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A B S T R A C T   

This paper describes an MPM formulation using linear quadrilateral elements suitable for soil-structure- 
interaction problems. The volumetric locking and stress-oscillations are mitigated using a reduced integration 
technique and the Gauss integration scheme, respectively. The formulation can be used with both structured and 
unstructured computational meshes. In addition, an improved calculation scheme is proposed to obtain accurate 
contact reaction forces, especially for contacts between non-porous structures and soils with high liquid pres-
sures. The formulation is validated by simulating a wide range of applications such as a water dam break, 1D 
large-strain consolidation, and the bearing capacity of a strip footing. Finally, the installation of a cone pene-
trometer in a centrifuge is successfully simulated in soft soils and compared with the experimental data for the 
entire range of drainage conditions.   

1. Introduction 

The simulation of objects penetrating the soil has always been a 
challenging topic in computational geomechanics. This is mainly due to 
the numerical difficulties caused by large deformations developed near 
the penetrating object, and describing the soil behavior over the full 
strain range (from small to very large). 

Several methods have been proposed for the large deformation 
analysis in the last three decades, such as the Discrete Element Method 
(DEM) (e.g. Arroyo et al., 2011), the Particle Finite Element Method 
(PFEM) (e.g. Monforte et al., 2017; Monforte et al., 2018), the Arbitrary 
Lagrangian-Eulerian method (ALE) (e.g. van den Berg, 1994; Tolooiyan 
and Gavin, 2011; Fan et al., 2018), the Smoothed Particle Hydrody-
namics (SPH) (e.g. Kulak and Bojanowski, 2011), the Coupled Eulerian- 
Lagrangian Method (CEL) (e.g. Fallah et al., 2016; Staubach et al. 2021) 
and the Material Point Method (MPM) (e.g. Beuth and Vermeer, 2013; 
Ceccato et al., 2016; Martinelli and Galavi, 2021). 

MPM is gaining attention for the simulation of various installation 
techniques because of its flexibility. The standard Cone Penetration 
Tests (CPT) (e.g. Beuth, 2012; Ceccato et al., 2016; Ceccato et al., 2017; 
Martinelli and Galavi, 2021), jacked piles (e.g. Phuong et al. 2016), and 
suction-piles (e.g. Martinelli et al. 2020; Stapelfeldt et al., 2021) are 
some applications of MPM to quasi-static problems, while free-fall 

penetrometers (e.g. Zambrano and Yerro, 2020), impact-driven piles 
(e.g. Al-Kafaji, 2013; Hamad, 2016; Moormann et al., 2017; Galavi et al., 
2019) and vibro-driven piles (e.g. Galavi et al., 2017) are some suc-
cessful dynamic problems in which MPM has been used. It is worth 
mentioning that significant contributions have been made to this field of 
research by the Anura3D Research Community (www.anura3D.com) by 
developing the open-source Anura3D code for MPM calculations. 

The Anura3D community has widely adopted the linear 3-node 
triangular element in 2D, and similarly the linear 4-node tetrahedral 
element in 3D, to simulate large deformation problems (e.g. Beuth, 
2012; Al-Kafaji, 2013). It is well known that such low-order elements 
suffer from volumetric locking. To mitigate this problem, a nodal mixed 
discretization method - proposed by Stolle et al. (2010) in MPM and 
inspired by Detournay and Dzik (2006) – is currently being used in 
Anura3D. This consists of a nodal averaging of the increments of volu-
metric strains (Beuth, 2012). The method of Stolle et al. (2010) was 
originally proposed for elastic or elastoplastic materials without 
considering the volume change caused by plastic shearing. This implies 
that the volumetric response must be similar in adjacent elements. 
Therefore, by applying the nodal averaging method in geotechnical 
applications, in which usually advanced constitutive models are used, 
the computational mesh should be fine enough to have a smooth tran-
sition of volumetric strains and soil response between adjacent elements. 
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It is widely known that the original material point method (Sulsky 
et al., 1994) suffers from stress oscillations induced by the movement of 
the material points through the computational mesh. This is mainly 
attributed to the use of piecewise basis (shape) functions, which have 
discontinuous gradients (e.g. Andersen and Andersen, 2009; Stefen 
et al., 2008; Zhang et al., 2011). Hence, several techniques have been 
proposed to ensure continuity in the gradient of basis functions at the 
boundaries between the elements, such as GIMP (Bardenhagen and 
Kober, 2004), CPDI (Sadeghirad et al., 2011), B-spline MPM (Tielen, 
2016; Gan et al., 2018) and DDMP (Zhang et al., 2011). 

In Anura3D, the stress-oscillations are mitigated using the so-called 
Gauss integration method (Beuth, 2012). This method, in contrast to 
the standard material point integration, uses a fixed number of inte-
gration points in an optimal location to achieve the highest accuracy 
(Beuth and Vermeer, 2013). However, this technique was developed for 
linear elements with a single Gauss point, where stresses and strains are 
assumed constant over the element. 

This paper provides an alternative formulation for 2D problems 
based on the 4-node quadrilateral element, for which Gauss integration 
is used to mitigate the stress-oscillations and the element locking by a 
reduced-integration. This technique avoids sharing of volumetric strains 
between elements, which occurs if the nodal averaging technique is 
applied. Instead, the well-known B-bar method is adopted (Hughes, 
2000), in which the deviatoric strains are calculated in all four Gauss 
points, but only one Gauss point, located in the center of the element, is 
used for the volumetric strains. This formulation can be used for struc-
tured and unstructured computational meshes and can be directly 
extended to 3D problems using the 8-node hexahedral element. 

The effects of the contact formulation and fixities on the numerical 
scheme are also presented in this paper. An improved computational 
scheme is proposed to compute accurate reaction forces along contact 
surfaces, especially between non-porous structures and soils with high 
liquid pressures (Appendix). 

The formulation is validated by simulating a wide range of applica-
tions such as a water dam break, 1D large-strain consolidation, and the 
bearing capacity of a strip footing. Finally, the installation of a cone 
penetrometer in a centrifuge is successfully simulated in soft soils and 
compared with the experimental data (Schneider et al., 2007) for the 
entire range of drainage conditions. 

2. Numerical MPM formulations 

This section describes the MPM formulations for coupled 2-phase, 
undrained and drained analyses. It also highlights how the soil- 
structure interaction is formulated along a contact surface. 

2.1. Coupled 2-phase formulation 

The primary unknowns of the dynamic MPM formulation are the 
accelerations of the solid and liquid phases (aS-aL) (Jassim et al., 2013). 
The momentum balance for the liquid phase and the mixture, as well as 
the mass balance equations and the constitutive relationship, lead to the 
solution of the system, as written here: 

ρLaL = ∇⋅(pLI)+ ρLb −
nμL

κL
(vL − vS) (1)  

(1 − n)ρSaS + nρLaL = ∇⋅(σ′

+ pLI)+ ρmb (2)  

dn
dt

= (1 − n)(∇⋅vS) (3)  

ṗL =
KL

n
[
(1 − n)∇⋅vS + n∇⋅vL

]
(4)  

σ̇ ′

= Dε̇s +Ωσ′

− σ′ Ω− ε̇v,Sσ′ (5)  

where n is the porosity; ρS and ρL are the density of solid grains and pure 
liquid, respectively; ρm is the density of the mixture (ρm = (1 − n)ρS +

nρL); I is the identity tensor; vS and vL are the velocities of the soil and 
liquid phases, respectively;σ’ is the effective stress tensor; KL is the bulk 
modulus of the pure liquid, and b is the body force vector. In Eq. (5), the 
term D is the stiffness matrix;σ̇’ and ε̇s are the stress and strain rate 
tensors of the solid phase, respectively. Ω is the spin tensor and ε̇v,S is the 
volumetric strain increment. Eq. (5) is derived using the Jaumann’s 
stress rate of Kirchhoff stress (objective stress rate), needed to obtain 
frame-independent results in case of large deformation analyses (Ji 
et al., 2010; Al-Kafaji, 2013). 

