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Chapter 1

Introduction

The day is November 13, 1994. The streets of Adelaide, Australia are empty except for
twenty-six autonomous agents that drive around a 3.78km track for a total of 81 laps.
On lap 35, agent 5 and agent 0 try to occupy a piece of track that has room for only one.
The resulting collision immediately puts agent 5 out of the race, while agent 0 manages
to limp back to the pit lane, where he retires with a broken suspension. Having scored
more points in previous races, agent 5 is World Champion; agent 0 misses the title by a
single point.

The subject of this thesis is multi-agent route planning (MARP), in which each agent
(a computational entity with a degree of autonomy to choose its actions — see section 1.2)
has to plan a route from a current location to a destination location, while avoiding
conflicts with the plans of the other agents. The scope of MARP is not quite as broad
as to encompass Formula 1 racing, at least not until the FIA1 allows non-human drivers
to enter the championship. Until that time, there are many interesting situations in
which multi-agent route planning is a relevant problem, including planning taxi routes for
airplanes at airports [33], and coordinating the movements of automated guided vehicles
in flexible manufacturing systems [7]. In addition, research into the complexity of multi-
agent route planning has revealed similarities with other planning problems, including
moving pianos (out of a room of movable objects) [82], dodging asteroids, and escaping
from prison (by evading detection from search beam lights) [25].

The main applications we will consider in this thesis are taxiway route planning and
route planning for automated guided vehicles. In airport taxi routing, aircraft (agents)
have to taxi from a runway to a gate, and then, after all ground handling services have
been performed, they have to taxi from the gate to the runway for take-off. These aircraft
drive around a shared infrastructure of taxiways, runways, gates, aprons, parking places,
etc., and they may never come into contact with (or even close to) another aircraft.
Also, agents are self-interested in the sense that they care little whether the planes of
rival airlines arrive on time, as long as they are on time themselves. Although at many
airports taxi routes have been specified in advance, route planning algorithms can improve
performance, because the pre-specified routes may not be optimal (for example with

1The Fédération Internationale de l’Automobile is the governing body for world motor sport.
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regard to the minimization of delay). In addition, new routes have to be found in case
the standard taxiways are covered with snow or are otherwise obstructed. Also, wintry
conditions sometimes require snow and ice to be removed from airplanes prior to take-off.
This de-icing process usually occurs at a de-icing station, which means that an agent
cannot take its regular route to the runway, but it must first taxi from the gate to the
de-icing station. Moreover, an aircraft must take off within a certain time limit of de-icing
(called the holdover time, which is typically 15 minutes), to prevent ice from re-forming.
Hence, we need algorithms to plan along a sequence of locations, possibly with timing
constraints between different locations.

Other application domains of multi-agent route planning are those in which Auto-
mated Guided Vehicles (AGVs) are deployed. On factory floors and in warehouses AGVs
are used to transport materials between locations of the facility. The AGV routing prob-
lem is typically but one of the optimization problems involving AGVs. It must also be
decided which transportation task to allocate to which AGV [38], what to do with an AGV
once it has completed a transportation task (e.g. the idle-vehicle positioning problem [8]),
what the optimal AGV fleet size is [79], when an AGV should recharge its battery [62],
etc. All of these problems interact with the problem of determining the best routes for
the AGVs. Another prominent area where AGVs are used is at container terminals (e.g.
in Singapore, Rotterdam, or Hamburg), where AGVs carry containers to and from ships.

1.1 Problem description

In multi-agent route planning, there are a number of autonomous agents (in the above
examples: (auto-)pilots in taxiing aircraft, and automated guided vehicles), each with its
own transportation task, which implies that each agent has a start location and one or
more destination locations2. In the example domains, an aircraft has to taxi to the gate
after landing, while an AGV may have to pick up a pallet at the warehouse and transport
it to a production station. We assume that agents traverse a road map. That is, rather
than moving around in free space, an agent must keep to pre-specified roads. A taxiing
aircraft, for instance, can no longer travel as the crow flies.

With more than one agent active on the infrastructure, the agents need to coordinate
their movements to avoid collisions, both during route planning and during the execution
of the route plans. In multi-agent route planning, the coordination between the agents
must ensure that none of the resources of the infrastructure (e.g. roads and intersections)
are ever occupied by more agents than the capacities of the resources allow. Planning-
time coordination should ensure that coordination during the plan execution phase (e.g.,
maintaining sufficient distance between the agents) is no longer a difficult problem. The
challenge is to coordinate the agents while enabling them to efficiently perform their
transportation tasks, by which we mean that they want to finish their transportation
tasks as quickly as possible. In the airport domain, where delays can be very costly, an
aircraft should spend as little time as possible traversing the taxiways. For manufacturing
systems that use AGVs for materials handling, efficient transportation is important to

2We will only consider the case where destination locations have to be visited in a particular order
that is known in advance. Otherwise, a Traveling Salesperson Problem (TSP) (see e.g. [26]) has to be
solved.
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ensure that no machine is idle. In addition, an efficient transportation system may require
fewer AGVs than an inefficient one.

Some existing approaches to coordination sacrifice efficiency to ensure conflict-free
behaviour (cf. [20, 48, 97]). For example, the coordination problem for AGV systems can
be solved by arranging the infrastructure as one large, uni-directional loop along which
all pickup and delivery locations lie [85]. AGVs simply drive around this loop and pick up
a load as soon as they encounter one, unless they already carry a load. Other approaches,
such as always traversing the same taxiways from the gate to the runway, do not take
into account the congestion on the taxiways when deciding on a route. To tackle the
problem of finding efficient, conflict-free routes, we pursue a planning approach in this
thesis, in which an agent takes into account the intended movements of other agents.
That is, rather than postponing conflict resolution until execution time, or preventing
any possibility of conflicts prior to planning, we integrate the processes of route planning
and conflict resolution.

When agents try to carry out their plans, they may find that the environment has
changed in ways they did not expect, and this may require them to revise their original
plans. If these revised plans are much less efficient than the original ones, then the
objective of efficient coordinated behaviour is still not met, for in practice circumstances
frequently do change. Hence, a special area of focus in the thesis will be the evaluation
of the robustness of agent plans, i.e., the property of plans to remain efficient even after
moderate revisions.

1.2 Research question

This thesis aims to answer the question,

Can agents, operating on a shared infrastructure, find conflict-free route plans
that are both efficient and robust under changing circumstances, given limited
computation time?

There are many definitions of an agent (cf. [23]), and one that fits our research well
is from Maes [55]: “Autonomous agents are computational systems that inhabit some
complex dynamic environment, sense and act autonomously in this environment, and by
doing so realize a set of goals or tasks for which they are designed.” In this thesis, we
consider agents that perform transportation tasks, and they have to take into account the
actions of other agents both in the planning and the execution of their tasks. We assume
that each agent plans and executes the actions of a single vehicle, which can be anything
from a small AGV to an aircraft. Depending on the application domain agents can be
self-interested, as in the airport domain, or cooperative. An example of cooperative agents
are AGVs operating on a factory floor, where the total performance of the AGV system
is more important than the performances of the individual AGVs.

An infrastructure is a graph of resources, each of which can hold a limited number of
agents at the same time. Given our focus on logistic domains, the infrastructure is usually
a road map, consisting of roads connected by intersections. A set of conflict-free plans
must ensure that there are never more agents in a resource than the capacity allows. In
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addition, the execution of the agents’ plans should not lead to a deadlock situation, as
illustrated in figure 1.1, where four agents approach an intersection that can hold at most
one.

A1 A2

A
3

A
4

Figure 1.1: With four agents approaching an intersection, a deadlock will occur: only one
agent can enter the intersection, and it cannot leave the intersection because all roads are
blocked.

We assume that an efficient route plan is one that minimizes the completion time.
Completion time is an important factor in logistic tasks, especially if other processes (or
agents) in the environment depend on the completion of the transportation tasks. For
example, workstations in manufacturing systems depend on the timely delivery of mate-
rials to start processing a job. An Automated Guided Vehicle System should therefore
ensure a constant flow of materials to and from workstations.

When unexpected changes in the environment invalidate the plans of the agents (for
example, aircraft can arrive late, AGVs may find their way blocked by humans that
step into their path, etc.), then they must revise their plans in order to still achieve
their (transportation) goals. The revised plans, however, are often less efficient than the
original set of plans. We define the robustness of a set of plans in terms of the loss of
efficiency (which, using the definition of efficiency given above, is measured in terms of
delay), given a set of available plan repair techniques.

Finally, finding a plan should not require too much computation time. If we assume
that an agent cannot start the execution of its route plan until the route has been fully
computed, then the time spent finding the route should be negligible compared to the
time traversing the route. For the same reason, the plan repair techniques should also
require little computation time.
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1.3 Contributions

Our research question states that we are looking for a way to compute efficient agent
route plans. Unfortunately — although perhaps unsurprisingly — the problem of finding
a globally optimal set of conflict-free route plans is intractable (NP-hard in fact, as we
shall see in chapter 3). To be able to find efficient route plans in reasonable time, we
take a heuristic approach where agents plan one by one, each agent ensuring that it does
not create a conflict with any existing agent route plans. This thesis makes the following
contributions to the field of multi-agent route planning.

A model for conflict-free route planning: What constitutes a set of conflict-free
plans differs slightly for different application domains of conflict-free routing. The
model we present in this thesis allows us to model several key application domains,
including any special constraints that these domains might place on conflict-free
travel (such as a constraint that forbids overtaking).

A fast and locally optimal context-aware route planning algorithm: We
present an algorithm that finds the shortest-time route plan for a single agent,
such that no conflict is introduced with its context, by which we mean any of the
existing route plans from other agents. Similar algorithms from the literature are
either slower (such as Kim and Tanchoco’s algorithm [41]), or sub-optimal (such as
Hatzack and Nebel’s algorithm [33]).

A locally optimal multi-stage route planning algorithm: In conflict-free routing,
the problem of finding the shortest-time route plan that visits a fixed sequence of
locations is not trivially reducible to the problem of finding a route from a start
location to a destination location. We first show that the naive approach of con-
catenating optimal route plans between successive locations is both sub-optimal
and incomplete. Then, we present an optimal algorithm for the multi-stage routing
problem that has a time complexity that is only slightly higher than that of the
algorithm for the single-destination case.

A priority-based plan repair algorithm: Unexpected incidents in the environment
can cause a delay for one or more agents. If we stick to the original set of plans in
these situations, then non-delayed agents may have to wait for their delayed coun-
terparts. We present an algorithm that allows non-delayed agents to take prece-
dence over delayed ones, while still guaranteeing conflict-free plan execution. Our
algorithm improves on an algorithm from Maza and Castagna [60] that also allows
priority changes, but only under very strict conditions.

Empirical evaluation of the usability of route planning: It has been suggested in
the literature that computing an optimal route is both too time-consuming
(e.g. [88]), and a waste of time, because changes in the environment invalidate any
plan (e.g. [47]). The latter criticism assumes either that no plan modifications are
allowed, or that no repair techniques are available. As mentioned above, however,
we do have repair techniques at our disposal, and our empirical evaluation of these
repair techniques shows that route plans can be robust.
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Additional experiments have been conducted to evaluate the cost of multi-agent
plans. Although we can find the optimal route plan for a single agent, we have no
guarantee that a set of individually optimal plans (sequentially obtained) is also
optimal. In our experiments we try to establish whether or not the cost of a multi-
agent plan is on average far removed from the cost of an optimal multi-agent plan,
and how this cost gap depends on the chosen infrastructure topology. Our results
indicate that if the agents manage to organize themselves into flows through the
infrastructure, then the order in which they plan has no great impact on the cost
of the multi-agent plan.

1.4 Overview

In chapter 2 we discuss related work. Research into multi-agent route planning has
mostly been conducted in two separate fields: robot motion planning and route planning
for automated guided vehicles. Research into robot motion is often concerned with low-
level motor controls (such as acceleration, deceleration, turning angle, etc.), whereas
AGV research is more concerned with route choices. Nevertheless, the methods to deal
with multi-agent motion/route planning are similar in both domains. For example, an
approach common to both is to plan the motions of the agents in sequence (which is also
the approach we take in this thesis), subject to a particular priority of the agents.

In chapter 3 we present a framework for modelling conflict-free routing problems. The
basic concept underlying the framework is that infrastructural elements such as roads and
intersections are modeled as resources that can hold a finite number of agents at the same
time. In addition to the resource capacity constraint, many application domains require
agent plans to satisfy additional constraints, for example that agents are not allowed to
overtake each other. These and other constraints can be expressed in our framework.

In chapter 4, we present our route-planning algorithms, both for the case where there
is a single start location and a single destination location, and for the case where a fixed
sequence of locations must be visited. Both algorithms are based on the idea that an
agent must plan around the plans of previous agents; it can do so by making use of the
free time windows on the resources. If we assume that agents A1 to An−1 have each made
a plan, such that the set of n−1 route plans is conflict-free, then agent An can determine
for each resource the time intervals during which its entry into the resource will not cause
a conflict. At the least, this means that during a free time window there will be fewer
agents on the resource than the capacity, but there may also be other constraints that
the agent An has to take into account, depending on the application domain.

In chapter 5 we discuss plan repair3, which is required when unexpected incidents
disrupt the execution of plans. Our plan repair algorithm is based on the concept of
priority: from a conflict-free set of agent plans, we can infer for any resource the order in
which agents will visit the resource. The main idea of priority-based plan repair is that if
this ordering is maintained during the execution of plans — even if some agents are delayed
— then no deadlocks will occur, and all agents will eventually reach their destinations

3More specifically, we consider schedule repair, as our repair algorithms only change the timing of
existing plans.
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safely. To improve the performance of the agents, we can increase the priority of non-
delayed agents over delayed agents as long as this does not introduce a deadlock. To judge
whether a particular priority change will lead to a deadlock or not, we can use the plans
of the agents to construct a graph that will contain a cycle if and only if the execution of
these plans will lead to a deadlock.

In chapter 6, we present a set of experiments to evaluate the usability of our sequential
approach to multi-agent route planning. First of all, we evaluate how agent delay is related
to the number and severity of unexpected incidents, and we investigate whether increasing
the priority of agents over delayed agents results in an overall reduction of delay. Second,
we investigate the relation between the cost of the multi-agent plan and the order in which
agents plan. In particular, we try to ascertain how much performance is lost by letting
agents plan in the worst possible order, and how this loss of performance is related to
characteristics of the infrastructure and distribution of start and finish locations of the
agents.

In chapter 7, we revisit the research question posed in this chapter. We discuss
the extent to which the contributions of this thesis provide a satisfactory answer to the
research question, and we identify in which areas further work is still required.
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Chapter 2

From Motion Planning to
Route planning

In this chapter we will review the research on multi-agent route planning. The research
question from the previous chapter provides us with a perspective on the literature.

Can agents, operating on a shared infrastructure, find conflict-free route plans
that are both efficient and robust under changing circumstances, given limited
computational resources?

From the research question, we can derive the following three criteria on which to
judge existing route planning approaches: (i) the efficiency in terms of the time required
by the agents to finish all of their transportation tasks, (ii) the robustness of the plans in
dynamic environments, in which unexpected changes can render plans infeasible, and (iii)
the computation time required to find a solution, i.e., the speed of the planners. As we
will see, many approaches to MARP focus on one of these criteria at the expense of one of
the others. For example, there are approaches based on mixed integer programming that
are capable of finding optimal solutions (e.g. [16]), but these typically require too much
computation time for all but the smallest instances; other approaches focus on preventing
deadlocks by taking routing decisions at real time, but these forego the opportunity of
finding efficient plans in advance (e.g. [20]).

Before we discuss the literature on MARP, we will first discuss the related problems
of robot motion planning (ROMP). The main difference between ROMP and MARP
is that the latter assumes the existence of an infrastructure of roads and intersections,
whereas robots typically enjoy full freedom of movement to avoid any obstacles they
may find on their way. Consequently, the difference between a route plan and a motion
plan is that the former specifies occupation times for the elements of the infrastructure,
whereas the latter may specify turning angles and accelerations. Indeed, the research
on robot motion planning typically considers more ‘low-level’ details, such as constraints
on the acceleration capabilities of the agents, whereas in AGV research acceleration and
deceleration are often not taken into account during route planning.
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The ROMP problem can be said to be a more general version of the MARP problem, as
we could solve MARP instances with ROMP solvers; MARP, in turn, can be viewed as an
approximation for ROMP, in case it is possible to create a map of roads and intersections
around all obstacles. The relevance of ROMP research to our current discussion is that
many of the ideas and techniques used to solve motion planning problems also occur in
MARP. Also, since many ROMP papers predate their MARP counterparts, these ideas
can be said to have originated in robot motion planning.

This chapter is organized as follows. In section 2.1, we first discuss the field of robot
motion planning. By way of introduction, we will not only consider multi-robot motion
planning, but also discuss motion planning problems in which there is only a single robot,
either avoiding a set of stationary obstacles, or avoiding a set of moving obstacles with
known trajectories. Then, in section 2.2, we introduce research into automated guided
vehicle systems, as much MARP research originates from this domain, and we briefly
discuss some other planning problems in AGV systems such as task assignment and in-
frastructure design. In section 2.3, we will discuss multi-agent route planning approaches,
most of which are in the context of AGV systems.

2.1 Robot motion planning

The initial interest in motion planning problems came from two research fields: compu-
tational complexity theory and robotics. Within the literature of these two fields, we can
identify the following four classes of robot motion planning problems.

Kinodynamic motion planning: A single agent has to go from one place to another,
avoiding collisions with a set of stationary obstacles. The word kinodynamic refers
to the combination of kinematic and dynamic constraints [18]. Kinematic con-
straints limit the position of the agent, e.g. in the sense that it may not overlap
with obstacles or that the different joints of the agent may not be in an impossi-
ble configuration. Dynamic constraints specify how the position of the robot may
change over time, such as bounds on the maximum velocity and acceleration of the
agent. Strictly kinodynamic constraints govern both the agent’s position and the
way it changes over time; an example of such a constraint is a speed-dependent
obstacle avoidance margin.

Motion planning with moving obstacles: There is a single agent that has to go from
one place to another, while avoiding collisions with a set of obstacles that move along
known trajectories. The movement of the agents is subject to a set of kinodynamic
constraints. Particular sub-classes of the problem can be distinguished based on the
type of motion of the obstacles. In asteroid avoidance [74], the obstacles all move
in a straight line. In prison break (cf. [25]), search beam lights sweep the grounds
of the prison compound, and an escaping prisoner must make his way to the wall
without ever being caught in the light.

Multi-robot motion planning: There is a set of agents, each with a destination lo-
cation of its own. From the perspective of a single agent, the other agents are
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moving obstacles with unknown trajectories (in addition to the agents, there may
be stationary and moving obstacles with known trajectories).

Multi-agent route planning: There is a set of agents, each with a destination location
in the infrastructure or road map. On the roads of the infrastructure, there are no
stationary obstacles, and usually no moving obstacles with known trajectories either.
Hence, an agent only needs to take into account the movements of the other agents.

In this section we will mainly discuss work in the field of (robot) motion planning in
the first three problem classes. The fourth class of problems assumes that there exists
an infrastructure on which the agents travel. The existence of an infrastructure is not a
typical assumption in robot motion planning, which is why the fourth problem has not
been studied much in robot motion planning. However, there is some work on constructing
a road map, given the locations of a set of stationary obstacles, which we also discuss here.
The research on multi-agent route planning in the domain of AGV systems is discussed
in section 2.3.

2.1.1 Kinodynamic motion planning

Many robot motion planning approaches make use of the notion of a configuration space
(or Cspace), first introduced by Lozano-Pérez [54]. This approach is based on characteriz-
ing the position and orientation of the object as a single point in the configuration space,
in which each coordinate represents a degree of freedom in the position or orientation of
the object. Only configurations of the object that do not intersect with any obstacles are
allowed. The author shows how to compute which regions of the configuration space are
forbidden due to the presence of other obstacles. Once these regions are known, finding
a path from an initial configuration to a goal configuration can be done using a search
through the configuration space.

Donald et al. [9, 18] consider kinodynamic motion planning for a point mass that must
reach a goal configuration, while avoiding a set of polyhedral obstacles in two or three
dimensions. They show that finding an optimal solution is NP-hard for three or more
dimensions, and they develop a Fully Polynomial-Time Approximation Scheme (FPTAS).
That is, if there exists an optimal-time solution requiring time t, then they can find a
solution that requires at most (1+ε)t time, for any ε > 0. Furthermore, the running time
of their algorithm is polynomial in the input and in 1

ε . Their algorithm performs a search
through the phase space, which is the configuration space extended with a velocity di-
mension (which is required because of speed-dependent obstacle-avoidance margins). The
main idea of their approach is to discretize the phase space into a “grid”, where neigh-
bouring grid points are reachable from each other using piecewise maximal accelerations.
The “finer” the grid, the more likely it is to find a near-optimal trajectory. The overall
complexity of their algorithm is O(n2V + V log V ), where n is the number of obstacles,
and V is the number of grid points (the number of grid points depends on the parameter
ε).

The approach by Donald et al. can be viewed as a graph search through the config-
uration space. An alternative approach is to let the motions of an agent be guided by
an artificial potential field. The basic idea is that obstacles (and other agents) exert a
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repelling force on the agent, whereas the goal configuration is an attractive force. The
combination of these forces results in a potential field that the agent needs to follow in
the direction of strongest attraction to arrive at its destination. A challenging problem is
to design the potential field in such a way that there are no local minima, i.e., locations
in the workspace other than the destination location from which the agent cannot escape
(using the potential field). Rimon [77] shows how a potential field can be constructed
from the geometric descriptions of the obstacles. Some approaches that utilize potential
fields to control the motions of agents are from Loizou and Kyriakopoulos [52, 53], from
Ogren and Leonard [70], and from Ge and Cui [28].

2.1.2 Motion planning with moving obstacles

If obstacles move around the environment, the configuration of the agent alone does not
fully specify the state of the problem. Reif and Sharir [74] define the free configuration
space by adding the dimension of time to the configuration space. Reif and Sharir analyze
the complexity of the following problems: in case there are obstacles that may translate
and rotate (along known trajectories), then the movement planning of a single disc with
a bounded velocity is PSPACE-complete. In case there is no bound on the velocity of the
disc, the problem is NP-hard. The authors also provide decision algorithms for motion
planning in asteroid avoidance, in which obstacles move with a fixed translational velocity.
A polynomial-time algorithm is presented for 2D asteroid avoidance for a constant number
of obstacles, while an O(2nO(1)

) algorithm is presented (where n is the number of obstacles)
for the 3D case.

Fujimura [25] presents a polynomial-time algorithm for the problem of avoiding ob-
stacles that move along known translational trajectories (though not necessarily with a
fixed velocity). Fujimura mentions an interesting interpretation of his work: in search
beam avoidance, the agent (e.g. a prison escapee) must avoid being caught by any one of
the search light beams that sweep the prison grounds. Canny and Reif [10] showed that
this problem is NP-hard in case some of the obstacles can move faster than the agent.
Fujimura, however, assumes that the agent can move faster than any of the obstacles,
and then the problem is solvable in polynomial time.

A popular approach to reduce the complexity is to decompose motion planning into
spatial planning and velocity planning. The spatial planning phase ensures that the robot
finds a path from its initial location to its goal location that avoids collisions with all
stationary obstacles. The velocity planning should ensure that no two agents ever occupy
the same location at the same time. The first decomposition approach is due to Kant
and Zucker [39]. Kant and Zucker propose to use existing techniques to solve the path
planning problem, for instance a graph search through the configuration space described
by Lozano-Pérez [54]. The velocity planning problem can be solved by a graph search
in two-dimensional path-time space, where time is explicitly represented as an additional
dimension (with the additional restriction that no edges can be chosen that go back in
time).

Wilfong [100] considers the case where obstacles do not move unless moved by the
agent. In case the final positions of the objects are irrelevant, then finding a motion plan
for the agent is NP-hard. The authors present an algorithm for the special case where
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there is a single object in a two-dimensional space. If both the obstacle and the agent are
convex polygons with O(1) corners, and they are in a workspace with n corners, then an
O(n3) algorithm can be formulated.

2.1.3 Multi-robot motion planning

The problem of transferring a set of objects from an initial configuration to a goal con-
figuration has many interesting applications and interpretations. Hopcroft et al. [36]
introduce the notion of the warehouseman’s problem, whereas Schwartz and Sharir [82]
coin the term piano movers’ problem. Hopcroft et al. [36] show that the ‘warehouseman’s
problem’ is PSPACE-complete even in the case of moving polygons in a rectangular area.
Hearn and Demaine [34] later repeated the result of Hopcroft et al. using a nondetermin-
istic constraint logic model of computation. Using this model, they also demonstrated
the PSPACE-completeness of various related puzzle problems, such as Sokoban and Rush
Hour. Schwartz and Sharir [82] show that a polynomial-time solution is possible if the
number of degrees of freedom is bounded by a constant.

Siméon et al. [84] propose a decoupled approach to the multi-robot motion planning
problem. Each agent is assumed to have a fixed path that avoids all stationary obstacles,
and the velocity planning is posed as a coordination problem. In [69], O’Donnell and
Lozano-Pérez introduce the notion of a coordination diagram for two robots. A coordina-
tion diagram specifies the segments on the paths of the agents at which a collision might
occur. Siméon et al. extend the coordination diagram to n agents, and search the n-
dimensional space using an A* algorithm. Despite the worst-case exponential complexity
of their approach, the authors were able to solve problems involving 150 robots within a
few minutes.

A common approach in multi-robot motion planning is to plan the motions of the
agents one by one. This approach consists of assigning priorities to the agents, then
planning the motions one agent at a time, in the order specified by the prioritization.
This means that for agent with priority i, a motion plan must be found that avoids the
stationary obstacles, as well as the ‘moving obstacles’ that are agents 1, . . . , i − 1. The
approach of Erdmann and Lozano-Pérez [19] is to assume that the priority is given, and
to plan the motions of the agents by searching the time-extended configuration space.
To plan the motions of a single agent, the authors distinguish the following three sub-
problems: (i) how to construct the space-time configuration space, (ii) how much of the
space-time configuration space to represent, and (iii) how to search the space-time config-
uration space. They describe their graph-search approach in two domains: planning the
motions of polygons in the plane (where translations are allowed but rotations are not),
and to plan the motions of two-link planar (robot) arms with rotary joints. Erdmann and
Lozano-Pérez identified an interesting problem in prioritized motion planning: the plan-
ning process for agent i does not end when this agent has reached its goal configuration.
It must also be checked that in this goal configuration, it will not hinder the movements
of agents 1, . . . i − 1 in case these agents are still moving when agent i is done. Another
issue is that prioritized planning is not complete (this also holds for decoupling motion
planning into path and velocity planning, of course): it is possible that the trajectory
planning for agent i makes it impossible for agent k > i to find a safe trajectory, even if
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there do exist non-conflicting trajectories for agents 1, . . . , k. The authors remark that
the prioritization itself may also be a planning process, e.g. the decomposition of a task
into sub-tasks that can be planned in sequence by the agents.

Warren [98] combines prioritization with artificial potential fields. The potential field
function is always the same for stationary obstacles, but for moving obstacles (i.e., agents
that have already planned a trajectory) the potential field function may be different for
each time slice of the space-time configuration space. The determination of the actual
path is posed as an optimization problem: given an initial path consisting of a series
of points, with the initial point the start configuration and the final point the goal
configuration, change the location of the points (i.e., in space-time configuration space)
such that the path passes through minimum potential, thereby avoiding all obstacles.

Both the decoupled approach and the prioritized approach trade optimality and com-
pleteness for computational complexity. As Erdmann and Lozano-Pérez [19] remarked,
the multi-robot motion planning problem can be solved in the same way as the single-
robot motion planning problem. If there are n robots with each k degrees of freedom,
then we can view the set of robots as a single robot with kn degrees of freedom. A multi-
robot motion plan can be found by searching the kn-dimensional configuration space.
By comparison, the prioritized approach solves n problems of dimension k + 1 (a time
dimension is needed to reason about the movements of agents with a higher priority).
The need for approximation is thus quite clear, but none of the above authors discuss
the impact of the approximation on the quality of the multi-agent plan. Savchenko and
Frazzoli [80] do consider this issue, as they determine lower bounds and upper bounds on
the total transfer time (i.e., the difference between the start time of the earliest agent and
the finish time of the latest agent) for n vehicles in the plane. They assume the following
setting: the workspace is a square of unit area, and there are no obstacles in addition
to the agents. Agents appear in the workspace when they become active, and they dis-
appear again when they have reached their destination. Hence, a solution always exists.
The distance that agents must maintain between each other depends on their speed. In
case this distance is non-zero when the agents stand still, then it is easy to show that
the minimum transfer time is Ω(n), i.e., we cannot guarantee to do better than strictly
sequential operation. For the case that agents may come arbitrarily close to each other
if their speed is low enough, the authors derive the following bounds: for n arbitrarily
chosen origin-destination pairs, the minimum transfer time is Ω(

√
nL), where L is the

average distance between the start and end points. In case the origin-destination pairs
are randomly drawn from a uniform distribution, the minimum transfer time is bounded
by O(

√
n log(n)). Sharma et al. [83] analyze the case where agents cannot communicate,

and where they can only sense vehicles that are sufficiently close.

2.1.4 Multi-agent route planning in robotics

In multi-agent route planning, agent motion is restricted to an infrastructure of roads
and intersections. While traversing the infrastructure, the agents ‘only’ need to take
into account the movements of other agents, and there are no stationary obstacles placed
on the roads or intersections. In robotics research, the existence of an infrastructure
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is not a common assumption; most of the papers discussed above considered a set of
(usually polyhedral) stationary obstacles, the avoidance of which can be a computationally
difficult problem. In route planning for automated guided vehicles, the existence of an
infrastructure is a common assumption, which is why we postpone the discussion of the
main body of multi-agent route planning research (in section 2.3), until after the discussion
of the automated guided vehicle systems domain (in section 2.2). However, there is a
‘movement’ in robot motion planning research that concerns itself with constructing an
approximate (and conceptual) infrastructure (called road map in the robotics domain)
given the stationary obstacles in the configuration space of the agents.

The work by Kavraki et al. [40] was motivated by the complexity of finding robot
motion plans through configuration-space search, especially for robots with many degrees
of freedom (recall that each degree of freedom corresponds to a dimension in the con-
figuration space). The approach of Kavraki et al. is to learn a road map incrementally.
The nodes of the road map are points in the configuration space where the agent does
not overlap with any of the obstacles, and if those nodes in the road map are connected
by an edge, then it is possible to find a motion plan from one node to the other. Ini-
tially, the road map is empty, and a free configuration point is chosen randomly. Next, a
set of potential neighbour configurations are chosen that are not too far from the initial
configuration. To determine whether two configurations are reachable from each other, a
(motion) planning algorithm is used. If a very simple motion planning algorithm is used
(e.g. simply try a straight line), then the planner may not find a trajectory even if one
exists. Using a more advanced planner may reveal more connections in the road map, but
will require more computation time. The road map can be used to find a motion plan for
an agent as soon as its start and goal configurations are in the road map. However, by
continuing to learn the road map (i.e., by adding more nodes and edges to the road map)
it might be possible to find a more efficient motion plan later.

Van den Berg and Overmars [94] assume that a road map has been constructed that
allows the robot to avoid static obstacles. To avoid collisions with other agents, they take
a prioritized planning approach. Hence, when agent i develops its motion plan, it knows
the trajectories of agents 1, . . . , i− 1. Specifically, it knows the free time interval for each
node in the road map, i.e., the interval during which it can occupy the node without fear
of colliding with any other agent. To reach its destination configuration, the agent must
find a motion plan that uses only the free time windows on the nodes. To see whether a
free time window on one node is reachable from another free time window on an adjacent
node, the authors send a probe from the originating node. This probe is a small planning
process in itself that tries to find the earliest entry time into the neighbouring free time
window. The probe works by traversing the edge in very small time steps. At each time
step, it tries three different things: to go forward, to go backward, and to stand still. Any
of these options is viable if they do not result in a collision with another agent. The agent
tries to find a plan from its start configuration to its goal configuration by sending out
probes to unexplored regions of the road map in an A* fashion.

In prioritized approaches, the quality of the multi-agent plan depends on the order
in which agents make their plans. Van den Berg and Overmars [93] considered the case
where the quality of the multi-agent plan is measured in terms of makespan, i.e., the
difference between the start time and the time that every agent has reached its destination
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configuration. The heuristic they present is to give the highest priority to the agent that
has to cover the greatest distance. The idea is that if an agent has to travel only a short
distance, then it has time to avoid the movement of higher-priority agents.

In [1], Akella and Hutchinson do not assume the existence of a road map, but they
assume that the trajectory of the robots is fully specified, both in terms of the spatial path
followed, and in terms of the velocity. What remains it to vary the starting times of the
agents. The authors show that the problem of finding minimum time solutions is NP-hard,
and they present a mixed integer linear programming formulation that allows the authors
to solve problems with up to 20 robots. In Peng and Akella [71], the authors consider
the problem of finding velocity profiles for the agents in case their spatial paths are fixed.
This problem can be formulated as a mixed integer nonlinear programming problem.
As an approximation, the authors solve two related mixed integer linear programming
problems, which allow them to solve problems of up to 12 agents.

2.1.5 Lessons learned from motion planning

Many of the ideas and techniques used in robot motion planning are also used in multi-
agent route planning. First of all, there is the decomposition of spatial and velocity
planning [39]: a robot first makes a spatial plan that avoids contact with stationary
obstacles, then it makes a velocity plan (equivalently, a schedule along its planned path)
to avoid collisions with moving obstacles and other agents. Hatzack and Nebel [33] showed
how this idea can be used in multi-agent route planning: in an airport taxi routing
scenario, they assumed that each aircraft has a fixed path from e.g. runway to gate, and
aircraft are scheduled along their paths in such a way that at most one aircraft occupies
a taxiway segment at one time.

A second idea that occurs in both robot motion planning and multi-agent route plan-
ning is prioritized planning. Instead of trying to find an optimal plan for all agents at
the same time, the agents or robots plan one after the other, such that a conflict with an
existing plan is never introduced. The prioritized approach sacrifices the guarantee of an
optimal global plan, and sometimes the guarantee of completeness, in favor of reduced
computational complexity (cf. [19]).

The most significant difference between the fields of robot motion planning and multi-
agent route planning is that the existence of an infrastructure or road map is a common
assumption in the latter field, but not in the former. It is not uncommon, however, for
robot motion planning approaches to approximate an infrastructure. The approximation
by Donald et al. [18] discretizes the phase space (which is the configuration space extended
with a velocity dimension) into a grid where neighbouring grid points are reachable from
each other using piecewise maximal accelerations. Kavraki et al. [40] try to construct a
road map by connecting points in the configuration space (thereby not taking time into
account and only avoiding stationary obstacles). Van den Berg en Overmars [94] assume
that such a road map has been learned, and they develop a route planning algorithm that
makes use of the free time windows on nodes of the road map. In fact, the third idea that
occurs in both fields is the idea of a free time window, that specifies when an agent can
be at a location without coming into conflict with a moving obstacle or any of the other
agents.
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2.2 The automated guided vehicle domain

Before we discuss multi-agent route planning approaches in the next section, we first
discuss the domain of automated guided vehicle research. This domain is relevant to our
discussion for two reasons:

1. In most applications of AGVs, it is natural to model the workspace as an infras-
tructure consisting of roads and intersections (or other interesting locations such as
drop-off points or workstations). Hence, route planning can be a computationally
efficient approach to the agent transportation problem, especially in comparison
with general robot motion planning, where the avoidance of stationary obstacles
can already be a hard problem.

