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Abstract

There are many methods for solving an optimal power flow (OPF) problem. Most of them employ one
central unit to solve the problem (centralized) while in others, every node/area computes for its coverage
and send information to its neighbor(s) every time. The mentioned method is called Distributed OPF.
In this thesis, the Distributed OPF aims for a fast and resilient algorithm to solve a DC-OPF problem
based on Consensus + Innovation (C+I) method.

The research focuses on developing a faster algorithm in solving an OPF problem for a DC distribu-
tion grid. The current C+I method has tuning parameters, all of which are determined by trial and error
for every case. They are sensitive parameters that determine the speed of the iteration to converge to
the solution. This thesis attempts to form adaptive tuning parameters by understanding their function
in every equation for a variable update. By understanding the purpose of each tuning parameter and
the physical interpretation, some parameters can be formulated while the other is still determined by
estimating the value. The losses and congestion are also taken into account. In the results, by formu-
lating these parameters, they are shown that the iteration number has dropped significantly compared
to the previous research.

Regarding the resilience of the algorithm, the distributed approach relies on the information ex-
change between the nodes and delay on the information exchange will stall the whole iteration process.
Therefore, an asynchronous algorithm is implemented to resolve the problem by setting a timeout dura-
tion. The timeout duration enables the algorithm to wait for the new information only for the desired
duration, and therefore the calculation converges in faster.

keywords: DC Optimal Power Flow, Consensus + Innovation, Tuning Parameters Formulation,
Asynchronous Algorithm
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1
Introduction

1.1. Microgrids and Distributed Energy Generation
The power system is built to fulfill the energy needs nowadays. Conventionally, it is by having bulk
generators in a remote area and transmit the power to the industrial and residential load through a
long high voltage (HV) transmission line. However, this model is not necessarily suitable for every kind
of load. For instance, in a rural area, sometimes it is not economically feasible to access the power
from the main grid due to the cost of the infrastructure. Therefore, having distributed units of lower
capacity located nearby the consumption points without connection to a main grid becomes an option.
The distributed units are usually renewable energy sources such as solar, micro-hydro, and fuel cells.
This concept is called microgrids which is defined as a discrete energy system consisting of renewable
energy sources and loads which can work parallel with, or independent from the main grid [1]. Another
research [2] assumes that a microgrid is a cluster of load and source operating as a single system that
provides both power and heat to a local area. According to the Departement of Energy (United States)
[3], a microgrid is a set of interconnected load and distributed energy resources with clear boundaries
that act as a single entity regarding the grid.

Rise of the DC System
The power system now mostly operates in AC voltage due to its easiness of transforming ac electrical
energy to a different voltage level which leads to more efficient transportation over a long distance [4].
However, the DC starts to take over in high and low voltage level. In the high voltage, it is applied for
HVDC transmission which has the advantage of low cost and decreased losses [5]. At the low voltage
level, currently, DC systems are mostly used for specific industrial applications such as telecommunica-
tion and data centers. However, it is possible to have an increase in the number of applications such as
LED street lighting, motors with speed control, and shipboard power system [6]. It seems promising to
help in providing more connections of distributed renewable energy units. DC microgrids have a simple
structure, cost lower price, and need fewer converters as the renewable energy units and the storage are
already in DC [7].

1.2. Centralized vs. Distributed Optimal Power Flow
Optimal power flow (OPF) is a method to optimize the power generation in generators or the load
consumption in loads to minimize the total cost while taking into account the operational limit [8].
Centralized computation has been the original way for running the optimization algorithm, conducted
by independent system operators (ISO) to find the minimum cost [9]. However, with the presence of a
central computer, this conventional method has some important disadvantages. Based on [10], during
more penetration of distributed generation (DG), the disadvantages are:

1. The central has to collect information from all DGs and controllable loads. It leads to high
requirements of a communication network when the number of DGs and loads becomes larger.

2. The central is a single point of failure.

1



2 1. Introduction

3. Privacy of a DG’s information will be an issue as all the data have to be collected to the ISO.

Rather than doing a centralized computation, a distributed/decentralized method is introduced. Related
work [11] differentiates distributed and decentralized that distributed still needs a central coordinator
while decentralized does not. To avoid confusion, this thesis only considers the one without the central
coordinator and address it as a distributed (or a fully distributed) method. In principle, the algorithm
for solving the OPF problem is run in each agent in parallel and only allows communication between
neighboring agents. The agent is defined as a node consisting of a component (a DG or a load). However,
for some algorithms presented in [11], an agent is an area, and the communications occur between areas.

1.3. Introduction to Consensus and Innovation Algorithm
Consensus and Innovation (C+I) is chosen in [12] as an algorithm to solve an optimal power flow
problem. The algorithm is one of the distributed algorithm methods with an advantage that it can be
deconstructed into nodal or component level [12] so that it works in a fully distributed fashion. This
algorithm is based on Karesh Kuhn Tucker optimality condition and uses its derivative term to update
parameters through iteration [9]. The results in [13–15] proved that the algorithm could converge to
the solution by implementing it in a fully distributed way. However, they have tuning parameters that
are determined by trial and error. The parameters are extremely sensitive and have to change when the
problem changes. An extensive explanation about the C+I algorithm will be presented in Section 2.4.

1.4. Research Motivation
The problem formulation presented in [14, 15] are lossless DC approximation for AC optimal power flow.
On the other hand, a work regarding the optimal power flow for the DC grid by taking into account the
losses in the system is done in [13]. This algorithm is later called Exact OPF. It results in a converged
solution, but it took up to 200000 iterations to converge due to the tuning parameters. Therefore, this
thesis emphasizes in finding a proper tuning parameter formulation to speed up the convergence rate
and also to avoid performing trial and error in discovering the right tuning parameters. Moreover, a
straight-forward update did not guarantee the convergence and modification of the update had to be
made.

Within the update, when a limit in the line is determined, the generators cannot casually produce
power. This will affect the update for the voltage, and a special treatment should be applied for
converging to the right solution. Moreover, when congestion occurs in a meshed network, it results in
a different way as the radial network.

Additionally, losses are always present in the power system due to the current flow. To minimize
the losses that will lead to the minimized cost, the voltage should be determined as high as possible.
Therefore, modification in the voltage update should be applied to have the algorithm converging at
the maximum voltage.

During the implementation, information exchanges take significant time and cost the whole duration
due to the delays. Therefore, an asynchronous update has to be implemented to avoid delay and
accelerate the convergence time.
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1.5. Objective and Research Questions
The research has a primary objective which is:

To improve the speed and resilience of the C+I based distributed optimal power flow algorithm
by formulating the tuning parameters and asynchronous update.

The objective is then broken down into four research question:

1. How can the physical interpretation be used to improve the convergence rate?

2. How can the line congestion be taken into account for the voltage and the dual variable
updates, especially for a meshed grid?

3. How can the losses and the voltage limit be accounted for in the distributed OPF?

4. How can the algorithm be modified in order to run asynchronously for reducing delays?

1.6. Thesis Structure
This section will discuss the outline of the thesis and its content.

Chapter 2 presents the literature review supporting this thesis. The basic of energy economics,
methods for distributed OPF, and also existing approaches for asynchronous updates are the content
of the chapter.

The next two chapters, Chapter 3 and Chapter 4 is the main work of the thesis. Chapter 3 discusses
the optimization problem to be solved using a Lossless OPF algorithm. It contains the concluded
formulation for every variable update and its supporting tuning parameters for answering research
questions 1-2. The answer for research question 1 is present in the end of section 3.6 while the next
section, section 3.7 answers research question 2. For simplicity and more understandable equations, the
formulation is explained in Chapter 3 which uses the Lossless OPF.

Chapter 4 includes the losses for the calculation and some modifications for the parameter updates
are applied. Some of the equation stays due to a similar characteristic with the Lossless OPF. Section 4.5
about voltage update shows the answer for research question 3.

Chapter 5 provides the explanation about the simulation utilized for running the algorithm and
study cases to show how the Exact OPF algorithm results for various cases. Moreover, a comparison
to the previous study is shown to answer the research question 1 regarding the convergence rate.

Chapter 6 shows the method on how to modify the algorithm to run asynchronously. It also ex-
hibits the results of the asynchronous update in the microcomputer implementation to answer research
question 4.

Chapter 7 concludes the whole thesis followed by critical reflections of this thesis and opportunities
for future work.





2
Literature Review

2.1. Energy Economics in Power System
Since electrical energy is produced massively and has a role as a worldwide necessity, it is treated as a
commodity. Every producer sets its price so that through the market operator, the consumers can buy
it. Trade in electrical energy refers to the price of a certain amount of megawatt-hours of electricity
over a specified period of time [16]. However, a failure in producers or the electrical energy transmission
can influence quickly in price change and disturb the market significantly.

Based on [16], there are two techniques for hedging limitation in the network which are Decentralized
Trading and Centralized Trading. In the centralized trading, all producers and consumers submit their
bid to an entity called the market operator. This system operator will then determine the market
clearing price. On the other hand, in the decentralized trading, a set of generators and loads have an
exclusive contract regarding the power transfer and the price for their own. Due to the relevance, this
chapter will cover more about the centralized trading. The following subsections will discuss about
the fundamentals of the Locational Marginal Pricing (LMP), as one of the energy economics model.
They will cover an example of an electricity trade between two imaginary countries called Borduria and
Syldavia, provided by reference [16]. This thesis will mainly discuss about DC distribution grids but
only for an example and explanation, a transmission system will be used as a sample case.

2.1.1. Unconstrained Transmission
Borduria and Syldavia are countries with 500 MW and 1500 MW demand respectively. Both countries
have their generator with the supply function or later called as marginal pricing as follows:

𝜋ፁ = 10 + 0.01𝑃ፁ (2.1)

𝜋ፒ = 13 + 0.02𝑃ፒ (2.2)

In the absence of a transmission line, both countries have a different price to satisfy their demand.
Substituting 𝑃ፁ = 500 and 𝑃ፒ = 1500 into (2.1) and (2.2) , the price are 15 $/MWh and 43 $/MWh
respectively. If a transmission line is built between both countries, there will be power flowing in the
transmission. It is assumed that there is no power losses, unlimited generator capacity, and unlimited
power transfer in the line. Referred to Figure 2.1, Borduria will generate 1433 MW (𝑃ፁ), Syldavia will
generate 567 MW (𝑃ፒ), and there will be 933 MW transfer from Borduria and Syldavia (𝑃ፁፒ). The
equilibrium point in Figure 2.2 shows the market clearing price of 24.3 $/MWh.

Extensively, this Borduria and Syldavia case can be modeled as an optimization problem with the
objective of minimizing the cost of power production in both countries.

The cost of production in both countries, denoted as 𝐶ፁ and 𝐶ፒ are:

𝐶ፁ(𝑃ፁ) = ∫
ፏᐹ

ኺ
𝜋ፁ(𝑃)𝑑𝑃 = 10𝑃ፁ +

1
2 ⋅ 0.01𝑃

ኼ
ፁ (2.3)

5



6 2. Literature Review

Figure 2.1: A sample case for imaginary two countries, Borduria and Syldavia. The presence of the transmission line
allows the power ፏᐹᑊ flowing from Borduria to Syldavia, resulting in the same marginal cost for both countries.

Figure 2.2: Equilibrium point of the marginal price when Borduria and Syldavia electricity market is combined into one
market. [16]
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Figure 2.3: A simple model of a generator connected to a load through a transmission line. Losses occur in the
transmission line, leading to a higher power production in the generator. The figure is cited from [16].

𝐶ፁ(𝑃ፒ) = ∫
ፏᑊ

ኺ
𝜋ፁ(𝑃)𝑑𝑃 = 13𝑃ፁ +

1
2 ⋅ 0.02𝑃

ኼ
ፒ (2.4)

Therefore, the objective function is:

min(𝐶ፁ + 𝐶ፒ) = min(10𝑃ፁ +
1
2 ⋅ 0.01𝑃

ኼ
ፁ + 13𝑃ፁ +

1
2 ⋅ 0.02𝑃

ኼ
ፒ ) (2.5)

The objective has a constraint of the power balance. The power balance equation is as simple as
𝑃ፁ +𝑃ፒ = 𝐷ፁ +𝐷ፒ. Therefore, the optimum solution is when Borduria produces 1433 MW and Syldavia
does 567 MW with the marginal price is 𝜋 = 24.3$/𝑀𝑊ℎ.

2.1.2. Constrained Transmission
Due to their physical limitation, no transmission line can transfer infinite amount of power. In this
Borduria and Syldavia case, it is assumed there is 400 MW maximum transfer. Therefore, 933 MW
transfer is not possible. Borduria reduces its generation to 900 MW (500 MW self-consumption and
400 MW transfer) while production in Syldavia rises to 1100 MW. The price of each area is now:

𝜋ፁ = 10 + 0.01(900) = 19$/MWh (2.6)

𝜋ፒ = 13 + 0.02(1100) = 35$/MWh (2.7)

Equation (2.6) and (2.7) show the locational marginal pricing (LMP) since its location determines the
marginal cost. When there is a transmission constraint, the LMP will vary throughout the network. [17]

2.1.3. Losses in the Transmission Line
Naturally, the current flowing will dissipate heat and lead to power losses in the line. The power sent
from the sending end will not be the same as the one at the receiving end. In reference [16], this losses
is denoted as variable losses.

𝐿variable = 𝐼ኼ ⋅ 𝑅 ≈ (𝑃𝑉)
ኼ
𝑅 = 𝑅

𝑉ኼ ⋅ 𝑃
ኼ = 𝐾 ⋅ 𝑃ኼ (2.8)

In a simplified mathematical model for Figure 2.3, it is assumed that the load is purely active and
no voltage drop along the line, resulting the following equation for the losses:

𝐿 = 𝐾 ⋅ 𝐷ኼ (2.9)

The generation at bus 1 is
𝐺(𝐷) = 𝐷 + 𝐿 = 𝐷 + 𝐾 ⋅ 𝐷ኼ (2.10)

with an increase in the load by Δ𝐷, the generator must increase by

Δ𝐺 = 𝐺(𝐷 + Δ𝐷) − 𝐺(𝐷) = Δ𝐷 + 2Δ𝐷 ⋅ 𝐾 + Δ𝐷ኼ𝐾 ≈ (1 + 2𝐷 ⋅ 𝐾)Δ𝐷 (2.11)
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Figure 2.4: Total generation cost in Borduria-Syldavia transmission line as a function of the power transfer when the the
losses is taken into account and not taken into account. When the losses taken into account, the optimim solution lies

when the transmission transfers less power. [17]

and due to the extra D in bus 2, and 𝜋ኻ is defined as the marginal cost at bus 1, the cost of the
generation rises to:

Δ𝐶 = 𝜋ኻ(1 + 2𝐷 ⋅ 𝐾)Δ𝐷 (2.12)

Equation (2.12) implies that the cost goes up due to Δ𝐷 in bus 2. Therefore, the marginal cost in bus
2 becomes

𝜋ኼ =
Δ𝐶
Δ𝐷 = 𝜋ኻ(1 + 2𝐷 ⋅ 𝐾) (2.13)

It is concluded that there will be a difference in the marginal price with the presence of the power losses
even though there is no congestion in the transmission line. The receiving end has a higher marginal
price than the sending end.

Borduria and Syldavia Case
The losses is now taken into account, and the power balance in (2.1.1) should be modified into this
equation:

𝑃ፁ + 𝑃ፒ = 𝐷ፁ + 𝐷ፒ + 𝐾 ⋅ 𝐹ኼፁፒ (2.14)

It is assumed that 𝐾 = 0.00005𝑀𝑊ዅኻ, and (2.14) can be split into:

𝑃ፒ = 𝐷ፒ − 𝐹ፁፒ (2.15)

𝑃ፁ = 𝐷ፁ + 𝐹ፁፒ + 𝐾 ⋅ 𝐹ኼፁፒ (2.16)

Substituting (2.16) and (2.15) into (2.5), it will resulted in the cost equation as a function of 𝐹ፁፒ.
Figure 2.4 shows the plot between total cost (y-axis) and power (x-axis) and it can be concluded that
the minimum cost is achieved when the power transfer equals to 853 $/MWh.