It should be noted that Eq. (4) is written based on the assumption 
that the porosity field is sufficiently smooth over the entire domain of 
the mixture. As highlighted by Ceccato et al. (2018), this hypothesis is 
reasonable but may lead to errors when adjacent materials have 
significantly different porosities. 

The contribution of the hydrostatic pressure 
(

phydr

)
can be elimi-

nated from Eqs. (1) and (2) for fully submerged materials, i.e.: 

ρLaL = ∇⋅(ΔpLI) −
nμL

κL
(vL − vS) (6)  

(1 − n)ρSaS + nρLaL = ∇⋅(σ′

+ ΔpLI)+ (ρm − ρL)b (7)  

where ΔpL = pL − phydris the excess liquid pressure. 

2.1.1. Discretized form 
For a generic node i of the computational mesh, Eq. (1) is discretized 

as follows: 

ML,iaL,i = f ext
L,i − f int

L,i + f drag
i (8)  

where ML,i, f ext
L,i , f int

L,iand fdrag
i are the nodal values of the liquid mass 

matrix, external force, internal force and drag force vectors, respec-
tively, summarized as follows: 

ML,i =
∑Nel,i

el=1

∑NMP,el

MP=1
Ni
(
ξMP

)
mMP,L (9)  

f ext
L,i =

∑Nel,i

el=1

∑NMP,el

MP=1
Ni(ξMP)tMP,L +

∑Nel,i

el=1

∑NMP,el

MP=1
Ni
(
ξMP

)
mMP,Lg (10)  

f int
L,i =

∑Nel,i

el=1

∑NMP,el

MP=1
BT

i

(
ξMP

)
pL,MPIΩMP (11)  

f drag
i =

(
vS,i − vL,i

)∑
Nel,i

el=1

∑NMP,el

MP=1
Ni(ξMP)nMP

μMP

κMP
ΩMP (12)  

where Nel,i is the number of elements around node i; NMP,el is the number 
of material points in element el; Ni(ξMP) is the value of the shape function 
calculated at the position of the material point; g is the gravitational 
vector; κMP and μMP are the intrinsic permeability and the dynamic 
viscosity of the liquid, respectively; tMP,L, pL,MP and ΩMP are the external 
load (on the liquid phase), the liquid pressure and the integration weight 
of the material point, respectively, andmMP,L = ρLΩMPis the liquid mass 
of the material point. 

Eq. (2) is discretized for a generic node i of the computational mesh 
as: 

MS,iaS,i +ML,iaL,i = f ext
i − f int

i (13)  

with: 
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MS,i =
∑Nel,i

el=1

∑NMP,el

MP=1
Ni
(
ξMP

)
mMP,S (14)  

ML,i =
∑Nel,i

el=1

∑NMP,el

MP=1
Ni
(
ξMP

)
mMP,L (15)  

f ext
i =

∑Nel,i

el=1

∑NMP,el

MP=1
Ni(ξMP)tMP +

∑Nel,i

el=1

∑NMP,el

MP=1
Ni
(
ξMP

)
mMPg (16)  

f int
i =

∑Nel,i

el=1

∑NMP,el

MP=1
BT

i

(
ξMP

)(
σ′

MP + pL,MPI
)
ΩMP (17)  

where tMP and σ’MP are the (total) external load and the effective stress of 
the material point, and mMP,L = nρLΩMP and mMP,S = (1 − n)ρSΩMP are 
the liquid and solid masses of the material point, respectively. 

2.1.2. Contact formulation 
The contact algorithm – originally proposed by Bardenhagen et al. 

(2000) for frictional contacts and further extended by Al-Kafaji (2013) 
for adhesive contacts – is used to model separation and sliding between a 
structure and surrounding soils. The calculated soil velocities are cor-
rected to avoid interpenetration when the following inequality is 
satisfied: 
(

vS,i − vstructure,i

)
⋅ni > 0 (18)  

where ni is the outward unit vector normal to the soil body at node i; vS,i 
is the velocity of the soil and vstructure,i is the velocity of the structure. 

The algorithm was extended by Ceccato (2014) to modify the ve-
locity of the liquid for impermeable contact surfaces. The correction was 
applied to the normal component of the velocity of the liquid phase, vL,i, 
to prevent inflow into the structure and not the outflow. In this paper, 
the velocity of the liquid phase is corrected to prevent both inflow and 
outflow, in order to satisfy the following equality: 
(

vL,i − vstructure,i

)
⋅ni = 0 (19)  

2.1.3. Reaction forces in the coupled formulation 
Both fixities (F) and the contact formulation (C) modify the nodal 

accelerations and nodal velocities in the computational scheme. Thus, it 
is important to carefully consider how these conditions (i.e. F/C) are 
treated in the numerical solution of coupled problems, as they can be 
applied independently to the solid and to the liquid phases. 

Eqs. (8) and (13) define the rate of momentum for the solid and 
liquid phases before applying fixities or contact formulation. Therefore, 
an additional force term appears in the equations after imposing F/C 
conditions, indicated as f R, as follows: 

ML,iaL,i

⃒
⃒
⃒

afterF/C
= ML,iaL,i+f R

L,i (20)  

MS,iaS,i

⃒
⃒
⃒

afterF/C
+ML,iaL,i

⃒
⃒
⃒

afterF/C
= MS,iaS,i +ML,iaL,i+f R

i (21)  

where, f R
L,i and fR

i represent nodal reaction force due to F/C, respectively 
to the liquid phase and to the mixture. If node i appears on the free 
surface of the soil body, where no fixities and contact is applied, fR

L,i 

includes external loads due to an equivalent liquid pressure (p̃L) acting 
on node i. The corresponding nodal force can be computed as follows: 

f R
L,i =

∫

Area,i
p̃LI⋅jds (22)  

where j is the outward unit normal vector to the soil body; ds is the area 
around node i and I is the identity vector. 

The same analogy can be described for the external load due to the 
equivalent liquid pressure (p̃L) and the effective stress (σ̃’) on the surface 
of the soil body around node i. This force can be determined as: 

f R
i =

∫

Area,i

(

σ̃
′

+ p̃LI
)

⋅jds =
∫

Area,i
σ̃

′

⋅jds +
∫

Area,i
p̃LI⋅jds = f R

S,i + f R
L,i (23) 

Thus, there are two forces contributing to fR
i , namely f R

S,i on the solid 

skeleton and fR
L,i on the liquid phase. 