2. Though more efficient than general motion planning, multi-agent route planning can
still require many computational resources (cf. [88]). In addition, it is not always
clear whether a plan can be followed through in case the environment changes
unexpectedly (i.e., the robustness of the plans are in question). This has led (AGV)
researchers to look for other approaches, in which agents constantly monitor their
execution for possible collisions with other agents.

In a survey paper on the design and control of AGV systems [96], Vis mentions three
application domains of AGVs: manufacturing, transshipment, and distribution. The
traditional AGV domain is manufacturing, where the material handling system is imple-
mented using automated guided vehicles. These vehicles transport goods to and from a
warehouse, and between production stations. A more modern application is transship-
ment at e.g. container terminals such as Rotterdam and Singapore, where the AGVs
carry containers between the different modes of transportation, e.g. ships and trucks.
An example application in distribution is the study by Van der Heijden et al. [95] on an
underground system of tubes that connect a flower auction, an airport, and a railway
station.

In addition to route planning, Vis mentions the following research topics in AGV
research:

Infrastructure design: The infrastructure of an AGV system (sometimes called a flow
path) can be designed to simplify the agent transportation problem. In a single-
loop configuration (cf. [85]), all production stations are arranged around a single,
unidirectional road. Since all agents drive in the same direction, only catching-up
conflicts are possible. In a tandem configuration, the infrastructure is divided into
multiple zones, and one zone is served by exactly one AGV [51]. Special transfer
stations are used to transport a load from one zone to another. Since no collisions
between the agents are possible, the only coordination between the agents occurs
at the transfer stations.

Vehicle requirements: Since automated vehicles can be expensive, an important prob-
lem is determining the minimum number of vehicles that are required to satisfy all
transportation demands [57, 56, 73].
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Vehicle dispatching: In many AGV systems, the vehicles are homogeneous, which
means that a transportation task can be performed by any of the vehicles. Typi-
cally, some heuristic function is used to select a vehicle that is currently idle. The
heuristic functions are often based on a combination of the distance of the vehicle to
the pickup location and the state of the buffers at the workstation (i.e., the pickup
location) [42, 38, 2], or on the distances that vehicles drive empty [65].

Idle vehicle management: Once an AGV has finished a transportation task, it must
be decided where it should go. Simply standing still can mean that the vehicle is
blocking the way for other vehicles that are still carrying out transportation orders
(compare this to the prioritized robot motion planning method of Erdmann and
Lozano-Pérez [19], where a robot must check whether higher-priority robots will
not conflict with the robot’s goal configuration). In addition, if new transportation
orders keep coming in, then it may increase system efficiency if the agent moves to a
location where it is more likely to be close to a new transportation order. Bruno et
al. [8] heuristically determine a new home location (a place where a vehicle parks)
every time a new transportation order comes in, or when a transportation task has
been completed.

Deadlock handling: A common and often implicit assumption in AGV research is that
AGV systems are advanced enough to prevent actual collisions (using forward sens-
ing [47]). If an AGV approaches another vehicle that is standing still, then it will
halt before it collides with the stationary vehicle. If AGVs wait for each other,
then the possibility of a deadlock may arise: a circular wait in which no vehicle can
make progress, because they are all waiting for each other to move. In section 2.3,
we will discuss approaches that ensure deadlock-free routes by planning trajectories
in space and time. However, there also exist methods that combine (spatial) path
planning, with an online controller that verifies that no deadlock is created for every
step that an agent takes.

Many authors use Petri nets to model the AGV system [48, 101, 20]. The idea
is that each time an agent is about to enter an infrastructure resource, an online
controller checks whether this transition (i.e., in Petri net terminology) will lead to
a deadlock. Viswanadham et al. [97] use the reachability graph of a Petri net to
develop resource allocation policies for deadlock prevention. However, they report
that this method is too time-consuming for problems of realistic size, which is why
online deadlock avoidance mechanisms should be used in real-world AGV systems.
Fanti [20], for instance, runs a small simulation in the Petri net to see if an intended
transition will lead to a deadlock in the near future. Reveliotis [76] presents an
approach in which the agent’s path is not fixed, but instead it chooses where to go
after each step. Using a variation of the Banker’s algorithm [30], all of the agent’s
allowed successor resources are determined. From the set of allowable successor
resources, some (unspecified) performance control policy should choose the most
efficient one.
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2.3 Multi-agent route planning

In the multi-agent route planning approaches we will discuss in this section, there exists
a road map or infrastructure on which the agents travel. Hence, in contrast to the robot
motion planning approaches discussed in section 2.1, an agent only needs to decide which
roads to travel on, and at which speeds. In addition, the problem of avoiding collisions
with other agents is solved in terms of the capacity of the resources of the infrastructure:
an intersection (resource) can typically contain a single agent, while a lane (resource) can
often contain multiple agents, as long as they do not overtake each other. The dimensions
of the vehicles, or the dynamic constraints on vehicle movements, are often not taken into
account in the multi-agent routing problem, with a few notable exceptions [63, 27], which
are discussed in the context of prioritized planning approaches.

Finding optimal route plans for multiple agents is a hard problem. In chapter 3, we
prove that a basic version of the multi-agent routing problem is NP-complete, while an
additionally constrained version is suspected to be PSPACE-complete. Several methods
exist in the literature to tackle the complexity of the problem, that mirror the techniques
found in robot motion planning. First, there is the decoupling of path planning from
velocity planning (section 2.3.1); second, there is the prioritized approach, in which agents
plan in sequence, and agent n + 1 should find a plan that is conflict free with regard to
the plans of agents 1, . . . , n (section 2.3.2). There also exist optimal (centralized) solvers
(section 2.3.3), but because of their computational complexity they are rarely applicable
to systems with more than a handful of agents. Also, as in all centralized approaches,
there is a single point of failure. In section 2.3.4, we will discuss research in multi-agent
routing that is concerned with dynamic environments and unexpected incidents.

2.3.1 Decoupled path and velocity planning

In Guo and Parker [29], every agent has a map of the environment that specifies the
location of stationary obstacles. The first step in their approach is that each agent plans
a path from its start to its destination using the D* algorithm [87]. The D* algorithm
is similar to A*, except that it is dynamic in the sense that cost parameters can change.
This implies that the D* algorithm can be used in partially known or changing environ-
ments, because the search algorithm can cope with e.g. changes in the locations of static
obstacles. The second step in the approach of Guo and Parker is to identify the potential
collision regions for the paths of all agents. These collision regions are considered static
obstacles in an n-dimensional coordination diagram (where n is the number of agents)
that is searched using the D* algorithm. The result of this search is a set of velocity
profiles, one for each agent, in such a way that the total completion time is minimized.
The second step of the algorithm runs in O(2n) time, where n is the number of agents.

Hatzack and Nebel [33] combine the decoupled approach with a prioritized approach:
first, each agent plans a path through an infrastructure of resources (they model each
intersection and road as a resource), and they assume that each agent simply chooses
the shortest path. Then, for a given priority of the agents, each agent plans its velocity1

1As is common in the AGV research field, agents are assumed to have a maximum speed, but there
are no bounds on acceleration and deceleration.
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along its path in such a way that it does not create a conflict with any of the agents that
have a higher priority. An agent plans its velocity by determining its entry time into each
of the resources in its path, where the entry time into resource i + 1 must equal the exit
time out of resource i. To determine the possible entry times into a resource, Hatzack and
Nebel make use of the concept of a free time window, which is a time interval in which
the resource is empty of other agents (they assume that a resource can hold at most one
agent at a time). Given that an agent is on a resource r at time t, within some free time
window f , it will try to enter the next resource r′ at the start of each free time window
f ′ in case f and f ′ overlap. Their algorithm is a kind of depth-first search through the
graph of free time windows. In the search process, a single free time window f needs to
be considered only once2, which means that the running time is bounded by the size of
the free time window graph. If we suppose that each agent visits a resource only once
(which is true if each agent plans the shortest path), then one resource can have at most
n reservations, and n + 1 free time windows, where n is the number of agents. If there
are m resources in the infrastructure, then the algorithm of Hatzack and Nebel finds the
optimal velocity profile for a given path in O(mn) time.

A more general approach is to consider not one path for each agent, but multiple
paths. Lee et al. [49] find the k shortest paths between every pair of locations in an offline
planning stage. When an AGV must be dispatched to a new task, an online-controller
finds a collision-free velocity profile for each of the k paths, and chooses the best one.
Another approach that considers multiple fixed paths is from Ferrari et al. [22]. Each robot
has k alternative paths that are conflict free with regard to stationary obstacles. For each
robot, a family of k sub-robots is created, one for each path, and the synchronization
problem between the robots is solved for all the families of sub-robots together (ignoring
intra-family conflicts). Then, a best path is chosen from each family on the basis of a
variety of different plan quality measures, that should ensure not only timely, but also
robust plan execution. Some of the plan quality measures are: running time, which is the
duration of the plan; motion error, which measures how much distance an agent keeps
from stationary obstacles; velocity error, which is a measure of how much a robot can
change its speed without worsening the global plan; collision area factor, which is the
ratio of the length of a path inside a potential collision area, and the total length of the
path. The approach by Ferrari et al. is an anytime algorithm3 in the sense that k, the
number of candidate paths per robot, can grow iteratively, as initially each robot starts
with a single path.

2.3.2 Prioritized route planning

In the prioritized approach, an agent tries to find the shortest-time route4 that avoids
collisions with all agents that planned before it. An idea put forward by Broadbent et

2Hatzack and Nebel [33] do not make this observation in their paper; in case free time windows are
considered multiple times, their algorithm has a worst-case exponential running time. See our earlier
work [90] for an example.

3An anytime algorithm does not need to run until an optimal solution has been found, but it can
always return a correct answer, the quality of which depends on the amount of computation time.

4We will use the term ‘route’ to refer to the combination of a path in the infrastructure (graph), and
the occupation times of the path segments (i.e., the velocity profile).
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al. [7] is to record the plans of higher-priority agents using node occupation times (which
means that the occupation times on the links need not necessarily be recorded). From the
node occupation times, we can derive the free time windows for the nodes. As explained
in section 2.3.1, a free time window represents a time interval during which the agent
can occupy the node without interfering with higher-priority agents. To find a conflict-
free route plan, an agent must find a route that hops from free time window to free time
window on adjacent nodes. This can be accomplished by constructing a graph of free time
windows, and adapting standard graph search algorithms like Dijkstra’s algorithm [17]
or A* [32]. Three similar works that take this approach are from Fujii et al. [24], Huang
et al. [37], and Kim and Tanchoco [41]. The work from Kim and Tanchoco is the best-
documented research, and we will discuss it here. Because their work is also close to our
research, we will discuss their approach in some more detail.

t→
10 15 20 25

fi

fj

Figure 2.1: If an agent enters node i at time 15, then its earliest exit time is 17. The
arrow represents the five time units required to traverse lane (i, j), so the agent enters j
at time 22, leaving it at time 24, just before the end of free time window fj at time 25.

Kim and Tanchoco [41] present an algorithm that is an adaptation of Dijkstra’s al-
gorithm for a search through the free time window graph. To determine whether a free
time window on one node is reachable from a free time window on another node, three
conditions must hold: (i) the nodes must be connected by a link, (ii) the second window
should be reachable in time, and (iii) there should be no conflict with vehicles on the link
between the nodes. The following short example (see figure 2.1) illustrates how we can
determine whether the second condition of time reachability holds. Let fi = [10, 20) be a
free time window on node i, and let fj = [15, 25) be a free time window on node j. The
minimum traversal times of nodes i and j are 2 time units, and in between i and j is a
link with minimum travel time 5. In case the earliest time that fi can be reached is 15,
then fj is reachable from fi: first, node i must be traversed, and it can be exited at time
17; then the link between i and j must be traversed, so node j can be reached at time 22.
Traversal of node j may take another two time units, so an agent can exit j at time 24,
which is within free time window fj . Following the same reasoning, free time window fj

can not be reached in case fi can be entered no earlier than time 17.
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Figure 2.2: Travelling from node i to node j, agent A will overtake agent B.

In accordance with Broadbent et al. [7], Kim and Tanchoco distinguish two types of
vehicle conflicts on links: a head-on conflict can occur when two vehicles travel in opposite
directions on the same link; a catching-up conflict can occur when two vehicles travel in the
same direction on the same link but one travels faster than the other. Kim and Tanchoco
define the following procedure to determine whether there will be a catching-up conflict
(the procedure for detecting head-on conflicts is similar) between agent A, which has not
made a plan yet, with agent B that has made a plan (see figure 2.2). Suppose agent A
wants to go from free time window fi on node i to free time window fj on node j. For
all reservations on j that start after fj , we first determine which agent they belong to.
In figure 2.2, there is a reservation from agent B that starts after A’s intended traversal
time. For this agent B, we then check whether it has a reservation on node i that starts
before the start of free time window fi. In figure 2.2, we see that agent B does have a
reservation that starts before fi. This means that if agent A goes from fi to fj , then it
will overtake agent B. This implies that fj is not reachable from fi. The procedure to
determine free time window reachability is quadratic in the number of free time windows
on a node. Since the authors assume that each agent makes at most one reservation on
a node, this brings the complexity of this procedure to O(n2), where n is the number of
agents.

The main algorithm works as follows (see algorithm 1 for the pseudo-code). In addition
to the set F of free time windows, the algorithm maintains the sets T of free time windows
to which the shortest route has been found, and U ⊂ (F \ T ) of windows that can be
directly reached from a window in T . Initially, T contains the start window and U is
empty. The first step of the algorithm, the labelling step, is to determine for each window
in F \ T whether it can be reached from some window in T . If a window is reachable, it
is placed in U , and it is labelled with the earliest time that it can be entered. In the next
step, the label setting step, the window in U with the smallest label is removed from U
and placed in T . If this window has reached the destination node, the algorithm returns
the solution, otherwise it continues with the next iteration of the labelling step.

Some notes on notation for algorithm 1: the kth free time window on node i is denoted
by fk

i , and τ(fq
j |f

p
i ) stands for the earliest entry time into free time window fq

j , coming
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from free time window fp
i , and taking into account the time at which fp

i was entered
(which is equal to its label L(fp

i )). For the sake of brevity, we have omitted from algo-
rithm 1 the code that maintains backpointers, which can be used to construct the actual
plan once a free time window to the destination node has been reached.

Algorithm 1 Conflict-free shortest-time bidirectional AGV routing
Require: start node s, destination node d, set F = {F1, . . . , Fn} of free time windows,

where Fi is the set of free time windows on node i.
Ensure: shortest-time, conflict-free route plan from s to d.
1: T ← Fs

2: U ← ∅
3: For all fp

i ∈ (F \ T ), set L(fp
i )←∞ . Initial labels

4: for all fq
j ∈ (F \ T ) do

5: ∀fp
i ∈ T check reachability from fp

i to fq
j and calculate earliest entry time τ(fq

j |f
p
i )

6: fk
r ← argminfp

i ∈T τ(fq
j |f

p
i )

7: if L(fq
j ) > τ(fq

j |fk
r ) then . If current label is larger than entry time

8: L(fq
j )← τ(fq

j |fk
r )

9: U ← U ∪ {fq
j }

10: fp
i ← argminfq

j ∈U L(fq
j )

11: U ← U \ {fp
i }

12: T ← T ∪ {fp
i }

13: if i = d then . Check if destination has been reached
14: return . Construct plan using backpointers
15: goto line 4

The algorithm runs for at most O(|F |) iterations, and in each iteration the labelling
step may have to inspect O(|F |) free time windows for reachability. Under the assumption
that each agent makes at most one reservation per node, there are at most nm free time
windows in the system, where n is the number of agents, and m is the number of resources.
Kim and Tanchoco therefore conclude that the worst-case running time of their algorithm
is O(n4m2).

The computational complexity of Kim and Tanchoco’s algorithm, although polyno-
mial, was considered by many (see Vis’s review paper [96]) to be too high for practical
use. For the same reason, Taghaboni-Dutta and Tanchoco [88] developed an incremen-
tal route planning approach that they compared with Kim and Tanchoco’s algorithm.
Their idea is to decide at every node where to go next. The choice of successor node is
made heuristically, on the basis of a combination of factors such as the proximity of the
next node to the destination, the traffic density at the adjacent nodes, and the estimated
delay that will be incurred on the route following the next node. Although a speed-up
was achieved by the incremental algorithm, the optimal algorithm of Kim and Tanchoco
produced better results, especially when there are bidirectional links in the infrastructure.

Möhring et al. [63, 27] present a prioritized approach that takes into account the
dimension of the vehicles, as well as their turning capabilities. Their approach is presented
in the application domain of the container terminal Altenwerder at Hamburg harbour,
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Germany. The infrastructure is a graph-like grid that consists of around 30000 arcs. When
the center of an AGV is on a particular arc in the infrastructure, it may occupy parts of
adjacent arcs. To avoid collisions with other agents, the authors draw a polygon around
each arc that represents the area that an AGV can use while traversing the arc. If the
polygons of two arcs overlap, then they may not be simultaneously occupied by different
AGVs. Note that although this approach makes practical sense, it is not as efficient as
the collision checks in many robot motion planning approaches, in which motions are
only forbidden if the vehicles would actually collide, or if their vehicle-dependent safety
margins overlap. Möhring et al. also consider the turning capabilities of the AGV, which
means that not all arcs that are connected in the graph can be successively visited by the
AGVs. For each arc, it is therefore recorded which outgoing arcs can be reached5.

Möhring et al. consider a dynamic environment, where new transportation orders
come in while the system is executing (although the task assignment is assumed to
be given). For a new transportation order, a route is planned much in the same way
as presented by Kim and Tanchoco [41]: Möhring et al. define a set of free time
windows for each arc, and perform a Dijkstra-like search through the graph of free
time windows. Taking vehicle dimensions into account is accomplished through the
definition of the free time windows: if an arc e is occupied during the interval [t1, t2),
then any arcs of which the polygons overlap with e cannot have a free time window in
that interval, either. The authors do not report on the complexity of their algorithm,
other than to comment that it runs in polynomial time in the number of free time windows.

In all of the prioritized (and possibly decoupled) approaches discussed above, the
priority of the agents is assumed to be given, and it has not been the subject of much
research, as far as we know. Sometimes, the particular choice of priorities can have a big
impact on the quality of the global plan, and for some priorities there may not even exist
any global plan. Bennewitz and Burgard [5] study the problem of determining the right
priority mainly for the second reason: to ensure that a global plan is found if one exists.
They show that trying a number of priority schemes, which differ in randomly swapped
agents, can greatly improve the chance of finding a global plan.

2.3.3 Optimal multi-agent route planning

A number of authors have tried using techniques with worst-case exponential running
times like mathematical programming or constraint programming to tackle the multi-
agent routing problem. These approaches can only be applied to problem instances with
a small number of agents. For material handling systems with a limited number of AGVs,
the task assignment problem (i.e., deciding which AGV performs a transportation task) is
often more important to the system performance than the conflict-free routing problem,
because (i) there is a small chance that an AGV is near the pickup location of a package,
and (ii) there is less congestion in a system with only a few AGVs. It is therefore
not surprising that many authors have combined optimal task assignment with optimal
conflict-free routing.

5In [49], Lee et al. also consider agent turning capabilities by measuring the angle between two arcs,
and only allowing traversal between two arcs if the angle is not too small.
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In Desaulniers et al. [16], the objective of the material handling system is to finish
all transportation orders with the minimal delay penalty. It is assumed that there is a
set of transportation orders, each with a location and a time window for pickup, and a
location and time window for delivery. Picking up or delivering a package earlier than
the start of the respective time window is not possible, while delivery outside the window
will result in a penalty. Desaulniers et al. present a mixed integer programming model to
solve the problem of task assignment and conflict-free routing. In the model, each agent
has a set of possible routes, and from each route (binary) parameters can be derived
like: does agent Ak occupy node n at time step t, or does route r of agent Ak include
pickup or delivery for task τ . The scheduling horizon is discretized into time intervals
of equal length, and the authors chose a value of 15 seconds for each interval, with all
processing and traversal times being an integer multiple of the minimum time interval.
The solution to the model is to choose one route for each agent, such that the production
delay penalties are minimized, no collisions occur between the agents, each transportation
order is picked up and delivered by exactly one agent, and an agent never carries more
than one load.

The proposed model is not suited to be solved directly by a mixed integer program-
ming solver, because the set of possible routes for an agent is too large. Instead, the
authors propose a column generation technique in which possible agent routes are ex-
plored incrementally. First, an initial set of routes is found by sequentially assigning a
transportation task to the best agent, and planning a route for this agent that avoids
collisions with other agents. The set of initial routes provides an upper bound on the
time horizon for the subsequent steps. The column generation technique consists in di-
viding the problem into a master problem and a set of sub-problems. The master problem
is a linear relaxation of the main problem, and operates on only a small set of possible
routes for each agent. For each AGV, there is a sub-problem that should identify routes
that can decrease the value (i.e., to minimize cost) of the objective function. Solving the
master problem and the sub-problems alternates until no better routes can be found for
the sub-problems. Finally, a branch-and-cut procedure is used to find an integer solution,
in case the solution to the master problem is fractional. The optimality of the method by
Desaulniers is subject to two restrictions: first, the length of the minimal-time interval
influences the quality of the solution. Obviously, having a smaller minimum time step
might increase the quality of the solution, but it results in longer computation times.
A second restriction is that agents can only wait in nodes (i.e., intersections or pickup
and delivery stations). When travelling on a lane between two nodes, the agent’s speed
is assumed to be a system-wide constant. The authors report solving instances for four
AGVs in three minutes.

Corréa et al. [14] try to improve on Desaulniers et al. [16] by using constraint program-
ming rather than mathematical programming for the master problem. A problem with
the approach by Desaulniers et al. is that, if the initial heuristic fails to find a solution
(note that many prioritized approaches are not complete), then there is no upper bound
on the time horizon, and, according to Corréa et al., then the method will not find an
optimal solution. The constraint programming approach of Corréa et al. can be described
as follows: the master problem determines a task allocation and fixes end times for each
of the AGVs. The sub-problems try to find conflict-free routes for each of the agents,



26 From Motion Planning to Route planning

using mixed-integer programming, that satisfy the end times. If no set of conflict-free
routes is possible, no-good constraints are added to the master problem. Instances with
up to six AGVs can be solved within ten minutes of computation time.

Beaulieu and Gamache [4] present an approach that is based on dynamic programming,
where legal states of the system are expanded to other legal states. An interesting feature
of their approach is that they take into account the displacement mode of the vehicles,
i.e., whether a vehicle moves forward or in reverse. The application domain is a haulage
network in an underground mine, where a mining cart may only approach a service point
when it is moving forward. The state of the system is therefore described by the positions
(arcs) of the agents, how long each agent has to travel to reach the next intersection,
and whether each agent is driving forward or in reverse. To generate a new state of the
system, each agent has the option of (i) staying in its current arc, (ii) backing up into an
adjacent arc, to make room for another vehicle at the intersection, or (iii) moving forward
on an adjacent arc. Simply put, their approach iteratively selects the cheapest state from
a set of reachable states, and expands it to all (non-dominated) reachable states, until
the final state has been reached. The authors show that instances consisting of 4 agents
and a network of 20 nodes can be solved in at most a few minutes.

A distributed approach to multi-agent route planning is presented by Nishi et al. [67,
66, 68]. The task assignment is assumed to be known a priori, so each agent has to find a
route from its start location to its destination location, using a mixed integer programming
solver. The agents plan a route concurrently, and then exchange plans with each other,
to see whether their respective routes conflict with those of others. In the next iteration,
the plans of the other agents are a given, and an agent finds a route plan that takes into
account the plans of others. To avoid collisions with other agents, each collision results in
a penalty. The constraint of not colliding with other agents is thus moved to the objective
function (this technique is called Lagrangian relaxation), with the penalty for collisions
increased in each iteration to ensure convergence. In each iteration, one or more agents
are randomly selected not to change their plans. Otherwise, agents could end up in a
cycle where they keep producing (the same) plans that conflict with each other. Although
the approach of Nishi et al. is not guaranteed to find an optimal solution, the distance
to the optimal solution is bounded by the duality gap. The authors report that instances
with 15 AGVs were solved to within 5% of optimality in a few seconds of computation
time.

2.3.4 Robust route planning

A route plan specifies both the path that an agent will take, and the schedule of occupation
times for the path segments. In realistic application domains, unexpected incidents or
changes in the environment can result in the planned path being unavailable, or the
schedule becoming unattainable. According to many researchers that develop online
controllers for deadlock handling, the question what to do with your route plan once
it becomes invalidated is best answered by forsaking the planning approach altogether;
in their opinion, it is better to determine at each step of the way where an agent should
go, and to choose only directions that are safe (see the discussion on deadlock handling
in section 2.2). There are also, however, researchers that aim to combine planning with
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robust plan execution.
The starting point of the research of Maza and Castagna [58, 59, 60] is that a set

of conflict-free agent route plans has been found using the algorithm from Kim and
Tanchoco [41]. They assume that during the execution of these plans, agents can suffer
an incident that temporarily immobilizes them. Agents that approach the immobilized
agent are assumed to be capable of stopping before they collide with the stationary agent.
Actual collisions will therefore not occur, but it is not hard to see how a deadlock situation
can arise in case the other agents carry on with their plans as if nothing has happened.
In figure 2.3, agent A1 will go from A to D, and agent A2 will go from F to C. Given
this combination of origin-destination locations, one of the agents has to wait while the
other traverses the link between B and E. Suppose that the agents have come up with
the following plans, to the effect that A1 will traverse the link (B,E) first (the nodes all
have a minimum traversal time of 2, and the links a minimum traversal time of 4.).

π1 = 〈A, [0, 2)〉, 〈B, [6, 8)〉, 〈E, [12, 14)〉, 〈D, [18, 20)〉 (2.1)
π2 = 〈F, [0, 2)〉, 〈E, [14, 16)〉, 〈B, [20, 22)〉, 〈C, [26, 28)〉 (2.2)

A B C

D E F

A1

A2

Figure 2.3: Agents A1 and A2 traverse the link between nodes B and E in opposite
directions. If they meet each other on the link, a deadlock will occur.

If agent A1 is delayed for e.g. 10 time units, and agent A2 is unaware of A1’s problems,
then the agents will meet on the link between B and E, and neither can make any progress
in their plan.

Maza and Castagna observed that after all agents have made a plan, we can infer for
each node in which order it will be visited by the agents6. For example, in the example
of figure 2.3, the plans π1 and π2 specify that the nodes B and E should be visited first
by agent A1, and then by agent A2. When agent A1 was delayed in its start location,
it was agent A2 that entered node E first, while A1 still entered node B first. Maza
and Castagna showed that deadlock-free plan execution can be guaranteed if this (node)
priority is maintained during the execution of the plans. In the example, agent A2 should
therefore have waited in link (F,E) until A1 had exited node E.

6And from the specific visiting times we can infer a kind of inter-agent slack: how late can an agent
be before it will interfere with the next agent to use the resource.
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Maza and Castagna also identified opportunities for a non-delayed agent to increase
its priority over a delayed agent. In the example, if the priority of A2 is increased over
A1 for the entire path (E, (E,B), B) then agent A1 must wait in link (A,B) for A2 to
pass, and both agents can reach their respective destinations without any deadlocks
occurring. In general, a deadlock-free priority change is possible if the delayed agent
has not yet reached the path that two agents share. For the case that there are more
than two agents, Maza and Castagna proved that an agent can receive the highest
priority on a certain path if and only if this path is currently empty of any other agents.
Because this requirement is quite strict, Maza and Castagna also presented an alternative
priority-changing algorithm [61], in which a delayed agent gets a lower priority, rather
than increasing the priority of the non-delayed agent. Decreasing the priority of the
delayed agent is safe if it does not yet occupy the path that it shares with the non-delayed
agent. In this thesis, we also use Maza and Castagna’s priority maintenance idea, and
on its basis we will present an alternative priority-changing algorithm.

While the approach of Maza and Castagna aims to preserve existing route plans (i.e.,
it is a re-scheduling approach), a few re-planning methods have also been presented. In
Narasimhan et al. [64], an agent selects a different route from a set of pre-computed alter-
natives in case its current route is no longer feasible, e.g. because of a path obstruction.
It then checks whether the alternative route is free of conflicts with regard to the plans of
the other agents. If it is not, the agent selects another of the precomputed alternatives.
In case all of the agent’s pre-planned routes create a conflict with other agents, then one
of the other agents must select an alternative route. In Zutt and Witteveen [104], a prior-
itized planning approach is presented in which an agent plans only part of its route before
other agents are allowed to plan a chunk of theirs. Once all agents have a complete plan,
an agent is allowed to re-plan once, to see if it can find a more efficient plan. The authors
also assume that incidents can disrupt the execution of plans, in which case agents also
re-plan in order to find a feasible or more efficient route.

2.4 Concluding remarks

It is possible to distinguish between planning methods and non-planning methods (such
as the Petri net approaches discussed in section 2.2) to the problem of multi-agent trans-
portation in a shared environment (i.e., either an infrastructure or a workspace with a
set of stationary obstacles). Our focus on planning methods — both in this chapter and
for the rest of this thesis — is given in the sense that our research question states that
we are looking for a good planning method. However, our choice is not motivated purely
out of academic interest in planning methods, as we can point out various drawbacks of
the non-planning methods briefly described in section 2.2.

The first of the non-planning methods is infrastructure design, possibly combined with
traffic rules, that should ensure that no collisions or deadlocks are possible between agents.
For example, in a tandem configuration of an infrastructure, each agent is assigned a non-
overlapping area of the infrastructure, which means that two agents can never come into
contact with each other. Although this method certainly simplifies an agent’s routing
decisions, it may not result in efficient use of the (AGV) system’s resources. In addition,
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even though agents can never collide, the system is not entirely robust, either, as the
failure of a single agent can mean that an entire area of the infrastructure can no longer
be serviced.

The use of online controllers, that verify the safety of every agent move, also has
its drawbacks. Again, system resources may not be efficiently utilized, since agents
rarely take congestion into account in their routing decisions. Second, verifying the
safety of each agent move can require many computational resources, for example if
the reachability graph of a Petri net has to be analyzed. For this reason, many online
controllers cannot guarantee that no deadlocks will occur, in case they perform only
a limited look-ahead to judge whether a move is safe. The main advantage of this
approach is that no (plan) repair techniques are required in dynamic environments.
Because there is no plan that must be maintained, the online controller can treat every
situation the same, regardless of whether an incident has occurred or not. Whether or
not this leads to a very robust system is unknown, because no route planning approach
has ever been compared with an online controller approach, as far as we know, although
Zutt’s forthcoming thesis [103] will combine ideas from online control with route planning.

In this thesis we assume that there exists an infrastructure of lanes and intersections
that the agents travel on. In this setting, collisions are avoided by ensuring that there
are never more agents on an infrastructure resource than the capacity allows. In this
sense, the robot motion planning approaches discussed in section 2.1 are less relevant
because robot motions are planned in far greater detail, in the sense that trajectories
are calculated in which the areas of two agents do not overlap. However, many solution
methods found in (multi-)robot motion planning are also relevant in multi-agent routing:
decoupling path and velocity planning, prioritizing agents and planning in sequence, and
optimal centralized solving.

Among these three solution concepts, there is a clear trade-off between solution quality
and computation time. At one end of the spectrum, optimal centralized approaches are,
clearly, optimal in terms of solution quality, but these methods have so far been used
to solve problems of no more than a few agents. At the other end of the spectrum,
decoupled (and sometimes prioritized) approaches allow fast solving (e.g. Hatzack and
Nebel’s algorithm runs in linear time), but because the paths of the agents (i.e., the ‘space
trajectories’) do not take into account the movement of others, it is possible that many
agents make use of the same infrastructural resources, leading to congestion in the system.
Prioritized approaches often allow a single agent to find an optimal route plan for itself,
but as agent priorities are often determined heuristically if not arbitrarily, the distance
between the quality of the multi-agent route plan and the optimum is often unknown.
With regards to the computational complexity of the prioritized approach, an optimal
plan for a single agent can be found in polynomial time, but the O(n4m2) (n the number
of agents, m the number of resources) worst-case complexity that Kim and Tanchoco [41]
report of their algorithm is considered to be too expensive for practical use by many (see
e.g. [96]).

With regard to the robustness, there is not known to be much difference between
the three approaches (centralized, prioritized, or decoupled planning). In each approach,
the result of the planning process is a route plan that specifies exactly where each agent
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should be at each point in time. In case an unexpected incident disrupts the execution
of the plans, there is the question what to do with the plans: find a new set of plans,
or try to repair the existing plans. The method proposed by Maza and Castagna [60],
which only affects the timing of the plans, can be applied to any route plan, regardless
of the method used to obtain it (although the authors explicitly consider the planning
method from Kim and Tanchoco [41]).

To recapitulate, we are looking for route planning methods that are efficient, robust,
and fast in terms of computation time. In general, we can conclude that none of the
described methods score well on all three counts. Methods that focus on plan efficiency
often do so at the expense of planning speed (and vice versa), while a focus on robustness
often disregards efficiency. In particular, our research is motivated by the following gaps
in the literature.

1. Centralized solvers are optimal but too slow: optimal route plans have been found
for up to four AGVs, but even then completion time frequently exceeds half an
hour [16].

2. Prioritized planning is too time-consuming. Kim and Tanchoco’s algorithm can find
an optimal plan for a single agent, but their algorithm has a worst-case complexity
of O(n4m2) (n the number of agents, m the number of resources).

3. Prioritized and decoupled planning are not globally optimal. More importantly,
no (empirical or analytical) approximation results have been found that bound the
distance between the cost of an optimal plan and a plan obtained using a decoupled
or prioritized approach.

4. Robustness of route plans needs more evaluation. In the literature, robustness is
often considered with regard to an empty set of plan repair techniques (e.g. [47]), in
which case a small disturbance can lead to a deadlock situation. Other than Maza
and Castagna [60], who conducted some preliminary experiments to validate their
approach, no-one has evaluated the robustness of route plans, as far as we know.

5. Additional research is required into plan repair techniques. Two schedule repair
algorithms have been presented by Maza and Castagna [60, 61], but there is not
yet a full understanding when a priority change is safe, and when it will lead to a
deadlock. In addition, the two existing algorithms from Maza and Castagna still
leave room for alternative priority-changing algorithms.

In our attempt to fill these gaps, we present a prioritized route planning algorithm
that is faster than current approaches (chapter 4), we analyze priority-based schedule
repair and present an additional schedule repair algorithm (chapter 5), and we evaluate
empirically both the robustness of route plans and the multi-agent plan cost (chapter 6).
First, in chapter 3, we will present the multi-agent routing problem and analyze its
complexity.



Chapter 3

A Model for Multi-Agent
Route Planning

Motion planning can be a very difficult problem in its most general form, in which a set of
agents in a multi-(usually two- or three-)dimensional space must move from one location
to another (cf. [75, 36]). An agent should decide on a value for continuous variables like
speed and heading for each point in continuous time, all the while avoiding collisions with
other agents that are solving the same problem. An agent can hardly be expected to have
any time left to ponder the really important questions of existence like: “does P equal
NP”?

