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Summary

Numerical simulations are a widely used method to evaluate the aerodynamic performance
of a design. One of the sources of error is the discretization error. This type of error is
affected by the choice for numerical scheme as well as the discretization of the domain. In
practice, the latter part is performed by making use of a mesh. The chosen mesh has an
influence of the error in the obtained Quantity of Interest(QoI), however its size also directly
influences the computational cost of the solution. Different spatial locations in the domain
have different influence on the results. Therefore, it is inefficient to use global refinement.
Instead, a method must be derived which can estimate the influence of a spatial location in
the domain, in order to be able to efficiently refine the mesh on areas of large influence on
the solution. This is done my first computing a flow solution on a rather rough starting mesh
and computing an error indicator to identify regions which should be targeted for refinement.
This research aims to assess the effectivity and efficiency of one such method, which is based
on an error indicator created by using mesh sensitivities. Mesh sensitivities are defined as the
derivative of the QoI with respect to the spatial location of a mesh node.

This method has been developed and its potential has been shown in literature. However, it
efficiency and effectivity has not been proven. The goal of this research is draw a comparison of
the mesh sensitivity based mesh adaptation with a well proven goal-oriented mesh adaptation
method. For this purpose the adjoint-weighted residual method is chosen. For finite volume
application the method is developed by Venditti and Darmofal, for clarity this method will
be referred to as the V&D method. The V&D method has a very strong link to estimating
the actual error in the QoI. The efficiency of the method has been shown for a wide variety
of flows and geometries.
Both methods use an error indicator to identify spatial regions which require refinement of
the grid. The error indicators from both methods are compared from a theoretical point of
view. It is found the same adjoint variables are used. The V&D method consists of two parts,
being a computable correction term and an error in the computable correction term. The
mesh adaptation error indicator is rather similar compared to the first part of the V&D error
indicator. However, the second part is not estimated.

In order to compare the efficiency, both methods are implemented and use the same flow
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and adjoint solver. Also, the remeshing procedure is performed in the same manner. Some
problems are encountered due to the nature of the solver which requires a small change in the
V&D method causing it to lose some of its efficiency. Furthermore, the flow solver requires
smooth meshes so both methods require a smoothing operator for newly created meshes. This
is performed in the same manner for both methods.

The implementation of the V&D is evaluated by using a flow case from literature. The results
show a lower efficiency as compared to the literature. However, part of this might also be
due to a difference in flow solver. Both goal-oriented methods do show huge improvement
compared to global refinement. A total of three flow cases are examined for lift and drag
values. The results from the V&D method obtain slightly better accuracy in the solution
for comparable number of nodes. Both methods require a very comparable computational
effort for an adaptation cycle for creating a new mesh. However, for the V&D method uses a
correction term, which requires the adjoint equations to be solved on the last mesh, which is
not required for the mesh sensitivity based method.

The aim of this research is to evaluate the mesh sensitivity based mesh adaptation method.
The error indicator from this method is not based on the error in the flow, however a com-
parison with the error indicator from the V&D method shows the indicator is very similar
to the so-called computable correction term from this method. This term is directly linked
to the error in flow. This clearly supports the use of mesh sensitivities as basis of an error
indicator. From numerical studies it is found results are slightly less efficient compared to the
V&D method. However, also at sightly lower numerical costs.
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Chapter 1

Introduction

In aerospace engineering numerical simulations are often used to assess the aerodynamic
performance of a design. In this framework very small errors can lead to large influences
on the operational costs of the aircraft. Therefore, a high accuracy in the simulations is
required. In in the field of computational fluid dynamics(CFD) the error originates from
three sources: modelling error, discretization error and convergence error. The first is the
discrepancy between the real world flow and the exact solution of the used model, e.g. there
is a discrepency between reality and how Euler equation describe the airflow. The latter
is affected by machine precision, which in practise is multiple orders of magnitude smaller
than the discretization error. For fully converged solutions the second type is the difference
between the exact solution of the flow model and the solutions to the discretized equations.
This error is influenced by two choices, the numerical scheme and the discretization of the
computational domain. This second part is performed by making use of a mesh. The mesh
not only influences the error but its size has a direct link to the computational costs of the
numerical simulation. If global refinement would be applied in a two dimensional setting
with a second order accurate solver, decreasing the size of cells by a factor of two leads
to a solution four times as accurate in the asymptotic regime, but also four times as much
computational work per iteration step, often convergence takes more steps for smaller meshes
and the computational work increases even more. Therefore, more effective methods to refine
the grid are required.

For mesh adaptation, the areas of higher interest must be determined. Two methodologies
can be identified here: (a) flow-feature based adaptation, where regions of interest in the
flow can be identified by for instance looking at the derivative of the residuals, and (b)
goal-oriented adaptation. These method use a posteriori indicators to define areas of high
influence in the computational domain with regard to a specific quantity of interest(QoI).
In aerospace related problems this QoI is often defined as the lift, drag, moment coefficient
or the aerodynamic efficiency. As the mesh is optimized for the specific goal-function
of interest, the latter method can lead to a smaller error in the QoI while at the same
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2 Introduction

computational effort as compared to meshes generated by flow-feature based adaptation.
In the literature multiple approaches have been defined in order to create an appropriate
indicator for mesh refinement, which will be discussed in chapter two. This research
focusses on the approach by using mesh sensitivities as an indicator for goal-oriented mesh
adaptation. This method has been defined, but has yet to be evaluated for unstructured
grids. The current research will aim to evaluate how effective and efficient mesh sensi-
tivity based adaptation is compared to a currently known and proven method. This will
be done by implementing both methods using the same flow solver in order to compare results.

In order to properly compare and assess the method it is required to obtain general knowledge
for goal-oriented mesh adaptation. In chapter two a literature review will be given in which
the current goal-oriented mesh adaptation strategies are discussed, as well as their results
and applicability. Then, in chapter three, a theoretical evaluation of the indicator will be
performed by studying the nature of the indicator and drawing a theoretical comparison
to the indicator with the strongest theoretical background. In chapter four, a numerical
implementation chapter is included. This covers the flow simulation and both approaches
for mesh adaptation. Followed by chapter five in which the numerical results are given en
discussed, this shows the both the differences in adapted meshes between the methods as well
as the efficiency with which the indicator of interest is determined. Finally, in conclusions a
wrap up will be made and the effectiveness and efficiency of the method will be discussed.
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Chapter 2

Overview of goal-oriented error estimators

Goal-oriented mesh adaptation requires an error estimator which connects the quantity of
interest(QoI) to spatial locations in the domain of the partial differential equation. Multiple
methods have been defined in literature. All methods make use of a dual problem, yielding
an adjoint solution for a chosen QoI to the flow field. First, the adjoint weighted residual
method will be discussed for both finite element and finite volume discretizations. Secondly,
a method derived using creation of dissipation as in indicator will be used. Followed by
the approach using entropy as an indicator. Finally, the method using grid node location
sensitivity will be discussed as error indicator. The focus in this chapter lies in identiying the
mesh adaptation strategy which can be used as a reference method for evaluation of the mesh
sensitivity based mesh adaptation. Ideally, the chosen reference method must have a strong
theoretical foundation as well as proven numerical efficient results.

2.1 Adjoint weighted residual error estimator

The theoretical framework of this method is extensively described in the work of Becker
and Rannacher [2], followed by Pierce and Giles [3], who prove the super-convergence of the
goal function. Local residuals values in the flow represent the extent to which the partial
difference equations are not resolved locally. This method introduces the adjoint problem to
provide the link between the local residuals in the flow and the goal-function of interest. The
product of the residual and the adjoint vector gives a correction to the initial value, leading
to an increased accuracy. In order to further improve the mesh using this corrected value,
the remaining error must be estimated. This is performed by increasing the order of the
computation for both the primal and the adjoint problem. The method can be applied within
both the finite volume and finite element approach. Both will be discussed in this section.

MSc. Thesis FWJ Vonck



4 Overview of goal-oriented error estimators

2.1.1 Finite element application

The method as described in Section 2.1 has been applied in finite element sense for the
two dimensional Euler equations by Hartmann and Houston [4]. Here a transsonic flow
through a converging-diverging channel and both subsonic and supersonic flow over an
airfoil are regarded. For the channel mesh adaptation is performed with regard to a point
value for the pressure just before the shock. The discontinuous Galerkin finite element
analyses uses first order solutions to solve the set of equations. For the approximation
of the error, second order elements are used as the higher order estimate of the solution.
The effectiveness of adapted meshes in computing the goal functions are compared to
meshes adapted using unweighted residuals as indicator, this does not require an adjoint
solution. In order to compare the results, a fixed number of nodes to be added in each
adaptation step for both methods is defined. The reference method targets the shock, while
the weighted method also characteristic lines crossing the point of interest are targetted
for refinement. It is found that the adjoint-weigthed method gives results for which the
error is around an order of magnitude lower compared to the residual based method
for the transsonic channel case. The subsonic case also gives improved results for the
adjoint-weighted method however the difference is confined to being around one to twice as
effective in terms of both computational effort and mesh size for the same error level. For the
supersonic case, the meshes are again an order of magnitude better than the reference method.

