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H I G H L I G H T S

• Development of a self-tuning load management program with smart zoning.

• Formulation of the control problem in a Hamilton-Jacobi-Bellman framework.

• Multiple behaviors triggered by set point rules are embedded in the optimization.

• Feedback strategies exploit information stemming from building and weather states.

• Simulations are conducted on an EnergyPlus model of an actual building in Greece.
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A B S T R A C T

Load management actions in large buildings are pre-programmed by field engineers/users in the form of if-then-
else rules for the set point of the thermostat. This fixed set of actions prevents smart zoning, i.e. to dynamically
regulate the set points in every room at different levels according to geometry, orientation and interaction
among rooms caused by occupancy patterns. In this work we frame the problem of load management with smart
zoning into a multiple-mode feedback-based optimal control problem: multiple-mode refers to embedding
multiple behaviors (triggered by building-occupant dynamic interaction) into the optimization problem; feed-
back-based refers to adopting a Hamilton-Jacobi-Bellman framework, with closed-loop control strategies using
information stemming from building and weather states. The framework is solved by parameterizing the can-
didate control strategies and by searching for the optimal strategy in an adaptive self-tuning way. To demon-
strate the proposed approach, we employ an EnergyPlus model of an actual office building in Crete, Greece.
Extensive tests show that the proposed solution is able to provide, dynamically and autonomously, dedicated set
points levels in every room in such a way to optimize the whole building performance (exploitation of renewable
energy sources with improved thermal comfort). As compared to pre-programmed (non-optimal) strategies, we
show that smart zoning makes it is possible to save more than 15% energy consumption, with 25% increased
thermal comfort. As compared to optimized strategies in which smart zoning is not implemented, smart zoning
leads to additional 4% reduced energy and 8% improved comfort, demonstrating improved occupant-building
interaction. Such improvements are motivated by the fact that the approach exploits the building dynamics as
learned from feedback data. Moreover, the closed-loop feature of the approach makes it robust to variable
weather conditions and occupancy schedules.

1. Introduction

The future will see more and more developments in the smart
buildings and smart grids areas [1]: while smart buildings should im-
plement demand management programs (sometimes also referred to as
load management programs) [2], smart grids should implement demand

response programs that can modify normal consumption patterns in
buildings depending on the state of the grid [3]. It is well known that
consumption patterns in buildings are deeply affected by heating,
ventilating and air conditioning (HVAC) operation: almost 50% of the
energy consumed by any building goes into HVAC [4]. In turn, HVAC
operation is driven by the selection of thermostat set points. Therefore,
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both load management programs and demand response programs
should ultimately act on such set points. Two ways of acting on the set
points are possible: in the first one, the users can actively manage the
thermostat set points; in the second one, automated solutions for set
point selection are established, in which the set point is automatically
regulated without users being actively involved. However, automated
demand management presents several challenges, one of the main ones
being enhancing energy efficiency in thermostatically controlled HVAC
loads via smart zoning [5]. Smart zoning is the capability of dynamically
creating localized climate conditions that take into account the usage of
a room, its orientation and its occupancy. For example, there is a recent
trend in developing smart thermostats, Nest, Tado and Toon being just a
few examples, that allow a sort of ‘smart automated’ regulation of the
thermostat set point (e.g. via learning algorithms). While being ap-
pealing and in many case effective, such solutions work for small
homes, and demand management actions often consist of a fixed (non-
dynamic) set of rule-based options. This fixed set of options often ne-
glects the building dynamics and the dynamic occupant-building in-
teraction: in fact, in order to keep consistent performance, the HVAC set
points should be continuously adjusted depending on variable weather
conditions (which will affect the availability of renewable energy
sources) or depending on user activity (which will affect occupancy
patterns). A zoning program which is truly smart should (1) combine
dynamically the available information stemming from the building and
the weather states [6] (intelligent load management); (2) embed the
occupancy pattern using models that can be clearly interpretable by
human beings [7] (occupancy-based load management). This, un-
fortunately, turns out to be a big challenge due to the multiple factors
that dynamically influence energy consumption [8]. The following
subsections give an overview of recent results on intelligent load
management and on occupancy-based load management. Some open
problems in these areas are discussed, from which the motivations for
this work arise.

1.1. Related work in intelligent load management

HVAC load management is the most cost-effective option for energy
efficiency in buildings: while it is clear that raising the HVAC set point
during summer and decreasing it during winter has great energy saving
potential, smart zoning programs would push the energy efficiency
even further by intelligently taking thermal comfort constraints into
account [9]: the thermal conditions for human occupancy are codified
in the ASHRAE Standard 55 [10]. Energy/comfort/economy costs are
studied in [11] using a static building model. However, dynamics
models are more appropriate to study the delicate trade-off between
changing the thermostatic set point and the effect on thermal comfort:
efforts in this direction can be found, for example in [12] via a simu-
lation-based method, in [13] via weighted linguistic fuzzy rules in
combination with a rule selection, in [14] via a numerical procedure
based on the finite-difference method, and in [15] via population-based
stochastic optimization, based on different comfort bounds. Being
thermal comfort closely connected to indoor air quality, a conflict exists
also between energy saving and indoor air quality improvement, as
studied in [16] via a knowledge-based automation approach, or in [17]
via a genetic algorithm. Sometimes the focus is on user satisfaction,
which may or may not include thermal comfort: a rule-based demand
side load management technique that is capable of controlling loads
within the residential building in such a way that the user satisfaction is
maximized is considered in [18].

Importance of a dynamic optimization: With a few exception, most
state-of-the-art works consider the optimization of ‘static’ parameters:
such parameters are not able to evolve dynamically and in real-time if
new conditions arise. In order to achieve dynamic optimization, feed-
back-based strategies are necessary. This is particularly relevant if re-
newable energy sources like PV panels must be exploited [19], so that
the HVAC management should take this information into account to

minimize non-renewable energy consumption. In fact, a reasonable
criterion in addition to thermal comfort/user satisfaction, is the one of
covering the HVAC load using renewable energy sources: [20] tackles
the problem via a rule-based algorithm that controls the battery in-
verter, whereas [21] considers different rule-based strategy planning
models that allow to select optimum preheating/cooling time. When
considering the power demand of aggregated HVAC, the HVAC control
problem is formulated as a scheduling problem in [22]. Few works
consider dynamic programs for joint energy savings with thermal
comfort, and no works, to the best of the authors’ knowledge, embed
smart zoning in such programs. For example, in previous work by some
of the authors, a combined criterion composed of the non-renewable
energy consumption and the thermal comfort has been used in [23] to
design an appropriate feedback-based strategy: however, the fact that
the availability of the building testbed was limited to a few rooms
prevented the implementation of a true zoning strategy.

