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ABSTRACT

Voice messages are an increasingly well-known method of communication, accounting
for more than 200 million messages a day. Sending audio messages requires a user to
invest lesser effort compared to texting while enhancing the meaning of the message
by adding an emotional context (e.g., irony). Unfortunately, we suspect that voice mes-
sages might provide much more information than intended. In fact, speech audio waves
are both directly recorded by the microphone, as well as propagated into the environ-
ment and possibly reflected back to the microphone. Reflected waves along with ambi-
ent noise are also recorded by the microphone and sent as part of the voice message.

In this thesis, we propose a novel attack for inferring detailed information about user
location (e.g., a specific room) leveraging a simple WhatsApp voice message. We demon-
strated our attack considering 7,200 voice messages from 15 different users and four en-
vironments (i.e., three bedrooms and a terrace). We considered three realistic attack
scenarios depending on previous knowledge of the attacker about the victim and the
environment. Our thorough experimental results demonstrate the feasibility and effi-
cacy of our proposed attack. We can infer the location of the user among a pool of four
known environments with 85% accuracy. Moreover, our approach reaches an average
accuracy of 93% in discerning between two rooms of similar size and furniture (i.e., two
bedrooms), and an accuracy of up to 99% in classifying indoor and outdoor environ-
ments.
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STRUCTURE OF THE DOCUMENT

This document is structured as follows - Chapter 1 provides a brief introduction to the
vulnerability that an attacker can target and convert to a risk. Chapter 2 discusses various
works related to environment inference using audio signals and other works on location
detection, these works form the basis of our research. Chapters 3, 4, and 5 overviews
related background information and the necessary knowledge required by the reader
to understand the For Y our V oi ceOnl y attack.The main contributions of our research
start after this chapter. Next, Chapters 6 and 7 describe the system model for our at-
tack and various attack scenarios respectively. Chapter 8 presents the various prelimi-
nary experiments conducted to finalize the setup of our experiment. Chapter 9, presents
the devised setup for For Y our V oi ceOnl y attack. Then, Chapter 10 evaluates the pro-
posed attack, discusses obtained results, the impact of audio side channels present in
VoIP applications, and also exhibits practical implications of For Y our V oi ceOnl y at-
tack. Finally, Chapter 11 summarizes the work and its limitations and proposes potential
future research directions.
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1
INTRODUCTION

In this chapter, we introduce WhatsApp: one of the most used messenger applications
worldwide. We then discuss potential sources of information leakage present when us-
ing the voice messaging service of this application. Finally, we introduce our proposed
attack and the contributions that we propose through our work.

1
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2 1. INTRODUCTION

Ever since its inception in 1992, the smartphone is a gift that keeps giving. It allows
its users to communicate with anyone around the world on the go. With the ascent in
the ubiquity of the smartphone, it makes for a lucrative target for attackers. Instant mes-
saging applications are one of the most used apps on the phone. Modern chats have re-
placed feature-poor SMS by adding text, images, video, audio, and emoticons to the text.
This has allowed instant messaging apps to attract more and more users over the years.
In 2020, more than 2.7 billion users used at least one instant messaging app 1. Nowadays,
the most used instant messaging app with over 2 billion users worldwide is WhatsApp 2.
One of the most used features by WhatsApp users are voice messages, so much so that
over 200 million are sent every day 3. Sending a voice message requires even less effort
for a user compared to texting. Moreover, voice messages allow enhancing the meaning
of the message by adding an emotional context (e.g., irony). Given the appreciation of
users, this feature has become common in other messaging apps as well [23], but does a
voice message send more than we intend to?

As can be seen in Figure 1.1 when a person speaks the voice signals travel in different
paths some of which undergo reflection. The reflected paths depend on the shape, di-
mension, furniture, etc. that are present in the room, and along their path, these waves
are affected by phenomena such as diffraction, refraction, reflection, and interference.
Reflected audio waves end up back at the speaker causing the persistence of noise which
is termed as reverberation. In addition, other ambient noises are also present - such
as noises from secondary audio sources. The combination of both alongside the audio
message gets picked up by the smartphone during voice messaging.

Figure 1.1: Voice propagation when sending a voice message.

1https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps/
2https://www.whatsapp.com/
3https://www.thesun.co.uk/tech/6815812/texts-voice-messages-whatsapp-imessage-switching/
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Side-channel attacks and in specific acoustic side-channel attacks are not a new
genre of cyber-attacks. Historically, there has been a lot of research on such types of
attacks for instance side-channel attacks on keyboards utilizing the sound produced
due to various keystrokes[29], attacks on printers based on their acoustic emissions[14],
attacks on smartphones due to the acoustic emissions emitted when we interact with
phone screens [37] etc. We present a means to use such acoustic side channels as the
premise of a new attack. We aim to make use of the physical measures mentioned that
are readily accessible and inadvertently shared during WhatsApp audio messaging to
gain intelligence about the victim’s whereabouts. This information can be utilized in
a two-sided manner based on the motivation. Both law enforcement agencies (for the
purpose of forensic investigation) and attackers can benefit from the leaked information.
The main contributions we propose in this research work are:

• We propose a novel attack for inferring a specific user location (e.g., a specific
room) leveraging simple WhatsApp voice messages.

• We collected a dataset of 15 people and 4 different environments (i.e., three in-
door one outside) for a total of 7200 recordings (i.e., 480 per participant). We will
make the dataset public, available to the research community upon acceptance.
We believe it will be useful in studying the problem further and developing coun-
termeasures.

• We performed an analysis of our attack simulating three different real attack sce-
narios based on the knowledge available to the attacker. We demonstrated that
our attack can distinguish the location of the message among a pool of known en-
vironments (i.e., three bedrooms, and a terrace) with an accuracy of up to 85%.
Moreover, we showed that our approach reaches an average accuracy of 93% in
discerning the voice message location of two rooms of similar size and furniture
(i.e., two bedrooms). We further inferred the room and the specific position of the
user within the room (e.g., a corner) for this task we achieve an accuracy of 64%.

• We conducted a study to assess human ability in discerning the location of an au-
dio recording. We divided the survey into two parts to closely recreate the attack
scenarios simulated by our model. We show that humans mainly rely on guess-
ing and perform very poorly in comparison with our For Y our V oi ceOnl y attack.
Our participants were able to reach an average accuracy of only 24% in distinguish-
ing the location of the message among the 4 known environments (i.e., three bed-
rooms, and a terrace).

The novel contribution of our work is the use of audio recordings (audio messages)
which are compressed files with reduced file sizes to perform location inference. This
technique requires no physical access and so it increases the feasibility in the real world
of the attack scenarios mentioned in Section 6.2.





2
RELATED WORKS

In this chapter we provide a brief overview of the existing works related to obtaining envi-
ronment information from audio.These works form the basis for the For Y our V oi ceOnl y
attack we proposed.
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Sound classification represents a field of increasing interest in several areas and ap-
plications such as, surveillance [30], medicine [39], emotion recognition [40], music genre
classification [31], and forensics [35]. The three main disciplines involved in sound clas-
sification are: Music Information Retrieval (MIR), [38],[42], Automatic Speech Recogni-
tion (ASR) [32, 43], and Environmental Audio Scene Recognition (EASR) [33, 41]. Music
and speech can be well described by features such as MFCC (Mel-frequency cepstral co-
efficients), bandwidth, zero-crossing rate (ZCR), and spectral flux [11, 12]. While for the
recognition of environments the problem is more challenging since the sound, in this
case, does not present any tonal or harmonic structure [19].

The EASR problem involves the identification of the environment of recorded au-
dio. A first comprehensive study on EASR was carried out by Cowling et al. [9]. In this
work, the authors explore different feature extraction and classification techniques on
EASR, achieving a 70% accuracy leveraging dynamic time warping classification tech-
niques. One of the primary tasks in the EASR domain is the distinction between indoor
and outdoor environments. Khonglah et al.[28] proposed the use of foreground speech
segmentation to obtain foreground and background segments of an audio recording.
Then from the obtained segments the MFCCs were extracted and used to train an SVM
classifier to perform indoor-outdoor classification. In this study, the authors highlighted
that the major cause of misclassification was the presence of speech in the background.
Not only speech but also other background noises can induce classification errors. In
real-world scenarios, it is quite common to have complex environment sound (i.e., en-
vironments with multiple sound sources). To mitigate the impact of complex sounds
on environmental prediction performance, Delgado et al. [20] introduced a feature re-
duction strategy using a Chi-Squared Filter [3]. Unfortunately, a similar approach can-
not be applied to the classification of similar locations. Both speech reverberation and
background noise are important sources of information that can be descriptive of the
environment in which the voice message is recorded.

Recently, many works on EASR have leveraged deep learning algorithms to perform
feature extraction and classification [22, 25, 27, 36] Based on the work conducted by
Chandrakala et al. [33] deep learning approaches show better performance compared to
traditional machine learning techniques. However, these approaches cannot be applied
in our case, since they require large amounts of data to train the models.

Additional factors that affects EASR are the quality of the recording device and the
format in which the sound signal is saved (i.e., lossy audio formats). In this regard, sev-
eral works have focused on the recognition of environments from sounds recorded with
resource constrained devices (e.g., smartphones). Gomes et al. [24] presents an applica-
tion for the smartphone device to classify an audio recorded on the device using a com-
bination of SAX-based multiresolution motif discovery in combination with MFCC.The
work by Peltonen et al. [8] aims to perform context-based audio scene recognition. How-
ever the data used in this work was obtained using a stereo setup and stored in a digital
audio tape recorder.

There are works performing indoor location identification that make use of other
data such as the GSM/Wifi signal in combination with audio recorded on a phone [18].
To the best of our knowledge, there are no works in the literature that attempts to identify
a specific location (e.g., a specific room) from a voice message recorded by a smartphone.



3
BACKGROUND PRINCIPLES

In this chapter, we introduce some basic concepts about sound waves and their behavior.
In the first part of this chapter, we discuss some of the fundamental characteristics of sound
waves, while in the latter part, we present the behavior of sound waves when interacting
with obstacles that we wish to exploit in our For Y our V oi ceOnl y attack.
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3.1. SOUND WAVES
When a person speaks sound waves are generated due to the displacement of particles
in the medium causing vibrations. These sound waves are mechanical waves that travel
through the medium of transmission. These waves comprise compression (vibrating
particles are closest together) and rarefaction (vibrating particles are farthest apart). Al-
though these waves are longitudinal they are represented as transverse waves for easier
representation. Sound waves can be broken down into 4 major types of contributory
waveforms 3.1 - the sine wave, square wave, triangle wave, and sawtooth wave. Of these

Figure 3.1: Types of waveforms

waveforms, the sine wave contains a single fundamental frequency and no overtones or
harmonics. Both the square and triangular waves contain odd harmonics in addition to
the fundamental sound. The sawtooth wave is the richest of the 4 waveforms in terms of
timbre. Through air sound waves travel at a speed of 3.44 km per second. When these
longitudinal waves reach us humans the wave is broken down into the basic elements of
time and pressure. This then is used by our auditory system to process every sound we
hear. Similar to any wave the sound wave also has the characteristics of frequency and
amplitude attached to it. However, the analysis of sound involves some other character-
istics such as:

• Pitch: The pitch of a sound or the shrillness is related to its frequency. A higher
frequency is associated with a higher pitch and a lower frequency with a lower
pitch. The pitch helps us order the sounds on a frequency scale and characterizes
how high or low a sound is for the human ear. This makes pitch and frequency
one and the same feature but they are described separately based on whether we
are discussing how we perceive the sound or whether we wish to mathematically
calculate a value as a physical feature. The Figure 3.2 depicts the wave for two
sounds with differing pitches.
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Figure 3.2: Pitch of a sound

While this depicts the pitch of a simple sound complex sounds have multiple fre-
quencies associated with them and the perceived pitch is not the same for every
listener. In general, if the constituent frequencies of the complex sound differ by
about 7 Hz (this value varies per person) or more humans can detect the complex
pattern obtained due to either superposition or interference of the constituent
waves of different frequencies.

• Loudness: As the name suggested it’s how "soft" or "loud" a sound is perceived. It
is directly dependant on the amount of energy or intensity of a sound wave. This
characteristic helps us to order sounds from quiet/soft to loud noises. The loud-
ness is proportional to the square of the amplitude of the signal - hence, the more
the amplitude the louder is the sound. In terms of the human auditory system,
the loudness is based on the number of nerve stimulations. It is seen that higher
intensity waves push the basilar membrane more resulting in more nerve stimu-
lations[1]. This also means that a complex sound will sound louder than a simple
sound of equivalent amplitude because more nerve stimulations occur in the case
of complex sounds.

• Duration: This refers to how long a sound lasts or its time duration. This is not
equivalent to how long the sound actually lasts or the "physical duration" as the
sound may still persist. So it alludes to the time from when the sound is heard
first till it stops or it changes. When a new wave pattern is recorded then humans
perceive it as a new sound and this sound stops only when we find this pattern is
no longer repeating. Often when multiple sounds are playing simultaneously in
noisy environments it is hard to distinguish sound individually. Hence we hear
many sound sources together and we perceive it to be a continuous sound while
in fact in reality it is not.

• Timbre: Timbre (tone quality or tone color) is known to provide insight on the
quality of the sound. This feature is what allows humans to distinguish between
sounds and musical instruments. Timbre is a feature that reports the cumulative
effect of multiple factors such as spectral envelope, noise, frequency/amplitude
modulation, etc. It is also indicative of how a sound changes with time. Even if
the sounds are the same in terms of frequency and loudness they can be distin-
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guished due to this feature. Music pieces played on two different instruments can
be distinguished due to differences such as overtones (frequencies of a waveform
that are higher than, but not directly related to the fundamental frequency), sonic
envelopes. These differences are reflected in the timbre. Figure 3.3 shows how
different the sonic envelopes are for two different instruments (piano and violin)
playing the exact same note - C4. The sonic envelope consists of the following four
phases:

– Attack (Referred to as A in the figure):This phase is found right at the begin-
ning when a key is pressed or a sound is generated till the sound reaches its
peak.

– Decay (Referred to as D in the figure):During this phase the sound signal drops
from its peak amplitude to a more stable sustain level.

– Sustain (Referred to as S in the figure):In this phase the sound is maintained
at the sustain level till the release of the key or the sound is stopped.

– Release (Referred to as R in the figure):This phase refers to the last phase when
the sound drops from sustain level to 0 or silence.

Figure 3.3: Difference in sonic envelope of the piano and violin on playing note C4. The image is taken from
[44]

• Sonic texture: This feature aids in coherent distinction of sound sequences that are
perceived to be produced by the same source. The texture is embedded within the
sound and is influenced by the mental picture that the sound creates. The texture
is dependant on the density, pitch range, number of sound sources, etc. For in-
stance, the sound wave which is in the form of a sine wave stimulates our auditory
system more and is termed rich but it has a very low harmonic content compared
to say, not so smooth square or triangular waves which are symmetric about the
origin. In a musical context, it refers to the quality of the melody based on how the
harmonic components are combined. In music, textures can be categorized into 5
different categories monophonic, homophonic, polyphonic, homorhythmic, and
heterophonic. The texture in comparison to timbre must contain some sort of
dissociability in the various measurements — time, frequency, or intensity. In ex-
ceptional cases in which we can no longer separate the synchronous events into
their components, the texture becomes a timbre.
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• Spatial location: This feature enables us to detect the source of sound in terms of
distance and direction. This characteristic helps us to build a map of the environ-
ment and place the sound source in it w.r.t the vertical and the horizontal plane.
This feature helps in sound source distinction when there are multiple sources -
for instance, we can identify sound from a single speaker in a noisy environment
like a restaurant or pub.