2.1.2 Finite volume application

In a series of papers the method is applied within a finite volume setting by Venditti and
Darmofal, first in a one dimensional case [5], whereafter it is expanded to two dimensional
Euler equations[1] and finally, viscous effect are added by treating the Navier-Stokes equations
[6]. Nemec and Aftosmis performed work utilizing the same mathod but with more complex
geometries in three dimensions on a launch abort vehicle [7]. In contrast to finite element
computations where the order of approximation of the elements can be increased, the finite
volume method requires an increase in number of volumes to improve the accuracy of the
computation. This is achieved by creating a fine mesh from the original coarse mesh by
splitting the cells. This is illustrated in Figure 2.1. The coarse mesh is shown in thick black
lines, while the fine mesh is shown with thin red lines.

The adjoint and flow solution is then interpolated onto the fine grid by making use of linear
least-squares fitting. In order to estimate the error in the computable correction a second-
order fitting is used to estimate the unknowns and adjoint. The estimated error in the fine
mesh is defined as the product of the residual and adjoint value per cell. Finally, the estimation
of the error in the coarse grid cell is computed by taking the sum of the absolute values of
the error in the fine cells per coarse cell.

The results for the Venditti and Darmofal series of papers are compared to the flow-based fea-
tures based adaptation. Here the second derivatives of pressure and Mach number multiplied
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2.2 Dissipation based adaptation 5
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Figure 2.1: Construction of fine mesh(red) from the coarse mesh(black)

by the cell size is used as mesh refinement indicators. The results show much quicker conver-
gence for the lift and drag-based adaptations compared to the flow-feature based adaptation.
Also, the goal-oriented method show convergence towards steady values, while in some cases
the flow-feature based methods do not due to excessive refinement around a shock.

In the paper by Nemec and Aftosmis [7], the method has been applied in a three dimensional
setting, applied to pressure measurements. The papers shows the method is robust and that
values converge towards correct limiting values. This study thus shows also complex flows with
many different length scales can be accurately captured by goal oriented residual-weighted
mesh adaptation.

2.2 Dissipation based adaptation

A different approach focusses on numerical dissipation. This method is described by Dwight
in [8] and [9]. It focusses on the error due to added numerical dissipation. The method is
specifically developed for the Jameson-Schmidt-Turkel (JST) scheme, as described in [10].
This scheme adds second and fourth order dissipation to the solution. A shock switch is
present, which determines the amount of fourth and second order dissipation, to try to obtain
both stability and accuracy. It is argued that the error due to this additional dissipation is
responsible for a largest part of the error. This statement is made after the computation of
relative error source for several 2D and 3D examples, including NACA0012 and the ONERA
M6 wing. The error due to dissipation contributes to more than 90% of the total error.
Furthermore, a link is established between the error in the goal function J due to dissipation
and the sensitivity of J with respect to the level of dissipation. This statement is made from
the observation that as the cell size in the mesh tends to zero, both the dissipation as the
sensitivity to the dissipation coefficients tends to zero. The discrete adjoint equation is then
used to establish the sensitivity of J with respect to the dissipation coefficients.

Numerical results of this method are compared against results acquired by mesh adaptation
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6 Overview of goal-oriented error estimators

using local gradient adaptation and to global refinement. For two dimensional test cases it
is shown that for a subsonic flow, where the problem can be described as having an elliptic
nature, the convergence rate is comparable to that of the flow feature based one. However
for the trans- and supersonic test cases, the flow feature based criteria convergences slower
and appears to have a systematic error, while this method shows a convergence around 50
times as efficient as global refinement. Furthermore, the meshes of feature based adaptation
and dissipation based adaptation are compared and it is shown that the meshes become more
irregular and more cells are added upwind for the dissipation-based adaptation. Also, more
points are added around the shock rather than on the shock line. As its values of lift and
drag are better this might imply the location of the shock being wrongly simulated in the
feature-based adaptation method.

For three dimensions only a transonic test is used and it is again shown to behave particularly
better as compared to the flow feature based sensor. Solutions are well within engineering
accuracy bounds. For lift a very accurate value is found, however for drag there is some more
discrepancy possible due to the fact that this method is only taking into account the error
due to dissipation.

2.3 Entropy based adaptation

In the third method is not goal oriented, rather a general adaptive indicator is used, as is
described by Fidkoski and Roe in [11] and [12]. The indicator targets the spurious creation
of entropy. In contrast to the previous methods, this does not use one type of force as a
goal function but rather uses the integrated residual of the entropy transport equation as a
refinement indicator. The indicator therefore highlights regions where the entropy equation
is not sufficiently resolved. Furthermore it is shown that for an inviscid and shock-free flow
the entropy variables serve as an adjoint for net entropy flow out of the domain.

Numerical results are generated for both inviscid and viscous two dimensional flows. This
method is compared to the results of that of the adjoint-weighted residual sensors. In the
subsonic test case, the results for drag are comparable, while for moment and lift coeffi-
cient the entropy based adaptation performs slightly better. With the additional advantage
that it is not required to compute the adjoint for the different goal function. The lift and
moment coefficient oriented methods refine significantly more around the upwind stagnation
streamline. It is argued that this is caused by a singularity which scales with the square root
of the distance to the stagnation streamline [13]. This causes excessive mesh refinement in
these areas. For a transonic test case, the results for lift and drag are still comparable to
the reference method, but the more and the stronger the shocks are, the worse the method
becomes. The method assumes all entropy creation to be spurious, while shocks physically
produce entropy. Therefore, there will be excessive refinement around the shock. Thereby it
loses its efficient nature of adapting the mesh. In short this method can be classified as very
efficient in subsonic regions, but in transonic regimes its loses its functionality. As do most
feature-based adaptivity sensors.
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2.4 Mesh sensitivity based adaptation 7

2.4 Mesh sensitivity based adaptation

The last method uses sensitivities in the goal-function with respect to the mesh coordinates.
It is the focus of this thesis. The goal of this thesis is to determine its effectivity and efficiency.
This method uses the the adjoint equation in order to identify regions of high sensitivity in
the mesh, as described in [14]. This method has significantly lowered the computational costs
of computing mesh sensitivities as compared to compute derivatives of a goal-function with
respect to node locations using linearisation of the mesh. Peter[15] uses the sensitivities,
denoted as ∂J

∂X , as a basis for refinement indicator as well as relocations of nodes applied to
structured grids. Mesh points on the boundaries of the domain are not free to move, e.g. if
the mesh points lie on the arifoil under investigation, moving in certain directions will change
the shape of the airfoil, which is is undesirable. A projection P

(
∂J
∂X

)
of ∂J

∂X is used to only
maintain projections for allowable degrees of freedom, hence for points on the wall, the normal
component is removed. As there is no actual error indicator but rather mesh sensitivity are
used, an adaptation strategy has to be determined. It is argued that there are two types of
flows, which require two different strategies:

• In the case of a specific flow type, where the integral property of interest is monotonically
affected by the numerical dissipation. For instance the stagnation pressure value in Euler
flows, is always underestimated due to numerical dissipation.

• In other types of flows, a heuristic method can be used to add nodes in areas of a high
derivative.

Several tests are performed using the Euler equations for some two and three dimensional
flows for both types of flow and their according strategies. It is found favourable to change
the indicator to also incorporate the current cell size, hence the new indicator is defined as:
θ = hP

(
∂J
∂X

)
, in which h denotes the distance to neighbouring nodes. Also it is concluded

that areas where θ is uniform have a higher need for refinement than fast fluctuating areas.

In [16], in the light of the last conclusion a spatial mean of P
(
∂J
∂X

)
, denoted as P

(
∂J
∂X

)
. It

is argued that using this spatial mean of the indicator improves the results as, as indicator
value will then be suppressed in irregular sensitivity fields, therefore regions with an aligned
indicator will be stronger highlighted. Furthermore, the behaviour of the error indicator ∂J

∂X
as the mesh size tends to zero is studied. It is argued that if θ goes to zero as the mesh size
tends to zero this indicator will in the limit eliminate the errors in the mesh. A short study
of the behaviour of ∂J

∂X on regular meshes is performed, showing converges towards limiting
fields.

Numerical tests are performed to show error convergence for two dimensional examples. How-
ever no comparison is made towards its efficiency. In [17] this method is applied to three
dimensional RANS flows on an industry size test case. The improvements are not as good as
for two dimensional, still goal values where improved using this method, however a conclusion
is drawn that re-meshing methods should be improved.
This method has been extended towards unstructured meshes in [18]. However the results of
the adaptation process are not assessed yet.
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8 Overview of goal-oriented error estimators

2.5 Research objective

In the previous section a number of different mesh adaptation methods are discussed. Of
all the mentioned methods, only the performance of the last method has not been evaluated
for unstructured meshes. Also, the method has not been compared to other goal-oriented
mesh adaptation strategies. Furthermore, the indicator is not directly linked to error in the
computation, hence there is no theoretical proof yet that it will effectively reduce the error
in the goal function. This leads to the following research question:

Is goal-oriented mesh adaptation using a mesh sensitivity strategy an efficient and effective
method to obtain integral properties of interest for the Euler equations using finite-volume
methods for 2D unstructured grids?