The (single-agent) problem becomes tractable if agents move along an infrastructure:
a collection of intersections and lanes connecting the intersections. An agent’s motion
planning problem can now be solved by deciding which lanes and intersections of the
infrastructure to travel on (and during which time intervals), rather than plotting a
complicated trajectory in space and time. The problem of avoiding collisions can be
solved by defining for every lane and intersection in the infrastructure a capacity, which
is the maximum number of agents that is allowed to occupy the lane or intersection at
the same time. A natural approach to the multi-agent motion planning problem is route
planning : each agent plans to visit a sequence of infrastructure resources during specified
time intervals, in such a way that the capacity of all resources is never exceeded at any
point in time.

Multi-agent route planning is applicable in many domains, from underground mining
carts [4] to automated guided vehicles (AGVs) in manufacturing systems (e.g. [72, 21, 13]),
to aircraft on taxiways (e.g. [33, 35]). Each of these domains may place constraints on
route plans in addition to the resource capacity constraint. For example, we can imagine
that AGVs can overtake each other on a lane, but underground mining carts cannot.
On taxiways, aircraft should even maintain additional separation, because of their strong
exhausts.

In this chapter, we present a resource-based model that allows us to define the problem
of multi-agent route planning. In section 3.1, we define the basics of the model, which
include a graph of resources, the definition of an agent plan, and the resource load function,
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which specifies the number of agents on a resource at a particular time, given the set of
agent plans.

In section 3.2, we identify a set of additional constraints that may be required to
model logistic application domains. Most of the constraints of this section have appeared
in different works in the literature; our aim in this section is to provide an overview of
the constraints that are relevant for multi-agent route planning in logistics.

In section 3.3, we define the multi-agent route planning problem as finding a minimum-
cost set of agent plans that are conflict free with regard to the resource load function (i.e.,
no resource may ever contain more agents than its capacity), and possibly with regard to
some of the additional constraints identified in section 3.2. We will prove that the basic
multi-agent route planning problem, in which no additional constraints are taken into
account, is NP-hard. For some sets of additional constraints, the problem even appears
to be PSPACE-complete1.

3.1 Basic model

An infrastructure is a graph G = (V,E), where V is a set of vertices representing inter-
sections and locations, E ⊆ V × V is a set of edges. These edges can be both directed or
undirected, and we will use the term lane to refer to both types of edge. The infrastruc-
ture graph contains no loops, where a loop is an edge with the same start and end point.
From the infrastructure graph G, we derive a resource graph GR = (R,ER). The set of
vertices of the resource graph is the set of (infrastructure) resources: R = V ∪E. We de-
rive the set of arcs ER in the following manner: for each undirected edge e = {v, w} ∈ E,
the set ER contains the pairs (v, e), (e, w), (w, e), and (e, v); for each arc (directed edge)
(v, w) ∈ E, ER contains the pairs (v, e) and (e, w). See figure 3.1 for a translation of
a simple infrastructure to a resource graph. The set of arcs ER can be interpreted as
a successor relation: if (r, r′) ∈ ER, then an agent can go directly from resource r to
resource r′.

v w

e

v e w

Figure 3.1: An infrastructure G, and the corresponding resource graph GR.

We associate two attributes with every resource r ∈ R: a capacity and a minimum
travel time. The function tt : R → T+ gives the minimum travel time of a resource,
and it can typically be determined by dividing the length of a resource by the maximum
speed of the agents, or by the maximum allowed speed. The set T is the set of possible
time points, and it consists of the set of non-negative real numbers; the set T+ consists of
only positive real numbers. In case agents are heterogeneous for instance with regard to

1The PSPACE-completeness result is subject to the conjectured PSPACE-completeness of a problem
from the literature, see section 3.3.1.
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their maximum speeds2, we use the function at : A×R→ T+, such that at(Ai, r) is the
minimum travel time of agent Ai on resource r. The capacity is a function cap : R→ N+

that specifies the maximum number of agents that can simultaneously occupy a resource.
We will assume that all intersections and locations (i.e., resources in V ) have a capacity

of one (while resources in E can have a capacity of more than one). In case a crossing of
roads is very large compared to the dimensions of a single agent, a clever division of the
available space into resources is required to prevent a loss of infrastructure capacity. In
figure 3.2(a), for example, we have a large central area where four roads meet. If only one
agent were allowed to enter this area at a time, then the throughput of this infrastructure
would be very low. In figure 3.2(b), we divide the central space into multiple resources
that together form a roundabout.

To understand why we do not model the intersection of figure 3.2(a) as one large
resource with capacity four or more, one must understand the idea (philosophy would be
too big a word) behind resource-based route planning. This idea is that potential conflicts
between agents are prevented by ensuring that no resource ever contains more agents than
its capacity. In case a resource can hold more than one agent at a time, avoiding collisions
within a resource should be a simple problem. For example, in case a resource is one long
lane, and two agents are driving behind each other, then a collision can be avoided if the
following agent simply matches its speed to that of the leading agent. If, in figure 3.2(a),
all four agents would enter the intersection at the same time, then it is not obvious how
each should drive towards its destination exit without interfering with the other agents.
In fact, in chapter 2, we saw that determining optimal conflict-free motions for a set of
agents in the plane is PSPACE-complete (see [36]). Hence, to avoid conflicts at run-time,
the agents would have to solve a complicated planning problem, even if the capacity of a
resource is never exceeded.

At this point we should explain why we define both an infrastructure graph G and a
resource graph GR. The resource graph allows a uniform treatment of all infrastructure
elements: agent collisions should be avoided both on lanes and on intersections, and not
only lanes have non-zero travel time. The infrastructure graph ensures that the resource
graph models a realistic infrastructure. For example, the infrastructure contains lanes
with precisely two endpoints, both of which are intersections (or locations). This implies
that a lane resource (i.e., in the resource graph) is only connected to other resources at its
endpoints. Otherwise, we could construct resource graphs where resources are connected
to each other ‘in the middle’, which would complicate the definition of a resource’s travel
time, for instance.

3.1.1 Agent plans

We define a set A of agents that can traverse the infrastructure. Each agent A ∈ A has one
start location r ∈ V , and one destination location r′ ∈ V (that is, start and destination
locations are always intersections). We approach the multi-agent routing problem as a
planning problem: agents determine exactly for each time point which resource they will
occupy.

2Agents can also be heterogeneous in other ways such as weight, which can influence minimum travel
times on resources that slope upwards or downwards.
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(a) A large area modeled as a single intersection
resource.

(b) The same area divided into resources to form
a roundabout.

Figure 3.2: A large central area can be used by more than one agent if we divide it into
multiple resources.

Definition 3.1.1 (Agent plan). Given an agent A ∈ A, a start location r ∈ V , a
destination location r′ ∈ V , and a start time t ∈ T , a plan for agent A is a sequence
π = (〈r1, τ1 = [t1, t′1)〉, . . . , 〈rn, τn = [tn, t′n)〉) of n plan steps such that r1 = r, rn = r′,
t1 ≥ t, and ∀j ∈ {1, . . . , n}:

1. interval τj meets interval τj+1 (j < n),

2. |τj | ≥ at(Ai, rj),

3. (rj , rj+1) ∈ ER (j < n).

The first constraint in the above definition makes use of Allen’s interval algebra [3]3,
and states that the exit time out of the jth resource in the plan must be equal to the
entry time into resource j +1. The second constraint requires that the agent’s occupation
time of a resource is at least sufficient to traverse the resource in the minimum travel
time. The third constraint states that if two resources follow each other in the agent’s
plan, then they must be adjacent in the resource graph.

The main objective in routing that we will consider is to minimize completion time.
Hence, we define the cost of a plan for a single agent as the end time of the plan minus
the start time. The cost of a set of agent plans is simply the sum of the costs of the agent
plans, which is a suitable measure in case agents are self-interested, because then the cost
of each individual agent should be reflected in the total plan cost.

3We make use of the meets predicate, which means that the end of one interval is equal to the start
of the second, and the precedes predicate, which means that the end of one interval is earlier than the
start of the second.
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Definition 3.1.2 (Plan cost). Given a plan π = (〈r1, τ1 = [t1, t′1)〉, . . . , 〈rn, τn = [tn, t′n〉)
and a start time t, the cost of π is defined as c(π) = t′n − t. The cost of a set Π of agent
plans is defined as c(Π) =

∑
Ai∈A c(πi).

As an alternative cost measure for the multi-agent plan, we will sometimes use the
makespan of the plan, i.e., the time at which all agents have completed their plan. Given a
set of agent plans Π, the makespan-cost is defined as cmax(Π) = maxπi∈Π(c(πi)), assuming
the agents share a common start time. If each agent has a different start time, then the
makespan is the difference between the latest finish time and the earliest start time.
The makespan-cost can be a useful measure when agents are cooperative, and only the
performance of the total system is relevant.

From a set of agent plans, we can derive for each point in time the number of agents
that occupy a particular resource. This number should never exceed the capacity of a
resource.

Definition 3.1.3 (Resource load). Given a set Π of agent plans, the resource load λ is
a function λ : R × T → N that returns the number of agents occupying a resource r at
time point t:

λ(r, t) = |{〈r, τ〉 ∈ π |π ∈ Π ∧ t ∈ τ}|

The constraint that the load of a resource may never exceed its capacity is at the
heart of the multi-agent routing problem on infrastructures. It aims to solve the basic
requirement that agents should never collide. In many realistic application domains, there
are additional constraints that a set of agent route plans must satisfy. In the next section,
we will examine a number of relevant constraints.

3.2 Additional constraints

In the previous section we introduced the basic constraint that there may never be
more agents in a resource than the capacity. For some application domains, unsafe or
impossible-to-execute plans will result if we do not impose additional constraints. For
example, a long and narrow lane resource may be able to hold many agents at the same
time, but there may not be traffic in opposing directions at the same time. In this section,
we will give an overview of additional constraints, divided into three classes of related
constraints, that may be desirable or required in (logistic) application domains.

The first class of additional constraints concerns how agents go from one resource
to another. When we defined agent plans in definition 3.1.1, we specified that the time
intervals of the plan steps should meet, rather than overlap. This implies that an agent
always occupies exactly one resource, and that it never has one wheel in one resource
and another wheel in a different resource. This, in turn, might mean that the situation
of figure 3.3 occurs, which would be considered anomalous in most logistic application
domains: at time t, two agents exchange resources. Although the resource capacity has
never been exceeded, attempting this manoeuvre with real airplanes will undoubtedly
result in a collision.

A second class of constraints is formulated to deal with situations in which the resource
capacity constraint is insufficient to prevent agent collisions. In particular, we consider
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Taxiway 1 Taxiway 2

(a) Situation at time t

Taxiway 1 Taxiway 2

(b) Situation at time t + ε

Figure 3.3: The aircraft exchange resources just after time t.

three situations: (i) agents are not allowed to overtake each other, (ii) agents are not
allowed to traverse a resource in opposing directions at the same time, and (iii) agents
must maintain additional separation from each other, in the sense that there must always
be one empty resource around each agent. The first two constraints are commonly relevant
when resources are long and narrow, and there is no room for two agents to drive side-
by-side. The third constraint is relevant when an agent needs more space than afforded
by a single resource, for instance because it has very wide dimensions, or a very strong
exhaust that requires agents to keep at least one resource between each other at all times.

The third class of constraints is defined on agent plans, rather than sets of agent
plans. The constraints in this class represent choices that the agent designers can make
with regard to desirable and undesirable properties of agent plans. One example of a
potentially undesirable plan property is cyclicity: sometimes, the optimal agent plan
(i.e., the shortest-time plan) requires an agent to visit one resource multiple times. If
an agent designer is not only interested in arrival time but also in the distance an agent
travels, then he or she can choose to forbid cyclic plans.

3.2.1 Simultaneous resource exchanges

In this section we will discuss constraints to prevent simultaneous resource exchanges
between agents. The original constraint is due to Hatzack and Nebel [33]. They considered
airport taxi route planning where each resource has unit capacity. Figure 3.3 depicts the
type of situation they wish to prevent: two agents drive towards each other until both
have reached the end of their respective resources, and then in one instant both agents
find themselves at the start of the other’s resource. If real aircraft would attempt to
execute such plans, then a collision would result. This collision can be prevented by the
following constraint (adapted from [33] to match our terminology):

∀i∀j (〈r, [ , t1)〉, 〈r′, [t1, )〉) v πi ∧
(〈r′, [ , t2)〉, 〈r, [t2, )〉) v πj →

t1 6= t2

(3.1)

where the underscore symbol ‘ ’ stands for don’t care, and v denotes a strict sub-sequence
relation4. Equation 3.1 states that if there exists a plan πi in which agent Ai travels from

4If sequence s is a strict sub-sequence of s′, then s occurs in s′ without any other elements interrupting
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resource r to r′ at time point t1, then for all other agent plans πj , it must hold that if Aj

wants to travel in the other direction — from r′ to r — then it must do so at some other
time point t2 6= t1.

In [103], Zutt considers a package-delivery application domain where resources can
have a capacity for more than one agent. He allows simultaneous exchanges as long as
the capacity of the border of the resource is not violated at any time. To formulate this
constraint, he introduces the functions stay : R×T → N and interchange : R×R×T → N.
The function stay(r, t) returns the number of agents that are occupying resource r at time
t, and that do not leave the resource at that time. The function interchange(r, r′, t) gives
the number of agents that go from r to r′ at time t, plus the number of agents that go
from r′ to r at time t. Zutt defines the following constraint:

∀(r, r′) ∈ ER,∀t ∈ T : interchange(r, r′, t) ≤
min (cap(r)− stay(r, t), cap(r′)− stay(r′, t))

(3.2)

Figure 3.4 shows two examples of exchanges that are allowed by equation 3.2, and
two exchanges that are not allowed (note that Zutt does not distinguish between lane
and intersection resources in his model). From figure 3.4(c) we can see that agents are
allowed to exchange resources in a cyclic manner.

Both constraints 3.1 and 3.2 allow agents to simultaneously exchange resources if they
form a cycle of three or more. Such plans can be executed only if agents move at exactly
the right time; otherwise, the capacity of at least one of the resources will be violated.
Even if (automated) agents could perfectly synchronize their movements, it might be safer
if there is always (at least) one agent that moves to an empty resource; if for some reason
perfect synchronization fails, this agent could move first into the empty resource. Then,
the agent behind it can move into the vacated resource, and so on (see figure 3.5).

When we analyze the complexity of the multi-agent routing problem in section 3.3, we
will see that the multi-agent routing problem is related to a number of puzzle problems
(e.g. [46, 34]). In these puzzle problems there are tokens placed on the vertices of a graph,
such that a vertex may contain at most a single token, and the objective is to move the
tokens (by ‘sliding them along the edges’) to a particular goal configuration. One puzzle
problem that we will use in section 3.3 is the Sliding Tokens problem.

Definition 3.2.1 (Sliding Tokens (ST)). Let G = (V,E) be a graph. A valid configuration
π is a placement of tokens on a subset Vt ⊂ V , such that no two adjacent vertices contain
a token. A move consists of sliding a token to an adjacent, unoccupied vertex, such that
the resulting configuration is also valid. The problem is: does there exist a sequence of
moves that transforms an initial configuration π0 into a goal configuration π∗?

A solution to the Sliding Tokens problem is to move the tokens one by one; hence, a
solution cannot require simultaneous movement of the tokens. If we want to transform
a multi-agent route planning solution to a sequence of moves for the Sliding Tokens
problem (for details, see section 3.3), then we must be able to serialize simultaneous

the sequence. For example, (b, c, d) is a strict sub-sequence of (a, b, c, d, e). Elsewhere in this thesis, we
will also employ scattered sub-sequences, denoted by the symbol �; the sequence (a, b, d) is an example
of a scattered sub-sequence of (a, b, c, d, e).
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cap(r1) = 2
cap(r2) = 2
cap(r3) = 2

r1

r2

r3

A2

A3

A4

A5 A6

A1

(a) Not allowed: 2 = interchange(r1, r2, t) 6≤
min(2 − 1, 2 − 0) = 1. The same holds for r2

and r3.

cap(r1) = 2
cap(r2) = 2
cap(r3) = 2

r1

r2

r3

A2

A3

A4

A6

A1

A5

(b) Is allowed: 2 = interchange(r1, r2, t) ≤
min(2 − 0, 2 − 0) = 2. The same holds for r2

and r3.

cap(r1) = 2

A2

A3

A4

A5 A6

A1

cap(r3) = 2

cap(r2) = 2

(c) Is allowed: 1 = interchange(r1, r2, t) ≤
min(2 − 1, 2 − 1) = 1. The same holds for r2

and r3.

A2

A3

cap(r1) = 4
cap(r2) = 2

A1

r2

r1

(d) Not allowed: 3 = interchange(r1, r2, t) ≤
min(4− 0, 2− 0) = 2.

Figure 3.4: This figure shows some simultaneous exchanges that are allowed by con-
straint 3.2, and some that are not allowed. The arrows indicate the intention of the
agents to change resources. All exchanges are assumed to occur at exactly the same time
point t.
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A1

A2

A3

r1

r4 r3

r2

Figure 3.5: Agent A1 does not need to synchronize with any agent to move to resource
r2.

movement from the multi-agent solution.

We will now present a stricter constraint that allows cyclic exchanges only if at least
one of the resources in the cycle has capacity left over. Our constraint can be viewed as a
serialization constraint, in the sense that we could move the agents to their new resources
one by one, without ever exceeding the capacity of any resource. First, we define the set
St of plan steps that start at time t, given a set of agent plans Π = {π1, . . . , πn}.

St = {〈r, [t, )〉 ∈ π | π ∈ Π}

Next, we can define a dependency relation ESt between elements of St

ESt = {(〈ri, [t, )〉, 〈rj , [t, )〉) | (〈ri, [ , t)〉, 〈rj , [t, )〉) v π ∧ 〈ri, [t, )〉 ∈ π′}

The definition of ESt states that if (σ, σ′) ∈ ESt , then plan step σ will enter at time t
the resource that will be vacated at time t by the agent with plan step σ′. The serialization
constraint states that if there is a cyclic exchange in ESt

, then one of the resources in the
cycle must have at least one unit of capacity left over. Let C = (σ1, . . . , σm) be a cycle
in ESt , then:

∃i : σi = 〈r, [t, )〉 ∈ C s.t. λ(r, t−) < cap(r) (3.3)

where t− = lim
ε↓0

t − ε (t− thus stands for the point in time just prior to the resource

exchanges, when all agents are still in their ‘starting resources’). In case there are only
unit-capacity resources, then equation 3.3 specifies that ESt must be acyclic.
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Note that we can verify in polynomial time whether equation 3.3 holds, despite the
fact that ESt may contain an exponential number of cycles: we can simply select an
arbitrary cycle in ESt , decide whether it contains a resource that has capacity left over,
and remove the corresponding plan step from St. We can use this idea to translate a set
of parallel agent plans (i.e., plans in which some resource exchanges occur at the same
time) to a single multi-agent plan, in which only one agent moves to a different resource
at any point in time.

Algorithm 2 Serialize parallel plans
Require: set of agent plans Π = {π1, . . . , π|A|}, and S =

⋃
i=1,...,|A|

⋃
j=1,...,|πi| σi,j .

Ensure: sequence of plan steps π such that ∀i ∈ {1, . . . , |A|} : πi � π.
1: for all t : St 6= ∅ do
2: determine(St, ESt)
3: while ESt contains cycle C do
4: σ ← 〈r, [t, )〉 ∈ C s.t. λ(r, t−) < cap(r)
5: St ← St − σ
6: append(π, σ)
7: update(St, ESt

)
8: S′

t ← topologicalSort(St, ESt
)

9: append(π, S′
t)

10: return π

Algorithm 2 iterates over all resource transitions in the plans of the agents. For a
particular time step t, there can be multiple resource transitions St. If the dependency
relation ESt contains a cycle C, then we break this cycle by removing one transition σ
that moves to a resource in which, just prior to the transitions at time t, there is at
least one unit of capacity unused (line 4). We remove this transition from the set St of
transitions at time t (line 5), add it to the sequential plan (line 6), and update the sets St

and ESt
(line 7) to reflect that transition σ has been processed. After all cycles have been

removed from ESt , we can order the elements in St (line 8) in such a way that transition
number i can move to a partially empty resource in case transitions 1, . . . , i−1 have been
processed. Note that although the dependency relation ESt

can contain an exponential
number of cycles, the while-loop in line 3 runs for at most O(St) iterations, because in
every iteration we remove an element from the set St.

3.2.2 Resource traversal constraints

In this section we discuss three constraints. The first specifies that a resource may only be
used in one direction at the same time, to rule out the possibility of oncoming traffic. The
second constraint prevents agents from overtaking each other on a lane resource. The third
constraint actually assumes unit-capacity resources, and specifies that an agent should
have an empty resource around it at all times. The first two constraints are common in
most AGV applications: lane resources can often hold more than one AGV, but there
may not be room for two AGVs to drive side by side. Even if there is room for two AGVs
next to each other, it will rarely be safe to allow both overtaking, and oncoming traffic
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at the same time. The third constraint occurred in the Airport (taxi route) planning
domain from the 2004 International Planning Competition, which included the constraint
that an aircraft may not follow another too closely if the other’s engines are running (i.e.,
while it is driving on the taxiways).

Simultaneous bidirectional lane traversal

If a resource r is a bidirectional lane connecting intersections v and w (i.e., {v, w} ∈ E),
then agents can travel both from v to w via r, and also from w to v. As an additional
constraint, we can formulate that traffic on a resource is only allowed in one direction at
the same time. This constraint can be needed if there is not enough room for the agents
to pass each other on the resource. Hence, if there is an agent that occupies r in the
interval [t, t′), and this agent is going from v to w, then no agent may be going from w
to v along the same resource r, between t and t′. This implies that if two agents have
overlapping occupation intervals on r, then they must enter r from the same intersection:

(〈v, 〉, 〈r, τ〉, 〈w, 〉 v π∧
〈w, 〉, 〈r, τ ′〉, 〈v, 〉 v π′)→

τ ∩ τ ′ = ∅
(3.4)

Note that if intervals τ and τ ′ from equation 3.4 meet, e.g. τ = [2, 6) and τ ′ = [6, 10),
then a simultaneous resource exchange takes place at time 6 between resources r and w.
If any of the constraints from section 3.2.1 holds, forbidding simultaneous exchanges, then
τ and τ ′ cannot meet.

Catching is one thing5

If we forbid overtaking on (lane) resources, then an agent’s entry and exit times into and
out of a resource are constrained by two agents: the agent that will enter the resource
directly before it, called the leading agent, and the agent that will come directly after it,
called the trailing agent. Consider the following example.

Suppose we have a resource r with a capacity of 3, and we have the following two
agents that are planning to make use of this resource: A1 with plan step 〈r, [20, 50)〉,
and A2 with plan step 〈r, [50, 70)〉 (see figure 3.6). If a third agent A3 can enter resource
r from time 30 onwards, then it will drive between agents A1 and A2; agent A1, which
enters the resource first, is A3’s leading vehicle, whereas A2, which enters the resource
last, is the trailing vehicle.

If we do not allow overtaking, then A3 is not completely free in planning its traversal
of r, despite the fact that there is never a shortage of capacity. For example, if agent A3

intends to travel through r in the interval [30, 45), it would overtake agent A1. The entry
and exit times of agent A3 are governed by the following equations:

5passing is another, as Murray Walker was wont to say. A good Dutch translation due to Olav Mol
would be: “Erbij is één, er voorbij is twee”.
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A2 A1

[50, 70) [20, 50)

Figure 3.6: Agent A1 is leading A2.

entry(A1) < entry(A3) < entry(A2)
exit(A1) < exit(A3) < exit(A2)

The general overtaking constraint specifies that if two plan steps make use of the same
resource, then the one that starts earlier should also finish earlier:

〈r, [t1, t2)〉 ∈ π ∧ 〈r, [t3, t4)〉 ∈ π′ →
(t1 > t3 ∧ t2 > t4) ∨ (t3 > t1 ∧ t4 > t2)

(3.5)

Equation 3.5 ensures that agents exit resources in the order that they entered them,
and as a result it allows agents to execute their plans without overtaking manoeuvres
taking place.

Minimum separation

For safety reasons agents must often maintain some degree of separation. For instance,
if two agents travel on the same resource, they could be required to maintain a mini-
mum distance, or a minimum time gap. A more rigorous approach is to require that the
resources connected to the agent’s current resource are all empty. This constraint was
implemented in the airport taxiway planning problem of the International Planning Com-
petition of 2004 [91] (in a restricted form — only the resource behind the agent should
be empty, and only if the agent is currently moving), to model minimum exhaust sepa-
ration distances. We can formulate the following constraint to ensure that all resources
surrounding an agent are empty:

〈r, τ〉 ∈ π ∧ 〈r′, τ ′〉 ∈ π′ ∧ (r, r′) ∈ ER → τ+ ∩ τ ′+ = ∅ (3.6)

where τ+ indicates the closed interval [t, t′] of interval τ = [t, t′).6 In constraint 3.6 we do
not specify that at most one agent may occupy a resource at any time (it would clutter up
the equation), but we do always assume that resources have unit capacity if constraint 3.6
holds.

6This is required for a smooth PSPACE-completeness proof in section 3.3.
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3.2.3 Agent plan properties

In this section we discuss three constraints on agent plans. The first constraint is con-
cerned with the initial and final locations of the agents. The two basic options are: (i)
agents enter and leave the infrastructure, or (ii) they must always occupy a resource.
The second and third constraints are both concerned with cycles in plans. The second
constraint forbids agents to turn around on a single resource. Turning around on a re-
source may be viewed as undesirable because it can disrupt traffic on the resource, but the
constraint can also arise out of the physical limitations of the agents and the resources,
for example if there is insufficient space to turn. The third constraint simply forbids an
agent to visit one resource more than once in its plan.

Agent entry and exit into infrastructure

In our model we assume a single start location and a single destination location for each
agent. Once an agent has reached its destination location, it is done. Depending on the
application domain, the agent can then either leave the infrastructure, or remain on the
infrastructure. In the latter case, the agent will continue to occupy a resource until the
end of the planning horizon (i.e., of the other agents). In the literature, the idle vehicle
positioning problem [8] considers what to do with such an agent. One consideration is to
let the agent move to a resource in the infrastructure where it does not obstruct other
agents. Another possibility is that the agent might receive a new transportation order,
and to move to a part of the infrastructure where the next package is most likely to
originate.

In Zutt’s thesis [103], the assumption is made that all start and destination locations
are parking places (resources with infinite capacity), so the agent does not have to move.
A domain in which agents leave the infrastructure is the airport taxi routing domain (e.g.,
from the International Planning Competition of 2004 [91, 35]) where an agent takes off
from the infrastructure after traversing the final resource in its plan (a runway). The
situation regarding the agent’s start location is similar. When the agent starts planning,
it need not be in the infrastructure yet (in the airport domain, it should land first).

The constraint that we now formulate specifies that an agent should occupy a resource
at all times. If t1 is the start time of an agent’s plan, t2 the end time of the plan, t = ts
the start time of the earliest agent, and t = te the end of the planning horizon, then we
have the constraint:

t1 = ts ∧ t2 = te (3.7)

Spinturn

When an agent enters a lane resource r, having entered from intersection v ∈ V , it stands
to reason that it wants to reach the other end of r to be able to enter intersection w ∈ V .
On the other hand, it is also possible that the agent merely entered r in order to let
a more important agent use intersection v. In that case, the agent would want to turn
around in r (in [49], Lee refers to the turnaround as a spinturn).

Given a plan π = (〈r1, τ1〉, . . . , 〈rm, τm〉), the following constraint forbids spinturns:
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∀i ∈ {1, . . . ,m− 2} : ri 6= ri+2 (3.8)

Equation 3.8 expresses that a resource may not be revisited after only one intermediate
plan step. Note that the definition of GR = (R,ER) ensures that a resource cannot be
visited in two consecutive plan steps, as there is no connection in ER from a resource to
itself, i.e., GR is loop free.

Acyclic plans

To find an optimal route plan, it is sometimes necessary for an agent to visit a resource
more than once, i.e., to make a cyclic route plan, as illustrated in the following example.

r1 r2 r3 r4 r5

r
6

r7r8r9

r
1
0

r12

A2

A1

A3

r11

Figure 3.7: Resource graph where circles are intersections, rectangles are lanes, and dashed
lines represent the successor relation ER. There are three agents with respective start-
destination locations: A1 : (r1, r5), A2 : (r5, r12), and A3 : (r1, r12).
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Example 3.2.2. Consider the resource graph of figure 3.7, and suppose that lane re-
sources have a minimum travel time of 2, intersection resources have a minimum travel
time of 1, and all resources have a capacity of 1. There are three agents: agent A1 starts
at resource r1 and wants to go to r5, A2 with start location r5 and destination r12, and
A3 with start r1 and destination r12. Suppose that A2 and A3 have made the following
plans:

π2 = 〈r5, [4, 5)〉, 〈r4, [5, 7)〉, 〈r3, [7, 8)〉, 〈r11, [8, 10)〉, 〈r12, [10, 11)〉
π3 = 〈r1, [6, 7)〉, 〈r2, [7, 14)〉, 〈r3, [14, 15)〉, 〈r11, [15, 17)〉, 〈r12, [17, 18)〉

Note that for the purposes of this example, we have made agent A3’s traversal of r2 longer
than the minimum travel time.

Now A1 should find a plan from r1 to r5, and suppose that it may not invalidate the
plans of A2 and A3. Furthermore, suppose that plans should respect constraint 3.1, which
means that no simultaneous resource exchanges may occur, but that constraint 3.7 need
not hold, so A1 can enter r1 whenever it wants. The shortest plan from r1 to r5 is the
following plan:

π1 = 〈r1, [0, 1)〉, 〈r2, [1, 3)〉, 〈r3, [3, 4)〉, 〈r4, [4, 6)〉, 〈r5, [6, 7)〉

However, plan π1 conflicts with agent A2’s plan π2 on resource r4. Hence, A1 should wait
for A2 to clear intersection r3. Agent A1 could try the following plan, in which it waits
in r2 for agent A2 to pass:

π′
1 = 〈r1, [0, 1)〉, 〈r2, [1, 8)〉, 〈r3, [8, 9)〉, 〈r4, [9, 11)〉, 〈r5, [11, 12)〉

This plan, however, conflicts with the plan of A3, which will enter r2 at time 7. Agent A1

is now left with two options: drive behind A3, or ‘wait’ for A2 to pass by making a cycle
r3 – r6 – r7 – r8 – r9 – r10 – r3. In this example, the latter is the faster option, and it
leads to A1’s optimal plan:

π∗
1 = 〈r1, [0, 1)〉, 〈r2, [1, 3)〉, 〈r3, [3, 4)〉, 〈r6, [4, 6)〉, 〈r7, [6, 7)〉, 〈r8, [7, 9)〉,
〈r9, [9, 10)〉, 〈r10, [10, 12)〉, 〈r3, [12, 13)〉, 〈r4, [13, 15)〉, 〈r5, [15, 16)〉

A disadvantage of a cyclic plan is that it often requires the agent to travel greater
distances. In example 3.2.2, the optimal plan π∗

1 covers more than twice the distance of
the shortest path (which corresponds to the plan of driving behind agent A3). In times
when fuel consumption should be moderated, a quick but long plan may be undesirable.
Forbidding cyclic plans can be a heuristic measure to stimulate shorter plans, since our
definition of plan cost (definition 3.1.2) considers only time. We can forbid cyclic plans
with the following constraint:

(〈r, τ〉 ∈ π ∧ 〈r, τ ′〉 ∈ π)→ τ = τ ′ (3.9)
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3.3 Problem complexity

In this section, we will prove that multi-agent route planning is strongly NP-hard7, even
if no additional constraints are taken into account. The proof consists of a reduction
from the strongly NP-hard Flow Shop Problem with Blocking. If we consider the
multi-agent routing problem under the additional constraints 3.7 (an agent must occupy
a resource at all times), and 3.6 (an agent must keep an empty resource between itself
and other agents), then the problem is even PSPACE-complete, subject to an assumption
discussed in section 3.3.1.

First, we will define multi-agent route planning as the problem of finding a set of
conflict-free agent plans with a minimum plan cost. A set of agent plans is conflict free
if the resource load of any resource never exceeds its capacity, and if all the constraints
from the model configuration are satisfied. A model configuration M can contain any of
the constraints from section 3.2, from constraint 3.7 to constraint 3.9.

Definition 3.3.1 (Multi-Agent Route Planning (MARP)). Given a resource graph
GR = (R,ER), a model configuration M , a set of agents A and for each agent Ai ∈ A a
start location r ∈ R and a destination location r′ ∈ R, find a set Π = {π1, . . . , π|A|} of
agent plans, such that:

1. ∀t∀r ∈ R : λ(r, t) ≤ cap(r) (resource load ≤ resource capacity),

2. Π satisfies the constraints in M ,

3. the multi-agent plan cost c(Π) is minimized.

The multi-agent route planning (MARP) problem bears similarities to various shop
scheduling problems. A shop scheduling problem consists of a set of jobs, in turn con-
sisting of a set or sequence of operations, and each operation has to be processed on a
particular machine. The relation to the multi-agent route planning problem is that jobs
can be viewed as agents, and the machines as the resources of the infrastructure. A
difference between many shop scheduling problems such as the Job Shop Scheduling
Problem (see [26]) and multi-agent route planning is that the former specifies exactly
which machines (resources) a job will make use of, whereas in multi-agent route planning,
an agent is free to choose its route from start to destination(s). Below, we will transform
a shop scheduling problem to the MARP problem in such a way, that the resulting re-
source graph leaves the agents no freedom to visit resources that are not part of the job
description. In the Flow Shop Scheduling Problem, all operations of all jobs follow
the same sequence of machines. Hence, we can create a resource graph for the MARP
problem that consists of a single chain of resources.

An additional difference between ‘regular’ shop scheduling problems and multi-agent
route planning is that an agent must occupy a resource at all times8, whereas a job need
not occupy a machine between the processing of one operation and the next. Therefore,
we consider flow shop scheduling under the blocking constraint. The blocking constraint

7A problem is strongly NP-hard if it is still NP-hard if all numerical parameters are encoded in unary
notation.

8Of course, without constraint 3.7, an agent need not occupy a resource before entering its start
location or after reaching its destination.
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specifies that a job, having completed processing on a machine, remains on the machine
until the machine for its next operation becomes available. The flowshop scheduling
problem with blocking was proved strongly NP-hard by Hall and Sriskandarajah [31], for
problem instances with three or more machines. We will use the flowshop problem with
blocking to prove the NP-hardness of the MARP problem.

Definition 3.3.2. The Minimum Flow Shop Scheduling Problem with Blocking
is given by:

Instance An ordered set P = (P1, . . . , Pm) of processors, a set J = {j1, . . . , jn} of jobs,
each job ji ∈ J consisting of a sequence oi,1, . . . , oi,m of operations, such that the kth

operation oi,k of job ji must be processed on processor Pk, and for each operation
oi,k there is a minimum processing time pt(i, k).

Solution A schedule for the set of jobs J , i.e., a function s : {oi,k ∈ ji | (ji ∈ J) ∧ 1 ≤
k ≤ m} → T that specifies the starting time of each operation on each processor,
subject to the following constraints:

1. in the interval [s(i, k), s(i, k + 1)), 1 ≤ i ≤ n and 1 ≤ k ≤ m− 1, processor Pk

may only work on operation oi,k,

2. operation oi,k+1, 1 ≤ i ≤ n and 1 ≤ k ≤ m− 1, may not start before s(i, k) +
pt(i, k).