As a human when we hear any sound within the hearing range (20 Hz - 20,000 Hz) we
are able to process where the sound source is. The sound waves with a frequency below
the hearing range are infrasonic sounds and the sounds with a frequency higher than
this range are termed ultrasound. Sound waves have acoustic properties that provide
the listener with cues to infer the source of the sound. These properties get distorted
due to the reflections of these sound waves from the different surfaces present in the
room. However, this does not affect the ability to find the source of a sound as only the
direct sound that arrives first is considered for this task by the human auditory system.

Noise is commonly used in science to refer to any component that interferes and
obfuscates our signal of interest. Very loosely in acoustics, we can say any sound wave
which is not of interest to us is "noise". These noises can be due to various reasons such
as bio-acoustic noise, noise due to the environment, noise from electronic devices, etc.
In the following sections, we discuss two types of noise and their relevance in source
location identification.

3.1.1. AMBIENT NOISE
Ambient noise refers to any sound which is not of primary interest and is a background
sound generated by various sources. These sounds can be generated by other people,bio-
acoustic noises generated by animals, noise from electric devices like the fridge, printer,
heater, motors, etc, noise from the environment like rain, traffic noises, etc. These noises
may also be very typical of a location. For instance, the background noises within a room
are different from that outside. Some of the differences can be due to the presence of
more noisy background elements outdoors such as traffic, kids playing, animal noises,
wind, etc. Within a room, these noises are highly reduced and background noises may
be mainly due to electronic devices, other people in the room, etc. For instance, if the
indoor room is a restaurant some prominent background noises can be talking, cutlery
noise, music. Another indoor location can be an office cabin where the main sources of
background noises can be from the computer, the air conditioning or heating system,
voices of the people usually present in the cabin. So we see that different locations may
have a different combination of noises that are characteristic to it. The Figure 3.4 shows
an audio recording with no speech content at different indoor positions in a room (stu-
dio room) and an outdoor location (balcony). There is some difference in the waveform
of the outdoor recording in comparison with the indoor recordings. However, we can-
not find a very distinguishing characteristic among the waveform of the recordings of
different positions within the indoor room. Although there is no clear visual distinction
possibly due to the background noise contributors being the same at the different posi-
tions within a room the loudness of these noises would still vary at the different positions
which would help identify a singular position within a room. To confirm this we mea-
sured the ambient noise at various positions within a room using applications such as



3

12 3. BACKGROUND PRINCIPLES

sound meter, infrasound detector, and ultrasound detector. The variations in the values
of the measurements at the different positions are shown in Figure 3.5.

3.1.2. REVERBERATION

The human auditory system can recognize the 3-dimensional position of a sound source
- given by the distance, horizontal angle, and vertical angle. This is done with the help
of direct sound obtained directly from the sound source by the listener’s ears. Figure 3.8
shows different paths taken by the audio signal where path 1 refers to the direct sound
wave reaching the listener which takes the shortest time as it travels the shortest dis-
tance. Along with these direct waves, there are also waves that have been reflected off the
different surfaces of the room termed as reverberations. The human voice falls within the
normal range of 500Hz to 2KHz, these sound waves generated may be reflected off even
small objects if the frequency is sufficiently high. Reflections result in echoes, reverb,
and standing waves. Since most locations are not soundproofed or acoustically treated
many a time the reflected waves can also cause a lot of unwanted phenomena such as
slap echo, standing wave, and comb filtering. Reverberations are affected by the room
size and shape, room layout, furniture, materials used for construction and decor, peo-
ple present in the room, etc. This is due to their position affecting the reflected waves
and also the fact that these objects have varying levels of absorption coefficients varying
between 0 and 1.This coefficient is representative of the number of sound waves which
are absorbed vs. the amount that is reflected back in the room. An absorption coeffi-
cient of 1 means that almost no waves are reflected back and e.g. of such an object is
an opening like an open window whereas a coefficient of 0 means most of the incident
sound waves are reflected back and almost 0 percentage is absorbed by the object, an
example of such an object is a concrete wall. When we record with a microphone very
close to a huge obstruction the amplitude of the sound wave may roughly double due
to the combination of the incident and reflected waves which tend to be in phase (so
they constructively interfere). However, this need not be always the case and the waves
interfere constructively or destructively based on their phases.

Figure 3.6 depicts the response of an impulse in a room that is not acoustically treated.
The first couple of reflections are distinct echoes and correspond to the reflected waves
which travelled along shorter paths. The later reflections present in the tail are indis-
tinct in nature and correspond to the reflections travelling longer routes. While this is
the behaviour of an impulse the speech wave undergoes slightly different changes in its
signal with time. The direct speech signal is termed dry speech. This dry speech signal
interacts with the echoes generated to form the reverberant signal as shown in Figure
3.8.

These reflected waves arriving at the listener lead to the persistence of sound even
after the source has stopped generating the sound. This time it takes to for the sound
to actually stop after the sound source stops is the reverberation time. One of the com-
monly used metrics to measure reverberation time is T60 or the reverberation time 60
dB which corresponds to the time taken for the sound pressure level to drop by 60 dB
after the source sound stops. The reflected waves are very indicative of the speaker lo-
cation or source location. Path 2 and 3 in Figure 3.8 refer to reverberations wherein the
path followed by the third reflection is longer than that followed by the second reflected
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signal due to the reflections occurring along the path. If the gap between the time the
sound starts till the first strong reflection of the sound arrives is more, we know that the
reflection had to travel a longer path, which means there was no physical obstruction
present close by. Another characteristic that is used even by the human auditory system
is the ratio of direct sound to reflected sound. We see that these reverberations give a
lot of information based on the path the reflected waves travel. Since these paths will be
different for different locations and even different positions within the room - we pro-
pose to leverage this distinction in our attack. Figure 3.10 shows how the waveform of
the same speech recording at different positions within a single indoor location (studio
room) looks different.

3.2. ANALYSING AUDIO WAVES
Audio is usually stored in files of formats such as Wav, Ogg, etc. Audio signals are con-
tinuous waveforms and the first step to understand these signals digitally is to convert
these continuous waveforms to discrete waveforms by performing sampling. During dis-
cretization samples are taken from the continuous signal to calculate the discrete value -
the number of samples taken per second is known as the sampling rate and sample refers
to the value of the signal at a point in time/space. The higher the sampling rate the more
information is retained during sampling but it is also more expensive computationally.

During audio signal analysis, mostly the frequency-related or spectral characteristics
are considered as the amplitude variation with time is not very informative. This process
requires a Fourier transform to convert the time-based signal to the frequency domain
spectrum. But this results in a complete loss of time information of the non-stationary
wave in favor of frequency information. To sort this issue spectograms are used, they rep-
resent the variations of the frequency of the signal with time - this is known as short-term
analysis technology. To do so the signal needs to be broken down into smaller fragments
called frames (as shown in Figure 3.9) and the Fourier transform is calculated for each
of these frames. Figure 3.9 shows how a signal is segmented into frames of length N and
having an overlap of length M.One of the most commonly used techniques is the STFT
or the Short-time Fourier transform which performs the fast Fourier transform on the in-
dividual frames after segmenting the signal. To do so the signal that is being fragmented
is multiplied by a window function - this function has a non-zero value for a very short
period, so it helps retrieve a very small section of the signal. Then this window function
is shifted by a distance. The presence of overlap as seen in Figure 3.9 is important so that
no important occurrence at the end of the frame is lost. The features are then extracted
on a frame-by-frame basis.
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(a) Sound wave of recording at corner P1

(b) Sound wave of recording at corner P2

(c) Sound wave of recording at corner P3

(d) Sound wave of recording at corner P5

(e) Sound wave of recording Outside

Figure 3.4: Sound waves of recordings taken at different positions and different locations
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(a) Ambient noise at corner P1

(b) Ambient noise at corner P2

(c) Ambient noise at corner P3

(d) Ambient noise at corner P4

(e) Ambient noise at corner P5

Figure 3.5: Ambient noise measurements taken at different positions in a room
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Figure 3.6: Impulse Response

Figure 3.7: Reverberation in Speech Signal. Image borrowed from [26]
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Figure 3.8: Example of reverberation in a room where path 1 refers to the direct sound wave and paths 2 and 3
refer to reflected sound waves

Figure 3.9: Segmenting a signal into frames. The image is taken from [45]
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(a) Sound wave of recording at corner P1

(b) Sound wave of recording at corner P2

(c) Sound wave of recording at corner P3

(d) Sound wave of recording at corner P4

(e) Sound wave of recording at corner P5

Figure 3.10: Sound waves of recordings taken at different positions in a room
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MACHINE LEARNING CLASSIFIERS

In this chapter, we introduce some basic concepts used in classifier selection. Then we
briefly describe each of the classifiers which we choose for our classification problem.
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Classification is the problem of distinguishing to which category a given observation
or set of observations belongs. The Machine Learning algorithms performing this task
are known as classifiers. These classifiers can be categorized into various groups based
on their learning techniques, problems they solve, etc. Based on the learning technique
followed classifiers can belong to supervised learning algorithms, unsupervised learn-
ing algorithms, or semi-supervised learning algorithms. In supervised learning, the al-
gorithm is provided with training data that includes the output variable (the class) cor-
responding to the input variable (a set of feature values). This allows the algorithm to
then deduce the correlation between the input and output values so that it can infer the
output value of a previously unknown input value (feature set). Some algorithms which
come under this category are Linear Regression, Support Vector Machines, Logistic Re-
gression, Linear Discriminant Analysis [4], k-Nearest Neighbor, Decision Trees, etc. In
the case of unsupervised learning, the algorithm learns the behavior pattern of the input
values without knowing the output value associated with them (unlabeled data). This
task is much harder to realize when compared to supervised learning. Examples of such
algorithms are k-means for clustering, Apriori algorithm for association rule learning.
The third class of algorithms lies between the above-discussed classes, in the case of
semi-supervised learning the algorithms have a combination of unlabeled and a cou-
ple of labeled input values. Most real-world problems tend to fall into this category due
to the expensive and time-consuming nature of collecting and storing labeled data in
comparison to unlabeled data.

Classifiers in Machine Learning can be grouped as generative or discriminative clas-
sifiers. While these classifiers have an identical end goal the means of achieving the same
are different. In the case of generative classifiers, the model tries to represent the ac-
tual class distributions while with discriminative classifiers the model attempts to learn
the difference between the classes by modeling the decision boundary or all the points
where the classes are equally probable to occur. Some examples of generative classifiers
are the Naive Bayes classifier, hidden Markov models, and Bayesian networks and few
examples of discriminative models are Logistic Regression, traditional Neural Networks,
and Nearest Neighbor.

4.1. AUDIO CLASSIFIER SELECTION
Deciding which Machine Learning algorithm works best for our dataset or problem is
not a straightforward task. We often come across the No free lunch theorem in Machine
Learning which states that no optimization algorithm performs better than the rest for
all possible problems. Hence, we need to select what would work best for our scenario
from among the available Machine Learning algorithms. Some of the factors that are of
high importance during audio classifier selection are -

• Available Training Data - It goes without saying that the more the amount of data
the better the model can perform as it has more data to learn from. However, the
amount of data available is often constrained. This is also the case for our exper-
iments as we shall see in Chapter 9. Since we have a good amount of features but
lesser data points we favor algorithms such as Linear Regression which has a high
bias but low variance.
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• Accuracy - Machine Learning models can be flexible or restrictive. The restrictive
model’s output is highly interpretable as we can understand the relation between
the predictor and the output. In the case of flexible models, we lose out on in-
terpretability in the pursuit of better accuracy. For our problem, the accuracy or
the ability of the model to accurately recognize the class is of utmost importance.
Hence, for our scenario, a model with higher accuracy and more flexibility such as
Support Vector Machines seem favorable.

• Time - The time or the speed with which the model learns is of high relevance for
real-world applications. The time taken depends on the amount of training data
and the classifier chosen. Typically higher accuracy means more time. For our
scenario, since the data used is relatively small we concentrate on the choice of
classifier and tuning its parameters such that we obtain fairly good accuracy and
the implementation is fairly quick to execute.

4.2. CLASSIFIERS CONSIDERED
Keeping in mind the factors described in the previous section a subset of classifiers have
been selected for our task. The selected classifiers are Linear Discriminant Analysis, Lo-
gistic Regression, Ridge classifier, Support Vector Machines, and Voting classifiers. The
key idea and principle behind these classifiers are described here. We selected these
models based on preliminary results we obtained using the compare_models function.
This function trains every model present in the model library utilizing default hyper-
parameter values and then performs cross-validation. The resulting metric is averaged
across all folds for every model and is displayed in a sorted tabular fashion. The default
metric is accuracy which is also the evaluation metric we use for our classification task.

4.2.1. LINEAR DISCRIMINANT ANALYSIS
Linear Discriminant Analysis (LDA) is one of the commonly used classification tech-
niques. In this method, the classifier tries to maximize the separability between classes
so that a decision boundary between the classes can be drawn with ease. It assumes a
multivariate Gaussian distribution of the data where the data is characterized by a mean
and covariance and all the classes have an equal covariance value. LDA uses information
from all the features in the model and creates a new axis. All the data points are then pro-
jected onto this new axis to provide maximum inter-class separability. Figure 4.1 shows
how this works for a simple binary classification using two features.

While we have shown the process for a classification problem with just two features,
the same can be extended to problems with more than two features. We retain the same
process of creating an axis that maximizes the distance between two classes and mini-
mizes their scatter. And so implicitly within LDA dimensionality reduction occurs one
dimension at a time. Similarly, we can extend the process for problems with more than 2
classes. Now when we calculate the distance between the means of the classes we mea-
sure the distances between a main central point and the means of the classes. Also, we
no longer have a single axis but multiple axes to separate the data. The process sounds
very similar to that of principal component analysis for reducing dimensionality how-
ever they are different. In the case of PCA, the first new axis created will account for the
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Figure 4.1: Projection of datapoints on new axis. The image is taken from [46]

most variation in data (feature with the most variation) while in the case of LDA the first
new axis caters to the variation between the classes.

The new axis is created keeping in mind 2 criteria. These two equally important cri-
teria are -

• The distance between the means of the classes must be maximized.

• The intra-class variation (also referred to as scatter) must be minimized.

These two criteria must be maintained simultaneously, otherwise it will lead to an over-
lap between the data points of different classes. The decision boundary is given by all
the points where the probability of a point on the boundary belonging to either of the
classes is equal. Hence using the Bayes rule we get the following equation:

P (y = k|x) = P (x|y = k)+P (y = k)

P (x)
(4.1)

In this equation we can rewrite P(x|y) as we have assumed a multivariate Gaussian dis-
tribution with equal covariances across classes:

P (x|y = k) = 1

(2π)
d
2 |∑ | 1

2

exp(−1

2
(x −µk )t

−1∑
(x −µk )) (4.2)

After applying log to the equation 4.1 and replacing the value of P(x|y) with 4.2 we get the
resulting equation:

l og P (x|y = k) =−1

2
(x −µk )t

−1∑
(x −µk )+ log P (y = k)+C (4.3)

here C refers to the constant term from P(x). The colored term in the equation 4.3 refers
to the Mahalanobis distance which accounts for the distance of a point from the mean of
the classes and for the variance. From this equation, it is very obvious that the boundary
surface is linear in nature.
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4.2.2. LOGISTIC REGRESSION

Linear Regression: In this model, a linear relationship is assumed to be present between
the input values (x) and the output value (y). In the case of a simple model, we fit a line
to the data given to us as the value of y is a linear combination of the input variable x.
We could then use this line to predict values of y given some other input values. If we
increase the number of input variables we end up in a higher dimension and the "line"
becomes a plane or a hyperplane.