1.2. Related work in occupancy-based load management

No work of the one cited considers occupancy-based strategies, i.e.
setting the temperature in every room depending on occupancy pat-
terns. Among the few works available in literature, [24] has considered
selecting different set points based on aligning the residents’ thermostat
preferences with the indoor temperature, whereas [25] has considered
aligning building resident’s thermal preferences by assigning optimal
resident-apartment pairs via integer-programming. The system pro-
posed in [26] aims to match thermal service with the spatial distribu-
tion of occupants. In general, the goal of these works is to minimize the
difference between unregulated room/zone temperature and the occu-
pants’ thermal preference based on heating/cooling loads: therefore, no
dynamic smart zoning depending on weather conditions or occupancy
schedule is considered.

Importance of a dynamic optimization: The importance of dynamically
exploiting occupancy information in open-loop solutions like model
predictive control has been recognized as a key enabler for energy ef-
ficiency with thermal comfort [27]. Interestingly, in [28] an occupancy-
based rule-based controller is compared with an occupancy-based
model predictive control that requires real-time optimization: it is
found that the much higher complexity of the model predictive control
yields negligible benefits over the simple rule-based controller. This
suggests that feedback-based (closed-loop) solutions are of fundamental
importance for occupancy-based load management. The integration of
(rule-based) expert knowledge with automated feedback-based deci-
sions is not trivial, since most advanced programs based on model
predictive control can achieve this either by resorting to complex
mixed-integer nonlinear programming [29] or by adding new con-
straints [30], which might make the optimization infeasible. Previous
work by some of the authors has shown that occupancy information can
be embedded not only in open-loop solutions, but also in closed-loop
solutions [31]: furthermore, it was shown that occupancy information
can be efficiently combined with availability of renewable energy
supply so as to shape the demand based on the real-time building/
weather/occupants measurements [32]. However, in such works the
occupancy schedule is homogeneous within a building: no works, to the
best of the authors’ knowledge, explore the possibility of embedding the
occupant behavior to implement zoning strategies that can take actions
in a systematic and dynamic way based on the real-time building/
weather/occupants measurements.

1.3. Motivations and contributions of this work

Summarizing, the motivations for us to implement an automated
smart zoning program can be listed as:

• To truly optimize the energy consumption and thermal comfort, it is
crucial to consider the ‘system-of-systems’ structure of buildings
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(composition of interacting rooms, with dense interconnection of
HVAC actuation/sensing [33]);

• When delivering their load management actions, smart thermostats
still cannot automatically account for user behavior and occupancy
patterns at the zone level (with different actions in different zones
[34]);

• Rule-based actions alone cannot not promote dynamic set point
adjustment based on internal conditions (building state) or external
conditions (weather state) [35].

We tackle the aforementioned difficulties by embedding the load
management with smart zoning program into a Hamilton-Jacobi-
Bellman (HJB) optimal control problem whose main components can be
identified as:

(a) Closed-loop control: by using feedback information stemming
from the internal building state (temperatures, occupancy schedule,
availability of renewable energy) and from the external state
(weather conditions, weather forecasts) we are able to intelligently
adapt the HVAC set point to all these conditions;
(b) Multi-modal control: by integrating the user behavior via a
switched model that includes the occupancy state of the different
rooms, we can explicitly consider the occupant-building interaction
and the user-driven energy pattern;
(c) Self-tuning control: by solving the HJB framework via para-
meterization the candidate solution, we are able to use learning
mechanisms to search for the optimal solution in an adaptive self-
tuning way.

We refer to the proposed approach as R-PCAO (Rule-based
Parameterized Cognitive Optimization).

The paper is organized as follows: Section 2 introduces the problem
setting, while Section 3 focuses on the control goals. Section 4 presents
the automated load management, with simulations performed in Sec-
tion 5 to demonstrate and analyze performance. Conclusions are in
Section 6.

2. Problem setting

The main purpose of HVAC automated programs should be to em-
ploy feedback to establish meaningful ‘relations’ among data gathered
from internal states (temperature in each room, occupancy schedule)
and from external states (weather conditions). Such relations should be
ultimately exploited to select the HVAC set point in each room. In this
section we present the mathematical models describing the ‘relations’
among different states. We consider a cooling problem and we start
from the dynamics of a single room i with thermostatically controlled
HVAC
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In (1), the superscript i( ) is used to indicate a quantity of room i; the
superscript i( ) is used to indicates a quantity of neighboring room1 of
room i. The other parameters are as follows: CR is the thermal capaci-
tance of the room, T i( ) the room temperature, T i( ) the neighbor room
temperature, TO the outside temperature, SO the solar gain entering
from the window. The parameters and are material-dependent and
room-dependent: in particular, they indicate the heat transfer

coefficients between the room and the outside, and between the room
and the neighboring rooms, respectively. The parameter depends on
the size of the window (the larger the window, the larger the solar
radiation entering the room), and might also be room-dependent.2 Two
other inputs affect (1): the first is the heat gain Qocc

i( ) resulting from the
presence of occupants (which clearly cannot be controlled), and second
is the power QHVAC

i( ) injected by the HVAC to cool the room (which can
be controlled). The mechanism for controlling the HVAC is the classical
thermostatic mechanism, whose switching is driven by T i( ) and Tset

i( ) as
illustrated in (1).

Note that the effect of thermostatic threshold can be removed in the
presence of a variable-speed drive. In fact, variable-speed drives can
modulate the HVAC action in such a way that: the more the difference
between the set point and the room temperature, the more the power
injected by the HVAC; the less the difference between the set point and
the room temperature, the less the power injected by the HVAC. To
model such variable-speed drive, we consider

=Q K T T( )HVAC
i

set
i i( ) ( ) ( ) (2)

where K is the constant of the proportional controller in the variable-
speed drive. Till now we have considered a generic set point Tset

i( ):
however, in practice the set point is scheduled by the building man-
agement system according to some rule-based strategies: in the fol-
lowing we describe the strategy according to which the set point is
scheduled.

2.1. Rule-based set point selection

It is common practice of many office buildings to deploy a rule-
based load management. Basically, the rules determine the HVAC set
points based on the occupancy schedule. In this work we focus on three
basic rules, implemented nowadays in the majority of the building/fa-
cility management systems:

1. Normal mode: This represents the desired set point when there are
people in the room.

2. Set-back mode: This is the most common strategy in buildings. The
load management program selects a higher set point during non-
occupancy hours (e.g. outside office hours). In fact, it is usually
preferable to switch-off HVACs when occupants are not present,
aiming for lower energy consumption.

3. Pre-cooling mode: A common feature of many load management
programs is to turn on the HVAC some time before people arrival,
usually with a set point slightly lower than normal (for cooling) in
order to reach faster appropriate indoor conditions.