2.2. Overview of Methods for Distributed Optimal Power Flow
Algorithms to solve the OPF problem in a distributed way have been developed in many research.
Moreover, extensive comparison analysis between algorithms have been studied in [9, 11, 12]. The
foundation of distributed DC OPF is classified into Augmented Lagrangian Relaxation and Karesh
Kuhn Tucker (KKT) Conditions. Each classification has several algorithms as presented in [11, 12].
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The comparative analysis in [11] concluded that Consensus and Innovation (C+I) from KKT Conditions
can be employed to solve opf problem in a nodal level and also regional level. Moreover, this thesis
is an advanced work from the previous thesis [12] which went deeply into C+I algorithm. Therefore,
C+I is chosen to be the basic of the algorithm in this thesis and will be extensively explained in the
following sections. This section will briefly show the basic of Alternating Direction Multiplier Method
(ADMM) and Dual Decomposition as representations from the Lagrangian Relaxation classification,
and Optimality Condition Decomposition and Interior Point Method as a representation from KKT
Conditions.

2.2.1. ADMM with Proximal Message Passing (PMP)
The alternating direction method of multipliers (ADMM) is a famous method for optimization problem
in a distributed manner, especially for a large-scale problem and Unit Commitment in power system [18].
In principle, the objective has several decision variables and it is broken down into sub-problems.
These subproblems are solved sequentially over sequential Gauss-Seidel iterations by having a central
coordinator. Using ADMM solely is not a fully distributed optimization as desired since a central
coordinator is still required. Hence, proximal message passing (PMP) [19] is needed to be included in
the algorithm.

Consider an optimization problem:
Objective Function

min
፱,፲

𝑓(𝑥) + 𝑔(𝑦) (2.17)

subject to

𝐴𝑥 + 𝐵𝑦 = 𝑐 (2.18)

where 𝑥 and 𝑧 are the decision variables, 𝐴 and 𝐵 are coefficients in the equality constraint, and 𝑐
is a constant vector regarding the constraint. The problems are then formulated into an augmented
Lagrangian below:

ℒ(𝑥, 𝑦, 𝜆) = 𝑓(𝑥) + 𝑔(𝑦) + 𝜆(𝐴𝑥 + 𝐵𝑦 − 𝑐) + 𝜌2‖𝐴𝑥 + 𝐵𝑦 − 𝑐‖
ኼ
ኼ (2.19)

where 𝜌 > 0 is a specified penalty parameter and ‖.‖ኼ is the two norm for absolute value. The ADMM
algorithm conducts decomposing the problem in sub-problems of minimizing each decision variables
and the dual variable.

𝑥(𝑙 + 1) = arg min
፱

ℒ(𝑥(𝑙), 𝑦(𝑙), 𝜆(𝑙)) (2.20)

𝑦(𝑙 + 1) = arg min
፲

ℒ(𝑥(𝑙 + 1), 𝑦(𝑙), 𝜆(𝑙)) (2.21)

𝜆(𝑙 + 1) = 𝜆(𝑙) + 𝜌(𝐴𝑥(𝑙 + 1) + 𝐵𝑦(𝑙 + 1) − 𝑐) (2.22)

note that 𝑥, 𝑦, and 𝜆 are updated after one another. All the updating variables use new values from the
other. For example, in the 𝑦 update, new value of 𝑥(𝑥(𝑙 + 1)) is used instead of 𝑥(𝑙). The algorithm is
repeated until they are converged.

Equation (2.22) shows the necessity of central coordinator. To use ADMM as a distributed algorithm,
a modification called PMP has to be used [9]. By using PMP, each agent (node) evaluates a prox
function:

prox፟,᎞(𝑣) = arg min
፱

(𝑓(𝑥) + 𝜌/2‖𝑥 − 𝑣‖ኼኼ) (2.23)

The vector 𝑥 contains the primal (𝑥, 𝑦) and dual (𝜆) variables while 𝑣 is a vector containing the
average values of the variable in 𝑥 from the neighboring nodes. In the OPF problem, the shared variable
is the voltage angle and the node price [11]. The function 𝑓(𝑥) is the local objective and 𝜌 is scalar for
tuning parameter. Hence, the prox function optimizes the node’s local objective and pass the prox value
to the neighbors to continue the iterations. The iterations stop after the agents agree on a common
value 𝑥 (convergence).
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2.2.2. Dual Decomposition
Dual Decomposition separates the problem into subproblems to be solved by each agent independently.
Consider an optimization problem as below:

min
፱

∑
፦∈𝒩

𝑓፦(𝑥፦) (2.24)

subject to
∑
፦∈𝒩

𝐴፦𝑥፦ = 𝑏 (2.25)

where 𝑚 is the observed node as a set of 𝒩 number of nodes. The Lagrangian equation for the problem
is:

ℒ(𝑥, 𝑦) = ∑
፦∈𝒩

[𝑓፦(𝑥፦) + 𝜆(𝐴፦ + 𝑥፦ − 𝑏)] (2.26)

the dual decomposition method uses an iterative method called "dual ascent" [9]:

𝑥፦(𝑙 + 1) = arg min
፱ᑞ

ℒ(𝑥፦ , 𝜆(𝑙 + 1)) (2.27)

𝜆(𝑙 + 1) = 𝜆(𝑙) + 𝛼(𝑙)[ ∑
፦∈𝒩

𝐴፦𝑥፦(𝑙 + 1) − 𝑏] (2.28)

where 𝛼(𝑙) is a tuning parameter and y is the dual variable that states the nodal price. It can be
seen from (2.27) that the subproblems can be solved separately. However, (2.28) shows that a central
coordinator remains necessary. Another drawback of this algorithm is the tuning parameter plays a
massive role in determining the convergence.

2.2.3. Optimality Condition Decomposition
Optimality Condition Decomposition (OCD) is a KKT based optimization algorithm. This method
in an iterative solution wherein each iteration the OPF problem is solved independently for every
agent (node) [11]. OCD is suitable for solving an optimization problem with a unique characteristic of
constraints. The constraint should include a variable from another node.

The OPF problem is decomposed into subproblem which is then solved by deriving its KKT condition
and applying Newton Raphson Method [11]. The update for the primal and dual variables employ the
Jacobian matrix of the KKT condition. After the update, the new information is shared with its
neighbor for the next iteration until the KKT condition is reached.

2.2.4. Distributed Interior Point Method
The algorithm is based on the interior point method [20] and modified into a distributed interior point
method. The algorithm still can not run in a fully distributed way, hence in [21], a unidirectional ring
communication graph and message passing are utilized.

As the other optimization methods, The basic of interior point method starts with problem formu-
lation and also forming the Lagrangian function:

min 𝑓(𝑥) (2.29)
s.t. ℎ(𝑥) = 0 (2.30)

𝐺 ≤ 𝑔(𝑥)𝐺 (2.31)

ℒ = 𝑓(𝑥) − 𝜆ፓℎ(𝑥) − (𝜇ፆ)ፓ[𝑔(𝑥) + 𝑢 − 𝐺] − (𝜇ፆ)ፓ[𝑔(𝑥) − 𝑘 − 𝐺] − 𝑧(
፫

∑
።዆ኻ

ln 𝑢። +
፫

∑
።዆ኻ

ln 𝑘።) (2.32)
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where 𝐺 and 𝐺 are the upper and lower limit of the inequality constraint, 𝑥 is a primal variable, 𝑢
and 𝑘 are slack variables, and 𝜆, 𝜇ፆ, and 𝜇ፆ are the Lagrange multipliers (dual variables). Additionally,
𝑧 is the the barrier parameter and 𝑟 is the number of equality constraints [21].

The Newton-Raphson method is then applied to the KKT optimality condition in (2.32), Δ for all
variables (primal, dual, and slack) can be acquired. The variables are then updated such as:

𝑥(𝑙 + 1) = 𝑥(𝑙) + 𝛼፩(𝑙 + 1)Δ𝑥 (2.33)
𝜆(𝑙 + 1) = 𝜆(𝑙) + 𝛼፝(𝑙 + 1)Δ𝜆 (2.34)

Note that there are 𝛼፩ and 𝛼፝ which state the tuning parameters for primal and dual variables
respectively. The tuning parameters change throughout the iterations. The iteration stops when a
defined complementary gap is lower than a threshold. Extensive details about the algorithm is studied
in [21].

To conduct the algorithm in a fully distributed way, (2.33) are written for each area (agent). Since
the primal variable 𝑥 also includes boundary variable such as voltage and price, the updates are done
one by one per area. After one area finishes the updates for all the variables, it sends the boundary
variables to the next area. The last area updating sends to the first area, and it makes a full cycle of a
one way ring communication.

2.3. Fundamentals of Karesh Kuhn Tucker
Consensus + Innovation will be the chosen algorithm to investigate further, and it is based on Karesh-
Kuhn-Tucker (KKT) necessary condition.

Consider a simple problem for optimization.

minimize 𝑓(𝑥) (2.35)

subject to

ℎ።(𝑥) = 0 ∀𝑖 ∈ 𝒩 (2.36)

𝑔፣ ≤ 𝐺፣ ∀𝑗 ∈ ℳ (2.37)
𝑔፣ ≥ 𝐺፣ ∀𝑗 ∈ ℳ (2.38)

where 𝑖 and 𝑗 is the number of the equality constraints and the inequality constraints respectively.
The problem is simply to minimize a function 𝑓(𝑥) that is variable dependant on 𝑥. The solution 𝑥
must follow the equality constraints ℎ።(𝑥) and must not violate maximum and minimum boundaries, 𝐺
and 𝐺 respectively. Due to the presence of the inequality constraints, and no information about which
constraints is active, KKT has to be used instead of the standard Lagrangian function [22].

A Lagrangian function is first formulated:

ℒ(𝑥) = 𝑓(𝑥) + 𝜆።ℎ።(𝑥) + 𝜇ፆ፣ (𝑔፣(𝑥) − 𝐺፣) + 𝜇
ፆ
፣ (−𝑔፣(𝑥) + 𝐺፣) (2.39)

Some necessary conditions needs to be followed which are:

1. Optimality condition

𝜕ℒ
𝜕𝑥 = 0 (2.40)

𝜕ℒ
𝜕𝜆።

= 0 (2.41)

2. Feasibility condition (Equation (2.36)-(2.38))
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3. Complementary slackness condition

𝜇ፆᑛ(𝑔፣(𝑥) − 𝐺፣) = 0 (2.42)
𝜇ፆ(−𝑔፣(𝑥) + 𝐺) = 0 (2.43)

4. Positivity condition
𝜇ፆ፣ , 𝜇

ፆ
፣ ≥ 0 (2.44)

All the 𝜆 and 𝜇 is the KKT multipliers [22] or also called the dual variable. In the optimal power
flow case, 𝜆 is the locational marginal price (LMP) which has been explained in the previous section.

2.4. Consensus and Innovation (C+I)
This method [14] is going to be emphasized more and becomes the fundamental for the algorithm devel-
oped in this thesis. It is based on a decentralized solution of the Karesh-Kuhn-Tucker (KKT) necessary
condition for local optimality and uses iterative algorithm so that the variables vary throughout the
iterations [9].

Consensus and Innovation (C+I) has been utilized in some researches [14, 15] due to its ability
to be fully distributed without any central communication entity. Every point can only communicate
with its neighbor without any global parameters required. The approach is composed based on DC
approximation for an AC power system. It is assumed that the voltage in all buses are 1 pu and the
resistance is negligible. Hence, The power flowing in the line is a result of voltage angle difference
divided by the line reactance. It is equivalent with DC network that has the current flow as a result of
the voltage difference divided by the resistance.

The following explanation will use the DC Approximated AC OPF from [14]. Therefore, it is going
to be represented by AC OPF terms such as voltage angle (𝜃፦) instead of voltage (𝑢፦) and admittance
(𝑌፦,፧) instead of conductance (𝐺፦,፧). This method is initiated by stating the objective of minimizing
the cost of power production.

𝑚𝑖𝑛 ∑
፦∈𝒩

𝐴፦(𝑝ዝ፦)ኼ + 𝐵፦𝑝ዝ፦ (2.45)

subject to

𝑝ዝ፦ = ∑
፧∈጖ᑞ

𝑌፦,፧(𝜃፦ − 𝜃፧) ∀(𝑚) ∈ 𝒩 (2.46)

𝑃፦,፧ ≤ 𝑌፦,፧(𝜃፦ − 𝜃፧) ≤ 𝑃፦,፧ ∀(𝑚, 𝑛) ∈ 𝒩 (2.47)

𝑃ዝ፦ ≤ 𝑝
ዝ
፦ ≤ 𝑃

ዝ
፦ ∀(𝑚) ∈ 𝒩 (2.48)

In the objective, the cost of power production is obtained by multiplying the power produced by
each generator with its corresponding cost parameters. The subscript 𝑚 indicates the observed node
and 𝒩 is the whole set of generators. There are three critical constraints in this problem.

1. Power Flow Equation (2.46)
The power injected in a node is the sum of all power going in to or out from the observed node
𝑚. In case of a load node, the term 𝑝ዷ፦ will have a negative value. As explained, (2.46) is a DC
approximation from the AC power flow. The power flow is calculated by dividing the voltage angle
difference with the reactance. The term 𝜃፦ is the voltage angle of the observed node while 𝜃፧
belongs to Ω፦ which means the set of neighboring nodes. Meanwhile, the reactance is expressed
as the inverse of the admittance 𝑌፦,፧

2. Line Limit (2.47)
The power flowing in the line is bounded by line limit 𝑃፦,፧ during outgoing flow and 𝑃፦,፧ during
in-going flow. This term will determine further if the line is congested or non-congested.
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3. Generator limit (2.48)

The term 𝑃ዝ፦ and 𝑃
ዝ
፦ represent lower and upper limit of the generator respectively.

The objectives and constraints are then constructed as a Lagarange function below:

ℒ = ∑
፦∈𝒩

𝐴፦(𝑝ዝ፦)ኼ + 𝐵፦𝑝ዝ፦)

+ ∑
፦∈𝒩

𝜆፦( ∑
፧∈጖ᑞ

𝑌፦,፧(𝜃፦ − 𝜃፧) − 𝑝ዝ፦)

+ ∑
፧∈጖ᑞ

𝜇፦,፧(𝑌፦,፧(𝜃፦ − 𝜃፧) − 𝑃፦,፧) + ∑
፧∈጖ᑞ

𝜇፧,፦( − 𝑌፦,፧(𝜃፦ − 𝜃፧) − 𝑃፦,፧)

+ ∑
፦∈𝒩

𝜇ፏ፦(𝑝ዝ፦ − 𝑃
ዝ
፦) + ∑

፦∈𝒩
𝜇ፏ፦( − 𝑝ዝ፦ + 𝑃ዝ፦)

(2.49)

In which 𝜆 and 𝜇’s are the Lagrange Multiplier. The first order optimality conditions are:

𝜕ℒ
𝜕𝑝ዝ፦

= ∑
፬∈𝒮
2𝐴፦𝑝ዝ፦ + 𝐵፦

− 𝜆፦ + 𝜇ፏ፦ − 𝜇
ፏ
፦ = 0

(2.50)

𝜕ℒ
𝜕𝜃፦

= 𝜆፦ ∑
፧∈጖ᑞ

𝑌፦,፧ − ∑
፧∈጖ᑞ

𝜆፧𝑌፦,፧

+ ∑
፧∈጖ᑞ

𝐺፩፦,፧(𝜇፦,፧ − 𝜇፧,፦) = 0

(2.51)

𝜕ℒ
𝜕𝜆፦

= −∑
፬∈𝒮
𝑝ዝ፦ + ∑

፧∈጖ᑞ

𝑌፦,፧(𝜃፦ − 𝜃፧) = 0 (2.52)

𝜕ℒ
𝜕𝜇፦,፧

= ∑
፧∈጖ᑞ

𝑌፦,፧(𝜃፦ − 𝜃፧) − 𝑃፦,፧ ≤ 0 (2.53)

𝜕ℒ
𝜕𝜇፧,፦

= ∑
፧∈጖ᑞ

−𝑌፦,፧(𝜃፦ − 𝜃፧) − 𝑃፦,፧ ≤ 0 (2.54)

𝜕ℒ
𝜕𝜇ፏ፦

= 𝑝ዝ፦ − 𝑃
ዝ
፦ ≤ 0 (2.55)

𝜕ℒ
𝜕𝜇ፏ፦

= −𝑝ዝ፦ + 𝑃ዝ፦ ≤ 0 (2.56)

Based on KKT theory for sufficient and optimal condition, it is necessary to include also the com-
plementary slackness condition and positivity condition.

