
NUMECA International

Master of Science Thesis

Inverse Distance Weighting Mesh
Deformation

A Robust and Efficient Method for Unstructured Meshes

Laura Uyttersprot

February 12, 2014

Inverse Distance Weighting Mesh
Deformation

A Robust and Efficient Method for Unstructured Meshes

Master of Science Thesis

For obtaining the degree of Master of Science in Aerospace Engineering
at Delft University of Technology

Laura Uyttersprot

February 12, 2014

Faculty of Aerospace Engineering · Delft University of Technology

Delft University of Technology

Copyright c© Aerospace Engineering, Delft University of Technology
All rights reserved.

DELFT UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF AERODYNAMICS

The undersigned hereby certify that they have read and recommend to the Faculty of
Aerospace Engineering for acceptance the thesis entitled “Inverse Distance Weighting
Mesh Deformation” by Laura Uyttersprot in fulfillment of the requirements for the
degree of Master of Science.

Dated: February 12, 2014

Supervisors:
Reader 1

Reader 2

Reader 3

Reader 4

Preface

This thesis marks the end of a very challenging but enriching time as an aerospace engineering
student in Delft. It has been an exciting journey which has taken me across five different
countries in three different continents. However I could never have accomplished it without
the support of many others.

First of all I would like to thank my supervisors Sander van Zuijlen and Benoit Leonard for
creating the opportunity for me to do this interesting thesis project at NUMECA interna-
tional. In particular a huge thank you goes out to both Sander van Zuijlen and Liesbeth
Florentie for many hours of phone call meetings, providing me with valuable insights and
feedback. Their dedication and enthusiasm has made it possible for me to perform at the
best of my abilities.

I would also like to express my gratitude to Mohamed Mezine, for always making time to
answer my many questions, and Sergio Gonzalez Horcas for the many brainstorming sessions
and for welcoming me so warmly in the mesh deformation team at NUMECA. I would also
like to thank all my other colleagues at NUMECA for the many breaks, lunches and evenings
that we spent together. Without them this experience would not have been the same.

To all my family and friends, in particular my parents and Anthony, many thanks for your
support.

Laura Uyttersprot
Brussels, February 2014

M.Sc. Thesis Laura Uyttersprot

vi Preface

Laura Uyttersprot M.Sc. Thesis

Summary

The computational modelling of fluid-structure interaction phenomena is currently gaining
importance thanks to engineering design trends towards lighter and more flexible structures.
FSI simulations are important because they can predict potentially dangerous interaction
instabilities and the performance of designs in their deformed shapes. However, the cost of
such FSI simulations is currently still very high due to the fact that two coupled solvers have
to be applied. Moreover, interaction problems usually require a large amount of small time
steps to ensure computational stability.

One of the expensive parts of the FSI simulation is the deformation of the fluid mesh. The fluid
mesh has to be deformed in order to be conformal to the displaced structure. During an FSI
simulation large displacements can occur, which leads to the requirement that a very robust
mesh deformation method is needed. On the other hand, the method has to be highly efficient
since it has to be executed at every time step. Therefore the goal of this thesis project is to
design, implement and test a robust, efficient and user-friendly mesh deformation algorithm
for application to a wide variety of industrial FSI problems using unstructured polyhedral
meshes.

A literature review revealed that many mesh deformation methods have been developed al-
ready. These can be divided in three main groups: mesh-connectivity based schemes, point-
by-point schemes and hybrid schemes. However, so far none of the methods has come forward
as the best technique to be applied in FSI, as they all have their specific drawbacks. One of
the most recently developed methods did stand out thanks to its high robustness in combi-
nation with a low computational cost and complexity. This method is the inverse distance
weighting (IDW) interpolation method. IDW is an explicit interpolation technique, which
computes the interpolation function as a weighted average of the known boundary node dis-
placements. The weights are inversely proportional to the distances between the inner mesh
nodes and the boundary nodes. Thanks to its explicit nature, it does not require the solution
of a system, which is one of the main drawbacks of the robust radial basis function (RBF) in-
terpolation method. The basic IDW method has been investigated and improved with several
additions, in order to arrive at a promising mesh deformation method, which can be applied
in a commercial FSI software package.

Firstly, the effect of including the boundary node rotations has been investigated. To this
end, the displacement of each boundary node is split into a translation and rotation part.