Measure The objective is to minimize the completion time of the schedule, i.e., to min-
imize maxi∈{1,...,n} s(i,m) + pt(i,m).

Proposition 3.3.3. The multi-agent route planning problem with M = ∅ (no additional
constraints) and makespan cost measure is strongly NP-hard.

Proof. We will prove the strong NP-hardness of the multi-agent routing problem using a
reduction from the minimum flowshop scheduling problem with blocking (definition 3.3.2)
which was proved to be strongly NP-complete in [31] for a flow shop with three machines
or more. Given an instance (P, J, pt), with m = |P | and n = |J |, of the flowshop problem,
we define the following transformation to the multi-agent routing problem.

We create a unit-capacity resource ri for each processor Pi ∈ P , and we create a
directed edge (ri, ri+1), 1 ≤ i ≤ m − 1, between every pair of consecutive resources.
With each job ji ∈ J we associate an agent Ai with start location r1 and destination
location rm. The agent travel time function at can be directly derived from the minimum
processing times of the operations, i.e., for all 1 ≤ i ≤ n and 1 ≤ k ≤ m, we have
at(Ai, rk) = pt(i, k).

We will now show that if an instance of the flowshop problem with blocking has a
schedule with completion time K, then such a schedule directly corresponds to a multi-
agent route plan with completion time K: for all 1 ≤ i ≤ n, if we have a flow shop
schedule (s(i, 1), s(i, 2), . . . , s(i,m)), then the plan for agent Ai is given by

πi = (〈r1, [s(i, 1), s(i, 2))〉, 〈r2, [s(i, 2), s(i, 3))〉, . . . , 〈rm, [s(i,m), s(i,m) + at(Ai, rm))〉)

For the set of agent route plans, it is easy to verify that no resource is ever occupied
by more than one agent at a time, because (i) in a solution of the flowshop problem, a
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processor only operates on one job at a time, and (ii) because of the blocking constraint
from the flowshop problem: if operation oi,k has been processed on processor Pk, then
no other operation can start on Pk until the next operation of job ji has started on the
next processor Pk+1. It is also easy to verify that the makespan of the multi-agent route
plan is equal to K.

We will now show that if the transformed multi-agent routing instance has a solution
with makespan K, then there also exists a valid schedule for the original flowshop in-
stance of size K. Again there is a direct correspondence between the solutions of the two
problems. The start time s(i, k) of operation oi,k is simply the start time of the kth plan
step of agent Ai. To understand that the obtained schedule is a valid flowshop schedule,
we should note the following:

• As the resource graph is a directed chain of resources from r1 to rm, all agent plans
follow this sequence of resources; no alternative routes are possible. Hence, the
resource of the kth plan step in any agent plan corresponds to processor Pk. The
requirement that the kth operation of any job is on processor Pk is thereby satisfied.

• As all resources have capacity one, there is at most one agent on any resource at
any time in the multi-agent plan. Hence, in the corresponding flowshop schedule
there is also at most one operation on any processor at one time.

• An agent Ai cannot exit a resource rk earlier than its entry time plus the minimum
travel time at(Ai, rk). Hence, no operation oi,k in the flowshop schedule can start
before the preceding operation oi,k−1 has finished.

We have shown that a solution for the flowshop problem corresponds to a solution
for the routing problem and vice versa. Hence, the Flowshop Problem with Blocking
can be reduced to the Multi-Agent Route Planning problem, which proves that MARP
is strongly NP-hard.

3.3.1 PSPACE-complete routing

If we consider the MARP problem under the additional constraints 3.7 (an agent must
occupy a resource at all times) and 3.6 (agents must maintain one empty resource as
separation), then it seems we can prove a stronger complexity result. Constraint 3.6 was
inspired by the Airport planning problem from the 2004 edition of the International
Planning Competition (more on the airport problem can be found in [91]). In Airport,
there is a set of aircraft each with a start location and a destination location, and while
taxiing the aircraft need to maintain a separation of one empty resource because of the
powerful exhausts of jet engines. In [35], Helmert proved that deciding whether a solution
exists for an Airport instance is PSPACE-complete. Hence, finding the shortest multi-
aircraft taxi plan is also PSPACE-complete.

The proof in [35] consists of a reduction from the PSPACE-complete Sliding Tokens
problem (see section 3.2). Within the proof, however, it is clear that the author makes
use of a slightly different problem that we have defined below as the Distinguishable
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Sliding Tokens problem. Helmert states that “. . . only simple adjustments to the hard-
ness proofs [from Hearn and Demaine [34]] are needed for the modified version”. However,
what these simple adjustments are has not been reconstructed yet either by us or by the
author9.

In the sliding tokens problem (definition 3.2.1), we cannot distinguish one token from
another. In routing, on the other hand, agents are unique, and we are only interested
in ‘goal configurations’ where specific agents reach specific locations. Hence, we need to
define the problem where each token has its own destination location.

Definition 3.3.4 (Distinguishable Sliding Tokens (DST)). Let G = (V,E) be a
graph, and let T = {t1, . . . , tk} be a set of tokens. A valid configuration π : T → V is an
assignment of tokens to vertices, such that no two adjacent vertices contain a token. A
move consists of sliding a token to an adjacent, unoccupied vertex, such that the resulting
configuration is also valid. The problem is: can we reach a goal configuration π∗ from an
initial configuration π0?

Assumption 3.3.5. DST is PSPACE-complete.

Proposition 3.3.6. The multi-agent route planning problem with constraints 3.7 and 3.6
is PSPACE-complete under assumption 3.3.5.

Proof. We will reduce DST to the multi-agent routing problem of definition 3.3.1. Given
a DST graph G = (V,E) and a set of tokens T , we create a resource rv for every v ∈ V ,
and if {v, w} ∈ E, then we add the pairs (rv, rw) and (rw, rv) to ER. Capacities and
travel times for resources can be set to one. The set of agents A corresponds to the set
of tokens T .

From a solution of the DST puzzle we can obtain a solution to the MARP problem.
A solution to the DST puzzle consists of a sequence of token moves, such that a token
never moves to a vertex that has a non-empty neighbour. Each move made for token ti
corresponds to a plan step for agent Ai. Since we are proving PSPACE-completeness of
plan existence (rather than finding the shortest-time plan), we can construct a sequential
multi-agent plan, in the sense that there is always only one agent performing a plan step.
Hence, the plan step corresponding to token move n+1 in the DST puzzle can start after
the plan step corresponding to move n (since travel times are 1, the agent should also be
ready to move at that time).

From a solution of the routing problem, we can obtain a solution to the DST puzzle by
transforming the parallel multi-agent solution to a sequential solution using algorithm 2.
Constraint 3.6 ensures that there is no point in time t when two agents occupy adjacent
resources. It is not hard to see that this holds if no resource transitions occur at t. To
see that it also holds if there are resource transitions at t, consider figure 3.8. Figure 3.8
depicts resource transitions that are not allowed by constraint 3.6: given the occupation
time τ1,2 = [t, tx) of r2 by A1 and the occupation time τ2,1 = [tw, t) of r3 by A2, we
have τ+

1,2 ∩ τ+
2,1 = t, which is not allowed, because r2 is adjacent to r3. Hence, under

constraint 3.6, agent A1 is only allowed to enter r2 until after A2 has left r3.

9In personal communication with the author, he admitted that he could no longer recall which
adjustments were required for the proof.
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A1 A2

r1 r2 r3 r4

A1 : τ1,1 = [tv, t) A2 : τ2,1 = [tw, t)

(a) Situation just before transition time t.

r1 r2 r3 r4

A1 A2

A2 : τ2,2 = [t, ty)A1 : τ1,2 = [t, tx)

(b) Situation just after transition time t.

Figure 3.8: Two simultaneous resource transitions that are not allowed under con-
straint 3.6: A2 should leave r3 before A1 is allowed to enter r2.

To prove that MARP is in PSPACE, we can use the same line of reasoning that was
used to demonstrate PSPACE membership of the Sliding Tokens puzzle in [34]. The
state of the system, specifying the locations of all of the agents, can be encoded in a
linear number of bits. Also, we can compute all possible agent moves from a given state
in polynomial time. We can therefore nondeterministically traverse the search space, at
each step choosing a move to make, maintaining the current state but not any of the
previously visited states. Due to Savitch’s Theorem [81], this NPSPACE algorithm can
be converted into a PSPACE algorithm.

3.4 The prioritized approach to MARP

Given the complexity results presented in this chapter, it is it unlikely that we can find
optimal multi-agent route plans for problem instances of interesting sizes. In fact, in
the previous chapter we discussed some centralized approaches from the literature, and
saw that Desaulniers et al. [16] were able to solve instances with up to 4 AGVs. Other
discouraging results were reported by Trug et al. [91] who investigated the application of
general purpose planning systems to the airport domain from the planning competition,
and found that many planners failed to find a plan for simple airports with less than 10
aircraft.

In the next chapter, we therefore present a prioritized approach to multi-agent route
planning, in which agents plan in sequence, and the agent that is nth to plan must respect
the plans of the first n−1 agents. From a theoretical point of view, the prioritized approach
has two disadvantages compared to the centralized approach. First, if we consider multi-
agent routing with a model configuration that includes constraint 3.7, which states that an
agent must occupy a resource at all times, then the prioritized approach to route planning
is not complete. If two agents have opposite start destination locations (e.g., there is an
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agent A1 with start-destination pair (r, r′) and an agent A2 with start-destination pair
(r′, r)), then it is not possible for one agent to complete its route plan before the other
has started planning, because it is unknown when the other agent will leave its start
location. If constraint 3.7 does not hold — which means that agents can enter and leave
the infrastructure — then the prioritized approach always finds a plan for each agent.
The second disadvantage is that the cost of the multi-agent plan is not guaranteed to be
a constant multiple of the cost of an optimal plan, as the next example demonstrates.

r1

r2

r4

r5

r3

Figure 3.9: An infrastructure with potential bottleneck resource r3.

Example 3.4.1. Consider the infrastructure of Figure 3.9, and suppose that the set of
agents is divided into two groups A1 and A2. All agents in A1 have their start location
in r1 and have r4 as their destination location, whereas all agents in A2 start in r5 and
have r2 as their destination location. All resources are assumed to have infinite capacity
and are bidirectional, but traffic is only allowed in one direction at the same time. We
finally assume that tt(r3) > tt(r1) + tt(r2) + tt(r4) + tt(r5).

The optimal solution to the multi-agent routing problem is to let one group of agents
plan before the other. In case the group A1 may plan first, then the last agent of A1 will
arrive at resource r4 at time

t1 = tt(r1) + tt(r3)

At time t1, agents from A2 will be able to enter r3, and they will arrive at resource r2 at
time

t2 = t1 + tt(r3)

If planning alternates between groups, then every agent has to wait for the previous agent
to clear resource r3. Consequently, the final agent will arrive at its destination at time

t3 > |A| · tt(r3)

Since tt(r3) is the most significant contribution to the travel times, the alternating
solution is almost |A|

2 times as bad as the optimal solution.

With regard to plan quality, the prioritized approach does allow us to find the optimal
route plan for a single agent, given a set of plans from previous agents. In addition, the
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prioritized approach is much faster, and in the next chapter we will present a single-
agent route planning algorithm with a worst-case complexity that improves over the
existing single-agent algorithm from Kim and Tanchoco [41]. Finally, we should note that
the existence of the above O(|A|) example does not imply that the prioritized approach
cannot do well in practice. As we shall see in our experiments (chapter 6), there are many
types of infrastructures where the cost of the global plan is in fact quite low.



Chapter 4

Sequential Route Planning

In the previous chapter we saw that the multi-agent route planning problem is NP-
hard, which means that finding optimal multi-agent route plans for realistically-sized
instances will probably require too much computation time. In this chapter we will
demonstrate that finding an optimal conflict-free route plan for a single agent can be
done in polynomial time. The idea is that the plans of previous agents are assumed
immutable: they have placed reservations (time slots) on resources corresponding to their
passage over the infrastructure. Our approach is therefore a sequential one: agent n (i.e.,
the nth agent to make a plan) must plan ‘around’ the plans of agents 1, . . . , n−1, but it is
not concerned with the movements of agent n+1. Given the plans of agents 1, . . . , n− 1,
agent n can determine for each resource the time windows in which the resource can be
entered without introducing a conflict with any other agent. We can construct a graph
from the set of all free time windows on all resources, and an agent can use this graph to
find a shortest-time, conflict-free route plan.

Previous research on route planning with free time windows (e.g. [41, 33]) focussed
on finding the shortest route between a start location and a destination location. As an
extension of our main algorithm (which also takes a single start location and a single
destination location), we also present an algorithm that finds the shortest route along
a (fixed) sequence of locations. The straightforward approach to the multi-stage route
planning problem is to make route plans between successive locations, and to glue these
plans together. However, as a result of the reservations in the system, this approach does
not always yield a solution.

We will start this chapter by formalizing the notion of a free time window, in sec-
tion 4.1. In chapter 3 we identified a number of constraints that can be imposed on the
plans of the agents, for example if we wish to prevent overtaking. In section 4.1, we will
show how each of these additional constraints can be encoded into free time windows.
The idea of our approach is thus that, if agents only make use of free time windows, then
all conflicts with other agents can be avoided. In section 4.2, we will discuss single-agent
route planning when there is only a single destination resource. We will present a new
single-agent algorithm that finds a shortest-time route using the graph of free time win-
dows. In section 4.3, we will present a single-agent algorithm for the multi-stage route
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planning problem. The algorithm is very similar to the single-destination algorithm, but
it operates on a free time window graph that has an additional layer for each destination
location.

4.1 Reservations and free time windows

Given a set of agent plans, the resource load of a resource tells us exactly when a resource
is free to be used by other agents. During a time interval when the resource load is at
least one less than the capacity, another agent may enter the resource. Figure 4.1 depicts
the resource load for some resource r in the interval [0, 10). The capacity of r is 3, and
we see that during the intervals [4, 6) and [7, 8) this capacity is fully utilized. During the
intervals τ = [0, 4), τ ′ = [6, 7), and τ ′′ = [8, 10) there is room for (at least) one more
agent. However, if we assume that the minimum travel time of r is 2, then the interval
τ ′ = [6, 7) is too short to be of use to any agent. Therefore, the only free time windows
are τ and τ ′′.

1 2 3 4 5 6 7 8 90 10

λ(r, t)

cap(r)

t→

Figure 4.1: Resource load for resource r with capacity 3.

Definition 4.1.1 (Free time window). Given a resource-load function λ, a free time
window on resource r is a maximal interval f = [t1, t2) such that:

1. ∀t ∈ f : λ(r, t) < cap(r),

2. (t2 − t1) ≥ tt(r).

The above definition states that for an interval to be a free time window, there should
not only be sufficient capacity at any moment during that interval (condition 1), but
it should also be long enough for an agent to traverse the resource (condition 2). The
set of all free time windows F = (F1, . . . , F|R|) is partitioned into |R| sets: one set of
free time windows Fi for every resource ri ∈ R. Note that the set of free time windows
Fi on resource ri is a vector (fi,1, . . . , fi,m) of disjoint intervals such that for all j ∈
{1, . . . ,m− 1}, fi,j precedes fi,j+1.
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Within a free time window, an agent must enter a resource, traverse it, and exit the
resource. Because of the (non-zero) minimum travel time of a resource, an agent cannot
enter a resource right at the end of a free time window, and it cannot exit the window
at the start of one. We therefore define for every free time window f an entry window
τentry(f) and an exit window τexit(f). The sizes of the entry and exit windows of a free
time window f = [t1, t2) on resource r are constrained by the minimum travel time of the
resource:

τentry(f) = [t1, t2 − tt(r)) (4.1)
τexit(f) = [t1 + tt(r), t2) (4.2)

An agent that wants to go from resource r to resource r′ should find a free time window
for both of these resources. By definition 3.1.1 of an agent plan, the exit time out of r
should be equal to the entry time into r′. Hence, for a free time window f ′ on r′ to be
reachable from free time window f on r, the entry window of f ′ should overlap with the
exit window of f .

Definition 4.1.2 (Free time window graph). The free time window graph is a directed
graph GF = (F,EF ), where the vertices are the set of free time windows, F =

⋃|R|
i=1 Fi,

and EF is the set of edges specifying the reachability between free time windows. Given a
free time window f on resource r, and a free time window f ′ on resource r′, it holds that
(f, f ′) ∈ EF if:

1. (r, r′) ∈ ER,

2. τexit(f) ∩ τentry(f ′) 6= ∅.

The free time window graph specifies exactly how an agent’s possible movements are
restricted by a set of other-agent plans. The free time windows represent the times at
which resources may be visited by an agent, while the edges of the free time window
graph specify the reachability between free time windows. In section 4.2, we will show
how an agent can plan its optimal route by performing a search through the free time
window graph.

In definition 4.1.1, we defined free time windows on the basis of the resource load: an
agent may enter a resource if there is enough capacity left. In chapter 3, however, we saw
that there can be other constraints that a set of agent plans must satisfy. We will now
discuss how and if these constraints can be ‘encoded’ into the definition of a free time
window.

4.1.1 Free time window and model configuration

Recall from chapter 3 that the model configuration consists of the set of constraints that
a set of agent plans must satisfy (in addition to the resource capacity constraint). In this
section, we discuss how the definition of a free time window should be extended (or not)
for each of the constraints discussed in section 3.2.
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Simultaneous resource exchanges

In chapter 3 we discussed the problem of agents exchanging resources at exactly the same
point in time. To prevent simultaneous resource exchanges, we formulated a constraint
to the following effect: constraint 3.3 states that if there is a cycle of agents exchanging
resources, then at least one agent in the cycle must move to a resource where there is
capacity left over. To forbid simultaneous exchanges in which all agents move to full
resources, we must make a small change to the definition of the reachability between free
time windows.

r1

A1

r2

[0, 5) [5, 10)

Figure 4.2: Agent A1 with plan π = 〈r1, [0, 5)〉, 〈r2, [5, 10)〉

Using figure 4.2, we will show that if an agent makes a simultaneous exchange, then
it makes use of two free time windows that meet (i.e., the end of one free time window is
equal to the start of the next free time window). In figure 4.2, there is an agent A1 that
plans to travel from r1 to r2. A simultaneous exchange would occur if (i) there is another
agent A2 that wants to go from r2 to r1 (ii) agent A1 has to leave r1 before A2 can enter
it, and A2 has to leave r2 before A1 can enter it (i.e., in the absence of other agents, both
r1 and r2 should have unit capacity).

If we assume that A1 is the first to make a plan, then the free time windows for agent
A2 are: on r1, there will be one free time window f1,1 = [5,∞), and on r2 there are two
free time windows f2,1 = [0, 5) and f2,2 = [10,∞). Agent A2’s simultaneous-exchange
plan is given by: π′ = 〈r2, [0, 5)〉, 〈r1, [5, 10)〉, which makes use of the free time windows
f2,1 and f1,1. Clearly, the end of f2,1 is equal to the start of f1,1, and window f2,1 meets
window f1,1. To ensure that no simultaneous resource exchanges can occur that violate
constraint 3.3, we only need to require that for a free time window f ′ to be reachable
from a free time window f , the intersection between τexit(f) and τentry(f ′) is nonzero.

Definition 4.1.3 (Serializable free time window graph). The serializable free time win-
dow graph is a directed graph GF = (F,EF ), where the vertices are the set of free time
windows, F =

⋃|R|
i=1 Fi, and EF is the set of edges specifying the reachability between free

time windows. Given a free time window f on resource r, and a free time window f ′ on
resource r′, it holds that (f, f ′) ∈ EF if:

1. (r, r′) ∈ ER,

2. |τexit(f) ∩ τentry(f ′)| > 0.

Simultaneous bidirectional lane traversal

We can prevent bidirectional lane traversal by maintaining two sets of free time windows
for every (bidirectional) resource: one set for the ‘upstream’ direction and one for the
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‘downstream’ direction. We can infer the direction of an agent plan step from the pre-
ceding plan step. Suppose we have a lane resource r that is connected to intersections
v and w. If an agent plan contains the subsequence (v, r), then it will exit r at w1 (see
figure 4.3), and we can arbitrarily designate this the upstream direction; an agent plan
with the subsequence (w, r) travels in the downstream direction.

Ai Aj

rv w

Figure 4.3: Agent A1 will enter lane resource r from intersection v, and must therefore
exit r via intersection w.

We introduce the augmented resource load function λa : R×R×T , such that λ(r′, r, t)
specifies the number of agents that are on resource r at time t, and have come directly
from resource r′.

Definition 4.1.4 (Directed free time window). Given an augmented resource-load func-
tion λa, and two intersection resources v and w connected by lane resource r, a free time
window on resource r is the largest interval f = [t1, t2) such that:

1. ∀t ∈ f : λa(v, r, t) < cap(r),

2. ∀t ∈ f : λa(w, r, t) = 0,

3. (t2 − t1) ≥ tt(r).

In definition 4.1.4, the free time window f is implicitly defined for the direction from
v to r. To obtain the free time window in the other direction, we can exchange v and w.

Preventing overtaking

If we consider routing under constraint 3.5, then agents are not allowed to overtake each
other. Hence, if an agent enters a resource before another, it should also exit the resource
first. For this constraint, we need to redefine a free time window in terms of the plan
steps of the leading and trailing agents. Let τlead(r, t) be the plan step of the first agent to
enter resource r before time t, and let τtrail(r, t) be the plan step of the first agent to enter
resource r after time t. We will also assume that there is a minimum separation time
δ between two successive agents. Hence, if an agent traverses a resource in the interval
[t1, t2), then no agent may enter the resource in (t1− δ, t1 + δ), and no agent may exit the
resource during (t2−δ, t2 +δ). The following revised free time window definition prevents
agents from overtaking each other.

1We ignore the possibility of spinturns here, but we can easily extend the results of this section to
take them into account.
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Definition 4.1.5 (Free time window no overtaking). Given a resource-load function λ,
an intended entry time t∗, a leading-agent interval τlead(r, t∗) = [t1, t2), a trailing-agent
interval τtrail(r, t∗) = [t3, t4), and a minimum separation time δ, a free time window on
resource r that does not allow overtaking is an interval f = [t, t′) such that:

1. t = t1 + δ,

2. t′ = t4 − δ,

3. ∀ti ∈ [t, t′) : λ(r, ti) < cap(r),

4. (t′ − t) ≥ tt(r).

The entry and exit windows of f are specified by

τentry(f) = [t, min{t′ − tt(r), t3 − δ}) (4.3)
τexit(f) = [max{t + tt(r), t2 + δ}, t′) (4.4)

In case there is no leading vehicle, we can set τlead(r, t) = (−δ,−δ), and if there is no
trailing vehicle, we can set τtrail(r, t) = (∞,∞).

Free time windows with separation

Constraint 3.6 states that if an agent makes use of a resource, then all adjacent resources
must be empty. This implies that if a resource is free to be used during a certain interval
τ , then the resource load in all adjacent resources must be zero during τ . To ensure that
this constraint holds, we can use the following revised free time window definition.

Definition 4.1.6 (Free time window with separation). Given a resource-load function λ,
a free time window with separation on resource r is the largest interval f = [t1, t2) such
that:

1. ∀t ∈ f : λ(r, t) = 0,

2. ∀(r, r′) ∈ ER,∀t ∈ f : λ(r′, t) = 0,

3. ∀(r′, r) ∈ ER,∀t ∈ f : λ(r′, t) = 0,

4. (t2 − t1) ≥ tt(r).

Definition 4.1.6 not only specifies that all connected resources must be empty, but
the resource itself must also be empty for there to be a free time window. Recall from
section 3.2.2 that if an agent’s neighbouring resources must all be empty, then we assume
that each resource can hold at most one agent.
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Agent entry and exit into infrastructure

The first constraint from section 3.2 (constraint 3.7) states that an agent must occupy
a resource at all times. This is not a constraint between agents, and it does not affect
the definition of a free time window. It does, however, have implications for a sequential
approach that makes use of free time windows. Suppose that we have two agents, such
that the start location of one is the destination location of the other (see figure 4.4),
and these locations have capacity one. One implementation of constraint 3.7 in route
planning with free time windows is for each agent to reserve its start location for the
interval [0,∞): this way, an agent can be assured that no other agent will require it to
leave its start location until it has made its plan. Obviously, this does not allow us to find
a solution for the agents in figure 4.4, even though a solution is not difficult to formulate.
For example, agent A1 could first move to r3, and agent A2 could first move to r4. Then,
their respective destination resources are both empty, and the agents can continue to their
destinations, without encountering each other.

A1 A2

r1 r2

A1 : (r1, r2) A2 : (r2, r1)

r4

r3

Figure 4.4: Two agents with opposite start and destination locations. Under con-
straint 3.7, the sequential method does not find a solution.

Acyclic plans and spinturn

The final two constraints of the model configuration, which forbid cyclic plans and spin-
turns respectively, cannot be encoded in free time windows or in the reachability between
free time windows. The reason is that these are constraints on agent plans, and not con-
straints between agent plans. With regard to the latter type of constraints, these could
easily be translated to time intervals when an agent is allowed to visit a resource, and
when it is not allowed to do so. The single-agent constraints, however, must be checked
during the planning process.
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4.2 Route planning from A to B

In this section we will present an algorithm for the (single-agent) route planning problem
in which an agent has a start location and a single destination location. If an agent finds
itself alone on an infrastructure, then it can find the shortest path in space and time using
a classical graph search algorithm like Dijkstra’s algorithm [17] or A* [32]. The algorithm
we will present later in this section can be seen as an adaptation of A*, so we will briefly
discuss this algorithm here.

The A* algorithm maintains a list of partial routes from the start location to the
destination location, and in each iteration it expands the most promising route to all
neighbouring locations. A partial route p is the most promising if the sum of its cost c(p)
plus the estimated cost of reaching the destination, h(p), is the lowest among all partial
routes. The function y(p) = c(p) + h(p) thus takes into account both actual cost and
estimated cost2. In route planning, the heuristic function h can be e.g. the straight-line
distance from the current location to the destination location.

s d

h(u) = 6
u

v

w

Figure 4.5: An infrastructure where all intersections (circles) have travel time 0, and all
lanes have minimum travel time 4. The dashed line represents the straight-line distance
between u and d.

Consider figure 4.5 for an example of how A* works. To keep the example simple, we
allow travel times of 0 for the intersections, and lanes have minimum travel times of 4.
Starting from the start location s, we have the initial plan π1 = 〈s, 0〉. A* expands this
plan to both adjacent intersections u and v, resulting in plans π2 = (〈s, 0〉, 〈u, 4〉) and
π3 = (〈s, 0〉, 〈v, 4〉). In the next iteration, π3 will be expanded: both plans have cost of
4, but h(π3) = 4, whereas h(π2) = 6. After the expansion of π3, there are three partial
plans:

π2 = (〈s, 0〉, 〈u, 4〉); y(π2) = 4 + 6
π4 = (〈s, 0〉, 〈v, 4〉, 〈w, 8〉); y(π4) = 8 + 4
π5 = (〈s, 0〉, 〈v, 4〉, 〈d, 8〉); y(π5) = 8 + 0

The plan π5 has the lowest y-value, so it will be considered for expansion in the next
iteration. However, because π5 is already a route to the destination d, the algorithm
will return π5. The A* algorithm will always return the optimal solution if the heuristic
function h is consistent [78]. Russell and Norvig define a consistent heuristic as follows:

2The traditional A* notation is f(p) = g(p) + h(p), but we will keep to our own notation.
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A heuristic h(n) is consistent if, for every node n and every successor n′ of
n generated by action a, the estimated cost of reaching the goal from n is no
greater than the step cost of getting to n′ plus the estimated cost of reaching
the goal from n′:

h(n) ≤ c(n, a, n′) + h(n′) (4.5)

Russell and Norvig also show that if a heuristic is consistent3, then A* evaluates nodes
with non-decreasing y-values. They give the following short proof.

Suppose that n′ is a successor of n; then c(n′) = c(n)+ c(n, a, n′) for some
a, and we have

y(n′) = c(n′) + h(n′) = c(n) + c(n, a, n′) + h(n′) ≥ c(n) + h(n) = y(n).

An important feature of A* is that, when a consistent heuristic is used, a node is
expanded at most once. The moment a partial plan to node n is expanded, we have the
guarantee that we have found a cheapest plan from a start node s to n. Since a node
is expanded to all adjacent nodes, node n need never be expanded again in the search
process. This implies the following:

If n is on a shortest path from s to d, then a shortest path from s to n can be
expanded to a shortest path from s to d.

In case an agent is not alone on the infrastructure, and there are route plans from
other agents that may not be changed, then an agent may need to consider more than
just the shortest path to an intermediate location. The next example will show, for the
same infrastructure used in figure 4.5, that the shortest route from s to v can not be
expanded to the shortest route from s to d. In figure 4.6, we assume that all intersections
have a minimum travel time of 2, all lanes have a minimum travel time of 4, and all
resources have a capacity of 1. Agent A1 has made the following plan to go from d to v:
π1 = 〈d, [3, 5)〉, 〈vd, [5, 9)〉, 〈v, [9, 11)〉 whereas agent A2 wants to go from s to d.

The shortest plan from s to v (v is the intermediate location that all s − d paths
must pass through) is π2 = 〈s, [0, 2)〉, 〈sv, [2, 6)〉, 〈v, [6, 8)〉. Note that this plan cannot be
expanded along the lane vd that leads directly to d, since vd will be occupied by agent
A1 in the interval [5, 9). Also, A2 cannot wait in intersection v (assuming simultaneous
exchanges are not allowed), because A1 will enter this resource at time 9. Hence, if agent
A2 enters intersection v at time 6 (as in plan π2), then it must exit v by time 9. This
means that π2 can only be expanded in the direction of w (or back to s). Expanding π2

leads to the plan π3:

π3 = 〈s, [0, 2)〉, 〈sv, [2, 6)〉, 〈v, [6, 8)〉, 〈vw, [8, 12)〉, 〈w, [12, 14)〉, 〈wd, [14, 18)〉, 〈d, [18, 20)〉

An optimal plan for A2 is the following:

π4 = 〈s, [0, 2)〉, 〈sv, [2, 11)〉, 〈v, [11, 13)〉, 〈vd, [13, 17)〉, 〈d, [17, 19)〉
3A consistent heuristic is also admissible, which is to say that it never overestimates the cost of

reaching the goal. An admissible heuristic is not necessarily consistent, although according to Russell
and Norvig [78] it is uncommon to find an admissible heuristic that is not consistent.
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s d

[9, 11) [5, 9) [3, 5)
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π2 + π3
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w

Figure 4.6: An infrastructure where all intersections (circles) have minimum travel time 2,
and all lanes have minimum travel time 4. Agent A1 travels from d to v (and subsequently
leaves the infrastructure); agent A2 wants to go from s to d.

The plan π4 specifies that agent A2 should wait in lane sv (or at least traverse it
slowly in the interval [2, 11)) for A1 to leave intersection v.

The example of figure 4.6 showed that in multi-agent routing, an agent may need
to consider more than one route to a single resource: we saw that the shortest plan
π2 to v arrived at v at time 6, while plan π4 arrived at v at time 11. The ques-
tion is whether other plans to v should also be considered, for instance the plan
π5 = 〈s, [0, 2)〉, 〈su, [2, 6)〉, 〈u, [6, 8)〉, 〈uv, [8, 12)〉, 〈v, [12, 14)〉 that arrives at v at time 12.
In this example, the answer is no. Resource v has two free time windows f1 = [0, 9) and
f2 = [11,∞). Plan π4 makes use of f2 from the earliest possible time, 11. Any other
plan to enter v later than 11 can never lead to a better plan than (the expansion of) π4.
Suppose that plan π′ reaches v at some time t′ > 11. Any plan π′′ that results from
expanding π′ can be simulated using π4: we simply wait in intersection v from 11 to t′,
and then follow plan π′′. Hence, we need to expand a free time window at most once (or
rather, a plan that makes use of a free time window). In other words, if free time window
f is on a shortest route from start location s to destination location d, then a shortest
route from s to f can be expanded to a shortest route from s to d.

4.2.1 Algorithm specification

In this section, we present an algorithm that performs a search through the free time
window graph using an adaptation of the A* algorithm. What results from this search
is an agent plan that effectively moves from one free time window on one resource, to
another free time window on the next resource; the free time windows associated with
successive plan steps must be connected in the free time window reachability relation
EF . In each iteration of the algorithm, the most promising partial route — ending on
some resource r with some associated free time window f — is expanded to all free time
windows reachable from f .

The existence of a pair (f, f ′) ∈ EF does not guarantee that a plan π, ending in free
time window f at some time t ∈ τexit(f), can be expanded to free time window f ′. The
reachability of f ′ from f implies that there exists a time point t′ ∈ τexit(f) ∩ τentry(f ′),
not that all time points in τexit(f) are also in τentry(f ′). Hence, when expanding a plan
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that ends in window f = [t1, t2) at time t to free time window f ′, we must verify that
[t, t2) ∩ τentry(f ′) 6= ∅ (see figure 4.7). We will write ρ(r, t) to denote the set of free time
windows reachable from resource r at earliest exit time t.

Definition 4.2.1 (Free time window reachability). Free time window f ′ is reachable from
free time window f = [ts, te) (on resource r) at time t, denoted f ′ ∈ ρ(r, t), if

1. (f, f ′) ∈ EF ,

2. ts ≤ t < te,

3. [t, te) ∩ τentry(f ′) 6= ∅.

time →

t

τexit

τentry

f ′

f r

r′

Figure 4.7: Free time window f ′ is reachable from window f (i.e., (f, f ′) ∈ EF ), but not
from time point t (i.e., f ′ 6∈ ρ(r, t)).

The most promising partial plan π is the plan with the lowest value of y(π) = c(π) +
h(π), where c(π) is the cost of the partial plan, and h(π) is an estimate of the cost of
completing π to the destination. We define the cost of a partial plan as the earliest possible
exit time. For example, if a partial plan π enters a resource r at time t, then the earliest
possible exit time out of r is given by c(π) = max(start(τexit), t + tt(r)). A choice of a
consistent heuristic function might be the shortest path (without taking into account the
presence of other agents) from the current resource to the destination resource. Hence,
the estimated cost of a partial plan π (destination resource r′) might be:

y(π) = c(π) + h(π) = max(start(τexit), t + tt(r)) + shortestPath(r, r′)

In the following algorithm, we encode a plan π as a sequence of free time windows,
and for each free time window, an entry time. For example, if a plan π ends in a free
time window f on resource r, then we write y(f) instead of y(π). The free time window
f is subsequently expanded to all reachable free time windows. The actual plan is only
constructed (using backpointers) once the optimal route has been found.

In line 1 of algorithm 3, we check whether there exists a free time window on the start
resource r1 that contains the start time t. If there is such a free time window f , then
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Algorithm 3 Plan Route
Require: start resource r1, destination resource r2, start time t; free time window graph

GF = (F,EF ), open = ∅, closed = ∅
Ensure: shortest-time, conflict-free route plan from (r1, t) to r2.
1: if ∃f [f ∈ F | t ∈ τentry(f) ∧ r1 = resource(f)] then
2: mark(f, open)
3: entryTime(f)← t

4: while open 6= ∅ do
5: f ← argminf ′∈open y(f ′)
6: mark(f, closed)
7: r ← resource(f)
8: if r = r2 then
9: return followBackPointers(f)

10: texit ← c(f)
11: for all f ′ ∈ {ρ(r, texit) \ closed} do
12: tentry ← max(texit, start(f ′))
13: if tentry < entryTime(f ′) then
14: backpointer(f ′)← f
15: entryTime(f ′)← tentry

16: mark(f ′, open)
17: return nil

in line 2 we mark this window as open, and we record the entry time into f as the start
time t. We will refer to the set of all free time windows with status open as the open list,
in accordance with A* terminology4.