The nodal liquid mass ML,i can be approximated for smooth porosity 
fields as follows: 

ML,i = niML,i (24)  

where ni is the nodal value of the soil porosity, computed as: 

ni =

∑Nel,i
el=1
∑NMP,el

MP=1Ni
(
ξMP

)
nMPΩMP

∑Nel,i
el=1
∑NMP,el

MP=1Ni
(
ξMP

)
ΩMP

(25) 

By combining Eqs. (20), (21), (23), and Eq. (24), the reaction forces 
are computed as follows: 

f R
L,i = ML,i

(
aL,i
⃒
⃒

afterF/C − aL,i

)
(26)  

f R
S,i = MS,i

(
aS,i
⃒
⃒

afterF/C − aS,i

)
−
(
1 − ni

)
f R

L,i (27) 

It should be noted that the term (1 − ni) fR
L,i in Eq. is the equivalent 

reaction forces of the liquid phase due to fixities and contact formula-
tion, which affects the rate of momentum of the solid phase. This term is 
essential to correctly compute the reaction forces along the contact 
surface. A verification example is illustrated in the Appendix. 

2.1.4. Computational cycle 
A single computational cycle of the modified-Lagrangian scheme 

(Sulsky et al. 1994) is described as follows:  

1. Compute the nodal porosity (Eq. (25)), assemble the nodal mass, the 
external force, the internal force and the drag force vectors (Eqs. (9)– 
(12) and Eqs. (14)–(17));  

2. The nodal acceleration of the liquid phase at+1
L,i is determined by 

solving 

at+1
L,i =

(
f ext

L,i − f int
L,i + f drag

i

)/
ML,i (28)    

3. The nodal velocity of the liquid phase vt+1
L,i is computed from the 

nodal acceleration at+1
L,i as follows: 

vt+1
L,i = vt

L,i + at+1
L,i Δt (29)    

4. Contact formulation, fixities and corresponding reaction forces of the 
liquid phase:  
a. On “impermeable” contact nodes, the corrected velocity v̂t+1

L,i is 
computed to avoid interpenetration or separation, such that Eq. 

(19) is satisfied. The acceleration at+1
L,i

⃒
⃒
⃒
afterF/C 

is then updated: 

at+1
L,i

⃒
⃒
⃒

afterF/C
=
(

v̂t+1
L,i − vt

L,i

)/

Δt (30)   

b. if a fixity is imposed on a degree of freedom at node i, the corre-
sponding aL,i

⃒
⃒
afterF/C is set to zero.  

c. The reaction force fR
L,i is then computed as follows: 

f R
L,i = ML,i

(
aL,i
⃒
⃒

afterF/C − aL,i

)
(31) 

M. Martinelli and V. Galavi                                                                                                                                                                                                                  



Computers and Geotechnics 145 (2022) 104697

4

5. The nodal acceleration of the solid phase at+1
S,i is determined by 

solving: 

at+1
S,i =

(

f ext
i − f int

i + f R
i,0 − ML,iat+1

L,i

⃒
⃒
⃒

afterF/C

)/

MS,i (32)   

where f R
i,0 =f R

L,i because, at this step, the fixities and contact formu-
lation are only applied to the liquid phase.  

6. The nodal velocity of the solid phase vt+1
S,i is computed from the nodal 

acceleration before imposing boundary conditions as follows: 

vt+1
S,i = vt

S,i + at+1
S,i Δt (33)    

7. Fixities, contact formulation and corresponding reaction forces of the 
solid phase:  
a. The normal velocities are corrected along the contact nodes to 

avoid interpenetration when Eq. (18) is satisfied. The tangential 
velocity is adjusted considering the frictional and adhesion con-
tact formulation illustrated in Al-Kafaji (2013). Therefore, the 
acceleration vector is updated as follows: 

at+1
S,i

⃒
⃒
⃒

afterF/C
=
(

v̂t+1
S,i − vt

S,i

)/

Δt (34)   

where v̂t+1
S,i is the corrected solid velocity vector after contact 

formulation. 
b. If a fixity is imposed on a degree of freedom at node i, the corre-

sponding at+1
S,i

⃒
⃒
⃒
afterF/C 

is set to zero.  

c. The reaction force f R
S,i is then computed as follows: 

f R
S,i = MS,i

(
aS,i
⃒
⃒

afterF/C − aS,i

)
−
(
1 − ni

)
f R

L,i (35)    

8. The total reaction force is then: 

f R
i = f R

S,i + f R
L,i (36)    

9. The velocities of material points are then computed from the nodal 
accelerations as follows: 

vt+1
MP,L = vt

MP,L +
∑Nnodes,el

i=1
Ni
(
ξt

MP

)
at+1

L,i

⃒
⃒
⃒

afterF/C
Δt (37)  

vt+1
MP,S = vt

MP,S +
∑Nnodes,el

i=1
Ni
(
ξt

MP

)
at+1

S,i

⃒
⃒
⃒

afterF/C
Δt (38)    

10. The nodal velocities are computed as the ratio between the nodal 
momentum and the nodal mass vectors, as follows: 

Pt+1
i,L =

∑Nel,i

el=1

∑NMP,el

MP=1
Ni
(
ξt

MP

)
mMP,Lvt+1

MP,L (39)  

Pt+1
i,S =

∑Nel,i

el=1

∑NMP,el

MP=1
Ni
(
ξt

MP

)
mMP,Svt+1

MP,S (40)  

vt+1
i,L =

Pt+1
i,L

Mi,L
; vt+1

i,S =
Pt+1

i,S

Mi,S
(41)    

11. Strain increments are then computed at the location of each 
material point.  

12. Stress is integrated using a constitutive model (Eq. (5)) and the 
increment of the liquid pressure is calculated using Eq. (4). 

13. Porosities nMP are updated using Eq. (3) to recalculate the inte-
gration weight of material points as ΩMP = mMP,S/(ρS(1 − nMP) ).  

14. Incremental nodal displacements of the solid phase are updated 
as follows: 

Δut+1
i,S = Δut

i,S + vt+1
i,S Δt (42)    

15. The position of each material point is finally updated using the 
incremental nodal displacements of the solid phase, which are 
reset afterwards, as follows: 

xt+1
MP = xt

MP +
∑

Ni
(
ξt

MP

)
Δut+1

i,S (43)  

Δut+1
i,S = 0 (44) 

It should be noted that the computational scheme can be converted 
to the identical-Lagrangian scheme by skipping steps (1) and (10). As 
discussed in Martinelli and Galavi (2021), step (10) is not performed for 
all contact nodes to avoid spurious stress oscillations and consequently 
increase the accuracy. 

2.2. Single-phase undrained and drained formulation 

The mechanical description of the mixture can be simplified in un-
drained conditions by using accelerations (am) and velocities (vm) of the 
mixture without the need to describe the solid and the liquid phases 
separately. It is worth mentioning that the contact formulation is also 
simplified in that the velocity of the mixture is used, and the contact 
forces are then calculated as results of total stresses. 

The governing equations in undrained conditions are written as 
follows: 

ρmam = ∇⋅(σ′

+ pLI)+ ρmb (45)  

dn
dt

= (1 − n)(∇⋅vm) (46)  

σ̇′

= Dε̇m +Ωσ′

− σ ′Ω− ε̇v,mσ ′ (47)  

ṗL =
Kw

n
∇⋅vm (48)  

where ρm is the density of the mixture, computed as ρm = (1 − n)ρS +

nρL. 
If the soil is fully underwater, the contribution of the hydrostatic 

pressure can be removed from Eq. (45), as written in Eq. (7). 
In drained conditions, Eqs. (45)–(47) are written in terms of accel-

erations and velocities of the solid phase. ṗL is zero and the inertia term 
is computed as (1 − n)ρSaS. In dry conditions, the density of the liquid 
phase is zero, thus ρm = (1 − n)ρS in Eqs. (45)–(47). 