Figure 4.2: Fitting a sigmoid function on the given data. This image is taken from [47]

While a classifier labels a data point we may also be interested in ascertaining how
sure the classifier is of its prediction. This is typically important in domains such as
medicine, security, etc. Hence, one such method of achieving this is to treat the clas-
sification problem as a regression problem. Normally in classification, we tend to have
labels, to convert it to a regression problem we use indicator variables. Linear Regres-
sion has certain problems regarding output interpretability as the output values are not
within a limited range and are continuous in nature. So instead of directly using Linear
Regression, regression is rather used on a transformed function. Now instead of fitting a
line, we fit an "S" shaped function going from 0 to 1. The transformation used here is the
logistic function or logit function. If p(x) denotes p(y = 1

x ) then the logit transformation
is given by

log (
p(x)

(1−p(x))
)

or the log of the ratio of the probability of success to failure. Hence, in Logistic Regres-
sion, we try to fit a Linear Regression model to the logistic function. Here the logistic
function can be modeled as some linear function

log
p(x)

(1−p(x))
=β0 +x ∗β1 (4.4)
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On solving for p(x) we end up with p(x) looking like a sigmoid function as shown in
Figure 4.2

p(x) = eβ0+x∗β1

(1+e(β0+x∗β1))
= 1

(1+e−(β0+x∗β1))
(4.5)

Varying β1 changes the slope of this function while varying β0, we obtain where the
function is going to rise. The values run from 0 to 1, so it’s a very valid means of fitting
probabilities. Hence this solves the issue we had with using Linear Regression directly.
This results in a very powerful classifier that can be used in varying domains and various
settings. The decision boundary of this classifier is still given by a line which is

β0 +x ∗β1

so it is also a Linear classifier. Linear Regression also tends to make mistakes closer to the
boundary in comparison to Logistic Regression due to the fact that we can have a steep
climb from 0 to 1. So far the model was discussed with respect to two-class classification
problems due to its ease. However, the same can be extended to k classes. Then each
class gets a set of parameters β0 and β1. So, now the probability that the data point
belongs to a certain class is given by

p(Y = c|x) = eβ
(c)
0 +x∗β(c)

1∑
l eβ

(l )
0 +x∗β(l )

1

(4.6)

The division by the sum acts as a normalizing factor. The main difference in Logistic and
Linear Regression - with Linear Regression the line is fit on the data using least squares.
We find the line such that the sum of the squares of the distance of the data points to
this line is minimized. In the case of Logistic Regression, we use something known as
maximum likelihood. Once the curve is fit we calculate the likelihood of the data for this
particular curve. This curve is then shifted along and the likelihood (it is the product
of the likelihood of all the data points) is calculated. Finally, the curve resulting in the
maximum likelihood is chosen.

4.2.3. RIDGE CLASSIFIER

Bias: The ineffectiveness of a model in obtaining the true relationship of the data lead-
ing to underfitting.The bias is because the model oversimplifies the problem and doesn’t
give much importance to the training data.

Variance: It refers to the difference in fit between the test set and the training set.Or
in other terms how differently the target function varies on changing the training
dataset.This occurs when the model tries to overfit the training data and now performs
poorly when confronted with new test data.

Bias-Variance tradeoff : If we have an overly simple model we end up with high bias
and low variance but an overly accurate fitting model leads to a model with low bias but
high variance. In Machine Learning we wish to achieve a model with optimal values of
bias and variance which lies between these two extremes of overfitting and underfitting.
We wish to achieve a model with both low variance and low bias.
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The Ridge classifier like Logistic Regression attempts to perform classification using
a regression method. Here the model converts the label of the data to [-1,1] and then
performs the regression task in place of classification. Then based on the result of the
regression model if the value is greater than 0 then the data point belongs to the target
class mapped to +1, else it belongs to the target class which is mapped to -1. If there
are more than two classes in the classification problem multi-output regression is used.
Here multiple independent regression models are used with one model per class. Based
on the predictions obtained from these models the class is predicted based on the high-
est prediction value obtained.

This classifier is based on the Ridge regressor. The highlight of Ridge Regression is
that the model prevents overfitting the training data and creating a high variance model.
To do this some amount of bias is introduced to create a slightly worse fit but this would
result in better predictions of the model. In Linear Regression, the parameters of the line
fit to the data are obtained by minimizing the least-squares value (sum of the squares of
the minimum distance from the data points to the line).In the case of Ridge Regression,
it minimizes not only the least-squares values but also λ*the square of the slope. This
addition adds a penalty to the original method. The value of this lambda can range from
0 to positive infinity. A zero value of lambda results in 0 penalties and is the same as the
least-squares or the Linear Regression. Increasing λ decreases the slope making it closer
and closer to 0. So the optimal value of lambda can be chosen using cross-validation.

Considering a simple problem with one input and prediction one output as shown
in 4.3 the change in slope shows how the relationship varies. In this figure, the red line
refers to the line fit using least squares while the blue line is the line fit using Ridge Re-
gression. A steep slope means the output is highly sensitive to changes in input while a
lower slope means the opposite. We also notice how the line fit using Linear Regression
has a higher slope compared to that fit using Ridge Regression due to the penalty term.

Figure 4.3: Fitting the datpoints using Linear and Ridge Regression. This image is taken from [48]
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4.2.4. SUPPORT VECTOR MACHINE
SVM is a linear model which can be applied to solve linear and non-linear problems
(datasets that are non-linearly separable). Since it is a linear model, SVM finds the line
(plane or hyperplanes in higher dimensions) separating the classes. However there need
not be a unique line or hyperplane performing this task, so SVM identifies the best line
(hyperplane) for the given problem.

Figure 4.4 shows three of the multiple possible lines that separate the data points of
the different classes. However, the line that performs best is the line in the middle of the
widest street separating the classes. The data points that are closest to the hyperplane
(the circles and triangles that are filled in the figure) are known as support vectors. The
shortest distance between these support vectors and the threshold (optimal hyperplane)
is called the margin. The underlying principle of Support Vector classifiers is to maximize
the separability between the classes. This results in a maximal margin classifier. The
margins shown in the figure are hard margins.

Figure 4.4: Optimal line separating the classes using Support Vector classifiers. This image is taken from [49]

An issue with maximal margin classifiers is their sensitivity to outliers. So to resist
this behavior we choose a threshold that allows for misclassification. This is an example
of the bias-variance tradeoff. When we choose such thresholds the resulting margins are
called soft margins. There can be data points that lie within these soft margins unlike the
case with support vectors lying on the hard margins. These data points which lie within
and on the soft margins are called support vectors and hence the term support vector
classifiers arise. We again end up with the issue that there is no unique soft margin, so to
choose which soft margin performs the best we can use cross-validation. The model can
be extended to data in the higher dimensions too and instead of a line a plane or a hy-
perplane separates the classes. So for an n-dimensional problem, an (n-1) dimensional
hyperplane is created.

So far we have made the assumption that the classes are separable. However, Support
Vector Machines also take care of problems where this is not the case. SVM implicitly
projects the datapoints onto a higher dimensional space where the classes are separable
and then creates the soft margins like the support vector classifiers and performs classi-
fication. The data in a higher dimension is calculated with the help of kernel functions
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but no actual data transformation is performed.The kernel trick is the calculation of high
dimensional relationships without performing an actual transformation. There are mul-
tiple kernel functions that can be used for this task such as polynomial kernel function,
radial kernel function, etc.

So far we have discussed how classification is performed when we have binary clas-
sification problems. SVM can also be used when we have multiple classes. The principle
used here is to break down the multi-class classification problem into multiple binary
classification problems.This is achieved in two ways:

• One-to-One Approach: This approach takes into account only 2 classes at a time
while ignoring the remaining classes. So the SVM generates a hyperplane that sep-
arates the datapoints of the classes considered.This results in a total of n(n−1)

2 SVMs
for a n class problem.

• One-to-Rest Approach: In this approach an SVM is used per class so for a n class
problem n number of SVMs are used.The SVM will create a hyperplane that sep-
arates a single class from the data points of all the remaining classes. In this sce-
nario, the two classes considered for binary classification are one group that con-
tains the datapoints of the class and the other group containing the datapoints of
all the remaining classes.

4.2.5. VOTING CLASSIFIER
Voting classifiers are Machine Learning models that perform classification based on the
outputs obtained from all the contributing classifiers present in their ensemble. The
way in which the output of the different Machine Learning algorithms is combined is by
voting as the name suggests. However, this voting can be done in two ways-

• Hard Voting: Each of the contributing classifiers predicts the class label for the
test data. Then the voting classifier checks to see the majority outputs of these
contributing classifiers corresponding to the labels. This label is then taken to be
the output of the voting classifier. In case of no clear majority, the class is chosen
based on the ascending sort order.

• Soft Voting: Instead of performing voting in a traditional sense here, a weighted
average is used. Here each of the classifiers in the ensemble is assigned a weight.
When performing classification the classifiers assign probabilities with which the
datapoint belongs to all the possible classes. The soft voting classifier then per-
forms a weighted average of all these probabilities. Then the Voting classifier chooses
its output based on the class having the highest average probability.





5
AUDIO FEATURES AND AUDIO

ANALYSIS

In this chapter, we address the issue of how to select features for audio classification. We
also describe the audio features we have utilized in our classification model.
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5.1. AUDIO FEATURES CLASSIFICATION
An audio signal is a three-dimensional signal with each dimension representing ampli-
tude, time, and frequency respectively. Features of this signal characterize a raw sound
wave and can be categorized as physical features and perceptual features. Perceptual
features refer to features that are characterized by the way a human perceives sound and
these features were discussed in 3.1. Physical features are those that can be computed
from audio mathematically. Such kinds of features can further be grouped based on the
representation domain such as Temporal (Time domain) features, Cepstral features, fre-
quency domain features, and frequency-perceptual domain features etc[16].In the time
domain, the signal is represented as amplitude vs. time, and in the frequency domain,
the signal is shown as amplitude vs. frequency.

Features can be extracted at two levels, short term level or frame level and a long term
level. Traditional speech processing mainly uses frame-level features. An audio wave is
divided into many frames and features can be extracted from each of these frames to
obtain frame-level features. These features help to represent any short-term behavior
of the audio signal. For our research problem, we opt to use frame-level features based
on previous literature[13]. How the features are selected and a brief description of the
selected features are discussed in the following sections.

5.2. FEATURE SELECTION
Choosing a lot of features means more data, which means more information and bet-
ter machine learning models right? No, this is not always the case.Instead, it is highly
imperative to choose the right features from amongst the features that can be irrelevant
and insignificant.If the significant features are not selected we end up with an inefficient
model which utilizes unnecessary resources.Features are selected based on certain con-
siderations which are discussed below:

• Size: This factor is a direct result of the curse of dimensionality[6]. With the in-
crease in the size of data, there is an increase in the error. Hence, it is important
to ensure there are just enough amount of features to completely characterize the
sound waves without introducing errors. Using an optimal feature size leads to
simple models that perform well.

• Complexity: This refers to two things, the time and resources taken to calculate
feature values and the resources taken by a model to perform its task based on
the features selected. Ideally, we wish the time and resources used to be kept at
the bare minimum. Some features require more time to be computed than others.
Also, the complexity of the model itself is a byproduct of the size of the feature set
- a bigger feature set requires more resources computationally.

• Class behavior:

– Intra-class behavior: Low variation in feature values within a class is re-
quired. The similarity in feature values between data points will then help
to group them together as part of the same class. This helps achieve low vari-
ability which is highly desired in classification problems.



5.3. AUDIO FEATURES

5

31

– Inter-class behavior: High inter-class separability or high variability between
classes is another behavior that is highly necessary for classification prob-
lems. Hence it is optimal if the features selected have highly different values
across classes. This will further help distinguish data points showing differ-
ent behavior as belonging to two separate classes with ease.

• Sensitivity: Data is always assumed to have some amount of noise, so slight vari-
ations in the input should not affect our feature values. It is evident that a highly
sensitive set of features results in a model that is not powerful enough to perform
well in case of noise.

• Independent: The features should be independent and not correlated to any other
feature. It is a good practice to remove any dependant features as they are redun-
dant. If we have a couple of dependant features in our dataset then the classifier
is going to give a lot of prominence to that feature introducing bias. For instance,
having a feature weight in kg and another feature weight in pounds is redundant
and the model considers both of them separately, which increases the importance
that weight has in this model.

5.3. AUDIO FEATURES
Since the task of filtering out the best features for a problem is not so easy we have many
machine learning techniques used to do the same. Some of these techniques are for-
ward selection, backward elimination, recursive feature elimination, etc. However, since
there are previous works in this field we leverage their findings and base our features on
them.Based on the literature works the following features were selected - Zero Crossing
Rate[21], Spectral Roll-off[5], Spectral Flatness, Spectral Centroid, and Mel-frequency
cepstral coefficients (MFCC)[2][19].We briefly describe these features in the following
subsections.

5.3.1. ZERO CROSSING RATE
This is one of the simplest and easiest features to calculate computationally. It is a tem-
poral feature that refers to the rate at which the signal moves from positive to negative
or back or in other words, it’s the rate at which the signal changes signs. This feature is
especially useful to distinguish unvoiced speech or speech that doesn’t make use of the
vocal cords and sounds due to percussion. We can calculate this ZCR value by keeping a
count on the number of times the signal crosses the zero axis. Mathematically ZCR[21]
is given by the following equation -

ZC R = 1

2WL

∑
n=1

WL |sg n[xi (n)]− sg n[xi (n −1)| (5.1)

here the sign function is denoted as sgn(.),it takes a value of 1 when the signal value x_i(n)
is greater than or equal to 0 and a value of -1 when the signal x_i(n) is less than 0. The
value W_L refers to the length of the window under consideration. ZCR is also indicative
of the amount of noise in a signal, a higher ZCR value typically means more noise. In the
figure 5.1 we see that for the signal depicted we can count three zero crossings for the
duration of the signal from 0 to 100-time units.
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Figure 5.1: Zero Crossings in a signal

5.3.2. SPECTRAL ROLL-OFF

Spectral Rolloff refers to the frequency below which a certain percentage of the spectral
energy is contained. The default percentage of energy considered is 85%. This frequency
is calculated for every frame in the signal and the energy of the spectrogram in this frame
must be contained by this frequency. It is especially useful to differentiate harmonic
sounds from noisy sounds as noisy sounds usually lie above the roll-off frequency. The
figure 5.2 depicts the signal waveform in blue and the roll-off frequencies calculated for
every signal frame in red color.

