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Proactive Emergency Collision Avoidance for
Automated Driving in Highway Scenarios

Leila Gharavi™, Azita Dabiri, Jelske Verkuijlen, Bart De Schutter, Fellow, IEEE,

and Simone Baldi

Abstract— Uncertainty in the behavior of other traffic
participants is a crucial factor in collision avoidance for auto-
mated driving; here, stochastic metrics could avoid overly
conservative decisions. This article introduces a stochastic model
predictive control (SMPC) planner for emergency collision avoid-
ance in highway scenarios to proactively minimize collision risk
while ensuring safety through chance constraints. To guarantee
that the emergency trajectory can be attained, we incorporate
nonlinear tire dynamics in the prediction model of the ego vehicle.
Further, we exploit max-min-plus-scaling (MMPS) approxima-
tions of the nonlinearities to avoid conservatism, enforce proactive
collision avoidance, and improve computational efficiency in
terms of performance and speed. Consequently, our contribu-
tions include integrating a dynamic ego vehicle model into the
SMPC planner, introducing the MMPS approximation for real-
time implementation in emergency scenarios, and integrating
SMPC with hybridized chance constraints and risk minimization.
We evaluate our SMPC formulation in terms of proactivity and
efficiency in various hazardous scenarios. Moreover, we demon-
strate the effectiveness of our proposed approach by comparing
it with a state-of-the-art SMPC planner and we validate that
the generated trajectories can be attained using a high-fidelity
vehicle model in IPG CarMaker.

Index Terms— Emergency collision avoidance, highway auto-
mated driving, hybrid approximation, stochastic model predictive
control (SMPC).

I. INTRODUCTION

HILE robust (worst case) approaches in model pre-

dictive control (MPC) synthesis have been used in
automated driving to ensure safe motion planning in uncertain
dynamic environments [1], [2], [3], [4], they can lead to overly
conservative maneuvers [5] and eventually fail in reaching
the main control objective. For instance, it is recognized
that human drivers do not drive according to worst case
considerations: if they did, an urban driver may never merge
into its desired lane when considering the worst case scenario
in predicting the behavior of other traffic participants [6],
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Fig. 1.
if its front vehicle suddenly brakes, the ego vehicle (pink) avoids front and
rear-end collision with other road users (green) by safely moving to the left
lane.

Example of proactive collision avoidance in a highway scenario:

or a highway driver would activate unnecessary emergency
braking when considering the worst case scenario in predicting
the behavior of a cut-in vehicle. Arguably, the way human
drivers avoid overly conservative maneuvers is by taking some
stochastic metrics into account during the planning. As an
example, Fig. 1 shows a scenario of proactive collision avoid-
ance: the ego vehicle (pink) is surrounded by other road users
(green). If the front vehicle suddenly brakes, a conservative
decision would be to decelerate as well to keep the distance.
However, this decision could lead to collision with the rear
vehicle. It would be much safer in this scenario for the ego
vehicle to proactively avoid the collision by moving to the left
lane while keeping a safe distance from all the surrounding
road users. In summary, proactive collision avoidance can be
understood by three key features: swift response to disturbance
(i.e., danger), optimality in terms of safety, and avoiding
propagation of hazard to future time steps, which translates
into getting out of an emergency situation as fast as possible.

A. Motion Planning Challenges in Different Scenarios

Stochastic MPC (SMPC) [7] is used in various collision
avoidance applications to generate a reference trajectory within
a dynamic environment, for example, for mobile robots [8],
[9], [10] or spacing control in vehicle platoons [11], [12].
In automated driving applications, [13] reviews different threat
metrics for risk assessment during maneuvers from colli-
sion probability to time-to-collision or distance-to-collision
between the ego vehicle and other road users. Since the
challenges and requirements of stochastic motion planning in
an uncertain environment depend on the driving scenario, two
cases can be distinguished: urban or highway.

In urban driving, the vehicles drive at lower speeds, which
allows using kinematic models for the ego vehicle [14].
In addition, vehicles can decide among different actions such
as turning to different streets at a junction, stopping to park,
or merging into another lane [15]. Moreover, there are a
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variety of traffic participants from pedestrians and bicycles
to different drivers with their own driving styles that signifi-
cantly affect the decision-making outcome [6]. Therefore, the
prediction of other participants should be more comprehensive
and intention-aware, and the research in this area has been
focusing on robust estimation of feasible space [16], [17] and
tractable MPC formulations in the presence of uncertainty in
the behavior of other traffic participants [18], [19].

Conversely, the planning problem in highway scenarios
faces two entangled challenges: ensuring that the generated
trajectory can be attained and ensuring that solving the
planning problem is computationally efficient. On highways,
an emergency maneuver at high speed would push the vehicle
in the nonlinear regime. In this sense, ensuring that the
generated reference trajectory can be attained requires con-
sidering the nonlinear tire dynamics within the ego vehicle
model for a more accurate prediction of the available tire
forces [20]. A common solution to avoid unattainable gen-
erated trajectories is to design an integrated planner/tracker
incorporating a higher-fidelity prediction model of the ego
vehicle, for example, [21] proposes serially cascaded models
to allow using different sampling times and prediction horizons
for the planning and tracking sub-problems. However, this
technique is applicable to less-aggressive maneuvers only,
since both prediction models for the planning and tracking sub-
problems are simple. In this sense, hierarchical control design
is still the most popular choice in the literature for emergency
collision avoidance in highway driving [22], [23], and the
kinematic single-track model is often selected as the ego
vehicle prediction model [23], [24], [25]. On the other hand,
incorporating nonlinear tire dynamics significantly increases
the computational complexity of the MPC planning problem,
which may prevent a proactive response to danger.

B. Sources of Uncertainty in Highway Driving

In the highway collision avoidance literature, the stochas-
ticity of the uncertain environment is expressed via chance
constraints in the SMPC planning problem. After observing
their initial position and velocity, the behavior of the obstacles
is forecast over a prediction horizon by considering a linear,
often point mass, model [24]. Stochastic behavior of obstacles
is then modeled by random variables in their prediction model
such as their velocity [26], [27] or acceleration [8]. Sometimes,
randomness in the lane change decision is considered as
well [25]. In this sense, [28] expresses the trajectory of obsta-
cles using a Markov jump system description, whereas [26]
uses a hybrid obstacle model including stochastic switching
decision between continuing along a straight path or fol-
lowing an arc trajectory. This uncertainty is then propagated
over the prediction horizon, for example, by chaos-based
approaches [29] or state updates via Kalman filter [8], [24],
leading to chance constraints in the SMPC problem. The
reference trajectory is found by minimizing a cost function
which in the literature has been mainly defined as a convex
(often quadratic) function of the states and inputs [30], such
as the velocity-tracking error [24], [28] to enforce maintaining
a constant longitudinal velocity. Unfortunately, in emergency
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maneuvers and hazardous scenarios, minimizing the prob-
ability of collision is more important than tracking errors.
In this sense, [31] uses a potential field function for collision
avoidance, but the obstacle behavior is not stochastic. How-
ever, the objective function of avoiding collision may have no
closed form, such as in [26], due to the stochasticity of the
switching decision. There, the objective function is constructed
iteratively via reachable sets.