In line 5, we select the free time window f on the open list with the lowest value of
y(f). Recall that y(f) = c(f) + h(f), where c(f) = entryTime(f) + tt(r) in which r is
the resource associated with f . In line 6, we mark the window f as closed, which means
that we will never expand this free time window again. If the resource r associated with
f equals the destination resource r2, then we have found the shortest route to r2. We
return the optimal plan in line 9 by following a series of backpointers from the current
free time window f to the start window. If r is not the destination resource, we prepare
to expand the plan. First, in line 10, we determine the earliest possible exit time out of r
as the cost of the partial plan: c(f) = entryTime(f) + tt(r). Then, in line 11, we iterate
over all reachable free time windows that are not closed.

When expanding free time window f to free time window f ′, we first determine the
entry time into f ′ as the maximum of the earliest exit time out of resource r, and the
earliest entry time into f ′. We only expand the plan from f if there has been no previous
expansion to free time window f ′ with an earlier entry time (initially, we assume that the
entry times into free time windows are set to infinity). In line 14, we set the backpointer
of the new window f ′ to the window f from which it was expanded. Then, we record
the entry time into f ′ as tentry, and we mark f ′ as open. Finally, it is possible that no

4Even though open is usually implemented as a priority queue rather than a list.



4.2. Route planning from A to B 65

conflict-free plan exists, in which case we return nil in line 17.

Proposition 4.2.2. If the heuristic function h is consistent, algorithm 3 always returns
an optimal solution.

Proof. We will prove that algorithm 3 always returns an optimal route plan (if one exists)
by showing that prior to termination, there is always a free time window on the open list
that is on an optimal route. Because any sub-optimal (partial or full) route plan has a
higher y-value than a (partial or full) optimal plan, the optimal free time window on open
will be expanded before a sub-optimal solution can be returned. Expansion of an optimal
partial plan will result in another optimal (partial or full) plan.

1. Introducing notation
Let π∗ be an optimal route from r to r′, starting from time t. We can char-
acterize π∗ as a sequence of free time windows with optimal entry times: π∗ =
(〈f1, t

∗
1〉, . . . , 〈fm, t∗m〉), where f1 is a free time window on the start resource r, t∗1

equals the start time t, and fm is a free time window on resource r′. We will show
that, prior to termination of the algorithm, there exists an open window fk ∈ π∗

with optimal entry time t∗k.5

2. There exist optimal closed windows
Let ∆ be the set of all closed windows from the optimal plan π∗, such that for all
fi ∈ ∆, ti = entryTime(fi) is optimal. Note that ∆ is non-empty, since after the
first iteration it contains the start window f1 with entry time t.

3. Optimal closed window fk−1 has been expanded to open window fk on optimal route
π∗

Let fk−1 be the window from ∆ with the highest index. Since fk−1 is closed, it
must have been expanded to fk, unless the window fk were already closed. If the
heuristic function h is consistent, then prior expansion of fk is impossible, which
we will now demonstrate. If fk were closed, it would, by definition of ∆, have a
sub-optimal entry time t′ > t∗k. We have:

y(fk−1) = t∗k−1 + tt(rk−1) + h(fk−1)
≤ t∗k + tt(rk) + h(fk) (consistency)
< t′ + tt(rk) + h(fk)

Hence, window fk−1 would be expanded before fk, so fk cannot be closed.

4. Window fk on optimal route has been entered with optimal entry time t∗k
We will now show that the expansion of fk−1 to fk has resulted in the optimal entry
time t∗k into fk. The entry time of a free time window is determined in line 12 of
algorithm 3; there are two cases to consider:

case a: tentry equals the start of the free time window fk. Since a window cannot
be entered earlier than its start time, tentry equals the optimal entry time t∗k.

5Showing the existence of an open window on the optimal path is similar to lemma 1 in Hart et
al. [32].
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case b: tentry = t∗k−1 + tt(rk−1). Since t∗k−1 is optimal, so is tentry.

Having shown that there exists an open window with the optimal entry time, it is
easy to show that algorithm 3 can never return a sub-optimal solution. First, note that a
consistent heuristic is also admissible, i.e., it never overestimates the cost of reaching the
destination. This implies that at the destination resource, we have h = 0. A sub-optimal
plan to the destination therefore has a larger y-value than any (partial or full) optimal
plan; an optimal plan will thus be retrieved from the open list first.

Finally, note that algorithm 3 always terminates: there is only a finite number of
free time windows, and in each iteration, one free time window is closed (that can never
be opened again). Hence, if a solution exists, algorithm 3 always returns an optimal
solution.

4.2.2 Algorithm complexity

Algorithm 3 runs in polynomial time in the size of the free time window graph, although
the exact complexity depends on the type of heuristic used, as well as the type of data
structure used. Earlier we mentioned that using a consistent heuristic has the advantage
of having to expand each free time window at most once.

Proposition 4.2.3. Algorithm 3 runs in O((|EF | + |F |) log(|F |)) time, if the heuristic
h is consistent.

Proof. A free time window f ∈ F can be retrieved from the open list at most once, so
the while loop runs for at most |F | iterations. Lines 5 and 6 constitute a removal of
the cheapest element from the open list. If we assume that this list is a priority queue,
implemented by e.g. a binary heap, then this operation costs O(log(|F |)) time (see e.g.
Kleinberg and Tardos [44]).

The for loop in line 11 could inspect every connection between two free time windows
exactly once, so lines 12 to 16 can run at most |EF | times. Within the for-loop, line 13
checks whether the free time window f has been visited yet, and if so, if the entry was
earlier. If there already exists a partial plan to f ′ with a later entry time, then the
values for backpointer(f ′) and entryTime(f ′) must be overwritten (in lines 14 and 15
respectively). This constitutes a decrease key operation for the priority queue, which
requires O(log(|F |)) time for a binary heap implementation.

In the proof of proposition 4.2.3, we assumed that the open list was implemented using
a binary heap structure. By using a Fibonacci-heap data structure, we can improve the
complexity of a decrease key operation from O(log(|F |)) to O(1) amortized time6. Hence,
the complexity of algorithm 3 using a Fibonacci-heap (and a consistent heuristic) equals
O(|F | log(|F |) + |EF |) amortized time.

Another way to improve the complexity of algorithm 3 is to set the heuristic function
to zero, so that y(π) = c(π). Although the heuristic function aims to reduce the running

6Amortized analysis considers the average running time per operation over a worst-case sequence of
operations. In this case, a decrease key operation may require O(|F |) operations, but because it can be
proved that this is required only in one out of O(|F |) times, the amortized running time of this operation
is O(1).
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time of the algorithm, it does require some ‘administrative’ operations. In particular,
in lines 14 and 15, we may need to overwrite the backpointer and entry time of a free
time window that has been reached previously. If there is no heuristic function, on the
other hand, then we can prove that the first visit to a free time window is optimal, so no
overwriting is necessary.

Corollary 4.2.4. Algorithm 3 runs in O(|EF |+ |F | log(|F |)) time, if the heuristic func-
tion h is zero.

Proof. Let f be the free time window that is removed from the open list in line 5. We
will prove that a free time window f ′ is expanded with the earliest possible entry time.
The entry time is determined in line 12, and there are two cases to consider:

case a: The entry time tentry equals the start of the free time window f ′. This is the
earliest possible entry time, because a window cannot be entered earlier than its
start time.

case b: The entry time equals tentry = c(f) = y(f). Since the heuristic function h = 0
is consistent, we know that in all future iterations of the while loop, a free time
window f ′′ that is retrieved from open has a value c(f ′′) = y(f ′′) ≥ y(f). Hence,
the window f ′ that we are about to expand cannot be entered earlier than tentry.

If the first visit to a free time window is the optimal one, then each free time window
can be inserted into open at most once. Hence, lines 14 to 16 are executed at most |F |
times, and insertion of a new element into the open list requires O(log(|F |)) time for a
binary heap implementation. Lines 14 to 16 therefore contribute O(|F | log(|F |)) to the
complexity of algorithm 3. Lines 11 to 13 may still require inspection of every element in
EF , so these lines contribute O(|EF |). Algorithm 3 therefore runs in O(|F | log(|F |)+|EF |)
time if the heuristic function is always zero.

In the remainder of this section, we will show that there are bounds on |EF |, the size of
the reachability relation. Also, we will show that under the ‘acyclic planning constraint’,
we can relate the complexity of algorithm 3 to the sets A, R, and ER (agents, resources,
and connections between resources).

The relation EF can maximally consist of |F × F | tuples. However, because each
f ∈ F represents a time interval, and two free time windows can only be connected if
their intervals overlap, the number of elements in EF is much smaller than |F × F |.
Lemma 4.2.5 (Interval reachability). Given free time windows fi and fi+1 on resource
r and free time windows fj and fj+1 on resource r′, the following equation always holds:

(fi ∩ fj 6= ∅) ∧ (fi+1 ∩ fj 6= ∅)
→ fi ∩ fj+1 = ∅ (4.6)

Proof. Consider the following four free time windows:

fi = [t1, t2)
fi+1 = [t3, t4)

fj = [t5, t6)
fj+1 = [t7, t8)
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Free time windows fi and fi+1 are successive free time windows on resource r, and free
time windows fj and fj+1 are successive windows on resource r′ (see figure 4.8 for an
illustration). We assume that both free time windows on resource r overlap with the first
free time window on resource r′, and we will prove that this implies: fi ∩ fj+1 = ∅ .

It follows from definition 4.1.1 that any two free time windows on the same resource
have an empty intersection. Hence, the end time t2 of fi is smaller than the start time t3
of fi+1. Since fi+1 overlaps with fj , we also have t3 ≤ t6.

Finally, we have t6 < t7, because window fj ends before fj+1 starts. We can now
conclude that the end time t2 of f is smaller than the start time t7 of fj+1. Hence, free
time windows fi and fj+1 are disjoint.

fj+1fj

fi fi+1

t2t1

time →

t5 t6 t7

t4
t8

t3

Figure 4.8: Interval fi has no overlap with interval fj+1

We can use lemma 4.2.5 to prove that there is a limited number of connections between
free time windows on one resource and free time windows on another resource.

Proposition 4.2.6. Given two resources r and r′, and sets of free time windows Fr and
Fr′ , and let r-sum(r, r′) = | ((Fr × Fr′) ∩ EF ) |, then

r-sum(r, r′) ≤ |Fr|+ |Fr′ | − 1 (4.7)

Proof. Let n = |Fr| and m = |Fr′ |. We will prove the proposition with induction on
n + m. For n = 1 and m = 1, the result is trivial. Suppose that the property holds for
k = n + m. Let k = n + m + 1. We distinguish the following cases.

• |Fr| = n + 1. Let fn+1 be the last time window in Fr. Let Or′ ⊆ Fr′ be the
set of all time windows having an overlap with fn+1 and let p = |Or′ |. If p = 0
then, clearly, r-sum(r, r′) ≤ n + m− 1. If p > 0, let f ′ be the first time window in
Or′ . By Lemma 4.2.5, we have that r-sum is the number of tuples obtained from
(Fr−fn+1, (Fr′−Or′)∪{f ′}) plus the number of tuples obtained from ({fn+1}, Or′).
By induction hypothesis, the first number of tuples is at most n + (m− p + 1)− 1
and the second number is at most p. Hence, r-sum(r, r′) ≤ n+(m−p+1)−1+p =
(n + 1) + m− 1.
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• |Fr′ | = m + 1. Analogous to the previous case.

Corollary 4.2.7. The size of the reachability relation EF is bounded by

|EF | = O

(
|ER| · max

i∈{1,...,|R|}
(Fi)

)
Proof. For every (r, r′) ∈ ER, it is possible to create at most 2 ·maxi∈{1,...,|R|}(Fi) tuples
in the reachability relation.

Corollary 4.2.8. Algorithm 3 run in O(|A||R| log(|A||R|) + |ER||A|) time, if con-
straint 3.9 holds.

Proof. Under constraint 3.9, agents are not allowed to make cyclic plans. Hence, each
resource can hold at most |A| − 1 reservations (i.e., the reservations of the other |A| − 1
agents), which can result in at most |A| free time windows per resource. Hence, |F | ≤
|R| · |A|. From corollary 4.2.7, we know that |EF | ≤ 2 · |ER| · |A|.

4.3 Route planning from A to Z

In this section we will present an algorithm for the single-agent, multi-stage route planning
problem in which an agent has a start location and a sequence φ of locations to visit, rather
than a single destination location. This visiting sequence must be visited in a fixed order,
that is, if φ = (r1, . . . , rm), then for any plan π it must hold that φ � resources(π) (the
visiting sequence is a sub-sequence of the resources in the plan).

The multi-stage routing problem can be relevant if an agent has multiple locations
to visit, or if it has multiple transportation tasks. In airport taxi routing, single-stage
routing often suffices; under normal weather conditions, an aircraft can taxi directly from
the gate to the runway. However, wintry conditions sometimes require snow and ice to
be removed from the aircraft, which means that an aircraft has to taxi from the gate to a
de-icing station, and only then to the runway. In manufacturing, an Automated Guided
Vehicle (AGV) may have a sequence of transportation orders to perform, and it must also
make the occasional trip to the battery charging station in between orders. Even if an
AGV has only a single transportation task, it cannot simply stop moving after delivering
its final cargo, because it might get in the way of other agents. Hence, multi-stage routing
is also relevant for the idle vehicle positioning problem (cf. [8]).

A related, but more general problem is the Traveling Salesperson Problem (TSP), in
which there is a set (i.e., unordered) of locations that must be visited with minimum total
cost. This generality comes at the cost of NP-completeness (see Garey and Johnson [26]),
whereas the multi-stage routing problem can be solved in polynomial time. Also the
generality afforded by the TSP is not required in all application domains; for instance, in
the airport de-icing scenario, an agent need not consider route plans where the aircraft
takes off prior to de-icing.

In the Multiple Destination Routing problem (MDR), there is a graph with one (or
more) source locations and a set of destination locations, and the objective is to find a
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minimum tree that connects the source(s) to all destinations (possibly subject to some
additional constraints). The MDR problem is common in telecommunications networks
(see e.g. [50]), where communication services must be delivered to multiple sources. An
important difference with logistic route planning (and also the TSP problem), is that
there need not be one particular route that all network packets follow. Instead, the
source should be connected to the destinations using the minimum-cost sub-network.

4.3.1 Naive multi-stage algorithm

In classical shortest path planning research, multi-stage planning has never been a research
topic, because there exists a trivial concatenation algorithm: given a visiting sequence
φ = (n1, . . . , nm), find the shortest path between all nodes ni, ni+1, and concatenate
the resulting paths (in algorithm 4 below, we denote the concatenation operator by ‘ y’).
This results in a shortest path along φ, because of the property that we mentioned before:
if ni+1 is on a shortest path from ni to ni+2, then a shortest path from ni to ni+1 can be
expanded to a shortest path from ni to ni+2.

In section 4.2, we already saw that this property does not hold if other agents have
reserved their route plans on the infrastructure resources. In the following, we discuss
another example that not only demonstrates that the concatenation approach is sub-
optimal, but also that it is incomplete, i.e., it can fail to find a route plan even if one
exists. For the sake of completeness, we first give a specification of the concatenation
approach in our setting.

Algorithm 4 Multi-Stage Concatenation
Require: visiting sequence φ = (r1, . . . , rm), start time t; free time window graph GF =

(F,EF ).
1: π ← 〈r1, [t, t + tt(r1))〉
2: i← 1
3: while π 6= nil ∧ i < m do
4: t′ ← c(π)− tt(ri)
5: π(i,i+1) ← planRoute(ri, ri+1, t

′, GF )
6: if π(i,i+1) = nil then
7: π ← nil
8: else
9: π ← π yπ(i,i+1)

10: i← i + 1
11: return π

In figure 4.9, we see an infrastructure with three agents. We will discuss the planning
problem of agent A1, which has a visiting sequence φ1 = (s, b, t). Agent A2 wants to go
from t to a (i.e., without needing to visit any intermediate resources), and agent A3 wants
to go from c to a. To show that the concatenation approach to multi-stage routing is sub-
optimal, suppose that agent A2 has already made a plan, but agent A3 has not. Hence,
agent A1 only needs to take into account the plan of agent A2, which is the following:
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Figure 4.9: Infrastructure where intersections (circles) have minimum travel time 2, and
lanes (lines) have minimum travel time 4. The visiting sequences of the agents are:
φ1 = (s, b, t), φ2 = (t, a), and φ3 = (c, a).

π2 = 〈t, [2, 4)〉, 〈e5, [4, 8)〉, 〈b, [8, 10)〉, 〈e2, [10, 14)〉, 〈a, [14, 16)〉

Under the concatenation approach, agent A1 first makes a plan from s to b. On
intersection b, there are two free time windows: fb,1 = [0, 8) and fb,2 = [10,∞). Agent
A1’s plan can make use of fb,1:

π1,1 = 〈s, [0, 2)〉, 〈e1, [2, 6)〉, 〈b, [6, 8)〉

To make a plan from b to t (starting from resource b at time 6, in free time window
fb,1), agent A1 has only one option: to take the detour e3, c, e4, t, because the direct route
via e5 and t is blocked by agent A2 (we again assume that no simultaneous exchanges are
allowed, see section 3.2.1):

π1,2 = 〈b, [6, 8)〉, 〈e3, [8, 12)〉, 〈c, [12, 14)〉, 〈e4, [14, 18)〉, 〈t, [18, 20)〉

Gluing together π1,1 and π1,2 results in a slower plan than A1’s optimal plan, which
is to wait until agent A2 has exited intersection b, and then to take the direct route:

π∗ = 〈s, [0, 2)〉, 〈e1, [2, 10)〉, 〈b, [10, 12)〉, 〈e5, [12, 16)〉, 〈t, [16, 18)〉

To show that the concatenation approach is incomplete, suppose that in addition to
agent A2, agent A3 has also made a plan:
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π3 = 〈c, [4, 6)〉, 〈e3, [6, 10)〉, 〈b, [10, 14)〉, 〈e2, [14, 18)〉, 〈a, [18, 20)〉
Again there are two free time windows on resource b: fb,1 = [0, 8), and fb,2 = [14,∞).

Agent A1’s plan to resource b is the same as before: the plan π1 that arrives in b at time
6. However, when agent A1 tries to make a plan from b (at time 6, in fb,1) to t, it can
only go ‘up’ in the direction of resource a, or back towards the start s. If we assume that
an agent is not allowed to turn around in a resource (see section 3.2.3), then the latter
option is not allowed, and the former does not lead to the destination t either. In this
case, A1’s only option is to wait until both agents have cleared intersection b, but the
concatenation approach does not find this option.

4.3.2 Algorithm specification

In the single-stage routing algorithm, a partial plan is completely characterized by the last
free time window and the associated entry time: together they determine how the partial
plan can be expanded. In multi-stage routing, we should also know which resources in
the visiting sequence have been reached yet. For example, if a partial plan ends in the
final resource of the sequence, but not all other stages have been visited yet, then we
should continue expanding the plan. This also means that we may have to visit a free
time window more than once. Consider the infrastructure in figure 4.10, where we have a
visiting sequence φ = (r2, r4, r1). Any valid multi-stage plan will have to pass intersection
r3 twice. In case there are no reservations in the system yet, then each resource has a
single free time window, and we need to allow more than one visit to the free time window
on resource ri.

r4

r5

r2

r1

r3

Figure 4.10: Given visiting sequence φ = (r2, r4, r1), resource r3 must be visited twice.

The solution we present in this section is to make |φ| copies of each free time window.
In this way we can guarantee that, having visited the first k resources in the sequence,
all free time windows with stage number k are visited at most once. We change the
reachability relation EF in such a way that the free time window graph consists of layers:
free time windows with stage number k can only reach (and be reached from) other free
time windows with stage number k. The exception, of course, is for free time windows on
‘stage’ resources: free time window f with stage number k is connected to f ′ with stage
number k + 1 if (f, f ′) ∈ EF , and the resource associated with f ′ is stage k + 1.

Figure 4.11 illustrates this augmented reachability relation, and the layered free time
window graph that results from it. Figure 4.11(a) shows a simple infrastructure in which
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(b) Free time window graph with three layers

Figure 4.11: A visiting sequence of size three results in a free time window graph with
three layers.

three intersections marked 1, 2, and 3 are the three stages. In the free time window graph,
the free time window associated with stage 2 is not connected to any free time window
in layer 1 (hence, we could leave that window out of the graph). Instead, the free time
windows on the neighbouring resources are connected to the free time window with stage
number 2. We define the augmented reachability relation Ea

F as follows, given a visiting
sequence φ = (r1, . . . , tm):

Ea
F = {(〈f, k〉, 〈f ′, k〉) | (f, f ′) ∈ EF ∧ resource(f ′) 6= rk+1}∪
{(〈f, k〉, 〈f ′, k + 1〉) | (f, f ′) ∈ EF ∧ resource(f ′) = rk+1}

As in the single-stage case, the existence of a pair (〈f, k〉, 〈f ′, k′〉) ∈ Ea
F does not

guarantee that a plan π, ending in free time window f , stage k, at some time t ∈ τexit(f),
can be expanded to free time window f ′ with stage k′. Hence, if τexit(f) = [t1, t2), then
we must check whether [t, t2) ∩ τentry(f ′) 6= ∅. We will write ρa(r, texit, k) to denote the
set of free time windows reachable from resource r at earliest exit time t, given the current
stage number k.

Definition 4.3.1 (Augmented free time window reachability). Free time window f ′ at
stage k′ is reachable from free time window f = [ts, te) (on resource r) at time t, stage k,
denoted 〈f ′, k′〉 ∈ ρa(r, t, k), if

1. (〈f, k〉, 〈f ′, k′〉) ∈ Ea
F ,
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2. ts ≤ t < te,

3. [t, te) ∩ τentry(f ′) 6= ∅.

Algorithm 5 Multi-Stage Plan Route
Require: visiting sequence φ = (r1, . . . , rm) such that successive resources are different,

start time t, free time window graph GF = (F,EF ), open = ∅, closed = ∅
Ensure: shortest-time, conflict-free plan π, such that φ � resources(π).
1: if ∃f [f ∈ F |t ∈ τentry(f) ∧ r1 = resource(f)] then
2: mark(〈f, 1〉, open)
3: entryTime(f, 1)← t

4: while open 6= ∅ do
5: 〈f, k〉 ← argmin〈f ′,k′〉∈open y(f ′, k′)
6: mark(〈f, k〉, closed)
7: r ← resource(f)
8: if k = |φ| then
9: return followBackpointers(f, k)

10: texit ← c(f, k)
11: for all 〈f ′, k′〉 ∈ {ρa(r, texit, k) \ closed} do
12: tentry ← max(texit, start(f ′))
13: if tentry < entryTime(f ′, k′) then
14: backpointer(f ′, k′)← 〈f, k〉
15: entryTime(f ′, k′)← tentry

16: mark(〈f ′, k′〉, open)
17: return nil

Lemma 4.3.2. Given a visiting sequence φ = (r1, . . . , rm), an optimal route plan can be
constructed without 〈fk,j , k − 1〉, for all j ∈ {1, . . . , |Fk|}.

Proof. Let 〈f, k − 1〉 be the element retrieved from the open list in some iteration of
algorithm 5. By expanding to 〈f ′, k〉 (where resource(f ′) = rk), this path can no longer
reach any free time window with stage number k− 1 or smaller. This is not a restriction,
however, since any free time window reachable from f ′ in EF is reachable in Ea

F .
It can occur, of course, that we cannot expand from 〈f ′, k〉 to some 〈f ′′, k′′〉 in case

the latter already exists on open or on closed. However, this implies that another route
π′ has reached 〈f ′′, k′′〉 with a better-or-equal entry time, and there is no need to expand
〈f ′′, k′′〉 again.

Corollary 4.3.3. If the heuristic function h is consistent, algorithm 5 always returns the
optimal solution.

Proof. In proposition 4.2.2, we showed the optimality of algorithm 3. Since algorithm 5
is essentially the same algorithm that operates on a different graph structure, we do not
repeat the proof here. In algorithm 3, the nodes of the graph are free time windows
and the edges are formed by the reachability relation EF ; in algorithm 5, the nodes of
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the graph are 〈free time window, stage number〉 tuples, and the edges are given by the
augmented reachability relation Ea

F . Finally, lemma 4.3.2 showed that the optimal route
can be found using Ea

F .

The complexity of algorithm 5 is O(|φ|) times the complexity of algorithm 3: there are
|φ| · |F | 〈free time window, stage number〉 tuples, and the augmented reachability relation
Ea

F is around |φ| times as large as the reachability relation EF .

Proposition 4.3.4. If the heuristic h is consistent, then algorithm 5 runs in O(|φ| ·
log(|F |) · (|EF |+ |F |)) time.

Proof. The analysis of the computational complexity of algorithm 5 follows the same lines
as the analysis for algorithm 3. In the main while loop, every 〈free time window, stage
number〉 tuple can be retrieved from the open list at most once; in the for loop, every
element of the augmented reachability relation might be inspected.

4.4 Concluding remarks

In this chapter, we presented a sequential approach to the multi-agent route planning
problem. Agents plan one by one, and the plans of previous agents must be respected.
Given a set of agent plans, we can derive for each resource the set of free time windows,
representing the time intervals during which a resource can be used without creating a
conflict with any of the previous plans. The edges in the free time window graph specify
when a free time window on one resource can be reached from a free time window on
another.

We have presented an algorithm for the single-destination route planning problem that
performs a search through the free time window graph. Our algorithm finds a route plan
for a single agent that is both optimal and conflict-free. The computational complexity
is O(|A||R| log(|A||R|) + |ER||A|) (where A is the set of agents, R the set of resources,
and ER are the connections between resources), which is a significant improvement over
the O(|A|4|R|2) algorithm presented by Kim and Tanchoco [41].

Finally, we presented the multi-stage route planning problem, in which an agent must
visit a fixed sequence of destination locations. It turns out that we can adapt our single-
destination algorithm if we add layers to the free time window graph, one for each addi-
tional destination location.

In the next chapter, we will look at the execution of route plans, and in particular
how we can apply re-scheduling in case unexpected incidents in the environment disrupt
the original agent plans.
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Chapter 5

Priority-Based Schedule Repair

In the previous chapter we presented an algorithm that allows us to find a conflict-free
set of agent route plans. Absence of conflict is only guaranteed, however, as long as the
agents are able to follow their plans to the letter. A small deviation from the plan, such
as an AGV slowing down to avoid a collision with a human that steps into the lane, can
already cause a deadlock situation. For example, if an agent enters a lane resource late,
then it might encounter another agent head-on, after which neither agent can make any
progress. In this chapter, we will present ways of dealing with unexpected incidents that
threaten to disrupt the execution of the agents’ plans.

An agent plan (definition 3.1.1) prescribes in detail the actions of an agent: for every
point in time, the agent plan specifies which resource the agent should be driving on.
Any inaccuracy in the agent’s driving behaviour may cause it to fall behind or get ahead
of its plan. Alternatively, an agent might suffer some breakdown which means it has to
wait until it has been repaired. Both of these events can be classified as vehicle incidents,
which is the type of incident that we consider in this chapter. In [103], Zutt also considers
infrastructure incidents, such as a road becoming temporarily unavailable, but we do not
consider these in our research. Our focus on vehicle incidents means that we can restrict
ourselves to schedule repair actions, i.e., repair actions that only change the timing of
plans, and still always be able to repair plans. Of course, it is possible that allowing
re-routing would result in more efficient repaired plans.

If we abstract away from the specific time points in a plan, all that remains of a single-
agent plan is a sequence of resources to visit. From a multi-agent plan (i.e., a conflict-free
set of single-agent plans), we can derive for each resource the order in which agents will
use the resource. This order in which agents visit a resource can be interpreted as the
priority of the agents on the resource. In case of vehicle incidents, we can adjust the
timing of the agent plans such that this priority does not change. If we maintain the
original priorities of the agents, then it is not hard to show that each agent can still reach
its destination location, albeit at a later time. If we increase the priority of a non-delayed
agent over a delayed agent, we may achieve a more efficient execution of the set of agent
plans. However, by making changes to the priority of the agents, it is possible (though
not inevitable) that a deadlock situation is created. For example, in figure 5.1, agent A1
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has the higher priority on resources r1, r2, and r3, but it is somewhat delayed. If agent
A2 is granted a higher priority on r3, and A2 immediately enters r3, then the agents will
meet head-on somewhere between resources r1 and r3, and unless A2 drives back, they
will end up in a deadlock situation.

r1 r2 r3

r4

r5

A1

A2

Figure 5.1: Suppose that A1 has a higher priority on r3, but A2 is poised to enter. If
the priority of A2 is increased on resource r3, then sooner or later A1 and A2 will meet
head-on.

To judge whether a priority change is safe, we present a graph structure that contains
a cycle if and only if a priority change leads to a deadlock. In addition, we present an
algorithm that can perform safe priority changes. We will start this chapter by describing
a plan execution model for our primary application domain, the airport taxi routing
scenario.

5.1 Plan execution

In the airport taxi routing problem, the following constraints on agent plans must hold.
First, no simultaneous resource exchanges are allowed between agents (constraint 3.3).
Second, no overtaking is allowed (constraint 3.5), since the large wingspans of aircraft
prevent agents from taxiing side by side. For the same reason, taxiways may be used in
only one direction at the same time (i.e., no simultaneous bidirectional travel is allowed
— constraint 3.4). Fourth, agents are neither allowed to nor capable of turning around
on a taxiway, so spinturns are not allowed (constraint 3.8). Of course, these constraints
should not only hold during the planning phase, but also during the execution of plans.

If agents never incur any delay, then conflict-free execution of conflict-free plans is
trivial. The following example shows what can happen if one agent is delayed, and
another agent proceeds as if nothing has changed.
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Figure 5.2: Two aircraft agents A1 and A2 with hangars r11 and r1 as respective desti-
nations.

Example 5.1.1. Consider a small airport with aircraft agents A1 and A2, in figure 5.2.
A1 starts at hangar (resource) r5 and wants to go to r11, while A2 wants to go from
hangar r9 to hangar r1. The agents make the following plans, to the effect that A1 is
allowed to pass along the taxiway straight (r3, r6, r7) first:

πA1 =〈r5, [0, 2)〉, 〈r4, [2, 4)〉, 〈r3, [4, 5)〉, 〈r6, [5, 10)〉,
〈r7, [10, 11)〉, 〈r10, [11, 13)〉, 〈r11, [13, 15)〉

(5.1)

πA2 =〈r9, [0, 2)〉, 〈r8, [2, 11)〉, 〈r7, [11, 12)〉, 〈r6, [12, 17)〉,
〈r3, [17, 18)〉, 〈r2, [18, 20)〉, 〈r1, [20, 22)〉

(5.2)

Hence, A2 plans to stay on taxiway r8 in the interval [2, 11), just long enough to let
A1 pass.

Suppose that during plan execution, A1 stalls his engine, and he departs with a delay
of 5. Then, he will be on taxiway r6 in the interval [10, 15). Clearly, this interferes with
the plan of A2, who will be on r6 from 12 until 17. Agent A1 and A2 will therefore meet
each other on taxiway r6, and since the agents cannot turn around or drive backwards,
they will end up in a deadlock situation.

What happened in example 5.1.1 was that the priority that the agents had agreed
upon during planning, was violated during plan execution. After the planning phase, we
know for each resource in which order it will be visited by the agents. If we maintain
this order during plan execution, then no deadlocks can occur [58]. In example 5.1.1, A2

should therefore not only wait until time 11 before entering taxiway r7, it should also
wait until A1 has exited this resource.

During plan execution, an agent must therefore verify whether its turn has come to
enter the resource. We write p(r, σi,j) = n if the jth plan step σi,j from agent Ai is the
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nth plan step on resource r (note that resource r is also the jth resource to be visited by
agent Ai, so we sometimes write ri,j). If resource r has been entered n − 1 times (not
necessarily by different agents, in case cyclic plans are allowed), then it is now the turn
of agent Ai with plan step σi,j . In addition, for a lane resource with a capacity greater
than 1, there must be enough capacity left over before the agent may enter.

Definition 5.1.2 (Resource entry permission). An agent Ai is allowed to start its next
plan step σi,j = 〈r, τ〉, such that p(r, σi,j) = n, by entering resource r at time t if:

1. n− 1 plan steps have been started on this resource so far,

2. the number of agents on r at time t is at least one less than cap(r).

The second condition in definition 5.1.2 ensures that the capacity of the resource is
not violated. Even if it’s the agent’s turn to enter, it may be that the resource is still
filled to capacity with other agents. The first of these agents (because overtaking is not
allowed) must exit the resource before the next agent can enter. Definition 5.1.2 also
ensures that no simultaneous exchanges can occur, as long as the original set of plans is
also simultaneous-exchange free.

Proposition 5.1.3. If resource entry only occurs if all conditions from definition 5.1.2
are satisfied, then constraint 3.3 is always satisfied.

Proof. Constraint 3.3 forbids two kinds of simultaneous exchanges: the first kind involves
two resources, and the second kind involves a cycle of three or more resources, where each
resource is full at the time of the exchange.

case I: Consider a possible exchange between two resources r and r′, with agent Ai going
from r to r′ and agent Aj going in the opposite direction. To avoid a simultaneous
exchange at the level of plans, either agent Ai, or Aj must be the first to enter on both
resources. W.l.o.g. suppose that agent Ai has a higher priority on both resources.
Then, a simultaneous exchange is prevented by condition 1 from definition 5.1.2:
it is not the turn of agent Aj to enter resource r until agent Ai has exited both
resources.

case II: If an exchange involves three or more resources, such that all resources are
already full prior to the exchange, then no agent can enter its next resource, since
the second condition of definition 5.1.2 requires that at least one unit of capacity is
left in the resource that is to be entered. Hence, no exchange can occur that would
violate constraint 3.3.

To prevent overtaking during plan execution, we simply assume that an agent can see
the agent driving in front of it on the same lane resource. If the agent in front is driving
slower, then an agent simply matches its speed to that of the slower agent. Also, we
assume that an agent is always able to slow down in case there is a slower agent in front
of it, so no collisions will occur. In fact, we assume that no acceleration or deceleration
is required, and an agent can immediately travel at its desired speed.
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In case an agent has a clear road in front of it, then it can determine its own speed.
We will now discuss two viable methods to determine an agent’s speed. Suppose an agent
enters a resource r at time t, and its plan specifies that the exit time should be t′. The
first method is to choose a constant speed such that the agent arrives at the end of the
resource at exactly time t′. Hence, the agent’s speed will be s = x

t′−t , where x is the
distance of resource r. If s is negative or greater than the maximum speed (which implies
that the entry time t was later than planned), then the agent will travel at its maximum
speed. The second method is that the agent always travels at its maximum speed.

