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Abstract

This research explores the integration of start-up and shut-down trajectory con-
straints into the Tulipa energy system optimisation model, which uses fully-flexible
temporal resolution. These constraints aim to more realistically represent the behaviour
of large thermal generators during operation. Case studies with varying time resolutions
and generator configurations were evaluated to measure impacts on computation time
and solution accuracy. Results show a significant increase in computation time with
small gains in accuracy, compared to introduction of minimal down-time constraints.

1 Introduction
The transition towards renewable energy has been an increasingly important topic over the
last decade [1]. To achieve their goals, many countries are taking steps to reduce their
emissions [2]. The most popular choice to analyse energy systems currently are optimisation
models [3]. For this problem specifically, Energy System Optimisation Models (ESOM)s
are used. These are models which represent the energy generation capabilities, energy
consumption and energy transformation technologies [4]. An important use of these models
is determining good investment plans, taking into account renewability and cost of energy
[4].

This can be achieved by determining operational details (productive periods, modula-
tion) of existing generators (Unit Commitment problem), or investing in new generators
(Generation Expansion Planning). Models made for Generation Expansion Planning rarely
include the Unit Commitment problem to integrate operational details of the generators po-
tentially invested in [5]. This is due to the high computation time caused by such high level
of detail in a MIP model [3, 6]. However, excluding these details can lead to a significant
reduction in accuracy of the model [7]. To attempt speeding up the computation without
affecting the accuracy of the model significantly, there are numerous existing techniques,
four of which will be introduced here.

The first approach to reduce the computation time is by uniformly reducing the temporal
resolution [8, 6]. Usually this is done by averaging values of several timesteps in the higher
resolution to compute one value in the lower resolution [9]. However, [9] also discusses
different methods to down-sample the resolution, incurring a lower cost in accuracy. Still,
these models are unable to solve sufficiently large problems in a high enough resolution [7].

The second, more effective technique frequently used is to reduce the amount of timesteps
(and thus computation time) for which the solution is computed. This is done by using time-
series aggregation, which splits the considered time frame for the model into representative
periods [10, 11]. These are periods that are very similar to a set of other actual periods.
Taking all the representative periods together should form a set of periods such that different
situations for the the actual periods are covered. The model then computes the solution for
the representative period, after which all actual periods represented by the representative
period are assigned this solution [11].

The third potential solution for reducing computation time is omitting some constraints
from the model, however, this significantly reduces the accuracy of the optimal solution [3,
7]. Some of the constraints that are important to include in ESOMs are minimum up- and
down-time [12], start-up and shut-down costs [13], and ramping limits [14, 15], as shown
in [7]. Having detailed Unit Commitment constraints is also important for Generation
Expansion Planning, as omitting or simplifying them significantly affects the outcome of
the models [16].
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The fourth technique that speeds up the computation is clustered unit commitment [17].
In clustered unit commitment, the model is made using an integer variable representing all
machines of a single type, rather than using a binary variable for each machine. Clustering
introduces a very slight error in the final solution [18], while significantly reducing the
computation time.

Finally, a new promising approach of reducing computation time is making the temporal
resolution flexible, rather than uniform. One of the first models implementing some flexibility
is presented in [19]. Here, the resolutions are multiples of each other, rather than all identical.
Additionally, time blocks are allowed to be clustered together [20]. The next step in flexibility
is a fully-flexible resolution. This means replacing the uniform discrete resolution with a
(possibly) non-uniform, discrete resolution, where every resolution can be completely unique,
and unrelated to the other resolutions [6].

An example of such a model is Tulipa, developed by TNO [21, 22]. Tulipa implements
fully-flexible temporal resolution [21], and solves both the Unit Commitment problem and
Generation Expansion Planning. However, Tulipa does not yet model any of the minimum
up- and down-time [12], start-up and shut-down costs [13], or ramping [14, 15] constraints,
which are critical for the models’ accuracy [7]. Another type of constraint not yet in Tulipa
are start-up and shut-down trajectory constraints, which describe complex start-up or shut-
down trajectories for complicated or large generators [23], e.g., thermal or nuclear reactors.
These can model realistic power output of generators in their start-up and shut-down phases,
not being limited to linear constraints. This reduces the flexibility of the unit, which means
a solution without these constraints might not be valid when they are included. The model
with these constraints is more realistic, which thus makes the solution more accurate. The
effects of excluding any of the aforementioned constraints in fully-flexible models, or the
varying possibilities for time resolutions in them, on the solution and computation time has
not been researched yet.

