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Abstract
Optimization-based motion cueing algorithms based on model predictive control have been recently implemented to
reproduce the motion of a car within the limited workspace of a driving simulator. These algorithms require a reference
of the future vehicle motion to compute a prediction of the system response. Assumptions regarding the future refer-
ence signals must be made in order to develop effective prediction strategies. However, it remains unclear how the pre-
diction of future vehicle dynamics influences the quality of the motion cueing. In this study two prediction strategies are
considered. Oracle: the ideal prediction strategy that knows exactly what the future reference is going to be. Constant: a
prediction strategy that ignores every future change and keeps the current vehicle’s linear accelerations and angular velo-
cities constant. The two prediction strategies are used to reproduce a sequence of maneuvers between 0 and 50 km/h.
A comparative analysis is carried out to objectively evaluate the influence of the prediction strategies on motion cueing
quality. Dedicated indicators of correlation, delay and absolute error are used to compare the effects of the adopted
prediction on simulator motion. Also the motion cueing mechanisms adopted by the different conditions are analyzed,
together with the usage of simulator workspace. While the constant strategy provided reasonable cueing quality, the
results show that knowledge of the future vehicle trajectory reduces the delay and improves correlation with the refer-
ence trajectory, it allows the combined usage of different motion cueing mechanisms and increases the usage of
workspace.
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1. Introduction

Motion cueing algorithms (MCAs) are used in driving

simulators to provide inertial motion to the user of the

simulator. The motion obtained from the vehicle dynamic

simulation is adjusted by the MCA to fit the limited work-

space of the simulator motion system. To achieve this

goal, different algorithms have been developed in the past

decades. One of the most commonly used MCAs is known

as the classical algorithm.1–3 Classical MCAs are based on

filters, where linear accelerations and angular velocities

are first scaled and then high-pass filtered to remove con-

stant signal content (washout). In addition, low-pass filters

are also used for longitudinal and lateral accelerations,

where tilt coordination is adopted to use gravitational

acceleration to reproduce sustained accelerations. These

algorithms present some limitations. The tuning process is

not trivial and it is often subjective. Different approaches

have been studied to objectively tune the parameters of

classical MCAs by following a specific process4 or by

optimizing a set of dedicated objective metrics of motion

cueing quality.5,6 Nevertheless, the results obtained from

these techniques can still be improved by further subjec-

tive tuning. The tuning process of classical MCAs is spe-

cific to the set of maneuvers to reproduce on the motion

simulator. Since classical MCAs do not include knowledge

of the motion system’s limitation, the tuning process must
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be repeated if the set of maneuvers changes. Otherwise,

the trajectory obtained by the classical MCA could be

exceeding the physical boundaries of the motion system.

More recently another approach based on optimization has

become popular.7–10 Unlike filter-based MCAs, the

optimization-based approach uses model predictive control

(MPC) to compute an optimal solution, within system lim-

itations, using an internal model of the motion system to

predict the future system response.11–14 This algorithm

will be referred to here as ‘predictive MCA’. This new

approach takes into account motion system limitations and

the tuning is achieved with weighting factors on linear and

rotational motion cues. The predictive MCA has shown

multiple advantages with respect to the classical algo-

rithm, both in terms of workspace usage and subjective

evaluation, when the vehicle trajectory is completely

known in advance (passive driving).15 However, other

challenges are introduced with the usage of predictive

MCA. Compared with the classical MCA, this algorithm

requires more computational time to solve an optimization

problem at each time step of the algorithm, making it more

challenging to adopt for more common driver-in-the-loop

(DIL) simulations (active driving). Another aspect to con-

sider is that the predictive MCA requires a future reference

of the motion to reproduce on the simulator to compute a

prediction of the system response. When using the predic-

tive MCA in DIL simulations, assumptions regarding the

future reference signals must be made. Previous studies

have already addressed the issue of providing a future ref-

erence for the predictive MCA. For example, the vehicle

motion recorded in a circuit is used to provide a better ref-

erence for future laps,16 or a neural network is trained

using simulated data to predict the future reference

motion.17 However, it remains unclear how the prediction

strategies adopted influence the quality of the motion cue-

ing. In this study, two prediction strategies are considered.

The first strategy corresponds to the ideal case in which

the future motion to be reproduced on the simulator is

known, as if it could be perfectly predicted. This cannot

be applied for active driving but represents the perfect

strategy which is expected to reproduce, at best, the refer-

ence motion and therefore it is assumed here as a refer-

ence. The second strategy assumes a constant motion as a

future reference, ignoring every possible variation from

the current status. It can be expected that the results for

this strategy will be suboptimal with respect to the first

one. The scenario used to compare the results of the two

prediction strategies is the reproduction on a motion-based

simulator of a sequence of maneuvers in an urban-like

environment. The simulations are performed offline and

the future reference for the few seconds ahead is passed to

the predictive MCA at each time step, as if it would be for

a DIL simulation. The simulator motion computed with

the considered prediction strategies is analyzed and com-

pared with the reference motion.

The goal of this study is to objectively evaluate the

influence of the adopted prediction strategy on motion

cueing quality. The analysis carried out should also deter-

mine whether it is worth investing in an improved predic-

tion strategy to obtain a better motion cueing quality.

2. Methods
2.1. Motion perception

The main role of the MCA is to reproduce the simulated

vehicle motion as accurately as possible for the simulator

user. In the process of motion perception, humans use

visual, vestibular and proprioceptive organs to detect

motion direction and rate of change. The vestibular system

is located in the inner ear and consists of semicircular

canals and otolith organs, which sense angular and linear

motion respectively. More specifically, the otolith organs

detect specific forces, which result from summation of

acceleration in space and gravity. Thus, the specific forces

(f) can be expressed as follows, where ang indicates the

non-gravitational accelerations and g indicates the gravita-

tional acceleration:

f= ang � g ð1Þ

Therefore, humans are unable to discriminate between

linear accelerations and the component of gravitational

acceleration that occurs when the head is tilted with

respect to the gravity vector.1 This effect can be exploited

in motion simulators, allowing to reproduce sustained

accelerations by simulator tilt. The use of tilt angles is lim-

ited to 20–30 deg (Aubert effect), which limits the maxi-

mum possible acceleration simulated via tilt coordination

to 0.5 g.18 The use of tilt coordination generates additional

motion in the rotational channels, and in order for this

false motion not to be noticed, the tilt rate should be lim-

ited to the angular velocity perception threshold. Different

values of this threshold can be found in literature; a unique

value is difficult to identify given also the subjective

nature and the dependency from the simulation scenario

(active/passive driving). In this study a value of 3 deg/s is

considered.19,20 Humans require additional sensory infor-

mation (i.e., visual, proprioceptive) in order to discrimi-

nate between acceleration and tilt.21

A vestibular system model is not considered here. In

this study the goal of the MCA is to reproduce, on the

motion simulator, the specific forces and the angular velo-

cities obtained from a vehicle dynamics simulation. The

predictive MCA computes the optimal simulator motion

and predicts the associated perceived motion of the driver

on the simulator. Vehicle-specific forces and angular velo-

cities are used as a reference motion for the predictive

MCA in order to minimize the difference between the

motion on the simulator and in the real vehicle.
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2.2. Vehicle maneuvers

The maneuvers to reproduce on the motion-based simula-

tors are selected in an urban-like scenario between 0 and

50 km/h. The simulated vehicle performs the following

maneuvers:

� A: accelerating from 0 to 50 km/h
� B: braking from 50 to 0 km/h
� CT: constant turn at 50 km/h
� DLC: double lane change at 50 km/h
� BCTA: braking from 50 to 30 km/h while entering

the turn and accelerating from 30 to 50 km/h while

exiting the turn

The maneuvers have been selected to explore typical

longitudinal, lateral and combined motion scenarios. In par-

ticular A and B are purely longitudinal maneuvers, while

CT and DLC are purely lateral. In addition, BCTA has been

chosen to evaluate the combined longitudinal and lateral

dynamics. A description of these maneuvers in terms of

maximum accelerations and significant frequency content

is given in Table 1. The frequency spectrum of the vehicle

motion is computed and the maximum significant fre-

quency of each maneuver is considered as the frequency

above which the amplitude of the signal’s spectrum is

below 10% of its maximum. The vehicle dynamic simula-

tions have been performed with a time step of 1 ms using

CarSim� (Mechanical Simulation Corporation, Ann Arbor,

MI, United States). The selected vehicle was a mid-size

sedan and it was autonomously driven over a predefined

path at a controlled speed. The simulation was performed

offline and the results have been filtered to remove the high

frequency content of the vehicle motion using a zero-phase

low-pass 4th-order Butterworth filter with cut-off frequency

of 12.6 rad/s.

2.3. Predictive MCA

The MCA adopted in this study is based on MPC. This

advanced control technique uses a simplified model of the

system under control (i.e., motion system used in dynamic

simulators, to predict the future system’s response and

optimize the control action to achieve optimal tracking

performances within system limitations). The motion sys-

tem considered for this study is a six degrees of freedom

(DOF) hexapod22 with a linear actuator stroke of 0.533 m

and resulting single DOF limits reported in Table 2.

In order to define the equations of motion of the consid-

ered motion system, the following frames of reference are

defined:

� Inertial frame (IF): fixed to the ground and placed

at the center of the hexapod fixed base
� Platform frame (PF): placed at the center of the

hexapod moving base
� Head frame (HF): positioned at the head center of

the simulator user

The non-linear equations of motion of the system have

been derived, considering the moving platform as a single

rigid body with mass, m, and inertia tensor, I. The rigid

body is subject to three orthogonal forces (F) and three

orthogonal torques (M) applied at the center of mass. The

complete equations of motion are as follows:

_p= v

_q=
1

2
ET v

_v=
F

m
+ g

_v= I�1(M� v 3 Iv)

8>>>>>>><
>>>>>>>:

ð2Þ

with,

E =
�q1 q0 q3 �q2

�q2 �q3 q0 q1

�q3 q2 �q1 q0

2
4

3
5 ð3Þ

where, p and v are respectively the position and the velo-

city of the center of mass expressed in IF, q is the vector

of the orientation quaternions and v the rotational velocity

vector expressed in PF.

Table 1. Maximum longitudinal acceleration (ax), lateral
acceleration (ay), maximum yaw rate (ωz) and maximum
significant frequency content of the considered vehicle
maneuvers.

Maneuver ax½m=s2� ay½m=s2� ωz½deg=s� ½Hz�

A 2 – – 0.4
B 3 – – 0.4
CT – 2 10 0.2
DLC – ± 1 ± 5 0.3
BCTA ± 1 2 10 0.2

A: accelerating; B: braking; BCTA: braking while entering the turn and

accelerating while exiting the turn; CT: constant turn; DLC: double lane

change.

Table 2. Motion system single DOF limits.

DOF Position Velocity Acceleration

x − 0.423 m 0.540 m ± 0.8 m=s ± 7 m=s2

y − 0.432 m 0.432 m ± 0.8 m=s ± 7 m=s2

z − 0.306 m 0.324 m ± 0.55 m=s ± 10 m=s2

Roll − 20.25 deg 20.25 deg ± 33.5 deg=s ± 245 deg=s2

Pitch − 23.85 deg 20.70 deg ± 36.5 deg=s ± 245 deg=s2

Yaw − 23.40 deg 23.40 deg ± 39.5 deg=s ± 498 deg=s2

DOF: degrees of freedom.
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In order to proceed to the full problem statement, the

state vector x and the input vector u of the controlled sys-

tem are defined as follows:

x=

p

q

v

v

2
664

3
775 u=

F

M

� �
ð4Þ

The system is also subject to constraints, and the MPC

allows their inclusion in the optimization problem. As a

result, the computed motion trajectory will be optimized

while still remaining within system limitations.