Using the second method, an agent might arrive at the end of resource r before
its planned time t′. However, if the agent constructed its plan using algorithm 3 from
chapter 4, then it cannot enter the next resource earlier than t′ unless other agents are
ahead of schedule. If the other agents also used algorithm 3 to construct their plans,
then they cannot be ahead of schedule, either. The reason why an agent cannot enter a
resource earlier than its planned entry time can be found in the proof of proposition 4.2.2:
algorithm 3 always finds the earliest possible entry time into a resource (into a free time
window, actually). Entering the resource earlier than the planned entry time would either
require the agent to drive faster than its maximum speed, or it would enter the resource
outside a free time window, thereby violating at least one of the conditions of resource
entry (definition 5.1.2). If we change the priorities of agents during planning, however,
then it is possible for an agent to enter a resource earlier than the planned entry time.
In example 5.1.1, if agent A2 has its priority increased for all resources (r5, r4, r3), then
it can enter resource r5 at time 4, which is much earlier than the planned entry time 11.
Therefore, we assume that agents always drive at their maximum speed.

5.1.1 Incidents in plan execution

We will discuss plan repair in the context of agents that are delayed. Delays are primarily
caused by unexpected incidents, which we define to be events that temporarily immobilize
an agent. So, if an agent suffers an incident, then it has to wait for some period of time
before it can start moving again (when we discuss experimental results in chapter 6, we
will discuss specifics of the duration of an incident, and the frequency with which they
occur). Of course, an agent can also incur delay indirectly, because another agent has
suffered an incident. In particular, an agent might be stuck behind an agent suffering an
incident, or, as in example 5.1.1, an agent has to wait at the entry of a resource, because
it is waiting for a delayed agent to exit the resource first.

In [103], Zutt also considers resource incidents, in which the maximum speed of a
resource is temporarily reduced to a value between (and including) zero and the maximum
speed. Like our vehicle incidents, the resource incidents occur without any agents having
prior knowledge of the incident. In case of a resource incident, Zutt shows that it can be
beneficial for agents to plan a new route, i.e., making use of different resources. In our
research, we do not take the option of re-routing into consideration.
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5.2 Planstep-Priority Graph

Changing the priority of the agents during plan execution can often be beneficial. The
question is whether we can change the priority of the agents without introducing dead-
locks. We will extend example 5.1.1 to show that changing the priority at every oppor-
tunity can lead to a deadlock.

Example 5.2.1. Consider again example 5.1.1, where agent A2 reaches resource r7 at
time 4. According to its plan, it should wait until time 11 before it may enter, by which
time agent A1 should have exited r7. However, since agent A1 is delayed, it is decided
(by some agent authorized to change priorities) to increase the priority of A2 on r7.
Thus, A2 enters r7, as all conditions from definition 5.1.2 have been met. Agent A2

subsequently reaches r6 at time 5, and again A2 is given priority over agent A1, so A2

proceeds along r6. At time 10 agent A2 reaches r3, but by that time, it is occupied by
agent A1, which entered it at time 9, 5 time units behind schedule. This time, agent A2

cannot be granted the highest priority on r3, because it is already occupied by A1. In fact,
A2 is already the next agent to enter; the problem is that the agents cannot make progress
without performing a simultaneous exchange, which is impossible under definition 5.1.2
of resource entry permission.

From example 5.2.1, it follows that the priority of agent A2 should only be increased
if A2 gets the highest priority on all of the resources r7, r6, an d r3. This sequence
of resources can be thought of as a corridor of resources that A2 may only enter if no
other agent will enter from the other end. In section 5.3, we will discuss deadlock-free
priority-changing algorithms, but first we will present a graph that predicts exactly which
configuration of agent priorities will lead to a deadlock, and which will not. We will use
this graph in our algorithm to verify that a proposed priority change will keep the system
free of deadlocks.

The Planstep-Priority Graph (PPG) that we will define below consists of the plan
steps of the plans of all agents. There is an edge (σ, σ′) in the PPG if plan step σ must
precede plan step σ′. Under our model of plan execution, there are two reasons why one
plan step must precede another. The first is that an agent Ai must perform its plan step
σi,j before it can start the next step in its plan, σi,j+1. The second reason is that an
agent needs to obtain entry permission into the next resource (definition 5.1.2).

The first condition of definition 5.1.2 is that an agent should wait its turn before it
may enter a resource. To start plan step σi,j on resource r, agent Ai should wait for agent
Ak with plan step σk,l, such that p(r, σi,j) = p(r, σk,l) + 1. Hence, there will be an edge
(σk,l, σi,j) in the Planstep-Priority Graph. To determine the precedence relation between
plan steps resulting from condition two from definition 5.1.2, see figure 5.3 for the two
cases of a lane resource and an intersection resource. In figure 5.3, we see that an agent
Ak cannot start its next plan step σk,l until after agent Ai has made room on agent Ak’s
next resource. Hence, agent Ai must start its next plan step σi,j+1 before agent Ak can
make any progress.

In the following definition, we assume a set Π = {π1, . . . , πm} of plans. To single out
a particular plan step from a particular plan, we mean that σi,j = 〈ri,j , τi,j〉 is the jth

plan step from the ith plan in Π. Resources are referred to in the same manner: resource
ri,j is the resource associated with plan step σi,j .
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σk,l−1 σi,j σi,j+1

AiAk Ai

(a) The intersection must be cleared by Ai before agent Ak can enter.

σk,l−1 σi,j σi,j+1

Ak Ai Ai

(b) Agent Ai must exit the lane to free up capacity for agent Ak.

Figure 5.3: Agent Ai must start its enabling plan step σi,j+1 before agent Ak can start
its plan step σk,l.

Definition 5.2.2 (Enabling plan step). A plan step σi,j+1 is the enabling plan step of
plan step σk,l if:

r = ri,j = rk,l, and (5.3)

p(r, σk,l) = p(r, σi,j) + cap(r)∧
∀m,n [p(r, σi,j) < p(r, σm,n) < p(r, σk,l)→ ri,j−1 = rm,n−1 = rk,l−1]

(5.4)

To understand equation 5.4, it is useful to distinguish between the case of unit capacity
resources (such as intersections), and resources with capacity two or greater. For the case
of unit capacity resources, it simply states that the priority number of step σk,l is one
higher than step σi,j ; the second part of the equation is irrelevant, because there are no
plan steps σm,n on resource r with a priority between σi,j and σk,l (which means that
the the implication is true because the antecedent is false). For the case of lane resources
with a capacity of two or more, the second part of the equation states that all agents that
enter r after σi,j but before σk,l must travel in the same direction as Ai and Ak, that is,
they must all enter resource r from the same intersection: ri,j−1 = rk,l−1 = rm,n−1. Only
then can the situation of figure 5.3(b) arise, where the lane resource is full with agents,
and agent Ak with step σk,l can enter the lane once agent Ai enters its next resource.

Definition 5.2.3 (Planstep-Priority Graph). Given a set of agent plans Π, the Planstep-
Priority Graph (PPG) is a directed graph GS = (S, ES), where the set of vertices is given
by:

S =
|Π|⋃
i=1

|πi|⋃
j=1

σi,j (5.5)

That is, there is a vertex for every plan step in every plan. The set of edges is made up
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of three parts E = E1 ∪ (E2 = E2,1 ∪ E2,2) ∪ E3, where

E1 = {(σi,j , σi,j+1)} (5.6)
E2,1 = {(σi,j , σk,l) | r = ri,j = rk,l ∧ p(r, σk,l) = p(r, σi,j) + 1} (5.7)
E2,2 = {(σi,j+1, σk,l+1) | r = ri,j = rk,l ∧ p(r, σk,l) = p(r, σi,j) + 1} (5.8)
E3 = {(σi,j , σk,l) | σi,j is the enabling plan step of σk,l} (5.9)

Equation 5.6 expresses that there is an edge in E1 for two successive plan steps of the
same plan. Equation 5.7 specifies that if two plan steps σi,j and σk,l from different plans
πi and πk succeed each other on a resource, then there is an edge in E2,1. Because there
is no overtaking, plan step σi,j must also finish before σk,l. Hence, there is an edge in
E2,2 between the respective successor plan steps σi,j+1 and σk,l+1 (equation 5.8). Finally,
equation 5.9 expresses that an enabling plan step must precede the ‘enabled’ plan step.

We will shortly prove that a deadlock will occur if and only if there is a cycle in the
Planstep-Priority Graph. First, we give our definition of a deadlock.

Definition 5.2.4 (Deadlock). A deadlock is a cycle of agents waiting for each other,
where each agent is unable to start its next plan step.

In the literature (see Zöbel [102] for an overview of deadlock literature), four conditions
are mentioned that must hold for a deadlock to occur [12], and it is easily shown that
these conditions can also hold for agents performing logistical tasks:

1. Mutual exclusion condition: Resources cannot hold an infinite number of agents
at the same time.

2. Wait for condition: Agents occupy a resource while they wait for the next resource
in their plan to become available.

3. No preemption condition: Agents cannot be removed from their resources; in-
stead, they must drive to their next resource on their own.

4. Circular wait condition: When two agents are facing each other, then each is
waiting for the other to vacate its resource.

Proposition 5.2.5. A deadlock occurs if and only if there is a cycle in the Planstep-
Priority Graph.

Proof. Case I: deadlock → cycle in PPG. A deadlock is a cycle C = (A1, . . . , Am) of
agents waiting for each other. To prove that this agent cycle implies a cycle in the PPG,
we will associate a plan step with every Ai ∈ C, and we will show that for any pair of
consecutive agents Ai and Ai+1, there is a path in the PPG between their associated plan
steps.

Consider some Ai ∈ C that is currently executing a plan step σi,j . The plan step we
will associate with Ai in our proof is σi,j+1, the next step in its plan, which it is unable
to start because Ai is waiting for agent Ai+1. There are two ways in which Ai can be
waiting for Ai+1.
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plan steps to complete before it can enter rk.

Figure 5.4: Partial planstep-priority graphs involving agent Ai, which is waiting for Ai+1.

Case I.a: Ai is waiting behind Ai+1. Note that both agents are currently on the same
resource r. Because there is no overtaking, Ai+1 must exit r before Ai. Hence, the
next plan step σi+1,k+1 of Ai+1 must precede the next plan step σi,j+1 of Ai. By
definition 5.2.3, there is an edge (σi+1,k+1, σi,j+1) ∈ E2,2 (note that this edge is in
the opposite direction of the agent cycle C). See figure 5.4(a).

Case I.b: Ai is waiting to enter the next resource. From definition 5.1.2, we know
that there are two conditions that must be fulfilled before an agent may enter a
resource: (i) it must be the agent’s turn to enter, and (ii) there must be sufficient
capacity to enter. In case the first condition does not hold, agent Ai is waiting for
Ai+1 to enter resource r; in case the second condition does not hold, Ai is waiting
for Ai+1 to exit the resource.

Case I.b.1: condition (i) If Ai is waiting to enter r, and Ai+1 hasn’t entered
yet, then there is a sequence of plan steps (σi+1,k+1, . . . , σi+1,k+1+m) within
the plan of Ai+1, such that m ≥ 0, and σi+1,k+1+m is Ai+1’s plan step on r
(see figure 5.4(b)). In case m > 0, then there are edges (σi+1,k+l, σi+1,k+l+1) ∈
E1, 1 ≤ l ≤ m, between every pair of consecutive plan steps.
Agent Ai must be the direct successor of Ai+1 on r; otherwise, the entrance
of Ai+1 would not end the waiting of Ai. This means that there is an edge
(σi+1,k+1+m, σi,j+1) ∈ E2,1.

Case I.b.2: condition (ii) Agent Ai can only enter r until after the exit of Ai+1

has freed up a unit of capacity on r. The fact that Ai is waiting for capacity im-
plies that the resource is currently full (either with one agent, or with multiple
agents travelling in the same direction as Ai will be). Because there is no over-
taking, the first agent to exit must be the agent that entered first (of the agents
currently on r). Hence, if p(r, σi,j+1) = n, then p(r, σi+1,k) = n−cap(r). From
Definition 5.2.2, we can now infer that there is an edge (σi+1,k+1, σi,j+1) ∈ E3.

We have shown that if agent Ai is waiting for Ai+1, then there is path from the (next)
plan step σi+1,k+1 of Ai+1 to the (next) plan step σi,j+1 of Ai. Hence, the agent cycle
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C = (A1, . . . , Am) implies a cycle (in the opposite direction) in the planstep-priority
graph.

Case II: cycle in PPG → deadlock. Let C be a cycle in the PPG, and let Ai be the first
agent to reach a plan step σi,j of C. Note that it is impossible to create a cycle in PPG
using only arcs in E1. This implies that Ai’s first plan step in C must be preceded (in
C) by a plan step σk,l from a different agent Ak. Hence, (σk,l, σi,j) ∈ {E2 ∪ E3}.

We will now explain why σi,j cannot start before σk,l, by distinguishing between the
cases (σk,l, σi,j) ∈ E2, and (σk,l, σi,j) ∈ E3.

Case II.a (σk,l, σi,j) ∈ E2: There are two sub-cases to consider. The first is that agents
Ai and agent Ak are on the same resource while executing their previous plan steps,
σi,j−1 and σk,l−1 respectively. Since no overtaking is allowed, agent Ai cannot exit
before Ak, and no progress is possible. In case Ai and Ak are not on the same
resource, then Ai is waiting to enter the next resource, but agent Ak with plan
step σk,l should enter first. According to definition 5.1.2, agent Ai does not have
permission to enter the next resource, and no progress is possible.

Case II.b (σk,l, σi,j) ∈ E3: Because σk,l is the enabling plan step of σi,j , agent Ak should
start σk,l to free capacity for agent Ai to be able to start its next plan step σi,j .
Hence, condition 2 of definition 5.1.2 is not met until σk,l has started. Hence, agent
Ai is not allowed to enter its next resource, and no progress is possible.

From the above cases it follows that σk,l must start before σi,j can start. At the same
time, because of the cycle C, σi,j must also start before σk,l can start. This implies that
none of the agents associated with the plan steps in C can make progress, which means
we have a deadlock situation.

5.3 Priority-changing algorithms

In this section we will discuss two algorithms that increase the priority of an agent without
introducing a deadlock. The idea behind both algorithms is that an agent Ai arrives at
a resource r and finds that agent Aj should enter the resource before it. Hence, agent
Aj is delayed, whereas Ai is not (or both agents are delayed, but agent Aj more so).
By increasing the priority of Ai over Aj (and over other agents between Aj and Ai) on
this and subsequent resources, we hope to reduce delay. Agent Ai will certainly benefit
from the priority change, and so might agents that succeed Ai in other parts of the
infrastructure. Agent Aj might incur even more delay, however, and so will agents that
have to wait for Aj (and are unable to increase their priority). In chapter 6, we conduct
experiments to evaluate the effects of priority changes.

The first algorithm we will discuss is from Maza and Castagna [60]. Their algorithm is
based on the following theorem, which they prove in their paper (we adapted the theorem
to fit with our notation):

A vehicle Ai can inherit the greatest priority on the nodes of the path from
r to r′ without inducing conflicting priorities, if and only if all the vehicles
having to cross this path before Ai are outside the path from r to r′.
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Figure 5.5: Agent Bob can increase its priority over both Alice and Trudy.

The path from r to r′ is a sub-sequence of the resources in the plan of agent Ai. Maza
and Castagna’s algorithm amounts to determining the path from r to r′ for which the
agent wants to obtain the highest priority. The first resource r is presumably the resource
that the agent wants to enter next. In any case, it is a resource where the agent does
not have the highest priority. The final resource r′ is simply the first resource in its plan
(after r) where the agent currently has the highest priority. Agent Ai can be granted the
highest priority on all resources between r and r′, if and only if all of these resources are
currently empty. A more formal description of the algorithm and a proof of correctness
can be found in [60].

A disadvantage of the algorithm from Maza and Castagna is that it not only increases
the priority of an agent over delayed agents, but also over agents that need not be delayed,
as the following example illustrates.

Example 5.3.1. In figure 5.5 we see an infrastructure with three agents Bob, Alice, and
Trudy. According to their plans, Bob is the last agent to enter each of the resources
r1, . . . , r5. However, Bob is ready to enter r1 whereas Alice is delayed, so Bob wants to
increase his priority. The algorithm from Maza and Castagna specifies that Bob should get
the highest priority on all resources r1, . . . , r5. This means that Bob should also go before
Trudy on resources r3, r4, and r5, even though Trudy may not be delayed. Note that if
Bob would only increase his priority over Alice, then a deadlock-free execution would still
be possible.

Example 5.3.1 brings to light another disadvantage of Maza and Castagna’s algorithm:
if Trudy were already on e.g. resource r4, then no priority change would be made, even if
only changing with Alice is certainly a possibility. Hence, some opportunities to increase
priority are not identified by the algorithm of Maza and Castagna. We therefore present
a new algorithm that identifies more opportunities for changing the priority, and it limits
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Figure 5.6: To increase his priority over Alice, agent Bob must also increase his priority
over Trudy.

priority increases over non-delayed agents1.

Our algorithm is based on the idea of a corridor of resources (as mentioned before):
a maximal, uninterrupted sequence of resources that an agent Ai shares with a delayed
agent Aj . For each of the resources in the corridor, Ai must increase its priority over Aj

if a deadlock is to be prevented. In example 5.1.1, we already saw that A2 should increase
its priority over A1 for all of the resources r5, r4, and r3. In example 5.3.1, figure 5.5,
agent Bob shares the corridor r1, r2, r3 with agent Alice. Of course, it is not always
the case that agents Ai and Aj are the only ones to make use of the resources in their
corridor. Example 5.3.2 shows how we should deal with other agents.

Example 5.3.2. Figure 5.6 shows the same situation as in figure 5.5, with one subtle
difference: on resource r3, Alice has now a higher priority over Trudy. Hence, if Bob
wants to increase his priority over Alice and no other agents make priority changes, then
Bob should also increase his priority over Trudy. What happens in our algorithm is
that upon encountering Trudy in resource r3, she is added to the list of delayed agents.
Consequently, Bob now also has to take into account the corridor he shares with Trudy,
consisting of resources r3, r4, and r5.

1Unfortunately, we learned of the existence of Maza and Castagna’s own alternative algorithm [61]
until after our comparison with their original effort. Their alternative algorithm is also aimed at increasing
the number of priority changes, and it also makes use of the concept of a shared corridor between agents.
A difference between Maza and Castagna’s alternative algorithm and the algorithms discussed here is that
the former decreases the priority of delayed agents, rather than increasing the priorities of non-delayed
agents.
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5.3.1 Algorithm description

Algorithm 6 assumes an agent Ai that is executing its plan πi. It is about to start its
next plan step σi,k when it notices that there is still a set A of agents that should enter
ri,k (the resource associated with plan step σi,k) before it. To make safe priority changes,
Ai will step through its plan to determine the corridor it shares with each of the delayed
agents. If none of the delayed agents have entered their respective corridors yet, then it
is safe for agent Ai to increase its priority over the delayed agents.

The end of the corridor that Ai shares with some agent Aj is the first resource ri,l

where Aj is no longer before Ai on ri,l. Then, Aj is removed from the set of delayed
agents. Once this set is empty, Ai knows that it is safe to increase its priority over all
of the delayed agents and for all of the corridors that it recorded during the run of the
algorithm. Of course, it can also happen that an agent is added to the set of delayed
agents, as explained in example 5.3.2. If Aj is a delayed agent on resource ri,k, and agent
Al (that was not previously in the set of delayed agents) is between Aj and Ai on ri,k+1,
then Al is added to the set of delayed agents, starting from ri,k+1.

Algorithm 6 Increase Agent Priority
Require: agent Ai, plan πi = (σi,1, . . . , σi,n), Planstep-Priority Graph PPG
Ensure: give agent Ai the highest priority on the next resource in its plan πi, in case

this does not create a deadlock
1: k ← nextPlanStepNumber(πi)
2: r ← ri,k

3: n← entryCounter(r)
4: A← {Aj ∈ A | n < p(r, σj,x) < p(r, σi,k)}
5: M ← ∅
6: deadlock← false
7: while A 6= ∅ ∧ ¬deadlock do
8: r ← ri,k

9: Am ← min(Aj∈A) p(r, σj,x)
10: A← {Aj ∈ A | p(r, σm,x) ≤ p(r, σj,y) < p(r, σi,k)}
11: for all Aj ∈ A do
12: if locatedAt(Aj , r) then
13: deadlock← true
14: continue
15: M ←M ∪ 〈r, A〉
16: k ← k + 1
17: if ¬deadlock then
18: for all 〈r, A〉 ∈M do
19: increasePriority(Ai, A, r, PPG)
20: if cycle in PPG then
21: rollbackPriorityChanges(M,PPG)

In line 1, the function nextPlanStepNumber returns the number of the plan step that
agent Ai is about to start. Line 2 determines the resource r associated with this plan
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step, and in line 3 the function entryCounter returns the number of plan steps that have
been started on resource r so far. The set of delayed agents for resource r is determined
as follows, in line 4: it consists of those agents with a plan step σj,x on resource r that
hasn’t been started yet, and should start before σi,k, the next plan step of agent Ai.
Line 5 initializes a map that will hold 〈resource, delayed agent set〉 tuples.

The while loop of line 7 iterates over all the steps of Ai’s plan, until either there are
no more delayed agents, or it turns out that no priority change is possible. First, in line 8,
we determine the resource associated with the plan step of this iteration, σi,k. Then, in
line 9, we find the agent Am that has the highest priority on r for all delayed agents. In
line 10, we determine the new set of delayed agents by finding out which agents have a
plan step on r between Am and Ai. Hence, in this line it is possible that new agents are
added to A, and other agents are removed from A.

Then, for each delayed agent Aj , we check whether Aj is currently driving on r
using the function locatedAt(Aj , r), in line 12. If this is the case, then Aj has entered
the corridor it shares with Ai, and no priority increase is possible for agent Ai. If all
delayed agents are not on r yet, then this resource and the current set of delayed agents
are added to the map M , in line 15. In line 16, we increment Ai’s plan step pointer k.
In case the while loop has exited with the flag deadlock still false, then we perform the
priority changes, in line 19.

The corridor concept is useful in identifying safe priority changes, but it is not fool-
proof, as we can find examples in which the priority changes proposed by algorithm 6
can lead to a deadlock. Therefore, in line 20, we perform a check to see if the priority
changes have left the Planstep-Priority Graph in a cyclic state. If a cycle is found, we
must roll back the priority changes, in line 21. We will now discuss an example of a
deadlock situation that can occur if we run algorithm 6 without checking for cycles in the
PPG.

Example 5.3.3. In figure 5.7, we see an infrastructure with five agents Bob, Alice, Trudy,
Ken, and Charles. Bob is the second agent to enter resource r1, but since Alice is delayed,
Bob wants to increase his priority. On resource r2, Bob is the fourth agent to enter r2,
but algorithm 6 only requires him to increase his priority over Alice. On resource r3, on
the other hand, Bob should also go ahead of Trudy, who is set to enter r3 after Alice but
before Bob.

As a result of these priority changes, Trudy will wait for Bob to enter r3. In turn,
agent Charles cannot enter r4 before Trudy, and on resources r5 and r2 agent Ken has
to wait for Charles. However, Bob has to wait for Ken on resource r2, because he only
increased his priority over Alice. The priority changes of agent Bob have therefore created
a circular wait: Ken waits for Charles, Charles for Trudy, Trudy for Bob, and Bob for
Ken.

Proposition 5.3.4. The run-time complexity of algorithm 6 is O(|A||R|+ |S|), where S
is the set of all plan steps.

Proof. The while loop of line 7 runs for at most |R| iterations, and within this loop there
is a for-loop (line 11) that iterates over the set of delayed agents, in O(|A|) time. Other
computations within the while loop do not require more than O(|A|) time.
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Figure 5.7: If agent Bob increases his priority over Alice, then a deadlock will occur.
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In line 20 we have to check whether the Planstep-Priority Graph contains a cycle.
Cycle-detection in a graph requires linear time in the number of vertices of the graph,
and the set of vertices of the PPG is the set S of plan steps. Hence, cycle detection can
be done in O(|S|) time, for a total run-time complexity of O(|A||R|+ |S|).

5.3.2 Extending the IAP algorithm

With our IAP algorithm, we aim to construct an algorithm that improves over Maza
and Castagna’s priority-changing algorithm by (i) only increasing an agent’s priority over
delayed agents, and by (ii) relaxing the set of constraints that must hold for a priority
change to be allowed. From example 5.3.3 above, we can infer that these two aims are
sometimes conflicting.

In example 5.3.3 and figure 5.7, agent Bob modestly increases his priority only over
Alice, and not over agents Ken and Charles (in resource r2), who are not delayed, as
far as Bob knows. However, Bob could increase his priority over all agents — which is
what Maza and Castagna’s algorithm would do — because all of the resources in Bob’s
plan are currently empty. Hence, the stricter rule of Maza and Castagna’s algorithm can
sometimes find a conflict-free priority change when our IAP algorithm does not find any
solution.

We will now show how we can extend algorithm 6 to encompass the algorithm of
Maza and Castagna. The idea behind the extension is to reduce the ‘modesty’ of the
agent in algorithm 6, in case that modesty leads to a cycle in the Planstep-Priority
Graph. Effectively, the modesty of the agent can be regulated by line 9, in which we
specify the agent Am with the lowest priority number (i.e., Am is the agent with the
highest priority) that we want to increase the priority over: in line 10, we derive the set of
delayed agents as all the agents that have to enter the resource r between Am and agent
Ai, the agent requesting the priority increase. A difference between our algorithm and
Maza and Castagna’s algorithm is that in the former algorithm, the agent Am is simply
the agent that currently has the highest priority on resource r (i.e., the next agent to
enter r), whereas in IAP there may be several agents that will enter r before Am will
enter.

We can reduce the modesty of the agent Ai by iteratively lowering the priority number
of the agent Am, until we conclude that the proposed priority change does not create a
cycle in the Planstep-Priority Graph, or until we conclude that with the reduced modesty,
no priority change is possible. The latter situation can occur if we find that Am already
occupies one of the resources in Ai’s path (see line 12). Algorithm 7 below is an extension
of the IAP algorithm that includes a modesty-level parameter α.

Algorithm 7 differs from algorithm 6 in two ways. First of all, we make use of the
modesty parameter α in line 10, and second, we return a value of 0 or -1. A return-value
of 0 indicates that the algorithm returned either after successfully performing a priority
change, or after concluding that no priority change is possible. The algorithm returns -1
if the proposed priority change resulted in a cycle in the PPG. These return values might
be used by another algorithm, such as algorithm 8 below.

Algorithm 8 simply calls the E-IAP algorithm until the latter returns 0, which
happens in case a priority change has been made, or no priority change proved possible.
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Algorithm 7 Extended Increase Agent Priority (E-IAP)
Require: agent Ai, plan πi = (σi,1, . . . , σi,n), Planstep-Priority Graph PPG, modesty-

level parameter α
Ensure: give agent Ai the highest priority on the next resource in its plan πi, in case

this does not create a deadlock
1: k ← nextPlanStepNumber(πi)
2: r ← ri,k

3: n← entryCounter(r)
4: A← {Aj ∈ A | n < p(r, σj,x) < p(r, σi,k)}
5: M ← ∅
6: deadlock← false
7: while A 6= ∅ ∧ ¬deadlock do
8: r ← ri,k

9: Am ← min(Aj∈A) p(r, σj,x)
10: A← {Aj ∈ A | max(0, p(r, σm,x)− α) ≤ p(r, σj,y) < p(r, σi,k)}
11: for all Aj ∈ A do
12: if locatedAt(Aj , r) then
13: deadlock← true
14: continue
15: M ←M ∪ 〈r, A〉
16: k ← k + 1
17: if ¬deadlock then
18: for all 〈r, A〉 ∈M do
19: increasePriority(Ai, A, r, PPG)
20: if cycle in PPG then
21: rollbackPriorityChanges(M,PPG)
22: return -1
23: return 0

Algorithm 8 Iterative Increase Agent Priority
Require: agent Ai, plan πi = (σi,1, . . . , σi,n), Planstep-Priority Graph PPG
Ensure: give agent Ai the highest priority on the next resource in its plan πi, in case

this does not create a deadlock
1: α← 0
2: value← −1
3: while value < 0 do
4: value← E-IAP(Ai, πi,PPG, α)
5: if value = −1 then
6: α← α + 1



94 Priority-Based Schedule Repair

With each call, the value of α is incremented. For a value of α = 0, algorithm E-IAP
equals algorithm IAP, whereas for sufficiently high values of α, E-IAP produces the same
results as the algorithm by Maza and Castagna.

In this section, we showed how we can reduce the modesty of a priority-requesting
agent by also allowing priority changes over agents that are not delayed. If an agent’s
modesty is fully reduced, we obtain Maza and Castagna’s algorithm in the sense that an
agent always requests the highest priority for all of his remaining resources. Although
algorithm 8 is therefore more general than algorithm 6, there are three reasons not to
recommend algorithm 8 over algorithm 6 unreservedly:

1. Increasing an agent’s priority over other non-delayed agents may be unfair or oth-
erwise undesirable.

2. The number of priority changes ‘gained’ by algorithm 8 could be small; this should
be verified empirically.

3. The effects of a priority change on the delays of the agents — especially in case only
an ‘immodest’ priority change is feasible — is unclear and should be investigated.

Algorithm 8 therefore constitutes an interesting method of extending the generality
of algorithm IAP to encompass the algorithm from Maza and Castagna, but for practical
purposes (also considering CPU time usage) algorithm IAP may be the better choice, and
therefore we use it in our experiments in chapter 6.

5.4 Concluding remarks

In this chapter we showed how unexpected incidents can disrupt the execution of route
plans. In particular, we considered incidents where vehicles are temporarily immobilized,
which can cause congestion in case overtaking is not allowed. Moreover, if some agents
are delayed and others are not, then oblivious execution of the original set of agent plans
can result in a deadlock situation, for example if two agents meet each other head-on on
a lane resource.

Fortunately, simple schedule repair techniques exist that ensure that all agents can
reach their destinations safely. These repair techniques make use of the concept of the
priority of the agents: from the original set of plans, we can derive the priority of each
agent on each resource, and by maintaining these priorities during plan execution, we can
ensure deadlock-free operation. However, maintaining priorities implies that sometimes
one has to wait for a delayed agent. If we try to increase the priority of an agent in favour
over one or more delayed agents, we have to be careful not to introduce any deadlocks.

The first algorithm to increase agent priority is from Maza and Castagna [60], but to
ensure deadlock-free execution, the conditions under which priority changes are allowed
are very strict. Moreover, their algorithm increases the priority of an agent not only
over delayed agents, but also over other agents that happen to make use of the same
resources. We presented an alternative priority-changing algorithm that only increases
priority over delayed agents, and the conditions under which we allow a priority change
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are more lenient, so we expect that our algorithm can perform more priority changes than
Maza and Castagna’s algorithm. In the next chapter, we will present experiments that
should confirm this expectation. Perhaps more importantly, we also investigate whether
these priority changes can reduce the total delay in the system, and whether more changes
equals less delay.
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Chapter 6

Usability of Prioritized Route
Planning

In the previous chapter we showed how deadlock-free execution of multi-agent route plans
can be ensured by maintaining the priority of the agents at each of the resources. What
is harder to prove is that multi-agent route plans can be executed with little delay, in
case unexpected incidents make the original plans (schedules) impossible to adhere to. In
this chapter we will therefore present experiments that investigate the relation between
agent delay and the frequency and severity of vehicle incidents (incidents that temporarily
immobilize agents).

An agent can incur delay because it suffers an incident, but also because of the
mechanism that is used to prevent deadlocks. To prevent deadlocks, an agent may
not enter a resource before all higher-priority agents have entered it. If any of the
higher-priority agents are delayed, then an agent must wait. In the previous chapter we
also presented two mechanisms that can increase the priority of non-delayed agents, so
they do not have to wait for delayed agents with a higher priority. Having its priority
increased will reduce an agent’s delay, but it may increase the delay of other agents.
Therefore, we will investigate the impact that priority changes have on the global delay.

The reason for choosing a planning approach to the multi-agent routing problem
(rather than a reactive approach that chooses an agent’s next action only on its view of
the current situation) is that higher-quality (or lower-cost) agent plans can be obtained.
In chapter 3, we introduced two ways to measure multi-agent plan cost. The first measure
is to sum the plan costs of all agents, where the cost of one agent plan is the difference
between its start time and its finish time; the second measure is the makespan, i.e., the
difference between the earliest agent start time and the latest agent finish time. The
prioritized planning approach that we present in this thesis allows us to find an optimal
(minimum-cost) plan for a single agent, given the plans of higher-priority agents. However,
in chapter 3 we also showed that a set of individually optimal route plans, obtained using
the prioritized planning approach can result in a multi-agent plan with a cost of O(|A|)
times the cost of an optimal multi-agent plan.
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In this chapter we will investigate how the global plan quality differs between randomly
assigned priorities. The smaller the difference between the best and the worst assignment
of priorities found, the more confidence we have that an arbitrary priority assignment will
result in a global plan that is not much more costly than an optimal global plan — under
the assumption that the optimal priority leads to a close-to-optimal global plan. We will
see that the impact of the priority ordering on the global plan quality depends not only
on the type of infrastructure the agents travel on, but also on the distribution of start
and destination locations over the infrastructure.

This chapter is organized as follows. In section 6.1 we will analyze the robustness
of multi-agent route plans in the face of unexpected incidents. First, we present an
experiment in which no priority changes are allowed, in the setting of taxi route planning
on a (model of a) real airport. Not allowing any priority changes can be viewed as
the most basic way to deal with incidents, and we investigate how much delay agents
incur using this baseline method. Second, we will experiment with the two algorithms
from chapter 5 that increase the priority of non-delayed agents, and see whether they
constitute an improvement over the baseline, no-priority-changes method. In section 6.2,
we will investigate the effect of different agent orderings on the global plan quality. A first
batch of experiments is run on the airport infrastructure, a second batch of experiments
is run on random infrastructures, to investigate the relation between global plan quality,
agent priority ordering, and infrastructure characteristics.

6.1 Robustness of route plans

Recall from chapter 1 that we define the robustness of a set of plans in terms of the delay
that agents suffer (when unexpected incidents disrupt the execution of their plans) given
a set of available plan repair techniques. In this section we wish to evaluate the robustness
of agent route plans, and how it depends on:

1. the particular plan repair technique used,

2. the topology of the infrastructure,

3. the frequency and severity of incidents.

In the previous chapter we discussed three repair techniques; all three techniques
modify only the timing of the agent plans, so we can term them schedule repair tech-
niques1, since the sequences of resources to be visited remain unchanged. All three repair
techniques use the priority of the agents on the resources, as explained in chapter 5 (for
example in the concluding section 5.4). The simplest repair technique, developed by Maza
and Castagna [58], is to maintain the priorities during plan execution, even if some agents
are delayed. This means that an agent is only allowed to enter a resource once its turn
has come, and it may have to wait for delayed agents that have a higher priority. The
second repair algorithm, also from Maza and Castagna [60], aims to reduce the delay of

1The difference between planning and scheduling — and hence between plan repair and schedule
repair — is that planning is often associated with choosing actions, and scheduling with locating actions
in time (cf. [86]).
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agents that are on time, by increasing their priority over agents that are already delayed.
Of course, the latter agents may therefore experience more delay because of their low-
ered priority, but our expectation is that the total delay in the system is reduced when a
non-delayed agent is given priority over a delayed one. The third repair algorithm allows
more priority changes, and we therefore expect it to result in lower delay values.