This paper aims to fill in part of this knowledge gap, by implementing trajectory con-
straints in Tulipa, and assessing how their addition affects the computation time and optimal
solution. The optimal solution is analysed in terms of investments, operational schedules
and objective function values.

The main contributions of this research are formulating trajectory constraints for fully-
flexible ESOMs using MILP, and showing that their inclusion leads to a large increase in
runtime, whereas the accuracy is only slightly higher.

This paper starts with section 2, explaining what trajectory constraints are, and formu-
lating the mathematics for the model. Section 3 provides an overview of the experiments
done, and their results. Section 4 provides a discussion of the results, along with the ethical
aspects of the project and its reproducibility. Section 5 concludes the paper and presents
suggestions for future work.

2 Mathematical formulation
This section introduces the mathematical formulation of the constraints which were added.
It aims to illustrate the concepts and mathematics that support the final equations. For this,
it first describes the background concepts in subsection 2.1. Then it introduces some expres-
sions to simplify the resulting equations in subsection 2.2. Finally, it presents the complete
equation in subsection 2.3, along with some limitations, requirements, and a supporting
example.
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Nomenclature
Sets Meaning
Y Set of milestone years for which the model is considered
Py Set of periods that make up a milestone year y ∈ Y
Ky Set of representative periods s.t. ∀py ∈ Py : (∃ky ∈ Ky :

represents(ky, py)) where represents(x, y) means that x is representative
for y.

Ay Set of assets in the model in year y ∈ Y
Auc

y Set of assets in the model that have UC constraints in year y ∈ Y
Fout

a,y Set of possible flows out of asset a ∈ Ay in year y ∈ Y
T Timeblock, a set containing consecutive discrete timestamps

Temporal Partitions Meaning
Buc
a,y,ky

Partitions (timeblocks) for the unit commitment of asset
a ∈ Ay in representative period ky ∈ Ky

Bflow
f,y,ky

Partitions (timeblocks) for the flow f ∈ Fout
a,y in represen-

tative period ky ∈ Ky

Bhighest
a,y,ky

Set B = {
⋂

bi∈b bi | b ∈ (×f∈Fout
a,y

Bflow
f,y,ky

)× Buc
a,y,ky

}
Bsu
a,y,ky

Set B = {b ∈ Bhighest
a,y,ky

| ∃b′ ∈ Buc
a,y,ky

: start(b) = start(b′)},
all blocks bky

∈ Bhighest
a,y,ky

, that start
Bsd
a,y,ky

Same as Bsu
a,y,ky

Functions Meaning
Buc

a,y,ky
(bky

) Returns the timeblock b′ky
∈ Buc

a,y,ky
where bky

⊆ b′ky

Bflow
f,y,ky

(bky
) Returns the timeblock b′ky

∈ Bflow
f,y,ky

where bky ⊆ b′ky

start(bky ) Returns the lowest element of the set
end(bky

) Returns the highest element in the set
next(bky

) Returns the first following timeblock b′ ∈ Bsu
a,y,ky

, that has not
started yet

last(bky
) Returns the last started time block b′ ∈ Bsd

a,y,ky

Parameters Meaning
pavailability profile
a,y,py

Availability profile of asset a ∈ Ay in representative period
py ∈ Py of year y ∈ Y

pmin operating point
a,y Minimal operation point of asset a ∈ Ay in year y ∈ Y

pcapacity
a Capacity of asset a ∈ Ay

bstart First time block for which the model is computed, in Bsu
a,y,ky

Variables Meaning
vunits on
a,y,ky,bky

Amount of units of asset a ∈ Ay on in timeblock bky ∈ Buc
a,y,ky

vstart up
a,y,ky,bky

Units starting up in timeblock bky ∈ Bsu
a,y,ky

vshut down
a,y,ky,bky

Units shutting down in timeblock bky
∈ Bsd

a,y,ky

vflow
f,y,ky,bky

Amount of flow in f ∈ Fout
a,y in timeblock bky

∈ Bflow
f,y,ky
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2.1 Concepts
The framework into which the trajectory constraints will be introduced has some novel
concepts, which will be shortly explained in this subsection. The final constraint will build
upon these concepts to define a lower and upper bound for the flows out of assets.

