<]
TUDelft

Delft University of Technology

Learning for Control
An Inverse Optimization Approach

Akhtar, Syed Adnan; Kolarijani, Arman Sharifi; Esfahani, Peyman Mohajerin

DOI
10.23919/ACC50511.2021.9483283

Publication date
2021

Document Version
Final published version

Published in
Proceedings of the American Control Conference, ACC 2021

Citation (APA)

Akhtar, S. A., Kolarijani, A. S., & Esfahani, P. M. (2021). Learning for Control: An Inverse Optimization
Approach. In Proceedings of the American Control Conference, ACC 2021 (pp. 2193-2198). IEEE.
https://doi.org/10.23919/ACC50511.2021.9483283

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.23919/ACC50511.2021.9483283
https://doi.org/10.23919/ACC50511.2021.9483283

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!’ - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

2021 American Control Conference (ACC) | 978-1-6654-4197-1/21/$31.00 ©202110.23919/ACC50511.2021.9483283

2021 American Control Conference (ACC)
New Orleans, USA, May 25-28, 2021

Learning for Control:
An Inverse Optimization Approach

Syed Adnan Akhtar, Arman Sharifi Kolarijani and Peyman Mohajerin Esfahani

Abstract— We present a learning method to learn the map-
ping from an input space to an action space, which is
particularly suitable when the action is an optimal decision
with respect to a certain unknown cost function. We use an
inverse optimization approach to retrieve the cost function by
introducing a new loss function and a new hypothesis class
of mappings. A tractable convex reformulation of the learning
problem is also presented. The method is effective for learning
input-action mapping in continuous input-action space with
input-output constraints, typically present in control systems.
The learning approach can be effectively transformed to learn a
Model Predictive Control (MPC) behaviour and a case study to
mimic an MPC is presented, which is a rather computationally
heavy control strategy. Simulation and experimental results
show the effectiveness of the proposed approach.

I. INTRODUCTION

Reinforcement learning has gathered interest in the learn-
ing community recently [1] where learning of the expert
action is based on rewards. Generally, one has access to the
expert demonstrations, but not the reward/cost function that
dictates the expert action. Imitation Learning involves infer-
ring the optimum policy through expert demonstrations [2]
without knowing the reward function. It has been used to
teach sequential skills to a robotic arm [3] or acrobatic
maneuvers to a helicopter [4].

Numerous methods have been proposed for imitation
learning. One of the straightforward methods is to view
imitation learning as a supervised learning problem, known
as behaviour cloning [5]. Such methods directly learn a
mapping from the state space to the action space through
expert demonstrations [6]. Alternatively, Inverse Reinforce-
ment Learning (IRL) methods construct an expert policy
by retrieving the expert reward function [7]. These methods
predominantly follow a Markov decision process framework.
See e.g., the maximum margin approach in [8] and the linear
programming approach in [9]. An alternative approach is
entropy maximization that aims to retrieve a distribution
over potential reward functions [10]. In relative entropy
methods, the KL-divergence between two trajectories is
minimized [11]. Bayesian IRL methods use the state-action
pair observations to perform a Bayesian update of a prior
distribution over a hypothesis of reward functions [12]. Most
of the IRL algorithms are designed for discrete state-action
spaces [13]. However, the state-action space in control or

The authors are with the Delft Center for Systems & Control, TU
Delft, The Netherlands ({S.A.Akhtar, A.SharifiKolarijani,
P.MohajerinEsfahani}@tudelft.nl). This research is supported
by the ERC grant TRUST-949796.

-

1
ug'(st)
S
Learning Agent

A

Euet (5t) uet(sfil)
E I::l 8
“----1 Expert Agent

(a) Expert drives the system. (b) Learning agent drives system.