2.3. Critical time step 

The explicit integration scheme, presented in Section 2.1.4, is 
conditionally stable. The critical time step, defined by the Courant- 
Friedrichs-Levy (CFL) condition (Courant et al., 1928), is the time 
increment in which a wave with celerity c travels the smallest element 
length Lmin, i.e.: 

ΔtCFL =
Lmin

c
=

Lmin
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Êoed

/
ρm

√ (49)  

where Êoed is the undrained constrained modulus of the solid skeleton. 
For drained simulations, Êoedis the drained constrained modulus of the 
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soil skeleton and ρm = (1 − n)ρS. 
Eq. (49) is found to be insufficient in 2-phase coupled explicit sim-

ulations when of the permeability of the soil is low. Mieremet et al. 
(2016) suggested the following additional permeability-dependent sta-
bility criterion: 

Δtk =

− ρLg
/

ρmk +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
ρLg
/

ρmk
)2

+ 4ω2
√

ω2 (50)  

where ω2 = (4E’/ρm)L2
min, ρm = ρm + (1/n − 2)ρL, E’ is the drained 

Young modulus of the solid skeleton and k is the hydraulic conductivity 
defined as follows: 

k = γw
κ
μ (51) 

When the permeability of the soil is high, the following 
consolidation-dependent criterion might become dominant: 

Δtcv
=

L2
min

2cv
(52)  

cv =
κ

μ
(

1
E′

oed
+ n

KL

) (53)  

where E’
oed is the drained constrained modulus (oedometric stiffness) of 

the soil skeleton and KL is the bulk modulus of the liquid phase. 
The critical time step is then determined as the minimum value of the 

above three criteria: 

Δtcrit = min
(

ΔtCFL,Δtk,Δtcv

)
(54) 

The criteria do not consider the nonlinearity in the stress–strain re-
lationships. Therefore, to achieve stable solutions in nonlinear calcula-
tions, the critical timestep can be reduced by multiplying Δtcrit by an 
additional factor (namely Courant number, Belytschko et al., 2014). The 
Courant number varies between 0 and 1. Smaller Courant numbers 
result in smaller time steps, which also improves the accuracy of the 
numerical results. Throughout this paper, the value of 0.9 is used for all 
simulations. 

2.4. Numerical enhancements of the MPM model 

The numerical techniques – used to increase calculation speed, sta-
bility, and accuracy of the results – are discussed in this section. 

2.4.1. Volumetric locking mitigation techniques 
The standard linear 4-noded quadrilateral elements suffer from 

volumetric locking. To mitigate this problem, the B-bar method is used 
(Hughes, 2000) in the proposed MPM formulation. In this approach, the 
internal force and strain increments are calculated using a modified B 
matrix (named B-bar), where the isotropic components are evaluated at 
the centre of the element rather than at the local position of each ma-
terial point. This method prevents volumetric locking without intro-
ducing hourglassing deformation modes. 

2.4.2. Stress-oscillation mitigation technique 
Gauss integration is adopted to mitigate stress oscillation. This 

technique was originally developed for linear 3-node triangular ele-
ments (Beuth, 2012). In this paper, it is extended to 4-node quadrilateral 
elements. The element is divided into four sub-elements, one for each 
Gauss point (GP), defined based on the local coordinates. In axisym-
metric conditions, the volume of each GP (ΩGP) is computed by multi-
plying the area of GP by its initial radius (distance between GP and the 
axis of symmetry). 

The effective stress tensor at each of the four GPs is computed by the 

weighted average of the effective stress tensors of all material points, as 
follows: 

σ′

GP =

∑NMP,GP
MP=1 σ′

MPΩMP
∑NMP,GP

MP=1 ΩMP

(55)  

where ΩMP is the volume of the material point MP and NMP,GP is the 
number of material points located in each sub-element. 

Using a similar technique adopted in FLAC (Itasca, 2016), the 
isotropic part of the effective stress tensor (p

′

GP) is averaged over the 
entire element and the deviatoric part is recalculated accordingly: 

p′

el =

∑NGP
GP=1p′

GPΩGP

Ωel
(56)  

σ̂
′

GP = σ′

GP −

(
1
3

tr
(
σ′

GP

)
− p′

el

)

I (57) 

The average effective stress tensor (σ̂
′

GP) is then assigned back to all 
material points in the sub-element. When an advanced constitutive 
model is used, the state variables are averaged over the entire element 
and reassigned to the material points. The porosity (or void ratio) is also 
averaged over the element. 

Eqs. (55)–(57) are also used for stress averaging in the liquid phase. 
However, since the stress tensor is isotropic in this case, the element is 
characterized by only a constant liquid pressure (pL,el) after stress 
averaging. 

The internal force vector is then integrated as follows: 

f int
i =

∑Nel,i

el=1

∑NGP,el

GP=1
BT

i

(
ξGP

)(
σ̂

′

GP + pL,elI
)
ΩMP (58)  

where ξGP is the local coordinate of the Gauss point in the element and 
NGP,el is the number of Gauss points in the element. 

2.4.3. Mass scaling 
To speed-up calculations in explicit integration schemes, time steps 

can be increased by multiplying the mass matrices by a Mass-Scaling- 
Factor (MSF), which is larger than 1. This procedure is typically used 
for quasi-static processes as described in Al-Kafaji (2013). 

2.4.4. Numerical damping 
The combined damping is used in this formulation (Itasca, 2016). 

The nodal damping force is calculated as follows: 

f damp
ξ,i = αdamp

⃒
⃒
⃒ḟ ξ,i

⃒
⃒
⃒

[
sign

(
ḟ ξ,i

)
− sign

(
vξ,i
) ]/

2 (59)  

where ξ is the phase (S or L); αdamp is the damping factor; vξ,i is the nodal 
velocity. The term ḟ ξ,i is calculated as follows: 

ḟ L,i = f ext
L,i − f int

L,i (60)  

ḟ S,i = f ext
i − f int

i − ni

(
f ext

L,i − f int
L,i

)
+(1 − ni)f

R
L,i (61) 

As described in Martinelli and Galavi (2021), no damping factor is 
defined at contact nodes to achieve accurate reaction forces. 

3. Validation examples 

The proposed MPM formulation is validated by a series of applica-
tions. Although the purpose of this paper is primarily the penetration 
problems in saturated media, some examples are discussed to illustrate 
the capabilities of the proposed numerical approach in a wider range of 
applications. A dam break problem is studied first, followed by the 
consolidation process in saturated media and the bearing capacity of a 
strip foundation. Finally, the cone penetration test in soft soils is 
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illustrated including the effect of partially drained conditions. 