In order to be able to answer this question, it is divided into multiple sub-questions. The first
question will deal with the theory behind using mesh sensitivities as basis of the refinement
indicator:

How are mesh sensitivities related to the error of the goal function?

This question can be split up into an empirical and a theoretical part: What is the convergence
behaviour of mesh sensitivities as the mesh size tends to zero for both two dimensional Euler
flow on unstructured grids? Is there a mathematical relation between the mesh sensitivities
and the error-estimator as defined by Venditti and Darmofal[5]?
The first part will have to provide information on how the indicator behaves as the mesh
becomes finer. This gives information on the possibility of using the quantity as refinement
indicator. For the second part the error indicator with the strongest theoretical link found in
literature is used to compare to. It can give in inside into how the error is estimated. The
second subquestion will be posed as follows:

How does the efficiency of mesh adaptation using mesh sensitivity compare with the efficiency
of a method using adjoint-weighted residual in a two dimensional Euler flow?

In order to be able to answer this question, it needs to be known how the adaptation chain
of mesh sensitivity-based goal-oriented mesh adaptation compares to the adaptation chain of
adjoint weighted residual adaptation in terms of numerical costs.
The first part deals with the effort required to obtain the results of both methods. While
the second part deals with the accuracy of the results. When both are answered, it will be
possible to answer the subquestion on comparing the efficiencies of both methods. In order
to perform this task, both methods will have to be implemented using the same flow and
adjoint solver. Since, these can be of large influence on the results. For, the adjoint-weighted
residual method there are some flow cases available for Euler flows. Therefore, at least one of
these known cases will be performed in order to assess how well the adjoint weighted residual
method is implemented in this framework. For the mesh sensitivity-based method, there is
no literature yet on results in goal-values, hence it cannot be compared.
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Chapter 3

Theoretical evaluation of mesh sensitivity as
an error indicator

In order to asses whether using mesh sensitivities as an error indicator is a suitable method,
a theoretical evaluation of its link with the local error level must be made. From now on the
mesh sensitivity based mesh adaptation strategy will be refered to as the theta method. In the
literature [15] θ is the symbol used to represent the sensor. As stated in the previous chapter,
the adjoint-weighted residual method will be used to compare the theta sensor as this method
shows a very clear link towards the local contribution to the error in the goal-function. As
both methods utilize the same adjoint problem, this will first be discussed. Next, the theory
of the adjoint weighted residual method will be discussed. Followed by the theory of the
mesh sensitivities. Finally a comparison will be drawn in order to show how the error will be
estimated.

3.1 Adjoint problem

The adjoint problem is often utilized in the aerodynamical design process as well as for error
indication. In both an evaluation of the gradient of a cost function, this case the goal function,
with respect to design variables is searched for. In aerodynamic computations computation of
the cost function is often very expensive. Furthermore, the problems are often characterized
by a very high number of design variables. For such problems, the adjoint method is a very
suitable tool as it allows one to compute the derivative of the cost function with respect to the
design parameters, while its computation is only weakly dependant on the number of design
variables. First, the computations required by the primal approach towards computing the
derivatives of a goal-function towards a number of design variables will be shown. Then the
adjoint approach is discussed.
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10 Theoretical evaluation of mesh sensitivity as an error indicator

3.1.1 Primal approach

The adjoint is always computed with respect to a QoI, in this case, J , which is defined as

J := J (W (X,α) , X (α) , α) . (3.1)

The direct approach to obtain a derivative dJ/dαi, consists of applying the chain rule to
obtain:

dJ

dαi
=

∂J

∂W

dW

dαi
+
∂J

∂X

dX

dαi
+
∂J

∂αi
. (3.2)

Here, J represents the goal-function, αi the design variables, this requires the following total
derivatives dW

dαi
and dX

dαi
, total derivates also take indirect effects into account and are thus

more work to compute compared to partial derivatives. In this case, especially the first term
requires a large amount of computational work to be obtained. Instead, this is obtained using
the notion of the residual equation, which is by definition required to be zero regardless of
a change in design variable leading to the condition of dR

dαi
= 0. This gives the following

equation.
dR

dαi
=

∂R

∂W

dW

dαi
+
∂R

∂X

dX

dαi
+
∂R

∂αi
= 0. (3.3)

In order to obtain dW
dαi

, the linear system (3.3), based on a linearization of the discrete flow
equations, needs to be solved once for every design variable. This is very computationally
expensive.

3.1.2 Adjoint approach

A different approach aims at acquiring the derivative by starting with the Lagrangian:

L (W,X,α,Λ) = J (W,X,α) + ΛTR (W,X,α) . (3.4)

Here Λ is the set adjoint variables. Since R = 0 ∀ α, implying L = J ∀ alpha,Λ. Therefore in
term of derivatives:

dL
dα

=
dJ

dα
. (3.5)

Applying the chain rule to (3.4) yields:

dL
dα

=

{
∂J

∂W

dW

dα
+
∂J

∂X

dX

dα
+
∂J

∂α

}
+ ΛT

{
∂R

∂W

dW

dα
+
∂R

∂X

dX

dα
+
∂R

∂α

}
(3.6)

. Rearranging the terms leads to:

dL
dα

=

{
∂J

∂W
+ ΛT

∂R

∂W

}
dW

dα
+

{
∂J

∂X
+ ΛT

∂R

∂X

}
dX

dα
+

{
∂J

∂α
+ ΛT

∂R

∂α

}
. (3.7)

Now the unknown term dW
dα can be removed from this equation by chosen the adjoint variables

to be as follows: (
∂R

∂W

)T
Λ = −

(
∂J

∂W

)T
(3.8)
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3.2 Adjoint-weighted residual based error estimation 11

This equation needs to be solved once for every goal-function, independently of the number
of design variables. This definition of the adjoint gives a connection between the derivative
of the local residual with respect to the flow field to the derivative of a specific goal-function
with respect to the flow field. Using (3.7), (3.8) and (3.5), yields:

dJ

dα

dL
dα

=

{
∂J

∂X
+ ΛT

∂R

∂X

}
dX

dα
+

{
∂J

∂α
+ ΛT

∂R

∂α

}
. (3.9)

In terms of computational costs, the biggest cost is the solving of the system of equations
(3.8) once every goal-function. While in the primal approach the system of equations as
described in (3.8) must be computed for every design variable. Since in a mesh optimization
problem, such as regarded in this research, there are far more design variables as compared
to goal-functions, this approach gives the potential for much lower computational costs. The
costs of both linear set of equations, seems to be comparable as both sets of equations are
equal in size for the same problem.

3.2 Adjoint-weighted residual based error estimation

As is discussed in Chapter 1, this research focusses on the discretization error. This is defined
as the differences between the exact solution of the continuous system and the exact solution
of the discrete system. A method of quantifying this is by looking at the residual of the
discrete system of flow equations, which is found by inserting the discrete solution into the
PDE High values of the residual indicate regions where the differential equation are not well-
resolved. The product of the aforementioned adjoint and the exact residuals give the error
in the output function. Solving for an exact adjoint and residual is not possible and thus a
choice needs to be made on what level of discretization both will be evaluated.

In order to estimate the error using the adjoint and residual terms, the starting point is a
coarse discretization with NH degrees of freedom, with computed discrete solution. In case the
output function obtained from the coarse grid computation, JH , is not sufficiently accurate,
the error of this function could be estimated by utilizing a finer discretization, denoted by Nh.
However, solving the solution on this fine grid is a computational expensive process which
will not be done. Instead, an estimation of the output function, Jh, will be made. This is
done by making a first order extension around the coarse grid solution:

Jh (uh) ≈ Jh
(
uHh
)

+
∂Jh
∂uh

∣∣∣∣
uHh

(
uh − uHh

)
. (3.10)

Here, the notation uHh is a projection of the coarse grid solution onto the fine grid, defined as
follows:

uHh = IHh uH , with &IHh ∈ RNh×NH . (3.11)

Here, IHh is a projection operator, the form of which depends on the type of discretization. In

order to estimate the vector ∂Jh
∂uh

∣∣∣
uHh

, the nonlinear residual operator of the considered PDE

is considered on the fine grid level:

Rh (uh) = 0. (3.12)
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12 Theoretical evaluation of mesh sensitivity as an error indicator

Since, the method is applied within a finite volume discretization, Rh represents an integral
statement. Now, linearizing around the coarse grid solution of the residual of the PDE gives:

Rh (uh) ≈ Rh

(
uHh
)