Expert Agent

Fig. 1: Learning settings

robotics is typically continuous and effective discretization
leads to exponential growth in the number of states. Con-
sider Figure 1 depicting the nature of such problems in the
context of control. There are two settings in Figure la and
Figure 1b with a difference who (expert or learner) drives
the system. The goal of the learning agent is to learn the cost
function of the expert regardless of the choice of the setting
in Figure 1. At each time step, the expert takes an optimal
action u®(s;) by solving a parametric optimization problem
depending on an exogenous signal s;. The learner observes
the expert action u®(s;) with a one time-step delay and infers
the cost function that the expert optimizes. Subsequently,
the learning agent can mimic the expert action through the
learned cost. The learning agent action, denoted by ulen(st),
is in general a suboptimal action since it is generated based
on an approximated (or learned) cost rather than the true
(or expert) cost. Notice that the true cost is unknown to the
learning agent and only available to the expert. In this paper,
we focus on learning of the cost function that explains the
expert actions possibly in the presence of some state-action
constraints.

An example that can be cast as a learning problem is
MPC [14]. Online optimization renders MPC computation-
ally demanding and restricts its application to systems with
moderate size dynamics. There are numerous studies in the
literature to reduce the computational burden of MPC such
as exploiting the structure of the optimization problem [15],
warm-start approach [16] and explicit MPC [17], to name a
few. Fundamentally speaking, MPC finds a mapping from
the system states to the optimal control inputs. In the
context of learning problems, a natural approach to learn this
mapping is supervised learning. There are several studies that
learn (or approximate) the MPC controller in the context of
supervised learning either through indirect learning [18] or
direct learning [19]. In the former class, the mapping from

978-1-6654-4197-1/$31.00 ©2021 AACC 2193

Authorized licensed use limited to: TU Delft Library. Downloaded on January 31,2022 at 10:19:47 UTC from IEEE Xplore. Restrictions apply.

the system states to the optimal MPC cost is approximated.
Then, the approximated cost is used to obtain a sub-optimal
input. In the latter class, the mapping from the states to the
optimal input is directly approximated. We emphasize that
respecting state and input constraints in supervised learning
is generally a challenge, particularly from a computational
perspective during the training phase. This computational
challenge is at the center of the contribution of this study.

A central example of this study is to learn MPC as an

“expert agent.” We propose an indirect learning approach
based on the inverse optimization [20] that satisfies the
input constraints by construction. We refer the reader to the
extended version of this paper [21] for an online learning
approach to address the limited memory and computational
constraints for real systems, as well as a more detailed dis-
cussion on the experimental setup and additional numerical
examples.

Contributions: In the context explained above, the main

contributions of this paper are summarized as follows:

e Inspired by the inverse optimization framework, we
introduce parametric optimization as a new hypothesis
class along with a loss function that enjoys a tractable
reformulation during the training phase (Section III).

o« We develop a nonlinear convex reformulation of the
target objective function (Theorem 2), as well as a
tractable linear matrix inequality (LMI) (Corollary 3).

o We discuss the theoretical results in an MPC setting
and how our results help reduce the planning horizon
to essentially 1-step. We also implement the proposed
learning-based controller in a closed-loop fashion (Sec-
tion V).

Notations: For a non-negative integer n, R™ and R’} denote
the spaces of n-dimensional reals and non-negative reals,
respectively. The identity square matrix with dimension n
is denoted by I,,. For a symmetric matrix @, the inequal-
ity @ = 0 (respectively, @ > 0) means that () is positive
semi-definite (respectively, positive definite). Given a vector
x € R™, we use the shorthand notation ||z||3):= ' Qx. A
symmetric matrix is often described by the upper diagonal
elements while the lower diagonal elements is replaced by
“x”. Throughout this study we also reserve the hat notation
(e.g., 7) for the objects dependent on data.

II. PRELIMINARIES

In this section we briefly explain two key problems in the
learning literature that are central to objective of this study.

A. Supervised learning

Supervised learning is one of the prospective ways to
solve the imitation learning problem [5]. Supervised learning
intends to learn an unknown mapping, h* : S — U, from an
input vector s € S C R™ to an output vector v € U C R™.
Since the space of the candidate function is typically large,
we restrict our search to functions within a hypothesis space
H. A classical example is the collection of all linear func-
tions. We refer to each candidate mapping as a hypothesis
function h that belongs to the hypothesis space /. The aim is