M.Sc. Thesis Laura Uyttersprot

viii Summary

The rotation part is represented with quaternions, which are hyper-complex numbers that
represent a rotation axis and a rotation angle. Four ways to interpolate the quaternions into
the volume mesh have been identified: spherical linear interpolation (SLERP) of quaternions,
linear interpolation (LERP) of quaternions, linear interpolation of the logarithm of quater-
nions and interpolation of the displacement due to applying the rotation. Of these methods
the last one appeared to be most robust for general deformation cases. On the other hand,
LERP of quaternions is the preferred method when the deformation consists of a large rota-
tion. By including the rotations in the IDW method, the orthogonality of the deformed mesh
is greatly improved in the near boundary region.

Secondly, a new method to include sliding boundary nodes has been implemented. A sliding
boundary condition allows the nodes to slide, while remaining on the original surface. The
implemented method consists of several steps. First the nodes on the sliding edges are inter-
polated as if they were inner mesh nodes. This means that they might not have remained on
their respective edges. Therefore the nodes are moved to the closest point on their original
edge, which is called snapping. This process is then repeated for the nodes on sliding faces.
Once the new position for all sliding boundary nodes is known they become data points in
the interpolation to the volume mesh nodes. As such the sliding boundary nodes are actually
treated as a mix between inner and boundary nodes.

The adapted method is found to be faster than RBF, however, it still becomes costly for large-
scale meshes. For example, a mesh with approximately 3 million nodes, of which 130,000 are
boundary nodes, has a deformation time of 2 hours in serial mode. Therefore several efficiency
improvement methods have been investigated. Thanks to the proven efficiency of boundary
node coarsening for the RBF method, this method has been applied in this thesis. The
boundary node coarsening is done with a greedy algorithm, which starts from a small initial
set of boundary nodes and adds the node with the largest surface displacement interpolation
error to the the list of selected nodes, at each iteration. The nodes which are selected by
the greedy algorithm will become data points for the interpolation, whereas for the other
nodes the IDW interpolation error is computed. This interpolation error is corrected for by
moving the non-selected boundary nodes to their actual positions in a local secondary mesh
deformation step, which uses a nearest neighbour RBF correction. By applying boundary
node coarsening, the same test problem can be done in six minutes, while the mesh quality
is maintained at the same level after the deformation. If a small reduction in mesh quality
is acceptable, it is even possible to reduce the deformation time further to only 37 s, which
is negligible compared to the time to compute the CFD results. This means that boundary
node coarsening can reduce the computation time by a factor of nearly 200.

Finally, the IDW method is compared to the radial basis function and elastic analogy mesh
deformation (EAMD) method, for five different test problems. For all these tests the IDW
method results in a higher or equal minimum mesh quality than the other two methods.
Especially for test cases with large rotations the IDW method has proven to be superior. It
has also been shown that for several test cases, such as a rotor within a turbo-machinery
casing, sliding nodes are essential to obtain good results. Therefore, the RBF method, which
currently does not have this functionality, cannot compete with IDW in terms of mesh quality
for such problems. Moreover the IDW method also maintains a higher mesh quality in the
near-boundary mesh layers, compared to both RBF and EAMD. This is particularly important

Laura Uyttersprot M.Sc. Thesis

ix

to ensure a high accuracy CFD solution. In terms of computation time, the IDW method
(without coarsening) has also proven to be significantly more efficient than both RBF and
EAMD. When comparing the time required to evaluate the interpolation function for all the
volume mesh nodes, IDW is up to three times faster than RBF for 3D test cases. Additionally
the time to solve the RBF system at the start of the simulation, which can take hours to days,
is not present in IDW mesh deformation. Furthermore the IDW method requires significantly
less memory than RBF for which the matrix inversion quickly requires several gigabytes. Also
compared to EAMD the IDW method has proven to be at least 7 times faster for all test
problems.

In conclusion it can be stated that a versatile, robust and efficient IDW mesh deformation
method has been developed, which can easily be applied to any type of mesh, for any type of
FSI problem, with a large amount of cells and time steps.