The main physical constraint comes from the system’s

actuators, which are limited within a certain range of

motion. This limitation is expressed as an inequality con-

straint, where the actuator length is bounded between min-

imum (Lmin) and maximum values (Lmax). The lengths of

the actuators can be computed solving the hexapod inverse

kinematics,23 as follows:

Li = R(q) Ti + p� Bik k for i= 1, . . . , 6 ð5Þ

where, Li is the length of the ith actuator, Ti and Bi are the

coordinate vectors of the actuator’s mounting points on

the moving and fixed base respectively. The expression is

non-linear due to the presence of the rotation matrix R(q)
as follows:

R(q)=
1� 2q2

2 � 2q2
3 2(q1q2 � q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) 1� 2q2
1 � 2q2

3 2(q2q3 � q0q1)
2(q1q3 � q0q2) 2(q2q3 + q0q1) 1� 2q2

1 � 2q2
2

2
4

3
5

ð6Þ

The constraint (Equation 5) is linearized with respect to

the state vector as follows:

L’Mkxk +Qk ð7Þ

where, Mk is the Jacobian matrix of the vector L with

respect to the state vector xk , and Qk is the constant term

of the linear approximation. Both Mk and Qk are updated

at each time step using the current state vector xk and

included in the optimal control problem formulation.

Together with the actuators’ length constraint, the sin-

gle DOF motion limitation has also been included in the

optimization problem. This constraint somewhat reduces

the usable platform workspace, but was considered any-

way for extreme caution.

As introduced in Section 2.1, vehicle linear accelera-

tions and angular velocities are considered as the target ref-

erence for the MPC controller. The aim of the controller is

to reproduce the perceived motion as would occur in the

real vehicle, but keeping the simulator motion within its

physical limitations. The output function expresses the

perceived motion in terms of specific forces (f) and angular

velocities (v) on the simulator in HF, where the frame is

indicated in the quantity subscription. The relevant quanti-

ties are first written in PF, where also the angular accelera-

tion vector a is defined as follows:

fPF(x, u)=RT (g� _v)
vPF(x)=v

aPF(x, u)= _v

ð8Þ

Next, the same quantities can be expressed in HF by

means of the rotation matrix from PF to HF (HFRPF) and

the translation vector from HF to PF (PFrHF). The defini-

tion of the output quantities in HF is as follows:

fHF x, uð Þ= HFRPF fPF x, uð Þ+½
�aPF x, uð Þ3 PFrHF � v xð Þ3 v xð Þ3 PFrHFð Þ�
vHF(x)=

HFRPFvPF(x)

ð9Þ

As a result, the system output vector y is defined in vec-

tor form as follows:

y(x, u)=
fHF(x, u)
vHF(x)

� �
ð10Þ

The system’s equations of motion and output equations

are then discretized and converted to a discrete time dynamic

model using the direct multiple shooting method.24

The complete non-linear constrained optimization prob-

lem is formulated as follows:

minimize
u0, u1, ..., uN�1
x0, x1, ..., xN

PN�1
k = 0

Ik xk , ukð Þ+ IN xNð Þ

subject to x0 = ~x0
xk + 1 =Akxk +Bkuk

xmin4 xk 4 xmax

Lmin4Mkxk +Qk 4Lmax

xmin,N 4 xN 4 xmax,N

umin4 uk 4 umax

ð11Þ

With k = 0, . . . ,N � 1. Where,

Ik xk , ukð Þ= ŷk � y xk , ukð Þk k2Wy
+ x̂k � xkk k2Wx

+

+ ûk � ukk k2Wu

IN xNð Þ= x̂N � xNk k2WxN

ð12Þ

The MPC controller solves this problem at each time

step. The implementation has been done in Matlab (The

MathWorks, Inc., Natick, MA, United States) and the

quadratic programming problem is solved by a separate

solver (qpOASES25).

The optimization problem in Equation 11 is defined to

minimize the cost function expressed by the two terms Ik

and IN , defined in Equation 12. The term Ik of the cost

function is defined as a sum of weighted squared norms of

4 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



the difference between the vector quantities and their

references over the prediction horizon of N time steps

from 0 to N � 1, while the term IN includes only the final

state cost expressed as a weighted squared norm of the dif-

ference between the final state vector and its reference.

Both terms include the reference values which are defined

over the prediction horizon before to solve the optimiza-

tion problem. These references are: ŷk , x̂k , ûk and x̂N ,

which represent the reference trajectory for system output,

state, input and final state respectively. The inclusion of

these terms in the cost function has different meanings.

For instance, by giving a null reference to the state over

the prediction horizon a behavior similar to a washout fil-

ter would be obtained, where the MCA tries to keep the

hexapod in its central position. For this study, this effect

will not be considered and therefore the reference state x̂k ,

as well as the respective weights Wx, will be set to zero.

The addition of a null reference for input and final state in

the cost function stabilizes the system. The stabilization

effects are controlled by setting the associated weights. In

this study, the references for both ûk and x̂N are set to zero

over the prediction horizon. The weights on the input are

1e�3 for the linear accelerations and 1e�1 for the angular

velocities, while the weights on the final states are 1e1 for

all the states. The remaining term is the reference trajec-

tory for the system output ŷk , which needs to be defined at

each time step in order to optimize the control action. The

definition of the output reference is not only necessary to

numerically solve the control problem, but the accuracy of

future reference will also affect the performances of the

algorithm. For example, if the reference includes changes

derived from a particular maneuver to reproduce on the

simulator, the algorithm will know it in advance and it will

make use of this knowledge to improve the results. The

output reference is defined by the prediction strategy. In

this study, two different prediction strategies were com-

pared: oracle and constant.

2.3.1 Prediction strategies. The first prediction strategy con-

sidered for this study is the ideal strategy that is able to

predict with perfect accuracy the future vehicle motion.

This strategy will be referred to here with the name oracle

(due to its ‘prophetic’ capabilities in predicting the

future26). Clearly, this strategy cannot be adopted in an

active driving simulation but it is considered as a reference

to evaluate the best possible motion cueing quality achiev-

able with the predictive MCA. In order to implement the

oracle strategy, linear accelerations and angular velocities

resulting from the vehicle dynamic simulations must be

known a priori. At each time step, and for the length of

the prediction horizon, the corresponding signals are

extracted from the fully known motion and provided to the

predictive MCA.