C. Computational Efficiency in Emergencies

At the same time, tractability is also crucial and must be
traded with the accuracy of the model. For instance, in [32],
a hybrid nonlinear prediction model is considered for the
ego vehicle and the exponential growth in computational
complexity is compensated by adapting the prediction horizon
accordingly. Further, [33] suggests successive convexification
to improve the initial guess for the nonlinear MPC problem
to reduce the number of iterations and [34] uses a mixed-
integer linear program (MILP) to find the feasible region
and feed it into the nonlinear planning problem to find the
optimal trajectory. To the best of our knowledge, no research
has been done incorporating tire force dynamics for real-time
emergency motion planning in highway scenarios, that is, fast
online solution of the planning optimization problem, while
minimizing the probability of collision which leads to a highly
nonlinear formulation for the SMPC problem.

Hybrid modeling frameworks, [35] such as the max-min-
plus-scaling (MMPS) formalism [36], are effective tools to
reduce the computational complexity of the planning problem
while incorporating the nonlinear behavior regime. In this
sense, hybridization refers to the approximation of a nonlinear
function, for example, the prediction model, using a hybrid
systems modeling framework. In case of a nonlinear control
optimization problem, hybridization can lead to an MILP for-
mulation of the problem that is computationally more efficient
to solve, compared to a nonlinear program (NLP). Sequential
quadratic programming (SQP) and real-time iteration scheme
have been used in the literature where the nonlinear dynamics
is linearized at each time step [37]. However, that approach
has limited capability to adequately capture the complexity
of the nonlinear behavior along the prediction horizon. The
fact that MILPs can be solved to global optimality in a finite
number of iterations [38] makes them a suitable candidate to
formulate the MPC planning problem.

D. Contributions of This Article

In this article, we propose an SMPC motion planner
for emergency collision avoidance in highway scenarios.
We present a proactive planner design by minimizing the colli-
sion risk as well as improving safety using chance constraints
in the SMPC formulation. To avoid generating unattainable
trajectories, we incorporate nonlinear tire dynamics (account-
ing for the nonlinear tire behavior close to saturation limits)
within the prediction model for the ego vehicle and we use
MMPS approximation to reduce the computational complexity
of the planning problem. As a result, the novelties in our work
are twofold.
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1) Introducing the idea of MMPS approximation of the

nonlinearities for real-time implementation.

2) Combining hybridized risk minimization within a

stochastic MPC framework for highway path planning.
Moreover, we provide a comprehensive analysis of how
various formulations of the MPC planner influence the conser-
vatism and efficiency of the algorithm to proactively avoid a
collision in hazardous scenarios and we compare our proposed
approach to a method inspired by the state-of-the-art SMPC
planner in [24] during various cases studies. To verify that
the generated trajectories can be attained by our proposed
SMPC planner, we simulate the maneuvers using a high-
fidelity vehicle model in IPG CarMaker [39].

The article is structured as follows: Section II describes the
formulation of the predictive planning problem. Section III
briefly covers the MMPS approximation, and Section IV
explains our approach in reformulating and solving the SMPC
problem. Simulation results and comparisons to the state-of-
the-art SMPC planner and the built-in collision avoidance
module in [PG CarMaker are presented in Section V. Finally,
we conclude this article in Section VI.

The notation is this work is rather standard. The state and
input vectors at time step k are represented by s(k) and
u(k), respectively. We use a tilde symbol, for example, as in
s(k), to denote the trajectory of a signal along the prediction
horizon. The probability is expressed by the Pr symbol.

II. PROBLEM FORMULATION

Given a predicted state trajectory § at control time step k
along the next N, steps as
§(k) = [s"(k + 1K) STh+N,I0]" ()

the SMPC planning optimization problem can be formulated
by the generic form

min J(5(k)) (2a)
50k),ii(k)

st.stk+ilk)= f(stk+i—1lk),utk+i—1)) (2b)

gstk+i—1k),utk+i—1) <0 (2¢)

Pr(stk+ilk) e Si) =21 —€ Viell,...,N,}

(2d)

where J represents the cost function, usually formulated
as deviations from a desired velocity or divergence from a
globally planned reference trajectory. Further, the planning
problem is constrained to the prediction model of the ego
vehicle f(-) via (2b), general nonlinear constraints g(-) (2c¢),
and the chance constraints (2d), where S; is the safe or
confidence region in step k and € is the minimum acceptable
probability for constraint violation and is selected to be close
to 0. Based on the requirements for highway emergencies,
J, f, g, and S; often need to be selected in such a way
that (2) would be an NLP, hence computationally expensive
to solve in real time. As explained in Section I, we use MMPS
approximation of the nonlinearities to facilitate obtaining an
MILP reformulation of (2) and to improve the computational
efficiency. This is further discussed in Section III.
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III. MMPS APPROXIMATION

As the name suggests, MMPS systems are modeled using
max, min, plus, and scaling operators and are equivalent to
continuous piecewise-affine systems [35]. Any MMPS func-
tion fymps can be described by either a conjunctive or a
disjunctive canonical form [40]

Jeon () = , min p rlnaxm (V;qx + Up,q) (3a)

=1,..., q=1,..., »

fasGO = max  min (¢, ,x +@pg)  (b)

g=1,..., p=1,...,
where y and ¢ are vectors; v and w are scalars; and P, Q,
mp, and n, are integers determining the number of nested min
and max operators.
A nonlinear (scalar) function f : D — R can be approxi-
mated by an MMPS form [ f]ymps in compact state domain
D via solving the nonlinear optimization problem

) If ) = [ Immps GOl
min d
A Jp I fGOll, + €0

“4)

where [.]Jmmps represents the MMPS approximation of the
corresponding argument with either forms in (3), and A
collects the decision variables for fixed values of P, Q, m,,
and n, as

if [ f Immps = feon

=1,..., my ) (5)
if [ fTmmps = fyis-

Note that A is a tuple of vector and scalar sets since it is
necessary to preserve their order in the MMPS forms. The
positive value €y > 0 added to the denominator in (4) serves
to avoid division by very small values for || f(x)|l>» =~ 0.

