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Abstract

The purpose of this thesis is to compare three closed-form solutions for pricing caplets under the
Wu & Zhang stochastic volatility LIBOR market model. These methods can be an alternative
for pricing instead of having to resort to time consuming Monte Carlo simulations. By adding
a parameter to the model which should be able to mitigate the issue of increasing interest rates
and still use the closed-form solutions we see that the performance of these models could worsen.
Instead of adding this parameter to the model we want to reduce the variance in the simulations
by using a control variate.
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Introduction

In this document we will look at three different ways to price caplets through closed-form solu-
tions using a specific LIBOR market model with stochastic volatility. To not stray too much from
our discussion the reader is assumed to have knowledge of stochastic calculus and basic finance
terminology.

We all know the famous Black-Scholes-Merton (BSM) formula to price a call option (for ex-
ample a caplet) through an analytical function. With a closed-form solution for the methods we
will describe we do not mean that we can calculate caplet prices in the BSM way but rather the
solution is given in closed-form. We still have to do numerical approximations. The BSM function
is a fast and thus attractive way to price caplets but the assumption of constant or deterministic
functions for volatility in a model limits it to catch volatility smiles and skews usually observed
in the market. This is the reason to extend a LIBOR market model by introducing a stochastic
volatility term. The price we have to pay is that to find a solution for such a model one has to
resort to Monte Carlo simulations which are obviously much slower. Hence, closed-form solutions
for an extended LIBOR market models could be attractive.

We will treat a specific LIBOR market model with stochastic volatility, which we call the Wu
and Zhang stochastic volatility model [15]. This model lends itself to the derivation of closed-form
solutions to price caplets, which will be our main focus. We will look at three different ways to
derive an analytical function for the pricing of caplets. One of these methods, which we will call
the Heston method, has first been discussed by Heston [7]. The other two methods are discussed
by Carr and Madan [4] and are based on Fourier transforms. We will call these the Time Value
and Modified Call Value methods.

An advantage of using these closed-form solutions instead of having to resort to Monte Carlo
simulations is the fact that pricing becomes much faster. To arrive at these closed-form solutions,
during the derivation, we will however need to make some assumptions that make use of the mar-
tingale property of the forward rates under the forward measure. By making these assumptions
we will thus be approximating the price of the caplets in change for faster pricing. Having said
(and noticed during simulations) that pricing caplets via the closed-form solutions is faster than
a Monte Carlo simulation, we will focus on the price differences between each of these methods
and the Monte Carlo method.

Furthermore we will add a parameter to the model with as objective to reduce increasing for-
ward rates. This inclusion means that the model has to be recalibrated, however it does allow for
caplets to still be priced using the closed-form solutions mentioned. We will also look at another
way of reducing the variance of the forward rates by the means of a control variate.

The outline of this document is as follows. In Chapter 1 we start with an introduction of forward
rates. The discussion will not only serve to get acquainted with forward rates but also with risk-
neutral measure and Heath-Jarrow-Morton models all, of which will help us explain the stochastic
volatility model in the next chapter. We closely follow [10]. In Chapter 2 we briefly introduce LI-
BOR market models followed by an explanation of the Wu and Zhang stochastic volatility LIBOR
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market model. In Chapter 3 we derive three different ways to price caplets through closed-form
functions. In the next chapter we then compare the prices of each method to a Monte Carlo sim-
ulation. In Chapter 5 we add a parameter in the LIBOR market model with stochastic volatility
which should reduce the variance in the Monte Carlo simulation and then present the pricing re-
sults of the implication of this “displacement” parameter. In Chapter 6 we will look at a different
way to reduce the variance of the caplet prices in a Monte Carlo simulation using a control variate
technique. We then end with conclusions and recommendations.
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Introduction to Forward Rates

1.1 Why Model Forward Rates?

When buying financial products that depend on an underlying interest rate one important question
we have to ask is how this rate will develop in the future. One way to model interest rates is through
short rate models which assume a stochastic differential equation (SDE) that defines the process
for the interest in time. Such models are well known and are used to model interest rates for a
short period of time. For more on short rate models one could consult [3]. If we want to hedge a
position by buying a derivative depending on an interest rate for a longer period of time we want
to model forward rates. In the next section we will explain in more detail what we mean with
forward rates and how we can determine these. To this end we will closely follow [10].

1.2 The Heath-Jarrow-Morton Framework

One financial product that is actually marketed and will be the basis to explain forward rates is
a (zero-coupon) bond with a certain maturity time. The Heath-Jarrow-Morton (HJM) model is
a term structure model which means that the interest rate on a certain period depends on zero-
coupon bonds with different maturity times. We denote with P (t, T ) the value at time t ≤ T of a
zero-coupon bond which pays 1 at maturity time T , where the value 1 is also called the notional
or face value. To determine what the forward rate is, at time t ≥ 0 we set up a portfolio by
taking a short position of size 1 in T -maturity bonds. Hence receiving income P (t, T ). Then we

use the amount P (t, T ) to take a long position of size P (t,T )
P (t,T+∆T ) in (T + ∆T )-maturity bonds,

where ∆T > 0. At time t we set up the portfolio without any cost. At time T we have to pay 1
for the short position of the T -maturity bond in the portfolio. Later at time T + ∆T we receive
P (t,T )

P (t,T+∆T ) from the long position in the T + ∆T -maturity bond. We have invested 1 at time T

and notice that because P (t, T ) > P (t, T + ∆T ) we at time T + ∆T receive more than 1. When
using continuously compounding, we can deduce the interest rate which we have to apply to the

invested amount of size 1 to receive P (t,T )
P (t,T+∆T ) at time T + ∆T as follows:

1× e∆Tf(t,T ;∆T ) =
P (t, T )

P (t, T + ∆T )

or written differently

f(t, T ; ∆T ) =
1

∆T
log

P (t, T )

P (t, T + ∆T )
= − logP (t, T + ∆T )− logP (t, T )

∆T
. (1.1)

11



12 1. INTRODUCTION TO FORWARD RATES

So the forward rate fT (t) = f(t, T ; ∆T ) is the interest rate at time t that will be locked in at time
T and is used on the interval [T, T+∆T ). Here we used continuously compounding for the interest
rate and this is a flaw that causes us to introduce LIBOR market models in the next chapter. But
before we stimulate any discouragement of reading this chapter let us continue our discussion.
Taking the limit ∆T ↓ 0 in equation (1.1) we arrive at the definition of the forward rate at time t
with maturity time T and it is thus defined as

fT (t) = lim
∆T↓0

fT (t; ∆T ) = − lim
∆T↓0

logP (t, T + ∆T )− logP (t, T )

∆T

= − ∂

∂T
logP (t, T ). (1.2)

Knowing fT (t) for 0 ≤ t ≤ T we can calculate P (t, T ) for 0 ≤ t ≤ T by integrating with respect
to T , hence

− logP (t, T ) =

∫ T

t

f(t, s)ds

and now

P (t, T ) = e−
∫ T
t
f(t,s)ds, 0 ≤ t ≤ T. (1.3)

We see that we can determine forward rates from bond prices and vice versa. However, for practical
reasons determining bond prices from forward rates is easier because the integration in (1.3) is
not susceptible to small changes in the forward rates while small changes in the bond prices can
cause big differences when determining forward rates from (1.2). The instantaneous interest rate
we can lock in at time t to borrow immediately at time t is given by

R(t) = f(t, t).

We take a time span T , so all bonds mature at or before T . The initial forward rate curve is given
by fT (0),∀T ≤ T , and we call this the zero curve. The forward rate is specified by the HJM model
as

fT (t) = fT (0) +

∫ t

0

αf (s, T )ds+

∫ t

0

σf (s, T )dW (s) (1.4)

and in differential form

dfT (t) = αf (t, T )dt+ σf (t, T )dW (t), 0 ≤ t ≤ T, (1.5)

hence t varies while the maturity time T is fixed. Here αf (t, T ) is the drift of fT (t), σf (t, T )
its volatility and W (s) is a Brownian motion. Everything is under the actual measure P. The
processes αf (t, T ) and σf (t, T ) are adapted processes in the variable t and fixed T .
We can determine the term-structure for the bond prices given in equation (1.3) by equation (1.5).
It turns out that

dP (t, T ) = P (t, T )

(
R(t)− αP (t, T ) +

1

2
(σP (t, T ))2

)
dt− σP (t, T )P (t, T )dW (t) (1.6)

where αP (t, T ) =
∫ T
t
αf (t, u)du and σP (t, T ) =

∫ T
t
σf (t, u)du.

The reader is referred to [10] for details.

To guarantee that trading in these bonds offers no opportunity for arbitrage we should find a
risk-neutral probability measure P̃, equivalent to the measure P, under which each discounted
bond price

D(t)P (t, T ) = e−
∫ t
0
R(s)dsP (t, T ), 0 ≤ t ≤ T (1.7)

is a martingale.
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Remark 1.2.1. Every time we mention risk-neutral we mean that there is no opportunity for an
arbitrage i.e. there is no opportunity to make money out of an investment of zero. If the model
offers an arbitrage opportunity the model is bad and should not be used.

We have the following important theorem.

Theorem 1.2.1. First fundamental theorem of asset pricing. If a market model has a
risk-neutral probability measure, then it does not admit arbitrage.

So if such a risk-neutral measure exists then by the First Fundamental Theorem of Asset
Pricing it is guaranteed that there will be no arbitrage in the model. Taking the differential of
equation (1.7) we have

d(D(t)P (t, T )) = −R(t)D(t)P (t, T )dt+D(t)dP (t, T ) (1.8)

= D(t)P (t, T )

[(
−αP (t, T ) +

1

2
(σP (t, T ))2

)
dt− σP (t, T )dW (t)

]
(1.9)

where we have used the discount process D(t) = e−
∫ t
0
R(s)ds and dD(t) = −R(t)D(t)dt in the first

equality.

Now if we can write the term which is in the square brackets as

σP (t, T )[Θ(t)dt+ dW (t)]

then we can apply Girsanov’s theorem1 to change to a (risk-neutral) probability measure P̃ under
which

W̃ (t) =

∫ t

0

Θ(s)ds+W (t) (1.10)

is a Brownian motion. Taking the differential we see that

dW̃ (t) = Θ(t)dt+ dW (t). (1.11)

Now, using the Brownian motion in (1.10) we then can write equation (1.9) as

d(D(t)P (t, T )) = −D(t)P (t, T )σP (t, T )dW̃ (t).

Hence, D(t)P (t, T ) is a martingale under the measure P̃. To achieve this goal we must solve[(
−αP (t, T ) +

1

2
(σP (t, T ))2

)
dt− σP (t, T )dW (t)

]
= σP (t, T )[Θ(t)dt+ dW (t)]

1One dimensional Girsanov. Let W (t), 0 ≤ t ≤ T , be a Brownian motion on a probability space (Ω,F ,P)
and let F(t), 0 ≤ t ≤ T , be a filtration for this Brownian motion. Under the probability measure P, consider the
stochastic differential equation

dX(t) = g(X(t))dt+ σ(X(t))dW (t), X(0) = x0

where g(X(t)) and σ(X(t)) are allowed to be adapted processes. Let be given a new drift g̃(x) and assume
g̃(x)−g(x)
σ(x)

= Θ(x) is bounded. Define the measure P̃ by

dP̃
dP

= Z = exp

{
−

1

2

∫ t

0
Θ2(X(u))d(u) +

∫ t

0
Θ(u)dW (u)

}
.

Then P̃ is equivalent to P. Moreover, the process defined by

dW̃ (t) = −Θ(t)dt+ dW (t)

is a Brownian motion under P̃ and we also have

dX(t) = g̃(X(t))dt+ σ(X(t))dW̃ (t), X(0) = x0.
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for a certain process Θ(t). This means that a single process Θ(t) must satisfy the market price of
risk equations

−αP (t, T ) +
1

2
(σP (t, T ))2 = σP (t, T )Θ(t) (1.12)

for each T ∈ (0, T ]. This process Θ(t) is called the market price of risk and we need as many of
them to solve the market price of risk equations as there are Brownian motions in our model.

We first recall that
∂

∂T
αP (t, T ) = αf (t, T )

and
∂

∂T
σP (t, T ) = σf (t, T ).

Now we differentiate the market price of risk equations with respect to T to get

−αf (t, T ) + σP (t, T )σf (t, T ) = σf (t, T )Θ(t) (1.13)

Solving (1.13) for Θ(t) gives

Θ(t) =
αf (t, T )

σf (t, T )
− σP (t, T ), 0 ≤ t ≤ T. (1.14)

and we have the following theorem.

Theorem 1.2.2. Heath-Jarrow-Morton no-arbitrage condition. A term-structure model
for zero-coupon bond prices of all maturities T ∈ (0, T ] and driven by a single Brownian motion
does not admit arbitrage if there exists a process Θ(t) such that (1.14) holds for all 0 ≤ t ≤ T ≤ T .
The adapted processes αf (t, T ) and σf (t, T ) are respectively the drift and volatility of the forward
rate and σP (t, T ) the volatility of the zero-coupon bond with maturity time T .

For a proof the reader is referred to [11].