The second strategy adopted in this study does not con-

sider any assumptions on future vehicle behavior and, at

each time steps, simply holds the current value of linear

accelerations and angular velocities that results from the

vehicle simulation. This strategy will be referred to here

as constant. Contrary to the oracle, this strategy can be

adopted for active driving simulation, but the resulting

motion cueing quality is expected to be lower.

2.3.2 Prediction horizon length. An important aspect of the

future prediction is given by the length of the prediction

horizon. The further the algorithm can see in the future,

the sooner it will respond to a future change. On the other

hand, a longer prediction horizon would result in a very

high computational cost. In a previous study27 a genetic

algorithm was adopted to optimize the length of the con-

trol and prediction horizon of the MPC. In another study28

a model was developed to evaluate the relation between

prediction horizon length and performance of the predic-

tive MCA in terms of a reduction of cost function. In the

last study, the cost value obtained with a certain prediction

length c(h) was compared with the cost obtained with an

infinite prediction c‘. A parametric model was developed

and it is reported here as follows:

c(h)

c‘

� 1=
h

a

� ��k

ð13Þ

Where a and k are characteristic parameters depending

on the considered scenario. The results showed that for an

urban-like scenario the characteristic time a for which the

cost is twice the value with infinite horizon is 3.3 seconds

and the cost decrease factor k is equal to 2. In this study a

prediction horizon of 5 seconds is considered, which is

roughly 1.5 times the characteristic time and would result

in a cost value of approximately 1.4 times the cost with

infinite horizon. The choice of 5 seconds of prediction,

together with the selected time step of 0.1 seconds, results

in an horizon length, N, equal to 50 and a total number of

control parameters to optimize equal to 300. The imple-

mentation adopted in this study does not allow real time

performances for a problem of this size. In order to

improve the performance to real-time, a different imple-

mentation could be adopted using more efficient program-

ming language and/or optimization algorithm.

2.3.3 Weighting factor optimization. The motion cueing

quality that can be achieved with the predictive MCA

depends on the accuracy of the predicted motion that is

provided to the MPC algorithm at each time step. The

MPC algorithm aims at reproducing the given reference

signals where the tracking performances are influenced by

the weighting factors associated with each motion channel.

Grottoli et al. 5



In the considered problem formulation, the weighting fac-

tors associated with the perceived motion are the six non-

zero terms of the diagonal matrix Wy. Finding the optimal

values of these weights is not trivial and it can strongly

influence the results of the predictive MCA. Using the

same set of weights for both prediction strategies might be

unfair for the comparison of the obtained motion cueing

results. Therefore an optimization of the weights is per-

formed with the aim of finding the best possible set for

each prediction strategy. The weights are initialized with

values taken from literature28,15 and reported in Table 3,

where the different order of magnitude is to account for

the ratio between specific forces (in m/s2) and angular

velocities (in rad/s) for typical maneuvers.28 The simulator

motion obtained with oracle and constant strategies for the

entire sequence of maneuvers is used to compute the error

with respect to the vehicle motion. The error is computed

separately for linear (ef ) and rotational motion (ev) and

combined in the cost function reported as follows, where

the error on the rotational motion is multiplied by a factor

of 100 to account for the different order of magnitude:

minimize
Wy

ef (Wy)
�� ��2 + 100 ev(Wy)

�� ��2 ð14Þ

A wider optimization loop is defined in order to find

the optimal value of Wy which minimizes the cost function

computed over the whole sequence of maneuvers. The

optimization is performed using an interior point method29

with a step tolerance of 1e�10. The optimal weighting fac-

tors are reported in Table 3. It can be noticed that the opti-

mized weighting factors for the angular velocities are very

similar to the initial values for both prediction strategies,

therefore these weights could have been neglected in the

optimization. On the other hand, the weights for specific

forces differs between oracle and constant. In particular,

the lowest weight for the oracle strategy is on fy while the

lowest for constant is on fx. This difference can be related

to many aspects, including the amplitude of the reference

signals (maximum value of fx higher than fy) and the capa-

bility of each prediction strategy to obtain a feasible

solution.

2.4. Dependent variables

The influence of the prediction strategy on the simulator

motion is analyzed in three different aspects: (1) analysis

of motion quality indicators, (2) analysis of cueing

mechanism usage (3) analysis of workspace usage.

2.4.1. Motion quality indicators. A previous study30 cate-

gorizes motion cueing errors into three types: false cues,

scaling or missing cues and phase errors. Each of these

cueing errors influences the motion cueing quality in a dif-

ferent way. In order to account for these influences when

analyzing the results of the predictive MCA, it is necessary

to identify some metrics to quantify the effects of each

error.

Shape and scaling errors have been addressed in previ-

ous studies,31,32 where scaling factors were adopted for

the MCA and used to separate the contribution of the scal-

ing from the shape error. In another study,33 a more gen-

eral approach was introduced based on signal correlation

to analyze the error introduced only by the signals’ shape.

The detection threshold of phase errors introduced by the

MCA have been also studied34 and in particular for pitch

and yaw motion a phase error threshold of 22 deg/s was

identified.35 A complete knowledge of these phase error

thresholds for every motion channels would give the possi-

bility to evaluate what is the maximum acceptable signal

delay that will not be perceived. Unfortunately, these val-

ues are not yet known.

In a more recent article,36 dedicated indicators for

motion signal correlation, scaling and delay were defined.

These indicators have been proven to correlate well with

the subjective cueing quality measured in a human-in-the-

loop experiment and they will be considered here to study

the impact of the prediction strategy on motion cueing

quality. The indicators have been slightly modified with

respect to their original definition36 and are described in

detail in the following paragraphs.

Correlation coefficient (CC). This measures the sig-

nals’ linear correlation. It provides a measure of similarity

for the shape of the signal resulting from the MCA with

Table 3. Initial and optimized weighting factors on specific forces and angular velocities of the predictive MCA.

Weight Specific forces Angular velocities

fx fy fz ωx ωy ωz

Oracle
Initial 1 1 1 100 100 100
Optimal 3.021 1.101 3.031 100.310 101.239 100.574
Constant
Initial 1 1 1 100 100 100
Optimal 1.000 1.579 1.579 100.013 100.000 100.000

MCA: Motion cueing algorithm.
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respect to the reference signal. The CC is defined as the

maximum value of cross-correlation between the motion

resulting from the MCA and the reference motion over all

delays. For normalization purposes it is divided by the

maximum auto-correlation of the reference signal and

therefore it is defined in the range ½0, +1�, where, 1 repre-

sents a perfect correlation and 0 represents no correlation.

