only considers geometric features

 Problems handling clustered outliers (type-2 and -3) and

 Features may be locally indistinguishable from outliers
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Related work: 

Neighborhood- vs. Cluster-based

2. Cluster/graph-based

• Can detect clustered outliers

E.g.

• Delaunay Triangulation  Connected Components (Arge et al., 2010)

• Delaunay Triangulation  Edge pruning (Sotoodeh, 2007)
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2. Cluster/graph-based

• Can detect clustered outliers

E.g.

• Delaunay Triangulation  Connected Components (Arge et al., 2010)

• Delaunay Triangulation  Edge pruning (Sotoodeh, 2007)
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Related work: 
Group-based vs. Point-based

• Point-wise

– Compute features for every point, e.g. k-nn

• Group-based

– Segment points prior to feature extraction, e.g. voxels

K-nn: Voxels:
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Related work: 
Group-based vs. Point-based

• Point-wise

– Compute features for every point, e.g. k-nn

– Imply high computation load

• Group-based

– Segment points prior to feature extraction, e.g. voxels

– Speed up point cloud processing

K-nn: Voxels:
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Conclusions Literature Study 

• Detect clustered outliers

• Keep features intact

• Group-based feature extraction 

• Potential LiDAR attributes 

• Trade-off between TP and FP 
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Conclusions Literature Study 

• Detect clustered outliers  cluster-based approach

• Keep features intact  adjacency/connectivity 

• Group-based feature extraction  voxels

• Potential LiDAR attributes  intensity analysis

• Trade-off between TP and FP  series of methods
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Methodology

5 different operations

• Each operation classifies outliers

• Series of operations to minimizes False

Positives (FP)
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Voxel-based Solution
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Voxel-based Solution

1. Density

2. Connected Components Labeling (CCL)

3. CCL after closing

4. Planarity

5. Intensity

…
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Voxelization

Source point cloud Binary 3D grid
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Voxelization

Binary 3D grid

Voxel size selection:
1. The density of the point cloud
2. Size of features
3. Processing time
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(2/5) Connected Components Labeling (CCL)

3D grid Labelled regions
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(2/5) Connected Components Labeling (CCL)

Labelled regions

1. Find largest connected component
2. Classify all points not in largest 

component as outlier
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(2/5) Connected Components Labeling (CCL)

Labelled regions

1. Find largest connected component
2. Classify all points not in largest 

component as outlier

Outliers?
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(3/5) Closing---Morphological Operator

3D grid (B)

3 x 3 x 3 structuring element (S)

Closing
Dilation followed by erosion
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(3/5) Closing---Morphological Operator

3D grid Closed grid
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(3/5) CCL after closing

Closed grid Labelled regions
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Why CCL works

Source point cloud

Labelled regions

Cleaned point cloud
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(4/5) Intensity

• Detect good points---not outliers

Data: Aerodata Data: Deltares
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Why this works

Raw data 
(Aerodata)

Unconnected 
trees removed

Intensity of good
points
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Why this works

Raw data 
(Aerodata)

Unconnected 
trees removed

Intensity of good
points



37

(5/5) Planarity

• Outliers usually form a scattered region and rarely fit in a 

plane

Scatter
= outlier

Planar
= no outlier
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Why this works

Unconnected street signs
Data: AHN3

Signs are planar  no outlier

Planar features
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Experiments: Datasets

(A1) Aerodata
(A2) Aerodata

(B) Deltares (C) AHN3 (D) Kadaster
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Datasets
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Result A1

Data: Aerodata
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Result A1

Data: Aerodata
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Results A2

Data: Aerodata
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Results A2

Data: Aerodata
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Type-1 outliers

Data: Aerodata
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Type-2 outliers

Data: Aerodata
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Type-3 outliers

Data: Aerodata
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Type-3 outliers

Data: Aerodata
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Type-3 outliers
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Type-3 outliers
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Type-3 outliers
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Type-3 outliers
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Results series of operations

Source point cloud CCL CCL
CCL after closing

Intensity
Planarity
Density
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Results

String of outliers Street post
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Results
Outliers
removed

Good points
not removed

String of outliers Street post
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Quality Assessment

•

•

•

•



57

Confusion Matrix

A1
Voxel size 75 cm

A2
Voxel size 75 cm
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Accuracy / voxel size
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Accuracy / voxel size

0.75 m
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Results series of operations
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Results series of operations
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Results: Common problems (FNR)

Raw point cloud

Result

Data: Deltares
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Results: Common problems (FNR)

Data: Aerodata
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Results: Common problems (FPR)

Raw data: Street lights Result: removed street lights

Data: AHN3
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Results: Common problems (FPR)

Raw data: Dense Image Matching
Kadaster

Good points wrongly removed

Point clouds from Dense Image Matching (DIM):
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Results: Common problems (FPR)

Raw data: Dense Image Matching
Kadaster

Good points wrongly removed

Point clouds from Dense Image Matching (DIM):
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Results: Common problems (FPR)
Point clouds from Dense Image Matching (DIM):
• No penetration with camera (like LiDAR) 

• more occlusion = less connected features
• No intensity attributes

Raw data: Kadaster Good points wrongly removed
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Accuracy AHN 3 & DIM point cloud

(c) AHN 3 (D) Kadaster (DIM)
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Comparison to LAStools

LAStoolsProposed method

Data: Aerodata (A1)
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Comparison to LAStools
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Comparison to LAStools
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Comparison to LAStools

• Biggest improvement = on detecting clusters:

Raw point cloud LAStools Proposed method
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Computation time

(2) Voxel size

𝑂(𝑚3)

(1) Size point cloud

𝑂(𝑑2)

• Time complexity of 𝑂 𝑛 for 𝑛 is number of voxels
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Discussion & Future Work
(1/3) Streaming

• Massive point cloud data could overload the memory of commodity 

computers
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Discussion & Future Work
(1/3) Streaming

1. Streaming solution sequentially read points from the dataset to 

minimize memory requirements;

2. Rasterized data requires far less memory space:

Point cloud Number of 
points

Size (Mb) Number of 
voxels

Size of grid 
(Mb)

A1 5.7 M 180 44.8 M 5.1 

Raw point cloud Voxelized point cloud
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Discussion & Future Work
(1/3) Streaming
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Discussion & Future Work
(2/3) Separation by water

Raw point cloud

Filtered point cloud
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Discussion & Future Work
(2/3) Separation by water

Compare incline between regions

– Outliers have large incline

– Terrain points have negligible incline
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Discussion & Future Work
(3/3) Outlier Classification

• Arbitrary classification rule (threshold) for proposed method

• Supervised learning classifiers could be exploited to classify voxels

– Predict probability of outlier class

• Use the five proposed operations to extract features, and train a 

classifier

• Need training data!
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Conclusions

• Detect all types of outliers

– Problems with connected outliers, or unconnected good points (by water)

• Integration of series of methods in voxel structure
– Minimize false positives while keeping high sensitivity

• Connected Components Labeling for outlier detection

– After closing

– Voxel size 0.75m – 1m

• Dense Image Matching point cloud !=  LiDAR for outlier detection
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Thanks