In the next steps, we hybridize a suitable nonlinear predic-
tion model for the ego vehicle by solving (4) for the nonlinear
terms within the vehicle model and use our information of
the shape and form of each nonlinearities to select their
respective approximation forms in (3) and the values of the
integer pairs (P, m,) or (Q,n,). Problem (4) is a smooth
NLP which can be solved by, for example, SQP and multistart
strategy.

IV. PROBLEM REFORMULATION AND
SOLUTION APPROACH

A. Obstacle Vehicle Model

Given N, obstacles on the road, the states of the n-th
obstacle where n € {1,..., N,} at time step k are expressed
by the stochastic vector 7P (k) defined as

o =[Ro Lo Lo wel ©

obs

with the Gaussian distribution

Z(n)(k) ,\,N(g(n)(k)’ E(n)(k)) (7)
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Obstacle (other vehicle)

Fig. 2.
road.

Model configuration for the ego vehicle and the obstacles on the

where & and E, respectively, indicate the mean vector and the
covariance matrix as

O =["0 n Pd Pm]  ®
o7 (k) 0 0 0

o | 0 a0 0

=1 0 o (k) 0 ©
| 0 0 0 ok

Remark 1: We use discretized double integrator dynamics
to model the obstacle behavior and update variance and mean
using Kalman predictions. Note that the actual covariance
matrix does not remain diagonal, but it is customary to
consider a reduced or approximated covariance matrix includ-
ing the diagonal elements of E associated with the target
states [41], [42], [43], [44] for computational efficiency; an
approach we use in this article as well.

More specifically, we use a point mass model [24] for the
obstacles in Fig. 2, expressed by

2k + 1) = Az (k) + Bw™ (k) + v (k)
w® k) = K (280 - 2 k)

(10a)
(10b)

where A and B are the state and input matrices resulting from
discretized double integrator dynamics, w represents the input
signal as

s ]
] an
v ~ N(04x1, Eg) represents the process noise, and K is a
stabilizing gain such that the obstacle tracks its corresponding
reference state z,.r. Based on the current state of the obstacles,
we assume that the obstacles intend to keep their current
longitudinal velocity and their lateral position on the road.
Therefore, z.r is heuristically estimated in the planning layer
at each time step based on the most likely/expected behavior of
the other road users. The covariance matrix for each obstacle
is updated at each time step in line with Kalman prediction
by

w (k) = I:)-C-(n) )

obs

EP(k+ 1) = (A-BK)E™ (k) + BK 2, (k)

ref

EMk +1) = (A—BK)E™ (k)(A—BK)T + Eé)n)

(12a)
(12b)
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with E( being the initial estimate of the covariance matrix
of the process noise. Using the Gaussian distribution in (7),
we define p,ﬁ") to express the probability density function for

the presence of obstacle n € {1, ..., N,} on the road as
- _(x — & k) )2 B (y . ey“”ao)2
V20" (k) V20," (k)
P y) = W D)
2oy (k)oy"” (k)
(13)

which is used to develop the probability function P for the state
vector s(k) defined in (16) using a chi-squared distribution
(see [24]) and taking into account the unsafe area QM as

P (s (k)) = Pr((xego(k), yego (k) € Q™). (14)

The unsafe set 2 for each obstacle is defined as an area that
the center of gravity of the ego vehicle must avoid, and it is
an ellipse calculated by considering the position and size of
both ego and obstacle vehicles as known parameters [13].

B. Hybrid Ego Vehicle Model

The ego vehicle prediction model as shown in Fig. 2 is
described by a dynamic bicycle model [45] with a small-angle
assumption for § (reasonable in highway scenarios [2])

Xego = veos(Y + B) (15a)
yego =v Sin(lﬁ + ,3) (15b)
V=r (15¢)
V= l[Fxf — Fyy8 4 Fy] +vBr (15d)

m
y L Fyr+ F (15e)
B = mv[ v+ yr]_r €

1
;o= I_[Fxf(s Iy + Fyp ly — Fy ] (156)
5 = ds (15g)

with Fys, Fy,, and d; as inputs. All the variables and system
parameters are described in Tables I and II, and the state vector
s at time step k is expressed by

5(k) = [Xego (k) Yegolk) w(k) v(k) BK) r(k) 8(K)]'.

(16)
The tire forces should satisfy the tire saturation limits
2 2 2
Fy+ Py < (uFy) (17
FL+F), < (uF,) (17b)

also known as Kamm circle constraint [46]. Considering the
slip angles

lfr
aF=86—pB+ -

I
ar=_r_/3
v

- (18a)
v
(18b)

we describe the lateral tire forces by MMPS approximations
of the Pacejka tire model [47] shown in Fig. 3 as

[Fylmmps = Fax min(maX(g, —1), 1)
o

19)
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F,
F max [~ ’y’ =7
|
|
l
! (0%
1
Qg
—— Pacejka
***** ~Fmax___ MMPS
Fig. 3. Pacejka tire model and its MMPS approximation.
TABLE I
SYSTEM VARIABLES AND THEIR BOUNDS IN THE CASE STUDY
Var. Definition Unit Bounds
Zego | Longitudinal position of the ego vehicle m [0, oc]
Tobs Longitudinal position of the obstacle m [0, oo]
Tobs Longitudinal velocity of the obstacle m/s [5, 50]
Yego Lateral position of the ego vehicle m [-6, 6]
Yobs Lateral position of the obstacle m [-6, 6]
Yobs Lateral velocity of the obstacle m/s [-5,5]
v Velocity of the ego vehicle m/s [5, 50]
B Sideslip angle rad [-0.2,0.2]
[ Yaw angle rad [—m,m]
r Yaw rate rad/s [-0.5, 0.5]
4 Steering angle (road) rad [-0.2, 0.2]
Fp¢ Longitudinal force on the front axis N [-5000, 0]
Fpr Longitudinal force on the rear axis N [-5000, 5000]
Fy¢ Lateral force on the front axis N -
Fyr Lateral force on the rear axis N -
F.¢ Normal load on the front axis N -
Fir Normal load on the rear axis N -
g Front slip angle rad -
ar Rear slip angle rad -
TABLE 11
SYSTEM PARAMETERS
Par. | Definition [ Value [ Unit
Fixed Parameters
(IPG CarMaker BMW vehicle model)
m Vehicle mass 1970 kg
1. Inertia moment about z-axis 3498 kg/m2
lg CoG™ to front axis distance 1.4778 m
Iy CoG to rear axis distance 1.4102 m
F.¢ Normal load on the front axis 7926 N
Fir Normal load on the rear axis 8303 N
as Saturation slip angle 0.09 rad
ts Planner sampling time 0.2 S
Np Prediction horizon 10 —
Varying Parameters
(Measured Online)
Finax Maximum tire force - N
“w Friction coefficient - -
S0 Initial EV state vector -
Tref Globally-planned reference trajectory - -
V0 Initial velocity - m/s
do Initial steering angle - rad

*Center of Gravity

where the nonlinear function representing the tire forces on the
front and rear axles is approximated by a parametric MMPS
function where Fi,x and o, respectively, correspond to the
maximum tire force and the saturation slip angle.