Figure 5.2: Spectral Rolloff

5.3.3. SPECTRAL FLATNESS

Spectral flatness a.k.a Wiener entropy is usually measured in decibels and is used as a
means of quantifying how tonal vs how noisy a sound is. Mathematically this value is
calculated as the ratio between the geometric and arithmetic means of a power spec-
trum. The power spectrum represents how the power is distributed among the different
constituent frequencies of a signal. Formally we can derive the spectral flatness value as
-

Spectr al_F l atness =
N
p∏N−1

n=0 x(n)∑N−1
n=0 x(n)

N

= exp( 1
N

∑N−1
n=0 ln x(n))

1
N

∑N−1
n=0 x(n)

(5.2)

Here x(n) represents the magnitude of the frame or bin. This ratio is then converted and
reported on the dB scale.
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5.3.4. SPECTRAL CENTROID
Geometrically the centroid helps to obtain the center point of an object and for simple
uniform objects, this point also refers to its center of mass. The spectral centroid per-
forms a similar function with respect to a spectrogram. Mathematically this value is the
weighted mean of the constituent frequencies of a signal, which is determined using the
Fourier transform as shown below -

Spectr al_Centr oi d =
∑

n=0
N−1 f (n)x(n)∑

n=0
N−1x(n)

(5.3)

The weights in this weighted mean are obtained from the magnitudes. x(n) depicts the
weighted frequency value, n represents the bin or frame number, and f(n) refers to the
center frequency of that frame. The spectral centroid of the signal is shown below in 5.3,
the waveform is depicted in blue and the spectral_centroids in red.

Figure 5.3: Spectral Centroid

5.3.5. MFCC
This feature is synonymous with speech and voice recognition. This set of coefficients
help depict an all-inclusive shape of the spectral envelope giving details regarding tim-
ber. MFCCs are considered very powerful when considering audio with machine learn-
ing as it takes into account the non-linear behavior of the human auditory system with
respect to different frequencies. By default, for the librosa package (version 0.8.1) in
python, the number of MFCC’s calculated is 20.

An audio wave can be depicted either in a time domain or a frequency domain and
we can also perform transformations to convert a signal between these domains. The
Fourier transform is a means of converting a time-domain signal to that of the frequency
domain. On performing a Fourier transform on the signal in the time domain we obtain
a Fourier spectrum which is used for MFCC extraction. Some amount of preprocessing
is performed initially involving pre-emphasizing and windowing. Pre-emphasizing is to
perform noise reduction and windowing (hamming window) is used to avoid leakages
due to discontinuities present at the edges with the help of smooth functions. The spec-
trum is then converted to mel-scale using a filter. The mel-filter bank helps to perceive
the audio like our human auditory system. Humans are more receptive to small changes
at lower frequencies and tend to have a non-linear perception of sound. Then redundant
information is removed by de-correlation using the discrete cosine transformation and
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the log steps. The process to obtain the MFCCs is to then take a log of the magnitudes
of the filtered Fourier spectrum, doing this helps to retain amplitude information while
disregarding phase information which is considered not very relevant. How loud a hu-
man hears a sound is approximately on the logarithmic scale, hence we perform a log on
the magnitude and then a DCT on them. The process of MFCC extraction is shown in
5.4. Performing these steps results in a spectrum that belongs to neither the frequency

Figure 5.4: MFCC Feature extraction. This image is borrowed from [7]

nor the time domain. The spectrum of the log of the Fourier spectrum is termed as a
cepstrum.



6
SYSTEM ADVERSARY MODEL

In this chapter, we describe the system and the adversarial model of our attack. We provide
insight into the assumptions we make regarding the attacker and the victim. We further
discuss the different types of realistic attack scenarios that we identified based on varying
levels of information available to the attacker.
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6.1. SYSTEM MODEL
We assume that the victim has a smartphone device with WhatsApp installed and an
internet connection. We further assume that the software on the victim device and the
device itself is not compromised in any manner. Also, the victim sends the attacker audio
messages via Whatsapp. While recording the audio messages, we assume that the phone
is held at a distance of approximately 15 cm (which is well within the critical distance1)
from the face of the speaker at an upright position as shown in Figure 6.1. This is one of
the most common positions in which a phone is held either during video calls or while
sending audio messages.

Figure 6.1: Recording position

6.2. ADVERSARIAL MODEL
We assume that the attacker has access to the WhatsApp audio message of the victim.
The attacker is a user who seeks to learn the location information of the victim. Here the
term attacker refers to even investigators in case of a forensic investigation and inquiries
and not an attacker in the traditional sense. Depending on the attack scenario, the at-
tacker may be assumed to also have the target’s recordings from the same or different
positions at specific locations. Also, the victim is assumed to be in one of these selected
locations at the time of recording the audio message. For our experiments we consider
three different scenarios for the attacker:

• Complete Profiling: This scenario occurs when the attacker asks the victim to
send voice messages from specific locations. For example, an investigator (i.e.,
the attacker) might ask a suspect (i.e., the victim) to stand in a specific part of a
room to verify that at the time a voice message was sent, the suspect was there
or elsewhere. In this scenario, the attacker has recordings of the victim in all the
selected locations. Moreover, the attacker knows also the specific position of the
victim in the selected locations (e.g., in a corner of a room). In this scenario, the
attacker has the highest knowledge to execute his attack as both the victim and the
location are "known" in the training set.

1Critical distance is the distance between the microphone and the sound source at which the level of room
reverberation is same as the level of the direct sound.
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• Location Profiling: In this scenario, the attacker cannot access any of the victim’s
voice messages, other than the one for which he wants to infer the location. The
attacker knows that the victim has sent the voice message from one of the selected
locations (e.g., the attacker knows that the victim is in a specific building). There-
fore, the attacker can have WhatsApp audio recordings of different speakers but
the victim. The speakers are assumed to have recorded their messages at the same
location positions from which the victim is sending the voice message. Hence, the
victim is “unknown” while the location position is “known” to the attacker.

• User Profiling: This scenario occurs when the attacker owns the victim’s voice
messages, he knows the location they were sent from but does not know the spe-
cific position in the location (e.g., a corner of a room) from which they were recorded.
The attacker wants to infer the location of a new voice message sent by the victim.
Different from the Complete Profiling scenario, the attacker cannot ask the victim
to send more voice messages from specific positions of the selected locations (e.g.,
the victim is no longer reachable). In this situation, the victim is “known” while
the position is “unknown” to the attacker.





7
For Y our V oi ceOnl y ATTACK

In this chapter, we provide an overview of the different phases that are a part of our For Y our V oi ceOnl y
attack. We then describe each of the four phases in detail.
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Our attack consists of four different phases: Data Acquisition, Data Processing, Model
Training, and Location Inference. In Figure 7.1 we provide an overview of how the at-
tacker conducts the attack. Each of the four phases is discussed in detail in the following
sections

Feature Extraction

Feature Aggregation

[[f1],[f2],[f3],…..]
f1 = f11,f12,f13…
f2 =  f21,f22,f23…

[𝑓1,𝑓2,𝑓3….,σf1 ,σf2 ….]

DATA ACQUISTION DATA PROCESSING MODEL TRAINING

LOCATION INFERENCE

WhatsApp
Audio 
Recordings

Labeled 
Dataset

Test 
Dataset

Trained
Model

Word Segmentation

15cm

Figure 7.1: For Y our V oi ceOnl y attack phases

7.1. DATA ACQUISITION
This phase consists of two steps: Recording and Word Segmentation. At the end of the
data acquisition phase, the attacker will be in possession of two datasets composed of
segmented voice messages. The obtained data is in the OGG file format which is a lossy
compressed file format not commonly supported by python libraries, so we convert our
files to WAV format.

• Recording:The attacker selects his target victim and performs reconnaissance to
select the locations of interest. In this step, the attacker performs two types of data
acquisition. The first involves acquiring WhatsApp voice messages recorded by
different people (including the victim if allowed by the attack scenario) at some lo-
cations or specific positions of interest to build a labeled dataset. The second, for
acquiring unlabeled (i.e., both the location or the position are unknown) What-
sApp audio messages of the victim (i.e., test dataset). These two steps do not nec-
essarily have to be consecutive. The attacker can create the labeled dataset even
after obtaining the test dataset. The attacker can then choose the locations of in-
terest, based on the type of information available (e.g., the victim might say she
is in one location, but the attacker suspects she is in another known specific loca-
tion).
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• Word Segmentation: The attacker segments the recorded voice messages to extract
audio fragments related to specific words frequently used in speech [15, 17] (e.g.,
“and”, “of ” and “the”). This procedure can be done either manually or by using
speech-to-text algorithms. 1

7.2. DATA PROCESSING
The data processing phase is carried out on both the labeled and the test datasets. This
phase consists of two stages: Feature Extraction and Feature Aggregation.

• Feature Extraction: The attacker extracts frame-level features that are descriptive
of vocal and environmental characteristics: spectral centroid, spectral roll-off, spec-
tral flatness, zero-crossing rate, and Mel-frequency cepstral coefficients [19]. At
the end of this step, the attacker has a set of time-frequency features whose di-
mensionality depends on the duration of the segmented voice message.

• Feature Aggregation: Since segmented voice messages may have a variable dura-
tion, the attacker needs to process the feature extracted in the previous step to cre-
ate a feature vector of standardized length. The attacker aggregates the extracted
features by calculating the average and the standard deviation as suggested in [10,
34]. This procedure allows maintaining information about the magnitude and
variability of the data, reducing the total number of features per voice message.
At the end of this step, each segmented voice message has a set of 48 associated
features.

7.3. MODEL TRAINING
In this phase, the attacker uses only the labeled dataset. The attacker trains classification
models. The attacker may also decide to train the models using a sub-sample of the
dataset based on the information he owns. For example, in the acquisition phase, the
labeled dataset may contain records from many locations, but the attacker has obtained
new information about the victim and may discard some of them.

7.4. LOCATION INFERENCE
In this phase, the attacker applies the model trained in the Model Training phase and
predicts the location or the specific location where the message was recorded by the
victim. The input and output of this phase is reliant on the attack scenario considered:

• In Complete Profiling and Location Profiling the training set data available to the
attacker contains information on the victim’s location. The attacker has already
trained the model with this information. Now the attacker tries to classify the tar-
get location from one of the identified locations. He further identifies the location
position of the attacker while sending the audio message.

• In User profiling the attacker has no knowledge of the location position. Hence,
here the attacker tries to simply identify the location of the target.

1https://www.mathworks.com/help/audio/ug/audio-labeler-walkthrough.html





8
PRELIMINARY EXPERIMENTS

In this chapter, we describe all the experiments carried out to help formulate the setup
of our final experiment. These experiments are mainly divided into 4 sections - the first
two based on device position and device model and the latter two based on the message
content and the use of speakers. The detailed results can be found in the Appendix B.
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8.1. DIFFERENT POSITIONS
In our final experiment, we carried out data collection using WhatsApp audio messages
recorded by the participants while holding their phone at a distance of about 15 cm
away from their face as shown in Figure 6.1. This position was based on one of the
most common ways in which the phone is held especially during video calls and au-
dio messaging. However, another highly used position is holding the phone against
the ear when we receive audio calls as shown in 8.1. We collected 460 audio samples
from a reduced pool size of 3 locations (i.e., two studio rooms and one outdoor location-
balcony) for both the positions as shown in 6.1 (position 2) and 8.1 (position 1). We

Figure 8.1: Phone position against the ear (position 1)

noted that For Y our V oi ceOnl y reached an average accuracy of nearly 100% in pre-
dicting between the outdoor location and any one of the indoor locations with both
the positions. Further, when trying to classify between all the three locations our at-
tack resulted in an accuracy of 98% for position 1 and 97% for position 2. These results
demonstrate that For Y our V oi ceOnl y can be applied even when the audio samples
are collected from audio phone call recordings. There is only a decrease in the accuracy
of For Y our V oi ceOnl y across these positions when performing corner classifications
as seen in 8.2 which was expected. This is because in position 1 when the phone is held
against the ear we expect that not all signals are picked up by the phone microphone
unlike in position 2, as some of the waves may be obstructed by the speaker. The re-
ported results are based on the classifier which performs the best - which is usually the
soft voting classifier.

8.2. DIFFERENT PHONES
In our final experimental setting, we carried out data collection by having the partici-
pants record the audio messages on their own phones. This can result in a bias for cer-
tain members who have phones with better microphone characteristics. To test how
the usage of different phones affect the attack scenario we collected 575 audio samples
from a reduced pool size of 3 locations (i.e., two bedrooms and one outdoor location-
terrace) where set 1 consisted of 345 samples which were recorded by participants on
their own devices (OnePlus 3, OnePlus Nord and OnePlus 6T) and the second set con-
tains 345 samples that were recorded on a common device, a Oneplus 3 handset (115
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Figure 8.2: Accuracy of For Y our V oi ceOnl y with different phone positions. Here task 1 is room classification
between all 3 locations, task 2 is room classification between 2 indoor rooms, task 3 is position identification
between all 3 locations, and task 4 corresponds to position identification between both indoor rooms.

samples from the first set were reused here as the device was the same - OnePlus3 hand-
set). Since we used the lower end model as our device for recording data in the second
set, we expect the data obtained here to perform either worse or the same as the data
obtained from different phone models (data in set 1).

We noted that For Y our V oi ceOnl y reached an average accuracy of nearly 100% in
predicting between the outdoor location and any one of the bedrooms with both sets
of data. When trying to classify between all the three locations our attack resulted in
an accuracy of 99.6% with data in set 1 and 90.9% for data in set 2. Further, when per-
forming position classification across these locations For Y our V oi ceOnl y achieves an
accuracy of 71.2% with different phone data and accuracy of 59.8% with same phone
audio recording samples. These results demonstrate that For Y our V oi ceOnl y is af-
fected by the phone model used during recording. There is a decrease in the accuracy
of For Y our V oi ceOnl y which was expected as mentioned previously. The reported
results are based on the classifier which performs the best - which is usually the soft vot-
ing classifier. Additionally, the use of different phones is more realistic considering our
attack scenario where we don’t assume to have any prior knowledge about the victim’s
device. Also given the pandemic, this method of collecting data on their own handsets
was preferred for our final experiment.

Further, we tried to assess if using the same phone for training data as used for the
test data (victim) would help us in classifying test data better. For this purpose, we train
our model using two speakers from our reduced pool size of 3 speakers (i.e., Speaker
C, Speaker D, and Speaker E) and test our model on the data of the speaker that is left
out (similar to leave one out validation so that all three speakers end up as test data
in different iterations). A summary of the obtained accuracy for For Y our V oi ceOnl y
is shown in table 8.1 with an explanation of the tasks in the caption. We expected the
data obtained using a single device to help aid in the classification of new test data from
unknown speakers. We notice that the indoor-outdoor classification accuracy is mainly
affected by the different sets of data - the same phone data performs better or equally
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well as audio captured from different handsets. While for the other tasks there seems to
be no clear indication as to whether the use of the same phone for testing and training
is really aiding in classification. The deviation in the results from what we expected can
be due to the difference in microphone of the device as it is a lower-end model and its
inability to pick up certain signals which aided in classification when compared to the
other devices (OnePlus Nord and OnePlus 6T) used or simply the use of not enough data
to make a conclusive inference.

Table 8.1: Accuracy of For Y our V oi ceOnl y based on device used. Here task 1 corresponds to indoor-outdoor
classification, task 2 is room classification between all three locations, and task 3 is room classification between
the two bedrooms.

Test Data Speaker C Speaker D Speaker E
Different Phone Same Phone Different Phone Same Phone Different Phone Same Phone

Task 1 89.2% 88.45% 90.8% 100% 99.25% 100%
Task 2 63.5% 56.5 64.3% 69.5% 86.1% 73%
Task 3 76% 50% 70% 70% 90% 75%

8.3. DIFFERENT AUDIO CONTENT
In our final experiment, we carried out data collection on WhatsApp audio messages
recording single words pronounced by the participants. However, to study the impact
that the content of the audio messages has on our For Y our V oi ceOnl y attack we col-
lected different data sets comprising of audio recordings of varying content which are
described below.