2.1.1 Trajectory Constraints

Trajectory constraints bound the minimum and maximum flow out of an asset during a start-
up or shut-down procedure. This ensures that technically complex and large generators,
like large thermal generators or nuclear reactors, cannot instantly start up/shut down in
the model, which makes it more realistic. Instead, they must follow a pre-defined trajectory
the same way real-world generators do. Figure 1 shows an example of such trajectories, as
indicated. In this example, the start-up and shut-down trajectories are symmetric, but they
can be asymmetric if necessary.

Figure 1: Example of start-up & shut-down trajectories.

2.1.2 Fully-Flexible Time Resolution

The model considers milestone years y ∈ Y , consisting of periods py ∈ Py . Instead of
considering every period, the model uses representative periods ky ∈ Ky . These are periods
that somewhat accurately describe other similar periods. For example, a milestone year
can be modelled as 10 days, each representing some other days in the year. Each of these
representative periods consists of smaller timer periods t ∈ ky.

To decrease size and computation time of the model, the temporal resolution can be
decreased. In a fully-flexible model, each asset and each flow between two assets is allowed
to have a unique resolution. An example of some possible resolutions is shown in figure 2.

Figure 2: Example of possible resolutions, and the highest resolution computed from them.
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2.1.3 Start-up & Shut-down Variables

Start-up & shut-down variables represent the number of units starting up and shutting down
in some timeblock bky

∈ Buc
a,y,ky

. They are both defined in terms of Bhighest
a,y,ky

, but only for
the timeblocks where there also exists a timeblock in Buc

a,y,ky
with the same start time. The

values of the variables are fully determined by the values of vunits on
a,y,ky,bky

. Figure 3 shows an
example, with the same graph as from figure 1, but now including a table with the variable
assignments for each timeblock. Their exact definitions are shown in (3a)-(3d) in section
2.2. An example of trajectories and start-up & shut-down variables from resulting data from
an experiment is given in appendix D.

Figure 3: Example of start-up & shut-down trajectories, with additional variables for unit
commitment.

2.2 Expressions
To implement trajectory constraints into this framework, it is useful to first define some
expressions, which will simplify the formulation of the final constraints. This subsection will
introduce expressions for total outgoing flow of an asset, minimal and maximum production
of an asset, and equations for the start-up & shut-down variables, explained in section 2.1.3

For the total outgoing flow of an asset in some timeblock, vflow total
a,y,ky,bky

, we define it as
described by (1). It is the sum of all flows going out of the asset during the timeblock.

vflow total
a,y,ky,bky

=
∑

f∈Fout
a,y

b′=Bflow
f,y,ky

(bky )

vflow
f,y,ky,b′ ∀y ∈ Y, a ∈ Auc

y , ky ∈ Ky, bky
∈ Bhighest

a,y,ky
(1)

For expressions for minimum and maximum output of an asset, pmin
a,y,ky,bky

and pmax
a,y,ky,bky

respectively, we define them in terms of input parameters provided to the model. Equations
(2a) & (2b) describe these formulations.
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pmax
a,y,ky,bky

= pavailability profile
a,y,py

· pcapacity
a

∀y ∈ Y, a ∈ Auc
y , ky ∈ Ky, bky

∈ Bhighest
a,y,ky

(2a)

pmin
a,y,ky,bky

= pmax
a,y,ky,bky

· pmin operating point
a,y

∀y ∈ Y, a ∈ Auc
y , ky ∈ Ky, bky ∈ Bhighest

a,y,ky

(2b)

Finally, the equations for the start-up and shut-down variables, for which their meaning
is explained in subsection 2.1 are shown in (3a)-(3d). These include the restriction for
minimal down-time, as described in section 2.3. In these equations, Tmin down

a represents
the amount of consecutive hours a unit must be offline after shutting down.

vunits on
a,y,ky,Buc

a,y,ky
(bky )