Substituting the front and rear slip angles in (19) gives the
front and rear lateral tire forces as

[Fyrlmmps = Fax min{ max{ — — — + ——, —1]),1

Ay Ay 05 Vo

(20a)
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I 1
[Fyr Immps = Finax min(max( r——_, —1), 1).
(A2 Ay
(20b)

Using the MMPS approximation of the other nonlinear terms
in the ego vehicle model, we obtain an MMPS formulation
for the ego vehicle model expressed by

Xego = max{v, vy [cos(¥ + B)]Immps} (21a)
Yego = Vo[sin(y¥ + B)Immps (21b)
V=r 2lc)
Foi4+F., [5F,
o= 2 Tl PRI e 1)
m m
. F,r + F,,
= [Fyr + FyrImvps _, 2le)
muv
180 Fop 17 [F I, [F.
s Lo Fay 7 [Eyrlmmps L [Fyrlmmps 216
. IZZ IZZ IZZ

Fig. 4 presents three examples of the nonlinear terms ver-
sus their MMPS approximations. To find these formulations,
we have used information on the form of the nonlinear
function and we have selected the number of max and min
operators accordingly. For instance, in Fig. 4(a), we use three
hyperplanes and two max and min operators based on the
cosinusoidal shape of the nonlinear function.

Remark 2: Considering the orders of magnitude of varia-
tions of the longitudinal velocity over the prediction horizon,
the velocity v in (15b), (15d), and (15e) can be approximated
as a fixed parameter over the prediction horizon and can
be taken equal to the current measured velocity. Moreover,
in cases where v is multiplied by cosine terms with values
close to 1, we take the maximum value between the velocity
v and the MMPS approximation with v = vy in (21a) to ensure
the inclusion of numerically significant effects resulting from
variations in v when ¥ + 8 = 0 in (21a). A similar approach
is used for § in (15f) where its variations are included in the
MMPS tire forces and the current steering angle is used as a
parametric coefficient for the first term.

Remark 3: After MMPS approximation of the continuous-
time model of the ego vehicle, (21) can be discretized, for
example, using forward Euler method and a proper sampling
time to be incorporated in the SMPC formulation in (2).

Further, the Kamm circle constraints in (17) are approx-
imated using MMPS function in Fig. 4(c). Note that due to
different ranges of Fy; and F,, the front and rear force magni-
tudes are approximated by the maximum of, respectively, three
and four affine functions, to appropriately capture the form of
the nonlinear function. The maximum tire forces on the front
and rear axles are functions of the online measurements of the
friction coefficient ©, which we assume available via a friction
estimator [21], [45], as

Fiax = min{uFop, uFy ).

C. Chance Constraints and Collision Risk Function

To hybridize the probability function PP in (14), we approxi-
mate it by the MMPS function [P]ymps as illustrated in Fig. 5.
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0.5
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©

Fig. 4. Plots of example nonlinear terms in the ego vehicle prediction model and their MMPS approximations. (a) cos(y + B). (b) Br. (c) (F, ff + Fff)l/ 2,

Fig. 5. Conceptual illustration of the Gaussian probability function P of its
MMPS approximation and of the MMPS proxy functions. The approximations
are valid in the compact domain D.

The MMPS approximation [P]yvps is a probability function
as well and is used as a chance constraint in the SMPC
formulation.

Since the chance constraints must be bounded in such a
way that the probability of constraint violation is very low (to
improve safety), the accuracy of the MMPS approximation is
more important in regions close to P = 0. Therefore, we obtain
[Plmmps by approximating the Gaussian probability density
function (13) on a compact domain D defined by the road
boundaries in the lateral direction and the maximum possible
longitudinal displacement during the prediction horizon, via
solving (4) and imposing the constraint

/ (eI s (6, ) = 1
D

which gives the parametric form for [P]ypps from (14) as

[Plvmps (s (k) = max( min5(¢;s(k) + wp), o) (22)

p=1,...
with ¢, being affine functions of &,(k), &,(k), o.(k), and
oy (k). Similar to IP, the MMPS approximation [Plyvps is a
probability function that is used in the chance constraints.
However, [P]lymps under-estimates P in regions close to
the peak of P, which is not desired for deriving the collision
risk function. To improve safety, we use the MMPS function
[Plmmps in Fig. S as a proxy of [P]mmps to obtain the risk of
collision for each point on the road in the presence of other
road users. This time, we find qs » by approximating py via (4)
constrained to

[Pr]ih ps (X, ¥) = pr(x,y) Y(x,y) €D

which gives the proxy function

[Plavavps (s (k) = max( mins(és;s(k) +@p). o) (23)

p=1,...,

serving as an over-estimation of PP based on [ﬁAk]MMps. Since
[PxImmps is not a probability density function, [P]yps is only
used to calculate the risk as the cost and does not serve as
an approximation of the probability in evaluating the chance
constraint. This separation allows to avoid conservatism in
[Plmmps within the constraints while seelging safer trajectories
by minimizing the over-approximation [P]yvps.