8.3.1. DIFFERENT MESSAGE CONTENT
In a real attack scenario, we have no control over the content of the audio messages that
are sent. Hence, we perform a preliminary investigation to study the effect that differ-
ent audio content has on the accuracy of For Y our V oi ceOnl y . For this experiment,
we collected 330 audio data samples of a single speaker and a single handset device over
4 locations (i.e., three bedrooms and one outdoor location-terrace). Of these 330 sam-
ples, 165 samples corresponded to the messages with the same statement as content
while the remaining 165 samples consisted of different statements with no repeating au-
dio content. We expect the audio content of the messages to contribute towards the
classification ability of our models and the use of the same audio data may prove to be
favorable but the use of different audio is not expected to completely eliminate the dis-
tinguishing ability of the models. This is due to the variation of characteristics of signals
produced when pronouncing a certain syllable, so the presence of the same words in
the training and test will prove to be useful. We base our hypothesis on the fact that
For Y our V oi ceOnl y is dependant on the behavior of the signals during reverberation
in addition to background noises which are still retained across different audio messages
albeit with slight variations.

As shown in Figure 8.3 we note that For Y our V oi ceOnl y reached an average accu-
racy of nearly 99% in predicting between the outdoor location and any one of the indoor
locations when using the same audio content in training and testing while the accuracy
drops to 81.7% when the audio content is not the same. Further, when trying to classify
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Figure 8.3: Accuracy of For Y our V oi ceOnl y with different audio content. Here task 1 is room classification
between all 3 locations, task 2 is room classification between 2 indoor rooms, task 3 is position identification
between all 3 locations, and task 4 corresponds to position identification between both indoor rooms.

between all the three indoor locations our attack resulted in an accuracy of 99.2% for the
same audio content data and 78% for different audio data. These results demonstrate
that For Y our V oi ceOnl y performs much better when the audio data content present
in the training and testing data is the same. There is also a huge decrease in the accu-
racy of For Y our V oi ceOnl y attack when performing corner/position classifications as
seen in 8.3 which was expected. The reported results are based on the classifier which
performs the best - which is usually the soft voting classifier.

8.3.2. SILENT AUDIO CONTENT

The presence of speech content in the audio recording samples no doubt aid in the clas-
sification of the recording locations of the audio samples especially in the classification
of the positions. However, we revert back to our claim that the audio samples at different
locations differ due to two reasons - the presence of ambient noise and reverberations.
To show that the ambient noise differs at different locations and also different positions
within a room, we conducted a preliminary study to see how For Y our V oi ceOnl y at-
tack works on silent data. For the purpose of this study, we used a total of 330 data sam-
ples of which 265 are new audio samples. These 265 samples comprise no speech con-
tent in the audio recording. To further see how the behavior of the model changes with
more data we increase the amount of data available within a location from 50 to 250 (in
steps of 50) to see whether this increase helps in better position classification within the
room. If the performance of For Y our V oi ceOnl y increases with data then more data
means more useful information, this is the case when we are dealing with a high variance
problem wherein the model is overfitting on the training data. However, if we have a sim-
ple model which is not effectively using the data leading to a high bias we won’t benefit
from this increase in data, in which case we have to reevaluate the models considered.

The For Y our V oi ceOnl y attack performs really well with silent data when we try to
classify indoor and outdoor locations as seen in the graph for task 1 in Figure 8.4. This
result was expected due to the evident differences in ambient noise in both locations.
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Figure 8.4: Accuracy of For Y our V oi ceOnl y with silent audio content. Here task 1 is indoor-outdoor classifi-
cation and task 2 is position identification between both locations.

Figure 8.5: Accuracy of For Y our V oi ceOnl y for task 3 when we vary the number of silent audio samples.
Here task 3 corresponds to position identification within an indoor room.

When the ambient noises are not so blatantly different the For Y our V oi ceOnl y attack
faces difficulty in classification and the accuracy drops as seen with the bar for task 2
(position classification within the room) in the graph in Figure 8.4. We notice from Figure
8.5 that an increase in data points from 50 to 250 (in steps of 50) helps in increasing the
accuracy of this task which means that we are dealing with a high variance problem and
the additional information is proving to be useful.

8.3.3. SYLLABLES

In a real-world scenario, voice messages can have any content with no restrictions. Based
on the results in 8.3.1 we see that our For Y our V oi ceOnl y attack performs much bet-
ter when the same audio content is present in the training and test data. However, such
a restriction on content cannot be placed on the audio content hence we modify the au-
dio samples to contain commonly used syllables in the English language. To study this
approach we carry out an investigation using 345 data samples comprising of single-
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syllable audio data collected in 3 different locations (i.e., two indoor bedrooms and one
outdoor location-terrace). We noted that For Y our V oi ceOnl y reached an average ac-
curacy of 99% in predicting between the outdoor location and any one of the indoor loca-
tions. Further, when trying to classify between all the three locations our attack resulted
in an accuracy of 95.2%. This experiment helped confirm that For Y our V oi ceOnl y can
train on messages of hardly a second and shows that 10 seconds worth of data at each
location position is also more than enough to perform location classification.

8.3.4. EXTRACTED WORDS FROM VOICE MESSAGES
In a real scenario, voice messages can be of any length. To assess that our approach
can be applied to a real-world context, we carried out a preliminary evaluation on 345
audio samples of words extracted from complex voice messages in the Complete Pro-
filing scenario. Also, we reduced the number of rooms in our pool size to 3 (i.e., two in-
door bedrooms and one outdoor location-terrace). We noted that For Y our V oi ceOnl y
reached an average accuracy of 99% in predicting between the outdoor location and
any one of the indoor locations with both datasets, one containing mono-syllable au-
dio messages and the other with extracted syllables. Further, when trying to classify be-
tween all the three locations our attack resulted in an accuracy of 94% with extracted
syllables and 95.2% with monosyllabic audio messages. These results demonstrate that
For Y our V oi ceOnl y can be applied in real-world contexts by extracting single words
from a complex voice message.

EXTRACTING WORDS FROM COMPLEX VOICE MESSAGES

For our above experiment, we wanted to compare the behavior of For Y our V oi ceOnl y
when the data used are monosyllable messages vs syllables extracted from complex voice
messages. To extract these specific syllables from the audio message we used a manual
method in combination with a speech to text service for which we utilized IBM Watson
1. The service helped us obtain the timestamps which indicated when each word begins
and ends in the audio stream. We then used these timestamps in conjunction with the
ffmpeg command to extract the syllables and store them as separate audio files.

8.4. SPEAKER DATA
So far our experimental data were audio recordings recorded by people on their smart-
phone devices. This setup requires an attacker to work in conjunction with other at-
tackers to help obtain data to train our model for the location profiling scenario and we
wanted to avoid this dependency ideally. Given that this research was being carried out
during a global pandemic further motivated us to seek a means of completely avoid-
ing human participants in our experiment for all scenarios. Hence, we attempted to use
speakers in place of human participants and collected data to perform some preliminary
experiments. These speakers would play audio recordings of humans collected from lo-
cations unknown to us. The audio samples are WhatsApp audio messages, in this setup,
we play the previously recorded messages on our speaker and recorded the message with
a smartphone device keeping the distance between them nearly 15 cm.

1https://cloud.ibm.com/docs/speech-to-text/getting-started.html
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8.4.1. PHONE SPEAKER
In this setup we used the easiest available speaker at hand - the phone speaker to per-
form data collection. We carried out a preliminary investigation on 300 audio sam-
ples collected at 2 different locations (i.e., two bedrooms). For collecting data a phone
speaker was used and this phone was held horizontally with the phone speaker facing
the screen of the device recording the audio message. We noted that For Y our V oi ceOnl y
reached an average accuracy of 58% in predicting the class between the two locations.
These results demonstrate that For Y our V oi ceOnl y performs poorly when the models
are trained with phone speaker data. This is expected due to the difference in the way
sound is produced by humans vs the way sound is generated in devices. Moreover, the
phone speaker may not be very powerful and has limited capabilities depending on the
model.

8.4.2. JBL GO SPEAKER
In this setup, we performed a very similar experiment as explained in 8.4.1. The only
difference is that in this experiment the speaker used is a wireless Bluetooth speaker -
JBL GO. Here the volunteer holds the device connected via Bluetooth to another device
containing the recording. Then the volunteer plays the recording on the JBL speaker
and records the audio with a smartphone device held at nearly 15 cm distance from the
speaker. This setup is to recreate as closely as possible the scenario wherein we used
humans for recording. We further perform two types of experiments discussed in the
following subsections. From these subsections, we see that the results are not very con-
clusive and the data also is not good enough to give us stable values which will help us
make incontestable observations. Hence, we went ahead and used human participants
in our final data collection.

RECORDING AND TESTING ON SAME DEVICE

In this scenario, the speaker plays the audio recorded on the same device in which the
test audio is recorded. We collected a total of 500 audio data samples with the help of
two volunteers at two different locations (i.e., two indoor rooms). We used the following
devices - OnePlus 5T and OnePlus 3. We noted that For Y our V oi ceOnl y reached an
average accuracy of 75% in predicting the class between the two locations.

Testing on an unknown speaker
Since For Y our V oi ceOnl y is still able to retain some amount of distinguishing capa-
bility we tested the model by training and testing on speakers who are not present in
training data. For this experiment, we collected 200 datapoints from the same two loca-
tions as mentioned before. This results in For Y our V oi ceOnl y having an accuracy of
87%.

RECORDING AND TESTING ON DIFFERENT DEVICE

In this scenario, the speaker plays the audio recorded on a device as which is different
from the one the test audio is recorded on. We obtained a total of 400 audio samples
collected with the help of two volunteers at two different indoor locations (i.e., two bed-
rooms). For this setup, we achieved an accuracy of nearly 66% in distinguishing between
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the two rooms.

Testing on an unknown speaker
Here we test the above model setup by testing on speakers who are not present in train-
ing data. For this setup, we obtain an accuracy of 65%.





9
EXPERIMENTAL SETTINGS

In this section, we provide details about the procedure followed during data collection
along with the characteristics of the obtained dataset. We further provide a comprehen-
sive overview of the machine learning models and parameters we used to demonstrate the
efficacy of our proposed attack.
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9.1. DATA COLLECTION
We performed our data collection at four different real locations. The layouts of these
locations are depicted in the figures below. In particular, we considered three indoor
locations I1 (Figure 9.1), I2 (Figure 9.2), and I3 (Figure 9.3), and one outdoor location O1
9.4. Since our goal is to recognize the specific location (or the specific position) from
which a voice message is sent, for indoor locations we decided to consider the worst-
case where the rooms have a similar layout and furnishings (i.e., bedrooms). Within
each of the indoor locations, we further identify 5 different recording positions: south-
east corner (P1), south-west corner (P2), north-west corner (P3), north-east corner (P4),
and center (P5). While for O1, we identified a central recording position only (P5).

The data collection process involved 15 participants (5 males and 10 females aged 20
to 59 years). We ensured that the participants held their phones at a distance of about 15
cm from their face at chin level as shown in Figure 6.1. While recording, only the partic-
ipant was present in the room and the room doors and windows were closed. To create
a more realistic dataset we asked the participants to use their own smartphone devices.
During the collection phase, the participants recorded 30 different voice messages us-
ing WhatsApp in all the locations at each position (positions are marked in the location
layouts). This results in a total of 150 recordings per indoor location and 30 recordings
for the outdoor location. We collected a total of 7200 WhatsApp voice messages, corre-
sponding to 480 recordings per participant.

All the recorded WhatsApp voice messages have a one-second duration (i.e., the min-
imum duration of a WhatsApp voice message) and contain a single word. Specifically,
for each position the participants recorded 30 voice messages: 10 pronouncing the word
and, 10 pronouncing the word of, and 10 pronouncing the word the. We selected these
words based on the OEC and COCA ranks for most commonly used words during an En-
glish conversation [15, 17]. We divided the 30 recordings at a single position into three
sequences of 9-12-9. The participant starts the data collection from position P1, record-
ing 9 voice messages at P1 (i.e., 3 voice messages per word). Once concluded with this
step, the participant moves to P2 in the same location and records 9 voice messages
again. After all the five positions are covered in sequence, the participant starts the pro-
cedure again from P1 recording 12 voice messages (i.e., four voice messages per word).
Finally, the participant concludes the data collection with a final set of 9 voice messages
per position before moving to the next location. For the O1 location, the participant
recorded 30 voice messages from the same position (i.e., P5) but in a sequence of 9-12-9
in a discontinuous manner.

Finally, along with these recordings information about the room such as its dimen-
sions, the finish, the tiling, etc. is noted. This information depicts the features that could
possibly affect recordings taken in that room. Also for each recording session apart from
the room we also maintain details regarding the participant such as the gender and also
the phone model used during the recording process.

9.2. MACHINE LEARNING MODELS
To identify the location and the specific position in a location of a voice message, we
tested four multi-class classifiers: Linear Discriminant Analysis (LDA), Logistic Regres-
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sion (LR), Ridge Classifier (RC), and Support Vector Machine (SVM). Based on the attack
scenario we applied different strategies to split the data into training, validation, and
testing sets:

• Complete Profiling: To evaluate the performance of our approach, we apply (for
each participant) a nested-cross fold validation. In the outer loop, we use a strati-
fied 5-fold cross-validation on the 480 voice messages recorded by the participant,
resulting in 384 recordings in training and 96 in testing per fold. In the inner loop,
we apply a stratified 3-fold cross-validation on the 384 training recordings, obtain-
ing 256 recordings in training and 128 recordings in validation per fold.

• Location Profiling: For this experiment we consider the entire dataset compris-
ing of 7200 audio recordings, and we apply a nested cross-fold validation. For the
outer loop, we apply a user-independent leave-one-out cross-validation, obtain-
ing a testing set containing the recordings of a single participant (i.e., 480). Simi-
larly in the inner loop, we apply a user-independent leave-one-out cross-validation
on the other 14 participants, obtaining a training set of 13 participants (i.e., 6240
recordings) and a validation set of one participant (i.e., 480 recordings) for each
iteration.

• User Profiling: In this scenario, we consider the dataset of each participant indi-
vidually, as for theComplete Profiling scenario. Also here we apply a nested-cross
fold validation, but differently to the Complete Profiling scenario, we use a group-
k-fold to split the dataset into subsets based on the recording location. We use a
group 5-fold cross-validation in the outer loop and a group 4-fold cross-validation
for the inner loop. In this way, we split data recorded within the same room into
subsets corresponding to each of the 5 recording positions (i.e., P1, P2, P3, P4, and
P5). Using this configuration both the validation and the test sets consist of one
subset each, while the training set contains the remaining positions. The record-
ings from location O1 are excluded from this scenario since they all come from the
same location position (i.e., P5).

We explored different hyper-parameters by using grid search on all the considered
classifiers. In particular, for LDA we vary the solver over [svd, lsqr, eigen]. For LR we vary
the solver in [newton-cg, lbfgs, liblinear] and the C value in the range [10−3, 10−2, . . .,
101]. For RC we vary α from 0.1 to 0.9 with a step size of 0.1, and from 1 to 10 with a step
size of 1. Finally, for SVM we tune the values parameter C in the range [10−1, 100, . . . ,
103], and γ in the range [10−4, 10−3, . . . , 100].