to find a function h that replicates the unknown ground truth
mapping h* as closely as possible. Many algorithms find this
hypothesis function h by solving an optimization program
that involves a loss function ¢ : U x U — R,. Given a
sample (s, u), the loss value £(u, h(s)) essentially quantifies
the mismatch between the predicted output h(s) and the true
output . In supervised learning, a training set {(5;, Ut) }i<r
is available where each (53, u;) € S x U represents an input-
output sample, and 7" denotes the number of samples. Given
this dataset, such algorithms solve the so-called in-sample
error described as
T
min t:1€(ut,h(st)). (D
A typical hypothesis class is the space of linear functionals
H= {h ‘R" 5 R™ | h(s) = As, A€ RW"}, 2)

where the input and output sets are typically the entire
space, i.e., S = R™ and R™ = U. With regards to the
loss function, a popular example is the squared 2-norm
loss £(u1,u2) = |Jur — uz||3 where uy,us € U. The linear
hypothesis class together with the squared 2-norm loss yields
a standard regression problem known as the least squares
methods described through the optimization program

O

A?eg = arg min Z ’

AER™X™ 4y 2
While the least squares method (3) is a powerful estimation
tool, it is however not applicable in cases where the output set
is a strict subset U g R™. One may impose such constraints
explicitly via, for instance, a projection operator Ily. This
alters the training program to min 4 Zthl || — Ty (Asy) H;
However, this modified training objective is unfortunately
no longer convex in the model parameter A. Therefore,
constraint satisfaction is a challenge with classical methods

in the supervised learning literature.

B. Inverse optimization

Inverse optimization aims to learn the behavior of a
decision-maker whose decisions may be influenced by an
exogenous environmental signal. More specifically, it is
believed that the decision-maker upon receiving a signal
s € S C R™ optimizes an unknown objective function u >
F*(s,u) over a feasible set of actions U(s), which may also
depend on the signal s. In the context of the learning problem
depicted in Figure 1b, the signal s and the decision-maker
may be seen as the state of the dynamical system and the
expert agent, respectively. With this in mind, we hereafter
refer to the decisions optimizing the objective F™* by u®(s).
For ease of notation, we will often omit the dependency of
on s. Therefore, the inverse optimizing problem is described
via the forward optimization program

u(s) := arg min F* (s, u) . 4)

u€U(s)
Recall the mission of the learning agent in Figure 1b; it
aims to replicate the behavior of the expert agent. One

2194

Authorized licensed use limited to: TU Delft Library. Downloaded on January 31,2022 at 10:19:47 UTC from IEEE Xplore. Restrictions apply.

can approach this objective through the lens of supervised
learning. However, as pointed out earlier in Section IL.A,
the usual spaces such as the linear hypothesis (2) do not
necessarily respect the decision constraint set u® € U(s).

Alternatively, the learning agent can aim to learn the
unknown objective function F* in (4). To this end, a hy-
pothesis space can be a collection of parameterized functions
F={Fy:SxU—R|0ecO} where UD U(s) denotes a
superset of all admissible decisions and 6 € © represents the
parameter to be learnt. The mapping 6 — Fy and the choice
of space © depend on the problem at hand. In contrast with
supervised learning in Section II.A, the input and output sets
are now considered as S x U and R, respectively. It is worth
noting that in this perspective, the difference on the formal
definition of the input and output sets has an important
consequence: The training data should now constitute the
triple ((s, u®), F*(s, u)).

An approach bridging these two perspectives mentioned
above is to utilize parametric objective functions Fy € F and
define a hypothesis space # containing functions from s € S
directly to u € U. More specifically, the arg min functions

ul(s) = hg(s) == arguﬁli)n Fp(s,u), &)

can be a natural basis to predict the experts behavior.
Notice that the hypothesis candidate ul(s) respects the
constraints ull(s) € U(s), for all s € S, by construction.
Now given T' observations {(5;,u§')}, ., and a loss func-

tion ¢ : U x U — R, the training procedure (1) is

T

gggtle(af,uy(gg). ©6)

We emphasize that the tractability of (6) highly depends on
the set F, more specifically the mapping 6 — ul(s), and
the loss function ¢. We focus on this in the next section.

III. PROPOSED LEARNING APPROACH

The aim of this section is to elaborate on the choice of the
hypothesis space F described in the previous section and the
loss function ¢ to make the training procedure (6) efficient.