For each time step, the collision risk depends on the
presence probability of other road users in (x, y). Therefore,
the collision risk of s(k) can be defined as
| &

P(s(k)) = N

p.ln*

i=

(24)

~~~~~~

. }[@]gzidpsmk + i[k)).

Remark 4: The max operator in (24) can be replaced by
a sum across the presence probability of all the N, road
users. However, this sum may result in a more conserva-
tive estimation of the collision risk.! For instance, if there
are two obstacles with a safe corridor in between where
PO = P@ = p, the sum would give a risk of &~ 2p for this
area, whereas, in a real situation, the chance of two vehicles
getting closer is low; furthermore, the real presence probability
for both obstacles would be even lower than p which is an
estimate that does not take into account the effect of the
presence of one obstacle on the decisions of other road users.

D. SMPC Optimization Problem

We incorporate the presence probability of obstacles into
the MPC planner in two ways: first, we ensure a very low
probability for the collision by constraining [IP](M";\,IPS to be
less than a small threshold € > 0. Secondly, we minimize the
collision risk function P from (24) in the objective function
not only to ensure this safety level but also to converge to
the safest attainable trajectory and to prevent getting close to
high-risk areas in a predictive manner. This, in fact, will lead
to a more proactive response to danger during a hazardous
scenario, which will be illustrated in an example case later.

The stochastic MPC motion planner is formulated as fol-
lows: given a globally planned reference velocity profile Uyef

The same argument can be deduced using Boole’s inequality.
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Algorithm 1 Probability Function Development

Input: Z(k),=Zo, Ny > Z contains states of all the obstacles
for ne {1,...,N,} do
2 (k) « nt column in Z(k)
=M (k|k) + =
fori e {1,...,N,} do > obstacle prediction
20 (k + i|k) « 2L S0, 20 (k + i — 1]k)
e (ke +ilk) X2 2 (k + i — 1]k)
P B O (k4 k), 2O (K + ilk)
P(n) () develop using (14) p(n)

%

b7 (22)
[P]\ips () - PO (.)

Pl{ips() <= P(O(.)
end for
end for

return [PI{1 05 (), [PliAps () ¥ € {1, No}

Algorithm 2 P-SMPC Planner

Input: s(k), [fegolnmps; Z(k), 2o, Drefs Np, Yo

Niane + length of y,
- Algorithm 1 —
[Ples (), [Plaies () «———"— Z(k),Zo, N,
develop using (24) |~
P() =2 Plawes (4), Ny
5* < solve (25) > the planning optimization problem
return s*

and the initial states so, we find the optimal trajectory St by

solving
min P (§) + Al — Vretllt + Aullitlls + AclIT 1 (252)
S,u

s.t. sk +ilk) = [ fegolmmps (s(k +i — 1]k), u(k +i — 1))

Vief{l,...,N,} (25b)
[glmmps (s(k + i — 1]k), u(k +i—1)) <O
Vie{l,...,N,} (25
(i) = j;p{n li|m{|yeg<)(1< +ilk) — ye, 1}
Viel{l,...,N,} (25d)
[P\ ps(s(k +ilk)) < e Vne{l,...,N,}
Vie(l,....,N,} (25e)

where [ fego IMmps TEpresents the discretized form of the MMPS
system dynamics in (21) and similarly, [g]mmps approximates
the nonlinear constraints such as the Kamm circle. The objec-
tive is to minimize the cost in (25a), which consists of the
collision probability, the deviation from the reference velocity,
and the control effort. Moreover, the lane-center deviation T
is defined over the prediction horizon as (25d), which allows
switching to a “better” lane (among Ny, lanes) if necessary.
Here, y.; values represent the center line in lanes 1 and 2 for
as two available lanes for the vehicle on the road and can
be easily extended to include more lanes. Constraints (25b)
and (25e), respectively, account for the prediction model of the
ego vehicle and the chance constraints. The proactive SMPC
(P-SMPC) problem is solved via Algorithms 1 and 2.
Remark 5: The chance constraints in the SMPC litera-
ture [7] are often expressed by the generic form in (2d). In our
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planner formulation, we use (25e) as a more tractable formu-
lation of chance constraints, which is essentially equivalent
to bounding the constraint violation probability in (14) or
its MMPS approximation (22) by a small value €. Note that
[Plmmps over-estimates P for probabilities close to zero as
shown in Fig. 5, and that, in (25¢), we make sure the collision
probability is smaller than e for all the states in D and all the
time steps within the prediction horizon.

V. SIMULATIONS AND RESULTS

In this section, we evaluate the control performance of our
proposed P-SMPC planner on two aspects: proactivity of the
planner and attainable generated trajectories. Here, we select
€ = 0.001 which is the tightest bound investigated in [24].
The P-SMPC optimization problem defines 10 continuous and
20 binary decision variables per prediction step to model
the ego vehicle. Further, each detected obstacle adds up to
six binary variables per prediction step to allow for hybrid
representation of the collision probability function associated
with it.

The proactivity assessment is done in four highway sce-
narios where we investigate the effect of collision risk
minimization in the objective function (25a) in our P-SMPC
planner against the optimization formulation inspired by the
state-of-the-art [24] indicated as regular SMPC (R-SMPC)
planner, where the collision risk is not included in the objective
function and the collision is avoided by only considering
the left-hand side of (25e). Note that R-SMPC is not the
same planner as in [24] since it incorporates the MMPS
approximation of the nonlinearities, but we only change the
objective function while keeping the same dynamic prediction
model for both planners for a fair comparison and a better
analysis of the risk-minimization effects. Further, we simulate
the SMPC optimization problem in its nonlinear form as
nonlinear SMPC (N-SMPC) to compare the computation time
against its MILP counterpart, P-SMPC. However, N-SMPC
becomes infeasible in the complex scenario, which is discussed
in more detail later.

To assess if the generated trajectory can be attained,
we provide the reference trajectories provided by the P-SMPC
planner to a high-fidelity vehicle model in IPG CarMaker [39]
and compare the position and velocity trajectories of the ego
vehicle with their references.

The control frequency for all the simulations is set to
1 kHz in accordance with the real-life applications where the
computational capabilities limit the operational frequency of
(digital) controllers [45]. The SMPC problems are all designed
with sampling time of 0.2 s and N, = 10. We solve the MILPs
using the GUROBI [48] optimizer and the NLPs using the
SQP solver in fmincon ina MATLAB R2020b environment.
For a fair comparison between the two solvers, we provide
the objective and the constraints as object code to speed-up
the solution time of the NLPs, which, in our simulations,
has resulted in up to 20 times faster convergence compared
to providing the objective and the constraints as MATLAB
functions. The simulations were run on a PC with an 8-core(s)
Intel Xeon 3.60 GHz CPU and 8 GB RAM on Windows 10
64-bit. The codes are available from [49].
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A. Proactivity Assessment

In real life, some of the most dangerous situations on a
highway are sudden appearance of a static object or extreme
deceleration of a front vehicle. Therefore, we define different
conceptual scenarios with slow-moving vehicles in all of them
to present scenarios where the obstacle is so slow (or even
