A voxel-based methodology to detect (clustered) outliers in aerial LiDAR point clouds

MSc thesis Geomatics for the built environment

Simon Griffioen

Mentors:

- Ravi Peters
- Hugo Ledoux
- Maarten Pronk (Deltares)

Co-reader:

Martijn Meijers

Main goal of study:

From: raw aerial LiDAR point clouds

Main goal of study:

To: cleaned datasets without outliers

How to do this?

- Research Motivation
- Related Work
- A Voxel-based Methodology
- Results & Quality Assessment
- Discussion & Future Work
- Conclusions

Research motivation (1/2)

- Raw 3D point cloud data often includes errors (outliers);
- Outliers need to be removed to effectively analyze point cloud data;
- Deltares makes extensive use of point cloud data.

Data: Aerodata

Type-1: Isolated (high and low) outliers

Type-2: Clustered outliers

TUDelft

Data: Aerodata

Type-3: Randomly scattered with high and low densities

Research motivation (2/2) Existing tools have limitations

- Can only detect isolated points (type-1)
- Fail to detect clusters of outliers (type-2, -3)
- Can remove features with low densities

Example: LAStools/lasnoise

Research motivation (2/2) Existing tools have limitations

- Can only detect isolated points (type-1)
- Fail to detect clusters of outliers (type-2, -3)
- Can remove features with low densities

Example: LAStools/lasnoise

Research scope and goals

- Automatically detect outliers
 - Isolated, clustered and random
 - Using a voxel-based solution
 - Fully automatic
- In Aerial Laser Scanned (ALS) point clouds
 - Natural environments (vegetation, forest) & urban
 - Terrestrial/Mobile Laser Scanned data is not considered
- Scalability
 - Outperform existing tools in terms of accuracy, not speed
 - How to handle massive datasets (>100MM points)?

1. Local Neighborhood-based

- Density-based
- Distance-based
- Mathematical morphology
- Works well for isolated outliers
- Trade-off between false positives and true positives
- Only considers geometric features

sed

1. Local Neighborhood-based

- Density-based
- Distance-based
- Mathematical morphology
- Works well for isolated outliers
- Trade-off between false positives and true positives
- Only considers geometric features

1. Local Neighborhood-based

- Density-based
- Distance-based
- Mathematical morphology
- Works well for isolated outliers
- Trade-off between false positives and true positives
- Only considers geometric features
 - → Problems handling clustered outliers (type-2 and -3) and
 - → Features may be locally indistinguishable from outliers

2. Cluster/graph-based

Can detect clustered outliers

- Delaunay Triangulation → Connected Components (Arge et al., 2010)
- Delaunay Triangulation → Edge pruning (Sotoodeh, 2007)

2. Cluster/graph-based

Can detect clustered outliers

- Delaunay Triangulation → Connected Components (Arge et al., 2010)
- Delaunay Triangulation → Edge pruning (Sotoodeh, 2007)

2. Cluster/graph-based

Can detect clustered outliers

- Delaunay Triangulation → Connected Components (Arge et al., 2010)
- Delaunay Triangulation → Edge pruning (Sotoodeh, 2007)

2. Cluster/graph-based

Can detect clustered outliers

- Delaunay Triangulation → Connected Components (Arge et al., 2010)
- Delaunay Triangulation → Edge pruning (Sotoodeh, 2007)

Related work: Group-based vs. Point-based

- Point-wise
 - Compute features for every point, e.g. k-nn

- Group-based
 - Segment points prior to feature extraction, e.g. voxels

Voxels:

Related work: Group-based vs. Point-based

- Point-wise
 - Compute features for every point, e.g. k-nn
 - Imply high computation load
- Group-based
 - Segment points prior to feature extraction, e.g. voxels
 - Speed up point cloud processing

Voxels:

Conclusions Literature Study

- Detect clustered outliers
- Keep features intact
- Group-based feature extraction
- Potential LiDAR attributes
- Trade-off between TP and FP

Conclusions Literature Study

- Detect clustered outliers → cluster-based approach
- Keep features intact → adjacency/connectivity
- Group-based feature extraction → voxels
- Potential LiDAR attributes → intensity analysis
- Trade-off between TP and FP → series of methods

Methodology

5 different operations

Each operation classifies outliers

 Series of operations to minimizes False Positives (FP)

Source

Point Cloud

Voxel-based Solution

Voxel-based Solution

- 1. Density
- 2. Connected Components Labeling (CCL)
- 3. CCL after closing
- 4. Planarity
- 5. Intensity

Voxelization

Voxelization

Voxel size selection:

- 1. The density of the point cloud
- 2. Size of features
- 3. Processing time

Binary 3D grid

(2/5) Connected Components Labeling (CCL)

(2/5) Connected Components Labeling (CCL)

- 1. Find largest connected component
- 2. Classify all points not in largest component as outlier

(2/5) Connected Components Labeling (CCL)

Find largest connected component

Outliers?