The CC is computed for the longitudinal and lateral accel-

erations as well as for the yaw rate, as these are the only

motion channels with significant signal power in car driv-

ing maneuvers. The other motion channels mainly contain

parasitic motion, due to for example tilt coordination. In

the latter case, only very poor correlation is expected.

Delay indicator (DI). This indicator measures the

delay between the reference signal and the signal resulting

from the MCA. The indicator’s value is obtained by com-

puting the signal cross-correlation and extracting the value

of signal delay that maximizes the cross-correlation. This

delay is identified as DI and it is defined in the range

[0,+N]. Also in this case, the indicator is used only for

longitudinal and lateral accelerations, as well as for the

yaw rate. Since the other motion channels do not have sig-

nificant signal power, the correlation with the reference

signal is not meaningful. As mentioned above, for the yaw

rate, the phase error detection threshold is known and

equal to 22 deg.35 For each maneuver where the yaw rate

is significant, the phase error threshold is divided by the

maximum significant frequency content of each maneuver

to compute the value of DI that corresponds to the phase

error detection threshold. This value of DI represents the

maximum signal delay that can not be perceived.

Absolute difference (AD). This indicator represents

the error between the reference signal and the result of the

MCA. It is defined as the area of the error signal divided

by the area of the reference signal. This definition is

adopted for the analysis of the longitudinal and lateral

accelerations and for the yaw rate. For the analysis of

pitch and roll rate, the AD is defined as the area of the

absolute rate above the angular velocity perception thresh-

old of 3 deg/s.19 With this modification, the AD differs

from 0 only if the pitch and roll rate passes the perception

threshold, assuming that below that value, the motion will

not be perceived.

2.4.2. Motion cueing mechanisms. The analysis of the indi-

cators gives a very important and quantifiable measure-

ment of motion cueing quality. Similarly to a previous

study,15 an analysis of motion cueing mechanisms provides

insight to understand how the cueing quality is affected by

the prediction strategy. The motion cueing mechanisms

that will be analyzed in this study are presented below.

Tilt coordination. This technique is often used to

reproduce sustained linear acceleration with limited work-

space motion simulators. The principle is to tilt the

simulator in order to use a component of the gravitational

acceleration to reproduce longitudinal or lateral accelera-

tion. This mechanism is not explicitly included in the pre-

dictive MCA, but it could still be adopted as a result of the

optimization.

Prepositioning. This motion cueing mechanism is

intended to maximize the simulator motion in a certain

direction. The simulator moves towards the extreme of the

available workspace to make use of the full motion envel-

ope in the direction needed to reproduce accurately a cer-

tain maneuver.

Velocity buffering. This mechanism can be interpreted

as the equivalent of prepositioning in velocity and it has

been first identified in previous studies.15 The simulator is

moved at a certain velocity in opposite direction with

respect to the one needed. At the same time the perceived

motion is compensated by tilt coordination, which com-

pensates for the acceleration that is used to generate the

linear velocity. When the maneuver begins, the simulator

is already moving and can be accelerated in the opposite

direction for a longer time.

2.4.3. Workspace usage. A crucial limitation for motion

simulators is the limited workspace available. The predic-

tive MCA offers the possibility to include the system’s

constraints in the optimization problem and therefore it

makes optimal usage of the available workspace. When

changing the adopted prediction strategy, a different

motion cueing quality is expected, together with a different

usage of the simulator workspace. To determine whether

the differences in motion cueing quality between predic-

tion strategies are related to a more effective usage of

simulator workspace, a dedicated analysis will be per-

formed. In particular, the use of the actuators’ length and

motion envelope will be analyzed and compared.

The length of each actuator is computed for the full

sequence of maneuvers. In order to analyze how the pre-

diction strategy makes use of the actuators’ length, the

interquartile range is used. This quantity is normally

adopted in statistics as a measure of variability and it is

computed as the difference between the 75th and 25th per-

centiles.37 In this study it will be assumed that a higher

interquartile range would represent a wider use of the full

actuator length and therefore a more effective usage of the

simulator workspace.

Another aspect to notice is the use of the motion system

workspace. In this study, the motion obtained for the full

sequence of maneuvers with the considered prediction

strategies will be analyzed separately for displacement and

orientation coordinates. For the analysis of the linear dis-

placement, the sequence of x-y-z coordinates can be visua-

lized as a set of points in the Euclidean space. The convex

hull of the sets of points obtained by each prediction stra-

tegies is computed and its volume calculated. The
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obtained volumes can be compared with each other and

with the complete position workspace, which is the x-y-z

space that can be reached with every possible orientation

of the motion system. A similar analysis is performed for

the orientation coordinates. The roll-pitch-yaw coordinates

obtained by each prediction strategy for the entire

sequence of maneuvers is used to compute the convex

hull. The volumes computed are again compared with

each other and to the complete orientation workspace,

which is the roll-pitch-yaw space that can be reached with

every possible position of the motion system. In this anal-

ysis it is inferred that a higher volume of the computed

convex hull indicates a larger usage of the simulator

workspace.

3. Results

To compare the results obtained by the MCA with differ-

ent prediction strategies, the motion quality indicators are

computed and analyzed in Section 3.1. The use of differ-

ent motion cueing mechanisms is presented in Section 3.2.

Finally, the influence of the adopted prediction strategy on

simulator workspace usage is shown in Section 3.3.

3.1. Motion quality indicators

The first analysis of the resulting simulator motion depend-

ing on the adopted prediction strategy is carried out using

the indicators defined in Section 2.4.1. To clarify the anal-

ysis, the maneuvers involving similar dynamics are

grouped together in three sets defined as follows:

� Longitudinal dynamics: acceleration (A) and brak-

ing (B)
� Lateral dynamics: constant turn (CT) and double

lane change (DLC)
� Combined longitudinal/lateral dynamics: braking

while entering the turn and accelerating while exit-

ing the turn (BCTA).