M.Sc. Thesis Laura Uyttersprot

x Summary

Laura Uyttersprot M.Sc. Thesis

Table of Contents

Preface v

Summary vii

List of Figures xv

List of Tables xxi

Nomenclature xxiii

1 Introduction 1

1.1 Motivation . 1

1.2 Background . 2

1.3 Research Question, Aims and Objectives . 4

1.4 Mesh Quality Measures . 5

1.5 Outline . 7

2 NUMECA International Software 9

3 Mesh Deformation Algorithms 11

3.1 Mesh Connectivity Schemes . 11

3.2 Point-by-Point Schemes . 12

M.Sc. Thesis Laura Uyttersprot

xii Table of Contents

3.3 Hybrid Schemes . 13

3.4 Review of Mesh Deformation Available in FINETM/Open 14

3.4.1 Mesh Deformation with Quaternions . 14

3.4.2 Mesh Deformation with RBF . 14

3.4.3 Elastic Analogy Mesh Deformation . 16

3.5 Overview . 19

4 Test Cases 23

4.1 Rotation of 2D NACA 0012 Airfoil . 23

4.2 2D Vortex Induced Beam Vibration . 24

4.3 Elastic Flap in a Duct . 27

4.4 Rotor 67 Blade Deflection . 29

4.5 AGARD 445.6 Wing Deflection. 32

5 Inverse Distance Weighting Mesh Deformation 35

5.1 Background of Inverse Distance Weighting Interpolation 35

5.1.1 General Principle of Inverse Distance Weighting Interpolation 35

5.1.2 Inverse Distance Weighting in Mesh Deformation 36

5.2 Basic Implementation in FINETM/Open . 38

5.2.1 The Interpolation Function . 38

5.2.2 The Weighting Function . 39

5.3 Boundary Node Rotations . 43

5.3.1 Rotation Methods . 43

5.3.2 Determining the Rotation of a Boundary Node 45

5.3.3 Interpolation of Rotations to Volume Mesh 49

5.3.4 Results of Mesh Deformation with Rotations 51

5.4 Sliding Boundary Nodes . 56

5.4.1 Sliding Boundary Strategy . 56

Laura Uyttersprot M.Sc. Thesis

Table of Contents xiii

5.4.2 Sliding Boundary Results . 63

5.5 Absolute and Relative Displacements . 67

6 Efficiency Improvements 71

6.1 Efficiency Improvement Methods . 71

6.1.1 Tree-Code Optimisation . 72

6.1.2 Boundary Node Coarsening . 72

6.1.3 Local Inverse Distance Weighting . 74

6.1.4 Fast Multi-Level Evaluation . 75

6.1.5 Fast Multipole Method . 76

6.1.6 Moving Submesh Approach . 76

6.1.7 Conclusions and Recommendations . 77

6.2 Boundary Node Coarsening . 78

6.2.1 The Greedy Algorithm . 78

6.2.2 Greedy Error Functions and Stopping Criteria 80

6.2.3 Correction Step . 90

6.3 Results of IDW Mesh Deformation with Boundary Coarsening 92

6.4 Coarsening During a Time-Dependent Simulation 98

6.5 Conclusion . 100

7 Results 101

7.1 Test Case Settings . 101

7.2 Quality . 103

7.2.1 Rotation of 2D NACA 0012 Airfoil . 103

7.2.2 2D Vortex Induced Beam Vibration . 104

7.2.3 Elastic Flap in a Duct . 105

7.2.4 Rotor 67 Blade Deflection . 107

7.2.5 AGARD 445.6 Wing Deflection . 108

M.Sc. Thesis Laura Uyttersprot

xiv Table of Contents

7.2.6 Quality Overview . 109

7.3 Computational Cost . 111

7.4 Modal CFD Simulation of Vortex Induced Beam Vibration 112

7.5 Modal CFD Simulation of AGARD 445.6 Wing Deflection 115

8 Conclusions and Recommendations 117

8.1 Conclusions . 117

8.2 Recommendations . 119

Bibliography 121

A Tree Code Optimisation 127

B Coarsening Results 131

B.1 Elastic Flap . 131

B.2 Rotor 67 Coarse Mesh . 134

B.3 Rotor 67 Fine Mesh . 137

B.4 Comparison of Selection Methods for Rotor 67 140

C Simulation Settings 143

C.1 Vortex Induced Beam Vibration . 143

C.2 Elastic flap in a duct . 144

C.3 Rotor 67 Blade Deflection . 145

C.4 AGARD 445.6 Wing Deflection . 146

D IDW Mesh Deformation Flow Chart 147

Laura Uyttersprot M.Sc. Thesis

List of Figures

1.1 Schematic representation of the mesh deformation due to the deformation of the
structure [7]. 2

1.2 Computation of volume of hexadron. [50] . 5

1.3 The left cell is concave because the volume of the tetrahedron abcd is negative.
The right cell is convex. [50] . 5

1.4 Twisted cell. [50] . 6