1.3 The HJM Model under Risk-Neutral Measure

In the previous section we have seen that the differential of the discounted bond price under the
risk-neutral measure P̃ can be written as

d(D(t)P (t, T )) = −D(t)P (t, T )σP (t, T )dW̃ (t)

where dW̃ (t) is given by (1.11). Noticing that d 1
D(t) = R(t)

D(t)dt, the undiscounted bond price process
is

dP (t, T ) = d

(
1

D(t)
·D(t)P (t, T )

)
(1.15)

=
R(t)

D(t)
D(t)P (t, T )dt− σP (t, T )

1

D(t)
D(t)P (t, T )dW̃ (t) (1.16)

= R(t)P (t, T )dt− σP (t, T )P (t, T )dW̃ (t). (1.17)

If we assume that the HJM no-arbitrage condition (1.14) is satisfied we can write the forward rate
process (1.5) as

dfT (t) = αF (t, T )dt+ σF (t, T )dW (t)

= σF (t, T )σB(t, T )dt+ σF (t, T ) (Θ(t)dt+ dW (t))

= σF (t, T )σB(t, T )dt+ σF (t, T )dW̃ (t).

Altogether we have the following theorem.
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Theorem 1.3.1. Term-structure evolution under risk-neutral measure. In a term-structure
model satisfying the HJM no-arbitrage condition Theorem 1.2.2, the forward rates evolve according
to

dfT (t) = σf (t, T )σP (t, T )dt+ σf (t, T )dW̃ (t) (1.18)

and the zero-coupon bond prices evolve according to the equation

dP (t, T ) = R(t)P (t, T )dt− σP (t, T )P (t, T )dW̃ (t) (1.19)

where W̃ (t) is a Brownian motion under a risk-neutral measure P̃. Here σP (t, T ) =
∫ T
t
σf (t, u)du

and R(t) = f(t, t) is the interest rate. Moreover, the discounted bond prices follow the process

d(D(t)P (t, T )) = −D(t)P (t, T )σP (t, T )dW̃ (t). (1.20)

The solution to (1.19) is given by

D(t)B(t, T ) = B(0, T )e−
∫ t
0
σB(s,T )dW̃ (s)− 1

2

∫ t
0

(σB(s,T ))2ds. (1.21)

We have the following theorem to change from risk-neutral measure.

Theorem 1.3.2. Change of risk-neutral measure. Let S(t) and N(t) be the prices of
two assets denominated in a common currency and let σ(t) = (σ1(t), . . . , σd(t)) and ν(t) =
(ν1(t), . . . , νd(t)) denote their respective volatility processes. Suppose we have the following SDE’s

d(D(t)S(t)) = D(t)S(t)σ(t) · dW̃ (t), d(D(t)N(t)) = D(t)N(t)ν(t) · dW̃ (t) (1.22)

where W̃ (t) = (W̃1(t), . . . , W̃d(t)) is a d-dimensional Brownian motion under the risk-neutral

measure P̃. Now suppose we write S(t) in amounts of N(t) so that the price of S(t) becomes

S(N)(t) = S(t)
N(t) . Under a new probability measure P̃(N) given by

P̃(N)(A) =
1

N(0)

∫
A

D(T )N(T )dP̃ ∀A ∈ F , (1.23)

the process S(N)(t) is a martingale. Moreover

dS(N)(t) = S(N)(t)[σ(t)− ν(t)] · dW̃ (N)(t), (1.24)

where the d-dimensional Brownian motion W̃ (N)(t) = (W̃
(N)
1 (t), . . . , W̃

(N)
d (t)) is provided by the

multidimensional Girsanov theorem

W̃
(N)
j (t) = −

∫ t

0

νj(s)ds+ W̃j(t), j = 1, . . . , d.

The proof that S(N)(t) is a martingale can be found in [12].

1.4 Relations between Forward Rates, Zero-coupon Bonds
and Short Rates

Term-structure models driven by Brownian motion are HJM models. Such models include forward
rates for which the drift and volatility have to satisfy the conditions of Theorem 1.2.2 for a risk-
neutral measure to exist. Once these conditions are satisfied the equations (1.18)-(1.20) describe
the forward rates and the bonds under the risk-neutral measure. We will take a closer look at
relations between the forward rate, the zero-coupon bond prices and the short rates.

From equation (1.3) we see that if we want to make a model for the bond prices we can do
this in a few ways:
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• We may specify the dynamics of the short rate and then try to derive bond prices using
no-arbitrage arguments.

• We may directly specify the dynamics of all possible zero-coupon bonds.

• We may specify the dynamics of all possible forward rates and use (1.3) to obtain bond
prices.

Now suppose we have the following dynamics:

Short rate dynamics
dR(t) = a(t)dt+ b(t)dW (t). (1.25)

Bond price dynamics

dP (t, T ) = P (t, T )m(t, T )dt+ P (t, T )v(t, T )dW (t). (1.26)

Forward rate dynamics
dfT (t) = αf (t, T )dt+ σf (t, T )dW (t). (1.27)

The Brownian motionsW are allowed to be vector valued, then v(t, T ) and σf (t, T ) are row vectors.
The processes a(t) and b(t) are scalar adapted processes and m(t, T ), v(t, T ), αf (t, T ) and σf (t, T )
are adapted processes in the parameter T . The equations (1.26) and (1.27) are SDE’s in t for each
time to maturity T . With some regularity assumptions for the processes; m(t, T ), v(t, T ), αf (t, T )
and σf (t, T ) are continuously differentiable in T and all processes allow for the interchange of
order of integration, we have the following result.

Proposition 1.4.1. Relation between forward rates, bond prices and short rates.

1. If P (t, T ) satisfies (1.26) then for the forward rate dynamics we have

dfT (t) = αf (t, T )dt+ σf (t, T )dW (t)

where αf (t, T ) and σf (t, T ) are given by{
αf (t, T ) = ∂v(t,T )

∂T v(t, T )− ∂
∂Tm(t, T )

σf (t, T ) = − ∂
∂T v(t, T ).

2. If fT (t) satisfies (1.27) then the short rate dynamics satisfy

dR(t) = a(t)dt+ b(t)dW (t)

where a(t) and b(t) are given by{
a(t) = ∂

∂T f(t, t) + αf (t, t)
b(t) = σf (t, t).

3. If fT (t) satisfies (1.27) then P (t, T ) satisfies (1.6), i.e.

dP (t, T ) = P (t, T )

(
R(t)− αP (t, T ) +

1

2
(σP (t, T ))2

)
dt− σP (t, T )P (t, T )dW (t)

where {
αP (t, T ) =

∫ T
t
αf (t, u)du

σP (t, T ) =
∫ T
t
σf (t, u)du.

A proof of this proposition can be found in [2].



2

LIBOR Market Model (with
Stochastic Volatility)

In this chapter we will start by explaining the forward LIBOR in a similar way that we did in the
previous chapter. Then we will give the general setup of a LIBOR market model to a get a better
understanding of the model we are going to use which is a LIBOR market model with stochastic
volatility. This model, which we will call the Wu & Zhang stochastic volatility model, is then
explained where we will closely follow [15].

2.1 Forward LIBOR and Backset LIBOR

Suppose we set up the same portfolio as we did in section 1.2. Hence, let 0 ≤ t ≤ T and ∆T be
given, we take a short position of size 1 in T -maturity zero-coupon bonds and a long position of

size P (t,T )
P (t,T+∆T ) in (T + ∆T )-maturity zero-coupon bonds. The difference with section 1.2 is that

we now instead of using continuous compounding, will use simple interest rates. The problem with
continuous compounding is that for a certain choice of the drift function in equation (1.18) due to
randomness some paths might explode immediately no matter what initial condition is used. For
a brief discussion see [13]. By using simple interest rates we will get rid of the dt term that causes
this problem. To deduce the interest rate which we have to apply to the invested amount of size

1 to receive P (t,T )
P (t,T+∆T ) at time T + ∆T we notice:

1 + ∆TfT (t) =
P (t, T )

P (t, T + ∆T )

or written differently

fT (t) =
P (t, T )− P (t, T + ∆T )

∆TP (t, T + ∆T )
. (2.1)

For 0 ≤ t ≤ T we call fT (t) the forward LIBOR1 and for t = T we call it (spot) LIBOR.

When pricing caplets the interest rate that is used on payment date T + ∆T is the interest
rate set on payment date T . We call this rate backset LIBOR. We have the following theorem for
the price of a backset LIBOR on a notional of 1.

Theorem 2.1.1. Risk-neutral price of a backset LIBOR. Let 0 ≤ t ≤ T and ∆T > 0 be
given. The risk-neutral price at time t on a contract that pays backset LIBOR fT (T ) on payment

1LIBOR stands for London Interbank Offered Rate. It is the rate at which banks are willing to lend money to
and borrow money from other banks.

17
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date T + ∆T is

C(t) =

{
P (t, T + ∆T )fT (t), 0 ≤ t ≤ T,
P (t, T + ∆T )fT (T ), T ≤ t ≤ T + ∆T.

(2.2)

Proof: When T ≤ t ≤ T + ∆T we notice that fT (T ) has already been fixed (at time T ). Now
the value of a contract that pays 1 at time T + ∆T is P (t, T + ∆T ) and hence, the value of a
contract that pays backset LIBOR fT (T ) at time T + ∆T is P (t, T + ∆T )fT (T ).
When 0 ≤ t ≤ T we see from (2.1) that

P (t, T + ∆T )fT (t) =
1

∆T
(P (t, T )− P (t, T + ∆T )).

So if we can show that 1
∆T (P (t, T )− P (t, T + ∆T )) is the value at time 0 ≤ t ≤ T of the backset

LIBOR contract we are done. Suppose, at time 1
∆T (P (t, T )−P (t, T + ∆T )), we have the amount

1
∆T (P (t, T ) − P (t, T + ∆T )) and we use this to set up a portfolio that is long 1

∆T zero-coupon
bonds with maturity time T and short 1

∆T zero-coupon bonds with maturity time T+∆T . At time
T we receive 1

∆T from our long position and we use this amount to buy 1
∆TP (t,T+∆T ) zero-coupon

bonds with maturity time T + ∆T . The position of our portfolio is now 1
∆TP (t,T+∆T ) −

1
∆T in

zero-coupon bonds maturing at T + ∆T . So at time T + ∆T the portfolio pays

1

∆TP (T, T + ∆T )
− 1

∆T
=
P (T, T )− P (T, T + ∆T )

∆TP (T, T + ∆T )
= fT (T ).

We see that the amount 1
∆T (P (t, T )−P (t, T + ∆T )) we have used at time 0 ≤ t ≤ T to set up the

portfolio must be the risk-neutral price at time t of the payment fT (T ) at time T+∆T . �

In the next section we will elaborate on the LIBOR market model and the pricing of caplets.
To this end we will state the next definition and theorem. A proof of the theorem can be found
in [14].

Definition 2.1.1. Forward contract. A forward contract is an agreement to pay a specified
amount K at a specified payment date T , where 0 ≤ T ≤ T , for an asset whose price at t is
given as C(t). From now on we will refer to K as the strike (rate). We call the T -forward price
ForC(t, T ) of the asset at time t, where 0 ≤ t ≤ T ≤ T , the value of K that makes the forward
contract have price 0 at time t. Hence, the value of the forward contract at time t is zero and
there is no arbitrage.

Theorem 2.1.2. T-forward price. Assume there is a market for zero-coupon bonds of all
maturities. Then the T -forward price ForC(t, T ) is given as

ForC(t, T ) =
C(t)

P (t, T )
, 0 ≤ t ≤ T ≤ T . (2.3)

2.2 LIBOR Market Models

Market rate models use real market interest rates, e.g. LIBOR rates to model the evolution of
interest rates and can be made to exactly fit market prices. A LIBOR market model is a term
structure model which means that the forward rate for a certain period depends on zero-coupon
bonds with different maturity times. In fact the initial amount grows by (1+∆Tjfj(t)), 1 ≤ j ≤ N ,
where fj(t) is the forward rate used for the period [Tj , Tj+1) and ∆Tj = Tj+1 − Tj is the tenor2.

2In practice ∆Tj is not actually used but is approximated as what we call a day-count convention, denoted
in year fraction. It is a way of defining the elapsed time between two dates. This elapsed time then does not
necessarily have to agree with the tenor. One can for example have the day-count convention Actual/365 where one
has to divide the amount of days between the two dates by the assumed 365 days in a year. This gives the elapsed
time between the dates as a fraction of the year. Another day-count convention is 30/360 where one assumes each
month to have 30 days and a year 360 days.
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We notice that T2 is the first payment date and TN+1 is the last. In the previous section we have
seen that forward rates relate to zero-coupon bonds through

P (t, Tj) = (1 + ∆Tjfj(t))P (t, Tj+1) 1 ≤ j ≤ N (2.4)

and we can rewrite this to see that

fj(t) =
1

∆Tj

(
P (t, Tj)

P (t, Tj+1)
− 1

)
, 1 ≤ j ≤ N.

In Figure 2.1 we can see a depiction of the relation between forward rates and maturity times.

︸ ︷︷ ︸
f0(0)

︸ ︷︷ ︸
f1(T1)

T0

Tenor(∆T1)︷ ︸︸ ︷
T1

. . . . . .

T2

. . . . . .

Ti

. . . . . . . . . . . .

TN TN+1

Figure 2.1: Forward rates and their maturity times.

An interest rate caplet pays at Tj+1 the difference between the variable (LIBOR) rate at time Tj
and the strike rate K > 0 whenever this variable rate exceeds K at time Tj i.e. (fj(Tj)−K)+. So
to price a caplet on payment date Tj+1 we need to look at the backset LIBOR fj(Tj). We consider
the contract that pays fj(Tj) at time Tj+1 whose price we determined earlier in Theorem 2.1.1 as
C(t). Now suppose we want to express the price of this payment of backset LIBOR in terms of
zero-coupon bonds with maturity time Tj+1. Hence, we want to use Tj+1-maturity zero-coupon
bonds as numéraire3. From Theorem 2.1.1 the price of the contract that pays fj(Tj) at time Tj+1

is in terms of the numéraire P (t, Tj+1) given as

C(t)

P (t, Tj+1)
=

{
fj(t), 0 ≤ t ≤ Tj ,
fj(Tj), Tj ≤ t ≤ Tj+1.