3.1. Dam break problem 

Fig. 1 shows a simplified model of a dam break problem. The model 
consists of a water column with an initial height, h0, and an initial 
length, l0 = 0.5 m. It is initially in equilibrium due to the normal fixities 
on the lateral and bottom boundaries. At time t = 0, the fixities along the 
right boundary are removed and the water flows freely under gravity (g 
= 9.81 m/s2). The water is modeled as a single-phase material with a 
density of 1 Mg/m3 and a bulk modulus of 200 MPa. A structured 
computational mesh (4-node quadrilateral elements) is used with a 
uniform element size of 5 cm and 16 material points in each element. 
Two aspect ratios are considered in this study: h0/l0 = 1 and h0/l0 = 2. 
The pore water pressure distribution is illustrated in Fig. 1 for the case 
h0/l0 = 2 at t = 0.4 s. The runout process is described using the following 
normalized parameters: 

T = t

̅̅̅̅̅̅̅
h0g
l2
0

√

;H =
h(t)
h0

;L =
l(t)
l0

(62) 

The results of the MPM simulations, illustrated in Fig. 2, are in 
agreement with the benchmark example of Martin and Moyce (1952) 
and with an independent MPM study of the same example performed by 
Mast et al. (2012). It can be concluded that the numerical scheme pro-
posed in this paper is able to describe the kinematics of the water flow 
with a satisfactory pressure field. 

3.2. One-dimensional large-strain consolidation 

The one-dimensional consolidation problem is a simple example, 
usually adopted to demonstrate the accuracy of MPM formulations. For 
example, Spiezia et al. (2015) compared the results of a 1D large-strain 
consolidation in an implicit Updated Lagrangian FEM with an explicit 2- 

phase MPM, and found a satisfactory agreement for the settlement of the 
column but not for the evolution of pore pressures. Zheng et al. (2021) 
used the analytical solution of Xie and Leo (2004) and verified their 
MPM formulation obtaining a good match for both the settlement and 
pore pressures. The analytical solution of Xie and Leo (2004) is an 
extension of the one-dimensional large-strain consolidation theory of 
fully saturated homogeneous clays, derived by Gibson et al. (1967). 

In this section, the same example of Zheng et al. (2021) is considered 
and compared with the analytical solution to verify the presented MPM 
formulation. The example consists of a weightless elastic soil column 
with a height of 1 m. The lateral and base boundaries are impermeable 
and fixed in normal directions. The material properties of the soil are 
listed in Table 1. A structured background mesh (4-node quadrilateral 
elements) is used with a uniform element size of 1 cm and 25 material 
points in each element. 

First, a uniformly distributed load of qu = 200 kPa is applied on top of 
the column under undrained conditions to generate initial pore pres-
sures in the column. Then, the consolidation is simulated using the 
coupled two-phase material point method. During the consolidation 
process, water flows out of the ground surface which results in 
decreasing pore pressure and settlement of the soil column. 

The solution of Xie and Leo (2004) was derived assuming the 
following relationship for hydraulic conductivity as a function of 
porosity: 

k = k0

(
1 − n0

1 − n

)2

(63)  

in which k0 is the initial hydraulic conductivity, and n0 and n are the 
initial and the current values of the porosity, respectively. This rela-
tionship was incorporated in the MPM code to simulate the same 
problem. 

The solution for the settlement of the ground surface at time t is: 

St = H0(1 − exp( − mvlqu) )

(

1 −
∑∞

m=1

2
M2exp

(
− M2Tv

)
)

(64) 

Fig. 1. Dam break problem. Geometry and pore water pressure distribution 
during the flow at t = 0.4 s. 

Fig. 2. Comparison between MPM simulations of the current study, experimental data for dam break analyses from Martin and Moyce (1952) and the numerical 
results of Mast et al (2012). 

Table 1 
Material properties of 1D consolidation.  

Material parameter Description Value 

E Young modulus 1000 kPa 
ν Poisson’s ratio 0.0 
n0 Initial porosity 0.3 
Kw Bulk modulus of water 200 × 103 kPa 
ρs Density of solid grains 2650 kg/m3 

ρw Density of water 1000 kg/m3 

k0 Initial hydraulic conductivity 1 × 10− 4 m/s  
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where 

M =

(

m −
1
2

)

π (65)  

and qu is the external load, mvl = 1/Eoed is the coefficient of volume 
compressibility of the soil skeleton. Eoed is the oedometric stiffness. Tv is 
time factor defined as follows: 

Tv =
cv0t
H2 (66)  

where H is the current height of the column and cv0 is the initial 

coefficient of consolidation. When time tends to infinity, i.e. at complete 
consolidation, the ultimate settlement is: 

S∞ = H0(1 − exp( − mvlqu) ) (67)  

which corresponds to the deformation of an elastic drained soil layer in 
large deformation considering the logarithmic strain (Malvern, 1969), i. 
e. ε = ln(1 + S/H0). The analytical solution of Xie and Leo (2004) was 
derived without considering Jaumann’s objective stress rate of Kirchhoff 
stress. Therefore, the objective stress is not included in the current MPM 
simulation, i.e. the contributions of spin tensor and volumetric strain 
increment are neglected in Eq. (5). 

Fig. 3. Analytical and numerical settlements of the soil column.  

Fig. 4. Normalised pore pressure versus height; Solid lines: analytical solution; Dots: numerical results.  
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Fig. 3 shows the simulated settlement of the ground surface in time, 
which is in good agreement with the analytical solution of Xie and Leo 
(2004) over the entire range of Tv from 0 to 2. 

The analytical solution of Xie and Leo (2004) also provides the dis-
tribution of the excess pore water pressures along the column as: 

p =
1

mvl
ln

(

1 + (exp(mvlqu) − 1 )
∑∞

m=1

2
M

sin
(

Ma
H0

)

exp
(
− M2Tv

)
)

(68)  

where a is the depth of any point calculated from the ground surface. 
Fig. 4 shows the distribution of the normalized pore pressures versus 

the height of the column for various average degrees of consolidation 
Us = St/S∞. It can be seen that the MPM results compare very well with 
the analytical solutions. 

3.3. Bearing capacity of a strip foundation 

The penetration of a rigid strip foundation with a width B of 1 m is 
shown in Fig. 5. The foundation is pushed into a homogeneous clay layer 
with a thickness of 2 m. Due to the symmetry, half of the problem is 
modelled in the 2D plane strain condition. A width of 3 m is considered 
for the model, which is large enough to have negligible boundary effects. 
A fully rough boundary is used at the bottom of the domain whereas 
perfectly smooth conditions are applied to the lateral boundaries. 

The clay is modeled as a single-phase material with a Tresca 
constitutive model. The density of the material, ρ, is 1990 kg/m3; the 
undrained cohesion su is 50 kPa; the shear modulus G is assumed to be 9 
MPa, and the Poisson’s ratio ν is 0.495. Perfectly smooth contact is 
defined between the foundation and the soil. A structured computa-
tional mesh (4-node quadrilateral elements) is used with a uniform 
element size of 2.5 cm and 8 material points in each element. All ma-
terial points of the foundation are moved with a constant velocity (v = 2 
cm/s) to simulate the penetration. The moving mesh procedure (Al- 
Kafaji, 2013) is used to keep the contact surface on the same 

computational nodes shared between the soil and the penetrating object, 
ensuring the highest accuracy in the results. 

Fig. 5a and b shows the developed deviatoric strains after 8 and 24 
cm of penetration, respectively. The shape of the failure mechanism is 
very similar to the one described by Prandtl (1920) for a frictionless 
material. 