+
∂Rh

∂uh

∣∣∣∣
uHh

(
uh − uHh

)
. (3.13)

Here, the Jacobian ∂Rh
∂uh

∣∣∣
uHh

contains the sensitifities for the fine grid scales, however it is

evaluated at the coarse grid level. Using the condition (3.12) and inverting (3.13), assuming
the system is non-singular, the following expression can be obtained:

(
uh − uHh

)
≈ −

[
∂Rh

∂uh

∣∣∣∣
uHh

]−1

Rh

(
uHh
)
. (3.14)

Inserting this expression into (3.10) yields an expression for estimating the goal-function on
the fine grid level:

Jh (uh) ≈ Jh
(
uHh
)
−
(

Λh|uHh
)T

Rh

(
uHh
)
. (3.15)

Here, Λh|uHh represents the discrete adjoint solution, satisfying the following condition:

[
∂Rh

∂uh

∣∣∣∣
uHh

]T
Λh|uHh =

[
∂Jh
∂uh

∣∣∣∣
uHh

]T
. (3.16)

The estimation of the goal-function in (3.19) is based on first-order approximations and will
thus be exact in the case of linear residual and goal-function. Which is often not the case,
nevertheless it can be used for estimating the value if the grid is sufficiently fine. However,
the adjoint vector is required to be computed on the fine grid, which is most likely on the
same order of computation effort as computing the flow problem on the fine grid and thereby
undesirable. Therefore, a projection operator in analogy to that of the flow variables will be
used:

ΛH
h = KH

h ΛH . (3.17)

Here ΛH is the adjoint on the coarse grid obtained by solving the following equation:[
∂RH

∂uH

]T
ΛH =

[
∂JH
∂uH

]T
. (3.18)

Furthermore, ΛH
h in (3.17) is the adjoint vector projected from the coarse grid onto the fine

grid and this vector shall be used to replace Λh|uHh in (3.15) to become:

J̃h (uH) ≈ Jh
(
uHh
)
−
(
ΛH
h

)T
Rh

(
uHh
)
. (3.19)

The notion J̃h is now the corrected goal-function value. Now the next step is the estimate
the error in this corrected result. This can then be used to highlight areas in the domain to
refine the grid. This term is the discrete analogue form of [3] and the same shape as [1]. Then
remaining correction term will also follow the steps as presented by the latter paper.
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3.3 Mesh sensitivity 13

In order to determine the error in the goal-function value, the difference between value based
on the interpolated flow variables and that of the fine grid flow variables must be determined:

Jh
(
uHh
)
− Jh (uh) ≈

(
ΛH
h

)T
Rh

(
uHh
)︸ ︷︷ ︸

computable correction

+
(

Λh|uHh −ΛH
h

)T
Rh

(
uHh
)︸ ︷︷ ︸

error in computable correction

. (3.20)

Now if the error in computable correction part is isolated, this becomes:

Ecc ≈
(

Λh|uHh −ΛH
h

)T
Rh

(
uHh
)
, (3.21)

and this in its turn can be rewritten as:

Ecc ≈
{
RΛ
h

(
ΛH
h

)}T [ ∂Rh

∂uh

∣∣∣∣
uHh

]−1

Rh

(
uHh
)

(3.22)

Whereby now the term RΛ
h represents the adjoint of the residual operator, which is defined

as follows:
Ecc ≈

{
RΛ
h

(
ΛH
h

)}T (
uh − uHh

)
(3.23)

It is then argued that combining the expressions as given in (3.21) and (3.23), gives the
optimal result. However, one of these expressions requires the adjoint to be solved on the
fine grid scale, while other one requires the flow solution to be solved as the fine grid scale.
Instead, these values will be replace these terms by a quadratic interpolation in order to
estimate the error in the computable correction.

3.3 Mesh sensitivity

The method aims to compute the effect of a specific node location towards the goal function.
This will be expressed as dJ

dX . The dependence of the goal-function on the location of nodes
can be obtained from (3.9). The design variable is now set to be a change in mesh location
vector X, the effect of moving a mesh node on the boundary of the goal-function for the flow
variables however does need to be taken into account. This leads to:

dJ

dX
=
∂J

∂X
+
∂J

∂ub

∂ub
∂X

+ ΛT
∂R

∂X
. (3.24)

Whereby ub denote the state variables at the boundary where the integral of the goal function
is applied. The first component from (3.24) is only non-zero if a node lying on the integral
property of interest is considered, while the second components is only relevant in direct
vicinity or direct on the support of the integral of interest. The third component can be non-
zero over the entire domain and utilizes the same definition for the adjoint as in described
Section 3.1:

∂J

∂u
= −ΛT ∂R

∂u
. (3.25)

The dJ
dX is now defined in all spatial directions. However on the support of the integral

not all movements are allowed. Only directions which do not alter the boundaries of the
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14 Theoretical evaluation of mesh sensitivity as an error indicator

domain of the PDE are allowed. This implies that boundary nodes are only allowed to have
move tangential to the boundary of the domain. To guarantee this a projection of the mesh
sensitivity is defined:

P

(
dJ

dX

)
=


dJ
dX&if outside support of J or boundaries of the domain

dJ
dX −

dJ
dX · ~n&if on support of J or boundaries of the domain

0&if on a corner of the support of J or boundaries of the domain

. (3.26)

Here, ~n represents the outward normal of the boundary or support face. The sensitivity of
the goal function with respect to change in location of the node is described in (3.24). In
[16] the indicator has been extended to θ = rP

(
dJ
dX

)
. Whereby the r term is defined as the

allowable mesh deformation. This is equal to half the shortest distance to a neighbouring
node. Thereby effectively adding a variable which scales with the cell size into the indicator.
This creates a situation in which the derivative of the goal-function w.r.t. a change in spatial
location of a node is mutiplied with a spatial quantity connected to the maximum allowable
displacement of this same node, thereby this indicator becomes an first-order estimate of the
maximum change in the goal-funtion through the movement of this node.

In the previous research aimed at structured meshes [15] and [16], use is made of a space
average value of P

(
dJ
dX

)
. The argument is made that if the P

(
dJ
dX

)
field is non-regular at a

certain area, the effects of a smaller mesh will most likely be rather small, while in an area of
regular P

(
dJ
dX

)
the effect of a refined mesh will likely be larger.

In the current research unstructured meshes are regarded. This implies that cells can be
refined without having to refine a large surrounding area. Furthermore, a non regular area of
the mesh sensitivity indicator might not directly lead to a change in the goal function, it does
indicate a high dependence on the used mesh. Therefore, in this research it is chosen to not
use a local average of the indicator. Instead, the absolute value of the vector will be used.

3.4 Comparison of indicators

The adjoint-weighted residual method estimates the error in the goal-function and is therefore
a very logical indicator to use, from now it will be referred to as the V&D method after its
developers Venditti and Darmofal. The mesh sensitivity indicator does not estimate the error
in the goal-function. However it does highlight locations where the solution is very sensitive
to the chosen mesh. Intuitively, if the exact location of the node has a profound influence on
the goal function, this calls for a finer mesh at these locations to lower the effect of the utilized
mesh. However, in order to make a stronger statement about the theoretical foundation of
this indicator, the terms will be compared in greater detail in this section.

In the previous sections the terms in both methods are defined. The V&D error estimator
in (3.20) has two parts, being the computable correction and the error in that computable
correction. Both parts will be used for this comparison as both are part of the method to
estimate the error. For the estimation of the fine grid in the error in the computable correction
term, a second order interpolation is used.
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3.4 Comparison of indicators 15

First, the computable correction is used as a comparison. This shows that the adjoint, Λ, is
the same for both methods. However, the location is defined slightly different as the V&D
method uses an interpolated fine grid, whereas the mesh sensitivity method uses a coarse
grid nodal based criterion. The larger difference between the two methods however is the
part linked to the residual. The V&D method utilizes an interpolated value at the fine grid
level from which a residual can be computed. The mesh sensitivity method uses the partial
derivative of the residual with respect to the change in location of the node multiplied by the
distance r. Since r is defined as half the distance to the closest neighbouring node. This scales
with the cell size, while noting that irregular meshes lead to the lowest distance being used.
This distance is also equal to the shortest cell size of the fine grid. In case of a very fine mesh
with regular ∂R

∂X field, it can be concluded that this estimates the value of R at the location

of equal the size of the fine grid from the node. The computed value of ∂R
∂X -vector is the value

the direction of the strongest gradient. So rather than estimating the value over the domain
by use of the fine grid, it estimates the highest value in any direction. If a one-dimensional
problem would be regarded, the mesh senisitivity method would estimate the value at the
very same point, the V&D method estimates the error in the solution.

The error in the computable correction is estimated by utilizing more degrees of freedom. In
the setting for finite-volume schemes as used in this research this implies a higher order fitting.
Since the mesh sensitivity indicator only utilizes ∂R

∂X , it does not estimate ∂2R
∂X2 . Furthermore,

even if second order effects would be computed, these would have been summed up with the
first order effects and the absolute value in the direction of largest vector would used as an
indicator. Thereby part of the information would be lost.