For each maneuver set, the most relevant motion chan-

nels are considered for the calculation of the indicators.

3.1.1. Longitudinal dynamics. For the longitudinal dynamic

maneuvers, the most relevant motion channels are longitu-

dinal acceleration and pitch rate.

The results for the acceleration maneuver are shown in

Figure 1. The longitudinal acceleration obtained with the

oracle strategy is very similar to the vehicle motion, while

the constant strategy fails to reproduce the sustained accel-

eration at the beginning of the maneuver resulting in a

missing cue, and at the end of the maneuver providing a

false acceleration cue. The CC indicator reflects the differ-

ences in the signal shape. The CC is 0.95 for the oracle

strategy while it is 0.87 for the constant. The distorted

acceleration signal obtained with the constant strategy also

results in a delayed cue. In fact, the obtained DI value for

the constant strategy is 0.86 seconds, while the DI for the

oracle is 0.11 seconds. In terms of absolute difference,

the acceleration obtained with the oracle is very close to

the reference motion and therefore the AD is 0.10. For the

constant strategy, due to the different shape of the signal,

the difference with the reference is higher, resulting in a

value of AD of 0.33. Regarding the pitch rate, the constant

strategy keeps the resulting signal at zero until the begin-

ning of the maneuvers, then the angular velocity rapidly

increases above the perception threshold. The oracle strat-

egy, knowing the future reference in advance, starts using

the angular velocity before the beginning of the maneu-

vers, resulting in a smoother signal which barely passes

the perception threshold. The quantification of this effect

is provided by the AD indicator, which is 0.17 for the ora-

cle strategy and 1.56 for the constant strategy.

Similar results for the braking maneuver are shown in

Figure 2. This maneuver is more aggressive than the accel-

eration and therefore the differences between the two stra-

tegies are more evident. The shape of the acceleration

signal for the oracle still follows the reference motion,

with only a small reduction of motion amplitude. The indi-

cators computed for the oracle reflect the motion results,

with CC of 0.92, DI of 0.10 seconds and AD of 0.18. For

the constant, the resulting motion differs from the refer-

ence. The signal shape is distorted, resulting again in false

and missing cues, with an overall delayed acceleration cue.

The results of the indicators for the constant strategy con-

firms the analysis of the motion signal, with CC of 0.77,

DI of 1.03 seconds and a value of AD of 0.33. For the pitch

rate, the signal obtained by the oracle strategy is again

smooth but in this case it passes the perception threshold.

The constant strategy results in a signal that is above the

perception threshold for less time than the oracle, but with

higher amplitude. The results obtained for the AD are the

highest of all maneuvers, with a value of 1.73 for the ora-

cle strategy and 2.66 for the constant strategy.

3.1.2. Lateral dynamics. For the lateral dynamic maneuvers,

lateral acceleration is the most relevant motion channel,

together with the roll rate and yaw rate.

The results obtained for the CT maneuver are shown in

Figure 3. The lateral acceleration obtained by both predic-

tion strategies follows the reference motion quite well,

with an evident difference only in the timing of the signals.

In fact, the motion obtained with the oracle strategy starts

and ends together with the reference, while the constant

strategy results in a delayed acceleration cue. The analysis

of the motion signals finds correspondence in the indica-

tors results, where the main difference between indicators

for the lateral acceleration is obtained for the DI, which is
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0.05 seconds for the oracle strategy and 0.87 seconds for

the constant strategy. The results for the correlation and

absolute difference indicators do not show major differ-

ences between the prediction strategies, with CC values of

0.90 and 0.95, and AD of 0.13 and 0.17 for the oracle and

the constant strategy respectively. For the roll rate, the

motion signal obtained with the oracle strategy is always

below the perception threshold, consequently the AD is 0.

Oppositely, the roll rate resulting from the constant strat-

egy exceeds the perception threshold, with an AD value of

0.42. Regarding the yaw rate, both the oracle and constant

strategies fail to reproduce the amplitude of the reference

motion signal, resulting in low values of CC and high val-

ues of AD. On the other hand, the shape of the signal can

still be compared with the reference. The yaw rate obtained

with the oracle strategy starts by going in the opposite

direction but overall it has a shape very similar to the refer-

ence with only a small delay. The yaw rate resulting from

the constant strategy is initially better than the one of the

oracle, but at 15 seconds, changes direction and the signal

Figure 1. Resulting motion, and corresponding motion quality indicators, for the acceleration maneuver (A). The results are shown
compared with the vehicle motion. Also the rotational velocity perception threshold of 3 deg/s is represented for reference.

Figure 2. Resulting motion, and corresponding motion quality indicators, for the braking maneuver (B). The results are shown
compared with the vehicle motion. Also the rotational velocity perception threshold of 3 deg/s is represented for reference.
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goes almost to 0. This is reflected in the CC and DI indica-

tors, where the CC is 0.28 for the oracle and 0.18 for the

constant strategy, and the signal delay is 0.17 seconds for

the oracle and 1.86 seconds for the constant. Together with

the results of DI, also the delay threshold at 0.33 seconds is

plotted, this value represents the maximum delay that can-

not be perceived given the 22 deg of phase error threshold

and the frequency content of the reference signal.

The results for the DLC maneuver are shown in

Figure 4. The lateral acceleration signal obtained with

the oracle strategy is very similar to the reference, with

only a small reduction in signal amplitude. The accelera-

tion signal obtained with the constant strategy has a dif-

ferent shape than the reference, with reduced amplitude

and a delay that increases during the maneuver. Also in

this case, the results of the indicators reflect the outcome

of the analysis. The CC is 0.82 for the oracle and 0.69

for the constant strategy, the DI is 0.11 seconds for the

oracle and 0.64 seconds for the constant strategy and

finally the AD is 0.25 for the oracle against 0.58 for the

constant strategy. For the roll rate, the signal computed

with the oracle strategy is always below the perception

threshold with a consequent AD value of zero, while the

constant strategy passes the perception threshold with an

AD value of 0.36. Looking at the yaw rate, the results

obtained with the oracle is very similar to the reference

motion, with a small deviation before the beginning of

the maneuver and a slight delay. On the contrary, the

constant strategy fails to reproduce the reference motion,

providing a yaw rate signal which only partially

reproduces the original motion. The indicators computed

for the oracle strategy reflect the analysis of the motion,

with a CC of 0.96 and a DI of 0.12 seconds. The computed

DI is also below the delay threshold of 0.22 seconds. The

resulting DI value for the constant strategy is equal to 0.03

which is even lower than the DI obtained with the oracle,

this is most likely due to the very different signal shape

which invalidates the result. The AD obtained is equal to

0.23 for the oracle and 0.70 for the constant strategy.