The normalized reaction forces are plotted in Fig. 5c. They are 
computed as the summation of all nodal forces along the contact surface 
and then divided by the factor (B⋅su). The MPM simulation gives an 
increasing reaction force with depth, as the failure mechanism gets 
larger and the corresponding length of the shear planes increases. If the 
position of the material points is not updated (MPM – fixed MPs), the 
normalized reaction force reaches a vertical asymptotic value which is 
very close to the solution of Prandtl (1920), i.e. 2 + π. 

3.4. CPT in fine-grained soils 

Schneider et al. (2007) published the experimental data of a series of 
undrained cone penetration tests (CPTu) in normally consolidated 
kaolin clay performed in centrifuge tests. The diameter of the piezocone 
is 10 mm and a conical tip with an angle of 60 degrees. The kaolin 
specimens were first consolidated in a pressing machine and then 
reconsolidated in the centrifuge. The material properties are summa-
rized in Table 2. 

Fig. 5. Bearing capacity in undrained condition: (a) and (b) show the distribution of deviatoric strains after 8 cm and 24 cm of penetration respectively, (c) shows the 
load-penetration curves. 

Table 2 
Summary of the soil properties used for the kaolin clay (Schneider et al., 2007).  

Parameter Value Description 

Gs [–]  2.65 Specific gravity 
n [–]  0.583 Initial porosity 
λ [–]  0.26 Compression index 
Κ [–]  0.06 Swelling index 
φ′ 23.5 Critical state friction angle  
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The tests were performed by pushing the cone to a depth of about 
100 mm at 160 g. The tests were repeated for different penetration ve-
locity ranging from 0.0004 mm/s to 3 mm/s in order to obtain different 
drainage conditions: drained, partially drained, and undrained. The 
results of the tests are available in Schneider (2007). The data at 75, 85 
and 95 mm of penetration were then used to determine the cone resis-
tance at σ’

v0 = 80, 90 and 100 kPa, respectively, as illustrated in Fig. 15. 
Ceccato et al. (2016) modelled the experiments of Schneider (2007) 

using a 3D explicit MPM formulation in drained, undrained, and 
partially drained conditions. In this section, the same cone penetration 
tests are simulated using the proposed MPM formulation defined in 2D 
axisymmetric geometry (Galavi et al., 2018). 

Two models are considered: a 1-g and a 160-g model. The 1-g model is 
shown in Fig. 6 where the gravitational acceleration is g = 9.81 m/s2. 
The geometry, boundary conditions and material point distribution are 
the same as the model in Martinelli and Galavi (2021). The diameter of 
the cone is 36 mm, which is larger than the one used in the experiment, 

but it is justified under the assumption that the results are independent 
of cone diameter (e.g. Lee and Salgado, 2005; Gavin, 2018). The correct 
initial vertical stress is applied by adjusting the unit weight of the sur-
charge layer. The node-to-node contact algorithm (see Section 2.1.2) is 
defined between the cone penetrometer and the surrounding soil. The 
160-g model is depicted in Fig. 7 where the gravitational acceleration is 
160 g. Similar to the centrifuge experiment, the cone diameter is 10 mm 
in this model and the surcharge layer is not present. 

In undrained and partially drained simulations, the bulk modulus of 
water is assumed to be 70 MPa, which is large enough to get an equiv-
alent undrained Poisson’s ratio νu higher than 0.495, as discussed in 
Ceccato et al. (2016). 

Two constitutive models are used in this study: Modified Cam Clay 
(MCC) and Tresca. The MCC model is based on the Critical State concept 
and can properly simulate several aspects of the complex response of 
fine-grained materials: e.g. the nonlinear compressibility, hardening and 
stress-path dependence of the shear strength. The material parameters 
are summarized in Table 2 and the effective Poisson’s ratioν’ = 0.25. 

The Tresca model was originally developed for metal plasticity, but it 
is widely used for failure analyses of normally consolidated clays. It is an 
elastic-perfectly plastic model using the Tresca failure criterion with 
constant stiffness and constant strength. 

The mechanical responses of the MCC and Tresca models are 
compared in undrained triaxial test (Fig. 8). The confining stress is set to 
66 kPa. The simulation with the MCC model shows a monotonic 
nonlinear behavior with the maximum deviatoric stress, qmax, of 35.8 
kPa while the Tresca model gives a bilinear response. The material pa-
rameters of the Tresca model are listed in Table 3 which provide a good 
approximation of the MCC response. The shear modulus, G, of 1000 kPa 
is the secant shear modulus of the MCC model at 50% of qmax in q-ε 
curve. 

3.4.1. Undrained response 
In theoretical studies of the cone resistance in undrained clay, often 

elastic-perfectly plastic models such as Tresca or von Mises are used (e.g. 
van den Berg, 1994; Lu et al., 2004; Beuth and Vermeer, 2013; Qiu et al., 
2011; Vesic, 1972, 1977; Teh and Houlsby, 1991). The cone resistance is 
commonly related to the undrained shear strength su through a cone 
factor Nc, defined as: 

Fig. 6. Geometry of the 1-g numerical model.  

Fig. 7. Geometry of the 160-g numerical model.  

Fig. 8. Example of undrained triaxial test. Comparison between MCC and 
Tresca models. 

Table 3 
Summary of the parameters used in the Tresca model.  

Parameter Value Description 

G [kPa] 1000 Shear modulus 
νu [–] 0.495 Undrained Poisson’s ratio 
su [kPa] 18.0 Undrained shear strength  
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Nc =
qc − σv0

su
(69)  

where σv0 is the initial in-situ total vertical stress. The theoretical solu-
tions indicate that Nc increases with the cone roughness and the rigidity 
index (Ir = G/su). This is illustrated in Fig. 9b and Fig. 9c for smooth and 
rough cones, respectively. It should be noted that the initial effective 
stress is isotropic and equal to 66 kPa. 

The simulated tip stress (σ), Eq. (70), is plotted versus the rigidity 
index, Ir for a rough cone in Fig. 9a. The soil parameters are listed in 
Table 3. 

σ =

∑ncone
i=1 f BC

i,v

A
(70)  

where fBC
i,v is the vertical component of the total reaction forces (i.e. Eq. 

(36)) along the contact surface; ncome is the number of nodes along the 
cone, and A is the area of the penetrometer. 

For a given Ir, the simulated tip stress (σ) increases with the pene-
tration (h) until a relatively constant value (steady-state) is reached. 
Here, the steady state is reached after 30 cm of penetration. Therefore, 
the cone resistance qc is defined as the value of σ reached at h = 40 cm. It 
is worth mentioning that the initial increase in σ at the beginning of the 
simulation is caused by the dynamic effect of the corner node, which has 
a very large mass. The large mass at the corner node, shared between the 
cone and shaft (Fig. 6), is a consequence of the large density specified for 
the surcharge layer. Once the cone is pushed deeper into the soil, the 
corner node will be surrounded by the clay soil andσ, and consequently 
qc, are not affected by the density of the surcharge layer anymore. 

The simulated cone factor Nc agrees very well with the theoretical 
studies (Fig. 9b and c), in particular with the study of Lu et al. (2004) 
that is based on large-displacement finite element analyses using the 
Tresca model. Ceccato et al. (2017) simulated the tests using the Tresca 
model with a rigidity index, Ir, of 100, in which various contact cohesion 

Fig. 9. Comparison between the MPM simulations and other studies using the Tresca model with shear strength su = 18 kPa. Effect of the rigidity index Ir and 
cone roughness. 