𝜇፦,፧(𝑃፦,፧ − ∑
፧∈጖ᑞ

𝑌፦,፧(𝜃፦ − 𝜃፧)) = 0 (2.57)

𝜇፧,፦( − 𝑃፦,፧ + ∑
፧∈጖ᑞ

𝑌፦,፧(𝜃፦ − 𝜃፧)) = 0 (2.58)

𝜇ፏ፦(𝑃
ዝ
፦ − 𝑝ዝ፦) = 0 (2.59)

𝜇ፏ፦(𝑝ዝ፦ − 𝑃ዝ፦) = 0 (2.60)

𝜇፦,፧ , 𝜇፧,፦ , 𝜇ፏ፦ , 𝜇
ፏ
፦ ≥ 0 (2.61)
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Equation (2.50) to (2.61) are the conditions that have to be met in the solution. A distributed
iterative approach will be conducted where each bus only shares and receives information from the
connected bus during the iteration.

In [14] a general method for the local update is written as:

𝑥፦(𝑙 + 1) = ℙ፦[(𝑥፦(𝑙) + Φ፦𝑔፦(𝑥፧(𝑙)))] (2.62)

𝑥፦(𝑙) = [𝜆፦(𝑙) 𝜃፦(𝑙) 𝜇፦፧(𝑙) 𝑝ዝ፦]ዞ (2.63)

From (2.63), 𝑥፦(𝑙) is the set of variables which are updated every iteration and l is the iteration
counter. The function 𝑔፦(𝑥፧(𝑙)) denotes the first order optimality condition related to bus 𝑚 wherein
some equation, variables from the neighboring bus are included. The term ℙ፦ is the projection operator
to keep 𝑥፦ in its boundaries. Lastly, Φ፦ is the vector tuning parameter which plays an essential role
in the update. It is a set of constants which determines the speed of the iteration to reach convergence
or even if the algorithm reaches its solution.

Therefore update for The Lagrange multipliers is:

𝜆፦(𝑙 + 1) = 𝜆፦(𝑙) − 𝛼᎘᎕(
𝜕ℒ
𝜕𝜃፦

) + 𝛼᎘᎘(
𝜕ℒ
𝜕𝜆፦

)

= 𝜆፦(𝑙) − 𝛼᎘᎕(𝜆፦ ∑
፧∈጖ᑞ

𝑌፦,፧ − ∑
፧∈጖ᑞ

𝜆፧𝑌፦,፧ + ∑
፧∈጖ᑞ

𝐺፩፦,፧(𝜇፦,፧ − 𝜇፧,፦))

+ 𝛼᎘᎘( −∑
፬∈𝒮
𝑝ዝ፦ + ∑

፧∈጖ᑞ

𝑌፦,፧(𝜃፦ − 𝜃፧))

(2.64)

The first term which comes from (2.51) reflects the consensus of the Lagrange multipliers where the
second term is an innovation term based on the power balance equation in (2.52). If the generation is
too high, 𝜆፦ should reduces its value [14]. That is the base of the innovation term addition. Moreover,
𝛼 are the tuning parameters which will be explained later on.

The next variable updated is the power. It is updated as follows:

𝑝ዝ፦(𝑙 + 1) = ℙ(𝑝ዝ፦(𝑙) −
1
2𝐴፦

⋅ 𝜕ℒ𝜕𝑝ዝ፦
) = ℙ(𝜆፦(𝑙) − 𝐵፦2𝐴፦

) (2.65)

The operator ℙ limits the result value to be only between 𝑃ዝ፦ and 𝑃
ዝ
፦. It will set the value to one of

the limits if 𝑝ዝ፦(𝑙 +1) exceeds the respective limit. Due to the projection, there is no need for updating
𝜇ፏᑞ and 𝜇ፏᑞ , thus, those terms are negligible for updates. Equation 2.65 expresses that the decrease
of 𝜆፦ due to excess of generation will consequently decrease the power itself.

The voltage angles are updated by this following way:

𝜃፦(𝑙 + 1) = 𝜃፦(𝑙) − 𝛼᎕᎘(
𝜕ℒ
𝜕𝜆፦

)

= 𝜃፦(𝑙) − 𝛼᎕᎘( −∑
፬∈𝒮
𝑝ዝ፦ + ∑

፧∈጖ᑞ

𝑌፦,፧(𝜃፦ − 𝜃፧))
(2.66)

With 𝛼᎕᎘ as the tuning parameter, the power balance equation is used for the update to create a
sense that adjustment in the voltage needs to occur due to the power mismatch in a node.

Lastly, since the Lagrange multiplier 𝜇፦,፧ and 𝜇፧,፦ appear in (2.64), Having them updated is
necessary.

𝜇፦,፧(𝑙 + 1) = ℙ(𝜇፦,፧(𝑙) + 𝛽
ፏᑞ,ᑟ
᎙ ( 𝜕ℒ

𝜕𝜇፦,፧
)) (2.67)

𝜇፧,፦(𝑙 + 1) = ℙ(𝜇፧,፦(𝑙) + 𝛽
ፏᑞ,ᑟ
᎙ ( 𝜕ℒ

𝜕𝜇፦,፧
)) (2.68)
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Due to the positivity condition, ℙ will force the 𝜇 to be zero if they are negative. Based on (2.67)
and (2.68), 𝜇 can decrease its value if the actual power flow does not exceed the limit.

Using the (2.64) to (2.68), each parameter can now be updated locally with only regarding the
required parameter from the neighboring nodes. Using this approach, no central coordinator or database
is needed and the algorithm can work in a fully distributed mode.

Regarding the tuning parameters, trial-and-error is used in the related works [14, 15]. In this thesis,
different ways of tuning parameter settings will be discussed in order to tackle this DC-OPF problem.

2.5. Asynchronous Distributed Optimal Power Flow
Some distributed optimization techniques rely on data exchange and iteration [11]. As every node plays
a role as an agent to spread the computation burden, it is possible to have one node that stalls the whole
iteration process. Therefore some researches [23–26] regarding asynchronous distributed optimization
have been conducted.

In [23], the network is modeled as several areas comprising several buses. Asynchronous implementa-
tion requires the buses in the same area to communicate with each other every iteration, while inter-area
communication only occurs after multiple iterations. Moreover, the distributed approach allows other
information sharing despite not physically connected areas. This extra information results in a faster
agreement between the areas.

The second existing approach for asynchronous algorithm is using local estimations and updating
the forecast value at the neighbors [24]. The research worked on the distributed optimization using dual
decomposition method [27] as explained in the previous section. The result shows that although it is
run asynchronously, it still converges to the solution.

Meanwhile, in [26], another sense of asynchronous optimization is introduced. Chang et al. develop
a scheduled-asynchronous algorithm to solve the OPF problem in a distributed way. By applying the
SDP convex relaxation, every pair of physically connected nodes does their alternate minimizations
using ADMM-like iteration. Every node only performs a local minimization when all connected buses
have updated values.

All of the mentioned previous works have a different interpretation for asynchronous algorithms.
In [23], asynchronous is defined as different iteration in when the inter-area data sharing occurs. Mean-
while, [24] uses estimation to avoid delay in data sharing. And last, the unnecessary usage of clock
synchronization in [26] is how they define the asynchronous algorithm. In this thesis, the asynchronous
definition used leans towards [24]. An estimate will be employed when no data sharing occurs between
two neighboring nodes.

2.6. Literature Review Relevation to the Thesis
An algorithm based on Consensus and Innovation algorithm will be developed in this thesis. It has been
implemented for solving DC distribution grid optimization problems with the losses being accounted
for in the previous research [12]. However, it takes up to 200000 iteration to converge. This happens
due to the tuning parameter value which has to be set to gain convergence. Therefore, an approach
to formulate the tuning parameters will be conducted. Moreover, when the algorithm is implemented
in microcomputers, delay occurs during the calculation. Therefore, asynchronous algorithm will be
discussed to reduce the delay. Both approach will lead to a plausible implementation of the OPF
algortihm.





3
Algorithm for the Distributed
Optimal Power Flow: Lossless

Optimal Power Flow

3.1. Problem Definition
The objective of the optimization problem is to minimize the cost of power production in the whole
grid. It is formed such as:

min ∑
፦∈𝒩

𝐴፦(𝑝ዝ፦)ኼ + 𝐵፦𝑝ዝ፦ (3.1)

The term 𝐵፦ and 𝐴፦ are the linear and quadratic operational price of a generator (m.u/W and
m.u/Wኼ) and 𝑝ፒ፦ is the power generated in node 𝑚. This problem is subjected to some constraints
below:

𝑝ዝ፦ = ∑
፧∈጖ᑞ

𝐺፩፦,፧(𝑢፦ − 𝑢፧) (3.2)

𝐺፩፦,፧(𝑢፦ − 𝑢፧) ≤ 𝑃፦,፧ (3.3)

𝑃ዝ፦ ≤ 𝑝
ዝ
፦ ≤ 𝑃

ዝ
፦ (3.4)

The constraints are formulated in a DC system formulation where the current flows due to the voltage
difference multiplied by the conductance. While in (2.46), it is a DC approximated AC power flow where
the power flows due to the voltage angle difference multiplied by the admittance. The constraints
comprise some variables which are voltage in node 𝑚 or 𝑛 (𝑢፦ or 𝑢፧), maximum and minimum power

production (𝑃
ዝ
፦ and 𝑃ዝ፦), maximum power flow in the line𝑚, 𝑛 (𝑃፦,፧), and nominal conductance (𝐺፩፦,፧).

The nominal conductance is defined as a nominal voltage times the line conductance (𝐺፩፦,፧ = 𝑢nom𝐺፦,፧)
to transform the current representation into power. By using this nominal conductance, there will be
no power loss along the line since the power flow leaving node 𝑚 will be identical to the power flow in
the receiving node 𝑛.

The first constraint (3.2) is the equality constraint explaining that the power injected in the node 𝑚
equals the power flowing out from node 𝑚 to every connected node (Ω፦). This is basically a Kirchoff
Current Law, except that the current is transformed to power using the term 𝑢፧፨፦. The second one (3.3)
represents the power flow limit. The last equation (3.4) shows the power production limit for every
node 𝑚.

This algorithm was derived based on Consensus + Innovation as presented in [14] as well as [12]. This
chapter will explain the updates for every variable, emphasizing on the tuning parameters formulation
especially.

17
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3.2. Lagrangian Function
The method for solving this optimization problem is Consensus + Innovation. Therefore, dual vari-
ables and Lagrangian function will be employed. Based on the objective function and the constrains,
Lagrangian function can be written as follows:

ℒ = ∑
፦∈𝒩

∑
፬∈𝒮
(𝐴፦(𝑝ዝ፦)ኼ + 𝐵፦𝑝ዝ፦)

+ ∑
፦∈𝒩

𝜆፦( ∑
፧∈጖ᑞ

𝐺፩፦,፧(𝑢፦ − 𝑢፧) − ∑
፦∈𝒩

𝑝ዝ፦)

+ ∑
፦∈𝒩

∑
፧∈጖ᑞ

𝜇፦,፧(𝐺፩፦,፧(𝑢፦ − 𝑢፧) − 𝑃፦,፧)

+ ∑
፦∈𝒩

𝜇ፏ፦(𝑝ዝ፦ − 𝑃
ዝ
፦)

+ ∑
፦∈𝒩

𝜇ፏ፦( − 𝑝ዝ፦ + 𝑃ዝ፦)

(3.5)

The 𝜆፦ will become the Locational Marginal Price (LMP) in the node𝑚 that expresses the sensitivity
of the system cost for the system demand in m.u/W (monetary unit per watt). Meanwhile, all the 𝜇 is
the dual variable that also expresses the sensitivity regarding the inequality constraint.

3.3. Karesh Kuhn Tucker Conditions
The Lagrangian function must follow First Order Optimality Conditions, Complementary Slackness
Conditions, and Positivity Conditions.

First Order Optimality Conditions

𝜕ℒ
𝜕𝑝ዝ፦

= ∑
፬∈𝒮
2𝐴፦𝑝ዝ፦ + 𝐵፦

− 𝜆፦ + 𝜇ፏ፦ − 𝜇
ፏ
፦ = 0

(3.6)

𝜕ℒ
𝜕𝑢፦

= 𝜆፦ ∑
፧∈጖ᑞ

𝐺፩፦,፧ − ∑
፧∈጖ᑞ

𝜆፧𝐺፩፦,፧

+ ∑
፧∈጖ᑞ

𝐺፩፦,፧(𝜇፦,፧ − 𝜇፧,፦)

(3.7)

𝜕ℒ
𝜕𝜆፦

= −𝑝ዝ፦ + ∑
፧∈጖ᑞ

𝐺፩፦,፧(𝑢፦ − 𝑢፧) = 0 (3.8)

𝜕ℒ
𝜕𝜇፦,፧

= ∑
፧∈጖ᑞ

𝐺፩፦,፧(𝑢፦ − 𝑢፧) − 𝑃፦,፧ ≤ 0 (3.9)

𝜕ℒ
𝜕𝜇ፏ፦

= 𝑝ዝ፦ − 𝑃
ዝ
፦ ≤ 0 (3.10)

𝜕ℒ
𝜕𝜇ፏ፦

= −𝑝ዝ፦ + 𝑃ዝ፦ ≤ 0 (3.11)
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Complementary Slackness Condition
The complementary slackness conditions taken from the constraints are:

𝜇፦,፧(𝑃፦,፧ − ∑
፧∈጖ᑞ

𝐺፩፦,፧(𝑢፦ − 𝑢፧)) = 0 (3.12)

𝜇፧,፦( − 𝑃፦,፧ + ∑
፧∈጖ᑞ

𝐺፩፦,፧(𝑢፦ − 𝑢፧)) = 0 (3.13)

𝜇ፏ፦(𝑃
ዝ
፦ − 𝑝ዝ፦) = 0 (3.14)

𝜇ፏ፦(𝑝ዝ፦ − 𝑃ዝ፦) = 0 (3.15)

Positivity Condition
All the dual variable regarding the limits have to be positive. It is written as:

𝜇፦,፧ , 𝜇፧,፦ , 𝜇ፏ፦ , 𝜇
ፏ
፦ ≥ 0 (3.16)

3.4. LMP and Power Updates
Power is the vital parameter in this optimization. The most power generated should be coming from all
the cheapest generators. The more expensive generators can only produce if all the cheaper units have
reached their maximum generation or there are other constraints. Meanwhile, the Locational Marginal
Price (LMP) explains the price in the node and will be identical for every node as long as no losses
and/or congestion occurs. The LMP is expressed as m.u/W, a monetary unit (m.u) over a power unit
(watt). To avoid oscillation between LMP and power during both updates, a new update mechanism
is proposed which links the updates of the price and power. Figure 3.1 and 3.2 depicts how the power
relates to the LMP. Throughout the iteration, either the LMP or the power should be forced to follow
the trajectory. The generator can only produce power if its LMP reaches its cost coefficient which
is denoted by 𝐵፦ in (3.1). It stays at its minimum power (normally equals to 0) if the LMP is less
than its cost coefficient. When the LMP equals its cost coefficient, the generator will produce power
as long as it can until it reaches its maximum power. Along the power changes, the price will vary if
the generator has a quadratic cost function (𝐴፦ > 0) is present or stay constant if it has a linear cost
function (𝐴፦ = 0). If it reaches the maximum power without satisfying the demand, the LMP will
continue in going higher to find another generator with a higher price. It makes an intuitive sense as
in a market, if the price is lower than the price set for a product, the producer cannot sell anything.
When the price equals, the products can be sold until they are sold out. If there is no product left, the
price will continue going higher until it equals the other price from other producers.

Figure 3.1 and 3.2 divides the update into two meaningful region. The first region is the constant
power where the LMP is below the minimum marginal price (LMP < 𝐵፦ + 2𝐴፦(𝑃፦)) and above the
maximum marginal price (LMP > 𝐵፦ + 2𝐴፦(𝑃፦)). The other region is called marginal generator
where the power can vary between its boundaries while LMP = 𝐵፦ + 2𝐴፦(𝑝ዝ፦). In the upcoming
cases, it is chosen for the generator’s minimum power as 0 (𝑃፦ = 0) for simplicity.

3.4.1. Constant Power Region
Intuitively, the load will inform its demand to other nodes, creating a power mismatch in the node,
which can be found in (3.8). Due to this power mismatch, the generator should produce the desired
amount of power. However, the LMP should be equal to its price first to produce power. Therefore, it
is necessary to increase the LMP due to power mismatch. Meanwhile, one grid should have the similar
price if there is no congestion. Equation (3.7) in the LMP update represents the LMP agreement of a
node with its neighboring node(s). Therefore, the LMP should update like the following way:

𝜆፦(𝑙 + 1) = 𝜆፦(𝑙) − 𝛼᎘፮
𝜕ℒ
𝜕𝑢፦

+ 𝛼᎘᎘
𝜕ℒ
𝜕𝜆፦

(3.17)

where 𝛼᎘፮ and 𝛼᎘᎘ are the tuning parameters that will be explained in the following subsections.
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Figure 3.1: Relation between power (x-axis) and LMP (y-axis) when the generator has a linear cost function. Each red
dot represents the power and LMP for every iteration. The result of LMP and power calculation is bounded by this

graph. In the upcoming cases, it is chosen for the generator’s minimum power as 0 (ፏᑞ ዆ ኺ) for simplicity.