A. Hypothesis class

As a particular example of F, we consider a family of
quadratic functions defined as

.F:{Fe(s,u): [ZT@[Z} \ee@}, @

where O is a subset of square matrices R("+7)x(m+n) e
can then introduce the following hypothesis class, that is as
a collection of mappings hy : R” — R™,

T

M= m@zmwmr}er}we@. ®)
u€U(s) u u

Similar hypothesis classes have been actually studied in the

literature in the context of continuous time, infinite horizon,

but unconstrained optimal control problems [22]. Next, we
discuss the choice of the set ©. Let us denote

9 — { 053 9571, :| . (9)
eus G’U.U

Considering that the ultimate goal is to replicate the expert
action, the critical entity is the hypothesis hy € H defined
in (8). In this view, it is straightforward to observe that the
element 65 in (9) does not play any role in the behavior
of hy. Moreover, in order to guarantee that the hypothesis hy
is a computationally tractable oracle, i.e., it is a convex
optimization, it is also required to ensure that 6,, = 0.
These observations, together with the fact that scaling the
function Fp with a positive scalar also does not have any
impact on hgy, leads us to introduce the set

0 esu

B. Loss function

A loss function ¢ : U x U — R quantifies the inaccuracy
of a hypothesis hy € H. One can borrow the classical
squared 2-norm loss as in the least squares method and define
the predictability loss [20] as

7 (i (5), up (5)) o= () — wlf ()3

where the learning agent action ul(s) is as defined in (5).
The above loss function has a clear interpretation in the con-
text of inverse optimization: It penalizes the error between
the decisions of the expert and the learning agent. Despite
such a useful interpretation, it is unfortunately shown that
the mapping 6 — ¢P*(u®, u!(s)) is non-convex [23].

In this study, we utilize a rather unconventional loss
function in the context of supervised learning. This loss
function is particularly suitable for the class of inverse
optimization problems where the observed data consists of
optimal decisions. Unlike the classical loss functions, the
proposed loss function, which we name suboptimality loss,
penalizes the mismatch between the expert and learning
agent actions “nonuniformly”. Let us define the suboptimal-
ity loss /S"P:SxUxU — R, as

(11

5P (s, u, ull) = Fy(s,u) — Fy(s,ull)

= F Y — min F, .
o(s,u%) — min Fy(s,u)

12)

The loss function (12) effectively quantifies the mismatch
between the decisions in terms of their suboptimality level
in the candidate hypothesis.

Remark 1 (Regret loss). The suboptimality loss (12) con-
ceptually shares some interesting similarities with the well
studied notion of regret loss [24], however, they are different
in essence. The regret loss is introduced to measure the
performance of optimizing a sequential loss in the form
of (6). There are numerous techniques in the online opti-
mization literature in which the decision variable (0 in (6))
are updated sequentially upon arrival of each data at time t.

2195

Authorized licensed use limited to: TU Delft Library. Downloaded on January 31,2022 at 10:19:47 UTC from IEEE Xplore. Restrictions apply.

One can indeed resort to these techniques to solve (6) when ¢
is the suboptimality loss (12).

Intuitively, suboptimality loss minimization searches for
the hypothesis function in the hypothesis space that best
explains the expert action u® given an external input s
immaterial of the true cost incurred by the agent. Notice that
the loss goes to zero only when the expert action ¢ is indeed
the minimizer of the hypothesized cost. Notice also that the
candidate hypothesis depends on the exogenous signal s.
Thus, “suboptimality” is attributed to this loss. As opposed
to usual loss functions in supervised learning (e.g., the
predictability loss #P* in (11)), the suboptimality loss depends
explicitly on the signal s. Given the loss function (12) and
a dataset {(5,uj')},.p. the training phase of the inverse
optimization approach yields the optimization program

T
O —argmin{ >~ (Fo3,)~ min Fo(Se,u)) }. (13)
gco ‘i ur €U(51)

The key computational feature of (12) is that the loss
function is convex in § when the mapping 6 — Fj is linear
(e.g., the hypothesis class (7)), a feature missing in the case
of the predictability loss (11). To see this, it suffices to
notice that the function @ — £5U" (s, u®, ulli(s)) constitutes a
pointwise maximum of linear functions.