(2.5)

From Definition 2.1.1 and Theorem 2.1.2 we see that for 0 ≤ t ≤ Tj , 1 ≤ j ≤ N , the forward
LIBOR fj(Tj) is the Tj+1-forward price of the contract paying backset LIBOR fj(Tj) at time
Tj+1.

If we now build a term-structure with a single Brownian motion under the actual probability
measure P and satisfying the Heath-Jarrow-Morton no-arbitrage condition specified in Theorem
1.2.2, then there exists a Brownian motion Z̃(t) under a risk-neutral probability measure P̃ such
that forward rates are given by equation (1.18) and zero-coupon bond prices by equation (1.19).
From Theorem 1.3.2 we see that the risk-neutral measure associated with the numéraire P (t, Tj+1)
is given by

P̃j+1(A) =
1

P (0, Tj+1)

∫
A

D(Tj+1)dP̃ ∀A ∈ F (2.6)

moreover

Z̃j+1(t) =

∫ t

0

σP (u, Tj+1)du+ Z̃(t)

is a Brownian motion under the forward measure P̃j+1, where σP (u, Tj+1) is the volatility of the

zero-coupon bond with maturity time Tj+1. From Theorem 1.3.2 it also follows that C(t)
P (t,Tj+1)

is a martingale under the measure P̃j+1 which directly implies that there must exist an adapted
process γj(t) for 0 ≤ t ≤ Tj , 1 ≤ j ≤ N , such that

dfj(t) = γj(t)fj(t)dZ̃
j+1, t ∈ [0, Tj+1) (2.7)

3For more on the topic of numéraires, and the different kinds of numéraires commonly used in LIBOR market
models, the reader is referred to [9] and [14].
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where Z̃j+1 is a Brownian motion under the forward measure P̃j+1. In section 2.3 we will see
that the process γj(t) is related to the volatilities of zero-coupon bonds. We see in equation (2.7)
that there is no dt term, which was the problematic term in equation (1.18). The solution of this
equation is

fj(t) = fj(0)e−
1
2

∫ t
0
γ2
j (s)ds+

∫ t
0
γj(s)dZ̃

j+1(s).

In the case γj(t) is a deterministic function fj is lognormally distributed under the measure P̃j+1,

where log fj(t) has mean − log(fj(0))
2

∫ t
0
γj(s)

2ds and variance
∫ t

0
γj(s)

2ds.

The LIBOR market model leads to the following nice result.

Theorem 2.2.1. Black’s formula for pricing a caplet. Consider a caplet that pays
(fj(Tj) − K)+ at time Tj+1, 1 ≤ j ≤ N , where K > 0 is the strike. With the assumption that
forward LIBOR rate is given by (2.7) and γj(t) is nonrandom, the price of the caplet at time 0 is
given by

P (0, Tj+1)[fj(0)N(d+)−KN(d−)]

where

d± =
1√∫ Tj

0
γ2(t, Tj)dt

(
log

fTj (0)

K
± 1

2

∫ Tj

0

γ2(t, Tj)dt

)

and N(·) is the standard normal distribution.

We see here that we still haven’t mentioned anything about stochastic volatility, instead we
have taken volatilities here to be deterministic functions and this is immediately a limitation of
the model. From market data it is usually observed that caplets show implied volatility smiles
and choosing the γj ’s to be deterministic limit this model to reproduce such a smile. This justifies
including stochastic volatilities in the model.

In the next section we will explain the details of a specific stochastic volatility model, namely
the Wu and Zhang model [15]. This model has many similarities with a model first described by
Heston [7]. For the derivation of the model in the next section we will closely follow [15].

2.3 The Wu and Zhang Stochastic Volatility Model

2.3.1 Introduction to the Model

Suppose we have a probability space (Ω,F , P̃) and a filtration F(t), 0 ≤ t ≤ T , where T is a fixed
final time. Let P (t, T ) be the price at time t < T of a zero-coupon bond with maturity time T < T

and face value 1. Under the risk-neutral measure P̃ this zero-coupon bond P (t, T ) is assumed to
follow the lognormal process

dP (t, T ) = P (t, T )(R(t)dt+ σT (t) · dZ̃(t)), (2.8)

where R(t) is the risk-free interest rate, σT (t) = σ(t, T ) is the volatility vector of P (t, T ), Z̃(t) is a

d-dimensional Brownian motion under the risk-neutral measure P̃ and “·” denotes inner product.
For clarity we will explain below what we mean with this inner product.

We also assume the following regularity condition for the volatility σT (t):
for σT (t) defined on the interval [0, t] for all t < T , σT (t) satisfies

Ẽ
[
‖ σT ‖2

]
<∞, (∀t < T )

where with ‖ · ‖ throughout this document we will always mean the 2-norm, e.g. for the case at

hand ‖ σT ‖=‖ σT ‖2=
√∫ t

0
σ2
T (s)ds.
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In the previous section we have seen that simple interest rates relate to zero-coupon bonds through

fj(t) =
1

∆Tj

(
P (t, Tj)

P (t, Tj+1)
− 1

)
, 1 ≤ j ≤ N. (2.9)

Now we use Itô’s lemma to derive an SDE for the forward rates:

dfj(t) =
1

∆Tj
d

(
P (t, Tj)

P (t, Tj+1)
− 1

)
=

1

∆Tj
d

(
P (t, Tj)

P (t, Tj+1)

)

=
1

∆Tj

[(
1

P (t, Tj+1)

)
dP (t, Tj) + P (t, Tj)d

(
1

P (t, Tj+1)

)
+ dP (t, Tj)d

(
1

P (t, Tj+1)

)]
.

(2.10)

Since

d

(
1

P (t, Tj+1)

)
= − 1

P 2(t, Tj+1)
dP (t, Tj+1) +

1

P 3(t, Tj+1)
(dP (t, Tj+1))2 (2.11)

=
1

P (t, Tj+1)
{(−R(t)+ ‖ σj(t) ‖2)dt− σj(t) · dZ̃(t)}, (2.12)

we get

dfj(t) =
1

∆Tj

P (t, Tj)

P (t, Tj+1)

(
[σj(t)− σj+1(t)] · dZ̃(t)+ ‖ σj+1(t) ‖2 dt− σj(t) · σj+1(t)dt

)
=

1

∆Tj

P (t, Tj)

P (t, Tj+1)
[σj(t)− σj+1(t)] ·

[
dZ̃(t)− σj+1(t)dt

]
. (2.13)

Now from equation (2.9) we see that

P (t, Tj)

P (t, Tj+1)
= 1 + ∆Tjfj(t) (2.14)

and substituting this into equation (2.13) we have

dfj(t) = fj(t)
1

∆Tj

1 + ∆Tjfj(t)

fj(t)
[σj(t)− σj+1(t)] ·

[
dZ̃(t)− σj+1(t)dt

]
.

= fj(t)γj(t) ·
[
dZ̃(t)− σj+1(t)dt

]
, 1 ≤ j ≤ N,

where

γj(t) =
1 + ∆Tjfj(t)

∆Tjfj(t)
[σj(t)− σj+1(t)] . (2.15)

We see that the volatility γj(t) of the forward rate fj(t) is expressed as a function of volatilities
of zero-coupon bonds. In the LIBOR market model the functions γj(t) are chosen first and the
volatilities of the zero-coupon bonds then follow by rewriting equation (2.15) as

σj+1(t) = −
j∑

k=l(t)

∆Tkfk(t)

1 + ∆Tkfk(t)
γk(t) + σTl(t)(t)

where l(t) is the smallest integer such that Tl(t) ≥ t.
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Remark 2.3.1. Inner product and factor loadings/weighings. To understand the inner
product we notice that in our case we adopt two sources of randomness i.e. d = 2 and we can see
the inner product as follows:

γj(t) · dZ̃(t) = γ̂j(t)
(
β1(t)dZ̃1(t) + β2(t)dZ̃2(t)

)
where the weighings β1(t) and β2(t) are such that β2

1(t) + β2
2(t) = 1 and the functions γ̂j(t) are

free to be chosen. Note that in practice this function γ̂j(t) is the function that is predetermined in

the model together with a vector of the weighings for the Brownian motions dZ̃1(t) and dZ̃2(t).

Now we consider taking stochastic volatilities. Specifically, we take a particular stochastic
factor in the volatility term of our model. How this stochastic process is exactly defined will
be discussed later. For now we call this process V (t). Under the risk-neutral measure P̃ the
zero-coupon bonds P (t, T ) are now assumed to follow the lognormal process

dP (t, T ) = P (t, T )(R(t)dt+
√
V (t)σ(t, T ) · dZ̃(t)). (2.16)

We can repeat the preceding steps to derive the new differential equation for the forward rates.
However, we will not present the mathematical details here but just for the sake of completeness
the reader can find these in Appendix A. The result of these computations is that the SDE for
the forward rates becomes

dfj(t) = fj(t)
√
V (t)γj(t) ·

[
dZ̃(t)−

√
V (t)σj+1(t)dt

]
, 1 ≤ j ≤ N.

We return to our stochastic volatility process V (t) and we assume this evolves according to a
Cox-Ingersoll-Ross (CIR) process4, namely

dV (t) = κ(θ − V (t))dt+ ε
√
V (t)dW̃ (t),

where κ, θ and ε (ε not necessarily a small number) are constants and W̃ (t) a Brownian motion
such that (Z(t),W (t)) is a (d+ 1)-dimensional Brownian motion under the risk-neutral measure.
Hence, we have the following SDE’s for our LIBOR market model with stochastic volatility

dfj(t) = fj(t)
√
V (t)γj(t) ·

[
dZ̃(t)−

√
V (t)σj+1(t)dt

]
, 1 ≤ j ≤ N (2.17)

dV (t) = κ(θ − V (t))dt+ ε
√
V (t)dW̃ (t). (2.18)

In this model correlations between the stochastic volatility process and the forward rates are
allowed and are given by

Ẽ
[(

γj(t)

‖ γj(t) ‖
· dZ̃(t)

)
· dW̃ (t)

]
= ρj(t)dt, with ‖ρj(t)dt‖ ≤ 1. (2.19)

2.3.2 The Model under the Forward Measure

We want to change from measure P̃ associated with the money market account B(t) to the measure

P̃j+1 associated with the zero-coupon bond P (t, Tj+1). We recall that because B(t) is the money
market account its process is given by

dB(t) = r(t)B(t)dt, B(0) = 1

4The CIR process dV (t) = κ(θ − V (t))dt + ε
√
V (t)dW̃ (t), where κ, θ and ε are positive constants, is a well

known mean-reverting process (also to model short interest rates) with mean reversion rate κ and mean reversion
level θ. When V (t) = θ the drift term vanishes. When V (t) < θ the drift term is positive which pushes V (t) back
towards θ and when V (t) > θ this term is negative which pushes V (t) again towards θ. In this model V (t) does

not become negative, if V (t) reaches zero the dW̃ (t) disappears and the positive drift term κθ makes V (t) positive
again. Moreover, if 2κθ > ε2 then V (t) is strictly positive.
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and the solution to this differential equation is given by

B(t) = e
∫ t
0
R(s)ds.

Notice that the solution of equation (2.16) is

P (t, T ) = P (0, T ) exp

{∫ t

0

(
R(s)− 1

2
V (s) ‖ σT ‖2

)
ds+

√
V (s)σT (s) · dZ̃(s)

}
.

Now, restricted to a filtration F(t), the Radon-Nikodým derivative of P̃j+1 with respect to P̃ is
given by5

dP̃j+1

dP̃

∣∣∣∣∣
F(t)

=
P (t, Tj+1)/P (0, Tj+1)

B(t)/B(0)

=
e
∫ t
0 (R(s)− 1

2V (s)‖σj+1‖2)ds+
√
V (s)σj+1(s)·dZ̃(s)

e
∫ t
0
R(s)ds

= e
∫ t
0
− 1

2V (s)‖σj+1‖2+
√
V (s)σj+1(s)·dZ̃(s).

With (multidimensional) Girsanov’s theorem we can then identify the market price of risk equa-
tions Θ(t) = (Θ1(t), . . . ,Θd(t)) as

Θ(t) = −
√
V (t)σj+1(t) (2.20)

and we can use this to change measure or we can recall from our discussion in the previous chapter
that a LIBOR market model is a martingale under the forward measure. Taking a quick glance
at equation (2.17) it is easy to see that the following should hold:

Z̃j+1(t) = Z̃(t)−
√
V (t)σj+1(t)dt.