Next to these three rules, a so-called zoning program can allow to
select a different set point for every room. This might be necessary, e.g.
due to different usage of a room, different window area and orientation,
or even different preferences of the users. Note that in large buildings
like office buildings or commercial buildings the difference between the
set points in the different rooms can be 2–3 °C, therefore very relevant.
We assume that such a program is available in our test case in view of
better energy efficiency.

It is clear that the switch from one mode to another is driven by the
occupant behavior, as represented in Fig. 1. Of course, the im-
plementation of the schedule in Fig. 1 requires the presence of a system
with the ability of predicting user behavior: this is a topic of increasing
interest in recent years, cf. the survey [36] and the work [37]. There-
fore, we assume the presence of such a prediction system.

1 In case a room has more than one neighboring rooms, one should consider
the summation of all these terms. In order to avoid making the notation more
cumbersome, in the following we will not report such summation for simplicity.

2 Therefore, , and should actually be ,i i( ) ( ) and i( ), even of this is not
explicitly indicated for compactness.

S. Baldi et al. Applied Energy 231 (2018) 1246–1258

1248



=

+ +
+ + + =

+ +
+ + +

<
=

+ +
+ + =

+ +
+ +

<
=

+ +
+ + =

+ +
+ +

<
=

C T

K T T
T S Q

KT

T T

K T T
T S Q

T T

K T T
T S

KT

T T

K T T
T S

T T

K T T
T S

KT

T T

K T T
T S

T T

( )

,

if and MODE
normal

( )
,

if and MODE
normal

( )

,

if and MODE
set-back

( )
,

if and MODE
set-back

( )

,

if and MODE
pre-cooling

( )
,

if and MODE
pre-cooling

R
i

i i

O occ
i

set point
i

i
set point

i

i i

O occ
i

i
set point

i

i i

O

set back
i

i
set back

i

i i

O

i
set back

i

i i

O

pre cooling
i

i
pre cooling

i i

O

i
pre cooling
i

( )

( ) ( )

0
( )

-
( )

( )
-

( )

( ) ( )

0
( )

( )
-

( )

( ) ( )

0

-
( )

( )
-

( )

( ) ( )

0

( )
-

( )

( ) ( )

0

-
( )

( )
-

( ) ( )

0

( )
-

( )

(3)

=

+

=

+
< =

+

=

+
< =

+

=

+
<

=

K T T

kS

T T

T T

kS

T T

T T

K T T
kS

T T

T T

kS

T T

T T

K T T

kS

T T

T T

kS

T T

T T

( )

( ) ,

if and MODE normal

( ) ,

if and MODE normal

( )

( ) ,

if and MODE set-back

( ) ,

if and MODE set-back

( )

( ) ,

if and MODE
pre-cooling

( ) ,

if and MODE
pre-cooling

i

set point
i

O

set point
i

i
set point

O

set point
i

i
set point

set back
i

O

set back
i

i
set back

O

set back
i

i
set back

pre cooling
i

O

pre cooling
i

i
pre cooling

O

pre cooling
i

i
pre cooling

( )

-
( )

-
( ) 2

( )
-

-
( ) 2

( )
-

-
( )

-
( ) 2

( )
-

-
( ) 2

( )
-

-
( )

-
( ) 2

( )
-

-
( ) 2

( )
-

(4)

= +

+

=

=

T t A T t
T t

B T t

E

T t
S t

t T t T t

( ) ( )
( )

( )

( )
( )

,

( ) ( ), ( )

i
i t

i
i

i

T i t x i t

i t
i

set i t
i

u i t
i t

i t
i

O

O

d t

i t
i i i

set i t
i

( )
( ) ( )

( )
( )

( )

( ) ( ) ( ) ( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( ) ( )

( ) ( )
( )

( )

( ) ( )
( ) ( ) ( )

( ) ( )
( )

(5)

2.2. Overall simplified building model

By combining the single room dynamics with the set point selection,
one obtains a dynamical model represented in Fig. 2. This model is
represented in analytical form in (3)–(5). The following points should
be highlighted in the model:

• Let NR be the number of rooms. As explained, each room i can op-
erate in three modes, described by the index t( )i( ) : normal mode,
set-back mode, and pre-cooling mode.

• Each room i has one state (its own temperature T i( )) and one input
(its own set point, T T,set point

i
set back

i
-

( )
-

( ) or Tpre cooling
i

-
( ) , depending on the

active mode).
• Four external disturbances act on each room:

– The term T i( ) from a neighboring room of room i: this term acts as
a disturbance for room i, but it is another one of the states of the
building;

– The outside temperature TO;
– An solar radiation SO;
– The occupancy heat gain Qocc

i( ) .
• It is assumed that forecasts for both TO and SO are available, so that

these disturbances will be treated as present and future measurable
disturbances.

• The occupancy schedule leading to Qocc
i( ) is also assumed to be known

at each time.
• The cost comprises two terms:

– The power provided by the HVAC, K T T( )set
i i( ) ( ) (active only

when the HVAC is ON) minus the solar energy kSO collected by
the solar panel (where k is the efficiency and size of the solar
panel);
– A weighted deviation from the desired set point which is used to
model thermal comfort: T T( )set

i i( ) ( ) 2, where Tset
i( ) depends on the

active mode.
• By taking into account the building topology, the model can be

extended from one room to the entire building, as shown in (5). We
do not describe the complete procedure for lack of space: the at-
tentive reader will recognize that the following model will be ob-
tained

= + +x t A x t B u t E d t( ) ( ) ( ) ( )t t t( ) ( ) ( ) (6)

=
=

x t u t x t u t( ), ( ) ( ), ( )t
i

N

t
i i i

( )
1

( )
( ) ( ) ( )

R

(7)

where = … = … =x T T u T T d T S[ , , ] , [ , , ] , [ ]N
set set

N
O O

(1) ( ) (1) ( )R R and
= …col( , , )N(1) ( )R . Note that each room has its own switching

signal because its is independent from the modes of the other rooms.
In addition, the matrices A B E, ,t t t( ) ( ) ( ) arise from the connection

Fig. 1. Dynamics for set point selection in a single room.
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of all rooms and is the summation of the costs in each room.