Classify all points not in largest component as outlier

Labelled regions

(3/5) Closing---Morphological Operator

3 x 3 x 3 structuring element (S)

Closing

Dilation followed by erosion

$$B \bullet S = (B \oplus S) \ominus S$$

(3/5) Closing---Morphological Operator

(3/5) CCL after closing

Why CCL works

Source point cloud

Cleaned point cloud

(4/5) Intensity

Detect good points---not outliers

Data: Aerodata Data: Deltares

Why this works

Raw data (Aerodata)

Intensity of good points

Why this works

Raw data (Aerodata)

Intensity of good points

(5/5) Planarity

Outliers usually form a scattered region and rarely fit in a plane

Why this works

Unconnected street signs Data: AHN3

Signs are planar → no outlier

Planar features

Experiments: Datasets

Datasets

	Point cloud						
	A1	A ₂	В	C	D		
Source	Aerodata	Aerodata	Deltares	AHN3	Kadaster		
Technique	ALS	ALS	ALS	ALS	DIM		
Area (km)	0.5 X 0.5	0.5 X 0.5	0.5 X 0.5	0.5 X 0.5	0,5 x 0,5		
N points	5.7 mln	8.2 mln	1.7 mln	4.7 mln	5.5 mln		
Points per m ²	23	33	7	19	22		
Outliers	Many	Many	Many	None	None		
Ground truth	Yes	Yes	No	No	No		
Environment	Vegetation, built environment	Vegetation, built environment	Forest	Urban	Urban		

Result A1

Result A1

Results A2

Results A2

Results series of operations

Source point cloud

CCL

CCL
CCL after closing
Intensity
Planarity
Density

Results

String of outliers

Street post

Results

String of outliers

Street post

Quality Assessment

• Sensitivity =
$$\frac{TP}{TP + FN}$$

•
$$Precision = \frac{TP}{TP + FP}$$

False Positive Rate (FPR) =
$$\frac{FP}{TN + FP}$$

• False Negative Rate
$$(FNR) = \frac{FN}{TP + FN}$$

Confusion Matrix

A1 Voxel size 75 cm

		True Co	ondition	
	n = 5,743,977	Positive	Negative	
Predicted	Positive	68,134	7,109	Sensitivity = 82.2
Condition	Negative	14,786	5,653,948	Precision = 90.6
N.		FNR = 17.8	FPR = 0.12	

A2 Voxel size 75 cm

		True Co	nattion	
	n = 8,275,821	Positive	Negative	
Predicted Condition	Positive Negative	66,204 43,668	3,740 8,162,209	Sensitivity = 60.6 Precision = 95.3
		FNR = 39.7	FPR = 0.04	

True Condition

Accuracy / voxel size

Accuracy / voxel size

Results series of operations

A1	Method	TP	FP	FN	FNR	FPR
	Density	47,331	2,688	35,589	42.92	0.05
	CCL	69,008	166,908	13,912	16.78	2.95
	CCL after closing	66,257	5,726	16,663	20.10	0.10
	LiDAR intensity	78,558	2,145,036	4,362	5.26	37.89
	Planarity	76,473	1,369,895	6,447	7.77	24.20
	Overall	68,134	7,109	15,475	18.66	0.12
A ₂						
	Density	50,142	2,875	59,730	54.36	0.04
	CCL	69,073	11,317	40,799	37.13	0.14
	CCL after closing	64,194	1,730	45,678	41.57	0.02
	LiDAR intensity	75,983	532,129	33,889	31.84	6.52
	Planarity	85,240	2,786,722	24,632	22.42	34.13
	Overall	66,204	3,740	43,668	39.74	0.05