To deduce W̃ j+1(t) we use the following:

dW̃ j+1(t) = dW̃ (t) + Cov
(
dW̃ (t),

√
V (t)σj+1 · dZ̃(t)

)
= dW̃ (t) +

√
V (t)σj+1Cov

(
dW̃ (t), dZ̃(t)

)
= dW̃ (t) +

√
V (t)

j∑
k=1

∆Tkfk(t)

1 + ∆Tkfk(t)
γk(t)Cov

(
dW̃ (t), dZ̃(t)

)

= dW̃ (t) +
√
V (t)

j∑
k=1

∆Tkfk(t)

1 + ∆Tkfk(t)
γk(t)

‖ γk(t) ‖
γk(t)

Cov

(
dW̃ (t),

γk(t)

‖ γk(t) ‖
· dZ̃(t)

)

= dW̃ (t) +
√
V (t)

j∑
k=1

∆Tkfk(t)

1 + ∆Tkfk(t)
‖ γk(t) ‖ Cov

(
dW̃ (t),

γk(t)

‖ γk(t) ‖
· dZ̃(t)

)
(∗)
= dW̃ (t) +

√
V (t)

j∑
k=1

∆Tkfk(t)

1 + ∆Tkfk(t)
‖ γk(t) ‖ ρj(t)dt

= dW̃ (t) +
√
V (t)ξj(t)dt

where ξj(t) =
∑j
k=1

∆Tkfk(t)
1+∆Tkfk(t) ‖ γk(t) ‖ ρj(t) and for (∗) we notice

Cov

(
dW̃ (t),

γk(t)

‖ γk(t) ‖
dZ̃(t)

)
= Ẽ

[(
γj(t)

‖ γj(t) ‖
· dZ̃(t)

)
· dW̃ (t)

]
− Ẽ

[
γj(t)

‖ γj(t) ‖
· dZ̃(t)

]
Ẽ
[
dW̃ (t)

]
= ρj(t)dt

5See for example [5] for the first equality.
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Hence, in terms of the new Brownian motions Z̃j+1(t) and W̃ j+1(t) under the probability measure

P̃j+1 the market model becomes

dfj(t) = fj(t)
√
V (t)γj(t) · dZ̃j+1(t), (2.21)

dV (t) = [κθ − (κ+ εξj(t))V (t)] dt+ ε
√
V (t)dW̃ j+1(t). (2.22)

2.3.3 Preparing the Model for Closed-Form Solutions

We can see that the stochastic volatility is still a square-root process in the SDE for the forward
rates under P̃j+1. But now there is a dependence on fj(t) which is in the coefficient ξj(t). This
dependency will ruin any possibility to evaluate options analytically. However, we can apply a
technique called ‘freezing coefficients’ to remove this dependency. We have the following result
which we will also explain.

Proposition 2.3.1. By using ‘freezing coefficients’ we can remove the dependence of the stochastic
volatility process V (t) on the forward rates and we have

dV (t) = κ
[
θ − ξ̃j(t)V (t)

]
dt+ ε

√
V (t)dW̃ j+1(t) (2.23)

where ξ̃j(t) = 1 + ε
κξj(t) and ξj(t) ≈

∑j
k=1

∆Tkfk(0)ρk(t)‖γk(t)‖
1+∆Tkfk(0) .

To see this we write the Taylor series of ξj(t) where the variable in this case is fk(t) and we
evaluate at point fk(0) for k = 1, . . . , j:

ξj(t) =

j∑
k=1

∆Tkfk(0)ρk(t) ‖ γk(t) ‖
1 + ∆Tkfk(0)

+
ρk(t) ‖ γk(t) ‖ ∆Tk

(1 + ∆Tkfk(0))2
(fk(t)− fk(0))

−ρk(t) ‖ γk(t) ‖ ∆T 2
k

(1 + ∆Tkfk(0))
3 (fk(t)− fk(0))2

+ higher order terms.

Since the forward rates are given in percentages even the second order terms already become very
small and we expand the Taylor series up to second order to get

ξj(t) =

j∑
k=1

∆Tkfk(0)ρk(t) ‖ γk(t) ‖
1 + ∆Tkfk(0)

+
ρk(t) ‖ γk(t) ‖ ∆Tk

(1 + ∆Tkfk(0))2
(fk(t)− fk(0))

+O
(
ρk(t) ‖ γk(t) ‖ ∆T 2

k (fk(t)− fk(0))2
)
.

We notice that because fj(t) is a martingale we have Ej+1[fj(t)|F(0)] = fj(0). This implies

Ẽj+1[ξj(t)|F(0)] =

j∑
k=1

∆Tkfk(0)ρk(t) ‖ γk(t) ‖
1 + ∆Tkfk(0)

+ O (ρk(t) ‖ γk(t) ‖ V ar(∆Tk(fk(t))))

and
V ar (ξj(t)|F(0)) ≈ O

(
(ρk(t) ‖ γk(t) ‖)2V ar(∆Tkfk(t))

)
.

According to the model the quadratic variation accumulated by the forward rates is [fk, fk](t) =

(fk(t) ‖ γk(t) ‖)2
V (t)t where [., .](t) denotes quadratic variation. Taking this as an estimate for the

variance of fk(t) gives V ar(∆Tkfk(t)) ≈ (∆Tkfk(t) ‖ γk(t) ‖)2
V (t)t and noting that the fk(t) are

small percentages the Taylor expansion of ξj(t) is dominated by the first term in the summation.
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Option Price Valuation

In this section we present three alternative methods (apart from a Monte Carlo simulation) for
pricing caplets using the Wu & Zhang stochastic volatility model. Since the first method has many
similarities with the method in [7] we will call it the Heston method. The other two methods are
two Fourier inversion methods which we will call Modified Call Value Method and Time Value
Method. We will end this chapter by comparing pricing results of these methods to a Monte Carlo
simulation.

3.1 Heston Method

From the previous chapter we have seen that by making some assumptions to keep the model
analytically tractable, we retain nice equations for the LIBOR rates with stochastic volatility. We
start by stating these results. Our LIBOR market model with stochastic volatility is

dfj(t) = fj(t)
√
V (t)γj(t) · dZ̃j+1(t), 1 ≤ j ≤ N (3.1)

dV (t) = κ
[
θ − ξ̃j(t)V (t)

]
dt+ ε

√
V (t)dW̃ j+1(t) (3.2)

where (Z̃j+1(t), W̃ j+1(t)) is a (d+ 1)-dimensional Brownian motions under the measure P̃j+1. We
see that the LIBOR rates are martingales under the forward measure and the square root term
multiplying the volatility is a CIR process.

Let CTj (k) be the price of a call on a European option with maturity time Tj and let k =
ln(K/fj(0)) where K is the strike price and fj(0) is the zero forward curve for 1 ≤ j ≤ N . The
price of this option is given by

CTj (k) = P (0, Tj+1)∆TjẼj+1
[
(fj(Tj)−K)+|F0

]
(3.3)

= P (0, Tj+1)∆Tjfj(0)Ẽj+1

[(
fj(Tj)

fj(0)
− K

fj(0)

)+

| F0

]
= P (0, Tj+1)∆Tjfj(0)GTj (k), for j = 1, . . . , N

where

GTj (k) = Ẽj+1

[(
fj(Tj)

fj(0)
− K

fj(0)

)+

| F0

]

= Ẽj+1
[
eln(fj(Tj)/fj(0))1fj(Tj)>K |F(0)

]
− K

fj(0)
Ẽj+1

[
1fj(Tj)>K |F(0)

]
(3.4)

25
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and Ẽj+1[·] denotes the expectation under the forward measure P̃j+1. The expectations in equa-
tion (4.5) can be evaluated using characteristic functions. Let X(t) = ln(fj(t)/fj(0)), then the
characteristic function of X(Tj) is defined by

φTj (X(t), V (t), t; z) = Ẽj+1
[
ezX(Tj) |F(0)

]
, z ∈ C.

Using the definition of the characteristic function we can evaluate the expectations in (4.5) by the
following equations

Ẽj+1
[
1fj(Tj)>K |F(0)

]
=

1

2
+

1

π

∫ ∞
0

Im
[
e−iv ln(K/fj(0))φTj (iv)

]
v

dv, (3.5)

Ẽj+1
[
eln(fj(Tj)/fj(0))1fj(Tj)>K |F(0)

]
=

1

2
+

1

π

∫ ∞
0

Im
[
e−iv ln(K/fj(0))φTj (1 + iv)

]
v

dv. (3.6)

For a derivation of these equations the reader is referred to Appendix A. Now it only rests to
determine an expression for φTj (z) and we are ready to compute the call option prices CTj (k) in
equation (3.3).

Assume φ = φTj = Ẽj+1[η(X(Tj), V (Tj))|X(t) = x, V (t) = V ], which is a conditional expec-
tation of a function of x and v at a later maturity time Tj , is twice differentiable. By Itô’s lemma
we have:

dφ =
∂φ

∂x
dx+

∂φ

∂V
dV +

∂φ

∂t
dt+

1

2

(
∂2φ

∂V 2
(dV )2 + 2

∂2φ

∂V ∂x
dV dx+

∂2φ

∂x2
(dx)2

)
=

[
∂φ

∂t
+ (κθ − κξV )

∂φ

∂V
− 1

2
λ2V

∂φ

∂x
+

1

2
ε2V

∂2φ

∂V 2
+ ερλV

∂2φ

∂V ∂x
+

1

2
λ2V

∂2φ

∂x2

]
dt(3.7)

+
√
V λ

∂φ

∂x
dZ̃ + ε

√
V
∂φ

∂V
dW̃ .

Since the forward rate f is a martingale we know that φ must be a martingale. Hence,

Ẽ [dφ] = 0.

Applying this to equation (3.8) gives the Fokker-Planck forward equation:

∂φ

∂t
+ (κθ − κξV )

∂φ

∂V
− 1

2
λ2V

∂φ

∂x
+

1

2
ε2V

∂2φ

∂V 2
+ ερλV

∂2φ

∂V ∂x
+

1

2
λ2V

∂2φ

∂x2
= 0 (3.8)

where
ξ = ξ̃j(t), λ =‖ γj(t) ‖ and ρ = ρj .

The Fokker-Planck equation can be used in many ways depending on the terminal condition. For
the case at hand we should choose the terminal condition to be φ(x, V, T ; z) = ezx since this
renders the solution to be the characteristic function of XTj .

The next step is to solve equation (3.8) with the terminal condition φ(x, V, T ; z) = ezx. Be-
cause of the technicality and tediousness of these calculations the reader is referred to Appendix
B. Here we will only state the solution in the next proposition.

Proposition 3.1.1. For equation (3.8) with terminal condition φ(x, V, T ; z) = ezx we consider a
solution of the form φ̃(x, V, τ ; z) = eA(τ,z)+B(τ,z)V+zx (= φ(x, V, t; z)), where we make a change of
variable τ = T − t which is the time to maturity. For ε 6= 0 and piecewise constant coefficients on
the intervals τj ≤ τ < τj+1, j = 0, 1, . . . ,m− 1, φ̃ is a weak solution where A and B are given as

A(τ, z) = A(τj , z) +
κθ

ε2

[
(a+ d)(τ − τj)− 2 ln

(
1− gjed(τ−τj)

1− gj

)]
B(τ, z) = B(τj , z) +

(
a+ d− ε2B(τj , z)

) (
1− ed(τ−τj)

)
ε2(1− gjed(τ−τj))
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for τj ≤ τ < τj+1, j = 0, 1, . . . ,m− 1,

and where

a = κξ − ρελz, d =
√
a2 − λ2ε2(z2 − z), gj =

a+ d− ε2B(τj , z)

a− d− ε2B(τj , z)
.

Although we are totally equipped to calculate option prices by using the analytical formulas
given by (3.5)-(3.6), we will in the next section discuss two other possibilities to express option
prices without having to resort to time consuming Monte Carlo simulations. Both these methods
make use of Fourier (inversion) to arrive at an analytical expression for pricing and in particular
can be implemented as Fast Fourier Transforms for even faster pricing.

3.2 Fourier Inversion Methods for Pricing

In this section two analytic expressions for the valuation of an option price will be discussed.
These methods make use of Fourier transform and contain the characteristic function which we
derived in the previous section.

3.2.1 Modified Call Value Method

This method is first developed by Carr and Madan [4] and can be used to exploit the advantages of
using a Fast Fourier Transform (FFT) when doing calculations. This could be done by computing
caplet prices for different strikes around zero, see for example [4]. The same applies for the Time
Value method which we discuss in the next subsection. However, since we want to compare the
performance of the different alternative methods including the Heston method we will not be using
FFT but rather different strike rates K.

We are interested in the forward price of the same option given in section 3.1, which is given
by

CTj (k) = P (0, Tj+1)∆TjẼj+1
[
(fj(Tj)−K)+|F0

]
= P (0, Tj+1)∆Tjfj(0)Ẽj+1

[(
fj(Tj)

fj(0)
− K

fj(0)

)+

| F0

]
= P (0, Tj+1)∆Tjfj(0)GTj (k) for j = 1, . . . , N.

Let qTj (s) denote the risk-neutral probability density function of the stochastic variable X(Tj) =
ln(fj(Tj)/fj(0)) so that we can write

GTj (k) ≡
∫ ∞
k

(
es − ek

)
qTj (s)ds.

Note that GTj (k) is not square integrable over (−∞,∞) because it tends to 1 as k tends to −∞.
However, we will need this property if we want to regain GTj (k) for “almost every” k through
an inverse Fourier transform later. This can be achieved by considering the modified call price
defined by:

gTj (k) ≡ eαkGTj (k) for α > 0.

For certain positive values of α the function gTj (k) is square integrable on the real line. The choice
of α according to [4] must be such that φTj (1 + α) < ∞ however we will take a more practical
approach to this. We consider the Fourier transform of gTj (k) which is given by

ψTj (v) =

∫ ∞
−∞

eivkgTj (k)dk.
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Once we have determined an expression for ψTj (v) (in terms of φTj ), we can compute the call
option prices using the inverse transform:

GTj (k) =
e−αk

2π

∫ ∞
−∞

e−ivkψTj (v)dv =
e−αk

π

∫ ∞
0

e−ivkψTj (v)dv, for almost every k. (3.9)

The second equality holds due to the fact that GTj (k) is real. This implies that ψTj (v) is odd in
its imaginary part and even in its real part. Now let us determine the expression for the function
ψTj (k):

ψTj (v) =

∫ ∞
−∞

eivkgTj (k)dk =

∫ ∞
−∞

eivk
∫ ∞
k

eαk
(
es − ek

)
qTj (s)dsdk

=

∫ ∞
−∞

qTj (s)

∫ s

−∞

(
es+αk − e(1+α)k

)
eiukdkds

=

∫ ∞
−∞

qTj (s)

[
e(1+α+iv)s

α+ iv
− e(1+α+iv)s

1 + α+ iv

]
ds

=

∫ ∞
−∞

qTj (s)
e(1+α+iv)s

(α+ iv)(1 + α+ iv)
ds

=
φTj (1 + α+ iv)

(α+ iv)(1 + α+ iv)
.