Recall from Section II.LB that an alternative (indi-
rect) approach to learn expert action described in (4) is
through learning the unknown objective function F™*. This
viewpoint considers the set J as the main hypothesis
space, in which the learning phase requires access to a
dataset { (5, uf'), F*(5¢, uy') b, < ps 1-€., it requires additional
information { F*(5;, u') }, .. In such a setting, one can cast
the learning problem as a standard regression problem akin
to (3). This leads to the optimization program

9 = argmln{ Z HF@ st,ut

0€©

F* (54, Utt)

where Fy has the quadratlc form defined in (7) with the
feasible set © defined in (10).

C. Tractable Reformulation

We now show how the optimization program (6) emerging
from the training phase of the inverse optimization approach
can be solved efficiently. Note that the optimization (6) is
essentially a robust program, i.e., a minimization over the
cost parameter § € © and then maximization over u; €
U(s:).

Theorem 2 (Convex reformulation). Consider the optimiza-
tion problem (13) with suboptimality loss (12) where the
candidate function Fy admits quadratic form as in (7) and
U(s) ={ueR™: M(s)u < W(s)}, where the parametric
matrices M(s) € R™*™ and W (s) € R? are given for any
admissible signal s. Then, the program (13) is equivalent to

min Z Fp (8¢, u0%") +
bce [
A0 =

LM E) TN+ 200,55 15)

+W(5) T,

where 0 is as in (9) and \; € Ri is the Lagrange multiplier.
Proof: As the main building block, we first reformulate

min {Fg (51,0)

where v is an-R™ vector and represents the learner action.
The matrices M and W encode the input-output constraints.

For ease of notation, we omit writing the dependency of the
matrices M and W on ;. Define the Lagrangian function

L\, v) = Fy (5y,0) + (Mv — W) T\,
=0 Ouuv + (201 5+ M) To—WT .

The dual function is defined as g(\;) = inf, L(\;,v). To
find the optimal v*, we set V,, L(A¢,v) = 0. Hence,

VoL, v) = 20,0 + 20,5+ M)A =0,

and as a result, v* = —% .1 (M "X + 26,,5;). We now
substitute v* in the dual functlon g(A+) and arrive at

: MG < W(gt)}. (16)

1
g(\) = —ZHMW +200,5 5~ WA

Observe that 1
o) =~ i | AL N+ LW T

The above equality holds because the program (16) has a
quadratic convex cost with affine constraints, which implies
strong duality (Slater’s condition); and its RHS is equivalent
to the program (16). Next, we reformulate (6) by using the
above observation. This yields

T
(Fg(st,ut)—i—mm{ ||MT)\t+29T st|| 1+WT/\t}>.

min
€O
t=1

Moving miny, > outside the sum concludes the proof.
While the program (15) is convex, it does not follow any
particular structure and one has to resort to generic-purpose
convex optimization solver for numerical purposes. Next, we
show that the program (15) can be translated into a subclass
of convex optimization known as the LMI, which is amenable
to tailored efficient off-the-shelf solvers like MOSEK [25].

Corollary 3 (LMI reformulation). The optimization prob-
lem (15) admits the LMI reformulation

min 23:1 (Fo (56, 0") + 57e + W(s) T \)
st. 0€0in(10), \, eRY, v, R, VE<T
Guu M(St) >\t +295u8t t O, vt S T
* Tt
Proof: In (15), replace || M (5;) "\ + 26, st||2 5 with
an upper-bound v, for all ¢ < T'. We get
Yt (() At+20—r) ouu(() Af+20—r

We now employ the Schur complement approach. Since
0. > 0, the above inequality holds if and only if
Ouwu M(51) TN +20],5
* Tt
The desired claim then follows.

We emphasize that the optimization problem (17) is only
required to be solved when (one wants to use extra available

a7

1) > 0.

= 0.

2196

Authorized licensed use limited to: TU Delft Library. Downloaded on January 31,2022 at 10:19:47 UTC from IEEE Xplore. Restrictions apply.

information for a better estimate of the cost function) we
intend to improve the cost function Fy, and not necessarily
at every time instance.