Figure 3.2: Relation between power (x-axis) and LMP (y-axis) when the generator has a quadratic cost function. The
symbol ፥ denotes the iteration counter. During the marginal generator region, the LMP changes according to the power
generation value. In the upcoming cases, it is chosen for the generator’s minimum power as 0 (ፏᑞ ዆ ኺ) for simplicity.
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Formulation for 𝛼᎘፮
The term 𝛼᎘፮ is formulated so that 𝜆፦ as this node’s LMP can resemble 𝜆፧, the other nodes’ (or node’s)
LMP. If it occurs, it means that the lambda reaches a consensus. To attempt this approach, (3.17) is
rewritten by neglecting Ꭷℒ

Ꭷ᎘ᑞ
and expanding Ꭷℒ

Ꭷ፮ᑞ
:

𝜆፦(𝑙 + 1) = 𝜆፦(𝑙) − 𝛼᎘፮(𝜆፦ ∑
፧∈጖ᑞ

𝐺፩፦,፧ − ∑
፧∈጖ᑞ

𝜆፧𝐺፩፦,፧ + ∑
፧∈጖ᑞ

𝐺፩፦,፧(𝜇፦,፧ − 𝜇፧,፦)) (3.18)

To simplify things, there is no congestion in the grid. Hence, all the 𝜇 can be ignored:

𝜆፦(𝑙 + 1) = 𝜆፦(𝑙) − 𝛼᎘፮(𝜆፦ ∑
፧∈጖ᑞ

𝐺፩፦,፧ − ∑
፧∈጖ᑞ

𝜆፧𝐺፩፦,፧) (3.19)

Since the desired solution is simply 𝜆፦ = 𝜆፧, therefore:

𝛼᎘፮ =
𝑘

∑፧∈጖ᑞ 𝐺
፩
፦,፧

𝑘 = 1 (3.20)

𝜆፦(𝑙 + 1) = 𝜆፦(𝑙) −
1

∑፧∈጖ᑞ 𝐺
፩
፦,፧

(𝜆፦ ∑
፧∈጖ᑞ

𝐺፩፦,፧ − ∑
፧∈጖ᑞ

𝜆፧𝐺፩፦,፧) (3.21)

𝜆፦(𝑙 + 1) = 𝜆፦(𝑙) − 𝜆፦ + 𝜆፧ (3.22)

𝜆፦(𝑙 + 1) = 𝜆፧ (3.23)

However, if k = 1 as stated in (3.20), 𝜆፦ will directly become 𝜆፧ and the node 𝑚 update oscillates
against 𝑛. To overcome the problem, 𝑘 should be set to 0.5 to give a sense that node 𝑚 does half and
so does node 𝑛. It can be concluded that:

𝛼᎘፮ =
0.5

∑፧∈጖ᑞ 𝐺
፩
፦,፧

[ V
W
] (3.24)

The equations hold for the region where the generator is at its maximum power without satisfying
the demand. The LMP will continue to search for another generator which has the next low price.

Equation (3.24) partly answers the research question 1. The tuning parameter is formulated based
on a physical interpretation that in the solution, the LMP has to be identical for a connected two nodes
without any congestion and losses.

Formulation for 𝛼᎘᎘
The second derivation term in (3.17) expresses the power mismatch in the node, referred to (3.8). The
tuning parameter 𝛼᎘᎘ then represents the rate of change in the LMP regarding power mismatch. The
value is estimated as the ratio between the order of the LMP and power. In this thesis’ case, the order
of the power is in kilowatts (kW). It is desired that the LMP will change 0.00001 m.u/W due to 1 W
power mismatch or equivalent with 0.01 m.u/W change due to 1 kW power mismatch. Thus:

𝛼᎘᎘ = 0.00001
m.u

Wኼ (3.25)

The tuning parameter 𝛼᎘᎘ determines the sensitivty of LMP change due to the power mismatch.
Note that this tuning factor can still be tuned and maybe ten times smaller if the power mismatch is
too high. The tuning parameter is set that way so the iteration result can follow Figure 3.1 in updating
LMP to reach its linear cost coefficient. Every case may have its faster tuning for this parameter by
setting it to a higher number.
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፦ ፧።ᑞ,ᑟ
፩S
ᑞ

Generator
ዅ፩S

ᑟ
Load

Figure 3.3: A simple load and generator grid.

3.4.2. Marginal Generator Region
After the LMP reaches the node’s marginal cost, the generator is allowed to produce power. The
power produced needs to follow the demand by detecting the power mismatch in that node. Observing
Figure 3.3, the power mismatch in the Load node triggers the Generator node to produce power. The
load in node 𝑛 will create voltage drop resulting 𝑢፦ higher than 𝑢፧ as explained in Chapter 3.5. This
condition triggers power flowing from 𝑚 to 𝑛. Based on (3.8), the generator should produce power as
much as the power flowing to satisfy the equation. Aside from the power mismatch, the LMP consensus
in (3.7) should also be taken into account. Thus:

𝑝ዝ፦(𝑙 + 1) = 𝑝ዝ፦(𝑙) + 𝛼፩᎘
𝜕ℒ
𝜕𝜆፦

+ 𝛼፩፮
𝜕ℒ
𝜕𝑢፦

(3.26)

Formulation for 𝛼፩᎘
Adding the term Ꭷℒ

Ꭷ᎘ᑞ
for the power update creates the sense on how much power should be dispatched

regarding the power mismatch. To get a smooth result, the update only needs to go half the necessary
step, resembling the LMP update in (3.24). Since the updates are done simultaneously with the voltage,
which will be discussed in the next section, the power only needs to increase a quarter from what is
required ad the voltage update will take care the other quarter.

𝛼፩᎘ = 0.25 (3.27)

Formulation for 𝛼፩፮
The second derivation term in the power updates helps the power to increase or decrease power regarding
the lambda difference between nodes. By referring to (3.26), neglecting the power mismatch term, and
applying no congestion event, the power update would be:

𝑝ዝ፦(𝑙 + 1) = 𝑝ዝ፦(𝑙) + 𝛼፩፮(𝜆፦ ∑
፧∈጖ᑞ

𝐺፩፦,፧ − ∑
፧∈጖ᑞ

𝜆፧𝐺፩፦,፧) (3.28)

Setting the 𝛼፩፮ with the same way in 𝛼᎘፮ in (3.20), it will result:

𝑝ዝ፦(𝑙 + 1) = 𝑝ዝ፦(𝑙) + (𝜆፦ − 𝜆፧) (3.29)

Therefore, 𝑘 has to be set as the ratio of the order of the power (in W) with the LMP (expressed
in m.u/W). This formulation resemblance 𝛼᎘፮ in subsection 3.4.1 except that it is the inverse ratio. It
is desired that the power should change by 1 kW with respect to 1 m.u/W LMP difference. Hence, the
formulation is:

𝛼፩፮ =
1000WᎴ

m.u

∑፧∈጖ᑞ 𝐺
፩
፦,፧

[ V
W
] (3.30)

3.5. Voltage Updates
A voltage difference makes current and power flow possible. If we see Figure 3.3 for a simple model,
the current needs to flow from the generator to the load by making the voltage in the load lower than
the generator. This will happen if the load node reduces its voltage. The suitable differential is (3.8)
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1 2 3 4
𝑝ዝኻ

30 kW
4𝑝ዝኻm.u

𝑝ዝኼ
100 kW

17.86𝑝ዝኼm.u

𝑝ዝኽ
-40 kW
0 m.u

𝑝ዝኾ
76 kW

9.82𝑝ዝኾm.u

Figure 3.4: Simple four node radial grid with one load and three distributed generators. Without any losses and
congestion, the load should be satisfied from the generator in node one first (the cheapest) and take the remaining from
the generator in node 4 (the next cheapest). The generation cost has a unit of m.u which stands for monetary unit. The

notes in the units from top to bottom are: unit’s name, unit’s capacity (positive for generator and negative for the
load), and unit’s cost function.

which represents the power mismatch. The load with negative 𝑝ፒ፦ will turn (3.8) to a positive value.
Therefore, the existing voltage value should be subtracted by (3.8).

𝑢፦(𝑙 + 1) = 𝑢፦(𝑙) − 𝛼፮᎘
𝜕ℒ
𝜕𝜆፦

(3.31)

Formulation for 𝛼፮᎘
The voltage update is basically the reverse approach of the power update. In the power update, If (3.8)
is positive, meaning to much power flowing from node 𝑚, the power increase its value. In the voltage
update, the voltage reduces its value to decrease the power flow and ultimately satisfy the nodal power
(zero power mismatch). As mentioned in subsection 3.4.2, the voltage does a quarter step since the
power also does a quarter step in the update. Together, they go half to the solution.

𝛼፮᎘ =
0.25

∑፧∈጖ᑞ 𝐺
፩
፦,፧

[ V
W
] (3.32)

3.6. Dual Variable for Power Limit
The lambda consensus results in identical figures for every node (without congestion in any line). To
satisfy (3.6), 𝜇ፏ፦ and 𝜇ፏ፦ should active as the difference between its price (𝐵፦) and the LMP. Both dual
variables are calculated by the equations below:

𝜇ፏ፦(𝑙 + 1) = {
0 if 𝑝ዝ፦(𝑙 + 1) ≤ 𝑃

ዝ
፦

𝜇ፏ፦(𝑙) − 𝛽ፏ፩
Ꭷℒ
Ꭷ፩Ꮥᑞ

if 𝑝ዝ፦(𝑙 + 1) > 𝑃
ዝ
፦

(3.33)

𝜇ፏ፦(𝑙 + 1) = {
0 if 𝑝ዝ፦(𝑙 + 1) ≥ 𝑃ዝ፦
𝜇ፏ፦(𝑙) + 𝛽ፏ፩ Ꭷℒ

Ꭷ፩Ꮥᑞ
if 𝑝ዝ፦(𝑙 + 1) < 𝑃ዝ፦

(3.34)

𝛽ፏ፩ = 𝛽
ፏ
፩ = 0.5 (3.35)

Both parameters have value if the power in the node exceeds the upper and lower limit.

Sample Case for Non-Congested Line
The development of the algorithm is valid for a lossless case without congestion. For a simple case,
Figure 3.4 shows a grid with one load and three distributed generators with a different price. The desired
solution is that the cheapest generator (node 1) dispatches all its power. Since its capacity is below
the load capacity, the remaining power should be transferred from the next cheapest generator (node
4). The algorithm works as desired. The converged solution presented in Figure 3.5 and Figure 3.6
follow exactly the dersired result. Moreover, no oscillation occurs between the LMP and power. Power
changes only occur when the LMP stays constant, following Figure 3.1. From Figure 3.5, the speed of
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Figure 3.5: Locational Marginal Price (LMP) at every node for the grid in Figure 3.4. The values only rise during
constant power region (maximum or minimum power).
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Figure 3.6: Power generation in each node for the grid in Figure 3.4. The power only updates when the LMP has
reached the marginal price. For instance, ፩ᏕᎳ only updates when in Figure 3.5, ᎘Ꮃ is constant.
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Figure 3.7: Simple three node serial case as an example. The red line depicts a limited power transfer of 25kW. The
ኾ፩ᏕᎳ m.u unit (cheaper) cannot produce power more than 25kW, and the remaining 15kW will be handled by the

ዃ፩ᏕᎵ m.u unit (more expensive), making both of them marginal generators.

rise of the value from 0 to the iteration where the power starts updating is determined by 𝛼᎘᎘ . Increasing
this tuning parameter may lead to a faster rise of the LMP, but it can cause the LMP from the more
expensive generator to reach its marginal price. If that happens, there will be two marginal generators,
and it will need some time for the expensive generator to turn the power off.

Up until this point, Figure 3.1-3.2 alongside with the equations of LMP, power, and voltage update
including their respective tuning parameters have answered the research question 1 for the lossless and
non-congested case. In Figure 3.1 and 3.2, the generator can produce power only when the LMP is more
or equal the linear cost coefficient or the market price. This is how the physical interpretation is used
to update the power and the LMP. As a result, the no oscillation occurs between the LMP and power.
In the LMP update itself, the LMP between nodes should be the same in the absence of losses and
congestion. Therefore, the tuning parameter is formulated as (3.24) so the derivation in (3.19)-(3.23)
works. In the voltage update, the tuning parameter (3.32) is formulated so that the voltage increase or
decrease its value due to power mismatch (3.8). The coefficient 0.25 is taken so the voltage only solves
0.25 part and the power does also 0.25 in (3.26). The first order of Karesh Kuhn Tucker conditions are
studied to produce an oscillation-free result in Fig 3.5 and 3.6.

The results show that it takes 500 iterations to reach the convergence. The convergence is relatively
slow compared to [14, 15] since the algorithm works conservatively. It means that combined, the power
and the voltage solves 50% of the mismatch instead of going too high and reduce it afterward. Moreover,
the LMP increases slowly to make sure that the cheap generator reaches its maximum power and let
the more expensive one produce. Besides, it also avoids the LMP from another generator which has a
higher price reaches its price before the cheaper generator produces its maximum power. Consequently,
the calculation needs some extra iteration to eliminate the unnecessary generated power.

3.7. Congestion Management
Since there is always a current limitation (in the lossless case, power), congestion in a line needs to
be considered. In Figure 3.7 the load can be fulfilled by activating the cheaper unit only. However,
it is not possible since the line limits the power transfer. The only solution is to enable and get the
power from the more expensive unit after updating the price up to the more expensive unit’s LMP.
With the cheaper unit still being a marginal generator (supplying power within its range), the LMP
for the cheaper unit has to remain constant. Therefore, there will be an LMP difference between both
generators and 𝜇፦,፧ will be higher than zero.

3.7.1. Area Separation
In the case of Figure 3.7, both generators will become marginal which means they both operate at their
marginal price. Ultimately it would divide the grid into two areas. The first area consists of node 1
only, operating at its own price while the other area consists of node 2 and 3 operating at node 3’s
price.

Based on that fact, a new approach to treat this congestion is purposed. Whenever the congestion
is sensed from the sending end (node 1), node 1 is no longer consider node 2 as its neighbor for LMP
consensus. In (3.7), node 2 will be excluded from 𝑛 ∈ Ω፦዆ኻ. The exclusion does not occur for the power
mismatch in (3.8) since they are still physically connected. This condition also applies to node 1 from
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Figure 3.8: Locational Marginal Price (LMP) at every nodes for the grid in Figure 3.7. In the solution, the grid is
divided into two areas with different price to keep the generators as marginal generators

node 2 point of view.
When the voltage update results in excessive power flow, the voltage in the sending end adjusts its

voltage so the power flow matches the power flow limit.

𝑢፦(𝑙 + 1) =
𝑃፦,፧

∑፧∈጖ᑞ 𝐺
፩
፦,፧

+ 𝑢፧(𝑙) (3.36)

By separating these nodes, the LMP consensus happens separately for both areas. The dual variable
𝜇፦,፧ is no longer useful and can be calculated manually as the LMP difference between both nodes.

𝜇፦,፧(𝑙 + 1) = {
0 if 𝑢፦ < 𝑢፧
𝜆፦ − 𝜆፧ if 𝑢፦ > 𝑢፧

(3.37)

With a limited power transfer, the three node grid is separated into two areas with different LMP as
seen in Figure 3.8. The separation starts happening when the power flow from node 2 to 3 violates the
boundary (20 kW) in Figure 3.12 and 𝜇ኼ,ኽ starts to rise from zero in Figure 3.9. During the separation
process, generator in node 1 reduces its power to satisfy the power balance as depicted in Figure 3.10
and the voltage of node 1 adjusts its value as shown in Figure 3.11.