From comparing the two estimators it can thus be concluded that the mesh sensitivity indica-
tor is comparable to the computable correction term, except the highest gradient is utilized.
However, these effects will becomes smaller with decreasing mesh size. For the error in the
computable correction, this is not estimated with this method. Also, adding second order
effects to the indicator is not expected to be very effective since all directional information
will be lost, once the norm of the vector is taken to obtain θ.
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16 Theoretical evaluation of mesh sensitivity as an error indicator
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Chapter 4

Numerical implementation

In this chapter the numerical set-up is described. The numerics are used to generate the
results and thereby assessing the effectiveness and efficiency of both methods. As a solver
the elsA code from ONERA is used. The set-up will be an unstructured mesh. First, the
implementation of the Euler equations followed by the adjoint equations are discussed. Then
the method of obtaining the mesh refinement indicators for both methods are treated and
finally the framework of the complete adaptation chain for both methods is described.

4.1 Euler equations

The equation under consideration are the inviscid Euler equations. The equation in integral
form within a defined volume V , surrounded by the surface S is defined as follows

∂

∂t

∫
V
UdV +

∮
S
FdS = 0. (4.1)

The vectors containing the conservative variables, denoted by U , and fluxes, denoted by ~F~n
are defined as follows:

U =


ρ
ρu
ρv
ρw
ρE

 , F =


ρu ρv ρw

ρu2 + p ρuv ρuw
ρuv ρv2 + p ρvw
ρuw ρvw ρw2 + p
ρuH ρvH ρwH.

 (4.2)

Here ρ is the density, u, v and w are the velocity vectors along the x-axis, y and z-axis,
respectively. E is the total energy per unit mass and H is the total enthalpy per unit mass,
which is a result of the other variables:

H = E +
p

ρ
. (4.3)
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18 Numerical implementation

This leads to 6 unknowns and 5 equations, in order to compute the unknowns, a sixth equation
will be added in the form of assuming an ideal gas. This gives the following relation:

ρE =
p

γ − 1
+
ρ

2

(
u2 + v2 + w2

)
. (4.4)

Here, γ is the specific heat ratio. The Euler equation allow for non-physical expansion shocks,
therefore a condition to prevent the destruction of entropy must be enforced. This is the
second law of thermodynamics:

∂s

∂t
+
(
~u · ~∇

)
s ≥ 0. (4.5)

The entropy is denoted by s. The Euler equations have been discretized using a second
order upwind finite volume scheme. This is done by using the flux difference method, the
approach used in the current research is that of Roe approximate Riemann solver, which will
be discussed in section 4.1.1. Afterwards the extension towards second order will be made by
making use of the MUSCL scheme as will be described in section 4.1.2.

4.1.1 Roe flux difference scheme

The method is first described by Roe [19]. The method is based on using two neighbouring
cells, uL and uR connected via a face. Then an average Jacobian matrix Ã is constructed,
which needs to satisfy the following constraints:

• As uL → uR, then the Jacobian matrix Ã→ ∂U
∂F .

• For any uL and uR, the Jacobian must satisfy Ã×
(
uL − uR

)
= FL − FR.

• The eigenvectors of the Jacobian matrix Ã must be linearly independent.

The transformation from the exact Jacobian matrix into the matrix Ã is performed by making
use of the properties of the left and right cell of a face. The definition is made such that the
normal vector points from the left to the right cell. For the definition of the average values,
a new variable, Rρ, will be introduced:

Rρ =

√
ρR

ρL
. (4.6)

From this the average values required for roe method’s are defined as:

ρ̄ = RρL ū =
uR·Rρ+uL

1+Rρ
v̄ =

vR·Rρ+vL

1+Rρ

w̄ =
wR·Rρ+wL

1+Rρ
ē = 1

2

√
ū2 + v̄2 + w̄2 h̄ =

hR·Rρ+hL

1+Rρ

c̄ =
√

(γ − 1)
(
h̄− ē

) . (4.7)
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4.1 Euler equations 19

Now the eigenvalues of the matrix Ã are:

λ1 = λ2 = λ3 = ūn (4.8)

λ4 = ūn + c (4.9)

λ5 = ūn − c. (4.10)

In this framework the variable ūn is defined as the velocity in the direction of the face normal.
It is thus defined as:

ūn = ~̄u · ~n, with ~̄u =

ūv̄
w̄

 . (4.11)

This method allows for expansion shocks. In order to prevent these from occurring the Harten
correction will be applied[20]. If an eigenvalue gets very close to zero it is different method
for computing the value is used.

|λi| =

{
|λi| if |λi| ≥ δ
λ2i+δ

2

2δ if |λi| < δ
. (4.12)

The variable δ is dependent on the jump in velocity scaled by a numerical setting.
The corresponding fluxes can be determined by making use of difference of two adjacent
fluxes, which is by definition [21]:

FR − FL =
∑
j

Γjλjej . (4.13)

Here Γj is the characteristic strength, λj is the wave speed and ej is the right eigenvector of
A, all corresponding the the j-th wave. This leads to a flux at the interface, FROE , as follows:

FROE = FL +

(−)∑
Γjλjej . (4.14)

Or, alternatively

FROE = FR −
(+)∑

Γjλjej . (4.15)

Here
∑(−) is a sum over all negative wave speeds, while

∑(+) is a sum over all positive wave
speeds. Both expressions can be combined by taken the average value, this leads to the final
expression:

FROE =
1

2

(
FL + FR

)
+

1

2

(∑
Γj |λj | ej

)
. (4.16)

In elsA all interface variables will be expressed in primitive variables. Therefore the fluxes
can be defined in the primitive variables, denoted by P, only.

4.1.2 MUSCL extension towards second order

The above described Roe flux scheme is extended to second order by making use of the
MUSCL extrapolation formula. This is based on computing left and right states by a limiting
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function. In this framework the van Albeda limiter has been chosen [22]. The primitive
variables on both sides of the cellface, denoted by P− and P+, are defined as:

P− = Pl +
1

2
φl (4.17)

P+ = Pr −
1

2
φr. (4.18)

The φl,r variables represent the van Albada limiter in the left and right cells, respectively.
These are defined as:

φl(βl, ζl) =
β2
l ζl + βlζ

2
l

β2
l ζ

2
l

(4.19)

φr(βr, ζr) =
β2
r ζr + βrζ

2
r

β2
r ζ

2
r

. (4.20)

β is a cell-centred term, which is defined as follows:

βl = βr = Pr − Pl. (4.21)

ζ is an upwind term. This is defined by making use of the vector ∆~xc pointing from the left
to the right cell center:

ζl =
∂Pl
∂x

∆xc +
∂Pl
∂y

∆yc +
∂Pl
∂z

∆zc (4.22)

ζr =
∂Pr
∂x

∆xc +
∂Pr
∂y

∆yc +
∂Pr
∂z

∆zc (4.23)

Here the gradients of the primitive variables are required. For each cell in the interior of the
domain, these are computed as follows:

∂P

∂xi
=

1

V

∑
j

P + Pj
2

Sjni,j . (4.24)

Here xi points at the directional component, the sum is taken over the interfaces of the
cell, the subscript j indicates the j-th neighbouring cell, while the Sj and n(i,j) denote the
surface and the directional component i of the normal vector, respectively of the face under
consideration. When a boundary cell is considered, the contribution of the borderface is
replaced by the following expression:[

∂P

∂xi

]
borderface

=

[
Pb −

P + Pghost

2

]
Sni. (4.25)

Here Pb represent the value of the primitive variables at the border, and Pghost represents the
value of the primitive variable in the ghost cell associated to this cell.

4.2 Adjoint solver

In this section the implementation in the numerical scheme is discussed. The adjoint equation
as described in Section 3.1. Since the integral property of interest is defined at the border of
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the domain, while the u vector is a cell-centered value, the equation is written as follows:

−
(
∂J

∂u
+
∂J

∂ub

dub
du

)T
= λ

∂R

∂u

T

. (4.26)

In order to compute the adjoint vector the inverse of the ∂R
∂u matrix must be computed.

However since this is a very large sparse matrix, this has to be approximated rather than be
computed directly. In elsA a Newton method is used, which is defined as follows:(

∂R

∂u

)T
(Approximate)

[
λn+1 − λn

]
= −

(
∂R

∂u

)T
(Exact)

λn +

(
∂J

∂u
+
∂J

∂ub

dub
du

)T
. (4.27)

Here, the superscript n denoted the iterative stepping towards a converged solution.