− vunits on
a,y,ky,Buc

a,y,ky
(bky−1) = vstart up

a,y,ky,bky
− vshut down

a,y,ky,bky

∀y ∈ Y, a ∈ Auc
y , ky ∈ Ky, bky ∈ Bsu

a,y,ky
\ {bstart}

(3a)

vstart up
a,y,ky,bky

≤ vunits on
a,y,ky,Buc

a,y,ky
(bky )

∀y ∈ Y, a ∈ Auc
y , ky ∈ Ky, bky

∈ Bsu
a,y,ky

\ {bstart} (3b)∑
i∈Bsd

a,y,ky

start(bky )−Tmin down
a +1≤start(i)≤start(bky )

vshut down
a,y,ky,i ≤ vavailable units

a,y − vunits on
a,y,ky,Buc

a,y,ky
(bky )

∀y ∈ Y, a ∈ Auc
y , ky ∈ Ky, bky ∈ Bsd

a,y,ky
\ {bstart}

(3c)

vstart up
a,y,ky,bky

, vshut down
a,y,ky,bky

∈ Z≥0 ∀y ∈ Y, a ∈ Auc
y , ky ∈ Ky, bky

∈ Bsu
a,y,ky

\ {bstart} (3d)

2.3 Constraint formulation
This subsection describes how the final constraint formulations came to be from the original
formulations, and some limitations and requirements for it to be valid. It ends by showing
a small example.

For limiting the flow in the model without trajectory constraints, the equations for
bounding the total flow are the minimal/maximal production multiplied by the amounts of
units on, as described in (4a) & (4b).

vflow total
a,y,ky,bky

≤ pmax
a,y,ky,bky

· vunits on
a,y,ky,Buc

a,y,ky
(bky )

∀y ∈ Y, a ∈ Auc
y , ky ∈ Ky, bky

∈ Bhighest
a,y,ky

, b′ = Buc
a,y,ky

(bky
)

(4a)

vflow total
a,y,ky,bky

≥ pmin
a,y,ky,bky

· vunits on
a,y,ky,Buc

a,y,ky
(bky )

∀y ∈ Y, a ∈ Auc
y , ky ∈ Ky, bky

∈ Bhighest
a,y,ky

, b′ = Buc
a,y,ky

(bky
)

(4b)

To include the start-up trajectory constraints, the contribution of machines that are
starting up is added as a term. To this end, some new model parameters are introduced.
These are pstart up trajectory

a,i for all timesteps i in the start-up trajectory. This is used to
denote the power output in hour i of the trajectory. Additionally, we also add T start up

a and
T shut down
a which are the start-up trajectory length, and the shut-down trajectory length

respectively. The new term added to the constraint is defined as a sum that scans ahead to
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determine if any units are starting up in timeblocks after the current one and if so, sums
up their contributions. These contributions are averaged over the length of the timeblock,
to make sure that they are not summed together in larger timeblocks, as this would lead to
a increased flow limit. For shut-down trajectories, pshut down trajectory

a,i is introduced, which
denotes the power output in hour i of the shut-down trajectory. For the sum for this term,
the same concept is used, except the it checks if any machines shut down recently, rather than
if any are starting up soon. To simplify the formulations, we define a variable representing
the trajectories, as shown in (5). Equations (6a) & (6b) show the constraints with the new
term.

ptrajectories
a,y,ky,bky

= vstart up
a,y,ky,b′

·
∑

1≤i≤T start up
a :

start(bky )+i≤start(b′)≤end(bky )+i

pstart up trajectory
a,T start up

a −i+1

end(bky )− start(bky ) + 1

+ vshut down
a,y,ky,b′′ ·

∑
0≤i≤T shut down

a −1:

start(bky )−i≤start(b′′)≤end(bky )−i

pshut down trajectory
a,i+1

end(bky )− start(bky ) + 1

∀y ∈ Y, a ∈ Auc
y , ky ∈ Ky, bky

∈ Bhighest
a,y,ky

, b′ = next(bky
), b′′ = last(bky

)

(5)

vflow total
a,y,ky,bky

≤ pmax
a,y,ky,bky

· vunits on
a,y,ky,Buc

a,y,ky
(bky )

+ ptrajectories
a,y,ky,bky

∀y ∈ Y, a ∈ Auc
y , ky ∈ Ky, bky ∈ Bhighest

a,y,ky

(6a)

vflow total
a,y,ky,bky

≥ pmin
a,y,ky,bky

· vunits on
a,y,ky,Buc

a,y,ky
(bky )

+ ptrajectories
a,y,ky,bky

∀y ∈ Y, a ∈ Auc
y , ky ∈ Ky, bky

∈ Bhighest
a,y,ky

(6b)

It should be noted that there are three requirements for these constraints to be valid. The
first, each timeblock in Buc

a,y,ky
has to contain an integer amount of timeblocks from Bflow

f,y,ky
.