This section is organised as follows: in section 6.1.2 we evaluate robustness using
only the simplest repair mechanism that does not make priority changes. As such, these
experiments should rebut the claim from Le-Anh and De Koster [47] that “a small change
in the schedule may destroy it completely”2, although one can assume that this remark
was made in ignorance of the existence of the simple schedule repair mechanism from
Maza and Castagna. In section 6.1.2 we evaluate robustness not only for “small changes”
in the schedule, but also for more frequent and severe incidents. We also investigate
whether the robustness of agent plans depends on the infrastructure topology. Among
the types of infrastructures we consider are random networks, grid-like networks, and
we also have an airport infrastructure. In section 6.1.3, we investigate whether we can
improve the performance of the multi-agent system by using priority-changing algorithms.
Of course, this section is also dedicated to the comparison between our priority-changing
algorithm and the one from Maza and Castagna. First, in section 6.1.1, we describe our
experimental setup, and we describe the type of incidents we consider.

6.1.1 Experimental setup

Figure 6.1 illustrates the setup of our experiments. Each agent Ai has a start location si

and a destination location di, and they use algorithm 3 from chapter 4 to find a conflict-
free route plan. We let the agents plan in an arbitrary order, each agent respecting
the plans of the previous agents. After an agent has made its route plan, the free time
window graph is modified to reflect that the set of free time windows for the next agent has
changed. After all agents have made their plans, we randomly generate vehicle incidents
for each of the agents, by determining for each plan step whether the agent will suffer
an incident while performing that plan step. We generate incidents according to two
parameters: the incident rate and the incident duration. The incident duration is simply
the number of seconds that an incident lasts, i.e., how long an agent must stand still.
The incident rate is a value between zero and one, and it determines the frequency with
which agents receive incidents. If the value of the incident rate parameter is 0.1, then an
agent can expect to suffer one incident for every 10 plan steps3. The values for incident
duration and incident rate are fixed for a single experiment run, in the sense that all
incidents last equally long, and all agents are equally likely to suffer incidents.

Once each agent has a plan and a set of incidents, we can start the simulator in which
each agent tries to execute its plan. The simulator works by dividing time into small steps
of e.g. 0.1 seconds, and in each time step, each agent has the opportunity to perform a
small part of its plan. For example, if the agent plans to move along resource r with a
speed of 10 metres per second, then in one time step it will advance one metre. An agent’s

2Although they incorrectly stated that Kim and Tanchoco remarked this of their approach [41].
3The number of plan staps in a plan depends on the size of the infrastructure. On the Schiphol airport

infrastructure, some plans have up to 100 plan steps, while for the randomly generated infrastructures
plans can have up to 50 steps.
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GF ← reservePlan(πi, GF )

πi ← planRoute(si, di, 0, GF )

for i = 1 to n

for i = 1 to n
generate incidents for πi

plan execution

A = {A1, . . . , An}

plans with incidents

Π = {π1, . . . , πn}

Figure 6.1: The setup of our experiments.

movements are restricted, however, by the conditions specified in chapter 5: an agent may
not overtake, or collide with other agents, and it may not enter a resource when it is not
yet its turn or when the resource is full. This means that if there is an agent directly in
front of the agent, then the agent cannot go faster than the leading agent. If the leading
agent is suffering an incident and standing still, then the agent will also have to stop.
Eventually, all agents will reach their destination locations, and there we can measure
how much the agent has been delayed with regard to its original schedule. We will now
discuss how we measure delay.

Measuring delay

As mentioned before, we only consider vehicle incidents: incidents that immobilize a
vehicle for a certain period of time. Also, because we do not allow overtaking in our
experiments, when one agent suffers a temporary breakdown, the agents behind it must
also wait for the first agent’s recovery. We say that an agent accumulates incident delay
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either when it is suffering an incident, or when it’s stuck behind an agent that is accumu-
lating incident delay. There is a second source of delay, however, and it stems from the
mechanism that is used to prevent deadlocks. An agent accumulates mechanism delay if
it is waiting to enter a resource and it is not allowed to enter yet because a higher-priority
agent should enter the resource first. An agent also incurs mechanism delay if it is stuck
behind an agent that is accumulating mechanism delay. The total delay of an agent is its
finish time minus its planned finish time. As incident delay and mechanism delay are the
only two sources of delay, we have the following inequality.

total delay ≤ incident delay + mechanism delay

The total delay can be less than the sum of the incident delay and mechanism delay
in case the agent has the opportunity to make up some time. To see how an agent can
make up time, consider the following example: an agent A1 plans to traverse resource r
in the interval [10, 70), while the minimum travel time of resource r is 20. Hence, A1’s
planned traversal of r is slower than the fastest traversal of r, e.g. because it has to wait
until time 70 before it may enter the next resource in its plan. As a result, the agent
has 40 time units of slack in its traversal of resource r, that it might use to make up for
delays. Suppose for example that during the execution of its plan the agent suffers an
incident at time 40, when it is halfway along resource r. If the incident lasts for 30 time
units, then it can get going again at time 70. To make up time, the agent will traverse
the remainder of the resource at full speed. Because there is still half the resource to go,
the agent needs 10 more time units to reach the end of r, at time 80. Hence, the agent’s
total delay is 10, even though it has an incident delay of 30.

In our experiments, we have focussed on the mechanism delay. Because we do not
consider the possibility of re-routing in this thesis, it is unlikely that we can reduce the
incident delay: if an agent suffers an incident, or an agent in its path suffers an incident,
there is nothing the agent can do to avoid the delay. The mechanism delay, however, is
a measure of how effective the priority-maintaining approach is. Maintaining priorities is
one way of preventing deadlocks, but the cost of this approach is the mechanism delay.
If this delay is prohibitively high, then route planning in combination with maintaining
priorities is not a viable approach to the multi-agent motion problem in dynamic envi-
ronments. The total delay is not a good measure of the viability of the approach for the
same reason that incident delay is not.

6.1.2 Robustness under fixed priorities

We will start this section with an experiment of airport taxi routing; later, we will see if
the results obtained for the taxi routing case also hold for agent route planning on random
infrastructures. For the taxi routing experiments, we used a model of Amsterdam Schiphol
Airport, an infrastructure consisting of around a thousand resources (see figure 6.2),
including gates, runways, taxiways, and aprons (the tarmac in front of the gate). Of the
aforementioned resources, we treat taxiways and aprons as lane resources, and gates and
runways as intersections. The reason we model a runway as an intersection is that only
one agent may land or take off at the same time.
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Figure 6.2: The infrastructure of Amsterdam Airport Schiphol, which consists of 1016
resources.
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rate duration
30s. 120s.

0.01 LL LH
0.1 HL HH

Table 6.1: Combinations of values for incident rate and duration.

All agents in our experiments have a runway as a start location, a gate as a first
destination location, and a runway as a second and final destination location. From
figure 6.2, we can see that Schiphol has six runways, of which the smallest, the Oostbaan,
is rarely used in practice. A common runway configuration at Schiphol is either to have
two runways open for arrival and one for departure (during an arrival peak), or to have two
runways open for departure and one for arrival (during a departure peak). A mixed-mode
runway configuration, in which a runway can be used both for arrival and for departure, is
not used at Schiphol. Although a mixed-mode operation allows for slightly higher runway
utilization, it involves more complicated air traffic control [99].

In our experiments, each runway can be used in any of the four modes arrival, departure,
mixed, or closed. Hence, we allow any kind of runway configuration, as long as there is at
least one runway open for departure, and one for arrival (it may be the same runway).
The determination of the runway configuration is part of the generation of a random
problem instance (i.e., we determine both a random runway configuration together with
random start and destination locations for the agents). We used between 100 and 400
agents for our experiments, each with a preferred starting time of zero. However, because
each agent must start its plan at an arrival runway, only the first agents to plan can
actually start at or close to their intended start time.

One experiment run is characterized by the following parameters: (i) the number of
agents, (ii) the incident rate, and (iii) the incident duration. For the number of agents,
we go from 100 to 400 agents in 41 steps. As Schiphol typically processes around 600
aircraft per day, trying to handle 100 aircraft at the same time will lead to a mildly
congested airport, while handling 400 aircraft at the same time should result in a very
congested airport. For the incident rate and duration parameters, we mainly used the
values shown in table 6.1. The length of an agent’s plan can vary from around 25 to 100
plan steps (depending on the runway configuration, of course). With an incident rate of
0.01, we can expect some but not all agents to suffer an incident, while an incident rate
of 0.1 will practically guarantee that all agents will have one or more incidents. To put
the incident duration into context, an agent plan can last as little as five minutes to as
long as an hour. Agents with an hour-long plan are typically those with a low priority
(they have to plan around the movements of other agents), and those that have both a
remote arrival runway and a remote destination runway. For each combination of the
parameters, we performed 50 runs. Hence, we conducted a total of 8200 experiments.

Schiphol results

In figure 6.3, we see how the mechanism delay depends on the number of agents in
the system, for each of the four incident-parameter combinations. One point in the
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graph represents the average value of 50 experiment runs with the same combination of
parameters; the value of one experiment run, in turn, is the average of the mechanism
delay of all (100 to 400) agents in the experiment. Figure 6.3(a) shows the absolute
mechanism delay per agent, which slowly increases as the number of agents in the system
increases. Figure 6.3(b) shows the relative mechanism delay, which for agent Ai is the
mechanism delay from Ai divided by c(πi), the cost of agent Ai’s plan. The relative
mechanism delay decreases with the number of agents in the system, which shows that
the average plan length increases as the number of agents in the system increases.

From figure 6.3 we can draw a number of conclusions. First of all, for a small number
of short incidents (incident rate = 0.01, incident duration = 30 seconds) there is hardly
any mechanism delay. Hence, there is no evidence to suggest that a small change in the
schedule can destroy it completely. Also, it is not just mechanism delay that is low. If
we look ahead to figure 6.5(a), we see that the total delay (i.e. the delay that each agent
has at its destination location), is even lower than the mechanism delay. Hence, any
mechanism delay and incident delay that agents incur on the way will have been mostly
made up by the time they reach their respective destination locations. In other words,
for a small number of small incidents, any delays are almost fully absorbed by the slack
in the agent plans.

The second conclusion that we can draw from figure 6.3 is that if either the incidents
are long (duration = 90s.), or if they occur frequently (rate = 0.1), then the mechanism
delay is around 2 to 5 minutes, although this still only amounts to 3 to 8 percent of an
agent’s plan length. Third, for a large number of long incidents (rate = 0.1, duration
= 90 seconds), the mechanism delay is significantly higher, though on average never
more than 18% in this set of experiments. A fourth conclusion that we can draw from
the zigzag motion of the HH-line is that the mechanism delay is much less predictable
for a large number of long incidents. This conclusion is confirmed by figure 6.4, which
displays the 95% confidence intervals for the data points of figure 6.3(b). The meaning of
the confidence intervals is that the average mechanism delay per agent will fall within the
specified interval with a probability of 95%. As can be seen from figure 6.4, the confidence
intervals are quite large.

Figure 6.5 shows how incident delay, mechanism delay, and total delay relate to each
other. In case of a small number of short incidents (figure 6.5(a): rate = 0.01, duration
= 30s.), the total delay is almost zero, while the incident delay and mechanism delay are
somewhat higher. As mentioned before, the slack in the plans of the agents almost fully
absorbs the delays encountered along the way. If either the incident duration is increased
(figure 6.5(b)), or the incident rate is increased (figure 6.5(c)), then the mechanism delay
is significantly higher than either the incident delay or the total delay. Moreover, for
these settings the mechanism delay is the least predictable of all four incident-parameter
combinations. In both figures 6.5(b) and 6.5(c), the total delay is about equal to the
incident delay. In case of a large number of long incidents (figure 6.5(d): rate = 0.1 and
duration = 90s.), the mechanism delay is about the same as the incident delay, but the
total delay is significantly higher than either, although not as high as the sum of both.
The fact that the total delay is higher than both incident delay and mechanism delay
does not mean that we can conclude that agents are unable to exploit the slack in their
plans as efficiently as in the other settings, because the total delay time that is made up
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Figure 6.3: Mechanism delay per agent on the Schiphol airport infrastructure, for the
following parameter values: LL = (0.01, 30s.), LH = (0.01, 90s.), HL = (0.1, 30s.), HH
= (0.1, 90s.).
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Figure 6.4: 95% Confidence intervals for the relative mechanism delay.

for is still the largest in figure 6.5(d). For example, if we compute the sum

recovered delay = (incident delay + mechanism delay)− total delay

for each sub-figure at 100 agents, then we obtain 6.5(a) ≈ 1%, 6.5(b) ≈ 6%, 6.5(c) ≈ 6%,
and 6.5(d) ≈ 7% of the average agent plan length.

In the previous figures, we have only considered experiments with either a very low
incident rate (0.01) or a very high incident rate (0.1). In figure 6.6, we show a set of
experiments in which the number of agents was fixed at 250, the incident duration at
90 seconds, and the incident rate varied from 0.01 to 0.2, in twenty steps. The most
interesting result from figure 6.6 is that the mechanism delay initially rises quickly, but
that it starts to level out when the incident rate hits 5%. One reason for this might be
that as incidents are more common, all agents either have to wait behind a broken-down
agent, or suffer an incident themselves. Hence, the original multi-agent schedule more or
less gets pushed back in time by the incidents. The total delay does continue to increase,
more or less keeping pace with the incident delay.

Results for random graphs

The results on the Schiphol infrastructure are very promising, and now we will investigate
whether these results also hold for other infrastructures. In this section, we will present
experiments that use infrastructures that we randomly generated. We generated three
types of random infrastructures, that differ in the way nodes (intersections) are connected
(via lanes). First of all, we created ‘fully random’ graphs, by first creating a random
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(c) rate = 0.1, duration = 30s.
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Figure 6.5: Relative total delay, incident delay, and mechanism delay on Schiphol airport
infrastructure for 250 agents and various incident-parameter settings.
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Figure 6.6: Relative delay for the Schiphol infrastructure for varying incident rates, with
250 agents and an incident duration of 90 seconds.

spanning tree4, and then adding edges between randomly chosen, as yet unconnected
nodes (until the desired number of edges in the graph has been reached). Second, we
created two-dimensional lattice infrastructures in which each intersection is connected
to four other intersections (the lattice networks are basically toroidal grids, with the
additional feature that the length of the lanes can vary). Third, we created small-world
networks (cf. [43]), which are the same as lattice networks, except that each node has one
additional connection to a randomly chosen long-distance node.

To determine minimal travel times for each of the edges in the random graphs, we
used the open-source software graphviz5 to create a two-dimensional layout. For example,
figure 6.7 displays a ‘fully’ random graph6 on 15 nodes and 30 edges. From the length of
the edges in the layout, we determined the travel time of the corresponding lane resource.
We set the length of the median-length edge to 150 metres, and with a maximum agent
speed of 40 kilometres per hour (we used the same agent speed for the Schiphol experi-
ments), this results in a minimum travel time of 13.5 seconds for the median-length lane
resource.

For each type of infrastructure, we created 100 different graphs: 100 random graphs on
180 nodes and 300 edges, 100 lattice graphs with 144 nodes, and 100 small-world networks

4We create a random spanning tree by iterating through the set of nodes, and in iteration i we connect
the node with index i with a randomly chosen node with index smaller than i.

5http://graphviz.sourceforge.net/
6From now on, we will refer to fully random graphs simply as random graphs, and to the other graphs

as lattice networks and small-world networks.



6.1. Robustness of route plans 109

also with 144 nodes. Each infrastructure consists of around 400 to 450 resources (inter-
sections and lanes together). As in the Schiphol experiments, the number of agents varied
from 100 to 400, the incident duration was 30 or 90 seconds, and the incident rate was
0.01 or 0.1. Performing 50 runs for each combination of the parameters resulted in 8200
experiments for each of the infrastructure classes. To assign a particular infrastructure
to experiment number x, the number of the graph was chosen as x mod 100.

Figure 6.7: A random graph consisting of 15 nodes and 30 edges.

Figure 6.8 clearly shows that the mechanism delay for random graphs is much higher
than for the Schiphol experiments. In case of a small number of short incidents (rate =
0.01 and duration = 30s.), the mechanism delay is still quite low: around 5% to 15% for
random graphs and lattice networks, and around 5% to 25% for small world networks. The
mechanism delay for the high incident setting (rate = 0.1 and duration = 90s.) is almost
always over 100% of average plan length, and for small-world networks even in the range
of 200%. If we look at the absolute mechanism delay, in figure 6.9 for random graphs,
we see that it is still much shorter than the absolute mechanism delays for the Schiphol
experiments: the mechanism delay for random graphs is rarely more than 100 seconds,
whereas for the Schiphol experiments it is sometimes as much as 600 seconds. Obviously,
the plan lengths for random graphs are much smaller, with an average agent plan lasting
around 100 seconds, compared to the 5 minutes to one hour that agents required for
Schiphol route plans. This difference in plan lengths cannot solely be explained by the
size of the infrastructure in terms of resources — Schiphol has around 1000 while the
random graphs around 450 — but is probably also the result of the fact that the start
and destination locations for agents in the Schiphol experiments are runways, which are
mostly situated at the edge of the infrastructure.

The difference in plan lengths between the Schiphol experiments and the random-
graph experiments means that a 90-second delay is relatively more severe in the latter set
of experiments. For example, if an agent has to wait at an intersection because a higher-
priority agent has suffered an incident, then the agent will have a mechanism delay of
almost 100%, unless it manages to make up for the loss of time during the execution of
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Figure 6.8: Relative mechanism delay for random graphs (a), lattice networks (b), and
small-world networks (c).



6.1. Robustness of route plans 111

100 150 200 250 300 350 400

number of agents

LL
LH
HL
HH

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

m
e
c
h
a
n
is

m
 d

e
la

y
 (

s
)

Figure 6.9: Absolute mechanism delay for random graphs on 180 nodes and 300 edges.

the remainder of its plan.
Another key difference between the Schiphol experiments and the experiments on

random graphs is that in the latter (almost) all agents enter the infrastructure at the
same time, whereas agents arrive (land) one by one in the Schiphol experiments. Hence,
in the Schiphol experiments, there are fewer agents simultaneously in the infrastructure,
at least at the beginning and the end of the experiments, when agents gradually arrive at
and depart from the infrastructure. To see what happens if we spread the agents over time
in the random-graph experiments, we ran another set of experiments on the small-world
infrastructures, where the start time of each agent was randomly determined by:

t = random(10 · |A|)

where random returns a random number, uniformly distributed between 0 (inclusive)
and 10 · |A| (exclusive). In figure 6.10 we can see that the relative mechanism delay
has indeed drastically reduced from a maximum of about 200% to around 70%. The
reduction in relative mechanism delay cannot be completely explained by the smaller
number of agents that simultaneously make use of the resource, however, because the
relative mechanism delay does not increase with the number of agents in the system (in
figure 6.10, as well as in figure 6.3(b) of the Schiphol experiments). Instead, we expect
that because of the spread of the start time, the plans of the agents more easily organize
into flows. With a flow we mean that a number of subsequent agents use lane resources
in the same direction (and at the same time), which might be more efficient than a lane
resource being used in alternating directions. In the Schiphol experiments, such a flow of
agents arises very naturally, not just because of the spread of agents over time, but also
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because many agents will be going in similar directions: from a shared arrival runway
to a gate located somewhere at the center of the infrastructure, to a shared departure
runway (of course, not all agents need to have the same arrival and destination runways).

To conclude this section on experiments with fixed agent priorities, we can state
that incidents have a relatively modest impact on the mechanism delay in the Schiphol
experiments. Moreover, for a small number of short incidents, what little mechanism
delay there is, is almost completely made up by the time the agents reach their destination
locations (i.e., there is hardly any delay with regard to the original set of plans). The more
disappointing results for infrastructures of different topologies (random graphs, small-
world networks and lattice networks) indicate that the Schiphol infrastructure has at
least two characteristics that are beneficial to our experiments: agents are somewhat
spread over time, and because of the particular distribution of start and destination
locations, agents can easily organize themselves into flows. In the next section, we will
investigate whether we can improve the performance on the other topologies by changing
the priorities of the agents.
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Figure 6.10: Relative mechanism delay for a small world infrastructure, with each agent’s
start time a random number between 0 and 10 · |A|.
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6.1.3 Robustness with flexible priorities

The idea behind making priority changes is that an agent that is on time does not have
to wait for delayed agents, but can continue execution of its plan. If the agent that has
its priority lowered is ‘sufficiently delayed’, then it need not incur any additional delay
on account of its low priority. Hence, we expect that priority changes in favour of timely
agents will reduce the average delay in the system. Our algorithm 6 has been designed to
perform more priority changes than Maza and Castagna’s algorithm, so we first compare
the number of priority changes performed by both algorithms. Next, we compare the
average delay per agent that results from the priority changes.

Recall from section 5.3 that Maza and Castagna’s algorithm grants an agent the high-
est priority on all the remaining resources in its plan (or until the resource where it already
has the highest priority), and this is only allowed if all of those resources are currently
unoccupied. Their algorithm is named RVRAA, which stands for the Robust Vehicles
Routing Ahead Algorithm. Their algorithm that maintains priorities is called RVWA, al-
though they intentionally7 or unintentionally forget to mention what the acronym stands
for (in a later paper [61], they reveal that RVWA stands for Robust Vehicle Waiting
Algorithm8).

The setup of the experiments in this section is the same as before. The number
of agents varied from 100 to 400, the incident duration was 30 or 90 seconds, and the
incident rate was 0.01 or 0.1 (see table 6.1 from section 6.1.2). For each combination of the
parameters, we generated 50 random instances, consisting of both the infrastructure to
be used and the set of agent plans, and the set of incidents that the agents will encounter.
We ran each random instance with all three schedule repair algorithms RVWA, RVRAA,
and IAP (our algorithm 6). For the first set of experiments, we used random graphs on
180 nodes and 300 edges.

Figure 6.11(a) shows the number of priority changes for each of the three algorithms
we consider, averaged over the four incident settings from table 6.1 (in section 6.1.2).
The RVWA line is always at zero, of course, because it is the algorithm that does not
perform any priority changes. The number of priority changes seems to increase linearly
with the number of agents in the system, both for the RVRAA algorithm and for our IAP
algorithm, but our IAP algorithm manages many more priority changes. To avoid clutter,
we did not display the number of priority changes by both algorithms for each of the four
incident settings separately, but anyway the results are the same: the IAP algorithm
performs significantly more priority changes for all choices of the incident parameters.

Figure 6.11(b) shows the average mechanism delay per agent for each of the three
schedule repair algorithms on random graphs with 180 nodes and 300 edges. The
figure shows that the application of IAP results in 10% to 15% reduction in mechanism
delay compared to the application of RVRAA; the RVRAA algorithm in turn manages
to produce 10% to 15% less mechanism delay than the RVWA algorithm. Hence,

7In the case of 1997 computer game MDK, for example, the mystery surrounding the meaning of the
acronym became part of the game’s advertising campaign. Among the candidate meanings were Murder,
Death, Kill (in homage to Demolition Man), Massive Dollops of Ketchup, Mother’s Day Kisses, Mission:
Deliver Kindness, and Mohicans Discover Knitting.

8Unfortunately, we discovered this paper [61] too late to implement their new RVDA Robust Vehicle
Delaying Algorithm and include it in the experiments described in this chapter.
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Figure 6.11: Comparison of the algorithms IAP, RVRAA, and RVWA on random graphs
of 180 nodes and 300 edges, averaged over different incidents settings.
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figure 6.11(b) suggests that making more priority changes results in a lower mechanism
delay. At the same time, figure 6.11(b) shows that there is not a linear relation between
the number of priority changes and the delay reduction achieved. For example, at 400
agents RVRAA makes around 100 priority changes more than RVWA, while IAP makes
almost 400 changes more than RVRAA. The reduction in delay that IAP achieves over
RVRAA is the same, however, as the reduction in delay that RVRAA achieves over
RVWA. If we look at the performance of the three algorithms for each of the incident
settings separately, then the relative performances of the algorithms stay the same: IAP
outperforms RVRAA, which in turn outperforms RVWA.

Figure 6.12 shows the relative mechanism delay for two other types of infrastructures,
namely two-dimensional lattice networks and small-world networks. The general picture
is the same: application of IAP results in the least mechanism delay, while application of
RVWA results in the most application delay. For lattice networks, the differences in delay
between the three algorithms are about the same as for random networks: IAP produces
10% to 15% less delay than RVRAA, which in turn produces 10% to 20% less delay than
RVWA. On small-world networks, for which the delay resulting from RVWA is by far the
highest, the reduction in mechanism delay is much greater. The gap between IAP and
RVRAA can be as much as 30%, while the difference between RVRAA and RVWA can
be as much as 50%.

For the sake of completeness, we show in figure 6.13 the performance of the algorithms
on small-world networks for the following incident settings: LL = (0.01, 30s.); HL = (0.1,
30s.); HH = (0.1, 90s.). In the legend of the figure, algorithm RVWA is referred to by
number 1 (so the application of RVWA in the incident setting HH is denoted by HH.1,
for example), RVRAA has number 2, and IAP has number 3. The figure shows that the
relative performances of the three algorithms are the same for each of the three incident
settings: IAP outperforms RVRAA, which in turn outperforms RVWA. The difference
between IAP and RVWA is such that the performance of IAP on incident setting HH
is the same as the performance of RVWA on incident setting HL. It should be noted,
however, that the relative mechanism delay for IAP on the highest incident level still
reaches 100% at 400 agents. In fact, application of IAP cuts the mechanism delay almost
in half for the experiments on small-world networks, but it still cannot approach the
performance of plain RVWA on the Schiphol infrastructure.

To conclude this section on priority-changing algorithms, we can say that allowing
priority changes enables us to reduce delay. Moreover, our IAP algorithm, which performs
the most priority changes, also results in the greatest reduction in delay. At the same
time, we saw that we cannot expect the same benefit from every priority change. In fact,
sometimes a priority change can even increase the delay in the system, especially if an
agent increases its priority over multiple agents. In figure 6.14, for example, agent Charles
is ready to enter resource r4, but agents Bob, Alice, and Trudy are scheduled to enter
the sequence of resources (r2, r3, r4) first. If we increase the priority of Charles so that
he can enter r4 first, then all three other agents have to wait for him. If we assume that
it does not take Alice, Bob, and Trudy much more time to traverse (r2, r3, r4) together
than it does Charles to traverse these resources, then increasing the priority of Charles
will increase the delay from this example almost threefold.
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Figure 6.12: Relative mechanism delay resulting from the application of algorithms IAP,
RVRAA, and RVWA, averaged over different incidents settings.
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Figure 6.14: If agent Charles is granted the highest priority for the resources (r2, r3, r4),
this will result in more delay than if the other agents go first.
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As figure 6.14 illustrates, it might be useful to make a distinction between identifying
the possibility of a safe priority change, and performing the actual priority change. De-
ciding to increase an agent’s priority can be done on the basis of heuristic information,
that should predict whether a priority change is globally beneficial or not. Information
that might prove useful is how much an agent is delayed, and how much time the delayed
agent still needs to reach the resource that the non-delayed agent is waiting to enter. The
more an agent is delayed, the more likely it seems that global delay will decrease if a
non-delayed agent is granted the higher priority.

6.2 Priorities and global plan quality

So far in this thesis, we have assumed that agents plan in sequence, but which particular
sequence to plan in has been left unspecified. In some domains, an ordering of the agents
is given simply because the agents arrive in sequence, but in other domains agents must
be assigned a priority. Assigning priorities arbitrarily is justified in case the worst-case
ordering does not result in a significant increase of global plan cost. Otherwise, with an
exponential number of possible agent orderings to choose from, some heuristic function
should be used to choose a reasonable assignment of priorities.

As we have seen in section 3.4, there exist cases where the cost of the worst ordering
is O(|A|) times as much as the cost of the best ordering. Obviously, this constitutes
a significant increase in global plan cost, so choosing an arbitrary ordering may not be
a suitable approach for all application domains. We will first investigate how global
plan quality differs for different agent orderings in our airport taxiway routing problem.
Finally, we will repeat this experiment on different classes of random networks, that vary
in their average node degrees (the number of edges connected to a node, on average).

6.2.1 Agent ordering assumption

For the experiments in sections 6.2.2 and 6.2.3, we will make the following assumption:
the optimal agent ordering, combined with optimal single-agent planning, will result in
a multi-agent plan with a close-to-optimal cost. Figure 6.15 depicts a situation where
the optimal set of priorities will not lead to an optimal plan. It shows an agent A1 that
wants to go from left to right, and an agent A2 that wants to go from right to left.
The infrastructure contains two directed lanes, both of which can be used for a short
detour (the travel time of the directed resources is assumed to be longer than the travel
time of the other lanes). In the optimal multi-agent plan, either agent A1 or agent A2

must make a detour. However, in a prioritized approach this multi-agent plan will never
be constructed. Suppose w.l.o.g. that agent A1 is allowed to plan first. It will choose
its optimal plan, which is to make no detour. When it is agent A2’s turn to plan, the
reservations of A1’s plan force it to wait before entering its start location, because it
cannot take the ‘detour lane’ close to its start location, which can only be used in the
opposite direction.

Whether the optimal priority assignment is guaranteed to result in an optimal plan
is still a partially open question. If we assume an infrastructure with only undirected
resources, then it is much harder to find an example where a prioritized approach does
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A1 A2

Figure 6.15: In a prioritized approach, neither agent will make use of the detours, which
means that the lower-priority agent can only enter its start location when the other agent
has passed.

not yield an optimal solution. One example was presented in [89], however that example
does not distinguish between lane and intersection resources.

6.2.2 Schiphol experiments

For the first set of experiments, we considered taxi route planning on Schiphol airport.
This time, we consider three classes of start-destination pairs for the agents. The first
class is the realistic case where either the start location is a runway and the destination
location is a gate, or the start location is a gate and the destination location is a runway.
Of the five runways in use9, two could be used solely for take-off, and three could be used
only for landing. The second class of start-destination locations is similar to the first,
except that here all runways can be used both for landing and for take-off10. The third
class of start-destination pairs is that all locations are chosen randomly.

In our experiments, we compare the difference between the best priority assignment
and the worst. We experimented with 600 agents, and three times 100 different sets of
start-destination pairs. For each of those 100 problem instances, we tried 100 random
agent orderings. The result of one experiment is the difference between the best priority
assignment and the worst. If this difference turns out to be small, then this provides
strong evidence that the prioritized approach will result in low-cost multi-agent plans: an
arbitrary priority assignment is close to the best assignment, which in turn is assumed to
be close to an optimal multi-agent plan.

Figure 6.16 shows six box plots11. One box plot is a summary of 100 experiments,
where one experiment is: given 600 agents and for each agent a start and destination

9From figure 6.2 it can be seen that Schiphol has six runways, but the smaller Oostbaan is rarely
used.

10Recall that at Schiphol airport, the simultaneous operation of a runway for landing and take-off
(called mixed-mode operation) is not in use.

11To read the boxplots: the box contains all data points between the first quartile (the ‘lowest’ 25%
of the data points) and the third quartile. The whiskers extend to the farthest data points that are not
considered outliers, which are data points that are farther removed from the median than 1.5 times the
interquartile range (the height of the box); outliers are represented by circles. Our boxplots have notches
around the median; the meaning of these is that if the notches of two boxplots do not overlap, then this
is ‘strong evidence’ that the median of the respective data sets differ [11].
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Figure 6.16: Difference between the best and the worst agent ordering (in terms of cost
or makespan), for (I) realistic runway configurations, (II) mixed-mode runway configura-
tions, (III) random start and destination locations.
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location, try 100 different agent orderings to find a multi-agent plan, and record the
difference between the best plan and the worst plan. We consider difference in multi-
agent plan cost according to two different measures. The first, labeled ‘cost’ on the
horizontal axis of figure 6.16, is the summation of agent plan costs (in accordance with
definition 3.1.2 of agent plan cost); the second is the makespan of a multi-agent plan,
which is the time that the latest agent finishes. The first conclusion we can draw is that
the agent ordering has little impact on the global plan cost in case start-destination pairs
belong to the first class of instances (in which agents travel between gates and runways
and runways are not used in mixed mode). As a result of the planning process, flows
of agents are created on the infrastructure, in the sense that many agents travel in the
same direction. Because multiple agents can occupy a taxiway if they travel in the same
direction, there is little interference between the agents, especially between those that
share a runway as a starting location. In case agents travel from a different gate to the
same resource, their paths must merge into a flow. Apparently, this merging is achieved
without much difficulty by the prioritized planning approach.

In case agents are allowed to use a runway in different directions, or if start and
destination locations are distributed randomly over the infrastructure, then the flow of
agents can be disrupted. For example, if there is a single long taxiway that leads to
a runway (which is the case for e.g. the Polderbaan, see figure 6.2) then no agent can
approach the runway for take-off as long as a landing aircraft has not exited this ‘access’
taxiway. However, the maximum inefficiency in terms of summed agent plan cost is still
only around 20% of the best priority assignment; an arbitrary priority assignment can
therefore can be expected to be closer to the best agent ordering. Figure 6.16 also shows
that the makespan cost measure is more sensitive to the priority assignment. This is not
surprising, however: if only one or two agents are very late, then this will not result in a
high summed agent plan cost, but it will directly result in a high makespan.

6.2.3 Experiments on random infrastructures

The above experiments on the Schiphol infrastructure showed a distinct drop in perfor-
mance of the prioritized planning approach in case start and destination locations are
not grouped in a particular fashion. We therefore repeated the above experiments on
sets of random infrastructures, with randomly chosen start and destination locations.
We generated several classes of random infrastructures, which differ in the average node
degree (the average number of lanes that an intersection is connected to). The average
node degree ranges from around 4, to a little over 2. An average node degree of four
corresponds to having about twice as many edges as there are nodes. Our choice for the
maximum factor of 2 was motivated by the research into random planar networks by
Denise et al. [15], who found that for approximately maximum random planar networks,
the number of edges is around twice the number of nodes. Having planar networks makes
sense in a transportation setting, but unfortunately constructing them is rather involved
(cf. [6]), so we constructed ordinary random networks. An average node degree of around
2 corresponds to having roughly an equal number of nodes and edges, which constitutes
a sparse but connected graph.

The most obvious conclusion that can be drawn from figure 6.17 is that the difference
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Figure 6.17: Differences between best and worst priority assignments in terms of makespan
or multi-agent plan cost, for random networks with an average node degree from 4.0 to
2.3.
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between the best and the worst agent ordering increases as the average node degree
decreases (note that there is no scale on the horizontal axis in figure 6.17 — the labels
simply represent the average node degree for the infrastructures in one set of experiments),
both in terms of summed agent plan cost and in terms of makespan. We believe this can
be explained in terms of the densities of the infrastructures. For infrastructures with
high average node degree, each intersection is connected to many lanes, and there are
many paths between any two locations. If one path is congested, then the route planning
algorithm from chapter 4 will find an alternative route. For infrastructures with a low
average node degree, there is often only a single reasonable path between two locations.
Such a path can become a bottleneck especially in the case it is used in both directions,
because then only one agent can make use of it at the same time. Indeed, the worst agent
ordering can produce many situations illustrated in example 3.4.1, with a path being used
by agents travelling in alternating directions.