3. Control goals

The specific goal of any load management program is to reduce the
energy costs while keeping occupants satisfied, as formalized in (5).
However, (5) refers to a specific instant in time, whereas, due to the
dynamic evolution of temperatures, solar radiation and occupancy
schedules (at least at the time scale of minutes), one should integrate
the cost (5) over some long enough horizon

=
=

t dt T t T t dt( ) ( ), ( )
N

t
N

i

N

t
i i

set
i

0 ( ) 0
1

( )
( ) ( ) ( )t t

R

t( )
(8)

where Nt is the horizon length, which can be anything from one day or
one week, or even longer depending on the length of the simulations
one is interested in performing. In many cases, people is interested is
infinitely long horizons, with a discounting factor so as to obtain a finite
integral

=J e t dt( )t
t0 ( ) (9)

where > 0 is the discounting factor that reduces the importance of the
cost far in the future. Clearly, the importance of minimizing an integral
cost (9) in place of an instantaneous one like (5), is that the mini-
mization of an integral cost takes into account dynamic behaviors in
conjunction with occupancy schedule and weather conditions (an ex-
ample is to ‘overcool’ the building when enough solar energy is avail-
able, so that energy can be saved when less solar energy is available
[19]).

Summarizing, a dynamic optimization problem is obtained

=J e t dtmin ( )t
t0 ( ) (10)

= + +
s t

x t A x t B u t E d t
. .

( ) ( ) ( ) ( )t t t t( ) ( ) ( ) ( ) (11)

where all the variables have been defined in (3)–(7). Let us underline
that the dynamics in (11) describe dynamics in the scale of minutes,
which is quite crucial in order to account for changes in weather con-
ditions and changes in occupancy. Clearly, the model (11) is a simpli-
fied room/building model: it is useful to define the state and inputs of

the system and the control objective, but it cannot be used for realistic
testing of a smart zoning program: it is well known that simulation tools
like EnergyPlus or TRNSYS [38] provide more realistic building dy-
namics. Nevertheless, the simplified dynamics summarized in (11) are
of fundamental importance to understand which measurements from
EnergyPlus or TRNSYS can actually be used by the optimization algo-
rithm for feedback and real-time control.

3.1. Simulation model

To test the proposed algorithm on a realistic model, we use a
building test case in EnergyPlus [39]. Our EnergyPlus model, shown
later in Fig. 3, represents an actual office building in the campus of
Technical University of Crete, Greece. The building has 10 rooms with
10 different HVAC set points that can be selected independently. In-
terestingly, the building is oriented along the North-South axis, with
offices on each side of the building: note that, in view of its orientation,
the offices take considerably different solar radiation from their win-
dows. As a result, the different solar gain might influence drastically the
selection of the HVAC set point. The buildings is also equipped with a
photovoltaic panel that can be used to partially cover the energy de-
mand. The EnergyPlus model has been developed during previous
European research projects, mainly the AGILE project [40], coordinated
by one of the authors, prof. Kosmatopoulos. It has been developed and
validated in such a way that the thermal and energy dynamics of the
model can capture in a realistic way the actual dynamics of the
building. The energy cost and the comfort cost are automatically cal-
culated by EnergyPlus. Because the photovoltaic energy is free of
charge, the total energy cost (in kWh) takes into account only the en-
ergy absorbed from the power grid: in other words, if not further ex-
plained, in the following we will use the term ‘energy consumption’ to
indicate the non-renewable portion of the energy consumption. To
make the simulation even more realistic, typical load profiles from the
actual buildings (PCs and appliances) have been implemented in En-
ergyPlus: clearly these loads are uncontrollable, but they make the total
energy consumption of the building more realistic.

For the thermal comfort cost, we resort to an established metric,
standardized in the ANSI/ASHRAE Standard 55 [10]: the Predicted
Mean Vote Index (PMV) index. The PMV index is a thermal comfort
model predicting the mean response of people according a seven-grade

Fig. 2. Switched dynamics for one room (room i) with set point selection.
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thermal sensation scale (from hot to cold). The PMV mean response is
transformed via the Fanger’s equation the Predicted Percentage of
Dissatisfied people (PPD), expressed in %. The Fanger’s equation is
numerically solved by EnergyPlus.

3.2. Comparison strategies

For comparison purposes, the following load management strategies
are adopted and implemented in EnergyPlus:

• Two Fixed Set Point (FSP) strategies. The FSPs employ a simple
strategy, which consists of fixing the HVAC set points of each room
at 24 °C ( °FSP C24 ) or 25 °C ( °FSP C25 ) during occupancy hours (the set
points are 30 °C outside occupancy hours, which implies switching
off the HVAC). Such simple strategies (they actually implement no
zoning) provide acceptable performances in terms of the cost (10),
although the performance is clearly far from optimal: the choice of
these two set point temperatures is motivated by the AGILE project.
During the project, fixed set point temperatures have been studied in
such a way to find a trade-off between good energy consumption
and good thermal comfort. It turned out that, in summer season, a
set point of 24 °C gives an acceptable PPD of 10–12% (the ASHRAE
standard suggests a PPD of around 10%), whereas a set point of 25
°C makes the PPD 1–2% worse while reducing the energy con-
sumption of around 20%. Thus, these two strategies can be con-
sidered as two extremes of the Pareto front in between which op-
timal control strategies can play: most importantly, such strategies
also provide with a fair base scenario that reduce any bias arising
from calculating improvements for different weather conditions.

• A Rule Based Load Management (RBLM), with the following set of
rules: set points constant to Ts

i( ) °C in room i during normal mode; set
points of each room constant to 30 °C during set-back mode (which
implies switching off the HVAC); set points constant to °T 1s

i( ) C in
room i half an hour before people entering the room (i.e. pre-cooling
mode). Such pre-cooling strategy is also motivated by AGILE project
[40], as a trade-off between the two FSP strategies. The values Ts

i( )°C
are optimized with a genetic algorithm in such a way that the PPD is
below 9% for a nominal occupancy schedule and some nominal
weather conditions. This guarantees to have a baseline strategy that
keeps occupants satisfied, so that we can perform meaningful
comparisons with regards to energy consumption.

It is important to remark that the good performance for RBLM can
only be evaluated under nominal conditions (weather and occupancy):
this is because the designed RBLM is an open-loop schedule whose
optimization would have to run continuously, otherwise its

performance cannot be robust to changing conditions (e.g. weather and
occupancy conditions). From these considerations we infer that a truly
optimal strategy should be feedback-based, able to exploit information
stemming from the entire building, and, in particular, able to use the
information about environmental conditions so as to continuously and
automatically adjust the set points: our proposed solution follows this
idea as explained in the next section.

4. The proposed optimization methodology

Here we present the Rule-based Parameterized Cognitive Adaptive
Optimization (R-PCAO) we adopted to solve the load management with
smart zoning problem defined by (10) and (11). We will first give a
brief overview of the concept, and then we will provide the details of
the optimization algorithm.