If any timeblock in Bflow
f,y,ky

spans more than 1 timeblock from Buc
a,y,ky

, the trajectories will
not be limited correctly.

Second, to ensure the trajectories are not allowed to overlap, a minimum down-time
constraint should be used. The minimum downtime of an asset should be at least as long
as the length of the start-up trajectory plus the length of the shut-down trajectory.

Finally, it is also required that the timeblocks from Buc
a,y,ky

are at least as long as the
longest trajectory relating to the asset. If this is not the case, the trajectory gets cut off,
and not fully accounted for.

To show correctness of the added terms, the remainder of this section will describe a small
working example, showing that the terms add up the correct values for the trajectories, and
that other ones are ignored. Assume the following scenario: we have an asset a ∈ Ay during
some year y ∈ Y and some representative period ky ∈ Ky with the following parameters:

• pstart up trajectory
a,1 = 1; pstart up trajectory

a,2 = 3; pstart up trajectory
a,3 = 7

• pshut down trajectory
a,1 = 8; pshut down trajectory

a,2 = 4; pshut down trajectory
a,3 = 2

This means that T start up
a = T shut down

a = 3. Consider an 8 hour window with 4-hourly
uniform UC resolution, and 2-hourly uniform resolution for each of its outgoing flows, as
shown in figure 4.
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Figure 4: Example resolutions for a unit with trajectory constraints.

Assume the asset starts up in timeblock [5 : 8]1, thus vstart up
a,y,ky,[5:6]

= 1, whereas vstart up
a,y,ky,[1:2]

=

0. Additionally, assume vstart up
a,y,ky,[9:X] = 0, to ensure nothing is starting up after the considered

window. This means the desired flow bounds for each timeblock are increased by:

• vflow total
a,y,ky,[1:2]

by pstart up trajectory
a,1

2−1+1 = 1
2 , as bky

= [1 : 2], b′ = [5 : 6], and for the i’s in the
sum:

◦ i = 1 → 0, as 5 = start(b′) ≰ end(bky ) + i = 3

◦ i = 2 → 0, as 5 = start(b′) ≰ end(bky
) + i = 4

◦ i = 3 → pstart up trajectory
a,1

2−1+1 = 1
2 , as start(bky ) + i = 4 ≤ 5 = start(b′) ≤ end(bky )

+ i = 5

• vflow total
a,y,ky,[3:4]

by pstart up trajectory
a,2 +pstart up trajectory

a,3

4−3+1 = 5, as bky
= [3 : 4], b′ = [5 : 6], and for

the i’s in the sum:

◦ i = 1 → pstart up trajectory
a,3

4−3+1 = 7
2 , as start(bky ) + i = 4 ≤ 5 = start(b′) ≤ end(bky )

+ i = 5

◦ i = 2 → pstart up trajectory
a,2

4−3+1 = 3
2 , as start(bky

) + i = 5 ≤ 5 = start(b′) ≤ end(bky
)

+ i = 6

◦ i = 3 → 0, as 6 = start(bky ) + i ≰ start(b′) = 5

For vflow total
a,y,ky,[5:6]

& vflow total
a,y,ky,[7:8]

, a value of 0 will be assigned regardless of the sum, as the
vstart up
a,y,ky,[9:X] = 0. In this case, for every flow timeblock, the correct start-up trajectory parts

are included, and the rest is excluded.
Similarly, for the shut-down trajectories, assume the asset shuts down in timeblock [5 : 8]

instead. Thus vshut down
a,y,ky,[5:6]

= 1, whereas vshut down
a,y,ky,[1:2]

= 0. This means the desired flow bounds
for each timeblock are increased by:

• vflow total
a,y,ky,[5:6]

by pshut down trajectory
a,1 +pshut down trajectory

a,2

6−5+1 = 6, as bky
= [5 : 6], b′′ = [5 : 6], and

for the i’s in the sum:

◦ i = 0 → pshut down trajectory
a,1

6−5+1 , as start(bky
)−i = 5 ≤ 5 = start(b′′) ≤ end(bky

) − i = 6

1Here, [x : y] denotes an ordered set, ranging from x to y, both inclusive.
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◦ i = 1 → pshut down trajectory
a,2

6−5+1 , as start(bky )−i = 4 ≤ 5 = start(b′′) ≤ end(bky ) − i = 5

◦ i = 2 → 0, as start(b′′) = 5 ≰ end(bky
) − i = 4

• vflow total
a,y,ky,[7:8]

by pstart up trajectory
a,3

4−3+1 = 5, as bky
= [7 : 8], b′′ = [5 : 6], and for the i’s in the

sum:

◦ i = 0 → 0, as 7 = start(bky ) − i ≰ start(b′′) = 5

◦ i = 1 → 0, as 6 = start(bky ) − i ≰ start(b′′) = 5

◦ i = 2 → pshut down trajectory
a,3

8−7+1 , as start(bky
)−i = 5 ≤ 5 = start(b′′) ≤ end(bky

) − i = 6

For vflow total
a,y,ky,[1:2]

& vflow total
a,y,ky,[3:4]

, a value of 0 will be assigned regardless of the sum, as the
vshut down
a,y,ky,[1:2]

= 0. Here, for every flow timeblock, the correct shut-down trajectory parts are
included, and the others are excluded.

3 Experimental Setup and Results
This section describes the exact experiments ran and their outcomes. Subsection 3.1 explains
which cases were used, which data was used to create these cases, and why the data is
realistic. Subsection 3.2 discusses what metrics were measured and how the measurements
were collected. Finally, 3.3 shows the results of the measurements.

3.1 Case Studies
The following case studies were each run with hourly, 2-hourly, 4-hourly, and 6-hourly res-
olution, always with 0 initial generators:

• 7 countries (Netherlands, Belgium, Luxembourg, France, Germany, Switzerland, United
Kingdom), where each country has the access to onshore and offshore wind farms, solar
farms, battery output connectors, battery storage, CCGT, OCGT, coal and nuclear
power plants.

• same as previous, but the coal and nuclear generators are switched to minimum down-
time constraints.

• same as previous, but the coal and nuclear generators are switched to trajectory con-
straints.

Each case contains 10 representative periods, the exact data for each case can be found here:
[24]. The assets with trajectory constraints were always set to a resolution of at least the
length of their trajectory, but their outgoing flows matched the general resolution. This is
because, as explained in section 2.3, the constraint is only valid in the case where the UC
timeblocks are at least as long as the trajectory. For comparing accuracy across resolutions,
the hourly resolution was taken as 100% accurate.

For the data for generators, demands of countries, and other important modelling details,
the following sources were used:

• Countries, connections between them, and their peak demands: [6].

• Availability profiles, demands profiles: personal communcation with TNO.
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• Maximum capacities for assets: averaged from [25].

• Investment costs for assets: [26].

• Minimum operating point of assets: [27].

• Cost per MWh for assets: [28].

3.2 Experimental Setup
The metrics collected from the experiments are the runtime, investments made by the model,
operational schedules of assets with unit commitment, and objective function values. These
have been collected by extending the existing Tulipa ESOM [21, 22] with minimal down-
time constraints and trajectory constraints. The implementation for minimal down-time
constraints was taken from [29]. Tulipa creates a MILP model using JuMP [30, 31], which is
then solved using Gurobi [32]. To collect the data, 100 samples were run for each test case.

All experiments were ran on a laptop with a 12th Gen Intel(R) Core(TM) i7-12700H @
2.30 GHz, with 16.0GB of installed RAM. The used device runs Windows 11.

3.3 Results
This subsection discusses the changes found in the metrics after adding trajectory con-
straints, compared to the original model, and the original model extended with just mini-
mal down-time constraints. It first presents the difference in computation time. Second, the
changes in investment plan are compared. Third, the operational schedules are examined.
Extended visualisations of the results can be found in appendix B.

