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ABSTRACT

In the first phase of the detailed model-~
ling of cross-shore sediment transport
under random waves a model is comstructed
which adopts a vertically integrated tran-—
sport description for sheetflow situations.
The formulation of the transport as a func-
tion of the instantaneous velocity field is
based on the approach of Bailard (1981).
This approach assumes in essence simply
that the instantaneous transport is propor-
tional with some power of the instantaneous
near-bottom velocity. Implementation of
this tramsport description in a time-depen-
dent model requires a formulation of the
time-mean and some low order moments of the
near-bottom velocity field. An ad-hoc for-
mulation based on a monochromatic, second
order Stokes wave representation is presen—
ted. A numerical research wodel, based on
the above formulations, is described and
limitedly checked on its performance on the
basis of an available field data set. Some
consequences for further study are indica-—

ted.

1. INTRODUCTION

The particular role of a nearly two-dimen-
sional wave motion in the movement of sedi-
ment normal to the shore is poorly under—
stood. It is generally assumed that a num-—
ber of interaction mechanisms between this

wave motion and the sediment motion contri-
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bute to the formation of the beach profile,
also in the three-dimensional topographies
that occur on a natural coast. Full account
of all mechanisms can be taken when a des-—
cription of both the horizontal velocity
field, u(x,z,t), and the sediment concen-—
tration field, c(x,z,t), in space and time
is available, so that the net cross-—shore
sediment transport, <q (x)>, may be calcu-

lacted from
{q{x)> = <f u(x,z,t).c(x,z,t) dz> (@Y
d

where the integration is performed over the
instantaneous depth d and the brackets in-

dicate time averaging. From the cross-shore
variation of <q (x)> the bottom changes may

be derived.

Visual and experimental observation of
random waves on a two-dimensional beach in-
dicates that one of the more important me-—
chanisms under active surf conditions may
be the transport of sediment by the time
mean, seawards directed flow near the bot-
tom induced by the breaking of waves. It
was shown (Stive and Battjes, 1984) that
this mechanism is so dominant that a ver-
tically integrated model incorporating this
mechanism alone describes the bottom varia-
tions in the surf zone to a satisfactory,
first approximation. Extension of this
model with other transport mechanisms is a
logical step towards a more complete cross—

shore sediment transport model. Here some

Stive




first suggestions are made to extend the
model with transport due to the asymmetry

of the wave motion.

2. TRANSPORT FORMULATION

~In principle the net cross-shore sediment
transport may be calculated from Equation
(1). There are, however, two reasons per—
suading us to rely on a simplified, verti-
cally integrated form of Equation (1).
Firstly, our knowledge of the velocity and
concentration field in time and space is
very limited. Secondly, a simpler - but
qualitative correct - formulation of the
sediment transport provides a better in-
gight in the mechanisms. Since we are in-
terested in a transport formulation which
takes also the effects of wave asymmetry
into account, it is essential to adopt a
formulation describing the transport in-
stantaneously. A simple approach would be
to assume that the instantaneous sediment
transport rate, q, is proportional to some
power of the local relative velocity be-
tween the bed and the fluid outside the

boundary layer. For example,
a(t) = A u(e) lu(e) 1™ (2)

where u(t) = u, coswt with uy the orbital
velocity amplitude just outside the boun-

dary layer and w the angular frequency.

The latter approach has been elaborated
consistently for surf zones on a plane
sloping beach by Bailard (1981), who exten-—
ded the work of Bailard and Inman (1981).
Based on Bagnold's (1963) energetics con~-
cept these authors use as a starting point
a description of the instantaneous sediment
transport basically in the form of Equation
(2), extended with the effect of a bottom
slope. Bailard (1981) distinguishes between

bedload transport in a granular—fluid shear
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layer of a thickness in the order of the
wave boundary layer and suspended transport
in a layer of greater thickness, typically
in the order of several centimeters. For
the bedload transport the power n as intro-
duced by equation (2) is given by Bailard
(1981) as 2, while for the suspended tran-
sport it is given as 3. Here his general
two-dimensional horizontal formulation is
reduced for application in the cross-shore
direction which yields the instantaneous
total load sediment transport equation (see

also Bailard, 1982):

i(e) = 1p(e)+ig(e) =

€

= oc Toeg e 12 u(e) - 2282 ucey 9]+
s 3
ocﬁ-;— [Tu(e)!3 u(e) - - tans Tu(e)15) (3)