3.2.2 Time Value Method

In this section a different method is used where we determine the time value of an out-of-the-money
option. With k = ln(K/fj(0)), where K is the strike rate, and fj(0) is the zero forward curve for
1 ≤ j ≤ N , we let zTj (k) be the Tj maturity put price of a European option when K < fj(0) and
let it be the Tj maturity call price when K > fj(0). Notice that these imply k < 0 for the put
option and k > 0 for the call option. We will derive an expression for the Fourier transform of
zTj (k) in terms of the characteristic function of XTj .

First let us take a closer look at the time value of an option. The time value of an option is
the option value minus the intrinsic value of the option. The intrinsic value of an option is the
payoff of the option by exercising at the current time. Hence,

zTj (k) = option value− intrinsic value

, GTj (k)−
(

1− K

fj(0)

)+

. (3.10)

Now assume that zTj (k) is in L2(R), then we can take its Fourier transform to obtain

ζTj (v) =

∫ ∞
−∞

eivkzTj (k)dk.

When we invert this transform we get the prices of out-of-the-money options:

zTj (k) =
1

2π

∫ ∞
−∞

e−ivkζTj (v)dv.

We may define zTj (k) as

zTj (k) =

∫ ∞
−∞

[(
ek − es

)
1s>k1k>0 +

(
es − ek

)
1s<k1k<0

]
qTj (s)ds.
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As stated before now we take its Fourier transform to get an expression for ζTj (v):

ζTj (v) =

∫ ∞
−∞

eivkzTj (k)dk

=

∫ ∞
−∞

∫ ∞
−∞

[(
ek − es

)
1s>k1k>0 +

(
es − ek

)
1s<k1k<0

]
qTj (s)dsdk

=

∫ ∞
0

eivk
∫ ∞
k

(
es − ek

)
qTj (s)dsdk +

∫ 0

−∞
eivk

∫ k

−∞

(
ek − es

)
qTj (s)dsdk

=

∫ ∞
0

qTj (s)ds

∫ s

0

(
eseivk − e(1+iv)k

)
dk +

∫ 0

−∞
qTj (s)ds

∫ 0

s

(
e(1+iv)k − eseivk

)
dk.

After computing the inner integrals and noticing that we can write the outer integrals according
to the definition of characteristic functions, we get the result

ζTj (v) =
φTj (1 + iv)− 1

iv − v2
. (3.11)

To compute caplet prices later by a numerical scheme we would need ζTj (0), but from equation
(3.11) we see that v = 0 might pose a singularity problem. However, by the martingale property
of XTj we see that for v = 0 we have φTj (1) = 1 and this point is a removable singularity.

From equation (3.10) we see that, excluding discounting, we could compute caplet prices by

GTj (k) =

(
1− K

fj(0)

)+

+
1

π

∫ ∞
0

e−ivkζTj (v)dv. (3.12)

Now we have analytical expressions for all three alternative methods presented and we can turn
to numerical implementation.

3.3 Numerical Implementation

3.3.1 Evaluating the Integrals

The integral in equation (3.12) has to be computed numerically. Since it involves integrating on
an infinite domain we will have to make a truncation decision for our computations. We could
notice the following:

|φTj (1 + iv)| =
∣∣∣Ẽj+1

[
e(1+iv)XTj |F(0)

]∣∣∣ ≤ Ẽj+1
[∣∣∣eXTj eivXTj ∣∣∣ |F(0)

]
= Ẽj+1

[
eXTj |F(0)

]
= 1

where the last equality follows from the martingale property of XTj . Now we have

|ζTj (v)| =
∣∣∣∣φTj (1 + iv)− 1

iv − v2

∣∣∣∣ ≤ ∣∣∣∣ 2√
v4 + v2

∣∣∣∣ < 2

v2

hence, ∣∣∣∣∫ ∞
A

e−ivkζTj (v)dv

∣∣∣∣ ≤ ∫ ∞
A

2

v2
dv =

2

A
.

Therefore, a truncation error in the order of one basis point is achieved by truncating the integral
at A = 104. However, computational results show that we can take this bound much smaller and
for both the Fourier methods we take this bound to be A = 50.

With a truncation of the integral in equation (3.12) we can now turn to a numerical integra-
tion and we choose to implement a composite trapezoidal rule. If we choose a uniform grid with
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N + 1 grid points (0, 1, . . . , N) to approximate the function f(x) on an interval [a, b], then the
approximation according to the trapezoidal rule is given by∫ b

a

f(x)dx ≈ h

2

N−1∑
k=0

(f(xk+1)− f(xk)) =
h

2
(f(x0) + 2f(x1) + 2f(x2) + . . .+ 2f(xN−1) + f(xN ))

= h

(
f(x0) + f(xN )

2
+

N−1∑
k=1

f(xk)

)
.

where h = b−a
N is the grid spacing and the order of accuracy of the trapezoidal rule is O(h2).

Hence, we make the following approximation for the integral in equation (3.12)∫ ∞
0

e−ivkζTj (v)dv ≈

(
ζTj (0)

2
+

N−1∑
n=1

e−ivkζTj (vn) +
e−ivNkζTj (vN )

2

)
∆u,

where vn = n∆u and ∆u = A
N .

The integral in equation (3.9) for the Modified Call Value method and the integrals (3.5)-(3.6) for
the Heston method are also computed using the composite trapezoidal rule as numerical approxi-
mation. In all cases we have used A = 50 and N = 10000.

3.3.2 Implementation of Monte Carlo

In this section we want to start by describing the Monte Carlo method used in the simulations
and then follow in the next section with implementation results.

For the implementation of the Monte Carlo method we use equations (2.17)-(2.18) i.e. the model
under the risk neutral measure. We insert the correlation between the forward rates and the
stochastic factor for the volatility in the equation;

dft(t)

fj(t)
= −V (t)γj(t) · σj+1(t)dt+

√
V (t)dZ̃(t)

= −V (t)γj(t) · σj+1(t)dt+
√
V (t)

(√
1− ρ2γj(t) · dẐ(t) + ρ ‖ γj(t) ‖2 dW̃ (t)

)
where (Ẑ(t), W̃ (t)) is a (d+1)-dimensional Brownian motion. By Itô’s lemma and using a log-Euler
algorithm as numerical method we get

fj(t+ ∆t) = fj(t)e
−V (t)(γj(t)·σj+1(t)+ 1

2‖γj(t)‖2)∆t+
√
V (t)
√

1−ρ2γj(t)·∆Ẑ(t)+ρ‖γj(t)‖2∆W̃ (t).

For the stochastic volatility term we have used a Milstein method.

Definition 3.3.1. Milstein approximation of an SDE. Consider the SDE given by

dV (t) = f(V (t))dt+ g(V (t))dW (t), 0 ≤ t ≤ T,

with initial condition V (0) = v0 and W (t) is a Brownian motion. The approximation of the
solution of this SDE according to the Milstein method is given by

Vn+1 = Vn + f(Vn)∆t+ g(Vn)∆Wn +
1

2
g(Vn)g′(Vn)

(
(∆Wn)2 −∆t

)
, 0 ≤ n ≤ N,

where the initial condition V (0) = v0, ∆t = T
N , g′(v) = ∂g(v)

∂v and ∆Wn are independent and
identically distributed normal random variables with mean zero and variance ∆t.
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Remark 3.3.1. Adjusting Milstein. For the calculations of the stochastic volatility we have
actually used

Vn+1 = max{Vn + f(Vn)∆t+ g(Vn)∆Wn +
1

2
g(Vn)g′(Vn)

(
(∆Wn)2 −∆t

)
, 0}

since we need to take the square root in our log-Euler scheme for the forward rates.

3.3.3 Results

To test the performance of the closed-form methods we will use two different datasets and hence
also two different parameter settings. For the time step ∆t = 1/12 has been taken since we want
to price caplets monthly and the number of paths taken in the Monte Carlo simulations is 1000,
more paths do not have a big impact especially on the mean of all the path samples which is even-
tually taken to be the Monte Carlo solution. We want to point out that to reduce the variance in
our simulations we make use of antithetic variates1 in our implementation.

In Figure 3.1 we can see how a Monte Carlo simulation for the forward rates is distributed along
with given percentiles using as input a European Central Bank AAA (ECB-AAA) zero curve.
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Figure 3.1: Depiction of the course of forward rates in 30 years time.

In Figure 3.2 we can see caplet prices for a Monte Carlo simulation with strike K = 0.01 for all
paths simulated and given percentiles. In the same figure we can also see the Monte Carlo (mean)
solution and the solution of all three different methods. The prices of these caplets originate from
the forward rates in Figure 3.1.

We point out that the parameter α in the Modified Call Value method cannot be held constant
when the strike rate is changed since this could lead to big differences between this method and
the Monte Carlo price. Hence, α needs to be recalibrated accordingly. Notice that finding the
optimal value for α has not been our main focus. However, the values for α have been chosen in

1See for example [8] for more on antithetic variates and variance reduction techniques.
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an area which leads to small differences e.g we can see in Figure 3.3 that a value of α ≈ 1
4 would

be most appropriate and this value has also been used in Figure 3.2. The differences between the
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Figure 3.2: Caplet prices for K = 0.01 and α = 1/4 for the Modified Call Value method.

caplet prices for each method and the caplet price that follows from a Monte Carlo simulation are
minimal. Only for the Modified Call Value method we can see a bigger difference for the shorter
times to maturity. This has to do with the parameter α that has to be chosen. In Figure 3.3 we
see the absolute errors for the Modified Call Value method for strike K = 0.01 and different values
for α. The value α = 1

4 in Figure 3.2 has been chosen from Figure 3.3 in an area to have small
differences.

Figure 3.3: Absolute error between the Modified Call Value method and a Monte Carlo simulation
for strike price is K = 0.01.
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In Figure 3.4 the differences between the closed-form methods and the Monte Carlo (mean)
solution are given when taking different strike values K = 0.01 and K = 0.02 in respectively the
upper and lower picture. In Figure 3.5 the same has been done for K = 0.025 and K = 0.03. The
strike values K have been chosen around the values in the zero curve.

0 50 100 150 200 250 300 350
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Maturity time (months)

A
bs

ol
ut

e 
er

ro
r

Absolute error in comparison to Monte Carlo for K=0.01

 

 

Time Value
Modified Call Value α=1/4
Heston

0 50 100 150 200 250 300 350
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Maturity time (months)

A
bs

ol
ut

e 
er

ro
r

Absolute error in comparison to Monte Carlo for K=0.02

 

 

Time Value
Modified Call Value α=1/(2.7)
Heston

Figure 3.4: Absolute error between the Time Value, Modified Call Value and the Heston method
when comparing these to a Monte Carlo simulation for strike prices K = 0.01 and K = 0.02.
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Figure 3.5: Absolute error between the Time Value, Modified Call Value and the Heston method
when comparing these to a Monte Carlo simulation for strike prices K = 0.025 and K = 0.03.
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For a different dataset, ECB-AAA Q1-2012 (and hence with different model parameters), we
see in Figure 3.6 the differences between caplet prices for each method compared to the Monte
Carlo price for strikes when K = 0.01 and K = 0.02 in respectively the upper and lower picture.
In Figure 3.7 we can see the same for K = 0.025 and K = 0.03. The strike values K have again
been chosen around the values in the zero curve.
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Figure 3.6: Absolute error between the Time Value, Modified Call Value and the Heston method
when comparing these to a Monte Carlo simulation for strike prices K = 0.01 and K = 0.02.
(ECB-AAA data, Q1-2012)
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Figure 3.7: Absolute error between the Time Value, Modified Call Value and the Heston method
when comparing these to a Monte Carlo simulation for strike prices K = 0.025 and K = 0.03.
(ECB-AAA data, Q1-2012)

It is apparent that the performance quality of the methods vary but the Time Value method
still performs the best while the Modified Call Value method shows the biggest differences.
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To again stress the choice of parameter α for the Modified Call value method, in Figure 3.8
we see the absolute errors between the Modified Call Value method and Monte Carlo solution
for strike values K = 0.01 and K = 0.02. In each depiction we see how the differences vary for
different values of α to show the choice for α that we have used in the figures above.

Figure 3.8: Absolute error between the Modified Call Value method and a Monte Carlo simulation
for strike prices K = 0.01 and K = 0.02. (ECB-AAA data, Q1-2012)
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While the Heston and the Modified Call Value methods sometimes show big pricing differences
compared to the Monte Carlo price of a caplet, in general we conclude that the Time Value method
offers a good closed-form alternative to approximate caplet prices under the Wu & Zhang stochastic
volatility model. However, the circumstances under which this is valid need to be assessed. We
recommend the performance to always be tested first for the given set of parameters in the model
before used for pricing although bad performance has not been apparent. In the next chapter
where we add a new parameter in the model we will see that performance could worsen.