9.3. CROSS VALIDATION
Since we have a very limited amount of data available with us we resample the data to
help ensure that the model performs well on data not known to it during training. We
have used nested cross-validation to achieve this. We chose to use this technique as
we wanted to optimize the hyperparameter values of the models alongside performing
validation. Hyperparameter tuning can overfit the given data and result in an idealistic
assessment of a model that should not be utilized to select our model. Nested CV helps
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to ensure that we do not overfit our data by tuning the parameters on the same dataset
which is then used to evaluate the performance of the tuned model. In this technique,
hyperparameter tuning is performed on a model and the evaluation is nested within a
more wide-ranged outer k-fold cross-validation procedure as shown in Figure 9.6. While
the technique remains constant for all scenarios the realization varies slightly as men-
tioned in the previous section.

For soft and hard voting classifier 1, we used a faster nested cross-validation method
as shown in Figure 9.5. Here, we use the inner loop data to train our voting classifier
model and obtain the best-tuned classifier for the given data from the ensemble list.
This classifier which has tuned values for its hyperparameters is then used to train the
training data of the outer loop and tested on the test data of the outer cross-validation
loop.

1These classifiers were only used in the preliminary experiments. This was because these classifiers consumed
a lot of time in comparison to the provided increase in precision of For Y our V oi ceOnl y accuracy.
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Figure 9.1: Location layout and recording positions with orientation considered in the data collection in Indoor
Location I1.
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P3

P4

P5

P2 P1

Figure 9.2: Location layout and recording positions with orientation considered in the data collection in Indoor
Location I2.
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P2
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Figure 9.3: Location layout and recording positions with orientation considered in the data collection in Indoor
Location I3.
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P5

Figure 9.4: Location layout and recording positions with orientation considered in the data collection in Out-
door Location O1.
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Figure 9.5: Nested Cross Validation for Voting Classifiers

Figure 9.6: Nested Cross Validation





10
EXPERIMENTAL RESULTS

In this section we report and discuss the results achieved by For Y our V oi ceOnl y in the
three attack scenario based on the attack goal: location 10.1 or position 10.2. Finally,
in Section 10.3 we introduce our survey set up, and then we compare the accuracy of
For Y our V oi ceOnl y vs. that of humans. The detailed results can be found in the Ap-
pendix A.
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10.1. LOCATION INFERENCE
In Table 10.0 we show the performance of the classifiers in identifying the location ac-
cording to the attack scenario, considering the worst case for each scenario (i.e., 4 loca-
tions for the Complete Profiling and Location Profiling scenarios, and 3 locations for the
User Profiling scenario).

Table 10.0: Average accuracy of For Y our V oi ceOnl y attack for location inference in different attack scenar-
ios.

Scenario LDA LR RC SVM

Complete Profiling 0.85 (0.06) 0.85 (0.06) 0.83 (0.06) 0.87 (0.05)
Location Profiling 0.41 (0.11) 0.39 (0.10) 0.43 (0.09) 0.35 (0.00)
User Profiling 0.80 (0.09) 0.33 (0.04) 0.32 (0.03) 0.33 (0.03)

The scenario where the classifiers perform best is the Complete Profiling scenario,
where the attacker has the maximum information available. The results show that in this
scenario all classifiers have accuracy higher than 83%. In particular, the SVM manages
to reach an accuracy of 87%. On the contrary, in the Location Profiling scenario, there
is a consistent drop in performance. In this case, the best classifier is the RC, which
reaches an accuracy of 43% (i.e., 18% above the chance level). Lower performance can
be attributed to multiple factors:

• Device: The participants used different phones during data collection, the absence
of the model in the training set may be a contributing factor to a reduced accuracy
on new test data.

• Training Size: The number of users in training is not enough to ensure sufficient
variability in the training features.

• Voice Uniqueness: The distinctiveness of the victim’s vocal characteristics cannot
be completely replaced, and their absence in training is reflected in the testing
performance.

• Variable Background Noise: The users recorded on different days at different times
over a period of 1 month. This impacts the background noise present during record-
ing which may also lead to a decreased accuracy.

The importance of the victim’s voice for the attacker is supported by the results ob-
tained for the User Profiling scenario, where the attacker has voice messages from the
victim but does not know the specific recording location. In this case, LDA achieves an
accuracy of 80% (i.e. only 7% less than in the Complete Profiling scenario). It is inter-
esting to note that in the User Profiling scenario, unlike the others, there is a classifier
that outperforms the others. In Figure 10.1 we show the confusion matrices of the best
model per scenario in the location classification. It is interesting to note that in all three
attack scenarios the locations I1 and I2 are confused with each other. This is due to the
similar layout of the two locations (see Figures 9.1 and 9.2). The background noise is in-
stead discriminant for the identification of the external location (i.e., O1). O1 is generally
classified better, reaching an accuracy up to 98% in the Complete Profiling scenario.
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Figure 10.1: For Y our V oi ceOnl y confusion matrices for the best models.

Further, we analyzed the influence of the number of locations of interest (i.e., the
number of classes to be predicted) on the accuracy of the classification. In the Complete
Profiling scenario we obtain an average accuracy of 99% when we classify an audio mes-
sage between the outdoor location O1 and one of the indoor locations (i.e. I1, I2, and I3).
While when we classify messages between two indoor rooms we achieve an accuracy
ranging from 89% to 95% on this task. Also in Location Profiling scenario, we obtain a
higher accuracy if we reduce the location of interest considering O1 and an indoor loca-
tion. In this case, For Y our V oi ceOnl y correctly predicts the location with an average
accuracy of 80%. While for the prediction of internal location pairs the accuracy remains
rather low, ranging from 57% between I1 and I2 to 66% between I1 and I3. Finally, con-
sidering the User Profiling scenario, reducing the locations of interest to two leads to an
average accuracy of 87% in predicting the correct recording location.

Finally, we evaluated For Y our V oi ceOnl y by training the models on a single word,
splitting the dataset into three subsets of 2400 audio recordings each containing the
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words “and”, “of ” and “the”. Figure 10.2 depicts the variation of the accuracy of our
attack in the Complete Profiling scenario between all the locations I1, I2, I3, and O1 us-
ing different classifiers and different words. Results show that there are no significant
differences between models trained on the specific word and those trained on all words
(i.e., combined).
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Figure 10.2: Performance of machine learning models in classifying the four locations in Complete Profiling
scenario when trained specifically with one word and all the words (i.e., combined).

10.2. POSITION INFERENCE
In Table 10.2 we show the performance of the classifiers in identifying the specific posi-
tion according to the attack scenario, considering the worst case (i.e., 16 positions - five
for each indoor location and one for the outdoor location). Unlike Location Inference,
here we consider only two attack scenarios (i.e., Complete Profiling and Location Pro-
filing), since the User Profiling scenario assumes that the attacker has no information
about the specific position in training. As in Location Inference, even for the position
inference, the scenario where the classifiers perform best is the Complete Profiling and
SVM resulted in the best classifier scenario with an accuracy of 61%. Contrarily, in Lo-
cation Profiling scenario models performance is slightly above chance (i.e., 0.0625). The
increase in the number of classes to be predicted and the factors already highlighted in
Section 10.1 (i.e., device, training size, and voice uniqueness) further amplify the perfor-
mance drop.

In Figure 10.3 we show the confusion matrix of the best model in the Complete Pro-
filing scenario (i.e, SVM).

As expected, the model manages to accurately predict O1 (i.e., 98%), demonstrating
that this is a trivial task for our attack in this scenario. Regarding the internal locations
Figure 10.3 shows a concentration of classification errors in the positions belonging to
the true location. In particular, the classification of I3 positions shows less accuracy than
I1 and I2. We believe that this can be traced back to the layout of the room. In fact, I3
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Table 10.2: Average accuracy of For Y our V oi ceOnl y attack for position inference in different attack scenar-
ios.

Scenario LDA LR RC SVM

Complete Profiling 0.57 (0.09) 0.55 (0.09) 0.49 (0.08) 0.61 (0.09)
Location Profiling 0.13 (0.04) 0.13 (0.04) 0.13 (0.04) 0.07 (0.00)

I1P1 I1P2 I1P3 I1P4 I1P5 I2P1 I2P2 I2P3 I2P4 I2P5 I3P1 I3P2 I3P3 I3P4 I3P5 O1P5
Predicted label

I1P1

I1P2

I1P3

I1P4

I1P5

I2P1

I2P2

I2P3

I2P4

I2P5

I3P1

I3P2

I3P3

I3P4

I3P5

O1P5

Tr
ue

 la
be

l

0.61 0.06 0.09 0.03 0.08 0 0 0.01 0.01 0.02 0 0.02 0.02 0.01 0.02 0

0.07 0.6 0.11 0.06 0.04 0.01 0.02 0.03 0.02 0.01 0 0.01 0.01 0 0.01 0

0.08 0.13 0.55 0.08 0.04 0.02 0.02 0.01 0.03 0.02 0 0.01 0 0 0 0

0.06 0.09 0.09 0.6 0.01 0.04 0.03 0.01 0.01 0.01 0.02 0.01 0.01 0 0 0

0.12 0.04 0.06 0.02 0.67 0 0 0.01 0.02 0.05 0 0 0 0 0.01 0

0.02 0.04 0.04 0.04 0 0.63 0.05 0.06 0.06 0.04 0.01 0.01 0 0 0 0

0.01 0.02 0.01 0.01 0 0.08 0.73 0.06 0.02 0.01 0.02 0 0 0.01 0 0

0.01 0.04 0.01 0.02 0 0.1 0.07 0.67 0.03 0.02 0 0.01 0 0 0 0

0.02 0.02 0.04 0 0.02 0.05 0.02 0.04 0.64 0.09 0 0.02 0 0 0.02 0

0.03 0.01 0.02 0.01 0.05 0.02 0.02 0.02 0.09 0.7 0.01 0 0 0 0.02 0

0.02 0.01 0 0.02 0 0.02 0.03 0.01 0 0 0.76 0.04 0.03 0.04 0.02 0

0.01 0.01 0.02 0.01 0 0.01 0 0.01 0.02 0.02 0.06 0.57 0.06 0.07 0.11 0.01

0.02 0.01 0 0 0 0 0 0 0 0 0.04 0.1 0.55 0.18 0.08 0.01

0.03 0 0 0 0 0 0 0 0 0.01 0.04 0.09 0.22 0.48 0.08 0.02

0.02 0 0 0 0 0.01 0.01 0.01 0.02 0.02 0.04 0.13 0.13 0.1 0.48 0.01

0 0 0 0 0 0 0 0 0 0 0 0 0 0.01 0 0.98
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Figure 10.3: Confusion matrix for specific position inference with for I1, I2, I3 and O1 locations in Complete
Profiling scenario.

has more than twice the surface area of I1 and I2, and the spaces between the recording
points and the walls or furniture are much wider. This could lead to a reduction in rever-
beration and therefore make the recordings more similar. In addition, the best perform-
ing position in I3 is P1, which is the recording position with the least open field compared
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to the other four positions. I1 and I2 generally present better results, but again we can
see how room size affects the prediction of the specific location. I2 measures about 2
square meters less than I1 and has a 7% higher average accuracy.

10.3. SURVEY
In addition to studying how well our For Y our V oi ceOnl y model works with the col-
lected audio data we thought it would be of value to study how hard the task would be if
we had to solely rely on the human auditory system. For this purpose, we formulated a
survey for volunteers to fill out.

10.3.1. SURVEY ORGANIZATION

To simulate the three scenarios discussed previously we divided our survey into two
parts. The first survey contained 96 audio recordings pertaining to 6 speakers with sam-
ples associated with the 4 different locations 1 to train the participants. This survey was
to simulate the Complete Profiling and User Profiling scenarios. Once the training is
completed each participant was asked to classify 24+18 test audio samples via the sur-
vey 2. The first 24 samples were audio recordings of the same 6 speakers in rooms and
positions present in the training. The latter 18 test samples belonged to the 6 speakers
in training recorded at the same locations but from new positions within these loca-
tions. To simulate the Location Profiling scenario we trained the participants with a new
dataset comprising of 72 audio recordings pertaining to 6 (different from the six speak-
ers used in the Complete/User Profiling setup) speakers with samples pertaining to the 4
different locations 3. Once the participants listen to the audio recordings in training they
were requested to fill out a second survey 4 consisting of 12 test audio samples. These
audio samples belonged to 3 (these 3 speakers are neither present in the training nor
were they part of the dataset used for the Complete/User Profiling setup) new speakers
in the locations and positions covered in the training data. Here, the participants were
expected to fill out the survey classifying test data after they listened to the training data
which was made available to them via a website as mentioned. However, the partici-
pants could have this website open while filling out the survey for additional support.
In total we had 29 participants fill out the first survey regarding Complete/User Profiling
the gender distribution is displayed in 10.4 and age distribution of the participants are
shown in Figure 10.5. For the second survey corresponding to Location Profiling we had
a total of 21 participants and their gender/age distribution is shown below in 10.6 and
10.7 respectively.

10.3.2. SURVEY RESULTS

Here we report the results we obtained in our survey. We further draw a comparison
between the results obtained by For Y our V oi ceOnl y vs. what we achieved using just
human participants.

1https://mailarpitar.wixsite.com/location-guessing/dataset1
2https://forms.gle/NjBH2EAV7TjpyUit9
3https://mailarpitar.wixsite.com/location-guessing/dataset2
4https://forms.gle/3rk5wtwjnMVc6Hc36
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Figure 10.4: Gender distribution of participants of the Complete/User Profiling survey

Figure 10.5: Age distribution of participants of the Complete/User Profiling survey

Figure 10.6: Gender distribution of participants of the Location Profiling survey

• Complete Profiling: The survey had 29 participants each classifying 24 test audio
samples. This resulted in an accuracy of nearly 24% (The probability of guessing
correctly is 25%). To see how well the participants can perform indoor-outdoor
classification we tested how well the participants could classify audio recordings
belonging to the location O1 - the achieved accuracy is only 60%. In 10.8 we show
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Figure 10.7: Age distribution of participants of the Location Profiling survey

how poorly humans perform when compared to For Y our V oi ceOnl y .

• Location Profiling: The survey had 21 participants each classifying 12 test audio
samples. Evaluating this survey we obtain an accuracy of 35% for the task (The
probability of guessing correctly is 33.33%). Given the test sample of an outdoor lo-
cation, the participants achieved an accuracy of nearly 78% in correctly identifying
the recording location as outdoors. Figure 10.9 depicts how well machine learning
classifiers can discern audio recording locations in comparison to humans.

• User Profiling: The survey had 29 participants each classifying 18 test audio sam-
ples. This setup resulted in an accuracy of approximately 25% (The probability of
guessing correctly is 25%). To see how well humans can classify indoor and out-
door audio recording we only had test cases pertaining to the indoors however
we still had 17.4% misclassifying the test sample. Figure 10.10 depicts how much
better an ML classifier can utilize reverberations and ambient noise to correctly
classify the location in which audio was recorded.

These results demonstrate to us how difficult it is to leverage the leaked data in audio
messages using solely human hearing abilities. Also, the indoor-outdoor classification
is relatively simpler due to the presence of distinctive background noises. This implies
that this task is relatively simple even for the human participants and this is confirmed
by the accuracy we obtained for this task in comparison to the other tasks.
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Figure 10.8: Comparison of task accuracy between humans and For Y our V oi ceOnl y for Complete Profiling.
Here task 1 is indoor-outdoor classification and task 2 corresponds to the room classification between all 4
known locations

Figure 10.9: Comparison of task accuracy between humans and For Y our V oi ceOnl y for Location Profiling.
Here task 1 is indoor-outdoor classification and task 2 corresponds to the room classification between all 4
known locations.