where 1 is the total cross-shore immersed
weight sediment transport rate (composed of
the bedload transport rate, iB, and the
suspended load transport rate, iS), o is
the water density, cg 1is the drag coeffi-~
cient for the bed, tam B is the slope of
the bed, ¢ is the internal angle of fric-
tion of the sediment, w is the sediment's
fall velocity and €5 and €g are bedload and
suspended load efficiencies, respectively.
The efficiency factors €3 and €g denote
those (constant) fractions of the total
power produced by the fluid motion which
are expended in transporting. The immersed
weight sediment transport rate is linked to

the volumetric transport rate by

i
= e 4
17 To_—preN )
5
where Ds is the sediment density, g the
gravitational acceleration and N the local

volume concentration of solids.
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The above sediment transport formulation
uses vertically integrated equations. As a
consequence, the sediment transports are
assumed to respond to the near bottom water
velocity in an instantaneous, quasi-steady
manner. This assumption is probably wvalid
__for bedload transport on a flat bed (except
for a phase lag which is neglected for sim—
plicity) because the bedload layer has a
small thickness and it can respond quickly
to the instantaneous shear stress. The sus-—
pended sediment transport, however, is dis-—
tributed over a layer thickness of several
centimeters. The characteristic time con-
stant for this layer is the ratio of its
thickness and the sediment fall velocity
which is typically in the order of 1-2 se-
conds. For most natural beaches with pre-
vailing plane bed conditions and incident
wave periods of 5-10 seconds, it appears
that the quasi-steady assumption is reaso-

nable,

Another uncertainty in the transport formu-
lation concerns the use of bedload and sus—
pended load efficiency factors. Although
constant values have been found adequate
for certain types of flow (see Table 1),
their variations with the type of flow con-—
sidered leaves at least some quantitative

uncertainty.

3., THE CROSS~SHORE VELOCITY FIELD

Given the variation of the cross-—shore ve-
locity field the mean cross-shore sediment
transport rate may in principle be calcula-

ted from the time averaged Equation (3):

€

i = B 2 _ tan 8 3
<i> z e E;;—g [(Iul uw E;E—;<lu‘ > +

0 e, ;ﬁ [<luld w - -;5 tan B<IulS>  (5)

where the total velocity u is composed of a
mean (overbar) and an oscillatory (tilde)

flow component.:

u=u+u (6)

Thus, the problem to be evaluated here is
how to predict the cross—shore variation of
the velocity moments appearing in Equation

(5).

Conceptual simplifications follow by assu-
ming that the oscillatory velocity is due

to a single plane wave of frequency w and

some small nonlinear harmonics:

Q= upcos wt + uppcos 2wkt + ... (7

in which um>u2m>...

Using Equations (6) and (7) in Equation (5)

yields:
3 B¢ .3 tan 8 3%
> = Peetn tan 3 ;W1+'§ 6u ~ Ttan 4 ud) o+
3 u
S * m *
Y2 f -2 5
pegut—s ;W2+GU(U3) o” sstans(u)) } (8)

in which the relative current strength, Gu,

is

§ = u/u 9

and the odd velocity moments, wl and ¢2,
are:

Hy = <U>/ud (10a)
Uy = <lul? W/uf (10b)

The even velocity moments (u3)* and (uS)*

are defined as:

(u3)* = <lul3>/u; , (11a)

W) = <uls>/ud (11b)

Retaining first order in the relative cur-
rent strength and odd moments only three
velocity moments may be simplified further,

l.e.

M.J.F. Stive

—~3—




efficiency steady stream

factor flow

(Bagnold, 1966)

longshore cross—~shore
current flow current flow

(Bailard, 1981) (Bailard, 1982)

€ 0.13
€ 0.01

0.21 0.10
0.025 0.020

Table | Estimates of the efficiency factors

ah gy = 2u<luld> + <Juld W > (12)
and ud(u3)” = 151<E2> + <I1U13> (13a)
uS(us)” = 1TICHS + <1AIS> (13b)

Inspection of the above expressions indi-
cates that the following low order velocity
moments are of importance:
- the four lowest even
moments <H2>, <IWI3, <>, <IWS >,
which are non zero for symmetric veloci-
ties,
- the two lowest odd
moments <G3>, <lui’d G>, which are zero
for symmetric velocities.
The latter moments are the most difficult
to estimate: they are nonzero only for non-—
linear waves that actually occur nearshore.
The shoreward velocities are typicaily
stronger and of shorter duration than the
offshore flows, leading to nonzero values
for the odd moments. Calculation of the odd
moments requires a nonlinear wave shoaling

and decay model.