Fig. 10. Rough and smooth penetrometer. Comparison between the MCC and 
Tresca models in undrained condition. 
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Fig. 11. Sensitivity study. The MCC model with smooth contact. Effect of mass scaling and damping.  

Fig. 12. MPM results of CPT penetration in kaolin clay: (a) tip stress and (b) average excess pore pressure as function of normalized penetration velocity V. Contact 
friction angle φc = 15.6 degrees. 
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were considered, ranging from a perfectly smooth to rough contact. As 
mentioned in Ceccato et al. (2017), the simulated cone factor Nc was 
slightly overestimated for non-smooth contacts. The source of the dis-
crepancies was, however, not clear. 

The undrained MPM simulation of the CPT is also performed using 
the MCC model, which is an effective stress model with the parameters 
listed in Table 2. The initial effective stress is isotropic and equal to 66 
kPa. Although the two-phase formulation can also be used to simulate 
the undrained response, the more efficient one-phase undrained 
approach is adopted in this case (see Section 2.2). The MPM results 
(Fig. 10) show that the tip stresses σ computed with the MCC and Tresca 
models are nearly the same and agree well for both rough and smooth 
penetrometers. 

The effect of mass scaling and damping factor is illustrated in Fig. 11 
for the smooth penetrometer. Contrary to the findings of Ceccato et al. 
(2016) where high values of the damping factor led to an increase in the 
cone resistance, this study shows that σ is not significantly affected by 
the values of the damping factors. Similar findings were reported by 
Martinelli and Galavi (2021) for the simulation of CPT in dry sands. 

3.4.2. Effect of partial drainage 
The normalized penetration velocity (V), defined by Finnie and 

Randolph (1994), is used to compare CPT measurements with different 
penetration rate, cone diameters and consolidation properties: 

V =
vd
cv

(71)  

where v is the cone penetration rate, which is conventionally 2 cm/s. d is 
the penetrometer diameter and cv is the coefficient of consolidation. 
Randolph and Hope (2004) indicated that for normally consolidated 
kaolin, undrained conditions occur when V is larger than 30–100 and the 
fully drained conditions obtained when V is lower than 0.03–0.01. The 

excess pore pressure becomes negligible if V is lower than 0.1. 
The fully coupled MPM formulation (Section 2.1) is used here to 

show the effect of partial drainage during the penetration. The initial 
vertical and horizontal effective stresses are σ’

v0 = 90 kPa and σ’
h0 = 54 

kPa, respectively. A friction angle of 15.6 degrees is considered along the 
contact between the soil and the penetrometer. To reduce the compu-
tational cost, similar to Ceccato et al. (2016), v is set to 2 cm/s and the 
variation of V is achieved by varying the hydraulic conductivity k, 
assuming it is constant and isotropic. The coefficient of consolidation is 
then calculated (Schneider et al., 2007) as: 

cv =
k(1 + e0)σ

′

v0

λγw
(72) 

The numerical results are illustrated in Fig. 12 in which Δu is the 
average excess pore pressure at the cone, calculated as follows: 

Δu =

∑ncone
i=1 f BC

L,i,v

A
(73)  

where fBC
L,i,v is the vertical component of the reaction forces of the liquid 

phase (i.e. Eq. (31)) along the contact surface. As expected, the cone 
resistance increases when V decreases. Overall, the numerical results 
confirm the findings of Randolph and Hope (2004), i.e. V = 100 and 
1000 give nearly the same qc, and the same holds for V = 0.1 and 0.01; a 
non-negligible Δu is also found when V is larger than 0.1. 

The distribution of Δu is shown in Fig. 13 for different values of V. 
The undrained behaviour is observed for V = 100, where the Δu is about 
200 kPa, and nearly drained behaviour at V = 1, where Δu is about 30 
kPa. A partially drained condition is given for V = 10, where Δu has 
intermediate values between drained and undrained conditions. 

The MPM results are compared against the experimental data in 
terms of normalized net cone resistance (Q) and normalized excess pore 

Fig. 13. distribution of Δu near the cone at h = 40 cm for: (a) V = 100; (b) V = 10; (c) V = 1.  

M. Martinelli and V. Galavi                                                                                                                                                                                                                  



Computers and Geotechnics 145 (2022) 104697

13

Fig. 14. comparison between MPM results and experimental data. Effect of the contact friction angle on (a) the normalized net cone resistance Q and on (b) the 
normalized excess pore pressure U. 

Fig. 15. comparison between the experimental and the numerical simulations at 160-g: (a) drained and (b) undrained conditions. The continuous lines are the 
recording data from the centrifuge test. Blue circles: experimental qn atσ’v0 = 80–100 kPa; Dashed lines: MPM simulations; Red square markers: simulated qn with the 
1-g model at σ’

v0 = 90 kPa (Fig. 6). 
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pressure (U) in Fig. 14. These variables are defined as follows: 

Q =
qc − σv0

σ′

v0
=

qn

σ′

v0
(74)  

U =
Δu
σ′

v0
(75) 

The results (Fig. 14) are shown for different values of contact friction 
angle φc. As expected, the value of Q strongly depends on the roughness 
of the cone, especially for the drained condition. Conversely, the value 
of U is almost independent of φc. For V < 10, the MPM results agree very 
well with the experimental data and with the results obtained numeri-
cally by Ceccato et al. (2016). For V > 10, the current study un-
derestimates the experimental data, whereas Ceccato et al. (2016) 
overestimates it. 

3.4.3. The 160-g MPM model 
The results of the full penetration analysis at 160-g (Fig. 7), which 

represents the centrifuge test, are shown in Fig. 15 in terms of the net 
cone resistance qn versus depth. The simulations are performed using the 
1-phase (Section 2.2) and the coupled 2-phase formulations for the 
drained and (quasi) undrained conditions, respectively. To decrease the 
computational cost, the penetrometer is pushed with a velocity of 1 cm/ 
s, and the hydraulic conductivity is set to 10-7 m/s to ensure an un-
drained response. 

All MPM simulations exhibit a linear increase of qn with depth. In the 
drained condition, the results agree very well with the experimental data 
over the entire penetration depth. Conversely, in the undrained condi-
tions, all curves match for the first 70 mm of penetration. After that, the 
measured qn is higher than the MPM results. 

The apparent mismatch in the results of the undrained simulations 
(Fig. 14) is because the data points are selected at depths greater than 70 
mm, where the numerical simulations deviate from the experiment. This 
can be seen in Fig. 15b. The reason for such deviation is unknown. 

It is worth noticing that the value of qn at z = 85 mm (i.e. σ’
v0 = 90 

kPa) is very close to the one computed with the 1-g model (red square). 
This shows that the numerical results are independent of the numerical 
settings (e.g. model type, cone diameter, element size, etc.), highlighting 
the consistency and accuracy of the proposed MPM formulation. 

4. Conclusions 

This study presents an MPM formulation suitable for, but not 

restricted to, penetration problems. The numerical scheme can be used 
in combination with both structured and unstructured background 
meshes. Several enhancements have been made which are highlighted 
here:  

• The use of 4-node quadrilateral elements in 2D geometries instead of 
3-node ones. The 4-node element is preferred over the 3 node one, as 
it does not require nodal averaging to mitigate volumetric locking. 
Instead, the well-known B-bar method is adopted (Hughes, 2000). 
The proposed method can be directly extended to 3D problems using 
the 8-node hexahedral elements.  