IV. CASE STUDY: MODEL PREDICTIVE CONTROL

We now use the proposed approach to approximate the
value function of an MPC problem. Notice that an MPC
problem is a forward optimization problem [14]. The value
function is determined implicitly as a solution to a con-
strained program. However, it is difficult in general to
provide a closed-form representation for the value function.

Consider the linear time-invariant system

Ty = Axy + Buy, (18)

where z € X C R"™ and v € U(z) € R™ denote the
states and inputs of the system, respectively. A € R"™*"
and B € R™™ ™ denote the system matrices. Assume that
sets X and U(x) are polytopic and contain the origin. Let N
be the horizon length and denote w; := (uy, ..., Ut N—1)-
Define the stage cost c(xz,u) = [lz[|3+/ul|% for some
matrices ¢ = 0 and R > 0. Finally, let the MPC cost be

N-1

Vi (2, ug) := Z c(Tiqi, wpri) + Vi(Teen),
i=0

19)

where V; : R™ — R__ represents the terminal cost. Given an
initial state x;, we solve the following MPC problem

min Vi (xs, uy)

St Tiqit1 = Al‘t_,_i + Buyyy, t=0,...,N—1 (20)
utHEU(xtH), iZO,...,N—l
Ty € X, t1=1,...,N,

to obtain V3 (z;) and an optimal input sequence u;. How-
ever, we only apply the first input u} of the sequence u; and
repeatedly solve the problem (20) at each sampling instance.
Our goal is to use the tools developed in this paper
to approximate the value function V3 (x;) such that the
computation of the control action u} is made lighter w.r.t.
(20). In doing so, we employ the optimality condition in
dynamic programming, and rewrite the problem (20) as

min c(zy, ug) + F* (x4, up)

st ug € U(zy), D
where the tail cost F* (x4, u;) is defined as
min 305" (@i, wers) + Vi(zesn)
s.t. Ti4it1 = Al't_H' +BUt+i; 1= 1,...,N*1
ut+i€U($t+i)7 1= ,...,N—].
Ti4q € X7 1= 1) 7N

In view of (21) and following an indirect learning mindset
in the previous section, our main goal is to learn the fail
cost F* : R™ x R"™ — R,. To fit in the reference tracking
framework, we define s; as a feature vector, composed
of a combination of states, x; and reference signals 77,
ie., we introduce s, = [z], (z; —rH)T, r¥7]T. We
represent the data collected with MPC reference tracking
by {(5:, ") }1<7. Notice that approximating the MPC cost

3

function through suboptimality loss does not require knowl-
edge of the true cost value, MPC parameters (@, R) or the
system matrices. In the next section, we present simulation
results of mimicking an MPC controller for a lab helicopter.

V. RESULTS

In the previous section, we discussed typecasting the
learning problem in an MPC framework. We now discuss
empirical results with an experimental setup of a 1-DOF lab
helicopter. Recall that the goal through inverse optimization
is to approximate the true but unknown cost function that
explains the mapping from the system states to the actions
for reference tracking. In the context of MPC, the hope is to
reduce the computational complexity. For shortage of space,
we only present brief results here. A more detailed discussion
of the experimental setting as well as additional simulation
results on high-dimensional dynamics of a shell heavy oil
fractionator is presented in the extended version [21].

In this section, the performance of the learning agent that
is trained with the two methods, namely, regression as in
(14), and inverse optimization as in (13) is compared. For
the comparison, we use the 2-norm of the control input error
relative to MPC as a performance metric. The MPC is taken
for a prediction horizon of N = 75. We will also present
the reference tracking error for inverse optimization without
expert in the loop, and compare it with that of MPC.