4

Adding a Displacement Parameter
to the Model

4.1 The new Model

We have seen that under the forward measure P̃j+1 our extended market model, equations (2.21)-
(2.22), is

dfj(t) = fj(t)
√
V (t)γj(t) · dZ̃j+1(t),

dV (t) = [κθ − (κ+ εξj(t))V (t)] dt+ ε
√
V (t)dW̃ j+1(t).

Hence, the forward rates are lognormal under this measure. This feature might cause the rates to
get quite high in the course of time. To try and resolve this issue we will introduce a displacement
parameter δ in our model to reduce the rates through the volatility. Our model including the
displacement parameter becomes

dfj(t) = (fj + δ)(t)
√
V (t)γj(t) · dZ̃j+1(t), (4.1)

dV (t) = [κθ − (κ+ εξj(t))V (t)] dt+ ε
√
V (t)dW̃ j+1(t) (4.2)

where the ‘freezing coefficients’ are now given by

ξ̃j(t) = 1 +
ε

κ
ξj(t) and ξj(t) ≈

j∑
k=1

∆Tk(fk(0) + δ)ρk(t) ‖ γk(t) ‖
1 + ∆Tkfk(0)

.

Besides being mostly a repeat of section 2.3, the mathematical details of the implications of the
displacement parameter are too cumbersome to explain at the moment and therefore the reader
is referred to Appendix D. For now let us look at an example of how the displacement parameter
might help to dampen the forward rates.

Consider a simple stochastic differential equation for the (lognormal) forward rates (under a certain
measure) given by

df(t) = f(t)σdZ

with initial condition f(0) = f0 and maturing at some time T . The solution to this problem is
given by

f(t) = f0e
− 1

2σ
2t+σ
√

(t)Z

and we see that f(t) is lognormally distributed.
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When we include a displacement parameter the stochastic differential equation becomes

df(t) = (f(t) + δ)σdZ δ > 0, f(0) = f0.

The solution is now given by

f(t) = (f0 + δ)e−
1
2σ

2t+σ
√
tZ − δ. (4.3)

If all the parameters are kept unchanged the distribution will become wider and our issue of
increasing rates is far from resolved. However, this is of course bad practice. For the model to be
consistent with market data it has to be recalibrated. Roughly, we could see that recalibrating
will affect the volatility in the new model in the following way:

σnew ≈ f(t)

f(t) + δ
σold.

Since δ > 0 we have σnew < σold, so the volatility in the new model has become smaller because
of the displacement parameter.

The displacement parameter δ, however helpful it might be, also has its disadvantages. First, the
aforementioned calibration means more computations and hence a slower pricing method. Second,
equation (4.3) hints at the forward rates possibly becoming negative, and in fact they could. In
the next section we will discuss the results of implementing the different pricing methods including
the displacement parameter.

4.2 The Pricing Methods Including Displacement

To price a European call option, CTj (k), with maturity time Tj let k = ln K+δ
fj(0)+δ where K is the

strike price and δ > 0 is the displacement parameter. The price of this option is given by

CTj (k) = P (0, Tj+1)∆TjẼj+1
[
(fj(Tj)−K)+|F0

]
(4.4)

= P (0, Tj+1)∆Tj(fj(0) + δ)Ẽj+1

[(
fj(Tj) + δ

fj(0) + δ
− K + δ

fj(0) + δ

)+

| F0

]
= P (0, Tj+1)∆Tj(fj(0) + δ)GTj (k) for j = 1, . . . , N

where

GTj (k) = Ẽj+1

[(
fj(Tj) + δ

fj(0) + δ
− K + δ

fj(0) + δ

)+

| F0

]
.

This function GTj (k) will be the main focus in the next subsections for pricing according to the
different methods.

4.2.1 Heston Method

To price the call option via characteristic function we let X(t) = ln{(fj(t) + δ)/(fj(0) + δ)} and
define the characteristic function of X(Tj) to be

φTj = Ẽj+1
[
ezX(Tj) |F(0)

]
, z ∈ C.

With the definition of the characteristic function we evaluate the expectations in the function
GTj (k),

GTj (k) = Ẽj+1
[
eln{(fj(Tj)+δ)/(fj(0)+δ)}1fj(Tj)>K |F(0)

]
− K + δ

fj(0) + δ
Ẽj+1

[
1fj(Tj)>K |F(0)

]
.
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These expectations are now given by

Ẽj+1
[
1fj(Tj)>K |F(0)

]
=

1

2
+

1

π

∫ ∞
0

Im
[
e−iv ln{(K+δ)/(fj(0)+δ)}φTj (iv)

]
v

dv,

Ẽj+1
[
eln(fj(Tj)+δ)/(fj(0)+δ)1fj(Tj)>K |F(0)

]
=

1

2
+

1

π

∫ ∞
0

Im
[
e−iv ln{(K+δ)/(fj(0)+δ)}φTj (1 + iv)

]
v

dv.

The derivation of the above equations is similar to the one of equations (3.5)-(3.6) and this is
explained in Appendix B. The expression for φTj remains the same as the one explained in
Appendix C, with a small alteration of the freezing coefficient ξj(t) which is now is as in the
previous paragraph.

4.2.2 Modified Call Value Method

Let qTj (s) be the risk-neutral probability density function of the stochastic variable X(Tj) =
ln{(fj(Tj) + δ)/(fj(0) + δ)} and we can write

GTj (k) ≡
∫ ∞
k

(
es − ek

)
qTj (s)ds

where k = ln(K + δ)/(fj(0) + δ). The function GTj (k) is not square integrable over (−∞,∞)
because when k tends to −∞ GTj (k) tends to 1. To achieve square integrability of GTj (k) we
multiply by eαk for some α > 0 to arrive at

gTj (k) ≡ eαkGTj (k).

Following the same lines as was done in section 3.2.1 we have

GTj (k) =
e−αk

2π

∫ ∞
−∞

e−ivkψTj (v)dv =
e−αk

π

∫ ∞
0

e−ivkψTj (v)dv for almost every k.

where

ψTj (v) =
φTj (1 + α+ iv)

(α+ iv)(1 + α+ iv)
.

4.2.3 Time Value Method

We consider again k = ln(K/fj(0)), where K is the strike rate, and fj(0) is the rate at t = 0 for
every caplet with maturity time Tj . We let zTj (k) be the Tj maturity put price when K < fj(0)
and let it be the Tj maturity call price when K > fj(0).

The time value of an option including the displacement factor is now given by

zTj (k) , GTj (k)−
(

1− K + δ

fj(0) + δ

)+

.

Assume that zTj (k) is in L2(R) we can take its Fourier transform to obtain

ζTj (v) =

∫ ∞
−∞

eivkzTj (k)dk.

and taking the inverse Fourier transform we get the prices of out-of-the-money options:

zTj (k) =
1

2π

∫ ∞
−∞

e−ivkζTj (v)dv.
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We may also define zTj (k) as

zTj (k) =

∫ ∞
−∞

[(
ek − es

)
1s>k1k>0 +

(
es − ek

)
1s<k1k<0

]
qTj (s)ds

and taking its Fourier transform like we have done in section 3.2.2 to get an expression for ζTj (v)
we arrive at

ζTj (v) =
φTj (1 + iv)− 1

iv − v2
.

Now we can calculate the function GTj (k) by

GTj (k) =

(
1− K + δ

fj(0) + δ

)+

+
1

π

∫ ∞
0

e−ivkζTj (v)dv. (4.5)

4.3 Results

For implementation of the numerical schemes to compute GTj (k) we again use a trapezoidal rule.
For the Monte Carlo simulation we now have the following:

fj(t+ ∆t) = (fj(t) + δ)e−V (t)(γj(t)·σj+1(t)+ 1
2‖γj(t)‖2)∆t+

√
V (t)
√

1−ρ2γj(t)·∆Ẑ(t)+ρ‖γj(t)‖2∆W̃ (t) − δ

where (Ẑ(t), W̃ (t)) is a (d + 1)-dimensional Brownian motion. The stochastic volatility factor is
again implemented using the adjusted Milstein scheme. For the implementation of all the methods
and all the numerical schemes we have used the exact numerical settings as in the previous chapter,
in particular for the Monte Carlo method the grid spacings in the simulations are ∆t = 1/12 and
we make 1000 simulations using antithetic variates.

The displacement parameter has been chosen small, δ = 0.0001, and this proves very challenging
for the methods. In Figures 4.1-4.2 we can see the differences between each of the closed-form
methods when compared to the Monte Carlo solution. In this case after recalibration all the pa-
rameters in the model become small, of the same order of the displacement parameter. While the
Monte Carlo solution remains practically unchanged, the performance of the closed-form methods
is drastically reduced. We notice the change in scale on the Absolute Error axis compared to
Chapter 3 to accommodate the differences.

In particular, when ε approaches zero the functions φ might start to not work properly. This
makes clear that care needs to be taken with the parameters in the model and while the methods
could be used to approximate the Monte Carlo solution, like we have seen in the previous chapter,
in some cases they perform poorly.
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Figure 4.1: For the model including displacement parameter this figure shows the absolute error
between the Time Value, Modified Call Value and the Heston method when comparing these to a
Monte Carlo simulation for strike prices K = 0.01 and K = 0.02. (ECB-AAA data, Q1-2012)
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Figure 4.2: For the model including displacement parameter this figure shows the absolute error
between the Time Value, Modified Call Value and the Heston method when comparing these to a
Monte Carlo simulation for strike prices K = 0.025 and K = 0.03. (ECB-AAA data, Q1-2012)
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Variance Reduction Techniques

In the previous chapter we have seen how adding a displacement factor to the model can reduce
high rates. We have also mentioned that to reduce the confidence intervals of our results we have
implemented antithetic variates in our Monte Carlo simulations. Another example of a variance
reduction technique1 is the use of a control variate. In this chapter we will implement and show
the results when we use a control variate instead of a displacement parameter to compute caplet
prices under our model. But first we start by explaining what a control variate is.

5.1 A Control Variate

Suppose we have a stochastic variable X and we want to estimate EX. If we can find a random
variable Y with know expectation Y that is, in a way, close to X, this could help us reduce the
variance in our simulation. Indeed, we can just as well simulate the random variable

Z = X + EY − Y

because we notice that Z = EX. However, we notice that

V ar(Z) = V ar(X + EX − Y ) = V ar(X − Y ).

We see that performing a Monte Carlo simulation on the variable Z could help us reduce variance
but for it to be helpful we need V ar(X − Y ) < V ar(X). This is what we meant by saying that Y
needs to be in a way close to X. Let us show how a control variate works with an example.

Example 5.1.1. Suppose we want to estimate E
[
sin(
√
U)
]

where U ∼ U(0, 1) is uniformly dis-

tributed on [0, 1]. Since sin(U) and sin(
√
U) are close on the given interval we can use sin(U)

as a control variate and notice that E[sin(U)] =
∫ 1

0
sin(u)du = 1 − cos(1). Hence, we will sample

Z = sin(
√
U)+1−cos(1)−sin(U). In Table 5.1 we can see the 95% confidence intervals for different

sampling sizes N when sampling X = sin(
√
U) and sampling Z = sin(

√
U) + 1− cos(1)− sin(U).

In the last column we can see the width ratio of the confidence intervals and the improvement of
our simulation is clear.

5.2 Using Control Variate in the Model

We recall that our LIBOR market model is given by

dfj(t) = fj(t)
√
V (t)γj(t) ·

[
dZ̃(t)−

√
V (t)σj+1(t)dt

]
, 1 ≤ j ≤ N (5.1)

dV (t) = κ(θ − V (t))dt+ ε
√
V (t)dW̃ (t). (5.2)

1For more on variance reduction techniques one could consult [8].
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M X = sin(
√
U) Z = sin(

√
U) + 1− cos(1)− sin(U) Width ratio

102 [0.1603, 0.8340] [0.4672, 0.6935] 2.98
103 [0.1650, 0.8339] [0.4673, 0.6935] 2.96
104 [0.1574, 0.8344] [0.4668, 0.6935] 2.99
104 [0.1572, 0.8347] [0.4665, 0.6934] 2.99

Table 5.1: 95% confidence intervals using standard Monte Carlo and control variate to estimate

E
[
sin(

√
(U))

]
. In the last column the ratio of the widths is given.

What we want to achieve is to approximate the forward rates in this model with another model
for which the mean of the forward rates are known. To achieve this goal we assume the stochastic
volatility factor follows a Vasiček process instead of a CIR process. Hence, we then have the
following model:

df†j (t) = f†j (t)
√
V (t)γj(t) ·

[
dZ̃(t)−

√
V (t)σj+1(t)dt

]
, 1 ≤ j ≤ N (5.3)

dV (t) = κ(θ − V (t))dt+ εdW̃ (t). (5.4)

where we assume the same correlation between the forward rates and the stochastic factor i.e.

Ẽ
[(

γj(t)

‖ γj(t) ‖
· dZ̃(t)

)
· dW̃ (t)

]
= ρj(t)dt, with ‖ρj(t)dt‖ ≤ 1.

The SDE dV (t) = κ(θ − V (t))dt + εdW̃ (t) has nice properties. First, just as the CIR process
it is also mean-reverting with the same mean reversion level and the same mean reversion rate.
Second, unlike the CIR process the Vasiček process can be solved analytically. The solution of
equation (5.4) is

V (t) = e−κtV (0) + θ(1− e−κt) + εe−κt
∫ t

0

eκudW̃ (u). (5.5)

One can verify this by taking the differential of the right-hand side of equation (5.5). It is then
easy to see that V (t) is normally distributed with mean e−κtV (0) + θ(1 − e−κt) and variance
θε2

2κ2 (1 − e−2κt). A consequence of this is that V (t) can become negative and since it is a square
root term in our model this is not desirable.