4.3 Mesh sensitivity indicator

In this section the terms in order to arrive at the indicator used for the mesh sensitivity based
approach for mesh adaptation are discussed. The code as developed by Todarello [18] is used.
The sensitivity of a mesh point to its location is as follows:

dJ

dX
=
∂J

∂X
+
∂J

∂ub

∂ub
∂X

+ λT
∂R

∂X
. (4.28)

The first two terms can be regarded as geometrical derivatives, while the last part is an
aerodynamic derivative. The geometrical derivatives are only nonzero if the node considered
lies at or next to the support of the function J . The computation of these derivatives is
rather straightforward. The aerodynamic derivative consists of two parts, the first is the
adjoint vector, which is discussed in the previous section. The second term, regards the
change in residual due to a change in location of the node. This is computed by computing
the change in fluxes on the associated faces.

∂R

∂X
=
∑
j

∂Fj
∂X

. (4.29)

In this computation first- and second-order terms are incorporated. The terms are derived
from the way the Euler equations are described in Section 4.1. As a result this term can be
written as:

∂F

∂X
=
∂F

∂~S

∂~S

∂X
+

∂F

∂P±
∂P±

∂ζ

(
∂ζ

∂V

∂V

∂X
+
∂ζ

∂~S

∂~S

∂X
+

∂ζ

∂∆~xc

∂∆~xc
∂X

)
. (4.30)

In the case a boundary node is regarded, one more contribution, containing the effect of
change in the conservative value on the boundary, will be added. Thus (4.30) then becomes:(

∂F

∂X

)
b

=
∂F

∂~S

∂~S

∂X
+

∂F

∂P±
∂P±

∂ζ

(
∂ζ

∂V

∂V

∂X
+
∂ζ

∂~S

∂~S

∂X
+

∂ζ

∂∆~xc

∂∆~xc
∂X

+
∂ζ

∂Ub

∂Ub
∂X

)
. (4.31)
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The application is done within a two dimensional framework. However, the solver is set-up
for three dimensional computations. therefore, the computations are performed in pseudo-
2d, consequently there are two layers of cell faces around one layer of cells of equal width.
The component in the third dimension is neglected in this framework. It is found that very
small perturbations in the term dR

dX between the layers of faces occur. In the computations
performed, these are found to be smaller than 10−7 in magnitude. For both faces around the
single layer of two dimensional cells, the components have effects in negative direction to each
other. Since the effect is very small, this is only observable in areas where very low other
contributions of dR

dX are apparent. In areas of large adjoint values combined with a large r
of the cells, these effects can cause regions to be flagged for refinement if one uses just one
layer of nodes to obtain the dR

dX values. Therefore, since there are two layers and theoretically
in pseudo-2d both should give the same results, the average value between the nodes at the
same (x, y) position is used as value for dR

dX . This operation cancels this 3d error in the code.

As described in Section 3.3, the next step is to make a projection of this operator to exclude
the effects of domain changes on the function of interest. A projection of dJ

dX to the allowable
direction gives a new vector of allowable displacement. Now a measure of cell size is included.
It is chosen to follow the method as created for structured meshes which uses r, a measure of
maximum displacement, defined as half the distance to the closest neighbouring node. This
results in the form of:

θ = rP

(
dJ

dX

)
. (4.32)

This as a final result, yields the indicator which will be used to define the areas in the mesh
which will be flagged for refinement.

The method assumes that this mesh sensitivity is a scale of how much the goal-function would
change if a mesh point would be located differently. Therefore, it is interesting to check if the
goal-function indeed behaves as the gradient computed suggests.

The evaluation is done by comparing the adjoint found value with first order finite difference
estimation of the value of interest. The hypothesis is:(

dJ

dX

)
adjoint

≈
(
dJ

dX

)
finite difference

=
J (X + δXk)− J(X)

δXk
(4.33)

In order to test this, computations are performed under transonic conditions, then a node is
moved in the direction of dJ

dX for a number of different relative lengths compared to r. Then to

evaluate if the derivative dJ
dX , as obtained from the adjoint method, does indeed show similar

behaviour as a first order estimation, the following coefficient in compared:

ψ (δXk) =

(
dJ
dX

)
adjoint

− J(X+Xk)−J(X)
δXk

J(X+Xk)−J(X)
δXk

(4.34)

=

(
dJ
dX

)
adjoint

· δXk − [J (X +Xk)− J (X)]

J (X +Xk)− J (X)
(4.35)

If for decreasing δXk, ψ (δXk) tends to zero, it shows the difference between the adjoint ob-
tained value and the finite difference first order approximation of the derivation tend towards
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the same value. In this comparison δXk is chosen sufficiently large to exclude small distance
numerical effects.
As a goal-function the lift coefficient has been chosen. Six points around the airfoil have been
taken to obtain the data. The points are chosen such that in both upstream and downstream
areas are considered, as well as point in the near vicinity of the shock, the location are plotted
in figure 4.1. The results for the λ values are plotted in figure 4.2.

Figure 4.1: Location of the nodes used for
validation of dJ

dX Figure 4.2: λ values for the different nodes

It can be observed that for all nodes, as the δX decreases, ψ tends to zero. Which implies that
dJ
dX is showing similar behaviour as a finite difference first order estimate. Thus confirming a
correct implementation of the adjoint method to obtain the derivative value.

4.4 Adjoint-weighted residual indicator

This section describes how the error indicator as defined in Section 3.2 is computed. Both
the computable correction as well as the estimated error in the computable correction are
described here. For both parts the interpolation towards a fine grid is required. The fine grid
is defined by splitting each face into two. Thereby effectively creating 4 cells out of every
original cell. Is is shown in Figure 2.1 in Section 2.1.2.

The interpolation process is derived from the method as proposed by Venditti and Darmofal
[1]. In this research small changes regarding used data points need to be applied due to
the described method being focussed at nodal based values, while in the present research
cell centred values are regarded. For the linear interpolation, the reference method utilizes
a simple linear interpolation within each coarse grid cell. Due to the cell-centred scheme
holding only one data point per cell, more data is required in order to make an interpolation.
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It is chosen to use the coarse grid neighbouring cells for obtaining the additional information,
while for the quadratic interpolation more data is required and therefore also the neighbours
of the neighbouring cells are used. A graphical representation of the utilized cells is given
in figure 4.3. The red cell represents the cell for which the data needs to be computed, for
linear interpolation, data from the blue cells is also taken into account, while for the quadratic
interpolation, data from all coloured cells is used. In the case a boundary of the domain is
encountered a cell will be missing. However, in elsA on the boundary cells, a value in the center
of a boundary face is available. This data point will be used replacing the missing data point.
This cell centred approach has the disadvantage that it requires data from the surrouding cell,
as oppose to the data at the cells corners. In regions of very strong gradients, this makes the
method less accurate, as it smears the values. This is mostly apparent around the boundary
of the airfoil and around the shock. The smearing of the values in the quadratic interpolation
are higher that those of the linear interpolation, as more data points are required. This effect
is expected to weaken the method.

Figure 4.3: Involved cells in the interpolation process

The least-squares problem is cast in order to find the linearly interpolated values φ̄, by using
the generic scalar variables, φ

φ̄ =
3∑
i=1

Niφ
i
L. (4.36)

The sum is taken over the three vertices of a triangle. Here N denote the standard shape
functions for generic triangles[23]. Now the minimization problem is cast as follows, on the

vector zL =
{
φ1
L, φ

2
L, φ

3
L

}T
.

ΛL =
4∑
j

[
φ̄ (zL, xj , yj)− φ (xj , yj)

]2
. (4.37)

The sum will be taken over the input data points for φ, being the associated cells centres.

For the quadratic interpolation, the derivative functions in both directions are added:

φ̄x =

3∑
i=1

Niφ
i
x (4.38)

φ̄y =
3∑
i=1

Niφ
i
y (4.39)
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While the quadratic interpolant of φ is defined as follows:

φ̃ =
6∑
i=1

Ñiφ
i
Q. (4.40)

The associated vector filled with the input parameters is defined as: zQ ={
φ1
Q, φ

2
Q, φ

3
Q, φ

4
Q, φ

5
Q, φ

6
Q

}T
. The minimization problem for the quadratic interpolation pro-

cess is defined as:

ΛL =

∫
Ωk

[
φ̃ (zQ)− φ

]2
. (4.41)

As described in section 3.2, whereby the adjoint vector for the fine mesh is estimated by
the quadratic interpolation of the adjoint vector, the error in the computable correction is
estimated as follows.

ε =
(
λ̃Hh − λHh

)T
·Rh

(
UHh

)
. (4.42)

Here, •Hh denotes a linear interpolation, while •̃Hh denotes the quadratic interpolation of the
values under consideration. By summing up the contribution from the fine cells inside a
coarse cell, the contribution for every coarse cell is obtained. In the literature described, a
cell-based remeshing tool is utilized. However, the current research uses the program gmsh,
which requires nodal input, therefore it the nodal value is obtained by simple averaging the
values from the surrounding cells.

4.5 Adaptation procedure

In this section the chain of procedures is described. Furthermore, the procedure that convert
the error indicator to input values for the mesh refinement will be discussed and ultimately,
the remeshing tool will be briefly discussed. The set-up of the adaptation chains for both
methods is shown in Figures 4.4 and 4.5.