3.1.3. Longitudinal/lateral dynamics. For the analysis of the

indicators of the combined dynamic maneuver, the motion

channels for both longitudinal and lateral dynamics are

considered.

The results obtained for the combined dynamic maneu-

ver are shown in Figure 5. The longitudinal acceleration

obtained with the oracle strategy is again very similar to

the reference motion, the signal shape corresponds, with a

short delay and a small difference in amplitude. The corre-

sponding indicator values reflect the analysis with CC of

0.94, DI of 0.11 seconds and AD of 0.13. On the contrary,

the longitudinal acceleration resulting from the constant

strategy differs from the reference motion. The signal

shape is distorted, with alternating missing and false cues

and an overall delayed signal. The results given by the

indicators are representative of these differences, with CC

of 0.86, a DI of 0.82 seconds and AD of 0.44. For the lat-

eral acceleration the differences between the motion

obtained by the two prediction strategies is less evident

Figure 3. Resulting motion, and corresponding motion quality indicators, for the constant turn maneuver CT. The results are
shown compared with the vehicle motion. Also the rotational velocity perception threshold of 3 deg/s is represented for reference.
CT: constant turn.
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but still present. Regarding the shape of the signals, the

best result is obtained with the constant strategy, which

contrary to the oracle, is able to reproduce also the peak

of acceleration between 120 and 125 seconds. The CC

obtained with the constant strategy is 0.95, while for the

oracle is 0.89. On the other hand, the lateral acceleration

motion obtained with the constant is delayed with respect

to the reference, resulting in a DI of 0.80 seconds. In com-

parison, the DI computed for the oracle is 0.18 seconds.

The absolute difference for the lateral acceleration motion

is comparable for the two prediction strategies, with a

value of AD of 0.15 for the oracle and 0.22 for the con-

stant strategy. For the pitch and roll rate, the motion

obtained with the oracle strategy is mostly smooth and

always below the perception threshold and consequently

the AD is in both cases equal to 0. In contrast with the

oracle, the motion signals obtained with the constant strat-

egy is less smooth and passes the perception threshold for

both roll and pitch rate, with AD of 0.05 for the roll rate

and 0.28 for the pitch rate. For the yaw rate, the resulting

motion signals are both different from the reference

motion in terms of shape and amplitude, but the signal

obtained with the oracle strategy is better synchronized

with the reference. The indicator results for correlation

and absolute difference are very similar for both strategies,

with CC of 0.36 and 0.37 and AD of 0.64 and 0.65 for the

oracle and constant strategy respectively. The only clear

difference in the indicator results is obtained for the DI,

which is 0.20 seconds for the oracle and 2.04 seconds for

the constant strategy. Also in this case the delay threshold

is computed, the result is 0.31 seconds, which is higher

than the DI obtained with the oracle strategy.

3.2. Motion cueing mechanisms

Tilt coordination is used in all maneuvers by both predic-

tion strategies. In Figure 6, both effects of tilt coordination

and velocity buffering can be seen. The usage of tilt coor-

dination from both prediction strategies is evident from

the analysis of the components of the longitudinal accel-

eration. In fact, only the linear component of the accelera-

tion would not be sufficient to reproduce the sustained

acceleration, therefore the gravitational component is

used, tilting the motion system to use a component of the

gravitational acceleration.

Also the effect of velocity buffering can be seen in

Figure 6, in particular between 40 and 45 seconds and

between 55 and 60 seconds. The oracle strategy starts

accelerating the platform in the opposite direction, while

compensating with tilt coordination. The constant does not

make use of velocity buffering as it starts to tilt the motion

platform only when the acceleration begins.

An example of prepositioning can be seen in Figure 7,

where the lateral displacement of the motion system is

shown together with the resulting lateral acceleration for

each prediction strategy. A few seconds before the maneu-

ver, the oracle strategy moves on one extreme of the avail-

able workspace, making possible the use of a longer

Figure 4. Resulting motion, and corresponding motion quality indicators, for the double lane change maneuver (DLC). The results
are shown compared with the vehicle motion. Also the rotational velocity perception threshold of 3 deg/s is represented for
reference.
DLC: double lane change.
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excursion to reproduce the lateral acceleration. The con-

stant strategy does not show similar behavior, by starting

the simulator motion at the start of the maneuver.

3.3. Workspace usage

The actuators’ length is computed for the entire sequence

of maneuvers and for the two prediction strategies. The

length of each actuator is then normalized between 0 and 1

and the interquartile range is computed. The results are

shown in Figure 8, where it can be seen that the interquar-

tile range is always larger for the oracle strategy compared

to the constant strategy and therefore it can be inferred that

the oracle makes more use of the actuators’ length.

Regarding the usage of the motion platform position

workspace, the results are shown in Figure 9 for transla-

tions and Figure 10 for rotations, where the motion

envelope for the reproduction of the entire sequence of

maneuvers is shown for both prediction strategies. For

translations, the volume of the convex hull of the motion

envelope used by the constant is 0.0451 m3 and the vol-

ume used by the oracle is 0.0642 m3, which is 42.4%

larger. In addition to this, it can be noticed that the oracle

uses the workspace also in proximity of the physical sys-

tem’s limitation. From the top view of Figure 9 it can be

noticed that the maximum longitudinal position reached

by the oracle is very close to the position workspace limit.

This point is reached during the braking maneuver, where

a large longitudinal displacement is needed to reproduce

the reference acceleration. Similarly, the results obtained

for the orientation workspace are shown in Figure 10. The

volume of the convex hull of the motion envelope used by

the constant is 5:54e6 deg3 and the volume used by the

oracle is 6:17e6 deg3, which is 11.4% larger.