4.1. The concept

The connection between the simplified building model, the
EnergyPlus model and the optimization algorithm are shown in Fig. 3.
Basically, the components interact as follows:

• The simplified building model: defined by (10) and (11), it is used to
identify the inputs and outputs of interest (HVAC set points and zone
temperatures, respectively), as well as the external factors influen-
cing temperature (outside temperature, solar radiation, occupancy)
and the different operating point of the HVAC (trigger by the oc-
cupancy pattern.

• The EnergyPlus building model: it provides the actual measurements
to be used for feedback. To perform the simulation tests the
EnergyPlus building model receives the inputs from the controller.

• The switched dynamic controller: it processes all the quantities pre-
viously identified (building and weather states) in such a way to
generate the feedback-based input actions. The controller depends
on some parameters (the control gains to be introduced later).

• The self-tuning optimizer: it must be able to self-tune the controller
parameters such a way to maximize the building performance. This
is the task of the proposed Rule-based Parameterized Cognitive
Adaptive Optimization (R-PCAO) which exploits an Hamilton-
Jacobi-Bellman (HJB) formulation described in the next section.

Depending on the building structure (defined by the simplified Eqs.
(10) and (11), or even by the more realistic EnergyPlus model), dif-
ferent control gains are needed to optimize the performance at the
whole building level. Therefore, one requires an optimization algorithm
with the ability to ‘learn’ the building dynamics from data, and use this

Fig. 3. The connection between the simplified building model, the EnergyPlus model and the optimization algorithm.
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knowledge to optimize the whole building performance (in our case,
exploit the renewable energy sources while delivering improved
thermal comfort). Before giving the mathematical details of R-PCAO, it
is instructive to collect in Table 1 all the quantities involved in the
optimization.

4.2. The Rule-based Parameterized Cognitive Adaptive Optimization

For convenience, let us first separate the cost t( )t( ) in (10) as

=

+

e t dt

e H x t d t u t u t dt

( )

[ ( ( ), ( )) ¯ ( ) ( )]

t
t

t
t t t

0 ( )

0 ( ) ( ) ( ) (12)

for some appropriate >¯ 0. From dynamic programming theory [41],
we know that the optimal solution to (10) and (11) satisfies the Ha-
milton-Jacobi-Bellman equation:

° =

+ +

+ + °

°{( )
u x t

A x t B u t E d t

H x t d t u t u t V x t

( ( ))

argmin ( ( ) ( ) ( ))

( ( ), ( )) ¯ ( ) ( ) ( ( ))}

t

u

V x
x t t t t

t t t t

( )
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

t( )

(13)

where °V is typically referred to as the optimal value function, while
°u is referred to as the optimal control. Note that the optimal value

function and the optimal control are dependent of t( ), in view of the
different modes of the system. The main idea behind the R-PCAO al-
gorithm is to parameterize both the optimal value function and the
optimal control

° = ° +V z x t P z x t O L( ( )) ( ( )) (1/ )t t( ) ( ) (14)

° = ° +u B M x P z x t O L¯ ( ) ( ( )) (1/ )t t z t( )
1

( ) ( ) (15)

where °P can be referred to as the optimal (or nearly optimal) para-
meterization matrix. Because the value function can be interpreted as a
Lyapunov function for the system, it is positive definite, which can be
achieved by imposing °I P I1 2 . In addition, the function
M x( )z is the Jacobian matrix of z x( ) with respect to x z x, ( ) is the
feedback vector to be defined later, and O L(1/ ) is the approximation
term. The exact form of L and z x( ) will be discussed later: for the
moment it is sufficient to say that L is a parameter such that by in-
creasing L the approximation error becomes smaller (similar to neural-
network approximation error). The form of z x( ) also depends on L
(similar to neural-network regressors).

Being °V t( ) unknown, the main problem resides in the fact that the
optimal parameterization °P is unknown. However, one can substitute
the optimal parameterization matrix °P with an estimate P , with

I P t I( )t1 ( ) 2

=V z x t P t z x t( ( )) ( ) ( ( ))t t( ) ( ) (16)

=u B M x t P t z x t¯ ( ( )) ( ) ( ( ))t t z t( )
1

( ) ( ) (17)

At this point, one should iteratively approach the nearly-optimal solu-
tion °P by updating the parameterization P at every time step. The R-
PCAO algorithm is a specific way of updating P through the use of the
building model. The R-PCAO algorithm is schematically represented in
Fig. 4, and described through the following steps.

(1) Calculation of close-to-optimality index: Select a sampling time dt, and
consider the index

=

+ +

x t d t P t V t V t dt

H t u t u t dt

( ( ), ( ), ( )) ( ) ( )

[ ( ) ¯ ( ) ( )]
t t t t dt

t dt
t

t t t

( ) ( ) ( ) ( )

( ) ( ) ( ) (18)

Table 1
Quantities involved in the R-PCAO methodology.

Explanation Symbol

State x
Input u
Mode
State matrix A
Input matrix B
Exogenous matrix E
Instantaneous total cost
Instantaneous state cost H
Instantaneous input cost ¯
Discounting factor
Optimal value function °V
Optimal input °u
Estimated value function V
Estimated optimal input u
Transformed state z
Jacobian of z wrt x Mz
Optimal parameterization °P
Estimated optimal parameterization P
Candidate optimal parameterization P cand( )

Best candidate optimal parameterization P best( )

Candidate perturbation P i( )

Approximation error O L(1/ )
Close-to-optimality index
Estimated close-to-optimality index
Gradient update gain a

Fig. 4. R-PCAO load management and zoning strategy.
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which can be referred to as the close-to-optimality index. In fact,
the smaller the =E P( ) 2, the closer P is to °P (albeit the ap-
proximation error O L(1/ )). Therefore, one can think about using a
gradient-like descent for updating P ,

+ =+P t dt P t a t P t( ) ( ) ( ) ( ( ))t dt t P t( ) ( )
2

( ) (19)

where >a t( ) 0 is an update step, so as to minimize 2. In fact, when
P converges to the optimal °P , then 2 would be of the order of the
approximation error for all time steps. However, (19) cannot be
directly used because:
a. An analytic expression of EP in (19) is not available. In fact,

EP depends on the simplified dynamics (11), which are an
approximation of the actual building dynamics;

b. It is well know that, in practice, the approximation error term
O L(1/ )can make the convergence properties of the standard
gradient descent algorithm invalid [41].
To overcome these technical difficulties we construct an alter-
native descent method according to the following steps.

(2) Update linear-in-the-parameters estimator: Consider the linear-in-the-
parameters estimator

=x t d t P t P t( ( ), ( ), ( )) ( ( ))t t t( ) ( ) ( ) (20)

=
=

P l P larg min ( ( ( )) ( ( )))
l t T

k

t l l( ) ( ) ( )
2

to approximate P
2, i.e. to approximate the gradient of the ob-

jective function with respect to P t( ). Using stochastic approximation
techniques, it has been shown in [41] that such an approximation
will iteratively converge close to the actual gradient as more data
are collected.