A theoretical evaluation of the even
nonents for both a monochromatic, linear
sea (sinusoidal model) and a random, linear
sea (Gaussian model) is given by Guza and
Thornton (1985). The theoretical moments
are compared to field observations from the
NSTS study., A summary of observations and
theory for the several cross—shore moments

is given in Table 2 below. The moments are
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normalized by the local variance.

The above results indicate that even
moments do not critically depend on cross-
shore velocity asymmetry. This is due to
the fact that also for symmetric velocities
these terms are nonzero. At the present
stage we will therefore rely on the Gaus-
sian estimates for the even moments. The
odd moments are zero for a symmetric velo-
city field, but can be nonzero for asymme-—
tric (nonlinear) motions. Here we suggest

the following ad-—hoc formulation.

As indicated above calculation of the odd
velocity moments requires a shoaling and
decay model which predicts certain nonli-
near properties of the presently considered
random, breaking waves. A relevant nonli-
near property is the asymmetry of the wave
surface about the horizontal axis. For non-—
breaking waves this asymmetry may to a
first aprroximation well be predicted on
the basis of a horizontal bottom, nonlinear
wave theory, assuming that due to gradual
bottom variations the waves locally behave
as on a horizontal bottom (see Flick, et
al., 1981). However, in the horizontal bot-—
tom, nonlinear wave theories the phases of
the harmonics are locked to zero and* there
is no vertical wave profile asymmetry pos—
sible. This asymmetry about the vertical
plane is an essential property of the saw-
tooth shaped breaking waves in the surf

zone.
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Fig.

observations theory
moment Nov. 17 Nov. 20 Gaussian gsinusoid

<1u13y/cu2y3/2 1.60 1.69 1.60 1.20
/K22 2.86 3.50 3.00 1.50
<IUIS>/<urys/2 7.77 8.58 6.38 1.92
<ud>/<u2y3f2 0.55 0.50 0 0
NI ~1,20 ~1,20

<uSy/<u2>5/2 4,95 5.39 0

Table 2 Observed and theoretical velocity moments (after Guza and Thornton,
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These theories are deficient in this

respect and thus particularly unsuitable
for calculations of odd velocity moments
which depend critically on phase. To il-
lustrate this we calculate the two lowest

order odd moments

assuming that the velocity fluctuation is
described by a second order approximation
with a locked but nonzero phase between the
two components:

4 = u cos wt + u, cos (2wt + ¢2) (14)

2m
in which u > Lo After some algebraic ma-
nipulation it may be show that to lowest

order the two odd velocity moments are giv-—

en by:

S~

<;3> = u‘ u cos ¢2 (15a)

2
m  2m

~ o 2
<Julduy = 12 u3
5T m

u, cos ¢ (15b)

2m 2

An interesting perspective now arises when

we combine these results with the following
observations. In the inner surf zone where

the breaking waves are quasi-steady the re-
lative phase of the second harmonic increa-
ses smoothly toward the asymptotic value

(see Flick et al., 1981):
b, > /2 (16)

Thus, according to Eq. 15a, 15b, the odd
velocity moents for breaking waves vanish

ultimately.

At this point we may formulate and ad-hoc
wave decay model which predicts linear and
nonlinear properties necessary to derive
the velocity moments. As a starting point
Battjes and Janssen's (1978) wave decay
model is adopted to predict the variance of
the wave elevation in cross—shore direc-—

tion. The propagation properties of this
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model are linear; the dissipation process
due to breaking is based on a Gaussian wave
description. Given the wave variance varia-—
tion linear theory may be applied to provi-—
de the variation of the near-bottom veloci~-
ty variance and thus the even velocity mo-—
ments. In the random wave model there is a
gradual transition in the breaking fraction
of the wave field on a beach of monoto-
neously decreasing depth. Without the risk
of discontinuities we may therefore safely
estimate the odd velocity moments from the
nonbreaking fraction of waves only and as-
sume that the contribution of the breaking
waves 1is negligible in view of the above
conclusions. To provide results from this
model we use the second order Stokes expan-—

sion with

u=u cos uw t
P

o
3 uh
+ Z-z—~sinh“2(kph) cos Zupt (17

and choose u = u ms'from the consideration

r
that the monochromatic representation of
the random wave field should have to same

variance.