Figure 5. Resulting motion, and corresponding motion quality indicators, for the combined dynamic maneuver BCTA. The results
are shown compared with the vehicle motion. Also the rotational velocity perception threshold of 3 deg/s is represented for
reference.
BCTA: braking while entering the turn and accelerating while exiting the turn.
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4. Discussion

The inspection of actual response curves and the corre-

sponding motion quality indicators shows that the indica-

tors are able to qualify and quantify the differences

between the reference motion and the motion obtained

with the considered prediction strategies. From the results

it emerges that several indicators are useful to understand

one particular difference between the signals (i.e., shape

difference, delay or absolute difference) but only the

combined analysis of the indicators provides a complete

understanding of the motion resulting from a particular

prediction strategy.

The oracle strategy achieves higher motion cueing quality

than the constant strategy by starting the simulator motion

before the beginning of the maneuvers, allowing the use of

prepositioning and velocity buffering, in addition to tilt coor-

dination, which is the only motion cueing mechanism

adopted by the constant strategy. The combined use of multi-

ple motion cueing mechanisms adopted by the oracle leads

to a larger interquartile range for the actuators and therefore

to a better use of the simulator workspace, especially when

most needed. For example, in the braking maneuver, when

the longitudinal acceleration reaches its maximum, the ora-

cle strategy results in a simulator motion very close to the

maximum longitudinal displacement of the hexapod. It is

important to notice that the motion cueing mechanisms are

not direct functionalities of the predictive MCA but rather

the results of the optimization and they provide better results

when the future prediction is perfectly accurate. When the

future prediction is incorrect, the quality of the motion cue-

ing could be reduced by a misuse of the motion cueing

mechanisms resulting from the attemp of the predictive

MCA to reproduce an incorrect reference.

From the results obtained for the workspace usage, it

can also be inferred that to achieve the same motion cueing

quality performances, the oracle requires a smaller motion

Figure 6. Different contributions to linear acceleration reproduction for the oracle and constant prediction strategy in longitudinal
dynamic maneuvers.

Figure 7. Comparison of simulator lateral displacement and
perceived lateral acceleration during the constant turn
maneuver for the oracle and constant prediction strategy.
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system workspace than the constant. Or, that the constant

strategy requires a larger workspace to achieve the same

motion cueing quality that can be obtained with the oracle

strategy.

Moreover, from the analysis of the simulator motion, it

can be noticed that the constant strategy results are less

smooth, with higher linear jerk and angular acceleration

values. Previous studies38,39 found that this can reduce the

quality of perceived motion, which is another aspect that

underlines the lower performances of the constant with

respect to the oracle strategy.

The analysis of the maneuvers divided in longitudinal,

lateral and combined dynamics shows that the differences

in motion cueing quality between oracle and constant are

more evident especially for longitudinal and combined

dynamic maneuvers. In particular for longitudinal dynamic

maneuvers, the analysis shows large improvement with a

more accurate prediction strategy knowing future motion.

Nevertheless, the oracle strategy cannot be used for DIL

simulations, while the constant strategy, with its subopti-

mal results, can be used for simulating active driving. The

results indicate that it is worthwhile to invest in a better

prediction than the constant and this could be done by

Figure 8. Interquartile range of the normalized actuators’
length for all the maneuvers. Comparison between the adopted
prediction strategies.

Figure 9. Simulator position workspace comparison between oracle and constant prediction strategy. The motion envelope is
computed considering x-y-z coordinates. The bigger area represented in light grey is the complete motion platform position
workspace considering all reachable orientation.
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using information about the road and traffic, such as traffic

signs/lights and/or velocity of leading vehicles. The infor-

mation could be used to predict if the driver will accelerate

or brake the vehicle. Similarly, for the lateral dynamics,

information about the future road profile can be used to

foresee turning maneuvers. These approaches could be

combined with a simplified vehicle model to predict longi-

tudinal and lateral accelerations. Such a prediction strategy

would result in improved motion cueing quality perfor-

mances and still be usable in DIL simulations.

Finally, the objective evaluation carried out in this

study is based on objective metrics that have been shown

to highly correlate with subjective evaluation and there-

fore, the results of objective and subjective evaluations

are expected to correspond. Nevertheless, it is useful to

conduct a human-in-the-loop experiment to identify

which indicator weighs most for the overall perceived

motion quality and what is the difference between indi-

cator values which is large enough for humans to detect

the quality difference. A suitable method to adopt here

could be the continuous rating method,40 where the sub-

jects of a passive driving experiment continuously pro-

vide a feedback of the mismatch between visual and

motion.

Figure 10. Simulator orientation workspace comparison between the oracle and constant prediction strategy. The motion envelope
is computed considering roll-pitch-yaw coordinates. The bigger area represented in light grey is the complete motion platform
orientation workspace considering all reachable position.
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5. Conclusions

In this study, the effects of two prediction strategies on

optimization-based MCA have been analyzed. The first

strategy, oracle, assumes perfect knowledge of future

vehicle motion, it cannot be used for DIL simulations and

it is considered as a reference to evaluate the best motion

cueing quality that can be achieved. The second strategy,

constant, ignores changes in the future reference and

assumes a constant reference equal to last vehicle status.

The objective analysis carried out aimed to qualify and

quantify the effects of the prediction strategies by means

of dedicated metrics. Motion cueing quality indicators

have been defined to quantify correlation, delay and abso-

lute difference of the simulator motion with respect to the

reference vehicle motion. An analysis of the adopted

motion cueing mechanisms has been performed together

with a study on the usage of the motion system workspace.

As expected, the oracle outperforms the constant strategy,

being able to coordinate the usage of multiple motion cue-

ing mechanisms and manage the use of the limited work-

space to obtain better motion cueing quality performances.

The combined analysis of multiple indicators confirms the

differences in performance and provides the metrics to

quantify these differences. From the indicator results, the

larger performance difference is obtained for longitudinal

dynamic maneuvers, providing an indication of what

should be improved in the future design of advanced pre-

diction strategies for optimization-based MCAs.
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