3.3.1 Computation Time

Figure 5 shows that the computation time of the model went up after adding the trajectory
constraints for all resolutions, compared to adding only minimal down-time.

Figure 5: Model solving times for all cases. Comparison of the existing model (Basic UC),
an extended version with just minimal down-time (MD UC), and an extended version with
both minimal down-time and trajectories (Traj. UC).
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3.3.2 Investment Plan

Figure 6 shows that the inclusion of trajectories has an effect on the investment choices
made by the solver. For most assets, small deviations are visible compared to including only
the minimal down-time constraints. However, for storage, a larger amount of both storage
capacity and output capacity is bought. Neither of these observations were seen in lower
resolutions.

Figure 6: Model investment plans for hourly resolution. Comparison of the existing model,
an extended version with just minimal down-time, and an extended version with both min-
imal down-time and trajectories.

3.3.3 Operational Schedules

The operational schedules for hourly resolution, shown in figure 7, have only insignificant
differences between minimum down-time UC and trajectory UC. However, introducing tra-
jectories reduced the number of start-ups and shut-downs of generators. These results hold
for all tested resolutions, where the reduction increases as resolution decreases.

3.3.4 Objective Function

The difference in objective functions between cases with minimal down-time and trajectories
is larger than the MIP gap, the accuracy which the solver for the model can achieve. This
means trajectories have a noticeable impact on the objective function value. This pattern
was visible for each resolution, with the difference decreasing for lower resolutions. Table
1 presents a brief overview of the exact numbers, an exhaustive overview is included in
appendix C.

UC Variant Total Cost Investment Cost Operational Cost
Basic 29,496,058 22,422,192 7,073,866
Min. down-time 29,712,401 22,835,519 6,876,882
Trajectories 29,815,366 23,048,621 6,766,745

Table 1: Model costs (total cost = objective function value) in kEUR for hourly resolution.
The total cost is accurate to 0.01%.
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(a) Existing model

(b) Including minimal down-time

(c) Including minimal down-time and trajectories

Figure 7: Comparison of the model operational schedules for hourly resolution for each
variant.
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4 Discussion

4.1 Discussion of results
The results show a significant increase in computation time when adding trajectory con-
straints, compared to the other scenarios. This increase comes with a small increase in
accuracy, as shown by figures 5, 6, 7 and table 1. As the resolution gets lower, including
only the minimal down-time constraint adds a similar amount of accuracy as including the
trajectory constraints, for a much smaller increase in computational time. The trajectory
constraints only having a small effect is likely because the tests were run on large models.
The high number of large generators in the used model allows already running generators
to compensate for ramps caused by generators starting up or shutting down, reducing their
effect.

However, trajectory constraints could be more useful in other types of fully-flexible mod-
els that involve UC. For example, [33] showed its importance when considering a single,
self-scheduling generator. The experiments ran for this paper also showed larger increases
in accuracy on smaller models, but analysing this is beyond the scope of this research.

There are four limitations to these conclusions. First, the trajectories used are short,
with the longest one being 4 hours. Their impact could be larger for longer trajectories, as
this would restrict the generators more.

Second, the dataset used is relatively small for a large-scale model, and contains a small
number of generator types. This is necessary because the computation times for trajectory
constraints are very large, due to the limited computation resources available for the research.

Third, all experiments were conducted as greenfield experiments. This means that the
model started with no initial units, and could freely choose what to invest in. If the model
is given real-world data about what generators already exist, results may be different.

Fourth, the constraint only works for resolutions where each timeblock in Buc
a,y,ky

contains
an integer amount of timeblocks from Bflow

f,y,ky
, as explained in section 2.3. An alternative

formulation could remove this limitation, but also potentially cause even longer computation
times.

4.2 Responsible Research
This section will shortly discuss the ethical aspects of the research and explain why it is
reproducible.

There are two important considerations to the research when it comes to ethics. Firstly,
the current objective of the model is to purely minimise the cost of the solution. Emissions of
thermal generators are not taken into account in this cost. A cost for this could be modelled
as some amount of cost per emitted unit. Alternatively, a limit on emission could be set,
which forces the model to stay under it.

Secondly, the accuracy of the model is important, because its goal is to be used to
provide governments with advice about their energy networks. If there are inaccuracies
or big oversights in the model creation, this could lead to real-world consequences for the
energy network of a country, if they follow the investment plan provided by the model.