(3) Generate candidate strategies: Because P is the parameterization of a
Lyapunov function, only positive definite matrices should be con-
sidered for every update. This can be easily achieved by generating
the appropriate candidate perturbations = …P i N, 1, 2, ,t

i
( )

( )

= +P a t P t a t P(1 ( )) ( ) ( )t
i cand

t
best

t
i

( )
( ) ( )

( ) ( )
( )

(21)

where a t( ) is a positive update step and P best will be defined later. It
is immediate to see that, if I P t I( )t

best
1 ( ) 2 and

I P It
i

1 ( )
( )

2 , then I P t I( )t1 ( ) 2 at every time t.

(4) Evaluate candidate strategies and Select best strategy: Every P t
i cand
( )

( ) ( )

represent a possible load management strategy to the tested.
Clearly, it is computationally too demanding to choose the brute
force approach of testing each P t

i cand
( )

( ) ( ) on the building model. On
the other hand, one can evaluate each candidate perturbations
P t

i cand
( )

( ) ( ) via the estimator (20), and only the best one (according to
the estimator) can be selected for actual test in the building model

+ =
= …

P t dt x t d t Parg min ( ), ( ),t
i N

t
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( )
1, ,

( )
( ) ( )

(22)

Therefore, the use of the estimator (20) has the clear advantage that
only one evaluation using the building model is performed for each
time step. This is important because for each evaluation of a
strategy using a building model (simulation-based evaluation), the
computational cost is in general proportional to the simulation
horizon that one wants to test.

(5) Simulation-based reset: To reduce the degrading effect of the ap-
proximation error term O L(1/ ), let us consider a reset based on the
simulation-based evaluation. In other words, one should memorize
P t( )t

best
( ) as the strategy with the best simulation-based performance.

At this point, as highlighted in (21), the approximation of the value
function +P t dt( )t( ) at the next time step is always calculated
starting from a perturbation of P t( )t

best
( ) .

4.3. Switched-based approximation

Any building management system exploits a certain set of in-
formation to operate its management actions. Such information can be
typically categorized as internal feedback factors (internal tempera-
tures, generally denoted with x) and external measurable feedback
factors (external temperature and solar radiation, generally denoted
with d). The same holds for R-PCAO, where the information of x and d
should be used to operate an optimal management: in particular, in R-
PCAO, the measurements are used to approximate the value function
and the control law. In many applications, a quadratic approximation of
the value function, e.g. x P x and a linear approximation of the control
law, e.g. =u B P x¯ 1 can provide acceptable performance. However,
because we have seen in (3)–(5) that switching modes will occur, the
dynamics corresponding to each t( ) which be too different to be
handled by a single (linear) controller. This implies that the quadratic/
linear approximations must be overcome. Therefore, we utilize dif-
ferent controllers depending on the active mode t( ). In this case, P t( )
and z x( ) are

=P k
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where the following things have to be noticed: the feedback vector
contains information about outside weather conditions, people occu-
pying a certain room, inside temperature and temperature of the
neighboring rooms. This allows us a special block-structure in P t( )
where each submatrix P t( )i( ) is activated depending on the mode of
room i.

5. Results

This section focuses on the simulations for the test case of Section 2.
The simulations have been conducted with Matlab R2015b, and Energy-
Plus 6.1.0, on a PC with 16 GB RAM and Intel 4770 k. The weather data
have been taken from the EnergyPlus database, in particular for Athens,
year 2011. It is important to underline that the numerical values of the
RBLM have been optimized so as to perform good (with average PPD
around 9% for a nominal occupancy schedule, and as small energy
consumption as possible) over 7 different sets of 7 days during summer
(Greek climate, from mid June to early August 2011). Note that the
hottest weeks of the season are included in these sets, with some
variability: considering the hottest weeks allows us to maximize the
need for zoning in the building.

The average occupancy schedule of the building is given in Table 2.
Note that sometimes the building is occupied during the whole day and
sometimes only during the morning, creating a variability that makes
the control design more challenging (because occupant behavior has to
be taken into account). The one reported in Table 2 is the average oc-
cupancy schedule over the entire building: the actual occupancy sche-
dule for each room consists of some random perturbation of the average
schedule, as reported in Fig. 5.
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In all subsequent tables we will report the improvement in terms of
non-renewable energy consumption (intended as the energy consumed
from the grid), and the improvements in terms of PPD. We calculate
such costs for the different load management programs, including the
proposed one. Furthermore, in order to provide a cumulative (total)
improvement, we also calculate

=
+

Total improvement 0.1(Daily energy consumption)[kWh]
0.9(Average daily PPD)[%] (23)

which is a linear combination of the two main performance criteria. The
weights 0.1 and 0.9 reflect the same proportion used in the cost matrix
H , and thus reflect the actual cost driving the R-PCAO optimization.
Different weights would lead to different trade-offs and thus different
Pareto-optimal results.

To highlight the benefit of smart zoning, we deploy a ‘downgraded’
version of R-PCAO where the HVAC set point is the same in all rooms
(we call this version R-PCAO no zoning); finally, to prove the necessity
of the multi-modal control actions parameterized by the switching
signal , we also implement a linear version of R-CAO (named R-PCAO
linear), which implements zoning, but with a single linear controller
(and a single quadratic value function) to handle all possible working
modes shown in Fig. 2. The performance of all programs is tested over 7
different sets of 7 days, and a percentage range is given to show the

effect of weather variability on the performance. Table 3 shows the
improvement of R-PCAO and RBLM as compared to the two simple FSP
strategies. It can be noted that R-PCAO attains total improvements in
the range 26–33% as compared to the two FSP strategies. This is a re-
markable 39–42% performance improvement over the RBLM strategy
(whose total improvement is in the range 15–20% as compared to the
two FSP strategies). Such improvements are quite consistent despite
different external weather. It is not a surprise that, when no smart
zoning action is implemented by R-CAO (R-PCAO no zoning), the per-
formance almost falls back to the performance of RBLM: in fact, RBLM
is a strategy optimized via a genetic algorithm that does not implement
any smart zoning. Therefore, as compared to optimized strategies with
no smart zoning, there is an additional benefit of around 4% reduced
energy and 8% improved comfort in implementing a smart zoning
program. Finally, the last row of Table 3 reveals that the linear version
of R-PCAO (R-CAO linear) attains improvements in the range 21–27%
as compared to the two FSP strategies, which is about a 18–19% per-
formance degradation as compared to the proposed (switched) R-PCAO.
From here we see that the switching action is fundamental to maximize
performance of the load management and zoning program.

