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Main goal of study:

o
&

* From: raw aerial LIDAR point clouds
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Main goal of study:

* To: cleaned datasets without outliers
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How to do this?

* Research Motivation

* Related Work

« A Voxel-based Methodology

* Results & Quality Assessment
* Discussion & Future Work
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Research motivation (1/2)

- Raw 3D point cloud data often includes errors
(outliers);

+ Qutliers need to be removed to effectively analyze
point cloud data;

+ Deltares makes extensive use of point cloud data.
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Data: Aerodata
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Data: Aerodata
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Research motivation (2/2)
Existing tools have limitations

- Can only detect isolated points
(type-1)

* Falil to detect clusters of
outliers (type-2, -3)

« Can remove features with low
densities

Example: LAStools/lasnoise
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Research scope and goals

- Automatically detect outliers
— Isolated, clustered and random
— Using a voxel-based solution
— Fully automatic

* In Aerial Laser Scanned (ALS) point clouds
— Natural environments (vegetation, forest) & urban
— Terrestrial/Mobile Laser Scanned data is not considered

- Scalability
— Outperform existing tools in terms of accuracy, not speed
— How to handle massive datasets (>100MM points)?
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Related work:
Neighborhood- vs. Cluster-based

1. Local Neighborhood-based
—  Density-based .
—  Distance-based *
—  Mathematical morphology

*  Works well for isolated outliers
- Trade-off between false positives and true positives
*  Only considers geometric features
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Related work:
Neighborhood- vs. Cluster-based

1. Local Neighborhood-based
—  Density-based
—  Distance-based
—  Mathematical morphology

*  Works well for isolated outliers
«  Trade-off between false positives and true positives
*  Only considers geometric features

- Problems handling clustered outliers (type-2 and -3) and
— Features may be locally indistinguishable from outliers
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Related work:
Neighborhood- vs. Cluster-based

2. Cluster/graph-based
Can detect clustered outliers

E.Q.

Delaunay Triangulation = Connected Components (Arge et al., 2010)
Delaunay Triangulation - Edge pruning (Sotoodeh, 2007)
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Related work:
Group-based vs. Point-based

Point-wise
— Compute features for every point, e.g. k-nn

Group-based
— Segment points prior to feature extraction, e.g. voxels

K-nn: o .
.,\./ Voxels:
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Related work:
Group-based vs. Point-based
* Point-wise

— Compute features for every point, e.g. k-nn
— Imply high computation load

« Group-based
— Segment points prior to feature extraction, e.g. voxels

— Speed up point cloud processing

K-nn: . Voxels:
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Conclusions Literature Study

» Detect clustered outliers

- Keep features intact

« Group-based feature extraction
- Potential LIDAR attributes

*  Trade-off between TP and FP
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Conclusions Literature Study

Detect clustered outliers -

- Keep features intact -

« Group-based feature extraction -
- Potential LIDAR attributes -

*  Trade-off between TP and FP -
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cluster-based approach

adjacency/connectivity

voxels

Intensity analysis

series of methods
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Methodology
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Analysis

Voxel-based Solution
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Voxel-based Solution

Analysis

Connected Components Labeling (CCL)
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Voxelization

Source point cloud
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Binary 3D grid
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Voxelization

Voxel size selection:
1. The density of the point cloud
2. Size of features
3. Processing time
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Binary 3D grid
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(2/5) Connected Components Labeling (CCL)

3D grid Labelled regions
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(2/5) Connected Components Labeling (CCL)

1. Find largest connected component
2. Classify all points not in largest
component as outlier

Labelled regions
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(2/5) Connected Components Labeling (CCL)

1. Find largest connected component
2. Classify all points not in largest
component as outlier

Outliers?

Labelled regions
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(3/5) Closing---Morphological Operator

3 x 3 x 3 structuring element (S)

/ Closing

/ Dilation followed by erosion
vl BeS=(B&S)SS
3D grid (B)
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(3/5) Closing---Morphological Operator
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(3/5) CCL after closing

Closed grid
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Labelled regidns
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Why CCL works

Source point cloud

Labelled regions

%
TU Delft Cleaned point cloud



(4/5) Intensity

» Detect good points---not outliers
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Why this works

Raw data

(Aerodata)
Unconnected
trees removed
.i.‘u Delft Intensity of good

points
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(5/5) Planarity

» Qutliers usually form a scattered region and rarely fit in a

plane

Scatter
= outlier
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Why this works

Unconnected street signs
Data: AHN3

Signs are planar = no outlier

'I(';U Delft AP4Ianairfeatures - \;38



Experiments: Datasets

(A1) Aerodata (A2) Aerodata
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(B) Deltares (C) AHN3 (D) Kadaster
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Datasets

Point cloud

A1 A2 B C D
Source Aerodata Aerodata Deltares AHNj3 Kadaster
Technique ALS ALS ALS ALS DIM
Area (km) 0.5 X 0.5 0.5 X 0.5 0.5X0.5 05X0.5 0,5X0,5
N points 5.7 mln 8.2 min t7mln 47 mln 55 mln
Points per m* 23 33 7 19 22
Outliers Many Many Many None None
Ground truth  Yes Yes No No No

. Vecetati , Vegetati .