To compare the results of figure 6.17 with the experiments on the Schiphol infrastruc-
ture in figure 6.16, the Schiphol infrastructure has an average node degree of around 4.
The results for the random infrastructures with average degree 4 and the Schiphol infras-
tructure are indeed comparable, although there are a couple of outliers in the random
infrastructure experiments that did not appear in the Schiphol experiments.

6.3 Concluding remarks

In this chapter we empirically evaluated the usability of the prioritized multi-agent route
planning approach, i.e., how well the approach should lend itself to application in realistic
problem domains. We evaluated both the robustness in the face of unexpected incidents,
and how the cost of the global plan depends on the order in which the agents plan. In
both experiments, the best results were obtained using a realistic airport infrastructure
(of Amsterdam Airport Schiphol).

With regard to the cost of the global plan, the suitability of the airport infrastructure
is straightforward to explain. We think that in order to obtain low-cost multi-agent plans,
agents should form flows over the infrastructure: if agents travel in the same direction
along a path of resources, then the resource utilization is much higher than if the travel
direction of a path changes with each subsequent agent. For airport infrastructures, such
flows will be established naturally due to the location of the start and destination locations
of the agents: each agent starts at a runway and then goes to a gate, or an agent goes
from a gate to a runway. Especially for the case of Schiphol airport, where runways are
only used either for landing or for taking off, many agents travel in the same direction,
and agents that arrive do not interfere much with agents that depart. As a result, it does
not matter much to the global plan cost in which order we let the agents make their plans.
For random infrastructures, the organization of agents into flows is more easily achieved
in case an infrastructure has many alternative paths connecting any two locations. We
believe this is the reason why infrastructures with a high average node degree are less
sensitive to the priority ordering of the agents than infrastructures with a low average
node degree.

With regard to the robustness of multi-agent plans in case of unexpected incidents, an
important result was that small disturbances have little impact on the operation of the
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multi-agent system. In case many (and severe) incidents occur, the average delay increases
(and becomes more unpredictable), but at 20% of plan length it is still within bounds
for the airport experiments. On other types of infrastructures (we tested small-world
networks, two-dimensional lattice networks, and random graphs), the average mechanism
delay on the highest incident level was between 100% and 200% of plan length. Fortu-
nately, by applying schedule repair algorithms we can often cut the mechanism delay in
half. The organization of agents into flows also seems beneficial for the robustness of a
set of agent plans. For the Schiphol experiments, these flows occur not only because of
where the start and destination locations of the agents are situated, but also because the
arrival and departure of the agents are spread over time (because only one or two agents
can land or take off at the same time). If we also spread the arrival times of agents in
random infrastructures, then we also achieve a reduction in mechanism delay, presumably
due to an increase in the formation of agent flows.



Chapter 7

Conclusions

This thesis aimed to answer the question,

Can agents, operating on a shared infrastructure, find conflict-free route plans
that are both efficient and robust under changing circumstances, given limited
computational resources?

In this chapter, we will evaluate whether the contributions of this thesis provide a sat-
isfactory answer to the research question, and in which areas future work is still required.

7.1 Finding conflict-free route plans

When planning a route to perform a transportation task, an agent must ensure that it
will not come into conflict with other agents that operate on the same infrastructure. We
model the infrastructure as a set of resources representing the roads and intersections that
the agents travel on. Each resource has a capacity that specifies the maximum number
of agents that may occupy the resource at the same time. The agents should ensure that
they come up with a set of route plans such that the planned usage of any resource never
exceeds its capacity.

In many application domains, the resource capacity constraint alone is not sufficient
to ensure conflict-free plan execution. In our model of multi-agent routing, we therefore
define other constraints that a set of agent route plans may also be required to satisfy.
For example, we may require that agents are not allowed to overtake each other on a
resource; or, a (road) resource that allows bidirectional traffic may only be traversed in
one direction at the same time.

We have presented a prioritized approach to route planning, in which each agent
is assigned a (unique) priority, and the agent with the highest priority may plan first,
followed by the agent with the second-highest priority, and so on. When the agent with
the highest priority has decided on its route plan, it places reservations on the resources
in its plan for the duration of its intended traversal of the resources. The second agent
to plan must respect these reservations, in the sense that it is not allowed to place any
reservations that would exceed the capacity of any resource at any time (or violate any
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of the other constraints in force). Hence, the agent with the nth highest priority must
plan around the reservations of the first n − 1 agents. To do so, it need not consider
all of the different reservations on each of the resources it encounters. Instead, prior to
planning, it is possible to derive the set of free time windows for each resource in the
infrastructure. A free time window constitutes an interval during which an agent can use
a resource without causing a conflict with any of the higher-priority agents.

We can find a conflict-free route plan by performing a search through the graph of free
time windows. If we find the shortest path in the free time window graph, then we have
found a route plan that avoids conflicts with all of the higher-priority agents. Moreover,
this plan is time-optimal, in the sense that no route plan can be found that arrives at the
agent’s destination resource earlier.

7.2 Efficiency of route plans

We have presented an algorithm that finds the shortest-time route plan for a single agent,
given a set of plans from higher-priority agents. This does not guarantee, however, that
the set of agent plans is optimal. In fact, a simple example can show that even with
optimal single-agent planning, the multi-agent plan (simply the union of the single-agent
route plans) can be O(|A|) times as costly as an optimal multi-agent plan (where A is
the set of agents).

We have presented a set of experiments designed to evaluate how an arbitrarily chosen
assignment of priorities might influence the cost of the multi-agent route plan. To this end,
we tried 100 different priority assignments for each problem instance, and recorded the
difference between the best and the worst priority assignment. Interpreting this difference
as an estimation of the worst-case priority assignment, we found that the impact of the
agent ordering is influenced by a number of factors.

First of all, an experiment with taxi route planning on a model of a real airport
(Amsterdam Airport Schiphol) showed the importance of the distribution of the start
and destination locations of the agents. With all agents either travelling from a runway
to a gate, or from a gate to a (different) runway, there is little chance that the agents
will meet head-on. The increase in plan cost for the worst priority assignment was less
than 5% over the best priority assignment. However, if agents have random start and
destination locations, the increase in multi-agent plan cost was at most 20%.

A second factor that influences the performance of prioritized planning is the density
of the infrastructure. A second set of random infrastructures showed that if the (average)
number of roads connected to intersections (the average node degree) increases, then the
increase in plan cost for the worst priority assignment goes down. For random infras-
tructures with an average node degree of around 4, the worst priority assignment had an
increase in plan cost of around 10%, whereas for infrastructures with an average node
degree of 2.3, the worst priority assignment was at most 80% more expensive. The reason
for this performance difference is that for sparse graphs, there is often only a single path
between two locations; if subsequent agents use that path in opposite directions (and no
simultaneous bidirectional travel is allowed), then very inefficient behaviour ensues. If
there are two paths between locations, then one can be used for agents in one direction,
and the other can be used by agents travelling in the other direction.
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A direction of future work is to find heuristic functions to determine efficient priority
assignments. Our experiments show that agents lose much time waiting for agents trav-
elling in the opposite direction, so a heuristic function could be aimed at creating flows
of agents travelling in the same direction.

7.3 Robustness of route plans

The study of the impact of unexpected incidents on plan execution is especially important
for multi-agent routing, since a small delay of one agent can, if all other agents have zero
delay, create a deadlock situation. Fortunately, Maza and Castagna [58] described a
procedure that can prevent delays from creating deadlocks. As a result of planning, it is
possible to infer for each resource which agents will use it, and in which order (specifying
the priorities of the agents on this resource). If we maintain this resource priority during
the execution of the agents’ plans — meaning that agents can only enter the resource in
the order that they planned to — then the delays of the agents will not lead to a deadlock.

Maintaining resource priorities implies that an agent must sometimes wait for a higher-
priority agent that has some delay. The robustness of a set of route plans can therefore
be measured in terms of the delay agents suffer while waiting for permission to enter a
resource. Our experiments in taxi route planning show that in case there are only a small
number of short incidents, then agents hardly suffer any additional delay. In case there
are many long incidents, our experiments in taxi route planning show that the additional
delay amounts to at most 20% of average plan length.

A different set of experiments conducted using random infrastructures (including grid-
like infrastructures, small-world infrastructures [43], and ‘fully random’ infrastructures)
also showed that delay is low for a small number of short incidents. For a large number of
long incidents, however, additional delays of around 100% were frequently reached. One
reason for the difference in delay between these experiments and the airport taxi routing
experiments is that in the latter set, the lengths of the plans of the agents are much
longer, so one long incident (incident durations were the same for the airport experiments
and the random-infrastructure experiments) has less impact in a relative sense. A second
reason why the results are so favourable for the airport experiments is that the locations
of the start and destination points of the agents allow them to organizes themselves into
flows (for example, agents travelling from a runway to a gate are going in more or less
the same direction and will not interfere much with each other). It seems to be that
flows of agents are not as vulnerable to delays as agents that use resources in alternating
directions.

We managed to reduce the delay by up to 50% by making use of an algorithm that
increases the priority of a non-delayed agent. Maza and Castagna [60] first presented an
algorithm that allows an agent, which is waiting to enter a resource, to increase its priority
over the agents that it is waiting for. The solution presented by Maza and Castagna is
to grant an agent the highest priority for all of its remaining resources (i.e., it will be
the first agent to enter these resources), which will not lead to a deadlock if and only
if these resources are currently empty of agents. We proposed an alternative algorithm
that only increases an agent’s priority over those agents that are truly delayed, allowing
us to perform more priority changes. Our experiments indicate that our mechanism
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leads to lower delay than Maza’s algorithm, for all incident ‘levels’ that we investigated.
As future work, we should also compare our algorithm to Maza and Castagna’s own
alternative priority-changing algorithm [61], which we did not discover in time to include
in our experiments.

Our experiments indicate that, on the whole, making more priority changes will reduce
delay. At the same time, it is easy to show that not all priority changes will reduce delay,
and some can even increase it. Whether a particular priority change will reduce delay or
not should be the subject of further research. One possibility is to develop a heuristic
function that should estimate the merit of each potential priority change. This heuristic
could be based on e.g. the estimated time that a delayed agent needs to reach a particular
resource in its plan (to judge how much longer a non-delayed agent would have to wait).

7.4 Computational complexity of route planning

Finding an optimal set of route plans is a computationally hard problem. In its most
basic form, the problem is strongly NP-hard even for instances with only three resources;
in its hardest form (i.e., when a set of agent plans must satisfy a particularly difficult set
of constraints), the multi-agent routing problem is PSPACE-complete.

Finding an optimal route plan for a single agent, given a set of plans from higher-
priority agents, can be achieved in polynomial time. An existing algorithm from the
literature [41] reports an O(|A|4|R|2) worst-case running time (where A is the set of
agents and R is the set of infrastructure resources). We have presented an algorithm with
an improved complexity of O(|A||R| log(|A||R|) + |ER||A|), where ER is the set of lane
resources in the infrastructure (the ‘edges’ in the infrastructure graph).

7.5 Answering the research question

This thesis has provided a tentative “yes” to the question “can agents, operating on a
shared infrastructure, find conflict-free route plans that are both efficient and robust under
changing circumstances, given limited computational resources?” First of all, we have
made progress both in the areas of computational complexity and robustness: our new
single-agent, context-aware route planning algorithm has a significantly better worst-case
running time complexity, and our new schedule repair algorithm achieves a substantial
reduction in delay caused by unexpected incidents in the environment.

With regard to the efficiency of route plans, our single-agent route planning algorithm
ensures a locally (i.e., for the agent itself) optimal solution, but not a globally optimal one.
Our experiments did reveal that there are certain conditions under which the individually
optimal agent plans form a multi-agent plan that looks close to optimal. In particular,
in case the agent plans form flows of agents over the infrastructure, then the multi-agent
plan cost is often low. Further research into the cost of the multi-agent plan can therefore
be directed at stimulating the emergence of agent flows. One possibility, as mentioned
above, is to come up with a set of agent priorities that should achieve this.
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7.6 Outlook

So far, we have identified directions of future work that can be viewed as direct continu-
ations of the research described in this thesis: we can try to improve global plan quality
by finding better agent planning orders, and we can develop heuristics to guide us in
determining when we should increase the priority of non-delayed agents. In addition, we
will now present some ideas for future work into research directions that are relatively
unexplored, more challenging, and more exciting !

The first new research question is whether we can do away with the timing of the plans.
Currently, the route plans that we produce specify exactly where an agent is at each point
in time. This is convenient, because it allows us to predict exactly when an agent will
finish its transportation task. On the other hand, such a plan specification may seem too
precise in a dynamic environment, where small disturbances might cause the execution
of the plans to have a slightly different timing. In addition, our results on the Planstep
Priority Graph from chapter 5 show that we do not need to know the exact timing of agent
plans to ensure deadlock-free system operation. Instead, we only need to decide in which
order the agents will visit the various resources. Hence, we might conceive of a planning
method that only gives an agent priorities on the resources it will use, in such a way that
the set of agent plans is deadlock free. To execute such a set of agent plans, we only
need Maza and Castagna’s priority maintenance idea, possibly extended with a priority
changing algorithm to fine-tune performance. The main motivation for pursuing this line
of research would be the hope that we can produce a faster route planning algorithm.

The second question is whether we can find other ways to improve the quality of the
global plan. One possibility is to let coordination between the agents play a bigger role.
The prioritized approach we presented in this chapter promotes the autonomy of the
agents: an agent may make use of any resource, during any time interval, as long as no
conflict is created. This also means that an agent is not in any way guided towards plans
that are beneficial to others, for instance if there is a choice between equivalent plans.
Additional constraints or guidelines — imposed before or during the planning process
(cf. [92]) — could be used to steer an agent in a good direction. Another possibility
to steer the agents in the right direction might be to construct a small percentage of
the agent plans centrally before letting the other agents plan as usual. The initial set
of plans could form one or more flows, to which the other agents would add their plan,
thereby strengthening the flows. Note that this is actually a kind of Stackelberg game, in
which the leader first chooses an action, then one or more self-interested followers choose
theirs (cf. [45]). The leader will choose its action in such a way that the best response
of the followers, having observed the action of the leader, will lead to an outcome that is
desirable for the leader.

A final idea might be to conduct experiments in more realistic application domains.
In this thesis we have argued for the usability of (the prioritized approach to) multi-agent
route planning, and we have shown that e.g. we can still use route plans when incidents
disrupt the execution of plans. But to answer questions like: “can we really reduce delay
at Schiphol airport”, or “can a human air traffic controller or AGV dispatcher improve
his or her performance using a MARP decision support system”, or “how should we
integrate MARP with other problems like idle vehicle management, (transportation-)task
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allocation, battery management, etc.”, we not only need more comprehensive simulation
models, we also need to open up our relatively sheltered simulation environment to human
users.
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Summary
The world according to MARP

In multi-agent route planning (MARP), there is a set of agents each with a start location
and a destination location on a shared infrastructure, and the goal of each agent is to reach
its destination in the shortest possible time, without coming into conflict (e.g. because of
a collision) with any of the other agents. The MARP problem is relevant in automated
guided vehicle systems, with application domains in flexible manufacturing systems or at
container terminals like Rotterdam or Singapore. Another application domain for MARP
is airport taxi routing, where aircraft must taxi between runway and gate, while avoiding
close proximity with other aircraft.

In the literature, a number of approaches to MARP exist. The first is to have one
planner make a plan for all agents. Because of its complete overview, the centralized
planner can in principle find an optimal set of agent route plans. Unfortunately, finding
an optimal set of plans is intractable (as we show in this thesis1), and in practice optimal
plans can only be found if there are not more than a handful of agents. A second approach,
and the one we take in this thesis, is to let the agents plan one by one, each agent planning
around the plans of the previous agents (in the sense that no conflict is introduced with
any existing plans). In this prioritized approach (the agents plan in the order of their
priority), it is possible to find an individually optimal route plan in reasonable time,
although there is no guarantee that the combination of agent plans is also optimal. A
third approach to MARP is to do very little planning (for example by choosing a fixed
path between start and destination), and instead to check at every next step in the plan-
execution phase whether it is safe to move forward, or whether a conflict will ensue. In
this approach there are no guarantees for either local or global optimality, but it can be a
convenient approach in dynamic environments, where unexpected changes can invalidate
carefully crafted plans. If however there are no plans, then nothing can be disrupted,
and any situation can be treated the same way. By contrast, the first two (planning)
approaches to MARP require additional plan repair techniques to deal with unexpected
incidents.

We present a model for MARP in which the infrastructure is modeled as a graph

1As far as we know, no previous complexity results exist for the problem of route planning over a
known infrastructure. For robot motion planning planning problems, where agents can freely move around
the available space (and are not restricted to move only along roads), the intractability has already been
proved.
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of resources (like roads and intersections); each resource has a capacity, which is the
maximum number of agents that may occupy the resource at the same time. A route
plan is a sequence of resources each with an occupation time interval, and the objective
in MARP is to find a set of agent route plans such that the capacities of the resources are
never exceeded. In our model, we also identify a number of additional constraints that
have to be satisfied depending on the application domain. For example, we formulate
constraints to forbid overtaking, constraints that forbid cyclic plans, and constraints that
require a minimum separation between agents of at least one empty resource. Even if
no additional constraints need to be satisfied, finding an optimal solution to the MARP
problem is intractable.

Our route planning algorithms make use of free time windows on resources. A
free time window is an interval during which an agent can make use of a resource
without causing a conflict with any of the existing route plans. We search for a route
plan by constructing a graph of the free time windows, and performing an adapted
shortest-path search through this graph, which results in an optimal (shortest-time),
conflict-free route plan for a single agent. Our contribution lies in the speed of our
algorithm, which is much faster than previous optimal single-agent route planning
algorithms. In addition, we also present a route planning algorithm that can find a
conflict-free route plan along a sequence of locations (rather than from a start location
to a single destination location), which is the first algorithm in its kind, as far as we know.

Planning approaches to MARP require additional mechanisms to deal with unex-
pected incidents during plan execution. In this thesis, we consider vehicle incidents that
temporarily immobilize an agent (which can be caused by e.g. a human that steps into
the path of an agent). If, after the slowdown, all agents including the delayed agent
ignore the disruption, then a deadlock situation can arise. In the literature there exists
a mechanism that can prevent deadlocks, and thus ensure that each agent can reach its
destination safely, albeit with a possible delay. This mechanism is based on the resource
priority that agents inherit after the planning process: from the set of agent plans, we can
infer the order in which agents visit a resource (and the first agent to visit a resource has
the highest resource priority). The deadlock prevention mechanism is simply to respect
these resource priorities during plan execution, which means that agents sometimes have
to wait for a delayed agent with a higher priority.

In some cases, there is no need to wait for a delayed agent, and the resource priority
can be changed during plan execution without creating a deadlock situation. In the
literature, one such priority-changing algorithm exists, but the conditions under which it
allows a priority change are very strict, which limits the applicability of the algorithm. We
developed a new priority-changing algorithm that allows changes in more situations, which
therefore has the potential to achieve a bigger reduction in agent delay. Our algorithm
makes use of a graph structure that can predict exactly which priority changes are safe,
and which will lead to a deadlock.

In our experiments we evaluated the robustness of agent route plans, i.e., the property
of plans to remain efficient, in terms of minimizing delay, even if unexpected incidents
necessitate minor plan revisions. Above, we described three schedule repair algorithms2:

2We use the term schedule repair because only the timing of the plans is changed.
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either fully respect the resource priorities during plan execution, or allow some priority
changes using the existing priority-changing algorithm, or using our new algorithm. Re-
specting resource priorities can be seen as a baseline approach to incident handling: if it
results in short delays, then no priority changes are necessary; if it would result in long
delays, then we can seek to reduce this delay by changing some priorities at run-time.

In taxi route planning experiments on a model of Schiphol airport, the baseline method
produced satisfactory results: in case there are only a few short incidents, then there is
hardly any delay; in case there are many incidents of a long duration, then the average
delay was still rarely more than 20% of the length of the agent plans. Experiments
on other types of infrastructures (such as grid-like networks and small-world networks)
also showed that delay is low for a small number of short incidents, but for a large
number of long incidents, delays of around 100% were frequently reached. One reason
why the results are so favourable for the airport experiments is that the locations of the
start and destination points of the agents were not fully randomized, as aircraft agents
travel between runways and gates. Hence, if aircraft agents use the same resource, then
they are most likely heading in the same direction. Our experiments suggest that the
most delay from incidents arises when agents that have to wait for each other travel in
opposite directions. We also managed to reduce delay by changing priorities, and our
algorithm, which produces the greatest number of priority changes, also managed the
greatest reduction in delay.

A different set of experiments evaluated the cost of the multi-agent plan (which can
be measured by e.g. recording the finish time of the latest agent) that results from
sequential single-agent planning, for arbitrary agent priorities. Under the assumption
that the optimal set of agent priorities will result in a close-to-optimal global plan, then
measuring the difference between the best and the worst observed set of priorities gives
an indication of the worst-case global plan cost that can be obtained using prioritized
planning. In our experiments, we tried 100 different sets of agent priorities for a single
problem instance, and for each type of infrastructure, we tried numerous instances. The
best results were again obtained for the airport infrastructure, and again the locations of
the start and destination points seem to be the main reason: because all agents travel in
more or less the same direction, they manage to organize themselves into flows, regardless
of which agent is allowed to plan first. For other types of infrastructures, it proved to be
important to have multiple routes between any two locations. Otherwise, if e.g. one road
connects two parts of the infrastructure, then this road can become a bottleneck if agents
on either side of the road need to cross; arbitrarily assigned priorities can then lead to
a situation where the travel direction of the resource alternates with every other agent,
which is much less efficient than many agents using the resource at the same time in the
same direction.

To conclude, we presented a prioritized approach to the multi-agent route planning
problem. MARP has many important application domains like airport taxi routing and
route planning for automated guided vehicles, and our new algorithm is fast enough to
be applied to problem instances of realistic size. To deal with unexpected incidents, we
have focussed on schedule repair methods, but in future work we can investigate how
plan repair techniques (i.e., also allowing agents to choose a different route) can further
reduce delay. Another direction of future research is how we can reduce the cost of



142 Summary

the global plan. Our route planning algorithms are optimal for a single agent, and the
combination of individually optimal route plans sometimes leads to high-quality global
plans — for example in the taxi route planning experiments, where the location of the start
and destination points of the agents ensured that they travel in the same directions and
therefore interfere little with each other. On other infrastructures, an arbitrary priority
assignment can sometimes lead to a poor global plan. To improve global plan cost, one
possibility is to find a better set of agent priorities. Another option is to investigate
whether agents can coordinate before or during planning, such that an agent also takes
into account the benefit of other agents during planning.



Samenvatting
De wereld volgens MARP

In multi-agent route planning (MARP) hebben we een verzameling agenten ieder met zijn
eigen start- en bestemmingslocatie op een gedeelde infrastructuur, en het doel van iedere
agent is om zijn bestemming zo snel mogelijk te bereiken, zonder in conflict te komen
(bijvoorbeeld door een botsing) met één van de andere agenten. Het MARP probleem
is relevant in systemen van automated guided vehicles (AGVs), met toepassingsdomeinen
als flexibele productiesystemen of bij container terminals van de havens van bijvoorbeeld
Rotterdam en Singapore. Een ander toepassingsdomein voor MARP is route planning
voor taxiënde vliegtuigen, die van een gate naar een startbaan moeten of andersom, terwijl
ze niet te dicht in de buurt mogen komen van andere vliegtuigen.

In de literatuur bestaan een aantal aanpakken voor het MARP probleem. De eerste
aanpak is om één planner een plan te laten maken voor alle agenten. Vanwege diens
volledige overzicht is het voor de centrale planner in principe mogelijk om een optimale
verzamelingen routes te vinden. Helaas is het vinden van zo’n optimale verzameling
plannen een ondoenlijk probleem (zoals we in dit proefschrift laten zien3), en in de praktijk
lukt het slechts om optimale plannen te vinden voor probleem instanties met een beperkt
aantal agenten. Een tweede aanpak, en degene die we in dit proefschrift hanteren, is om
de agenten één voor één te laten plannen, zodat iedere agent om de plannen van de vorige
agenten heen plant (in de zin dat geen conflict wordt gëıntroduceerd met enig bestaand
plan). In deze op prioriteiten gebaseerde aanpak (de agenten plannen op volgorde van
prioriteit) is het wel mogelijk om een individueel optimaal plan te maken in redelijke
tijd. Echter, er is geen garantie dat de combinatie van de plannen van de agenten ook
optimaal is. Een derde aanpak voor het MARP probleem is om heel weinig daadwerkelijke
planning uit te voeren (door bijvoorbeeld vantevoren vastgestelde paden te gebruiken) en
in plaats daarvan om bij iedere volgende stap in de planexecutiefase te controleren of
het veilig is om vooruit te gaan, of dat een conflict zal optreden. In deze aanpak zijn er
geen garanties voor lokale of globale optimaliteit, maar het kan een handige aanpak zijn
voor dynamische omgevingen, waar onverwachte veranderingen nauwkeurig uitgedachte
plannen kunnen verstoren. Als er echter geen plannen zijn, kunnen die ook niet verstoord

3Voor zover wij weten bestaan er geen eerdere complexiteitsresultaten voor het routeplanningsprob-
leem over een gegeven infrastructuur. In de literatuur over het plannen van de bewegingen van robots,
waarbij de agenten vrijelijk door de ruimte kunnen bewegen (en zich niet hoeven te beperken tot het
rijden over wegen), is de ondoenlijkheid al wel aangetoond.
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worden, en dan kan iedere situatie op dezelfde manier behandeld worden. Voor de eerste
twee (plannings)aanpakken voor het MARP probleem, daarentegen, zijn additionele plan
repair technieken nodig om met onverwachte incidenten om te kunnen gaan.

We presenteren een model voor MARP waarin de infrastructuur gemodelleerd wordt
als een graaf van resources (zoals wegen en kruispunten); iedere resource heeft een ca-
paciteit, wat het maximaal aantal agenten is dat tegelijkertijd van de resource gebruik
mag maken. Een route plan is een sequentie van resources met voor iedere resource een
tijdsinterval (dat aangeeft wanneer de agent zich op de resource zal begeven) en het doel
in MARP is om voor iedere agent een routeplan te vinden, zodanig dat de capaciteiten
van de resources nooit overschreden worden. In ons model onderscheiden we ook een
aantal extra regels die afhankelijk van de applicatie ook in acht genomen moeten worden.
Zo kan er een verbod zijn op inhalen, kunnen we cyclische plannen verbieden, en zijn er
regels die ervoor zorgen dat er altijd minimaal één lege resource tussen twee agenten moet
zitten. Ook als geen extra regels in acht genomen hoeven te worden is het ondoenlijk om
een optimale oplossing te vinden voor het MARP probleem.

Onze routeplanningsalgoritmes maken gebruiken van de vrije tijdsvensters op re-
sources. Een vrij tijdsvenster is een interval waarin een agent gebruik kan maken van
een resource zonder een conflict te scheppen met enig bestaand plan. Het zoeken naar
een routeplan kan dan gebeuren door een graaf van vrije tijdsvensters te maken, en
een aangepast kortste-padalgoritme uit te voeren in deze graaf. Het resultaat van dit
zoekalgoritme is een optimaal routeplan voor een individuele agent, dat geen conflicten
bevat met andere plannen. Onze bijdrage ligt in de snelheid van het algoritme, want
het is veel sneller dan eerdere optimale routeplanningsalgoritmes voor individuele
agenten. We presenteren ook een algoritme dat een optimaal, conflictvrij plan kan
vinden langs een opeenvolging van locaties (in plaats van een enkele start- en bestem-
mingslocatie); voor zover we weten is dit het eerste algoritme voor dit specifieke probleem.

Planningsaanpakken voor MARP hebben een extra mechanisme nodig om met on-
verwachte incidenten om te kunnen gaan tijdens de planexecutiefase. In dit proefschrift
beschouwen we incidenten die een agent tijdelijk stil doen staan, bijvoorbeeld omdat een
mens in de baan van de agent stapt. Als na het oponthoud alle agenten inclusief de
vertraagde agent de vertraging negeren, dan kan een deadlock situatie optreden. In de
literatuur bestaat een mechanisme dat zulke deadlocks kan voorkomen, en daardoor er-
voor kan zorgen dat iedere agent toch zijn bestemming bereikt, zij het met een mogelijke
vertraging. Dit mechanisme is gebaseerd op de resourceprioriteiten die de agenten na de
planningsfase hebben verkregen: uit de verzameling van agentplannen kunnen we afleiden
in welke volgorde een bepaalde resource door de agenten bezocht wordt; de eerste agent
die een resource aandoet heeft per definitie de hoogste resourceprioriteit op die resource.
Het mechanisme om deadlocks te voorkomen eist simpelweg dat deze resourceprioriteiten
tijdens de executiefase worden gerespecteerd, wat wel inhoudt dat agenten soms moeten
wachten op een vertraagde agent met een hogere prioriteit.

In sommige gevallen is het niet nodig om op een vertraagde agent te wachten en kan
de resourceprioriteit tijdens de executiefase veranderd worden zonder dat een deadlock
wordt gëıntroduceerd. In de literatuur bestaat een algoritme om resourceprioriteiten
aan te passen, alleen zijn de condities waaronder een verandering veilig worden geacht
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tamelijk streng, zodat prioriteitsveranderingen in de praktijk niet vaak plaats kunnen
vinden. Wij hebben een nieuw algoritme ontwikkeld dat prioriteiten kan veranderen in
meer situaties, zodat het ook de mogelijkheid heeft om een grotere reductie in vertraging
teweeg te brengen. Ons algoritme maakt gebruik van een graaf waarmee we precies
kunnen voorspellen wanneer een prioriteitsverandering veilig is, en wanneer deze tot een
deadlock zal leiden.

In onze experimenten evalueren we de robuustheid van agentplannen, waarmee we
bedoelen de eigenschap van plannen om ook efficiënt te blijven (in termen van het min-
imaliseren van vertraging) als onverwachte incidenten kleine aanpassingen in de plannen
noodzakelijk maken. Hierboven hebben we drie schedule repair4 technieken besproken:
of we respecteren de resourceprioriteiten, of we staan prioriteitsveranderingen toe door
gebruik te maken van het algoritme uit de literatuur, of door ons eigen algoritme te
gebruiken. Het respecteren van de resourceprioriteiten kan gezien worden als een ba-
sisaanpak: indien dit tot korte vertragingen leidt is het niet nodig om prioriteiten te
veranderen; zou dit echter resulteren in lange vertragingen, dan kunnen we de vertaging
proberen terug te dringen door tijdens de uitvoer van de plannen de resourceprioriteiten
aan te passen.

In experimenten met het plannen van taxiroutes op een model van luchthaven Schiphol
gaf de eenvoudige aanpak van prioriteiten respecteren bevredigende resultaten: indien er
slechts een klein aantal korte incidenten zijn, is er niet of nauwelijks vertraging; in het
geval er veel lange incidenten zijn, dan is de gemiddelde vertraging nog steeds niet meer
dan 20% van de lengte van de plannen van de agenten. Experimenten met andere typen
infrastructuren (zoals rasternetwerken en kleinewereldnetwerken (small-world networks))
laten ook zien dat de vertraging laag is bij een klein aantal korte incidenten, maar voor
een groot aantal lange incidenten kan de vertraging al snel oplopen tot 100% van de
planlengte. Een reden waarom de uitkomsten in het voordeel uitvallen van de experi-
menten op de luchthaven is dat de begin- en eindpunten van de agenten op Schiphol niet
volledig willekeurig zijn vastgesteld, omdat de vliegtuigen altijd tussen gate en startbaan
reizen of andersom. Dit betekent dat als agenten van dezelfde resource gebruik maken,
dat ze hoogstwaarschijnlijk in dezelfde richting rijden. Onze experimenten suggereren
dat de meeste vertraging onstaat als de agenten die op elkaar moeten wachten in ver-
schillende richtingen rijden. Het is ons ook gelukt om de vertraging terug te brengen
door de resourceprioriteiten aan te passen. Ons nieuwe algoritme, dat veruit de meeste
prioriteitswijzigingen wist te bewerkstelligen, realiseerde ook de grootste reductie in ver-
traging.

We hebben ook experimenten uitgevoerd om de globale kosten van de verzameling
agentplannen (die kosten kunnen bijvoorbeeld gemeten worden door te kijken naar de
eindtijd van de laatste agent) te evalueren, indien de agenten in een willekeurige volgorde
hun plannen maken. Onder de aanname dat de optimale agentvolgorde resulteert in een
bijna optimaal globaal plan, dan zal het meten van het verschil tussen de beste en de
slechtste volgorde een indicatie geven van het slechtst mogelijke plan dat je kan krijgen
met sequentieel plannen. In onze experimenten hebben we voor iedere probleeminstantie
100 verschillende volgordes geprobeerd, en we hebben verscheidene instanties gebruikt
voor ieder type infrastructuur. De beste resultaten werden wederom behaald op de

4We gebruiken de term schedule omdat we alleen de tijdsaspecten van de plannen aanpassen.
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Schiphol infrastructuur, en ook hier was de ligging van de begin- en eindpunten weer
doorslaggevend: aangezien veel agenten in min of meer dezelfde richting rijden, kunnen
ze zichzelf in stromen organiseren, ongeacht welke agent eerst zijn plan mag maken. Voor
andere typen infrastructuren bleek het belangrijk dat tussen een willekeurig paar locaties
meer dan één verbinding bestaat. Is dat niet het geval, dan is het bijvoorbeeld mogelijk
dat als een weg twee delen van de infrastructuur verbindt, dat die weg een knelpunt wordt
als agenten aan beide zijden van de weg naar de andere kant moeten; willekeurig bepaalde
prioriteiten kunnen er dan toe leiden dat de weg afwisselend in de ene en de andere richt-
ing gebruikt wordt, wat veel minder efficiënt is dan wanneer meerdere agenten de weg
tegelijkertijd in dezelfde richting zouden gebruiken.

We hebben in dit proefschrift een sequentiële aanpak voor het MARP probleem gep-
resenteerd. MARP heeft veel belangrijke toepassingsgebieden zoals taxiroutes plannen
op een luchthaven, en routes plannen voor AGVs, en ons nieuwe algoritme is snel genoeg
om problemen van realistische grootte aan te kunnen. Om onverwachte incidenten aan
te pakken hebben we onze aandacht gevestigd op schedule repair technieken, maar in
toekomstig werk zouden we kunnen onderzoeken in hoeverre we vertraging verder kunnen
terugdringen door ook plan repair technieken te gebruiken (dat wil zeggen dat we agenten
ook zouden toestaan om een andere route te kiezen). Een andere richting voor verder
onderzoek is het proberen terug te brengen van de kosten van het globale plan. Onze
algoritmes zijn optimaal voor een individuele agent, en de combinatie van agentplannen
leiden soms tot globale plannen met lage kosten — bijvoorbeeld in onze experimenten met
het plannen van taxiroutes, waar de ligging van de begin- en eindpunten ervoor zorgt dat
agenten ongeveer in dezelfde richting rijden en dus elkaar niet teveel hinderen. Op andere
typen infrastructuren kan een willekeurige planningsvolgorde echter tot gevolg hebben
dat het globale plan hoge kosten heeft. Eén mogelijkheid om die kosten te verlagen is om
een betere planningsvolgorde voor de agenten te vinden. Een andere mogelijkheid is om
te onderzoeken of we de agenten voor of tijdens de planning kunnen coördineren, zodat
een agent tijdens de planning ook rekening houdt met de belangen van andere agenten.
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