static) that slowing down to keep the distance for collision
avoidance is either impossible for the ego vehicle or extremely
dangerous. As a result, we can test the ability of the planner
in finding a safe, yet aggressive, evasive maneuver to avoid
the collision. For this, the initial longitudinal velocity of the
ego vehicle is considered to be 22 m/s (&80 km/h), while
the dynamic obstacles are assumed to have initial velocities
between 8 and 11 m/s (=30-40 km/h). Nevertheless, we select
the scenarios in a way to represent challenging, yet possible
cases where, for example, other drivers do not aim to collide
with each other, but may behave carelessly.

We use four conceptual scenarios to assess the solutions of
the P-SMPC planner.

1) Single Obstacle: A slow-moving obstacle is in front
of the ego vehicle on the same lane. We expect the
ego vehicle to avoid collision with this obstacle by
performing an evasive maneuver, instead of slowing
down to keep a safe distance.

2) Dynamic Corridor: In addition to an obstacle in the lane
as the single-obstacle scenario, there is another slow-
moving vehicle on the other lane to present a situation
where the ego vehicle needs to pass through a corridor
between two dynamic obstacles with stochastic behavior.
Here we expect the ego vehicle to pass that corridor
along an optimal trajectory.

3) Static/Dynamic Corridor: This scenario is similar to the
dynamic corridor, except here we have a static object on
the road instead of another slow-moving obstacle.

4) Complex Scenario: Here we assess the planner in a
situation where there are four slow-moving vehicles (two
on each lane) and one static object present on the road.
There exists a safe corridor between the dynamic and
static obstacles, in which we expect the planner to find
an optimal trajectory.

Moreover, each scenario is investigated twice: first as realiza-
tion 1) where the obstacles behave ideally as the P-SMPC
planner calculates z.f, that is, they keep their longitudinal
velocity and lateral position, and secondly as realization 2)
where some/all of them either change their speed or their lane.
Note that in realization 2), the obstacle’s intention to change
lanes is not known a priori to the ego vehicle, as a result, the
SMPC planners keep the assumption that the obstacle behaves
as realization 1).

In total, we have conducted 400 Monte-Carlo simulations
by perturbing the initial speed and the longitudinal distance
between the ego vehicle and the obstacles with uniform
sampling within a 5% range as an acceptable bound from
the literature [10]. In Fig. 6, four examples are selected as
most clear cases to showcase the efficacy of our approach
in a more clear way. The statistical information regarding
the Monte-Carlo simulations can be found in Fig. 7(a). The
ego vehicle is shown in red, while the obstacles are labeled
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by the letter “O” and a number to distinguish among them.
The solid lines represent the case where the obstacles move
according to the obstacle prediction model and keep their
longitudinal velocity and lateral position. The dashed lines
correspond to a case where the obstacles behave differently
than the obstacle prediction model in P-SMPC, for example,
some of the obstacles on the road are accelerating/decelerating
or intending to change their lanes: 1) the solid red line shows
the generated reference trajectory in cases with realization and
2) while the dashed one shows the solution in realization. R-
SMPC and N-SMPC results are shown, respectively, in gray
and blue in a similar fashion.

1) Single Obstacle: In the first scenario [Fig. 6(a)], the
P-SMPC and R-SMPC planners avoid collision when the
obstacle behaves as predicted by an evasive maneuver. How-
ever, P-SMPC planner keeps a larger distance with a higher
speed compared to the R-SMPC planner that converges to a
trajectory that only satisfies the chance constraints [left-hand
side of (25e)] and favors a solution that is closer to the middle
of the lane. Note that the higher average velocity is visible
by comparing the length of the red and gray trajectories.
If the obstacle intends to change lanes, which is not known to
the ego vehicle a priori, the P-SMPC and R-SMPC planners
both keep on assuming that the obstacle will keep its lateral
position in each control step, but, after the initial control steps,
the planners converge to trajectories on the same lane as the
obstacle merges into the next one. The difference between
the planners is that the P-SMPC converges to slightly higher
speed (since the red dashed line extends more to the right) to
keep more distance from the obstacle. In this sense, P-SMPC
is more proactive as it manages to get out of the hazardous
situation while ensuring a higher safety level.

2) Dynamic Corridor: Fig. 6(b) shows the simulation
results during the dynamic corridor scenario where both obsta-
cles are moving. If the obstacles behave as predicted by the
ego vehicle and intend to keep driving on the same lane,
the P-SMPC and R-SMPC planners avoid the collision by
overtaking O1 and returning to the center of the right lane.
Here, the P-SMPC planner keeps more distance with O1 since
it succeeds in finding a trajectory that has a lower collision
risk than the left-hand side of (25¢). However, if O2 actually
intends to move to the right lane, after a few control steps when
the ego vehicle observes the updated lateral position of O2,
P-SMPC keeps more distance from the center of the right lane
and eventually merges into the left lane as it detects this area
to be the safest option. It should be noted that this is possible
due to allowing switching between lanes in (25d). Otherwise,
the planners would keep aiming for staying on the right lane
which means driving on the center line between the two lanes
until the right lane is risk-free. The R-SMPC, however, is not
able to use this potential since it keeps a closer trajectory to the
obstacles and does not search for other trajectories with lower
collision risk, as long as (25e) is satisfied. As a result, P-SMPC
is more proactive in the sense of avoiding the propagation of
hazard to the next time steps.

3) Static/Dynamic Corridor: In the dynamic/static corri-
dor scenario, both P-SMPC and R-SMPC planners avoid
colliding with the obstacles by overtaking O1 as shown in
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Fig. 6. Simulation results for proactivity assessment of the planners. The ego
vehicle is shown by a red rectangle and the fading represents the trajectory
evolution over time. Note that obstacle 5 (O5) is static. (a) Scenario 1: single
obstacle. (b) Scenario 2: dynamic corridor. (c) Scenario 3: static/dynamic
corridor. (d) Scenario 4: complex scenario. (¢) Legend.
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Fig. 7. Performance analysis of the P-SMPC planner in terms of safety and
computation time. The data in these plots represent the density histograms
of their corresponding variables considering all the performed simulations in
this study. (a) Evolution of [P]ymmps values. (b) Evolution of the risk function
values (P-SMPC). (c) Density histogram for computation times. The N-SMPC
computation times for steps that the NLP was infeasible are not considered
and the data only account for the duration of sampling times where the planner
converged to a solution.

Fig. 6(c), where P-SMPC planner keeps a larger distance