3.7.2. Activation of the Dual Variable
This area separation cannot be applied in a meshed grid where loops exist. Figure 3.13 shows an
example of a simple four node meshed grid where congestion occurs in one of the lines. In this case,
area separation is not allowed since the connection of node 3-2-1-4 is non-congested and should have
the same LMP. When the case is run through a centralized method, it results as in Table 3.1 where
all the LMP are different and the dual variable 𝜇፦,፧ is not the difference between the LMP from the
two ends of the congested line. Therefore, the LMP and 𝜇፦,፧ should be updated naturally. When a
congestion occurs between node 𝑚 and 𝑛, the voltage is updated with (3.36) and the node 𝑛 chosen
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Figure 3.9: Dual variable for the line limit for the grid in Figure 3.7. The value of ᎙Ꮃ,Ꮄ starts rising when the value of
the power flow exceeds the maximum power transfer.
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Figure 3.10: The power generation in each node for the grid in Figure 3.7
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Figure 3.11: The voltage at each node for the grid in Figure 3.7. When the congestion occurs, ፮Ꮃ is forced to a certain
value so the power flow flowing from node 1 and 2 is the power flow limit ፏᎳ,Ꮄ.

0 50 100 150 200 250 300

Iteration

30000

20000

10000

0

10000

20000

30000

𝑝 ፦
፧[
𝑊
]

𝑝ኻኼ
𝑝ኼኻ
𝑝ኼኽ
𝑝ኽኼ

Figure 3.12: The power flowing in the line for the grid in Figure 3.7 where the power in line connecting node 1 and 2 is
limited to 20 kW.
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Figure 3.13: Four node mesh with congestion from node 3 to 4 of 20kW. The LMP values for each node is presented in
Table 3.1.

is the line that is violated the most if 𝑚 is connected to multiple congested line to node 𝑛. The dual
variable 𝜇፦,፧ is updated such as:

𝜇፦,፧(𝑙 + 1) = 𝜇፦,፧(𝑙) + 𝛽፦,፧
𝜕ℒ
𝜕𝜇፦,፧

(3.38)

It is updated due to the excess power referred to the line limit. The tuning parameter 𝛽፦,፧ merely
is determined by estimating the speed of 𝜇 increase because of the excess power flow.

𝛽፦,፧ = 0.00005 m.u

Wኼ (3.39)

Table 3.1: The result of centralized optimal power flow for the case in Figure 3.13, conducted by fmincon function in
MATLAB. The result shows different value of LMP for every node.

𝜆ኻ 𝜆ኼ 𝜆ኽ 𝜆ኾ 𝜇ኽ,ኾ
6 m.u/kW 3 m.u/kW 0 m.u/kW 9 m.u/kW 12 m.u/kW

Figure 3.14-3.16 prove that the distributed approach has the same value with the centralized sim-
ulation, conducted with fmincon in Matlab. The nodes have different LMP even though only one
congestion occurs to satisfy the LMP consensus in (3.7) and the fact that LMP should be equal to the
linear cost coefficient for generating power as depicted in Figure 3.1.

The methods Area Separation and Dual Variable Activation answer the research question 2. The
new approach is by having the voltage updated, so the power flow is clamped to the power flow limit
as in (3.36) for both method. The Area Separation Method is also a new approach to solve a congested
case for a radial grid. However, for the meshed grid, the dual variable of the line limit should be updated
as the C+I method explained.
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Figure 3.14: Locational Marginal Price (LMP) at every node for the grid in Figure 3.13. The LMP for each node is
similar with the result from the centralized simulation presented in Table 3.1.
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Figure 3.15: The dual variable for the line limit during the congestion in the line connecting node 3 and 4 for the grid in
Figure 3.13.
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Figure 3.16: The power generation in every node for the grid in Figure 3.13. Node 3 generation is limited due to the
power flow limit ፏᎵ,Ꮆ

3.8. Summary of the Tuning Parameters
By having formulated all the tuning parameters, Table 3.2 summarizes the basic tuning parameter for
all the Lossless OPF case that will be discussed. Some parameters which are determined by estimation
could be changed depending on the situation.

3.9. Sample Cases
This section presents sample cases for the lossless OPF. The cases chosen are a four node radial grid
to compare both of the congestion management methods and a six node meshed to show the optimized
solution where a bigger loop exists.

The radial case taken as the example is depicted in Figure 3.17. It was a four node grid with various
type generators and a fixed load. The load is actually able to be satisfied by the cheap generator.
However, the presence of congestion between node 2 and 3 limits the power transfer and the remaining
power needs to come from the more expensive generator. In the result, the grid is divided into two
areas, indicated by two different lambda values at the end of the iteration.

Figure 3.18 -3.22 depicts the results of this case using area separation method. Compared to Fig-
ure 3.5, the LMP, and power have the same curve until a certain point where node 1 is a marginal
generator. At some point, node 1 produces too much and is limited by the congestion occurring be-
tween node 2 and 3. Therefore, 𝜆ኼ in Figure 3.18 changes its value drastically as node 3 is now excluded
from node 2 LMP update. In this point, 𝜆ኼ only reaches consensus with 𝜆ኻ. When node 1 produces
more than the congestion, the power is decreased due to the lambda difference between node 1 and
2, happening right after the congestion occurs. The rate of change in the power due to the lambda
mismatch is determined by 𝛼፩፮ in (3.26).

When the Dual Variable Activation method is applied, during the event of congestion, the 𝜇 increases
causing 𝜆ኼ to follow 𝜆ኻ and neglecting the increase of 𝜆ኽ as 𝜕ℒ/𝜕𝑢፦ = 0 is satisfied by having 𝜇ኼ,ኽ in
Figure 3.24. The rise of the dual variable 𝜇 disturbs the LMP update, hence it creates oscillations in the
LMP as shown in Figure 3.23. Area Separation method shows a faster convergence time and smoother
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Table 3.2: Tuning parameter for all the Lossless OPF cases.

Tuning Parameter Purpose Value

𝛼᎘፮
LMP update regarding the LMP
consensus as explained in 3.4.1

ኺ.኿
∑ᑟ∈ᐎᑞ ፆᑡᑞ,ᑟ

[ V
W
]

𝛼᎘᎘
LMP update regarding the

power mismatch in the node as
explained in 3.4.1

0.00001 m.u
WᎴ

𝛼፩᎘
Power update regarding power

mismatch in the node as
explained in 3.4.2

0.25

𝛼፩፮
Power update regarding the

LMP consensus as explained in
3.4.2

ኻኺኺኺWᎴ
m.u

∑ᑟ∈ᐎᑞ ፆᑡᑞ,ᑟ
[V.W

m.u
]

𝛼፮᎘
Voltage update regarding the

power mismatch as explained in
3.5

ኺ.ኼ኿
∑ᑟ∈ᐎᑞ ፆᑡᑞ,ᑟ

[ V
W
]

𝛽፦,፧
Dual variable update regarding
the difference between the line
limit and the actual power flow

as explained in 3.7.2

0.00005 m.u
WᎴ

𝛽ፏ
Dual variable (maximum power)

update regarding the LMP
difference with the marginal

cost as explained in 3.6

0.5

𝛽ፏ
Dual variable (minimum power)

update regarding the LMP
difference with the marginal

cost as explained in 3.6

0.5
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Figure 3.17: Four node serial case with congestion from node 2 to 3.

results. However, this method is not globally useful since it cannot be applied where congestion in a
loop exists.

In this meshed case, it is evident that the algorithm works after the case is scaled up to 6 nodes.
Figure 3.29-3.33 show that the algorithm is converged. Congestion occurring in a meshed grid causes
the nodes to have different LMP value.
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Figure 3.18: Locational Marginal Price (LMP) at every node for a congested four node radial grid using Area Separation
Method for the grid in Figure 3.17.
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Figure 3.19: Dual variable for the line limit using Area Separation Method for the grid in Figure 3.17. The ᎙ is
calculated by taking the difference between the LMP of the nodes at both end of the congested line.
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Figure 3.20: Power generation in every node for the grid in Figure 3.17 using Area Separation Method.
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Figure 3.21: Voltage in every node for the grid in Figure 3.17 using Area Separation Method.
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Figure 3.22: The power flow in every line for the grid in Figure 3.17 using Area Separation Method.
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Figure 3.23: Locational Marginal Price (LMP) at every node for the grid in Figure 3.17 using Dual Variable Activation
Method.
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Figure 3.24: Dual variable for the line limit for the grid in Figure 3.17 using Dual Variable Activation Method. The ᎙ is
calculated by increasing slowly the value regarding the difference between the actual power flow and its limit.
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Figure 3.25: Power generation in every node for for the grid in Figure 3.17 using Dual Variable Activation Method.
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Figure 3.26: The voltage at every node for for the grid in Figure 3.17 using Dual Variable Activation Method.
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Figure 3.27: The power flow in every line for the grid in Figure 3.17 using Dual Variable Activation Method.
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Figure 3.28: A six node mesh topology with several congestion (denoted by the red lines).
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Figure 3.29: Locational Marginal Price (LMP) for the grid in Figure 3.28. Due to the congestion, the LMP are different
in every node.
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Figure 3.30: Dual variable of the congested line for the grid in Figure 3.28. The congestion occurs in line 2-3 while limit
in line 1-6 is not violated.
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Figure 3.31: The power generation in each node for the grid in Figure 3.28. Due to the congestion, the generator at
node 1 does not produce all the power and the unit at node 3 covers the remaining load demand.
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Figure 3.32: Voltage at each node for the grid in Figure 3.28.
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Figure 3.33: The power flow in each line for the grid in Figure 3.28.





4
Algorithm for the Distributed

Optimal Power Flow: Exact Optimal
Power Flow for DC Distribution Grid

After having covered the lossless case in the previous chapter, this chapter will include the lossless to
solve optimization problems in DC grid since a lossless case practically does not exist. The formulation
of the grid includes losses in the grid and is defined as the Exact OPF.

4.1. Problem Definition
While the objective stays the same with intrinsically minimizing the losses, (3.1) is rewritten below:

min ∑
፦∈𝒩

𝐴፦(𝑝ዝ፦)ኼ + 𝐵፦𝑝ዝ፦ (4.1)

subject to

𝑝ዝ፦ = 𝑢፦ ∑
፧∈጖ᑞ

𝐺፦,፧(𝑢፦ − 𝑢፧) (4.2)

𝐺፦,፧(𝑢፦ − 𝑢፧) ≤ 𝐼፦,፧ (4.3)

𝑃ዝ፦ ≤ 𝑝
ዝ
፦ ≤ 𝑃

ዝ
፦ (4.4)

𝑈፦ ≤ 𝑢፦ ≤ 𝑈፦ (4.5)

The first constraint is the modified representation of the nodal power. Instead of using nominal
voltage to transform current to power, the actual voltage of the node is applied. Consequently, the power
flowing out in the sending node will be different than the power in the receiving end. Additionally, to
get the least amount of losses, the voltage should be as high as possible to reduce the current. Therefore,
an absolute limit of voltage level should be set as in (4.5).

4.2. Lagrangian Function
The Lagrangian function is formulated as the lossless OPF. In the exact OPF, two addition of the dual
variable of the inequality condition appear.
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ℒ = ∑
፦∈𝒩

(𝐴፦(𝑝ዝ፦)ኼ + 𝐵፦𝑝ዝ፦)

+ ∑
፦∈𝒩

𝜆፦𝑢፦( ∑
፧∈጖ᑞ

𝐺፦,፧(𝑢፦ − 𝑢፧) − 𝑝ዝ፦)

+ ∑
፦∈𝒩

∑
፧∈጖ᑞ

𝜇፦,፧(𝐺፦,፧(𝑢፦ − 𝑢፧) − 𝐼፦,፧)

+ ∑
፦∈𝒩

𝜇ፏ፦(𝑝ዝ፦ − 𝑃
ዝ
፦)

+ ∑
፦∈𝒩

𝜇ፏ፦( − 𝑝ዝ፦ + 𝑃ዝ፦)

+ ∑
፦∈𝒩

𝜇ፔ፦(𝑢፦ − 𝑈፦)

+ ∑
፦∈𝒩

𝜇ፔ፦( − 𝑢፦ + 𝑈፦)

(4.6)

4.3. Karesh Kuhn Tucker Conditions
First Order Optimality Conditions
The first order conditions have a different derivation for the 𝜕ℒ/𝜕𝑢፦ in (4.9). Another term appears
due to the non-linearity of the equality constraint (4.2).

𝜕ℒ
𝜕𝑝ዝ፦

= 2𝐴፦𝑝ዝ፦ + 𝐵፦ (4.7)

− 𝜆፦ + 𝜇ፏ፦ − 𝜇
ፏ
፦ = 0 (4.8)

𝜕ℒ
𝜕𝑢፦

= 𝜆፦ ∑
፧∈጖ᑞ

𝐺፦,፧(𝑢፦ − 𝑢፧)

+ 𝜆፦𝑢፦ ∑
፧∈጖ᑞ

𝐺፦,፧ − ∑
፧∈጖ᑞ

𝜆፧𝑢፧𝐺፦,፧

+ ∑
፧∈጖ᑞ

𝐺፦,፧(𝜇፦,፧ − 𝜇፧,፦) + 𝜇ፔ፦ − 𝜇
ፔ
፦

(4.9)

𝜕ℒ
𝜕𝜆፦

= −𝑝ዝ፦ + 𝑢፦ ∑
፧∈጖ᑞ

𝐺፦,፧(𝑢፦ − 𝑢፧) = 0 (4.10)

𝜕ℒ
𝜕𝜇፦,፧

= ∑
፧∈጖ᑞ

𝐺፦,፧(𝑢፦ − 𝑢፧) − 𝐼፦,፧ ≤ 0 (4.11)

𝜕ℒ
𝜕𝜇ፏ፦

= 𝑝ዝ፦ − 𝑃
ዝ
፦ ≤ 0 (4.12)

𝜕ℒ
𝜕𝜇ፏ፦

= −𝑝ዝ፦ + 𝑃ዝ፦ ≤ 0 (4.13)

𝜕ℒ
𝜕𝜇ፔ፦

= 𝑢፦ − 𝑈፦ ≤ 0 (4.14)

𝜕ℒ
𝜕𝜇ፔ፦

= −𝑢፦ + 𝑈፦ ≤ 0 (4.15)
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Complementary Slackness Conditions
The complementary slackness conditions taken from the constraints are:

𝜇፦,፧(𝐼፦,፧ − ∑
፧∈጖ᑞ

𝐺፦,፧(𝑢፦ − 𝑢፧)) = 0 (4.16)

𝜇፧,፦( − 𝐼፦,፧ + ∑
፧∈጖ᑞ

𝐺፦,፧(𝑢፦ − 𝑢፧)) = 0 (4.17)

𝜇ፏ፦(𝑃
ዝ
፦ − 𝑝ዝ፦) = 0 (4.18)

𝜇ፏ፦(𝑝ዝ፦ − 𝑃ዝ፦) = 0 (4.19)

𝜇ፏ፦(𝑈፦ − 𝑢፦) = 0 (4.20)

𝜇ፔ፦(𝑢፦ − 𝑈፦) = 0 (4.21)

(4.22)

Positivity Conditions
All the dual variable regarding the limits have to be positive. It is written as:

𝜇፦,፧ , 𝜇፧,፦ , 𝜇ፏ፦ , 𝜇
ፏ
፦ , 𝜇ፔ፦ , 𝜇

ፔ
፦ ≥ 0 (4.23)

4.4. LMP and Power Updates
4.4.1. Constant Power Region
The way in updating LMP in the exact opf is the same with the lossless one. Readers can refer to
subsection 3.4.1 for the discussion about the tuning parameters formulation in the region where the
power remain constant at the minimum or the maximum. However, multiplication of the actual voltage
in the 𝑙th iteration for (𝑢፦(𝑙)) and the conductivity (𝐺፦,፧) is used instead of 𝐺፩፦,፧. Below are the
updates and the respective tuning parameters for the LMP updates.

𝜆፦(𝑙 + 1) = 𝜆፦(𝑙) − 𝛼᎘፮
𝜕ℒ
𝜕𝑢፦

+ 𝛼᎘᎘
𝜕ℒ
𝜕𝜆፦

(4.24)

Tuning Parameters

𝛼᎘፮ =
0.5

𝑢፦(𝑙) ∑፧∈጖ᑞ 𝐺፦,፧
[ V
W
] (4.25)

𝛼᎘᎘ = 0.000001 [m.u

Wኼ ] (4.26)

Through some trials, the algorithm produces better result when the LMP sensitivity regarding the
power mismatch is reduced 10 times smaller. Therefore the figure 0.000001 is chosen.

4.4.2. Marginal Generator Region
In this region, only the power should be updated while the value of the LMP depends on the power
generated. The power is updated as:

𝑝ዝ፦(𝑙 + 1) = 𝑝ዝ፦(𝑙) + 𝛼፩᎘
𝜕ℒ
𝜕𝜆፦

+ 𝛼፩፮
𝜕ℒ
𝜕𝑢፦

(4.27)

with the tuning parameter:

𝛼፩᎘ = 0.25 (4.28)

𝛼፩፮ =
10WᎴ

m.u
𝑢፦(𝑙) ∑፧∈጖ᑞ 𝐺፦,፧

[ V
W
] (4.29)



46
4. Algorithm for the Distributed Optimal Power Flow: Exact Optimal Power Flow for DC

Distribution Grid

There is a change in the numerator of 𝛼፩፮ compared to the lossless case. The change is made through
trial and error since setting up the numerator to 1000 makes the power to increase rapidly.

as discussed in 3.4.2.