Here we conclude with a comparison between
observations of the undertow, the velocity
variance and the skewness (i.e. the first
odd velocity moment normalized by the va-
riance, <G3>/<GZ>3/2 )} and calculations
with the present model (see Figure 1). The
observations are by Guza and Thornton
(1985) and concern rather long wave con-
ditions.

The comparison shows that qualitativgly the
predictions are reasonable; quantitavely
there are discrepancies indicating that im~

provements should be made.
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4, THE COMPUTATION OF TRANSPORT AND BOTTOM

CHANGES

In. the present wodel the local mean, volu-
metric cross-shore sediment transport rate,
<q>,

wing expressions, where use has been made

is calculated according to the follo-
of expressions (4) and (8)...(12):

<Q>=Bas <qas> + Bun <qun> - le <qsl> (18a)

a, > = Fy b + Fg v, (18b)
3 5 *

<a> = Fp g 5, + Fg 38, (ud) (18¢)
_p, tand % o 5)" (18d

<qsl>- B Tand (u3) + T EstanS (u3) ( )
c.u <
frms B

Py = 2N tans (18e)
cfufﬂsas

e (186)

Here cg¢ is the drag coefficient equal to
%fw with £ the friction factor as defined
in Stive and Battjes (1984) and B g» Bun
and B_, are proportionality constants which
should be 0(l) if the description is right.
The free parameters in the above expres-

sions are ¢ which for cross-—shore

B
transport are given by Bailard (1982) on

and €g

the basis of field observations as 0.10 and
0.02 respectively., These values are in

principle adopted here.

The cross-shore variation of the local,
mean sediment transport may now be calcu-
lated with the above expressions (l8a...f)
given the results of the wave height decay
and kinematics model. Through application
of the mass balance for the sediment (of
which the properties are assumed constant)
the bottom changes may be calculated. This
procedure may be repeated for the new beach

profile.

In the numerical evaluation of the above

procedure a second order Runge-Kutta algo-
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rithm is used in the wave decay model and a
modified Lax scheme in the bottom change
calculations.

As a boundary condition on the waterline
the present formulation yields <q> = 0. To
simulate the smoothing effect of swash mo-
tion on the sediment transport near the wa-
terline <q(x}> was damped starting from a
depth of approximately half the initial
wave height in proportion to the mean water

depth.

5. MODEL VERIFICATION

A laboratory measurement programme aimed at
the verification of the present model has
not yet been conducted. Instead we present
a preliminary comparison of model calcula-
tions with observed bar formation and de-
formation in an estuary region in the South
of the Netherlands, the socalled Voordelta,
which

occurred after closure of one of the Sout-
hern Dutch estuaries. The profile defor-
mation in cross—shore direction is appre-
ciable (see Figure 2)., The comparison be-
tween the hindcast results and the measure-
ments is satisfactory, despite the fact
that the wave climate and hydraulic condi-
tions were schematized to one value for the
incident wave characteristics and a fixed
waterlevel, The proportionality constants

B Bunand le were set at 1.0.

as’
Some characteristic parameters of this case

are collected in Table 4 below.
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case profile grain  H_ . ,incident fp
diameter
(um) (m) (2}
field barred 225 1.50 0.17

Table 4 Characteristic parameters hindcast case
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Fig. 2

Comparison between profile development at

prediction
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6. DISCUSSION AND CONCLUSION

In this paper a first suggestion is made to
extend the earlier formulated model for of-
fshore sediment transport due to undertow
(Stive and Battjes, 1984) with the effects
due to horizontal asymmetry in the wave mo-

tion.

To arrive at these results it was necessary
to model some low order odd moments of the
near—bottom velocity field. An ad-hoc for-
mulation based on a monochromatic, second
order Stokes wave representation is shown
to give a reasonable, first approximation
to the odd velocity moments, but obviously

the formulation needs improvement.

The odd velocity moments were readily used
in the transport formulation after Bailard
(1981). This concerns a vertically inte-
grated description of the sediment tran-
sport in sheetflow conditions, which as-
sumes that the instantaneous tramsport is
proportional with some power of the instan-
taneous near—-bottom velocity. The validity
of this approach for natural surf zones
needs further investigation. This requires
study of the temporal and spatial varia-
tions of sediment load and/or sediment con-
centrations due to spatially varying waves
in general and random waves breaking on a

beach in particular.
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