In the previous sections everything up to and including the step of computing the error
indicator is elaborated. The next step is to determine the flag strategy. First, the adjoint-
weighted residual one will be discussed as this is chosen to mimic the one used in literature,
then the strategy of the mesh sensitivity method will be discussed.

4.5.1 Flag strategy for adjoint-weighted residual method

As a starting point an allowed error level, tolG, is chosen. This is then transformed for an
allowable level per cell, tolL.

tolL =
tolG
Ncell

. (4.43)

Here Ncell is the number of cells. Then a cell specific factor is computed.

ηk = max

(
εk
tolL

, 1

)
. (4.44)
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Figure 4.4: Adaptation scheme for mesh
sensitivity based indicator

Figure 4.5: Adaptation scheme for mesh
adjoint-weighted residual indicator

Following the method as described in [1], if more than half the cells are flagged for refinement,
the tolL is adjusted to that exactly half the number of cells is flagged for refinement. In the
original research, also a global factor is used. However, in the current research it is found
that this led to ineffective mesh refinement in areas of very low significance to the solution.
This is possibly due to the large far-field extension of 150 cords in the current research. The
new target cell size is computed as follows:

rtarget = rold

(
1

ηk

)ω
. (4.45)

This leads to a vector of target cell size for all locations in the computational domain. For all
vertices not exceeding the tolerance, this leads to an unchanged grid. The vector ω is taken
from literature [1] and is set at 1

4 .

4.5.2 Flag strategy for mesh adaptation

The biggest difference between the V&D method and the theta method, lies in the nature
of the estimator. This implies that this indicator does not show a direct link to the error,
therefore the quantity of the tolerance level is more difficult to determine. In the current
research, the choice is made to target half the number of nodes for refinement by setting this
as the tolerance level. This condition is also apparent in the V&D method, with the exception
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if a lower number of cells is sufficient to achieve the required accuracy. Next the adaptation
vector will be determined in the same manner as for the V&D method:

fk = max

(
θk
tol
, 1

)
. (4.46)

The new target size for the mesh is defined as follows.

rtarget = rold

(
1

fk

)n
. (4.47)

The factor n needs to be determined. This is done by evaluating how fk scales with r. Re-
member fk ∝ θ = rP

(
dJ
dX

)
, thus the scaling of dJ

dX must be determined. From a theoretical
point of view this is performed for structured grids, with an assumed grid type of four rect-
angular cells per vertex in [16] leading to a scaling of dJ

dX ∝ r2. However, these assumptions
are not valid for this case, also it is advantageous to check the results from a test. Therefore
the relation is empirically determined by utilizing a series of grid with increasing number of
cells and thereby decreasing cell sizes. In order to asses the scaling of P

(
dJ
dX

)
with the cell

size, the average value, 1
Nnodes

∑
Nodes P

(
dJ
dX

)
, is plotted against the number of nodes, as the

domain remains the same, while the shape of the mesh does aswell, this results in decreasing
cell size. The results are plotted in figure 4.6.

number of nodes
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N
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de

s 
P
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dX
||
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avg P||dJ/dX||_subsonic drag-based
avg P||dJ/dX||_transsonic drag-based
avg P||dJ/dX||_supersonic drag-based
avg P||dJ/dX||_supersonic lift-based
avg P||dJ/dX||_transsonic lift-based

Figure 4.6: Asymptotic behaviour of average P
(
dJ
dX

)
as the cell size decreases

A power fit is used to determine the order of convergence. Over the different flow regimes and
goal-functions, the convergences rate ranges from 1.7 to 2.3, therefore the following realtion
is assumed: dJ

dX ∝ r
2. This implies θ ∝ r3 and thus the choice is made for n = 3 in (4.47).

To be able to also assume a general scaling of dJ
dX with r, the shape of the fields should

remain of constant nature over the decreasing values of r. In order to compare the dJ
dX field

normalized for cell size, the field of 1
Sl
P
(
dJ
dX

)
is plotted for a various number of r. The
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associated fields and the meshes on which these are created are plotted in Figure 4.7. The
general shape of the field seems to remain constant with decreasing mesh size, although small
deviations in the field are apparent.

Figure 4.7: Behaviour of the dJ
dX field for decreasing r

4.5.3 Remeshing

For each iteration a new mesh is generated by making use of the program MMG2D, which
is the two dimensional version of MMG3D [24]. As input parameters, the boundaries of the
domain are given and furthermore an input for the desired cell size must be provided. For
both methods a vector of desirable new mesh size for each location in the field is available.
In areas where the tolerance is not surpassed, the mesh remains almost the same.
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Finally, it is found that very irregular meshes give convergence problems when simulating
the flow in elsA. The output meshes from MMG2D during the adaptation are showing these
problems, therefore an additional smoothing is applied. This is performed by averaging
the target cell size difference with all surrounding vertices. The disadvantages is that the
refinement of exact locations is sacrificed.
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Chapter 5

Results

In this chapter a comparison of the results for both mesh adaptation strategies is presented.
This is done by comparing the results of the goal-function for several mesh adaptation steps
using both approaches. Within this section, one case is used to compare the results for the
reference method as implemented in the current framework to the results of the same method
as found in literature. Then, a total of three cases are used to compare the results as obtained
from the theta en V&D method. Finally, the difference computational costs of both methods
will be discussed.

5.1 Goal-function comparison

In aeronautical application of CFD simulations, the goal often is to determine the lift and
drag coefficients. Therefore, the mesh adaptations in this research are performed with regard
to the lift and drag coefficients of a NACA0012 airfoil. The results are tested in three different
flow regimes, two of which are transonic and one in the supersonic flow regime. These cases
are chosen such that these can be compared to the resulting meshes of the studies performed
by Dwight[9] and Venditti and Darmofal[1]. The number of mesh points required to obtain
certain goalvalues can however not be compared due to different farfield radius of the utilized
mesh. Therefore, the results of the implementation of both methods in the current framework
is used to compare the accuracy of the goalvalues versus the number of nodes required. The
first case will also be used to make a quick comparison between the reference method as
implemented in this research towards the reference method as implemented by its original
developers.
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5.1.1 Transonic flow M∞ = 0.95, AoA = 0◦

The first case has a freestream velocity near the speed of sound, with no angle of attack. The
case is derived from Venditti and Darmofal. This case will also be used to compare results
for the V&D method as obtained implemented in the current research with those as obtained
in the literature [1]. The flow accelerates over the airfoil and becomes supersonic. A shock
wave is formed at both the upper and lower side around the trailing edge of the airfoil. As
the airfoil is symmetric and has zero angle of attack, the lift has a trivial theoretical value of
zero.

THe limiting value for the drag has been shown by other flow solvers to be around 1098 drag
counts. Unfortunately, it was not possible to verify this number by the use of regularly refined
grid, as the grid containing around 80.000 nodes is still at 1110 drag counts. Further refined
grid, containing around 320.000 nodes, showed convergence problems.

Figure 5.1: Results for Cdp
for M = 0.95 AoA = 0◦, as found by Venditti and Darmofal [1].

Assessment of implementation of reference method

The implementation of the reference method differs slightly from the original set-up, as de-
scribed in section 4.4. Hence, it is expected that the results will differ. Furthermore, as no far
field boundary was given in the original research [1] the number of nodes cannot be compared
on a one-to-one basis. The number of nodes on the airfoil boundary in the initial step is of
equal size. The literature first uses a large maximum error level of 100 drag counts[1]. The
results for drag based adaptation are shown in Figure 5.1.It requires only one adaptation
step and only 50 nodes added and gives accuracy of higher than one drag count. Also, the
adapted mesh without correction requires just two steps and very few additional nodes to
obtain an accuracy of less than 10 drag counts from the limiting value. The results from
the current research are shown in figure 5.2. The convergence is much slower. The corrected
value does not arrive within one drag count after five steps and 5000 nodes added. It can
thus be concluded that the results are not as strong as found in the literature. This does not
necessary originate from the adaptation procedure alone. It is very well possible the utilized
flow solver also influences these results up to a certain extent. This hypothesis is supported by
the fact that when the uniformly refined grids are compared, many more nodes are required
before comparable goal values are obtained. Furthermore, there have been some convergence
problems even with regularly refined grids. The current research also required many more
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nodes to arrive at comparable goal values. Possible sources of this difference will be further
discussed in chapter 7.

Figure 5.2: Convergence behaviour for Cdp
for θ- and reference method based mesh adaptation

for M = 0.95 AoA = 0◦

Comparison of methods

It can be observed that the corrected value of the reference method is more accurate compared
to the goalvalue from a mesh with a comparable number of nodes as generated by the θ
method. From this case it becomes apparent that even though the reference method is not
fully efficiently implemented, as found in the previous section, it is still considerable more
accurate when compared to the θ method. As is expected, both method show an enormous
improvement compared with regularly refined mesh.