4.5. Voltage Update
In the lossless OPF, the value of the nodal voltage can be arbitrary as long as the voltage differences
satisfy the power flow constraint. In the exact OPF, the value of voltage is paramount since higher
voltage means lower current and lower power losses. Having a minimized power losses will ultimately
meet the objective of minimizing production cost.

In the exact OPF, it is necessary to bring the voltage up to the upper limit. Hence, using only
power mismatch in a node is not enough since it can be satisfied in any level of voltage. Therefore,
the term 𝜕ℒ/𝜕𝑢፦ from (4.9) has to be utilized. Similarly with the lossless opf, (4.9) explains the LMP
consensus between neighboring nodes except that it now has the addition term of 𝜇ፔ፦ and 𝜇ፔ፦. Both
terms will be non zero when the voltage is at the limit. In (4.9), if 𝜆፦ < 𝜆፧, when both voltages are not
in the limit (𝜇ፔ፦ = 𝜇

ፔ
፦ = 0) and no congestion occurs (𝜇፦,፧ = 0), the term 𝜕ℒ/𝜕𝑢፦ will be less than 0

(assuming power flowing from 𝑚 to 𝑛) and the voltage should become higher. This is due to the fact
that 𝜆፦ < 𝜆፧. Therefore, with a proper tuning and a negative sign, (4.9) brings the voltage up to the
limit.

𝑢፦(𝑙 + 1) = 𝑢፦(𝑙) − 𝛼፮᎘
𝜕ℒ
𝜕𝜆፦

− 𝛼፮፮
𝜕ℒ
𝜕𝑢፦

(4.30)

𝛼፮᎘ =
0.25

𝑢፦(𝑙) ∑፧∈጖ᑞ 𝐺፦,፧
[ V
W
] (4.31)

𝛼፮፮ =
5V.W

m.u
𝑢፦(𝑙) ∑፧∈጖ᑞ 𝐺፦,፧

[ Vኼ

m.u
] (4.32)

The updated value is then forced to be equal to the limit if it violates the boundaries. The voltage
for DC microgrids is expected to have a value in a range around 350 V (as 1 p.u) [6]. Therefore, the
voltage is limited to 325 V (0.93 p.u) and 375 V (1.07 p.u) for the lowest and the highest voltage
respectively.

Formulation for 𝛼፮᎘
The reason behind this tuning parameter is the same as the lossless OPF. Similarly with the LMP
update, multiplication of the actual voltage in the 𝑙th (𝑢፦(𝑙)) and the conductivity (𝐺፦,፧) is used
instead of 𝐺፩፦,፧.

𝛼፮᎘ =
0.25

𝑢፦(𝑙) ∑፧∈጖ᑞ 𝐺፦,፧
[ V
W
] (4.33)

Formulation for 𝛼፮፮
The new term in the voltage update should bring up the voltage based on the lambda difference. For
a simple two-node case, the desired last term in (4.30) can be written as:

𝛼፮፮
𝜕ℒ
𝜕𝑢፦

≈ 𝑘(𝜆፦ − 𝜆፧) (4.34)

The LHS of the above equation is expanded into 𝛼፮፮ multiplied by the RHS of (4.9) with all the 𝜇
is assumed to be zero:

𝛼፮፮
𝜕ℒ
𝜕𝑢፦

= 𝛼፮፮(𝜆፦ ∑
፧∈጖ᑞ

𝐺፦,፧(𝑢፦ − 𝑢፧) + 𝜆፦𝑢፦ ∑
፧∈጖ᑞ

𝐺፦,፧ − ∑
፧∈጖ᑞ

𝜆፧𝑢፧𝐺፦,፧) (4.35)

To yield (4.34), the tuning parameter should be:
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𝛼፮፮ =
𝑘

𝑢፦(𝑙) ∑፧∈጖ᑞ 𝐺፦,፧
(4.36)

Note that the result of the above equation is only an approximation. The first term is neglected due
to the relatively small value and the division between 𝑢፦ and 𝑢፧ with 𝑢፦ is approximated to become
1. The value of 𝑘 is determined by trial and error. Smaller value of 𝑘 causes unending oscillation and
higher value leads to a very sensitive voltage variation. Ultimately, it is chosen 𝑘 = 5V.W

m.u
and (4.36) is

written as:

𝛼፮፮ =
5V.W

m.u
𝑢፦(𝑙) ∑፧∈጖ᑞ 𝐺፦,፧

[ Vኼ

m.u
] (4.37)

Equation 4.30 with its tuning parameter formulation in (4.33) and (4.36) answer the third research
question 3. The voltage is updated by having the power mismatch and LMP consensus in a node to
aim the maximum voltage possible. The tuning parameter associated with the power mismatch in
(4.33) is formulated for the voltage to go up or down a quarter step. Meanwhile, the other tuning
parameter (4.36) is formed to have the voltage increase or decrease due to the LMP consensus and to
keep the voltage once one of the node reaches its maximum voltage.

4.6. Congestion Management
The congestion management in the exact OPF is similar with the one in the lossless OPF. The only
difference here is that instead of using power flow limit, the boundaries considered is the current flow
limit. In the real grid, power flow along the line is not the same due to the losses, but the current
remains identical. In principle, during congestion, the sending node is forced to have its voltage so that
the current flowing is precisely at the limit, 𝐼፦,፧.

𝑢፦(𝑙 + 1) =
𝐼፦,፧

∑፧∈጖ᑞ 𝐺፦,፧
+ 𝑢፧(𝑙) (4.38)

𝜇፦,፧(𝑙 + 1) = 𝜇፦,፧(𝑙) + 𝛽፦,፧
𝜕ℒ
𝜕𝜇፦,፧

(4.39)

𝛽፦,፧ = 5 Vኼm.u

Wኼ (4.40)

The value of the tuning parameter 𝛽፦,፧ is estimated, so it does not go too slow or too fast. The Dual
Variable Activation Method has to be used for solving the congestion problems. The Area Separation
Method cannot be applied even for the radial grid since the 𝜇፦,፧ in the congested line is not directly
the difference between the LMPs. Additionally, without any congestion, every LMP is different in every
node due to the losses. Therefore, the dual variable 𝜇፦,፧ should be updated step by step.

4.7. Dual Variable for Voltage Limit
Same as in Section 3.6, every inequality constraint leads to the presence of its respective 𝜇. In the
power limit, the 𝜇ፔ፦ and 𝜇ፔ፦ only appear in 𝜕ℒ/𝜕𝑝ዝ፦ which is not used in any updates. For the voltage
limit, 𝜇ፔ፦ and 𝜇ፔ፦ appear in 𝜕ℒ/𝜕𝑢፦ which appears in the important updates. The value should be
increased slowly until it is converged to the solution. Therefore, the update for these 𝜇’s resembles the
𝜇፦,፧ update.

𝜇ፔ፦(𝑙 + 1) = ℙ[𝜇ፔ፦(𝑙) + 𝛽ፔ
𝜕ℒ
𝜕𝜇ፔ፦

] (4.41)

𝜇ፔ፦(𝑙 + 1) = ℙ[𝜇ፔ፦(𝑙) + 𝛽ፔ
𝜕ℒ
𝜕𝜇ፔ፦

] (4.42)

𝛽ፔ = 𝛽ፔ = 15 m.u

Vኼ
(4.43)
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Figure 4.1: A three node radial grid with two different price generators and a load.

The tuning parameters value for 𝛽ፔ and 𝛽ፔ are determined by some trials and the results are then
observed. A lower value may decelerate the convergence rate, and higher value could disturb the updates
which employ (4.9) since it contains 𝜇ፔ፦ and 𝜇ፔ፦. At the end, the number 15 is chosen.

4.8. Limitation
The updates for all variables look the same with the lossless case except for the voltage update and
the addition of the dual variable of the voltage limit. The algorithm is then implemented for a simple
three-node radial case as in Figure 4.1.

Figure 4.2-4.5 show some converged and correct results as validated with the centralized approach.
Some parameters are then changed. The cheap generator is then set to 40kW, making it the highest
voltage at its maximum power while the marginal generator (the generator in node 3) has a lower
voltage. Figure 4.2-4.5 show unending oscillation for every parameters.

It is concluded that there is one condition that makes the problem remain unsolved. It happens
when the marginal generator is not at the highest voltage and has a linear function (𝐴፦ = 0, assuming
the marginal generator is node 𝑚). When a generator has a linear function, (4.27) is used for the power
update. The marginal power will oscillate while the LMP remains constant. It started when the other
node (node 𝑛) with constant maximum power hits the highest voltage. As it happens, the respective
𝜇ፔ፧ starts to have value and taken into account in the LMP update. It causes oscillation in 𝜆፧ and
tries to change the value of 𝜆፦. This is not possible since node 𝑚 is still in the marginal node region.
Consequently, the power oscillates due to the LMP mismatch. In the end, 𝜆፧ remains in oscillation.

The problem is overcome by letting 𝜆፦ to change due to the variation of 𝜆፧ when node 𝑚 is in
the marginal generator region. The old approach (4.44) based on [14] is employed. The updated LMP
determines the power. The LMP is updated with (4.24) since power mismatch is still considered to
determine the amount of power necessary. Based on this fact, only cases with a quadratic cost function
can be implemented.

𝑝ዝ፦(𝑙 + 1) =
𝜆፦(𝑙 + 1) − 𝐵፦

2𝐴፦
(4.44)

As a consequence, the power 𝑝ዝ፦ is set with respect to the updated 𝜆፦. Ultimately, 𝜆፧ and 𝜆፦ can
converge to the solution. Figure 4.11-4.14 show the solution result for the case in Figure 4.10 which
resembles the case in Figure 4.1 with the updated node 1 generator capacity and modified cost function
of the generators.
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Figure 4.2: Locational Marginal Price (LMP) at every nodes for the grid in Figure 4.1. The LMP are different in every
nodes due to the losses as discussed in Chapter 2 and the receiving node has the highest price to pay for the losses.
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Figure 4.3: The power generated in every nodes for the grid in Figure 4.1. The overall power generated is slightly more
than the load to compensate the losses.
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Figure 4.4: The voltage of every node for the grid in Figure 4.1. To minimize the losses, the voltage needs be at the
higher limit so the current is as minimized as possible.
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Figure 4.5: The dual variable of the voltage limit for the grid in Figure 4.1.
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Figure 4.6: Locational Marginal Price (LMP) at every nodes for the grid in Figure 4.1 with increased node 1 generator
capacity to 40 kW. Oscillation occurs for all the nodes which are not in the marginal generator region.
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Figure 4.7: The power generation in every node for the grid in Figure 4.1 with increased node 1 generator capacity to 40
kW. Oscillation occurs for the node which is in the marginal generator region to follow the oscillation in the LMP.
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Figure 4.8: The voltage at every node which show unending oscillation for the grid in Figure 4.1 with increased node 1
generator capacity to 40 kW. When the highest voltage (፮Ꮃ) reaches the limit, the corresponding dual variable ᎙ᑌᎳ

appears and gets involved in the LMP calculation.
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Figure 4.9: The dual variable for the voltage limit for the grid in Figure 4.1 with increased node 1 generator capacity to
40 kW.
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Figure 4.10: A three node radial grid with two different price generators and a load. The generator in node 1 has a
higher capacity and both the generators have a quadratic cost function.
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Figure 4.11: Locational Marginal Price (LMP) at every nodes for the grid in Figure 4.10. By letting the LMP to
oscillate, all the parameters are converged to the solution.
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Figure 4.12: The power generation in every node for the grid in Figure 4.10. As for the marginal generator in node 3,
the power generation is set with respect to its LMP.
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Figure 4.13: The voltage at every node for the grid in Figure 4.10.
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Figure 4.14: The dual variable for the voltage limit for the grid in Figure 4.10.
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4.9. Summary of the Tuning Parameters
Based on the discussion in this chapter, the tuning parameters can now be summarized in Table 4.1.

Table 4.1: Tuning parameter for all the Exact OPF cases.

Tuning Parameter Purpose Value

𝛼᎘፮
LMP update regarding the LMP
consensus as explained in 4.4.1

ኺ.኿
፮ᑞ(፥) ∑ᑟ∈ᐎᑞ ፆᑞ,ᑟ

[ V
W
]

𝛼᎘᎘
LMP update regarding the

power mismatch in the node as
explained in 4.4.1

0.000001 m.u
WᎴ

𝛼፩᎘
Power update regarding power

mismatch in the node as
explained in 4.4.2

0.25

𝛼፩፮
Power update regarding the

LMP consensus as explained in
4.4.2

ኻኺWᎴ
m.u

፮ᑞ(፥) ∑ᑟ∈ᐎᑞ ፆᑞ,ᑟ
[V.W

m.u
]

𝛼፮᎘
Voltage update regarding the

power mismatch as explained in
4.5

ኺ.ኼ኿
፮ᑞ(፥) ∑ᑟ∈ᐎᑞ ፆᑞ,ᑟ

[ V
W
]

𝛼፮፮
Voltage update regarding the

LMP update as explained in 4.5
኿V.W

m.u
፮ᑞ(፥) ∑ᑟ∈ᐎᑞ ፆᑞ,ᑟ

[ VᎴ

m.u
]

𝛽፦,፧
Dual variable update regarding
the difference between the line
limit and the actual power flow

as explained in 4.6

5 VᎴm.u
WᎴ

𝛽ፏ
Dual variable (maximum power)

update regarding the LMP
difference with the marginal

cost as explained in 3.6

0.5

𝛽ፏ
Dual variable (minimum power)

update regarding the LMP
difference with the marginal

cost as explained in 3.6

0.5

𝛽ፔ

Dual variable (maximum
voltage) update regarding the

voltage different with the
maximum limit as explained in

4.7

15 m.u
VᎴ

𝛽ፔ

Dual variable (minimum
voltage) update regarding the

voltage different with the
minimum limit as explained in

4.7

15 m.u
VᎴ

4.10. Voltage Limit in the DC Distribution Grid
Being different with the lossless OPF, the losses value needs to be considered. In the lossless OPF,
a load can take power from any cheapest generator wherever it is located. In the exact OPF, taking
power from a remote generator leads to higher production to overcome the losses. As a consequence,
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Figure 4.15: Four node serial case with a long line connecting node 2 and 3 (depicted in blue). The line is very long, and
due to the voltage limits and losses, all the required power cannot be delivered from the cheapest generator in node 2.
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Figure 4.16: Locational Marginal Price (LMP) at every nodes for the grid in Figure 4.15. In the solution, the grid is
divided into two areas with different price to keep the generators as marginal generators.

the unnecessary extra cost has to be spent for this extra power. Taking power from an expensive yet
close generator may be a cheaper solution. Moreover, due to the presence of the voltage limit, the
power transfer is limited. The case in Figure 4.15 show a grid in where a long line cable is present. In
this case the numerator in 𝛼፮፮ is set to be 1V.W

m.u
to avoid the voltage to change quickly. The results in

Figure 4.16-4.21 show the result. The LMP shows a significant difference as in congestion case as there
are two marginal generators operated in two different prices. The voltage in Figure 4.18 shows that
both there is one generator with the upper voltage limit and another generator with the lower voltage
limit. As a consequence, both the dual variables for the voltage limits are active as shown in Figure
4.20 and Figure 4.21.
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Figure 4.17: The power generation in every node for the grid in Figure 4.15. Although node 2 has the lowest price, the
load prefers to take the power from node 4 due to the long distance.
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Figure 4.18: The voltage at every node for the grid in Figure 4.15. In the grid, both voltage limits are present. The load
has the lowest voltage and the cheapest generator has the highest voltage. The load tries to take as much power as

possible from the cheapest generator.
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Figure 4.19: The current flowing in the lines for the grid in Figure 4.15. The long line has a very high resistance that
leads to a small current transfer from node 2 to node 3.
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Figure 4.20: The dual variable for the upper voltage limit for the grid in Figure 4.15.
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Figure 4.21: The dual variable for the lower voltage limit for the grid in Figure 4.15.



5
Study Case

5.1. Microcomputer Implementation

The algorithm ideally has to be run in a fully distributed manner using several computers where each of
which has its own IP address. During the simulation of a four-node grid in Figure 3.4, four computers
have to run the algorithm in parallel and exchange all necessary variables (LMP, dual variable of the
line limit, and voltage) to their neighboring nodes every iteration.