• A technique suitable to mitigate stress-oscillations is proposed for the 
4-node quadrilateral elements, which is inspired from the Gauss 
integration method (Beuth, 2012; Al-Kafaji, 2013) widely used in 
Anura3D in triangular and tetrahedral elements. However, further 
investigations are necessary when this method is applied to the 
problems involving strain softening and localization. Therefore, at 
this moment, the method should be used with care if strain locali-
zation occurs.  

• The critical review on how boundary conditions are applied in the 
computational scheme is thoroughly discussed. The new formulation 
is found to provide accurate contact forces, especially when high 
liquid pressures are present. 

The proposed formulation is validated by simulating the water dam 
break, 1D large-strain consolidation, and strip footing bearing capacity 
problems. The results are in good agreement with the experimental data 
and the theoretical solutions. 

Finally, cone penetration tests (CPT) in clay are simulated using two 
constitutive models, namely Tresca and Modified Cam Clay, which show 
that the numerical scheme is stable and accurate. The results are inde-
pendent of the value of mass scaling and damping factor. The numerical 
model is then validated against the centrifuge test data of Schneider 
et al. (2007), where the MPM results match the experimental data over 
the entire range of drainage conditions. 
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Appendix 

This section describes a validation example of the 2-phase coupled formulation (Section 2.1.3) when the contact is impermeable. 
Fig. 16 shows a 2-node element. Node A is at the contact and node B is fully fixed. For the sake of simplicity, it is assumed that the mixture in the 

element has zero effective stress and non-zero liquid pressure. It is a 1D problem and the degrees of freedoms (DOFs) are aL,A and aS,A at node A. 
Neglecting the external and drag forces, Eq. (8) results in: 

ML,Aat+1
L,A = − f int

L,A (76) 

Fig. 16. 2-Node element with a contact node.  
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In case of impermeable contact, i.e. at+1
L,A

⃒
⃒
⃒
afterF/C

= 0, Eqs. (26) and (76) give: 

f R
L,A = − ML,Aat+1

L,A = f int
L,A (77) 

The corresponding rate of momentum of the solid phase (Eq. (13)) results: 

MS,Aat+1
S,A = − f int

A + f R
A,0 (78) 

where f R
A,0 =f R

L,A since, at this step, contact formulation is only applied to the liquid phase. 

The internal force of the mixture can be written as f int
A = f int

A (σ’)+f int
L,A where the first term is a function of the effective stress and the second one is a 

function of the liquid pressure. Since the effective stress is zero, f int
A (σ’) = 0, and f int

L,A = f R
L,A (Eq. (77)). Therefore: 

MS,Aat+1
S,A = − f int

L,A + f R
L,A = 0 (79) 

This means that the solid skeleton is already in equilibrium (i.e. fR
S,A = 0), and the total reaction force at the contact is only function of the 

contribution of the liquid pressure (f R
A = f

R
L,A). 

In contrast, if the rate of momentum of the solid phase is computed using the equation derived for the mixture, where all terms are evaluated before 
fixities or contact formulation (i.e. fR

A = 0), it follows: 

MS,Aat+1
S,A = − f int

A − ML,Aat+1
L,A (80)  

and, using Eqs. (76) and (24), it becomes: 

MS,Aat+1
S,A = − (1 − nA)f int

L,A (81) 

The rate of momentum of the solid phase is non-zero. It is proportional to the internal force in the liquid phase with opposite sign. If the pore 
pressure is positive (suction), then a gap is formed. Vice-versa, if the pore pressure is negative (compression), a non-realistic normal effective stress is 
calculated at the contact which results in a more severe soil-structure interaction. 

The same result is obtained if the rate of momentum of the solid phase is computed using ML,Aat+1
L,A

⃒
⃒
⃒
afterF/C 

(which is zero after contact formulation) 

without considering the necessary reaction force term, i.e.: 

MS,Aat+1
S,A = − f int

A (82)  
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tests in a virtual chamber. Géotechnique 61 (6), 525–531. https://doi.org/10.1680/ 
geot.9.P.067. 

Bardenhagen, S.G., Brackbill, J.U., Sulsky, D., 2000. The material-point method for 
granular materials. Comput. Methods Appl. Mech. Eng. 187, 529–541. https://doi. 
org/10.1016/S0045-7825(99)00338-2. 

Bardenhagen, S.G., Kober, E.M., 2004. The generalized interpolation material point 
method. Comp. Model. Eng. Sci. 5 (6), 477–495. 

Belytschko, T., Liu, W.K., Moran, B., Elkhodary, K., 2014. Nonlinear Finite Elements for 
Continua and Structures, 2nd Edition. Wiley. 2014. ISBN: 978-1-118-63270-3. 

Beuth, L., Vermeer, P.A., 2013. Large deformation analysis of cone penetration testing in 
undrained clay. In: International conference on installation effects in geotechnical 
engineering (ICIEGE). Rotterdam. pp. 1–7. Taylor & Francis Group, London, ISBN 
978-1-138-00041-4. 

Beuth, L., 2012. Formulation and application of a quasi-static Material Point Method. 
PhD dissertation. University of Stuttgart. 

Ceccato, F., 2014. Study of large deformation geomechanical problems with the Material 
Point Method. Ph.D. thesis. University of Padua, Italy.  

Ceccato, F., Beuth, L., Simonini, P., 2017. Adhesive contact algorithm for MPM and its 
application to the simulation of cone penetration in clay. Procedia Eng. 175, 
182–188. 

Ceccato, F., Beuth, L., Vermeer, P.A., Simonini, P., 2016. Two-phase Material Point 
Method applied to the study of cone penetration. Comput. Geotech. 80, 440–452. 
https://doi.org/10.1016/j.compgeo.2016.03.003. 

Ceccato, F., Yerro, A., Martinelli, M., 2018. Modelling soil-water interaction with the 
material point method. Evaluation of single-point and double-point formulations. 
CRC Press, p. 351. 

Courant, R., Friedrichs, K., Lewy, H., 1928. Über die partiellen Differenzengleichungen 
der mathematischen Physik. Mathematische annalen 100 (1), 32–74. 

Detournay, C., Dzik, E., 2006. Nodal mixed discretization for tetrahedral elements. In: 
Proceedings of the 4th International FLAC symposium, Numerical Modeling in 
Geomechanics. Minnesota Itasca Consulting Group, Inc., No. 07-02. 

Fallah, S., Gavin, K, Jalilvand, S., 2016. Numerical modelling of Cone Penetration Test in 
Clay using Coupled Eulerian Lagrangian Method. In: Proceedings of Civil 
Engineering Research in Ireland 2016: 29-30 August, Galway, Ireland. 

Finnie, I.M.S., Randolph, M.F., 1994. Punch-through and liquefaction induced failure of 
shallow foundations on calcareous sediments. Proc. Int. Conf. on Behavior of 
Offshore Structures, BOSS ’94, Boston, pp. 217–230. 

Fan, S., Bienen, B., Randolph, M.F., 2018. Stability and efficiency studies in the 
numerical simulation of cone penetration in sand. Géotech. Lett. 8 (1), 13–18. 
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