5.1.2 Transonic flow M∞ = 0.85, AoA = 2◦

The second case is within the transonic flow regime, with a small angle of attack. The lift
based adaptation shows a decrease in accuracy during the first step. This is probably due to
the mesh being too coarse during this first step to simulate dominant flow features. After three
adaptation steps both the reference method with correction term and the θ-based method are
within 1 lift count of the limiting value, which is considered to be sufficiently accurate in the
current research. Both methods use almost the same number of nodes to obtain these results.
The θ method seems to be slightly more accurate in this case. This case shows comparable
efficiencies towards number of nodes require to obtain a sufficiently accurate goal-function.
The adjoint-weighted residual without correction term shows slower convergence, this is due
to the mesh adapted towards a optimal computation with the correction term.
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Figure 5.3: Convergence behaviour for Clp for θ- and reference method based mesh adaptation
for M = 0.85 AoA = 2◦

5.1.3 Supersonic flow M∞ = 1.5, AoA = 1◦

The last case is well within the supersonic flow regime, the case is derived form Dwight [9].
The information only travels in one direction for the largest part of the domain. Due to
this hyperbolic nature of the flow, goal-oriented adaptation methods are expected to be very
efficient compared to feature based or global refinement methods. The flow solver seems
to handle this flow case more easily as compared to the ones in the transsonic flow regime.
For both the lift and drag, the regularly refined grids already show convergence behaviour
of sufficient quality to enable a Richardson extrapolation to be performed. This gives the
following accuracy intervals for the goal-function for lift [0.05468 , 0.0548] and drag [0.09761
, 0.09711].

First, the results for lift based adaptation are shown in figure 5.4. Both methods are much
more efficient than global refinement and show nice convergence behaviour. The θ method is
a little less accurate compared to the reference method with correction.

Considering the drag-based adaptation as shown in figure 5.5, both goal-oriented approaches
are again much more efficient compared to global refinement. However, the results for drag
are more difficult to interpret. The drag values from both methods seem to overestimate
the drag slightly. It takes until the sixth adapted mesh for the reference method with the
correction term to arrive within the accuracy interval, while the θ method at this step with
comparable number of nodes is around one lift count above the upper level of the accuracy
interval. In this case, the reference method certainly gives better results compared to the
theta method.
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Figure 5.4: Convergence behaviour for Clp for θ- and reference method based mesh adaptation
for M = 1.5 AoA = 1◦

Figure 5.5: Convergence behaviour for Cdp for θ- and reference method based mesh adaptation
for M = 1.5 AoA = 1◦

5.2 Computational costs comparison

In order to compare the efficiency of both methods, it is also required to compare the com-
putational costs. Unfortunately, this cannot be done in a rigorous way. As the adaptation
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chains consists of many steps and the computational time for some are very dependent on
simulated flow it is not possible to present a complete comparison. Furthermore, a large part
of the computations are performed on a cluster for larger computational effort. However,
this prohibits a comparison of the computational time to be between different operations.
Nonetheless, a very rough estimation will be drawn identifying the largest contributors to the
computational time.

The adaptation chain for both methods is given in section 4.5. The first step for computing
the solution to the flow problem is equal for both. Next, the θ method requires derivatives of
goal-functions, this operation has computational costs which are far lower compared to those
of computing the flow or adjoint solution. Subsequently, the same adjoint problem has to be
solved for both methods. It is found that in the current framework, solving the adjoint equa-
tions takes considerably more computational effort as compared to solving the flow problem.
This lies in the order of 2 to 10 times more effort. Finally, the step required to compute θ
and the interpolation process to estimate the error can be neglected in computational effort
compared to solving for the flow and the adjoint problem.

One important note should be taken with the regard of computational time. The value of
the corrected value for the reference method requires the adjoint problem to be solved, while
the θ method does not require the adjoint to be solved at the final mesh level. Therefore, the
reference method requires this last adjoint computational effort additional compared to the
θ method. Since solving the adjoint equations in the current framework takes considerably
more effort compared to solving the flow equations for the samen number of volumes, this
constitutes to considarable more computational effort for this method. It can roughly be
compared to half an additional cycle of the adaptation chain.
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Chapter 6

Conclusions

This chapter aims to answer the research question as posed in section 2.5:

Is goal-oriented mesh adaptation using a mesh sensitivity strategy an efficient and effective
method to obtain integral properties of interest for the Euler equations using finite volume
methods for two dimensional unstructured grids?

In this research the first aim is to compare the theoretical basis of both approaches. It is
found the same adjoint function is solved. The remaining part for both methods concern
the residual, in the reference method a least squares fitting is performed to estimate values
for a fine grid. While, the mesh sensitivity method utilizes the partial derivative of the
residual with respect to the node location and multiplied by the distance to the nearest
midpoint of surrounding cells. This effectively estimates the magnitude of the residual at the
aforementioned distance from the node. The reference method utilizes first order effects to
correct the computed goalvalue and adepts the mesh by estimating the error due to second
order effects, while the mesh sensitivity indicator takes only first order effects into account.

In order for the mesh sensitivity based indicator to be used as mesh refinement indicator it
is required to for the indicator to show constant asymptotic behavior as the mesh size tends
to zero. A number of flow cases, with decreasing cell size have been tested and the results
show reasonable constant decreasing behavior for the indicator. Also, the general shape of
the indicator field remains constant. This behavior supports the hypothesis for using the θ
as a refinement indicator.

Following the theoretical comparison, an empirical study is performed. The value of the goal-
functions from both methods are compared for comparable number of nodes and adaptation
steps. It is found that the results from the implemented reference method are not as effective
as found in the original literature. This may be due to the following reasons: The method
is changed to be applicable to cell-center based values instead of vertex-based values. The
altered method of interpolation causes additional diffusion of information for the interpolated
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flow field. The farfield boundary of the original method is unknown, hence the exact number
of nodes cannot be compared. Also, the flow solver is different, since elsA is originally written
for structured purposes, there is a possibility of less accurate solution for unstructured pur-
poses. Finally, errors may be induced in implementing the method. Comparing the reference
method as implemented in the current framework with the mesh sensitivity-based adaptation
chain, two flow cases for which lift is computed show very similar results. While, in the two
cases drag is considered, the reference method is clearly more accurate. Here, the results
show that often two or even three adaptation steps less are required to obtain comparable
accuracy in the results. Finally, it can be concluded both method require very comparable
amount of computational effort for every cycle. However, the reference method only obtains
its value after an additional half of the cycle, since the solution of the adjoint equations needs
to be known in order to obtain the corrected value.

Overall, it found the reference method has a stronger theoretical link with the error in the
goal-function. Also, by estimation of second-order effects, it takes into account a higher
number of degrees of freedom. This leads to a higher expected efficiency of the method. The
small empirical study does seem to support this hypothesis.
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Chapter 7

Recommendations

While performing this research a number of choices are made on the approach to answer the
research question. The chosen approaches have their advantages and disadvantages. Having
the knowledge of their outcome a number of recommendations can be made as how to improve
the answer to the research question. Broadly, these will be categorized in three categories.
Firstly, improving the implementation of the reference method. Secondly, draw an additional
comparison between the methods. Finally, improve the quality of the numerical comparison.

7.1 Improvement of reference method

As indicated in section 4.4 the interpolation process needs to be changed from how it is imple-
mented in the literature. This is due to the current research uses cell centered values rather
than node based values. The changes as made in this research lead to some diffusion of infor-
mation in this process. This likely decreases the strength of the method. A recommendation
for future research would be to implement the method on node based refinement.

7.2 Drawing an additional comparison

In section 3.4 it is concluded the mesh sensitivities based adaptation method uses an indicator
which takes only first order effects into account. It is found to be comparable with the linear
part the reference method. The linear part in the reference method is used as correction term
rather than indicator for mesh refinement. It can be interesting to compare the fields of the
linear part of the reference method with the mesh sensitivity indicator. This can show a more
clear comparison between the methods, because the same number of degrees of freedom is
applied for both approaches.
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7.3 Improvement of the numerical comparison

The results as found in this research are not very satisfactory. The flow solver has some con-
vergence issues. For some cases it is not possible to compute limiting value using the current
set-up of the flow solver. This prevents the use of smaller accuracy intervals. Furthermore, a
strong smoothing operator is required in order for the adapted meshes to be able to converge
to satisfactory residual levels. This diffuses the effects of the indicator thereby reducing its
effect. If a more robust flow solver is utilized for the comparison, a smaller accuracy inter-
val could be used, possibly leading to more information on the effectiveness of both mesh
adaptation approaches. Finally, if the amount of smoothing is lowered or possible removed,
the effects of both adaptation approaches become stronger and thereby the comparison will
become clearer.

Furthermore, the computations should all be performed on the same computer so the adap-
tation chain can be timed. This will give more information on the required computational
effort of both methods.

Finally, as the different flow cases and targeted goal values give a different conclusion it is
interesting to increase the number of flow cases. This will strengthen the conclusion towards
difference in the efficiency of both methods.
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