Consider Figure 1b where the learning agent is driving the
system and the expert gives corrective advice to the learner in
the form of expert actions. At each time ¢, the learning agent
has an estimate Fy of the true cost F'* that guides its action.
The learner reads the state s;, and takes an action ull(s;).
Subsequently, the expert (MPC) reveals its action u®(s;)
(corrective advice). Now, with the new information, u®(s;)
gained by the learner, it improves its estimate of the true cost
function. Therefore, the learning agent decides an action in
response to the signal 5; by using the past data upto time
(t—1),ie. (S, us, F*(5p,uy)) forall k=1,...,(t —1) in
addition to 5,. We denote this action with w, (5;), obtained
by solving the following optimization problem similar to (5)

In

uGt_l (/S\t) = arg min th—l (/s\t, U), (22)
wel(5,)
R .)
where 0; = 6, for regression, §; = 6™ for inverse

optimization with suboptimality loss. It is worth noting that
the learner action at time step ¢ uses 6;_1 since the the expert
action U§' is revealed to the learner in one time step delay.
Henceforth, the superscript ‘Inv’ will be referred to the case
where inverse optimization using suboptimality loss is used
with the LMI reformulation shown in (17) and ‘Reg’ will
similarly denote the training through regression according to
(14). We do not solve the LMI in (17) at each time instance,
but only in the simulation for the first 50s to study the input
error behaviour. An online learning approach to update Fy
at each time instance is presented in the extended version of
this paper [21]. Recall that the end goal for the learner was
to mimic the expert action, @', which is the control input.
Since the expert action @' is not immediately available to

2197

Authorized licensed use limited to: TU Delft Library. Downloaded on January 31,2022 at 10:19:47 UTC from IEEE Xplore. Restrictions apply.

— | Aufer]]
—— || Au[
— | AU |3, tey = 5
— AU s, teu =

0 20 40 60 80 100 120 140 160 180 200
time (s)

Fig. 2: Simulation results: control input error

™= v — ™~y

Fig. 3: Experimental results: tracking error

the learner, it is a good performance metric to measure the
action discrepancy ||ug. (5;) — 5|2

Consider the first scenario as depicted in Figure 1b for
tracking of square-wave of amplitude 0.2, while also receiv-
ing corrective advice from the expert at each time instance,
for the duration of 7' = 200s. The control input error for
such a scenario is shown in Figure 2 for regression (magenta)
and inverse optimization (blue). The control input error with
inverse optimization drops to almost 10~# in just 10s and to
1075 in about 100s. For regression, it takes about 120s for
the error to drop to 10~%. Now consider a second scenario
as in Figure 1b where the expert (thus its corrective advice)
is only available up till time ¢t = t.,;. Beyond the time
t > t.ut the expert is removed from the control loop and
the learner can no longer improve its estimate Fy of the
true cost function F'*. Therefore the cost Fy learned up till
t = t.yu becomes static for the subsequent times ¢ > ..
For such a scenario, the 2-norm of the control input error
is presented for regression (black) and inverse optimization
(red) in Figure 2 with t.,; = 50s. It can be observed that
until time ¢ = 50, the control input errors for both the
methods are identical to the previous scenario when the
expert was present throughout. However, for ¢ > t.,;, the
error slightly increases after the MPC is removed from the
loop, and the static cost of the learner is used for reference
tracking of square wave of amplitude 0.2. Therefore, the
learner solves a simple quadratic program as in (5) to
generate a suboptimal input rather than the computationally
heavy MPC. Figure 3 shows the 2-norm of the tracking error
with MPC (green) and inverse optimization (red). y™" is the
system output due to the control input u!™” whereas yMP¢
is the system output due to the MPC inputs uMPC = 7,
Occasionally, it can be observed that inverse optimization
has lower tracking error than MPC. Finally, we compare
the computation time for the expert (MPC) vs the learner.
For each control input computation and in the average, the
learner takes 0.12 ms against 1.69 ms for MPC. As such,
the learning agent is roughly twelve times faster than MPC.

[1]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

2198

REFERENCES

C. Celemin, G. Maeda, J. R. del Solar, J. Peters, and J. Kober, ‘“Re-
inforcement learning of motor skills using policy search and human
corrective advice,” The International Journal of Robotics Research,
vol. 38, no. 14, pp. 1560-1580, 2019.

T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, and J. Pe-
ters, “An algorithmic perspective on imitation learning,” Foundations
and Trends in Robotics, vol. 7, no. 1-2, pp. 1-179, 2018.

S. Manschitz, J. Kober, M. Gienger, and J. Peters, “Learning move-
ment primitive attractor goals and sequential skills from kinesthetic
demonstrations,” Robotics and Autonomous Systems, vol. 74, 2015.
A. Coates, P. Abbeel, and A. Y. Ng, “Learning for control from mul-
tiple demonstrations,” in Proc. International Conference on Machine
Learning, p. 144-151, 2008.