The research is easily reproducible, all code is available open source2, and so is all the
data used for creating and running the models3. Additionally, the results from the runs

2https://github.com/Cerberus22/TulipaEnergyModel.jl/
3https://github.com/Cerberus22/RP_Data
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are also available with the input data. All technologies used for running the code are also
available for free, except Gurobi, which can be replaced for free by the HiGHS optimiser.

5 Conclusions and Future Work
This research discusses the trade-off between accuracy and computation time for addition
of trajectory constraints to a fully-flexible ESOM. This was done by extending the Tulipa
Energy Model with trajectory constraints, to reflect more realistic operational behaviour
of large thermal generators. Several case studies were run, and the resulting computation
times, investment plans, objective function values and operational schedules were recorded.
An important requirement for trajectory constraints to be valid, is the inclusion of minimal
down-time constraints. The vast majority of changes between the original model, and the
model including trajectory constraint was introduced by the minimal down-time constraints.
This suggests that the increased computational cost outweighs the accuracy improvements.

Nonetheless, some further research should be done in two areas. The first area is re-
formulating the trajectory constraints to more flexible versions, as this could provide more
accurate results, since the unit commitment resolution could be defined in higher resolution.

The second area is formally proving the correctness of the constraints. Although it is a
challenging mathematical task, it is possible to prove the constraints are correct, and this
might be an important proof to have in cases where accuracy of the model is critical.
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B Extended Result Visualisations

B.1 Investment plans

(a) 2-hourly resolution

(b) 4-hourly resolution

(c) 6-hourly resolution

Figure 8: Model investment plans for 2-hourly resolution (a), 4-hourly resolution (b), and 6-hourly
resolution (c). Comparison of the existing model, an extended version with just minimal down-time,
and an extended version with both minimal down-time and trajectories.

16



B.2 Objective Functions

(a) 2-hourly resolution

(b) 4-hourly resolution

(c) 6-hourly resolution

Figure 9: Total and regional objective function costs for 2-hourly (a), 4-hourly (b), and 6-hourly
(c) resolutions. Total cost (Left), total cost NL (middle), and just operating costs NL (right).
Comparison of the existing model, an extended version with just minimal down-time, and an extended
version with both minimal down-time and trajectories.
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B.3 Operational Schedules

(a) Existing model

(b) Including minimal down-time

(c) Including trajectories

Figure 10: Comparison of the model operational schedules for 2-hourly resolution for each variant.
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(a) Existing model

(b) Including minimal down-time

(c) Including trajectories

Figure 11: Comparison of the model operational schedules for 4-hourly resolution for each variant.
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(a) Existing model

(b) Including minimal down-time

(c) Including trajectories

Figure 12: Comparison of the model operational schedules for 6-hourly resolution for each variant.
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C Numerical results

Resolution Mean Std. Dev. Obj. Func. Value ∆% from Basic ∆% from Min. Down-time
1-Hourly Basic 17.00 6.79 29,496,059 0 -
1-Hourly Min. Down-time 34.27 9.77 29,712,402 0.73 0
1-Hourly Trajectory 264.32 47.82 29,815,367 1.08 0.35
2-Hourly Basic 4.90 2.96 29,540,197 0 -
2-Hourly Min. Down-time 7.17 2.68 30,811,312 4.30 0
2-Hourly Trajectory 37.00 9.86 30,838,601 4.40 0.09
4-Hourly Basic 2.29 0.64 29,188,493 0 -
4-Hourly Min. Down-time 1.65 0.73 32,159,543 1.018 0
4-Hourly Trajectory 5.00 2.53 32,172,492 1.022 0.04
6-Hourly Basic 2.07 0.50 28,753,448 0 -
6-Hourly Min. Down-time 1.41 0.62 31,357,199 9.06 0
6-Hourly Trajectory 4.24 1.43 31,364,996 9.08 0.02

Table 2: Model solving times means (s) and standard deviations, objective values (kEUR), and percentage
differences between cases.
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D Example Trajectory In Experiments

(a) Existing model

(b) Including minimal down-time

(c) Including trajectories

Figure 13: Output of a coal generator over 1 representative period with hourly resolution, for all
variants of the model.
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