Figure 10.10: Comparison of task accuracy between humans and For Y our V oi ceOnl y for User Profiling. Here
task 1 is indoor-outdoor classification and task 2 corresponds to the room classification between all 3 indoor
locations.
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CONCLUSION

In this report, we proposed For Y our V oi ceOnl y , a new attack on voice messages to
infer the recording location. For Y our V oi ceOnl y leverages attributes such as rever-
beration and ambient noises which inadvertently get recorded along with audio mes-
sages. We showed the effectiveness of our attack in three realistic attack scenarios: (i)
the attacker has previous recordings of the victim in all the selected locations (ii) the at-
tacker has no previous recording of the victim’s voice messages (iii) the attacker has pre-
vious voice messages of the victim knowing the location they were recorded but does not
know the specific position. We demonstrated our attack considering 7,200 voice mes-
sages from 15 different users and four environments (i.e., three bedrooms and a terrace).
We showed how the possession of audio messages from the victim in known locations
greatly increases the performance of our attack. For Y our V oi ceOnl y can infer the lo-
cation of the user among a pool of four known environments with up to 85% accuracy.
Moreover, our approach reaches an average accuracy of 93% in discerning between two
rooms of similar size and furniture (i.e., two bedrooms), and an accuracy of up to 99% in
classifying indoor and outdoor environments.

10.1. LIMITATIONS
We believe that the proposed work can be a starting point for developing environment
recognition from voice messages and can overcome the limitations of For Y our V oi ceOnl y .
First, the collection of new datasets would allow for more consolidated results and the
application of more powerful feature extraction and prediction techniques (e.g., deep
learning). It would be useful to have a more diverse dataset in terms of languages, gen-
der, age, and nationality. Further, we only used a single voice messaging application to
collect data, introducing more such applications or the use of audio call recordings in
the dataset would also provide more useful insight.

The collection of new datasets would also be beneficial for assessing the effect of
noisier environments. We made several restrictions during recording such as having no
other member in the rooms during recording, the recordings were done in a relatively

73
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quiet and less crowded location. Hence, we expect the behavior to be affected when the
noise increases. This can be either detrimental or instrumental depending on whether
valuable information is obscured or if the noise is indicative of that particular location.

10.2. FUTURE WORKS
Based on our research work, we believe that there are various directions in which poten-
tial research works can be carried out, such as developing effective countermeasures or
applying our approach to other scenarios.

• We also think that combining the results of multiple test audio samples will help
in improving the results obtained by For Y our V oi ceOnl y . The classification out-
puts may be combined based on the probability assigned by the classifier.

• It would also be interesting to note whether changes in room furniture during
the course of recording change the accuracy with which the model identifies the
recording location.

• Another intriguing aspect to analyze is whether changes to voice made with voice
modification tools affect our proposed system. Or whether such tools can be used
as a countermeasure to our proposed attack.

• We also see many possible directions in which countermeasures to our proposed
attack may be developed. Some of these are -

– The use of noise to obscure the leaked information in the audio messages.
The noise may also be applied selectively to higher and lower frequencies
outside the hearing range so as not to impact the quality of the voice message.
This method may prove to act as a countermeasure as we noted variations in
the audio signals in the ultrasonic and infrasonic ranges at different locations
and positions.

– Another straight forward measure may be shielding of the microphone dur-
ing recording.

– It may also be rather interesting to note if the audio can be filtered so as to
retain only the primary sound source and eliminate all other signals from the
recorded audio.
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TASK LDA LR RC SVM
1 0.953333333 0.97 0.983333333 0.963333333
2 0.99 0.991 0.991133333 0.993266667
3 0.973333333 0.975533333 0.976533333 0.977666667
4 0.8682 0.847133333 0.843333333 0.849066667
5 0.876666667 0.859333333 0.868 0.885333333
6 0.93 0.918666667 0.932666667 0.928
7 0.951333333 0.931333333 0.950666667 0.936
8 0.865333333 0.849733333 0.858666666 0.858266667
9 0.987066667 0.989266667 0.989333333 0.995466667
10 0.648467 0.590867 0.5542 0.629067
11 0.6066 0.621733 0.649 0.622267
12 0.708 0.766667 0.753333 0.749333
13 0.558667 0.584 0.577333 0.597333
14 0.646 0.634 0.600667 0.64
15 0.662 0.634667 0.624 0.66
16 0.586667 0.574667 0.548 0.599333
17 0.618867 0.578667 0.545267 0.596867

Table A.1: The combined results of 15 participants for the Complete Profiling scenario with the AND syllable
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TASK LDA LR RC SVM
1 0.95 0.983333 0.97 0.973333
2 0.991067 0.9944 0.9922 0.993267
3 0.989933 0.991067 0.9966 0.993267
4 0.875867 0.873733 0.862467 0.8762
5 0.868667 0.880667 0.880667 0.878667
6 0.944 0.939333 0.948667 0.930667
7 0.942667 0.941333 0.95 0.942
8 0.872933 0.8662 0.860933 0.8724
9 0.9906 0.987333 0.9906 0.9906
10 0.625067 0.611333 0.568333 0.6534
11 0.592 0.656 0.634667 0.670667
12 0.744 0.757333 0.768 0.742667
13 0.592 0.6 0.624 0.64
14 0.647333 0.646 0.608667 0.652
15 0.662667 0.668667 0.618 0.668
16 0.602 0.602 0.576667 0.639333
17 0.6108 0.603933 0.545267 0.6208

Table A.2: The combined results of 15 participants for the Complete Profiling scenario with the OF syllable

TASK LDA LR RC SVM
1 0.963333333 0.996666667 0.976666667 0.983333333
2 0.9966 0.993333333 0.994466667 0.995533333
3 0.978866667 0.983266667 0.981 0.9878
4 0.872266667 0.8596 0.859666667 0.864933333
5 0.879933333 0.873866667 0.878533333 0.8824
6 0.942666667 0.935333333 0.944666667 0.937333333
7 0.938 0.939333333 0.944 0.936
8 0.867533333 0.862266667 0.868933333 0.861733333
9 0.9906 0.988333333 0.989533333 0.9966
10 0.626933 0.599867 0.549067 0.632533
11 0.597333 0.641333 0.670667 0.664
12 0.677333 0.744 0.721333 0.745333
13 0.605333 0.621333 0.625333 0.593333
14 0.642 0.630667 0.596 0.632667
15 0.644 0.632667 0.594 0.635333
16 0.615333 0.606667 0.574 0.61
17 0.616467 0.595133 0.5444 0.5976

Table A.3: The combined results of 15 participants for the Complete Profiling scenario with the THE syllable
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TASK LDA LR RC SVM
1 0.815(0.076) 0.988(0.016) 0.979(0.022) 0.989(0.019)
2 0.997(0.005) 0.995(0.006) 0.997(0.005) 0.996(0.006)
3 0.987(0.009) 0.987(0.008) 0.988(0.009) 0.988(0.009)
4 0.890(0.058) 0.882(0.051) 0.872(0.05) 0.902(0.051)
5 0.888(0.054) 0.885(0.044) 0.888(0.05) 0.912(0.043)
6 0.959(0.045) 0.958(0.047) 0.961(0.045) 0.959(0.047)
7 0.950(0.042) 0.95(0.043) 0.95(0.041) 0.955(0.034)
8 0.886(0.064) 0.885(0.061) 0.882(0.060) 0.897(0.058)
9 0.999(0.002) 0.999(0.002) 0.999(0.002) 0.998(0.003)
10 0.608(0.093) 0.573(0.087) 0.540(0.074) 0.637(0.088)
11 0.601(0.105) 0.612(0.109) 0.616(0.092) 0.636(0.104)
12 0.72(0.102) 0.716(0.107) 0.725(0.101) 0.716(0.098)
13 0.544(0.093) 0.542(0.089) 0.549(0.084) 0.560(0.096)
14 0.628(0.099) 0.60(0.11) 0.589(0.087) 0.652(0.108)
15 0.627(0.077) 0.588(0.080) 0.575(0.072) 0.637(0.085)
16 0.578(0.081) 0.535(0.082) 0.510(0.08) 0.595(0.089)
17 0.591(0.093) 0.565(0.092) 0.535(0.081) 0.611(0.098)

Table A.4: The combined results of 15 participants for the Complete Profiling scenario with all three syllables

TASK LDA LR RC SVM
1 NA NA NA NA
2 0.843 (0.169) 0.781 (0.166) 0.853 (0.144) 0.788 (0.159)
3 0.772 (0.182) 0.836 (0.005) 0.783 (0.186) 0.847 (0.024)
4 0.412 (0.108) 0.389 (0.095) 0.432 (0.089) 0.348(0.000)
5 0.567 (0.087) 0.567 (0.087) 0.571 (0.094) 0.567 (0.080)
6 0.662 (0.134) 0.649 (0.108) 0.662 (0.135) 0.674 (0.147)
7 0.625 (0.128) 0.625 (0.114) 0.620 (0.123) 0.622 (0.128)
8 0.465 (0.103) 0.460 (0.095) 0.464 (0.100) 0.492 (0.100)
9 0.866 (0.173) 0.873 (0.167) 0.873 (0.167) 0.813 (0.169)
10 0.132 (0.044) 0.126 (0.037) 0.128 (0.037) 0.067 (0.000)
11 0.254 (0.053) 0.248 (0.057) 0.250 (0.062) 0.248 (0.057)
12 0.240 (0.051) 0.233 (0.043) 0.233 (0.043) 0.236(0.052)
13 0.273 (0.059) 0.264 (0.051) 0.275 (0.059) 0.263 (0.054)
14 0.137 (0.031) 0.135 (0.035) 0.133 (0.031) 0.130 (0.034)
15 0.172 (0.038) 0.168 (0.037) 0.168 (0.040) 0.170 (0.050)
16 0.162 (0.039) 0.161 (0.038) 0.160 (0.040) 0.157 (0.044)
17 0.118 (0.031) 0.110 (0.026) 0.112 (0.027) 0.114 (0.041)

Table A.5: The combined results of 15 participants for the Location Profiling scenario with all three syllables
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TASK LDA LR RC SVM
8 0.795(0.091) 0.326(0.035) 0.323(0.027) 0.33(0.034)
5 0.791(0.095) 0.499(0.06) 0.491(0.042) 0.491(0.037)
6 0.904(0.092) 0.499(0.029) 0.497(0.052) 0.486(0.04)
7 0.908(0.06) 0.508(0.037) 0.499(0.051) 0.494(0.05)

Table A.6: The combined results of 15 participants for the User Profiling scenario with all three syllables

Task No Task Description
1 Room Classification(Room I1(10 DP) Vs Room O1 DP))
2 Room Classification(Room I1(50 DP) Vs Room O1(15 DP))
3 Room Classification(Room I3(50 DP) Vs Room O1(15 DP))
4 Room Classification(Room I1(50 DP) Vs Room O1(15 DP) Vs Room I2(50 DP ) Vs Room I3(50 DP)
5 Room Classification(Room I1(50 DP) Vs Room I2(50 DP))
6 Room Classification(Room I2(50 DP) Vs Room I3(50 DP))
7 Room Classification(Room I1(50 DP) Vs Room I3(50 DP))
8 Room Classification(Room I1(50 DP) Vs Room I2(50 DP ) Vs Room I3(50 DP))
9 Room Classification(Room I2 50 DP) Vs Room O1(15 DP))
10 Corner Classification(Room I1(50 DP) Vs Room O1(15 DP) Vs Room I2(50 DP) Vs Room I3(50 DP))
11 Corner Classification (Room I1(50 DP))
12 Corner Classification(Room I2(50 DP))
13 Corner Classification(Room I3(50 DP))
14 Corner Classification (Room I1(50 DP) Vs Room I2(50 DP))
15 Corner Classification (Room I2(50 DP) Vs Room I3(50 DP))
16 Corner Classification (Room I1(50 DP) Vs Room I3(50 DP))
17 Corner Classification(Room I1(50 DP) Vs Room I2(50 DP) Vs Room I3(50 DP))

Table A.7: Legend
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B.1. RESULTS FOR DIFFERENT POSITIONS

TASK LDA LR RC SVM VC(Hard) VC(Soft)
2 0.986 0.993 0.993 0.969 0.993 0.993
3 0.953 0.9485 0.948 0.939 0.966 0.9745
4 0.955 0.97 0.955 0.96 0.97 0.97
5 0.983 0.9835 1 0.985 0.9915 1
6 0.7605 0.77 0.7395 0.774 0.774 0.7865
7 0.77 0.75 0.71 0.74 0.74 0.78
8 0.72 0.76 0.67 0.64 0.7 0.77
9 0.79 0.81 0.77 0.92 0.8 0.81

Table B.1: The results of Position 1 (Dataset comprising of 230 datapoints and 3 locations (2 indoor and 1
outdoor)

TASK LDA LR RC SVM VC(Hard) VC(Soft)
2 1.000 1.000 1.000 1.000 1.000 1.000
3 0.983 0.947 0.974 0.983 0.983 0.983
4 0.950 0.950 0.960 0.950 0.970 0.950
5 1.000 1.000 1.000 1.000 1.000 1.000
6 0.973 0.939 0.948 0.973 0.973 0.973
7 0.980 0.940 0.910 0.960 0.980 0.980
8 1.000 1.000 1.000 1.000 1.000 1.000
9 0.960 0.900 0.920 0.940 0.940 0.960

Table B.2: The results of Position 2 (Dataset comprising of 230 datapoints and 3 locations (2 indoor and 1
outdoor))
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B.2. RESULTS FOR DIFFERENT PHONES

TASK LDA LR RC VC(Hard) VC(Soft) VC(Soft)
1 0.989 1 1 1 1
2 1 1 1 1 1 1.000
3 0.983 0.997333 0.977 0.988667 0.991667 0.983
4 0.99 0.996667 0.99 0.99 0.99 0.950
5 1 0.995333 1 1 1 1.000
6 0.890333 0.884667 0.799667 0.881333 0.913333 0.973
7 0.86 0.876667 0.776667 0.856667 0.883333 0.980
8 0.926667 0.886667 0.893333 0.893333 0.933333 1.000
9 0.873333 0.906667 0.8 0.866667 0.886667 0.960

Table B.3: The results for Different Phones (Dataset comprising of 345 datapoints and 3 locations (2 indoor and
1 outdoor))

Test Data Test Data – Speaker C Test Data – Speaker D Test Data – Speaker E
Task Different Same Different Same Different Same
2 0.815 0.769 0.954 0.700 0.846 1
5 0.969 1 0.862 1.000 0.769 1
4 0.760 0.5 0.700 0.700 0.900 0.750
3 0.635 0.565 0.643 0.696 0.861 0.730
8 0.400 0.26 0.320 0.360 0.340 0.460
9 0.220 0.36 0.400 0.260 0.460 0.380
7 0.210 0.13 0.400 0.270 0.200 0.310
6 0.815 0.235 0.235 0.365 0.217 0.365

Table B.4: The results for Same and Different Phones (Dataset comprising of 575 datapoints and 3 locations (2
indoor and 1 outdoor))
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B.3. RESULTS FOR DIFFERENT AUDIO CONTENT