For easiness of analysis, let us now focus on one of the 7 sets of
Table 3 (in particular on the last set), and let us plot the two bar charts
presented in Fig. 6: the first bar chart reports the energy cost (in kWh),
while the second bar chart reports the PPD (in %) for all strategies. The
important observation is that R-PCAO scores better in both bar charts
than all other strategies: for example, as compared to °FSP C24 , R-PCAO
saves more than 150 kWh in 7 days (even with 4% better comfort le-
vels). On the other hand, as compared to °FSP C25 , R-PCAO has only a
slightly better energy cost, but a relevant 6% improvement in thermal
comfort. This is particularly remarkable because R-PCAO consumes less
energy than a strategy that, by not implementing any pre-cooling action
and by raising the set point, is saving a large amount of energy. The
reason behind this reduction of energy consumption is that R-PCAO
manages to exploit more efficiently the renewable energy from the solar
panel. For the same experiment as before, Fig. 7 reports that °FSP C24
uses 389 kWh from the solar panel (35% of the total building energy),

°FSP C25 uses 395 kWh from the solar panel (41% of the total building
energy), RBLM uses 475 kWh from the solar panel (44% of the total
building energy), and R-PCAO uses a remarkable 590 kWh from the
solar panel (51% of the total building energy). The interesting ob-
servation is that, if we look at the total energy consumption (non-re-
newable + renewable) for all strategies, we have: °FSP C24 needs 1109
kWh, °FSP C25 needs 964 kWh, RBLM needs 1079 kWh, and R-PCAO uses
1157 kWh, which is the largest of all. So, the benefit of R-PCAO is
exploiting in a smarter way the renewable energy which is free of
charge.

Fig. 8 reports, for both RBLM and R-PCAO, the evolution of the set
points for 1-day simulation (the different color variations indicate the
different set point levels). The figure shows how R-PCAO is able to give
sharper feedback-based adjustments as compared to the RBLM basic
working point. In addition, while RBLM does not implement any zoning
(all zones are optimized at the same set point, indicated on top of
Fig. 8(a)), RPCAO is able to deliver different set points for each room
(indicated in Fig. 8(b) with different color degradation). The difference
in the set points from room to room can be up to 2 °C. We conclude that

Table 2
Average occupancy schedule over one week (the numbers in the header refer to
the hours of a day).

7–15 8–14 and 17–21 Empty

Monday ✓
Tuesday ✓

Wednesday ✓
Thursday ✓

Friday ✓
Saturday ✓
Sunday ✓

Fig. 5. Example of actual occupancy schedule in the different rooms
(dark = unoccupied, light = occupied).

Table 3
R-PCAO Total Cost improvements as compared to °FSP C24 and °FSP C25 (simulations for 7 different sets of 7 days, summer season).

Energy impr. Comfort impr. Total impr. Energy impr. Comfort impr. Total impr.
wrt °FSP C24 wrt °FSP C24 wrt °FSP C24 wrt °FSP C25 wrt °FSP C25 wrt °FSP C25

RBLM 12–14% 24–26% 18–20% (−8) to (−5)% 32–35% 15–18%
R-PCAO 20–23% 36–39% 30–33% 0–2% 43–47% 26–29%

R-PCAO no zoning 12–14% 25–27% 19–21% (−7) to (5)% 33–36% 16–19%
R-PCAO linear 16–19% 28–32% 23–27% (−1) to (1)% 35–38% 21–24%
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R-PCAO is able to learn the building dynamics from the EnergyPlus data
and to use them for feedback-based control.

5.1. Robustness to variable weather

It is clear that rule-based programs can seldom guarantee robustness
against weather conditions (unless the rules are weather-dependent,
which is not the case for the rules in Section 2.1). In fact, when rule-
based programs are optimized over a specific data set, robustness to
different data sets may not occur. Additional simulation tests will now
demonstrate that the proposed R-PCAO, by providing a feedback-based
action, can enhance robustness to different weather conditions. In these

simulations all the strategies are optimized over seven days in early
August, and used over 4 different sets of 7 days of early autumn season
(mid September-mid October 2011) and over 4 different sets of 7 days
of late spring season (mid May-mid June 2011).

The purpose is to test to what extent a load management and zoning
program optimized over short data sets can be robust when im-
plemented over longer data sets (this feature is often referred to as
generalization, i.e. the performance is consistent over data sets different
than the data sets used for optimization). Moreover, we perform the
optimization of RBLM and R-PCAO during the 4 sets of autumn season
and the during the 4 sets of spring season, so as to check the de-
gradation of performance with respect to the best possible performance:

Fig. 6. Energy and PPD costs for one of the 7 different sets of 7 days.

Fig. 7. Exploitation of renewable energy for one of the 7 different sets of 7 days.

(a) RBLM (b) RPCAO

Fig. 8. Thermostatic set points during 1-day simulation (the different color variations indicate the different set point levels).
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we refer to such (best possible) strategies as RBLM autumn, R-PCAO
autumn, RBLM spring and R-PCAO spring, respectively.

Table 4 presents the results of the early autumn 4-week experiment
and Table 5 presents the results of the late spring 4-week experiment. In
order to avoid any bias arising from different weather, we compare the
performance with respect to the FSP strategies. Obviously, the im-
provements of RBLM and R-PCAO, are worse than the improvements
their full data set counterparts RBLM autumn, R-PCAO autumn and
RBLM spring, R-PCAO spring, respectively. However, a notable differ-
ence arises: while the performance degradation of R-PCAO is acceptable
(improvements in the range 21–30% as compared to 24–33% in R-
PCAO autumn and 23–31% in R-PCAO spring), the performance de-
gradation for RBLM is higher (improvements in the range 9–12%, as
compared to 14–20% in RBLM autumn and 13–19% in RBLM spring. In
other words, the average degradation of performance for R-PCAO is
below 10%, whereas the average degradation of performance for RBLM
is around 40%. Small degradation of performance basically indicates
robustness to variability of external condition. Poor robustness of RBLM
can be explained by the fact that RBLM does not employ any feedback
control: therefore, in order to keep consistent performance under dif-
ferent dynamics and weather conditions, continuous tuning and rede-
sign of RBLM from the user or from the building manager are constantly
required. On the other hand, the feedback action embedded in R-PCAO
(note that the feedback vector of R-PCAO includes external weather
conditions) makes it intrinsically more robust.