E. Klein, M. Geist, B. Piot, and O. Pietquin, “Inverse reinforcement
learning through structured classification,” in Proc. Advances in Neural
Information Processing Systems, vol. 25, pp. 1007-1015, 2012.

R. Amit and M. Matari, “Learning movement sequences from demon-
stration,” in International Conference on Development and Learning,
pp. 203-208, 2002.

P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in Proc. International Conference on Machine
Learning, pp. 1-8, 2004.

N. D. Ratliff, D. Silver, and J. A. Bagnell, “Learning to search:
Functional gradient techniques for imitation learning,” Autonomous
Robots, vol. 27, no. 1, pp. 25-53, 2009.

A. Y. Ng and S. J. Russell, “Algorithms for inverse reinforcement
learning,” in Proc. International Conference on Machine Learning,
p. 663-670, 2000.

B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning.,” in Proc. Association for the
Advancement of Artificial Intelligence, vol. 8, pp. 1433-1438, 2008.
A. Boularias, J. Kober, and J. Peters, “Relative entropy inverse rein-
forcement learning,” in Proc. International Conference on Artificial
Intelligence and Statistics, pp. 182—189, 2011.

D. Ramachandran and E. Amir, “Bayesian inverse reinforcement
learning.,” in Proc. International Conference on Artificial Intelligence
and Statistics, vol. 7, pp. 2586-2591, 2007.

S. Arora and P. Doshi, “A survey of inverse reinforcement learning:
Challenges, methods and progress,” preprint arXiv:1806.06877, 2018.
M. Morari and J. H. Lee, “Model predictive control: Past, present
and future,” Computers & Chemical Engineering, vol. 23, no. 4-5,
pp. 667-682, 1999.

Y. Wang and S. Boyd, “Fast model predictive control using online op-
timization,” IEEE Transactions on control systems technology, vol. 18,
no. 2, pp. 267-278, 2009.

E. John and A. Yildirim, “Implementation of warm-start strategies in
interior-point methods for linear programming in fixed dimension,”
Computational Optimization and Applications, pp. 151-183, 2008.
A. Alessio and A. Bemporad, “A survey on explicit model predictive
control,” in Nonlinear model predictive control, pp. 345-369, Springer,
2009.

M. Zhong, M. Johnson, Y. Tassa, T. Erez, and E. Todorov, “Value
function approximation and model predictive control,” in Proc. IEEE
Symposium on Adaptive Dynamic Programming and Reinforcement
Learning, pp. 100-107, 2013.

T. Parisini and R. Zoppoli, “A receding-horizon regulator for nonlinear
systems and a neural approximation,” Automatica, vol. 31, no. 10,
pp. 1443 — 1451, 1995.

P. Mohajerin Esfahani, S. Shafieezadeh-Abadeh, G. A. Hanasusanto,
and D. Kuhn, “Data-driven inverse optimization with imperfect infor-
mation,” Mathematical Programming, vol. 167, pp. 191-234, 2018.
S. A. Akhtar, A. S. Kolarijani, and P. Mohajerin Esfahani, “Learning
for control: An inverse optimization approach,” 2020. extended version
available at http://www.dcsc.tudelft.nl/ - mohajerin/drafts/Lear4C.pdf.
K. G. Vamvoudakis, “Q-learning for continuous-time linear systems:
A model-free infinite horizon optimal control approach,” Systems &
Control Letters, vol. 100, pp. 14-20, 2017.

D. Bertsimas, V. Gupta, and I. C. Paschalidis, “Data-driven estimation
in equilibrium using inverse optimization,” Mathematical Program-
ming, vol. 153, no. 2, pp. 595-633, 2015.

E. Hazan, “Introduction to online convex optimization,” Foundations
and Trends® in Optimization, vol. 2, no. 3-4, pp. 157-325, 2016.
M. ApS, The MOSEK optimization toolbox for MATLAB manual.
Version 9.0., 2019.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 31,2022 at 10:19:47 UTC from IEEE Xplore. Restrictions apply.