B.3.1. RESULTS FOR SYLLABLES

TASK LDA LR RC SVM VC(Hard) VC(Soft)
1 0.973333 1 1 1 1 1
2 0.985 1 0.985 1 0.990333 1
3 0.941333 0.923333 0.921 0.924667 0.944 0.95
4 0.95 0.953333 0.94 0.943333 0.946667 0.956667
5 0.979333 0.994333 0.988667 0.995 0.994333 0.994333
6 0.672667 0.667 0.628667 0.611333 0.688 0.714333
7 0.613333 0.68 0.72 0.606667 0.686667 0.753333
8 0.626667 0.64 0.666667 0.633333 0.673333 0.693333
9 0.633333 0.633333 0.63 0.573333 0.663333 0.68

Table B.5: The results for syllable audio content (Dataset comprising of 345 datapoints and 3 locations (2 indoor
and 1 outdoor))

B.3.2. RESULTS FOR EXTRACTED SYLLABLES

TASK LDA LR RC SVM VC(Hard) VC(Soft)
1 0.92 0.986667 0.96 0.973333 0.989 1
2 0.989667 0.989667 0.985 0.995 1 1
3 0.915 0.888333 0.903333 0.924667 0.93 0.941667
4 0.9 0.893333 0.903333 0.923333 0.913333 0.93
5 0.95 0.985667 0.981 0.984667 0.981 0.981
6 0.582667 0.536 0.498667 0.577 0.569667 0.621333
7 0.486667 0.526667 0.526667 0.553333 0.573333 0.573333
8 0.52 0.546667 0.54 0.566667 0.553333 0.606667
9 0.53 0.446667 0.463333 0.543333 0.523333 0.56

Table B.6: The results for extracted syllable audio content (Dataset comprising of 345 datapoints and 3 loca-
tions (2 indoor and 1 outdoor))
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Task No Task Description
1 Room Classification(Room D(10 DP) Vs Room E15 DP))
2 Room Classification(Room D(50 DP) Vs Room E(15 DP))
3 Room Classification(Room D(50 DP) Vs Room E(15 DP) Vs Room F(50 DP))
4 Room Classification(Room D(50 DP) Vs Room F(50 DP))
5 Room Classification(Room F(50 DP) Vs Room E(15 DP))
6 Corner Classification(Room D(50 DP) Vs Room E(15 DP) Vs Room F(50 DP))
7 Corner Classification (Room D(50 DP) Vs Room F(50 DP))
8 Corner Classification (Room D(50 DP))
9 Corner Classification(Room F(50 DP))

Table B.7: Task description

B.3.3. RESULTS FOR DIFFERENT MESSAGE CONTENT

TASK LDA LR RC SVM VC - Hard VC - Soft
1 0.640 (0.150) 0.880 (0.160) 0.760 (0.196) 0.880 (0.160) 0.883 (0.183) 0.833 (0.211)
2 0.936 (0.109) 0.933 (0.111) 0.933 (0.111) 0.954 (0.092) 0.967 (0.067) 0.950 (0.107)
3 0.986 (0.043) 0.986 (0.043) 0.986 (0.043) 0.969 (0.038) 0.986 (0.043) 0.986 (0.043)
4 0.781 (0.081) 0.738 (0.110) 0.750 (0.111) 0.770 (0.041) 0.775 (0.093) 0.817 (0.092)
5 0.760 (0.111) 0.810 (0.130) 0.790 (0.130) 0.840 (0.080) 0.790 (0.137) 0.840 (0.111)
6 0.860 (0.102) 0.840 (0.136) 0.880 (0.098) 0.870 (0.093) 0.830 (0.078) 0.870 (0.119)
7 0.920 (0.087) 0.900 (0.089) 0.910 (0.094) 0.870 (0.087) 0.890 (0.094) 0.920 (0.087)
8 0.753 (0.112) 0.733 (0.126) 0.747 (0.102) 0.753 (0.027) 0.747 (0.093) 0.780 (0.108)
9 1.000 (0.000) 1.000 (0.000) 0.983 (0.050) 0.985 (0.031) 0.983 (0.050) 1.000 (0.000)
10 0.473 (0.062) 0.485 (0.057) 0.418 (0.075) 0.467 (0.036) 0.469 (0.150) 0.535 (0.100)
11 0.360 (0.233) 0.520 (0.256) 0.520 (0.256) 0.460 (0.102) 0.480 (0.256) 0.560 (0.233)
12 0.640 (0.196) 0.580 (0.227) 0.520 (0.204) 0.600 (0.179) 0.600 (0.179) 0.680 (0.183)
13 0.600 (0.155) 0.560 (0.215) 0.620 (0.108) 0.740 (0.102) 0.660 (0.092) 0.660 (0.092)
14 0.460 (0.162) 0.460 (0.120) 0.410 (0.158) 0.440 (0.107) 0.450 (0.128) 0.500 (0.100)
15 0.560 (0.092) 0.540 (0.102) 0.510 (0.130) 0.560 (0.073) 0.570 (0.135) 0.560 (0.120)
16 0.500 (0.118) 0.440 (0.143) 0.480 (0.166) 0.460 (0.136) 0.480 (0.117) 0.540 (0.128)
17 0.540 (0.128) 0.380 (0.130) 0.393 (0.096) 0.360 (0.106) 0.440 (0.120) 0.493 (0.104)

Table B.8: Results for different audio content (Dataset comprising of 330 datapoints and 4 locations (3 indoor
and 1 outdoor))
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Task No Task Description
1 Room Classification(Room I1(10 DP) Vs Room O1 DP))
2 Room Classification(Room I1(50 DP) Vs Room O1(15 DP))
3 Room Classification(Room I3(50 DP) Vs Room O1(15 DP))
4 Room Classification(Room I1(50 DP) Vs Room O1(15 DP) Vs Room I2(50 DP ) Vs Room I3(50 DP)
5 Room Classification(Room I1(50 DP) Vs Room I2(50 DP))
6 Room Classification(Room I2(50 DP) Vs Room I3(50 DP))
7 Room Classification(Room I1(50 DP) Vs Room I3(50 DP))
8 Room Classification(Room I1(50 DP) Vs Room I2(50 DP ) Vs Room I3(50 DP))
9 Room Classification(Room I2 50 DP) Vs Room O1(15 DP))
10 Corner Classification(Room I1(50 DP) Vs Room O1(15 DP) Vs Room I2(50 DP) Vs Room I3(50 DP))
11 Corner Classification (Room I1(50 DP))
12 Corner Classification(Room I2(50 DP))
13 Corner Classification(Room I3(50 DP))
14 Corner Classification (Room I1(50 DP) Vs Room I2(50 DP))
15 Corner Classification (Room I2(50 DP) Vs Room I3(50 DP))
16 Corner Classification (Room I1(50 DP) Vs Room I3(50 DP))
17 Corner Classification(Room I1(50 DP) Vs Room I2(50 DP) Vs Room I3(50 DP))

Table B.9: Legend

B.3.4. RESULTS FOR SILENT AUDIO CONTENT

TASK LDA LR RC VC(Hard) VC(Soft)
Room Classification(Room A(10 DP) Vs Room B(15 DP)) 0.960 (0.080) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
Room Classification(Room A(50 DP) Vs Room B(15 DP)) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
Corner Classification (Room A(50 DP)) 0.340 (0.162) 0.380 (0.133) 0.320 (0.117) 0.320 (0.133) 0.400 (0.126)
Corner Classification (Room A(100 DP)) 0.500 (0.089) 0.430 (0.040) 0.430 (0.051) 0.510 (0.158) 0.510 (0.158)
Corner Classification (Room A(150 DP)) 0.467 (0.084) 0.467 (0.114) 0.487 (0.098) 0.513 (0.166) 0.527 (0.138)
Corner Classification (Room A(200 DP)) 0.560 (0.090) 0.530 (0.040) 0.505 (0.043) 0.555 (0.079) 0.590 (0.089)
Corner Classification (Room A(250 DP)) 0.581 (0.062) 0.513 (0.038) 0.528 (0.063) 0.547 (0.109) 0.574 (0.089)

Table B.10: Results for silent audio content (Dataset comprising of 265 datapoints and 2 locations (1 indoor
and 1 outdoor))
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B.4. RESULTS FOR SPEAKER DATA

B.4.1. RESULTS FOR PHONE SPEAKER

TASK LDA LR RC SVM VC - Hard VC - Soft
Room Classification(Room D(50 DP) Vs Room F(50 DP)) 0.466667 0.533333 0.483333 0.58 0.483333 0.483333
Corner Classification (Room D(50 DP) Vs Room F(50 DP)) 0.266667 0.3 0.166667 0.366667 0.266667 0.266667
Corner Classification (Room D(50 DP)) 0.375 0.333333 0.333333 0.5 0.375 0.416667
Corner Classification(Room F(50 DP)) 0.148 0.222 0.166667 0.185 0.185 0.166667

Table B.11: Results for phone speaker data (Dataset comprising of 300 datapoints and 2 indoor locations)

B.4.2. RESULTS FOR JBL GO SPEAKER

RECORDING AND TESTING ON SAME DEVICE

TASK LDA LR RC SVM VC - Hard VC - Soft
Room Classification(Room D(50 DP) Vs Room F(50 DP)) 0.57 0.68 0.65 0.75 0.6 0.62
Corner Classification (Room D(50 DP) Vs Room F(50 DP)) 0.2 0.2 0.26 0.28 0.22 0.22
Corner Classification (Room D(50 DP)) 0.3 0.325 0.325 0.425 0.3 0.325
Corner Classification(Room F(50 DP)) 0.1222 0.1554 0.1222 0.1666 0.1112 0.1222

Table B.12: Results for JBL GO speaker data (Dataset comprising of 500 datapoints and 2 indoor locations)

TASK LDA LR RC SVM VC - Hard VC - Soft
Room Classification(Room D(50 DP) Vs Room F(50 DP)) 0.575 0.75 0.75 0.87 0.725 0.675
Corner Classification (Room D(50 DP) Vs Room F(50 DP)) 0.15 0.25 0.2 0.25 0.2 0.2
Corner Classification (Room D(50 DP)) 0.25 0.375 0.25 0.4375 0.25 0.3125
Corner Classification(Room F(50 DP)) 0.1665 0.25 0.1665 0.2775 0.222 0.1945

Table B.13: Results for JBL GO speaker data - Testing on an unknown speaker/recordee (Dataset comprising of
200 datapoints and 2 indoor locations)

RECORDING AND TESTING ON DIFFERENT DEVICE

TASK LDA LR RC SVM VC - Hard VC - Soft
Room Classification(Room D(50 DP) Vs Room F(50 DP)) 0.5875 0.5375 0.5875 0.6675 0.5 0.525
Corner Classification (Room D(50 DP) Vs Room F(50 DP)) 0.225 0.325 0.3 0.45 0.275 0.275
Corner Classification (Room D(50 DP)) 0.3125 0.34375 0.3125 0.40625 0.25 0.25
Corner Classification(Room F(50 DP)) 0.153 0.20825 0.20825 0.25 0.167 0.153

Table B.14: Results for JBL GO speaker data (Dataset comprising of 400 datapoints and 2 indoor locations)

TASK LDA LR RC SVM VC - Hard VC - Soft
Room Classification(Room D(50 DP) Vs Room F(50 DP)) 0.525 0.5 0.5 0.65 0.5 0.5
Corner Classification (Room D(50 DP) Vs Room F(50 DP)) 0.25 0.25 0.25 0.35 0.25 0.25
Corner Classification (Room D(50 DP)) 0.25 0.3125 0.25 0.3125 0.25 0.1875
Corner Classification(Room F(50 DP)) 0.139 0.139 0.167 0.167 0.139 0.139

Table B.15: Results for JBL GO speaker data - Testing on an unknown speaker/recordee (Dataset comprising of
200 datapoints and 2 indoor locations)
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INFORMED WRITTEN CONSENT 

Itf./ Mrs. / Ms.ARPITA R aged about 

25 years have been explained, in the language best 

understood by me about the study titled "ENVIRONMENTAL AUDIO 

CLASSIFICATION" 
I have been explained the investigations that will be done during this study. 
ave no objection to sharing my details and audio recordings recorded on my 

device (ONE PLUS 5T_with the investigators of this study. I have 

been explained that the data may be used for publication/dissertation 
purposes without revealing my identity. 

Iunderstand that my participation in this study is entirely voluntary and lam 

willing to take part in this study. 

Place ngalove Name ARPITA R 

Date: /0.o2.202| Signature: 



INFORMED WRITTEN CONSENT 

I Mr./Mrs-Ms. Radef aged about 

years have been explained, in the language best 20 
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have no objection to sharing my details and audio recordings recorded on my 
device ( Meto ES with the investigators of this study. I have 

been explained that the data may be used for publication/dissertation 

purposes without revealing my identity. 

entirely voluntary and I am I understand that my participation in this studyi 

willing to take part in this study. 

Bargaler Name ad Place T 

Date: 25/o2/ 21 Signature 



INFORMED WRITTEN CONSENT 

Kav nvaneAged about I Mr./Mrs. / Ms. 
years have been explained, in the language best 

understood by me about the study titled "ENVIRONMENTAL AUDI0 

CLASSIEICATION". 

I have been explained the investigations that will be done during this study. 

have no objection to sharing my details and audio recordings recorded on my 

device (ME PLUS 6T )with the investigators of this study. I have 
been expiained that the data may be used for publication/dissertation 

purposes without revealing my identity. 

I understand that my participation in this study is entirely voluntary and I am 

willing to take part in this study. 

R Kavidanh 
Place: arnpaloe 

Date: /o. oA-R03 

Name: 

Signature: 



INFORMED WRITTEN CONSENT 

HRCHIIR.K 
years have been explained, in the language best 

I Mr./Mrs./ Ms. aged about 

understood by me about the study titled "ENVIRONMENTAL AUDIO 

CLASSIFICATION". 

I have been explained the investigations that will be done during this study.I 
have no objection to sharing my details and audio recordings recorded on my 

device (ONE PLUS NORD) with the investigators of this study. I have 

been explained that the data may be used for publication/dissertation 

purposes without revealing my identity. 

l understand that my participation in this study is entirely voluntary and I am 

willing to take part in this study. 

Place ANGALORE Name: KCH TA.K 

Date: 10. O2. RORI Signature: chita 



INFORMED WRITTEN CONSENT 

I Mr./ Mrs. / Ms.Zmauua M.L aged about 

years have been explained, in the language best 

understood by me about the study titled "ENVIRONMENTAL AUDIO 

CLASS!FICATION" 
I have been explained the investigations that will be done during this study. I 

have no objection to sharing my details and audio recordings recorded on my 

device (ONE PLUS3 _with the investigators of this study. I have 

been explained that the data may be used for publication/dissertation 

purposes without revealing my identity. 

Iunderstand that my participation in this study is entirely voluntary and I am 

willing to take part in this study. 

Place: hangalene Name INDIRA 

Date: /O.O. 03/. Signature: d 



INFORMED WRITTEN CONSENT 

I Mr./Mrs( Ms.)x PreethiRGaged about 
years have been explained, in the language best 

understood by me about the study titled "ENVIRONMENTAL AUDIO 

CLASSIFICATION" 
I have been explained the investigations that will be done during this study. 
have no objection to sharing my details and audio recordings recorded on my 
device (TasT-PHONE) with the investigators of this study. I have 
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