5.2. Robustness to variable user behavior (occupancy schedule)

If weather conditions can be imagined to follow some continuous
stochastic process, user behavior (in terms of occupancy schedule) will
typically follow a discrete stochastic process (e.g. in the form of a
Markov chain). Therefore, assessing robustness with respect to variable
occupant behavior is even more crucial than with weather conditions. It
is clear that the rules in rule-based programs as presented in Section 2.1
are occupancy-dependent. However, because a careful tuning of the set

points in different times of the day and over different rooms is necessary
(cf. Fig. 8), robustness is not guaranteed. Therefore, set points opti-
mized over a short data set with a specific occupancy schedule, may not
generalize to longer data sets with variable occupancy behavior. Si-
milarly to the previous set of simulations, RBLM and R-PCAO are op-
timized over seven days in early August, and used over 4 different sets
of 7 days. During this 4 sets, we keep the same weather conditions, and
we only change the occupancy schedule: the different occupancy
schedules are generated as a perturbation of the nominal schedule in
Table 2. Moreover, we perform the optimization of RBLM and R-PCAO
during the 4 sets of variable occupancy schedules (full data set), so as to
check the degradation of performance with respect to best possible
performance: we refer to such (best possible) strategies as RBLM
schedule and R-PCAO schedule, respectively.

Table 6 presents the results where, in order to avoid any bias arising
from different occupancy schedules, we compare the performance with
respect to the FSP strategies. Because the same weather conditions are
used for all weeks, the indicated range refers to the different occupancy
schedules (differently from Tables 3–5 where the range was arising
because of different weather). By looking at Table 6, a notable differ-
ence arises: when optimized over the full data set, the range of im-
provements of RBLM schedule and R-PCAO schedule is quite narrow
(the differences are of the order of 1–2%). On the other hand, optimi-
zation over a shorter horizon leads to ranges of the order of 3–4% for R-
PCAO and of 6–7% for RBLM, which shows that R-PCAO is more robust
to variability in the occupancy schedule. This happens because the
feedback action embedded in R-PCAO exploits the relations between
the occupancy status and the thermal state of the building, so that such
relations can be generalized when different occupancy schedules
occur.

We conclude that the proposed R-PCAO program, due to its em-
bedded feedback action (with information of thermal and occupancy
conditions), leads to consistent improvements even under changing
conditions, covering both variable occupancy patterns and variable
weather.

Table 4
Improvements with respect to °FSP C24 and °FSP C25 (simulations for 4 different sets of 7 days, early autumn season).

Energy impr. Comfort impr. Total impr. Energy impr. Comfort impr. Total impr.
wrt °FSP C24 wrt °FSP C24 wrt °FSP C24 wrt °FSP C25 wrt °FSP C25 wrt °FSP C25

RBLM 9–11% 16–19% 10–12% (−10) to (−8)% 20–23% 9–10%
R-PCAO 18–21% 32–36% 26–30% (−1) to (1)% 37–41% 22–25%

RBLM autumn 14–17% 24–27% 17–20% (−8) to (−6)% 31–34% 14–17%
R-PCAO autumn 19–23% 34–39% 28–33% 0–2% 40–45% 24–28%

Table 5
Improvements with respect to °FSP C24 and °FSP C25 (simulations for 4 different sets of 7 days, late spring season).

Energy impr. Comfort impr. Total impr. Energy impr. Comfort impr. Total impr.

wrt °FSP C24 wrt °FSP C24 wrt °FSP C24 wrt °FSP C25 wrt °FSP C25 wrt °FSP C25

RBLM 8–10% 15–18% 9–11% (−11) to (−8)% 18–23% 8–11%
R-PCAO 16–21% 30–34% 24–28% (−1) to (1)% 39–42% 22–25%

RBLM spring 13–15% 23–27% 16–19% (−9) to (−5)% 29–34% 13–18%
R-PCAO spring 18–22% 32–36% 27–31% 0–2% 40–44% 23–28%

Table 6
Improvements with respect to °FSP C24 and °FSP C25 (simulations for 4 different sets of 7 days, variable occupancy).

Energy impr. Comfort impr. Total impr. Energy impr. Comfort impr. Total impr.
wrt °FSP C24 wrt °FSP C24 wrt °FSP C24 wrt °FSP C25 wrt °FSP C25 wrt °FSP C25

RBLM 10–14% 17–26% 11–18% (−10) to (−6)% 23–32% 9–15%
R-PCAO 19–21% 32–36% 27–31% 0–2% 41–43% 24–27%

RBLM schedule 14–15% 25–27% 18–19% (−7) to (−5)% 32–33% 15–16%
R-PCAO schedule 20–22% 34–36% 29–31% 0–2% 43–44% 26–27%
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6. Conclusions and future work

Load management actions in large buildings often neglect the oc-
cupant-building dynamic interaction and prevent smart zoning strate-
gies, i.e. setting the temperature in every room at different levels ac-
cording to geometry, orientation and interaction among rooms caused
by variable occupancy patterns. In this work we created a novel self-
tuning demand management architecture that adds, on top of a rule-
based load management, sharper feedback-based zoning actions: this
was achieved by embedding multi-mode (switched) behavior into the
approximate solution of a Hamilton-Jacobi-Bellman framework. We
demonstrated the proposed load management and zoning program via a
test case for intelligent management of heating, ventilating and air
conditioning (HVAC) in a building with multiple zones. In particular, to
demonstrate the proposed approach, we employ a realistic EnergyPlus
model of an actual office building in Crete, Greece. Extensive tests show
that the proposed solution is able to learn the building dynamics and to
provide different set points in every room in such a way to optimize the
whole building performance (exploitation of renewable energy sources
with improved thermal comfort). As compared to pre-programmed
(non-optimal) strategies, we show that smart zoning makes it is possible
to save more than 15% energy consumption, while the thermal comfort
results increased more than 25%. As compared to optimized strategies
in which smart zoning is not implemented, smart zoning leads to ad-
ditional 4% reduced energy and 8% improved comfort, demonstrating
improved occupant-building interaction. Moreover, the proposed solu-
tion is robust to occupant behavior and weather conditions the closed-
loop feature of the approach makes it robust to variable weather con-
ditions and occupancy schedules.

Despite its positive performance, this approach is open to future
improvement. First, it would be really relevant to include the occupant
interaction with the building automation system, for example opening
window/doors or overruling the set point: unfortunately, we could not
find any ‘human model’ that could be included in EnergyPlus to si-
mulate such human response: we would like to study this relevant point
on future work. Second, load management and zoning could be con-
nected with demand response programs defined by the grid operator via
price-based incentives. This scenario could be handled via game-theo-
retic approaches, to be handled for example in an extended Hamilton-
Jacobi-Isaac formulation: studies in this direction can be found in [42].
Finally, some further steps are still necessary to reach a fully-automated
program, for example plug-n-play integration of new loads, storage and
generation devices. Studies in this direction can be found in [43] with
multiple control strategies taking different decisions depending on the
available equipment.
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