Environment egetation egetation Forest Urban Urban

built environment

built environment
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Result Al

Data: Aerodata
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Result Al

Data: Aerodata
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Results A2
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Data: Aerodata
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Results A2

Data: Aerodata
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Type-1 outliers

Data: Aerodata
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Type-2 outliers
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Type-3 outliers

Data: Aerodata
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Type-3 outliers

Data: Aerodata
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Type-3 outliers
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Type-3 outliers
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Type-3 outliers

]
TUDelft

51



Type-3 outliers
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Results series of operations
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Results

String of outliers
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Quality Assessment

° Sensitivity = TP];—PFN

° Precision = TPTF P

° False Positive Rate (FPR) = TNPJI:FP
° False Negative Rate (FNR) = TPFJiVFN
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Confusion Matrix

True Condition

n = 5,743,977 Positive Negative

Al
. Predicted  Positive 68,134 7,109 Sensitivity = 82.2
Voxel size 75 cm Condition Negative 14,786 5,653,048  Precision = 90.6
FNR = 17.8 FPR = 0.12

True Condition

n = 8,275,821 Positive Negative

A2 Predicted  Positive 66,204 3,740 Sensitivity = 60.6
Voxel size 75 cm Condition Negative 43,668 8,162,209  Precision = 95.3

FNR = 39.7 FIR = 0.04
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Accuracy / voxel

size
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Accuracy / voxel size
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False Positive Rate
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Results series of operations
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A1 Method TP FP FN FNR  FPR
Density 47,331 2,688 35,580 42.92 0.05
CCL 69,008 166,908 13,912 16.78 2.95
CCL after closing 66,257 5,726 16,663 20.10 0.10
LiDAR intensity 78,558 2,145,036 4,362 5.26  37.89
Planarity 76,473 1,360,805 6,447 < 7.77  24.20
Overall 68,134 7,109 15,475 18.66 0.12

A2
Density 50,142 2,875 50,730 54.36  0.04
CCL 69,073 11,317 40,799 37.13 0.14
CCL after closing 64,194 1,730 45,678 41.57 0.02
LiDAR intensity 75,083 532,129 33,889 31.84 6.52
Planarity 85,240 2,786,722 24,632 2242 34.13
Overall 66,204 3,740 43,668 39.74 0.05
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A1 Method TP FP FN FNR  FPR
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CCL after closing 64,194 1,730 45,678 41.57 0.02
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Results: Common problems (FNR)

Raw point cloud

Result

Data: Deltares
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Results: Common problems (FNR)

Data: Aerodata

]
TUDelft 63



Results: Common problems (FPR)

€«
Raw data: Street lights Result: removed street lights

Data: AHN3
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Results: Common problems (FPR)

Point clouds from Dense Image Matching (DIM):

Raw data: Dense Image Matching Good points wrongly removed
Kadaster
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Point clouds from Dense Image Matching (DIM):

Raw data: Dense Image Matching Good points wrongly removed
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Results: Common problems (FPR)

Point clouds from Dense Image Matching (DIM):
* No penetration with camera (like LiDAR)

* = more occlusion = less connected features
* No intensity attributes

Raw data: Kadaster Good points wrongly removed

]
TUDelft

67



Accuracy AHN 3 & DIM point cloud
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Comparison to LAStools

Proposed method LAStools

Data: Aerodata (A1)
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Comparison to LAStools

True Condition

n = 5,743,977 Positive Negative

Predicted  Positive 62,821 5,600 Sensitivity = 75.7
Condition Negative 20,009 5,655,358  Precision = 91.7

FNR = 24.2 FPR = 0.10

Cleaning quality with LAStools.

True Condition

n = 5,743,977 Positive Negative

Predicted  Positive 68,134 7,109 Sensitivity = 82.2
Condition Negative 14,786 5,653,948  Precision = 90.6

FNR = 17.8 FPR = 0.12

Cleaning quality of A1 with proposed method.
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Comparison to LAStools

* Biggest improvement = on detecting clusters:

Raw point cloud
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Computation time

* Time complexity of O(n) for n is number of voxels
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Discussion & Future Work
(1/3) Streaming

- Massive point cloud data could overload the memory of commodity
computers
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Discussion & Future Work
(1/3) Streaming

1. Streaming solution sequentially read points from the dataset to
minimize memory requirements;

2. Rasterized data requires far less memory space:

Raw point cloud

Voxelized point cloud

Point cloud Number of Size (Mb) Number of Size of grid
points voxels (Mb)
Al 5.7M 180 44.8 M 5.1
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& Future Work

(1/3) Streaming

ISCUSSION

D

Analysis

Reading point cloud

Visualization

Classiﬁcatior/

c wv
o @ %)
o=~ =
S2EZ 5% |°
JE£5 £
$8% 5%
S+35 8¢ °
WR w
OO 0000 \ W\ e
OO DS 7]
OXXYAAAAANK Yo A b=
i.iii\oo [ 2 7 S
O Ah o)
le] ° )
o ° )
) ) )
o ° )
° ) )
(%]
2 3 2
3 o Q
+— ie] ©
7] C =
— (V] ™

76

TUDelft



Discussion & Future Work
(2/3) Separation by water

Raw point cloud

Filtered point cloud
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Discussion & Future Work
(2/3) Separation by water

Compare incline between regions
— Outliers have large incline
— Terrain points have negligible incline

region 2

************************

region 1

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
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Discussion & Future Work
(3/3) Outlier Classification

 Arbitrary classification rule (threshold) for proposed method

« Supervised learning classifiers could be exploited to classify voxels
— Predict probability of outlier class

« Use the five proposed operations to extract features, and train a
classifier

* Need training data!
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Conclusions

« Detect all types of outliers
— Problems with connected outliers, or unconnected good points (by water)

+ Integration of series of methods in voxel structure
— Minimize false positives while keeping high sensitivity

« Connected Components Labeling for outlier detection

— After closing
— Voxel size 0.75m — 1m

- Dense Image Matching point cloud !'= LIDAR for outlier detection
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