with the “more uncertain” obstacle (O1). However, if Ol
intends to increase its longitudinal velocity, R-SMPC planner
still converges to the same trajectory since it still satis-
fies (25¢), whereas P-SMPC changes lanes to the safer track
and avoids the collision by overtaking the static obstacle
O5 from the left. Similar to the dynamic corridor, this may
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lead to hazard propagation to the next steps; a problem
which P-SMPC mitigates by proactive collision avoidance via
finding a solution with a lower collision risk for future time
steps.

4) Complex Scenario: Fig. 6(d) shows the simulations for
the complex scenario. If obstacles behave as predicted by the
ego vehicle, the P-SMPC and R-SMPC planners manage to
find a solution within the attainable corridor to avoid collision
with the road users. In the final control steps, the left lane
is empty and safer; therefore, P-SMPC planner decides to
merge to the left lane, whereas R-SMPC keeps the same lane.
However, if Ol steers to the right and O4 intends to merge
into the left lane, P-SMPC planner decides to stay in the
same lane as the right lane is the safer one and suggests a
similar trajectory as planned by the R-SMPC planner. Fig. 8
shows the force plots during the complex scenario as an
example to show the capability of the SMPC to operate close
to the tire saturation limits. Note that the velocity of the ego
vehicle during the maneuvers is not always constant and is
discussed in more detail in the next section, accompanied by
corresponding plots. Note that the N-SMPC planner reaches
a state of infeasibility before the end of simulations in the
last three cases, which leads to incomplete trajectories. This
phenomenon is a result of using a warm start strategy (or solu-
tion using limited and insufficient number of initial guesses),
which, in turn, leads to accumulation of errors after a few
time steps as follows: in the complex scenario, the ego vehicle
detects the obstacles 2 s before reaching their current position,
for example, O4 is detected after the ego initiates steering
to avoid colliding with O1. Using the shifted solution of the
previous time step in such cases leads to a poor result: as
the previous solution was to go back to the initial lateral
position after overtaking O1, by detecting O4, the planner
converges to a solution that suggests going back to the initial
lateral position after overtaking O4. Conversely, R-SMPC and
P-SMPC planners are able to find a better solution thanks
to their search for a global optimum, which is to brake and
steer to the center of the lane to keep more distance from O4.
In the next time steps, O5 is detected, and R-SMPC and P-
SMPC manage to find a trajectory to steer to the center of
the lane faster now that an obstacle is in the way. However,
the poor solution in the previous time steps from the N-SMPC
planner has resulted in higher longitudinal velocity. Therefore,
the time-to-collision with OS5 is shorter and it is infeasible to
find a trajectory to avoid colliding with O5 with the current
velocity.

Remark 6: In some cases, the N-SMPC may not be able to
converge to a solution before the next time step, which means
the best feasible point found by the solver during iterations
will be used.

B. Assessment of Attainable Trajectories

To assess if the trajectories generated by the planner can
be attained, we check whether they can be tracked by a high-
fidelity vehicle model. In the proactivity test, eight reference
trajectories were generated in total by the P-SMPC planner.
To avoid repetition, we select four of these trajectories as
distinct maneuvers and we simulate the high-fidelity BMW
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Fig. 8. Force plot of the complex maneuver [Fig. 6(d)] with the Kamm circle
as shown by dashed line.

model in IPG CarMaker [39] to track them. It should be noted
that the other trajectories produced similar results. The selected
maneuvers are listed below.
1) Constant-Speed Overtake: Scenario (2-i), the solid red
line in Fig. 6(b).
2) Decelerating Overtake: Scenario (3-i), the solid red line

in Fig. 6(c).

3) Double Overtake: Scenario (3-ii), the red dashed line in
Fig. 6(c).

4) Lane Change: Scenario (2-ii), the red dashed line in
Fig. 6(b).

In each simulation, we give the velocity vector in the four
maneuvers to the longitudinal controller in IPG as the refer-
ence velocity profile, and provide the steering angles to the
lateral controller for lateral motion. Fig. 9 shows comparisons
of the Xego, Yego» and v trajectories obtained by the P-SMPC
planner and the resulting trajectory of the IPG vehicle.

Remark 7: We start each IPG simulation from Xxeeo = 0 m
and run a steady, constant velocity maneuver for 200 m
to allow for the IPG model to stabilize before tracking the
reference maneuver. As a result, the attainability tests start at
Xego = 200 m.

Fig. 9 shows that the reference trajectories provided by
P-SMPC planner are attainable for the high-fidelity IPG model
to track, with slight mismatch along the X-axis, which is
reasonable considering the larger complexity of the higher-
fidelity model in IPG CarMaker, as compared to the prediction
model in the P-SMPC planner.

C. Comparison With IPG Motion Planner

As the final step, we showcase the proactivity and efficiency
of the P-SMPC planner by comparing its behavior against
the built-in collision avoidance module in PG CarMaker
simulation environment. The test scenario is similar to the
complex scenario in Fig. 6(d) where one static and four
slow-moving obstacles are present on the road. This time,
we decrease the obstacle velocities even further down to 2—
7 m/s. Moreover, we simulate a sudden braking by the last
obstacle on the road until it stops in a dangerous way.

For a fair comparison, we set a “normal” but “risk-taking”
driver behavior in IPG by selecting a standard driver and the
maximum overtaking rate, which means that the driver always

Authorized licensed use limited to: TU Delft Library. Downloaded on July 04,2025 at 14:25:32 UTC from IEEE Xplore. Restrictions apply.



1174

5 T T
= —— Planner IPG —_ 22—
g »
R Bl
B = S 2 90 |
-5 T I | |
250 300 350 1 3 5
Tego (m) t (s)
(@)
5 T T
g —— Planner 1IPG g 22 <
) 0 777777777777777777 21 \’\
o0 ~ ~
P T = 90
=5 \ \
250 300 350 1 3 5
Tego (m) t (s)
(b)
5
g = 22 ——=
s Of Eoa1f |
= ; “—— Planner IPG = 20| -
- \ \ ! \
250 300 350 1 3 5
Tego (m) t (s)
(©)
5 I I T
g —— Planner IPG —~ 22 N .
gﬂ OfF---"-"—==== - E 21 \,-\ B
> S 20 V=
-5 \ \ ! \
250 300 350 1 3 5
Tego (m) t (S)
(d)
Fig. 9.  Simulation results for attainability assessment of the P-SMPC

planner (Section V-B). (a) Constant-speed overtake. (b) Decelerating overtake.
(c) Double overtake. (d) Lane change.

favors evading the obstacles rather than braking. This case
shows how an overly conservative planning strategy can lead
to higher risk and propagating the hazard to other road users.

In the proactive collision avoidance case, we first ran
the simulation in MATLAB and used the same TestRun in
CarMaker. We arrange the maneuver in IPG such that the
IPG driver merely tracks the speed profile and the steering
wheel angle generated by the P-SMPC planner in MATLAB.
Notably, we intentionally excluded considerations of other
traffic participants in this scenario to prevent any interference
with the operation of the IPG motion planner.

The video of the comparison simulation is accessible