Recalling the purpose of a control variate we have to be able to find the mean of the forward
rates in the new model given by equations (5.3)-(5.4). Despite the fact that we now have a closed-
form solution (5.5) for V (t), it is still rather complicated to find the mean of the forward rates in

our new model because of the Itô integral in equation (5.5). Instead we take V ∗(t) = ẼV (t) and
we notice that with the model

df†∗j (t) = f†∗j (t)
√
V ∗(t)γj(t) ·

[
dZ̃(t)−

√
V ∗(t)σj+1(t)dt

]
, 1 ≤ j ≤ N (5.6)

V ∗(t) = e−κtV (0) + θ(1− e−κt) (5.7)

we can use the Black-Scholes-Merton formula for time-varying, non-random interest rate and
volatility to calculate Ẽ[f†∗j (Tj)].

Theorem 5.2.1. Black-Scholes-Merton formula for time-varying, non-random interest
rate and volatility. Consider f given by the following SDE

df(t) = r(t)f(t)dt+ σ(t)dZ̃(t),

where r(t) and σ(t) are time-varying, non-random functions and Z̃ is a Brownian motion under

the risk-neutral measure P̃. Let a maturity time T > 0 and a strike rate K > 0 be given. We
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consider a European call on f which has value at time t = 0 given as

C(0, f(0)) = Ẽ

[
exp

{
−
∫ T

0

r(t)dt

}
(f(T )−K)+

]
.

Let
BSM(T, x;K,Φ,Σ) = xN(d+)− e−ΦTKN(d−)

where

d± =
1

Σ
√
T

(
log

x

K
+ (Φ± Σ2/2)T

)
and N(·) is the standard normal distribution. Then the price of the European call at time zero is

C(0, f(0)) = BSM

T, f(0);K,
1

T

∫ T

0

r(t)dt,

√
1

T

∫ T

0

σ2(t)dt

 .

Notice that because of the division by K in d± we cannot take K = 0 for our purpose but have
to take the limit K → 0. Notice also that in (5.6) we have two (independent) Brownian motions.
However we can transform this equation using the following

γj(t) · dZ̃(t) = γ̂j(t)
(
β1(t)dZ̃1(t) + β2(t)dZ̃2(t)

)
=

√
γ̂2
j (t) (β2

1(t) + β2
2(t))dZ3(t)

= γ̂j(t)dZ̃3(t)

where Z̃3(t) is a Brownian motion under the measure P̃.

Hence, equations (5.6)-(5.7) become

df†∗j (t) = f†∗j (t)
√
V ∗(t)γ̂j(t)

[
dZ̃3(t)−

√
V ∗(t)σj+1(t)dt

]
, 1 ≤ j ≤ N (5.8)

V ∗(t) = e−κtV (0) + θ(1− e−κt) (5.9)

and we can find Ẽ[f†∗j (Tj)] setting K → 0 using the BSM formula.

Now instead of simulating forward rates as a random variable

X = fj (5.10)

we simulate
Z = X + Ẽ[f†∗j (Tj)]− Y, 1 ≤ j ≤ N (5.11)

where Y = f†j .

5.3 Results

To show results when using a control variate we use the same Monte Carlo schemes as in previous
chapters with the same grid spacings ∆ = 1/12 and again 1000 simulations using antithetic
variates. The data is again from ECB-AAA. In Figure 5.1 we can see the results of a (standard)
Monte Carlo simulation, a simulation of X in equation (5.10). In the same figure we can a Monte
Carlo simulation using control variate, a simulation of Z in equation (5.11). We see that when
using the control variate the variance in our simulation has reduced i.e. we have tighter confidence
intervals. In Figure (5.2) we see caplet prices that follow from our simulation for strike K = 0.01.
It is apparent that we have also reduced the confidence intervals of the caplet prices.
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Figure 5.1: Forward rates using a standard Monte Carlo simulation and using a control variate
(CV).
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6

Conclusions and
Recommendations

6.1 On the Methods

We have looked at three alternative closed-form methods to approximate the model described in
section 2.3. The advantage of these methods is that they are faster than a Monte Carlo simulation.
Though, since they are approximations we have to deal with pricing differences.

We have seen for the model described in section 2.3 that the Heston method and the two Fourier
inversion methods we have treated are able to approximate the Monte Carlo solution to the model
well without a displacement parameter δ included. However, when we include a displacement
parameter, because of the recalibration of all parameters in the model the results might be not
too pleasing. Since this is true for all the alternative methods we point out that it has to do with
the characteristic function φ. Some choices of the parameters might just not work well and the
parameter values that are appropriate or not to use for these methods has to be studied.

We have also used a trapezoidal rule to approximate the integrals in all the methods. The ef-
fect of using more accurate numerical methods can be studied.

For the stochastic volatility factor V (t) in the model we used Milstein’s method. We have also im-
plemented this next to a moment matched log-normal scheme1 for our stochastic volatility factor
given by:

V (t+ ∆t) = E[V (t+ ∆t)|F(t)]e
1
2 Λ2(t)∆t+Λ(t)∆W̃ (t)

where

Λ2(t) =
1

∆t
ln

E[V 2(t+ ∆t)|F(t)]

(E[V (t+ ∆t)|F(t)])2

and

E[V (t+ ∆t)|F(t)]) = θ + (V (t)− θ)e−κ∆t

E[V 2(t+ ∆t)|F(t)] = (1 +
ε2

2κθ
)(E[V (t+ ∆t)|F(t)])2 − ε2

2κθ
e−2κ∆tV 2(t).

This method automatically assures that the term V (t) will not become negative which is something
we have to take into account in our model. Since the differences between using the Milstein scheme
and a moment matched log-normal scheme are negligible we wouldn’t expect drastic changes using

1See for example [1].
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other (more accurate) methods.

Overall we have seen that the Time Value method performs the best to approximate the Monte
Carlo solution. However, we want to stress that care needs to be taken with the choice of param-
eters e.g. when the volatility term ε in the stochastic volatility factor is equal to zero a Monte
Carlo simulation will have no problem computing a solution while the closed-form methods will
break down. See Proposition 3.1.1 and the large differences in the results of Chapter 4.

The problem of the methods breaking down also appears when we take K = 0 because for all
the methods we have taken k = ln( K

fj(0) ) in the integral. For values of K near zero we have

noticed from implementation results that the Heston method shows increasing differences while
the Time Value method remains close to the Monte Carlo solution.

Because of increasing uncertainty in the course of time, the distribution of the forward rates
will widen. Instead of adding a displacement parameter in the model we have proposed the tech-
nique of a control variate. A disadvantage of a control variate is that one still has to resort to
Monte Carlo simulations with even more calculations. However, negative interest rates are less
apparent then when trying to control rates with a displacement parameter. The use of control
variates in this model as a variance reduction technique deserves more research.

6.2 The Cap/“Plafondrente” Option

The “Plafondrente” (or Cap) option on a mortgage is a way for a client to protect him or herself
against high interest rates which have to be paid on the loan amount of the mortgage.

When issuing a mortgage a client could choose to pay the interest part of the monthly pay-
ments agreed in the contract as a fixed interest rate. Since mortgages are in general contracts
that last for a substantial amount of years, the interest amounts paid could be high. The client
could also choose to pay according to a variable interest rate which might depend for example on
the 1-month EURIBOR rate, rEURk . This means that each month the interest rate is redefined
and set equal to the 1-month EURIBOR interest rate prevailing at the end of the previous month.
By paying this short lived interest rate the client can benefit from a relatively low interest rate in
comparison to the fixed rate. However, since this interest rate is variable it can also become high,
maybe higher than the client would be willing to pay.

To protect oneself from (too) high interest rates the client could buy a Cap option. A maxi-
mum interest rate is then agreed upon in the contract and the client will never pay more than
this maximum, rmax. If the interest rate which needs to be paid is lower than the cap, the client
will pay the interest rate. However if the interest rate should exceed the maximum interest rate,
the client will pay the maximum. This is illustrated in Figure 6.1. It is clear that whenever the
interest rate should exceed the maximum the bank has a loss namely, the amount on the mortgage
outstanding times the difference between the interest rate that should have been paid minus the
maximum rate, Ak(rEURk − rmax), where Ak is the amount at time k on which interest should
be paid. This option is of course not free and the losses are charged to the client. The costs are
computed upon issue and are translated into an interest rate amount that will become part of the
interest rate that needs to be paid. This means that to hedge its position the bank will buy caplets
that have a payoff with strike rate equal to the maximum rate in the client’s contract. This cap
is the Cap/“Plafondrente” option.

The pricing of caps is done using Black’s formula which we have discussed earlier and we know that
in a LIBOR market model cap prices should agree with prices using Black’s formula. However, we
have added stochastic volatility in the LIBOR market model to alleviate the assumption in Black’s
model that volatilities are nonrandom. To compare cap prices using the methods described in this
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Figure 6.1: Illustration of the Cap/“Plafondrente” option.

document to prices using Black’s formula one has to first calibrate the models to prices given by
Black’s formula. With the calibrated parameters one can then use the models for pricing. Time
constraints have not allowed us to study this.
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Appendix A

Adding Stochastic Volatility to
the LIBOR Market Model

Note that the process for the zero-coupon bonds is given as

dP (t, T ) = P (t, T )(R(t)dt+
√
V (t)σ(t, T ) · dZ̃(t)).

From equation (2.10) and substituting for the new process for dP (t, T ) we have

dfj(t) =
1

∆Tj

(
P (t, Tj)

P (t, Tj+1)

[
R(t)dt+

√
V (t)σj(t) · dZ̃(t)

]
+P (t, Tj)

[
− 1

P 2(t, Tj+1)

{
P (t, Tj+1)

[
R(t)dt+

√
V (t)σj+1(t) · dZ̃(t)

]}
+

1

P 3(t, Tj+1)
P 2(t, Tj+1)V (t) ‖ σ(t, Tj+1) ‖22 dt

]
− P (t, Tj)

P (t, Tj+1)
V (t)σj+1(t) · σj(t)dt

)
=

1

∆Tj

P (t, Tj)

P (t, Tj+1)

(
[σj(t)− σj+1(t)]

√
V (t) · dZ̃(t)

+V (t) ‖ σ(t, Tj+1) ‖22 dt− σj(t) · σj+1(t)V (t)dt
)

=
1

∆Tj

P (t, Tj)

P (t, Tj+1)
[σj(t)− σj+1(t)] ·

[√
V (t)dZ̃(t)− V (t)σj+1(t)dt

]
. (A.1)

Substituting (2.14) into (A.1) gives

dfj(t) = fj(t)
1

∆Tj

1 + ∆Tjfj(t)

fj(t)
[σj(t)− σj+1(t)] ·

[√
V (t)dZ̃(t)− V (t)σj+1(t)dt

]
.

= fj(t)
√
V (t)γj(t) ·

[
dZ̃(t)−

√
V (t)σj+1(t)dt

]
, 1 ≤ j ≤ N,

where γj(t) is unchanged and thus remains as given by equation (2.15).
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Appendix B

Introducing Characteristic
Functions

Let X(t) = ln(fj(t)/fj(0)) and define the characteristic function of X(Tj) being

φTj (z) = Ẽj+1
[
ezX(Tj) |F(0)

]
=

∫ ∞
−∞

ezX(Tj)dF (X(Tj)), z ∈ C,

where F (X(Tj)) is the distribution of the stochastic variable X(Tj) = ln(fj(Tj)/fj(0)). Following
Gil-Pelaez [6] we set X(Tj) = x and note that

lim
δ↓0,T↑∞

∫ T

δ

e
iv ln K

fj(0)φ(−v)− eiv ln K
fj(0)φ(v)

2πiv
dv

(∗),(∗∗)
= lim

δ↓0,T↑∞

∫ T

δ

∫ ∞
−∞

sin
(
v
[
ln
(

K
fj(0)

)
− x
])

πv
dvdF (x)

(∗∗∗)
=

1

π

∫ ∞
−∞

π

2
sgn

(
ln

(
K

fj(0)

)
− x
)
dF (x)

=
1

2

∫ ln K
fj(0)

−∞
dF (x)−

∫ ∞
ln K
fj(0)

dF (x)


=

1

2

[
F

(
ln

K

fj(0)

)
−
(

1− F
(

ln
K

fj(0)

))]
=

1

2

[
2F

(
ln

K

fj(0)

)
− 1

]
= F

(
ln

K

fj(0)

)
− 1

2
,

where in the first equality we used (∗) and (∗∗), which are the definition of the characteristic func-

tion eivyφ(−v) − e−ivyφ(v) =
∫∞
−∞

(
eiv(y−x) − eiv(x−y)

)
dF (x) and eiv(y−x)−eiv(x−y)

2πiv = sin(v(y−x))
πv

respectively. In the second equality we used (∗ ∗ ∗) :
∫∞

0
sin(αx)

x dx = π
2 sgnα. Since

eivxφ(−v)− e−ivxφ(v)

2πiv
= − 1

π
Re

(
φ(v)

e−ivx

iv

)
we have that

F

(
ln

K

fj(0)

)
=

1

2
− 1

π

∫ ∞
0

Re
(
φ(v)e

−iv ln K
fj(0)

)
iv

dv

1− Ẽj+1

[
1{

ln
fj(Tj)

fj(0)
≥ln K

fj(0)

}] =
1

2
− 1

π

∫ ∞
0

Re
(
φ(v)e

−iv ln K
fj(0)

)
iv

dv
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and hence

Ẽj+1
[
1{fj(Tj)≥K}

]
=

1

2
+

1

π

∫ ∞
0

Im
(
φ(v)e

−iv ln K
fj(0)

)
v

dv.