Results series of operations

A1	Method	TP	FP	FN	FNR	FPR
	Density	47,331	2,688	35,589	42.92	0.05
	CCL	69,008	166,908	13,912	16.78	2.95
	CCL after closing	66,257	5,726	16,663	20.10	0.10
	LiDAR intensity	78,558	2,145,036	4,362	5.26	37.89
	Planarity	76,473	1,369,895	6,447	7.77	24.20
	Overall	68,134	7,109	15,475	18.66	0.12
A2						
	Density	50,142	2,875	59,730	54.36	0.04
	CCL	69,073	11,317	40,799	37.13	0.14
	CCL after closing	64,194	1,730	45,678	41.57	0.02
	LiDAR intensity	75,983	532,129	33,889	31.84	6.52
	LiDAR intensity Planarity	75,983 85,240	532,129 2,786,722	33,889 24,632	31.84 22.42	6.52 34.13

Data: Deltares

Raw data: Street lights

Result: removed street lights

Data: AHN3

Point clouds from **Dense Image Matching (DIM):**

Raw data: Dense Image Matching Kadaster

Good points wrongly removed

Point clouds from **Dense Image Matching (DIM):**

Raw data: Dense Image Matching Kadaster

Good points wrongly removed

Point clouds from **Dense Image Matching (DIM):**

- No penetration with camera (like LiDAR)
 - \rightarrow more occlusion = less connected features
- No intensity attributes

Good points wrongly removed

Accuracy AHN 3 & DIM point cloud

(c) AHN 3

(D) Kadaster (DIM)

Proposed method

LAStools

Data: Aerodata (A1)

		True Co	ndition	
	n = 5,743,977	Positive	Negative	
Predicted	Positive	62,821	5,699	Sensitivity = 75.7
Condition	Negative	20,099	5,655,358	Precision = 91.7
	_	FNR = 24.2	FPR = 0.10	

Cleaning quality with LAStools.

		True Co	ndition	
	n = 5,743,977	Positive	Negative	
Predicted	Positive	68,134	7,109	Sensitivity = 82.2
Condition	Negative	14,786	5,653,948	Precision = 90.6
		FNR = 17.8	FPR = 0.12	

Cleaning quality of A1 with proposed method.

		True Co	ndition	
	n = 5,743,977	Positive	Negative	
Predicted	Positive	62,821	5,699	Sensitivity = 75.7
Condition	Negative	20,099	5,655,358	Precision = 91.7
	_	FNR = 24.2	FPR = 0.10	

Cleaning quality with LAStools.

		True Co	ndition	
	n = 5,743,977	Positive	Negative	
Predicted	Positive	68,134	7,109	Sensitivity = 82.2
Condition	Negative	14,786	5,653,948	Precision = 90.6
		FNR = 17.8	FPR = 0.12	

Cleaning quality of A1 with proposed method.

Biggest improvement = on detecting clusters:

Computation time

• Time complexity of O(n) for n is number of voxels

Discussion & Future Work (1/3) Streaming

 Massive point cloud data could overload the memory of commodity computers

Discussion & Future Work (1/3) Streaming

- 1. Streaming solution sequentially read points from the dataset to minimize memory requirements;
- 2. Rasterized data requires far less memory space:

Raw point cloud			Voxelize	Voxelized point cloud		
Point cloud	Number of points	Size (Mb)	Number of voxels	Size of grid (Mb)		
A1	5.7 M	180	44.8 M	5.1		

Discussion & Future Work (1/3) Streaming

Discussion & Future Work (2/3) Separation by water

Raw point cloud

Filtered point cloud

Discussion & Future Work (2/3) Separation by water

Compare incline between regions

- Outliers have large incline
- Terrain points have negligible incline

Discussion & Future Work (3/3) Outlier Classification

- Arbitrary classification rule (threshold) for proposed method
- Supervised learning classifiers could be exploited to classify voxels
 - Predict probability of outlier class
- Use the five proposed operations to extract features, and train a classifier
- Need training data!

Conclusions

- Detect all types of outliers
 - Problems with connected outliers, or unconnected good points (by water)
- Integration of series of methods in voxel structure
 - Minimize false positives while keeping high sensitivity
- Connected Components Labeling for outlier detection
 - After closing
 - Voxel size 0.75m 1m
- Dense Image Matching point cloud != LiDAR for outlier detection

Thanks

BY SIMON GRIFFIOEN 2018