In the implementation, Raspberry-Pis (raspis) are used to represent the nodes. One extra raspi is
employed as a commander to initialize the process and stores all the variable values every iteration for
plotting without any interference in the computation. This implementation validates that the algorithm
can run without any central coordinator for calculation.

However, simulation using raspis takes some time due to the dependency of the internet connection
and the presence of actual data transfer among the raspis. Therefore, for the simulation, the algorithm is
run on a single computer. Nevertheless, it is still a fully distributed simulation. For a four-node grid case,
the computer activates four terminals, and the IP addresses are changed to local addresses (127.0.0.1-
127.0.0.4). Therefore, all information going out are looped back to that computer and the simulation
runs faster than the hardware implementation. Using multithreading in Python, all the four terminal
runs the algorithm in parallel.

5.2. Comparison with the Previous Research in Exact OPF

The previous research on the Exact OPF [13] used C+I to solve an OPF problem for a DC distribution
grid. In the approach, a DC power flow is formulated while the losses are taken into account. The
update of every variable uses constants as the tuning parameters. Compared to [13], this thesis has a
contribution in studying the meaning for each tuning parameter and aims for a faster convergence rate.
A comparison is made using the grid in Figure 5.1. Table 5.1 show the tuning parameter setup for both
algorithms and the Figure (5.2)-(5.11) show the result. However, the assumption of having a linear cost
function in [13] cannot be used in this work due to the limitation.

61
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Figure 5.1: Four node serial case with congestion from node 2 to 3. The sample case is taken from [13] with a
modification in the generators’ cost function. The quadratic cost coefficients are necessary due to the Exact OPF

algorithm limitation as explained in Chapter 4.

Table 5.1: Tuning parameter setting for the grid in Figure 5.1 using both algorithm in this work and [13]. The tuning
parameters’ purpose can be refer to Table 4.1.

Tuning Parameter Value/Formula
from This Work Value from [13]

𝛼᎘፮ ኺ.኿
፮ᑞ(፥) ∑ᑟ∈ᐎᑞ ፆᑞ,ᑟ

0.1485

𝛼᎘᎘ 0.000001 0.0052

𝛼፩᎘ N/A 0.007

𝛼፮᎘ ኺ.ኼ኿
፮ᑞ(፥) ∑ᑟ∈ᐎᑞ ፆᑞ,ᑟ

0.00025

𝛼፮፮ ኿
፮ᑞ(፥) ∑ᑟ∈ᐎᑞ ፆᑞ,ᑟ

N/A

𝛽፦,፧ 5 0.004

𝛽ፏ 0.5 0.0001

𝛽ፏ 0.5 0.0001

𝛽ፔ 15 0.004

𝛽ፔ 15 0.002

The results in Figure 5.2-5.11 show that by using the physical interpretation of the first order
optimality condition, the tuning parameter can be formulated better and reduce the iteration numbers
significantly, compared to use trial and error approach for determining the tuning parameters. This
comparison fully answers the research question 1 regarding the convergence rate since it goes from
200000 iterations to 4000 iterations.
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Figure 5.2: Locational Marginal Price (LMP) at every node for the grid in Figure 5.1.
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Figure 5.3: The power generation in every node for the grid in Figure 5.1.
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Figure 5.4: Dual variable of the line limit for the grid in Figure 5.1.
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Figure 5.5: Voltage at every node for the grid in Figure 5.1.
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Figure 5.6: The current flowing in every line for the grid in Figure 5.1.
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Figure 5.7: Locational Marginal Price (LMP) at every node for the grid in Figure 5.1 using the algorithm from [13].
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Figure 5.8: The power generation in every node for the grid in Figure 5.1 using the algorithm from [13].
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Figure 5.9: Dual variable of the line limit for the grid in Figure 5.1 using the algorithm from [13].
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Figure 5.10: Voltage at every node for the grid in Figure 5.1 using the algorithm from [13].
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Figure 5.11: The current flowing in every line for the grid in Figure 5.1 using the algorithm from [13]
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Figure 5.12: A six node meshed grid with line limit (denoted by the red lines), identical with Figure 3.28. The line
connecting node 1 to node 6 has a current limit of 50 A while the current flowing in the line from node 2 to node 3 is

limited to 20 A

5.3. Simulation with More Nodes

This section shows that the Exact OPF algorithm can work in the case with more generators and loads
in the grid. The first case chosen is the 6-node case from Chapter 3, and the other case is a 9-bus IEEE
test system.

5.3.1. Meshed 6 Node Case

The meshed grid topology in Figure 5.12 is identical with the grid in Figure 3.28. The difference is that
instead of a power transfer capacity, the congestion occurs due to a current transfer capacity since the
flow calculation are represented in current. This is for simplicity because the current in the sending
end stays the same with the receiving end while the power flow does not. Figure 5.13 - 5.19 depicts
the result of the converged calculation. The voltage profile in Figure 5.15 shows that to minimize the
losses, the voltage rises to the maximum. This phenomenon does not occur in Figure 3.32 when the
losses are not taken into account.

5.3.2. IEEE 9 Bus System

The data are taken from [28] with assuming the cost function for every generator. The original IEEE 9
bus system is a transmission network. In this case, it is modified to be a DC Distribution grid with the
power in kilowatts and has voltage boundaries from 325 V to 375 V. Using the Exact OPF algorithm,
the results are presented in Figure 5.21-5.25.
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Figure 5.13: Locational Marginal Price (LMP) at every node for the grid in Figure 5.12. Every node has a different
value, following the discussion in Section 3.7 regarding the congestion management in a meshed grid.
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Figure 5.14: The power generation in every node for the grid in Figure 5.12.
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Figure 5.15: The voltage at every node for the grid in Figure 5.12.
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Figure 5.16: The current flowing in the lines for the grid in Figure 5.12.
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Figure 5.17: The dual variable for current limit in the line for the grid in Figure 5.12.

0 500 1000 1500 2000 2500 3000

Iteration

0

100

200

300

400

𝜇ፔ ፦
[𝑚
.𝑢
/𝑉
]

𝜇ፔኻ
𝜇ፔኼ
𝜇ፔኽ
𝜇ፔኾ
𝜇ፔ኿
𝜇ፔዀ

Figure 5.18: The dual variable for the upper voltage limit for the grid in Figure 5.12.
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Figure 5.19: The dual variable for the lower voltage limit for the grid in Figure 5.12.

Table 5.2: Line data for the IEEE 9 bus system. The values are modified from the actual line data in [28] by doubling
the resistances and state them as ohmic values instead of per unit values.

Line Index Resistance (Ω)
14 0.1152
27 0.1250
39 0.1772
45 0.184
46 0.184
69 0.34
57 0.322
78 0.144
78 0.2016
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Figure 5.20: The IEEE 9 bus system topology with the modification in the generator and load capacity rating. The
resistance values are taken from Table 5.2. Moreover, the generators’ cost function are added to create an optimization

problem.
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Figure 5.21: Locational marginal price at every node for Figure 5.20. By having the tuning parameters in (4.26) and
(4.25), the LMP at all nodes rise conservatively to make sure that the generator produces power sequentially.
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Figure 5.22: The power production at every node for Figure 5.20.

0 2000 4000 6000 8000 10000 12000

Iteration

330

340

350

360

370

𝑢 ፦
[𝑉
]

𝑢ኻ
𝑢ኼ
𝑢ኽ
𝑢ኾ
𝑢኿
𝑢ዀ
𝑢዁
𝑢ዂ
𝑢ዃ

Figure 5.23: The voltage at every node for Figure 5.20. To minimize the losses, every node aims for the highest voltage
as possible. Since the generator in node 2 produces more power, node 2 has the maximum voltage.
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Figure 5.24: The dual variable of the voltage limit at every node for Figure 5.20. Since node 2 reaches its maximum
voltage, this parameter increases along with the set tuning parameters. Once it reaches the desired value, the

calculation reaches its convergence and stops.
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Figure 5.25: The current flowing in every line for Figure 5.20.





6
Asynchronous Update

6.1. Algorithm for Solving the DCOPF in Asynchronous Approach
Being fully distributed means that no central coordinator is necessary and no single point of failure is
present. However, as the calculation occurs in every node, a problem in one node can compromise the
whole system. The algorithm used in this thesis is based on Consensus and Innovation which relies on
data sharing between neighboring nodes. It is possible to have delay during the data sharing. In the
Raspberry-Pi implementation, every node must wait for the data shared from its neighbor. The delay
occurring in the system is inevitable as it depends on internet connection and there is an actual data
transfer between computers.

Based on that problem, it is essential to have an asynchronous update. The asynchronous update
in this thesis is different from the one presented in [23] which defines asynchronous as asynchronous
inter-area data sharing. The data sharing does not occur every iteration for inter-area connection.

In this thesis, during the synchronous update, the value of the shared parameters (LMP, voltage,
and 𝜇፦,፧) does not vary that much every iteration. Therefore, it is possible to use the previous value
for the calculation.

[𝜆፧(𝑙), 𝑢፧(𝑙), 𝜇፧,፦(𝑙)] = {
[𝜆፧(𝑙), 𝑢፧(𝑙), 𝜇፧,፦(𝑙)] if received
[𝜆፧(𝑙 − 1), 𝑢፧(𝑙 − 1), 𝜇፧,፦(𝑙 − 1)] if not received

(6.1)

The Raspberry-Pi implementation used socket programming [29] in python for the data sharing.
There was no time-out implemented, and the algorithm stops after a determined number of iterations.
The implementation is improved by setting a time-out time and execute Eq. 6.1 and also set a conver-
gence criterion to stop the process. The convergence criterion comprises a relatively constant value of
power, voltage, and LMP and also satisfied first-order optimality condition.

6.2. Result Comparison between Synchronous and Asynchronous
Approach

The grid in Figure 6.1 is simulated to find the optimum solution to the problem. In the hardware
validation using microcomputers (Raspberry-Pi), every microcomputer represents as a generator or a
load. The first simulation is conducted without setting any time-out time. Figure 6.4 shows that the
whole operation takes about 800 s to converge and Figure 6.2 - 6.3 shows the time spent in every
iteration. Most of the iterations take 30-40 ms as depicted in Figure 6.2 due to the occurrence of
actual data sharing across different microcomputers. However, the time varies due to the quality of the
internet connection at a time that can also lead to a longer data sharing time up to 1 s as depicted in
Figure 6.3.

Based on Figure 6.4 - 6.7, it is evident that setting a time-out time significantly accelerates the
convergence time from 800s to 100s. Each node only waits for the determined timeout duration. As a
consequence, in the asynchronous cases, the simulation takes higher iteration numbers since there are
lots of data loss that affect the calculation process. Lower timeout duration causes more data loss and
leads to a higher iteration number.
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Figure 6.1: Four node serial case with congestion from node 2 to 3. This is a redrawn figure of Figure 3.17.
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Figure 6.2: The time elapsed for every iteration when Figure 6.1 is simulated in a synchronous way using the
microcomputers. It depicts that most of the iterations take around 30-40 ms.
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Figure 6.3: The time elapsed for every iteration when Figure 6.1 is simulated in a synchronous way using the
microcomputers. It shows the presence of some iterations which take more than 100ms and up to 1s. These cause the

algorithm to converge up to 750s.
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Figure 6.4: Locational Marginal Price (LMP) at every node for the grid in Figure 6.1. The algorithm is run in a
synchronous way where every parameter waits for a new value to proceed calculation. It takes 750s and 1112 iterations

to converge.
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Figure 6.5: Locational Marginal Price (LMP) at every node for the grid in Figure 6.1. The algorithm is run in an
asynchronous way where every node only waits for 70ms. In case no new data is received, the calculation continues using

the previous value. It takes 95 s and 1360 iterations to converge.
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Figure 6.6: Locational Marginal Price (LMP) at every node for the grid in Figure 6.1. The algorithm is run in an
asynchronous way where every node only waits for 50ms. In case no new data is received, the calculation continues using

the previous value. It takes 92 s and 1550 iterations to converge.
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Figure 6.7: Locational Marginal Price (LMP) at every node for the grid in Figure 6.1. The algorithm is run in an
asynchronous way where every node only waits for 70ms. In case no new data is received, the calculation continues using

the previous value. It takes 83 s and 1800 iterations to converge.



6.2. Result Comparison between Synchronous and Asynchronous Approach 81

1 2 3 4𝑝ዝኻ
7 kW
10𝑝ዝኻ+

0.037(𝑝ዝኻ)ኼm.u

𝑝ዝኼ
7 kW
4𝑝ዝኻ+

0.001(𝑝ዝኻ)ኼm.u

𝑝ዝኽ
-20 kW
0 m.u

𝑝ዝኾ
15 kW
20𝑝ዝኾ+

0.36(𝑝ዝኾ)ኼm.u

Figure 6.8: Four node serial case with a long line connecting node 2 and 3 (depicted in blue). The line is very long, and
due to the voltage limits and losses, all the required power cannot be delivered from the cheapest generator in node 2.
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Figure 6.9: Locational Marginal Price (LMP) at every node for the grid in Figure 6.8. The algorithm is run in a
synchronous way where every node waits until all data are received. It shows that it took up to 600s to converge.

The time-out time variation does not necessarily work for every case. In the case in Figure 6.8,
setting less than 150 ms of time-out time does not result in a converge solution. Although once the
time-out time is set right, the convergence time reduces significantly. This happens because, in the
Exact OPF, the power generated depends on the LMP value. A difference in LMP value can affect
significantly to the power and the other variables. Figure 6.9-6.11 show the result when it is run in a
synchronous manner and asynchronous with 100 and 150 ms of time out time.

The discussion in this chapter and (6.1) answer the research question 4 on how the algorithm can be
improved to reduce the delay. By setting a time-out time, the node only waits for the desired period. If
no data is received, then the neighbor’s variables from the previous iteration are used. The algorithm
improvement results in faster convergence time, compared to the synchronous algorithm.
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Figure 6.10: Locational Marginal Price (LMP) at every node for the grid in Figure 6.8. The algorithm is run in an
asynchronous way where every node only waits for 100ms. In case no new data is received, the calculation continues

using the previous value. Due to the sensitivity of the value and poor amount of the updated data received, the problem
is not converged to the solution.
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Figure 6.11: Locational Marginal Price (LMP) at every node for the grid in Figure 6.8. The algorithm is run in an
asynchronous way where every node only waits for 150ms. In case no new data is received, the calculation continues

using the previous value. It takes 160 s to converge.



7
Conclusion, Reflection, and Future

Work

7.1. Conclusion
As stated in Chapter 1, the main goal of this thesis is to improve the speed and resilience of the C+I
based distributed optimal power flow algorithm by formulating the tuning parameters and asynchronous
update. The formulation of the tuning parameters are presented in Table 3.2 and Table 4.1 while the
asynchronous algorithm is done by having (6.1). Extensive explanations are discussed through the
research questions below.

1. How can the physical interpretation be used to improve the convergence rate?
The use of the physical interpretation started with setting a condition on how the power and the LMP
are updated in Figure 3.2 and 3.1. For a linear cost function, the linear coefficient of the generator needs
to be the same with the LMP for starting producing power. In the physical meaning, it gives an intuitive
sense that a product cannot be sold if the price of the product (represented as the linear coefficient) is
higher than the current market price (expressed as the LMP). With that condition, the LMP will stay
constant during the power update and the power will remain in the minimum or maximum when the
LMP changes to below or above the linear coefficient respectively.

The other exploitation of the physical interpretation is during the tuning parameter formulation. In
the previous research [14], the tuning parameters are set through a trial-and-error method and have to
change for every case. In this thesis, it is concluded that the physical meaning of the first order KKT
condition in 3.3 for a Lossless OPF case and 4.3 for an Exact OPF case can be employed for better
tuning parameter determination.

Starting with the LMP update, it follows (3.17) with the tuning parameters in (3.24) and (3.25).
For the first tuning parameter 𝛼᎘፮, it aims to have the same LMP as its neighbor during the absence of
the congestion and losses. Therefore, it is formulated as in (3.24). The equation holds even during the
congestion and the presence of the losses. The other tuning parameter 𝛼᎘᎘ is an estimated constant as
in (3.25) by deciding the desired step size of lambda change due to the power mismatch. The equations
hold for cases with congested lines since the dual variable will appear in the LMP consensus in (3.8).
Moreover, it also holds for an Exact OPF case since in its LMP consensus (4.10), there is an extra term
that leads to different LMP across the nodes.