online.? Fig. 10(a) compares the velocity profiles for the overly
conservative IPG motion planner and the P-SMPC planner.
While the P-SMPC planner manages to keep the velocity close
to the cruising speed, the IPG planner dangerously brakes in
multiple occasions. This issue becomes more critical when the

Zhttps://youtu.be/UacmQDjQ2vI
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Fig. 10. Plots of comparative test between overly conservative and proactive
collision avoidance (Section V-C). (a) Velocity profiles of the ego vehicle
along the road. (b) Risk and maximum [P]ypvps values for P-SMPC.

IPG planner decides for a full stop behind the last obstacle
on the right lane as shown in Fig. 11(a): on the other hand,
the P-SMPC planner manages to safely guide the ego vehicle
outside of the risky zone between two slow-moving vehicles
by taking a proactive strategy to overtake the stopping vehicle
as well as by keeping a safe distance from the other slow-
moving obstacle on the left lane in Fig. 11(b).

D. Performance Analysis and Discussion

In Sections V-A-V-C, we showed the proactivity of our pro-
posed P-SMPC motion planner by comparing its performance
against the state-of-the-art SMPC formulation (R-SMPC) and
the built-in motion planner in a high-fidelity modeling and
simulation platform. To gain a more clear view of the planning
performance of P-SMPC, we have collected the data from all
the aforementioned simulations and plotted the time evolution
of chance constraints and the risk function values and the
density histogram for computation time in Fig. 7. Since the
simulations have various lengths in terms of time, we have
scaled their data to a risky zone and a safe zone in Fig. 7(a)
and (b) to allow for a meaningful comparison. The risky
zone represents the section of the simulations where the
ego vehicle observes sudden appearance of the obstacles and
ends when it does not detect any obstacles ahead on the
road.
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Fig. 11.  Snapshots of overly conservative (upper) and proactive (lower)
collision avoidance planning strategies (Section V-C). (a) Overly conservative
collision avoidance: the ego vehicle slows down to keep distance until a full
stop behind the obstacle. (b) Proactive collision avoidance by P-SMPC: the
ego vehicle manages to get out of the risky zone before its front vehicle stops.

Fig. 7(a) shows the statistical information of [P]yvps values
in the Monte-Carlo simulation results for R-SMPC and P-
SMPC planners. The maximum values for both planners are
0.001 (0.1%) as shown in gray. Both planners show a reduction
of the maximum [Plymps value by getting out of the risky
zone. However, the mean for [Plyvps values for P-SMPC is
significantly lower than the mean values for R-SMPC, which
shows the effectiveness of minimizing a risk function based
on over-approximation of the P within the SMPC formulation.
The peak in the mean value for P-SMPC corresponds to the
riskiest time steps during the simulation, which occur where
the vehicle is closest to the obstacle, for example, during an
overtaking maneuver. Further, the interquartile range (IQR)
distance for the planners is shown by the width of a shaded
area around the mean values, using their corresponding colors.

The risk function values for P-SMPC planner are plotted
in Fig. 7(b). Since the risk function is an over-approximation
of P, its values are higher than [P]yps. Nevertheless, the
P-SMPC planner manages to keep the risk function below
0.0045 (0.45%) at all times in Fig. 10(b) due to its predictive
proactive collision avoidance. In addition, while convergence
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to a global optimum cannot be guaranteed for an NLP,
an MILP solver can reach its global optimum when it is
given sufficient time. As a result, the MILP formulation
of the (originally nonlinear) SMPC planning optimization
problem improves the computational efficiency by a speed-up
in computations and a better coverage of the decision space.

Lastly, the density histogram for computation time per
planning step is shown in Fig. 7(c). Compared to the planner
sampling time of 0.2 s, the MILP solver could find the global
optimum 96% of the times within 0.15 s (75% of the time
step) on our PC and only 4% of the times required more than
0.2 s to find the global optimum. This shows the computational
efficiency of the P-SMPC planning formulation, which can be
further improved by imposing a time limit for the solver (and
trading the global optimality) or running the simulations on a
faster machine. Note that this level of computational efficiency
is achieved for the assumed model and approximation accuracy
adopted in this article. For a more comprehensive study of
control performance versus computational speed trade-off in
hybridization of nonlinear MPC using MMPS formalism, the
reader is referred to our previous study [50], [51].

VI. CONCLUSION

This article has presented a novel SMPC motion planner
for emergency collision avoidance during hazardous highway
scenarios. The proposed planner proactively avoids collision
by static and dynamic obstacles on a highway by avoiding
conservatism and swift response to sudden appearance of road
users with uncertain behavior, thus improving the safety of the
ego vehicle.

The novelties of our proposed approach can be summarized
as follows: first, the P-SMPC planner uses a tractable formu-
lation of chance constraints for safe collision avoidance, while
minimizing a risk function formulated as an over-estimation
of the probabilities while facilitating the incorporation of a
dynamic model for the ego vehicle as well as exploiting
the tire-force potential close to the vehicle handling limits.
Secondly, hybrid approximations of the nonlinearities in the
system dynamics by MMPS formalism are used to allow
for an MILP formulation of the SMPC problem and facili-
tate real-time implementation and convergence to the global
optimum. Safety, proactivity, and computational efficiency of
our proposed planner were shown via various simulations of
emergency scenarios and compared against the state-of-the-art
SMPC formulation and a high-fidelity vehicle modeling and
simulation environment.

For future work, we aim at improving the model for
dynamic obstacles on the road and extending the uncertainty
regarding the intention of the other road users. While the
model employed in this article for the obstacles helped obtain
an efficient computational accuracy—speed trade-off, more
comprehensive models of obstacle behavior are influential
for implementation of levels 4 and 5 of automated driving.
Further, we aim at integrated planning and control design for
emergency scenarios for improved accuracy and computational
efficiency, in addition to investigating an efficient control
structure to integrate our proposed SMPC planner with hybrid
vehicle control and a friction estimator to account for the
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uncertainties of the environment as well. Moreover, in-depth
calibration of probability bounds, investigation of subopti-
mality bounds, feasibility analysis of the SMPC problem
for different probability formulations, and proof of recursive
feasibility will be important topics for our future research,
as well as designing a back-up mode in cases where the
feasibility of the planning optimization problem cannot be
guaranteed.
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