The expectation Ẽj+1
[
eX(Tj)1{fj(Tj)≥K}

]
can be computed in a similar way.



Appendix C

Solution for the Characteristic
Function

The characteristic functions φ(x, V, t; z) for the forward rates which we need to solve to price
caplets in accordance to Heston, satisfy the Fokker-Planck partial differential equation given by

∂φ

∂t
+ (κθ − κξV )

∂φ

∂V
− 1

2
λ2V

∂φ

∂x
+

1

2
ε2V

∂2φ

∂V 2
+ ερλV

∂2φ

∂V ∂x
+

1

2
λ2V

∂2φ

∂x2
= 0 (C.1)

with terminal condition

φ(x, V, T ; z) = ezx (C.2)

and where the functions ξ, λ and ρ are defined as

ξ = ξ̃j(t), λ =‖ γj(t) ‖ and ρ = ρj .

To determine φ(x, V, T ; z) we follow Heston [7] and consider a solution of the form

φ̃(x, V, τ ; z) = eA(τ,z)+B(τ,z)V+zx (C.3)

where we have made a change of variable τ = T − t which is the time to maturity. Substituting
this solution into (C.1) and (C.2) we have the following result.

Proposition C.0.1. If we consider a solution of the form (C.3) for the Fokker-Planck partial dif-
ferential equation (C.1) with terminal condition given by (C.2) we get the following two differential
equations

dA

dτ
= κθB (C.4)

dB

dτ
=

1

2
ε2B2 + (ρελz − κξ)B +

1

2
λ2(z2 − z) (C.5)

where the terminal condition now becomes the initial conditions

A(0, z) = 0, B(0, z) = 0. (C.6)

Proof:

First we determine all the necessary partial derivatives of φ̃ and then substitute them into (C.1).
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For the sake of readability we omit the function variables in brackets.

∂φ̃

∂t
= −∂φ̃

∂τ
= −

(
dA

dτ
+ V

dB

dτ

)
eA+BV+zx

∂φ̃

∂V
= BeA+BV+zx

∂φ̃

∂x
= zeA+BV+zx

∂2φ̃

∂V 2
= B2eA+BV+zx

∂2φ̃

∂V ∂x
= zBeA+BV+zx

∂2φ̃

∂x2
= z2eA+BV+zx.

Now substituting the above equations we have(
−
(
dA

dτ
+ V

dB

dτ

)
+ (κθ − κξV )B − 1

2
λ2V z +

1

2
ε2V B2 + ερλV zB +

1

2
λ2V z2

)
eA+BV+zx = 0.

This implies

−dA
dτ
− V dB

dτ
+ (κθ − κξV )B − 1

2
λ2V z +

1

2
ε2V B2 + ερλV zB +

1

2
λ2V z2 = 0

or
dA

dτ
+ V

dB

dτ
= κθB + V

(
1

2
ε2B2 + (ρελz − κξ)B +

1

2
λ2(z2 − z)

)
.

Now we choose dA
dτ and dB

dτ accordingly to arrive at

dA

dτ
= κθB

dB

dτ
=

1

2
ε2B2 + (ρελz − κξ)B +

1

2
λ2(z2 − z).

For the boundary condition we have

φ̃(x, V, 0; z) = eA(0,z)+B(0,z)V+zx = ezx = φ(x, V, T ; z)

which implies

A(0, z) = B(0, z) = 0. �

Now it rests to determine the functions A(τ, z) andB(τ, z). The differential equation forB(τ, z) is a
Ricatti equation, which has no analytical solution for general coefficients. However, the coefficients
are piecewise constant on intervals between maturity times and in this case an analytical solution
does exist. Hence, we could recursively solve this equation for B(τ), τ ∈ [τj , τj+1) and j =
0, 1, . . . , N − 1. We have the following proposition.

Proposition C.0.2. For piecewise constant coefficients and ε 6= 0, equations (C.4) and (C.5)
with initial conditions (C.6) have a solution of the form

A(τ, z) = A(τj , z) +
κθ

ε2

[
(a+ d)(τ − τj)− 2 ln

(
1− gjed(τ−τj)

1− gj

)]
B(τ, z) = B(τj , z) +

(
a+ d− ε2B(τj , z)

) (
1− ed(τ−τj)

)
ε2(1− gjed(τ−τj))
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for τj ≤ τ < τj+1, j = 0, 1, . . . ,m− 1,

where

a = κξ − ρελz, d =
√
a2 − λ2ε2(z2 − z), gj =

a+ d− ε2B(τj , z)

a− d− ε2B(τj , z)
.

Proof :

First we solve the Ricatti equation, the differential equation for B.

dB

dτ
=

1

2
ε2B2 + (ρελz − κξ)︸ ︷︷ ︸

−a

B +
1

2
λ2(z2 − z)

=
1

2
ε2(B − a

ε2
)2 − a2

2ε2
+

1

2
λ2(z2 − z)

=
1

2
ε2(B − a

ε2
)2 − 1

2ε2
(a2 − ε2λ2(z2 − z))︸ ︷︷ ︸

d2

=
1

2
ε2(B − a

ε2
)2 − 1

2ε2
d2

=
ε2

2

((
B − a

ε2

)2

− d2

ε4

)
=

ε2

2

(
B − a+ d

ε2

)(
B − a− d

ε2

)

and after rearranging terms we get

dB(
B − a+d

ε2

) (
B − a−d

ε2

) =
ε2

2
dτ.

Now we rewrite the left-hand side and integrate on each interval τj ≤ τ < τj+1 to arrive at∫ τ

τj

ε2

2d

(
1

B − a+d
ε2

− 1

B − a−d
ε2

)
dB =

∫ τ

τj

ddτ.

After integration we get [
ln

∣∣∣∣∣B − a+d
ε2

B − a−d
ε2

∣∣∣∣∣
]τ
τj

= [dτ ]
τ
τj

+ C.

Now we work out this equation and solve for B.

ln

∣∣∣∣∣B(τ, z)− a+d
ε2

B(τ, z)− a−d
ε2

∣∣∣∣∣− ln

∣∣∣∣∣B(τj , z)− a+d
ε2

B(τj , z)− a−d
ε2

∣∣∣∣∣ = d(τ − τj) + C

ln

∣∣∣∣∣
(
B(τ, z)− a+d

ε2

B(τ, z)− a−d
ε2

)(
B(τj , z)− a−d

ε2

B(τj , z)− a+d
ε2

)∣∣∣∣∣ = d(τ − τj) + C

ln

∣∣∣∣∣
(
B(τ, z)− a+d

ε2

B(τ, z)− a−d
ε2

)
1

gj

∣∣∣∣∣ = d(τ − τj) + C

where gj =
a+d−ε2B(τj ,z)
a−d−ε2B(τj ,z)

. We now take the exponential of both sides and get(
B(τ, z)− a+d

ε2

B(τ, z)− a−d
ε2

)
1

gj
= ed(τ−τj)+C .
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Solving for B(τ, z) gives

B(τ, z) =
(a+ d)− (a− d)gje

d(τ−τj)+C

ε2(1− gjed(τ−τj)+C)
.

For 0 ≤ τ < τ1 we can determine the constant C using the initial condition B(0, z) = 0. This
leads to

B(0, z) = (a+ d)− (a− d)

(
a+ d

a− d

)
eC = 0

and note that this amounts to C = 0. Hence, we have

B(τ, z) =
(a+ d)− (a− d)gje

d(τ−τj)

ε2(1− gjed(τ−τj))
. (C.7)

Using the definition of gj we can write (a+ d) = (a− d− ε2B(τj , z))gj + ε2B(τj , z) and (a− d) =
(a+d−ε2B(τj ,z))

gj
+ ε2B(τj , z). Substituting these into (C.7) gives

B(τ, z) =
(a− d− ε2B(τj , z))gj + ε2B(τj , z)−

(
(a+ d− ε2B(τj , z)) + ε2B(τj , z)gj

)
ed(τ−τj)

ε2(1− gjed(τ−τj))

=
(a− d− ε2B(τj , z))gj + ε2B(τj , z)−

(
(a− d− ε2B(τj , z))gj + ε2B(τj , z)gj

)
ed(τ−τj)

ε2(1− gjed(τ−τj))

=
(a− d− ε2B(τj , z))gj(1− ed(τ−τj)) + ε2B(τj , z)(1− gjed(τ−τj))

ε2(1− gjed(τ−τj))

= B(τj , z) +

(
a+ d− ε2B(τj , z)

) (
1− ed(τ−τj)

)
ε2(1− gjed(τ−τj))

.

Now we turn our attention to the differential equation for A. We first integrate and notice that∫ τ

τj

dA

dτ
dτ =

∫ τ

τj

κθBdτ

A(τ, z)−A(τj , z) = C + κθ

∫ τ

τj

B(τ, z)dτ.

Which leads to

A(τ, z) = C +A(τj , z) + κθ

∫ τ

τj

B(τ, z)dτ

= C +A(τj , z) +
κθ

ε2

(
ε2B(τj , z)(τ − τj) + (a+ d− ε2B(τj , z))

∫ τ

τj

1− ed(τ−τj)

1− gjed(τ−τj)
dτ

)

= C +A(τj , z) +
κθ

ε2

(
ε2B(τj , z)(τ − τj) + (a+ d− ε2B(τj , z))

[
(τ − τj)−

∫ τ

τj

(1− gj)ed(τ−τj)

1− gjed(τ−τj)
dτ

])

= C +A(τj , z) +
κθ

ε2

(
ε2B(τj , z)(τ − τj) + (a+ d− ε2B(τj , z))

[
(τ − τj)−

1

d

∫ ed(τ−τj)

1

(1− gj)
1− gju

du

])

= C +A(τj , z) +
κθ

ε2

(
ε2B(τj , z)(τ − τj) + (a+ d− ε2B(τj , z))

[
(τ − τj) +

(1− gj)
dg

ln
1− gjed(τ−τj)

1− gj

])
= C +A(τj , z) +

κθ

ε2

[
(a+ d)(τ − τj)− 2 ln

(
1− gjed(τ−τj)

1− gj

)]
.

Using the condition A(0, z) = 0 implies C = 0 and we get the desired result in Proposition 3.1.1.



Appendix D

Implications of Including a
Displacement Parameter

We recall the relation between simple forward rates and zero-coupon bonds:

fj(t) =
1

∆Tj

(
P (t, Tj)

P (t, Tj+1)
− 1

)
, 1 ≤ j ≤ N

and the process followed by the zero-coupon bonds is the lognormal process

dP (t, T ) = P (t, T )(R(t)dt+
√
V (t)σ(t, T ) · dZ̃(t)).

By Itô’s lemma and including a displacement parameter we now have

dfj(t) =
1

∆Tj

P (t, Tj)

P (t, Tj+1)
[σj(t)− σj+1(t)] ·

[√
V (t)dZ̃(t)− V (t)σj+1(t)dt

]
= (fj(t) + δ)

1

∆Tj

1 + ∆Tjfj(t)

fj(t) + δ
[σj(t)− σj+1(t)] ·

[√
V (t)dZ̃(t)− V (t)σj+1(t)dt

]
.

= (fj(t) + δ)
√
V (t)γj(t) ·

[
dZ̃(t)−

√
V (t)σj+1(t)dt

]
, 1 ≤ j ≤ N,

where γj(t) is given by

γj(t) =
1 + ∆Tjfj(t)

∆Tj(fj(t) + δ)
[σj(t)− σj+1(t)] .

Since our stochastic volatility factor remains the same we have the following LIBOR market model
with stochastic volatility:

dfj(t) = (fj(t) + δ)
√
V (t)γj(t) ·

[
dZ̃(t)−

√
V (t)σj+1(t)dt

]
, (D.1)

dV (t) = κ(θ − V (t))dt+ ε
√
V (t)dW̃ (t). (D.2)

Now changing from the money market account measure to the forward measure and following
section 2.3 we see that

dZ̃j+1(t) = dZ̃(t)−
√
V (t)σj+1(t)dt

and

dW̃ j+1(t) = dW̃ (t) +
√
V (t)

j∑
k=1

∆Tk(fk(t) + δ)

1 + ∆Tkfk(t)
‖ γk(t) ‖ ρj(t)dt

= dW̃ (t) +
√
V (t)ξj(t)dt
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where ξj(t) =
∑j
k=1

∆Tk(fk(t)+δ)
1+∆Tkfk(t) ‖ γk(t) ‖ ρj(t) and Ẽ

[(
γj(t)
‖γj(t)‖ · dZ̃(t)

)
· dW̃ (t)

]
= ρj(t)dt, with

‖ρj(t)dt‖ ≤ 1.

Hence, in terms of the new Brownian motions Z̃j+1(t) and W̃ j+1(t) under the probability measure

P̃j+1 the market model becomes

dfj(t) = (fj(t) + δ)
√
V (t)γj(t) · dZ̃j+1(t),

dV (t) = [κθ − (κ+ εξj(t))V (t)] dt+ ε
√
V (t)dW̃ j+1(t).

Again we want to regain analytical tractability by using freezing coefficients. By Proposition 2.3.1
this gives the extended LIBOR market model with displacement coefficient

dfj(t) = (fj(t) + δ)
√
V (t)γj(t) · dZ̃j+1(t), (D.3)

dV (t) = κ
[
θ − ξ̃j(t)V (t)

]
dt+ ε

√
V (t)dW̃ j+1(t) (D.4)

where ξ̃j(t) = 1 + ε
κξj(t) and ξj(t) ≈

∑j
k=1

∆Tk(fk(0)+δ)ρk(t)‖γk(t)‖
1+∆Tkfk(0) .
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