As for the power update, the equations used are (3.26) for the Lossless OPF and (4.44) for the
Exact OPF. In (3.26), the tuning parameter is formulated as in (3.27) and (3.30). By having (3.27),
it means that the power only solves 25% of compensating the power deficit or surplus. The other
tuning parameter in (3.30) estimates the extra generated power necessary when the LMP does not
reach consensus.

The voltage is updated by using (3.31) for the lossless OPF and (4.30) for the Exact OPF. Both
algorithms use the power mismatch and formulate 𝛼፮᎘ as in (3.32) and (4.33) to have the voltage
change by 25% of the power mismatch. Incorporating the power, the power and voltage move 50% to
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the solution every iteration. The Exact OPF has another term in the voltage update which will be
discussed in the next subsection.

The Exact OPF case shows a significant improvement in term of the convergence speed from the
previous research [13] as shown in Chapter 4. However, it is still assumed that all generators must have
a quadratic cost function to be able to calculate the power, following (4.44).

2. How can the line congestion be taken into account for the voltage and the dual variable
updates, especially for a meshed grid?
There are two methods in solving a problem where congestion occurs which are Area Separation Method
and Dual Variable Activation Method, as discussed in Chapter 3. The congestion is managed by using
the Area Separation Method for a radial lossless case. The nodes connected by a congested line exclude
each other from their LMP consensus calculation in (3.7). As a consequence, the LMP update of that
node does not consider the neighboring nodes to which the line is congested. Moreover, to prevent
the power flow from exceeding the limit, the voltage is updated using (3.36) so that the power flow is
clamped to the limit to maximize the line utility. The dual variable 𝜇፦,፧ is updated by taking the LMP
difference between the nodes which are separated by the congested line as shown in (3.37).

However, As for the meshed grid and other grids which includes the losses, the dual variable has to
be activated by multiplying the difference between the actual power flow (current flow for the Exact
OPF) with its respective limit and an estimated constant. Equation 3.38 and 3.39 shows the activation
of the dual variable while the voltage is updated using (3.36).

3. How can the losses and the voltage limit be accounted for in the distributed OPF?
The losses and the voltage limit is accounted for by modifying the constraint. The power flow con-
strain (4.2) uses the actual voltage 𝑢፦ instead of 𝑢nom as in the Lossless OPF. Consequently, all the
formulas in Chapter 3 that use 𝐺፩፦,፧ are converted into 𝑢፦𝐺፩፦,፧. Furthermore, there are some changes
in the voltage update. The voltage is updated based on the power mismatch in a node and the LMP
consensus between neighboring nodes as discussed in Chapter 4. In (4.30), the voltage is updated by
reducing the voltage when the generated power is less than the sum of the power flowing out from
the node, indicated by positive power mismatch in (4.10). The tuning parameter 𝛼፮᎘ is formulated as
in (4.33). Regarding the LMP consensus, the power flows from the lesser LMP to the higher LMP.
Therefore, the voltage should increase when the LMP is less than the neighboring nodes, indicated by
negative LMP consensus (4.9). The voltage change is determined by the tuning parameters 𝛼፮፮ which is
formulated by taking the LMP difference among the nodes and multiply it with an estimated constant
as shown in (4.37). This constant determines if the voltage is going to converge. Higher constant will
make the voltage changes rapidly, leading to an unending oscillation. On the other hand, the lower
constant will also prevent the voltage to converge. By using both terms, the voltage is at the upper
limit to minimize the losses.

As a consequence of having one or more nodes with the maximum voltage, the dual variable of the
voltage limit 𝜇ፔ፦ will have value. It is increased by taking the voltage difference between the limit and
the actual voltage and multiply it with a constant in (4.42) and (4.41).

Due to the presence of the voltage limit, during the case where a long line exists in Chapter 4, both
upper and lower voltage limit are present. As a consequence, the power transfer is limited and the load
takes the power from a closer generator despite the higher price it sets.

4. How can the algorithm be modified in order to run asynchronously for reducing delays?
The algorithm is modified by setting a timeout duration so that the node does not wait for any infor-
mation received after the timeout duration. It is represented in (6.1). As a consequence, the calculation
uses the value from the previous iteration. The number of the iteration increases since the calculation
does not use updated value to reach to the solution. However, It leads to a faster convergence time
since every iteration has a time limit to wait for the neighbor’s information.

Chapter 6 shows that lower time-out time does not necessarily reduce the convergence time. And
for another case, when the value changes are too sensitive and the timeout duration is set too low, the
solution cannot be reached. Therefore, this would be a recommendation to observe the proper timeout
duration for every case.
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7.2. Reflection
The model of this work assumes that one node 𝑚 only contains one unit of a generator or a fixed load.
The change in this assumption requires the algorithm to change significantly. Suppose that one node
includes loads and generators with different prices, the algorithm must be able to differentiate which
generator should supply first. The trajectory of the LMP vs. power update in 3.2 will become different.
Moreover, the mathematical formulation holds for DC distribution system with and without losses
considered. Problems for AC OPF can be tackled using this algorithm with its DC approximation, and
the Lossless OPF is employed. However, when the losses and imaginary part of the AC system are
examined, the algorithm and the tuning parameter formulations have to be reformulated since the first
order optimality KKT conditions will change and the set of the formulated tuning parameters no longer
hold.

The platform of the hardware validation is built in a way that every microcomputer communicate
with each other using a Wi-Fi network. In the future development and possible expansion, the system
cannot rely on a single network that can cover the whole area. Hence, another infrastructure such as ad-
hoc network should be implemented. Moreover, the current platform will also fail during a failure of one
node (microcomputer). A more sophisticated approach has to be found to let the system running despite
any physical unit loss or communication failure. Furthermore, relying on distance communication is
prone to a cyber attack. Therefore, a cybersecurity aspect should be investigated to have better system
protection. These reflections would improve the robustness of the system, and the platform is resilient
to any internal or external failure.

7.3. Future Work
The current simulation runs a single period problem. In the real implementation, the search of the
optimized has to be continuous by being able to adapt to the change of data such as the fluctuation
of the load. This feature can later be improved by having storage taking into account in the grid.
Moreover, the optimization can also be seen from the demand/load side of the system as a demand
response. By having the demand response, the loads can adjust their value so the cost is minimized.

Regarding the iteration numbers, the results shown still have high value of iterations even with
a relatively small cases. This causes the implementation to spend a lot of time to solve one problem.
Another approach can be thought about to speed up the iteration. For instance, by defining the network
topology and make the nodes receive more information, this may enable the calculation converge faster.
Moreover, another approach can be used for the asynchronous update since setting up an arbitrary
timeout duration does not necessarily work for all cases.





A
Lossless OPF: Remaining Variables

and First-Order KKT Conditions

A.1. Four Node Case without Congestion

The case refers to Figure 3.4.
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Figure A.1: From top to bottom: The voltage and power flow for the grid in Figure 3.4
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Figure A.2: From top to bottom: Dual variable for line limit, maximum power, and minimum power for the grid in
Figure 3.4
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Figure A.3: From top to bottom: Lagrange differentials to power, voltage, and LMP for the grid in Figure 3.4
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Figure A.4: Lagrange differentials to the dual variables for the grid in Figure 3.4
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A.2. Three Node Case with Congestion

The case refers to Figure 3.7.
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Figure A.5: From top to bottom: Dual variable for maximum and minimum power for the grid in Figure 3.7
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Figure A.6: From top to bottom: Lagrange differentials to the power, voltage, and LMP for the grid in Figure 3.7
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Figure A.7: Lagrange differentials to the dual variables for the grid in Figure 3.7
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A.3. Four Node Meshed with Congestion

The case refers to Figure 3.13.
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Figure A.8: From top to bottom: Dual variable for maximum and minimum power for the grid in Figure 3.13
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Figure A.9: From top to bottom: Lagrange differentials to the power, voltage, and LMP for the grid in 3.13
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Figure A.10: From top to bottom: Lagrange differentials to the dual variables for the grid in 3.13
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A.4. Four Node Serial with Congestion Using Area Separation
Method

The case refers to Figure 3.17 which is solved using the Area Separation Method.

0 100 200 300 400 500 600 700

Iteration

0

2

4

6

8

10

𝜇ፏ ፦
[𝑚
.𝑢
/𝑊
]

𝜇ፏኻ

𝜇ፏኼ

𝜇ፏኽ

𝜇ፏኾ

0 100 200 300 400 500 600 700

Iteration

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

𝜇ፏ ፦
[𝑚
.𝑢
/𝑊
]

𝜇ፏኻ

𝜇ፏኼ

𝜇ፏኽ

𝜇ፏኾ

Figure A.11: From top to bottom: Dual variable for maximum and minimum power for the grid in Figure 3.17 using the
Area Separation Method
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Figure A.12: From top to bottom: Lagrange differentials to the power, voltage, and LMP for the grid in Figure 3.17
using the Area Separation Method
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Figure A.13: From top to bottom: Lagrange differentials to the dual variable for the grid in Figure 3.17 using the Area
Separation Method
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A.5. Four Node Serial with Congestion Using Dual Variable Ac-
tivation Method

The case refers to Figure 3.17 which is solved using the Dual Variable Activation Method.
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Figure A.14: From top to bottom: Lagrange differentials to the power, voltage, and LMP for the grid in Figure 3.17
using the Dual Variable Activation Method
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Figure A.15: From top to bottom: Lagrange differentials to the power, voltage, and LMP for the grid in Figure 3.17
using the Dual Variable Activation Method
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Figure A.16: From top to bottom: Lagrange differentials to the dual variable for the grid in Figure 3.17 using the Dual
Variable Activation Method
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A.6. Six Node Meshed

The case refers to Figure 3.28.
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Figure A.17: From top to bottom: Dual variables for the maximum and minimum power for the grid in Figure 3.28
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Figure A.18: From top to bottom: Lagrange differentials to the power,voltage, and LMP for the grid in Figure 3.28
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Figure A.19: From top to bottom: Lagrange differentials to the dual variables for the grid in Figure 3.28





B
Exact OPF: Remaining Variables and

First-Order KKT Conditions

B.1. Three Node Case I

The case refers to Figure 4.1 when the marginal generator is at the highest voltage.
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Figure B.1: Current flowing in every line for the grid in Figure 4.1 when the marginal generator is at the highest voltage
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Figure B.2: From top to bottom: Dual variables for the line limit, the maximum and minimum power, and the
maximum and minimum voltage for the grid in Figure 4.1 when the marginal generator is at the highest voltage
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Figure B.3: Lagrange differentials to the power, voltage, lambda, and dual variable for the line limit for the grid in
Figure 4.1 when the marginal generator is at the highest voltage
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Figure B.4: Lagrange differentials to the dual variables for the grid in Figure 4.1 when the marginal generator is at the
highest voltage
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B.2. Three Node Case II

The case refers to Figure 4.10 when the marginal generator is not at the highest voltage and the addition
of the quadratic cost coefficient.
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Figure B.5: Current flowing in every line for the grid in Figure 4.10 when the marginal generator is not at the highest
voltage
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Figure B.6: From top to bottom: Dual variables for the line limit, the maximum and minimum power, and the
maximum and minimum voltage for the grid in Figure 4.10 when the marginal generator is not at the highest voltage
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Figure B.7: Lagrange differentials to the power, voltage, lambda, and dual variable for the line limit for the grid in
Figure 4.10 when the marginal generator is not at the highest voltage
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Figure B.8: Lagrange differentials to the dual variables for the grid in Figure 4.10 when the marginal generator is not at
the highest voltage
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B.3. Four Node Long Line Case

The case refers to Figure 4.15.
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Figure B.9: From top to bottom: Dual variables for the line limit, the maximum power, and the minimum power for the
grid in Figure 4.15
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Figure B.10: From top to bottom: Lagrange differentials to the power, voltage, LMP, and the dual variable for the line
limit for the grid in Figure 4.15
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Figure B.11: Lagrange differentials to the dual variables for the grid in Figure 4.15



118 B. Exact OPF: Remaining Variables and First-Order KKT Conditions

B.4. Six Node Meshed

The case refers to Figure 5.12.
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Figure B.12: From top to bottom: Dual variables for the maximum power and the minimum power for the grid in
Figure 5.12
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Figure B.13: From top to bottom: Lagrange differentials to the power, voltage, LMP, and dual variable for the line limit
for the grid in Figure 5.12
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Figure B.14: From top to bottom: Lagrange differentials to the dual variables for the grid in Figure 5.12
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B.5. Four Node Serial with Congestion

The case refers to Figure 5.1.
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Figure B.15: From top to bottom: Dual variables for the maximum power, minimum power, maximum voltage, and the
minimum voltage for the grid in Figure 5.1
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Figure B.16: From top to bottom: Lagrange differentials to the power, voltage, LMP, and dual variable for the line limit
for the grid in Figure 5.1
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Figure B.17: From top to bottom: Lagrange differentials to the dual variables for the grid in Figure 5.1
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B.6. IEEE 9 Bus System

The case refers to Figure 5.20.
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Figure B.18: From top to bottom: Dual variables for the maximum power, minimum power, maximum voltage, and the
minimum voltage for the grid in Figure 5.20
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Figure B.19: From top to bottom: Lagrange differentials to the power, voltage, LMP, and dual variable for the line limit
for the grid in Figure 5.20
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Figure B.20: From top to bottom: Lagrange differentials to the dual variables for the grid in Figure 5.20



C
Asynchronous Algorithm:

Remaining Variables

This chapter presents the remaining primary variables such as voltage, power, and power/current flow,
and also the dual variable for the line limit for the cases presented in Chapter 6.
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C.1. Case I with Synchronous Algorithm
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Figure C.1: The power (top) and voltage (bottom) for the grid in Figure 6.1 when the algorithm is run synchronously
using the microcomputers.
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Figure C.2: The power flow (top) and the dual variable for the line limit (bottom) for the grid in Figure 6.1 when the
algorithm is run synchronously using the microcomputers.
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C.2. Case I with 70 ms Timeout Time
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Figure C.3: The power (top) and voltage (bottom) for the grid in Figure 6.1 when the algorithm is run asynchronously
with 70 ms timeout time.
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Figure C.4: The power flow (top) and the dual variable for the line limit (bottom) for the grid in Figure 6.1 when the
algorithm is run asynchronously with 70 ms timeout time.



132 C. Asynchronous Algorithm: Remaining Variables

C.3. Case I with 50 ms Timeout Time
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Figure C.5: The power (top) and voltage (bottom) for the grid in Figure 6.1 when the algorithm is run asynchronously
with 50 ms timeout time.
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Figure C.6: The power flow (top) and the dual variable for the line limit (bottom) for the grid in Figure 6.1 when the
algorithm is run asynchronously with 50 ms timeout time.
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C.4. Case I with 30 ms Timeout Time
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Figure C.7: The power (top) and voltage (bottom) for the grid in Figure 6.1 when the algorithm is run asynchronously
with 30 ms timeout time.
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Figure C.8: The power flow (top) and the dual variable for the line limit (bottom) for the grid in Figure 6.1 when the
algorithm is run asynchronously with 30 ms timeout time.
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C.5. Case II with Synchronous Algorithm
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Figure C.9: From top to bottom: The power, voltage, and current flow for the grid in Figure 6.8 when the algorithm is
run synchronously using the microcomputers.
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Figure C.10: From top to bottom: The dual variable for the maximum and minimum voltage for the grid in Figure 6.8
when the algorithm is run synchronously using the microcomputers.
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C.6. Case II with 150ms Timeout Time

0 20 40 60 80 100 120 140 160

Time (s)

20000

15000

10000

5000

0

5000

10000

𝑝ዝ ፦
[𝑊
]

𝑝ዝኻ
𝑝ዝኼ
𝑝ዝኽ
𝑝ዝኾ

0 20 40 60 80 100 120 140 160

Time (s)

320

330

340

350

360

370

380

𝑢 ፦
[𝑉
]

𝑢ኻ

𝑢ኼ

𝑢ኽ

𝑢ኾ

0 20 40 60 80 100 120 140 160

Time

40

30

20

10

0

10

20

30

40

𝑖 ፦
፧[
𝐴]

𝑖ኻኼ

𝑖ኼኻ

𝑖ኼኽ

𝑖ኽኾ

𝑖ኽኼ

𝑖ኾኽ

Figure C.11: From top to bottom: The power, voltage, and current flow for the grid in Figure 6.8 when the algorithm is
run asynchronously with 150ms timeout time.
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Figure C.12: From top to bottom: The dual variable for the maximum and minimum voltage for the grid in Figure 6.8
when the algorithm is run asynchronously with 150ms timeout time.
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