3.1 Definition of the weighting coefficient φ based on the Laplacian solution [44]. . . 17

3.2 Local basis created on the isometric lines of the weighting coefficient [44]. 18

3.3 Overview of existing mesh deformation methods. 20

3.4 Most common mesh deformation methods ordered based on robustness and efficiency. 20

4.1 Undeformed mesh for the NACA 0012 test case. 24

4.2 Set up of the vortex induced beam vibration test case [19] (dimensions are in
centimetres). 25

4.3 Deformation of the vortex induced beam vibration test case. 26

4.4 Mesh for the vortex induced beam vibration test case. 26

4.5 Elastic flap test case (dimensions in cm). 28

4.6 Deformation of the flap. 28

4.7 Initial mesh of the elastic flap test case. 28

4.8 Geometry of rotor 67. 30

4.9 Initial mesh of the rotor 67 test case. 30

M.Sc. Thesis Laura Uyttersprot

xvi List of Figures

4.10 Deformed shape of the rotor 67 blade. 31

4.11 Cut through the mesh, showing the small gap between the blade and the shroud. 31

4.12 Dimensions of the AGARD 445.6 wing test case (meters). 32

4.13 Mesh of the AGARD 445.6 wing test case. 33

4.14 Deformation of the AGARD 445.6 wing. 34

5.1 Initial 2D mesh of the test case. 40

5.2 The influence of the different parameters. 42

5.3 Three steps to find the rotation of a boundary face. 47

5.4 Difference between LERP and SLERP. a) The angle v is interpolated in three steps.
b) LERP: the secant is divided in equal pieces, resulting in small angles at the sides
and large angles in the middle. c) SLERP: interpolation with equal angles. [12] . 49

5.5 Uncertainty of SLERP for interpolation of multiple quaternions. [42]. 50

5.6 View of the mesh of NACA 0012 airfoil after 90◦ rotation. 52

5.7 Detailed view of the mesh of NACA 0012 airfoil after 90◦ rotation. 53

5.8 Detailed view of the mesh of the vortex induced beam vibration test case after
deformation. 54

5.9 Comparison of the different methods for the interpolation between a 0◦ and 90◦

rotation . 54

5.10 Comparison of orthogonality for the four rotation interpolation methods. 55

5.11 Comparison of skewness for the four rotation interpolation methods. 55

5.12 Comparison of CPU time for the four rotation interpolation methods. 55

5.13 Schematic overview of sliding boundary strategy 58

5.14 Domain definition of rotor 67 test cases before and after the introduction of topo-
logical sliding face groups. 59

5.15 Domain definition of the elastic flap test case before and after the introduction of
topological sliding face groups. 59

5.16 Poor quality mes, resulting from improper treatment of sliding boundary. 61

5.17 Schematic example of a poor quality mesh deformation when choosing the sliding
boundary condition for the whole outer boundary. 62

5.18 View of the shroud of rotor 67. 64

Laura Uyttersprot M.Sc. Thesis

List of Figures xvii

5.19 Cutting plane through the blade, showing the small gap between the rotor blade
and the shroud. 65

5.20 Horizontal cutting plane through the middle of the channel, showing the gap be-
tween the flap and the channel wall. 66

5.21 3D view of the deformed elastic flap mesh. 67

5.22 Comparison of the minimum orthogonality reached with absolute and relative dis-
placements for the beam vibration test case. 68

5.23 Comparison of the minimum orthogonality during an oscillating motion of the
vortex beam when using absolute and relative displacements. 68

6.1 Maximum relative error with respect to the number of active boundary nodes for
the different greedy criteria for the coarse mesh AGARD 445.6 test case. 82

6.2 Maximum relative error with respect to the number of active boundary nodes for
the different greedy criteria for the fine mesh AGARD 445.6 test case. 83

6.3 Comparison of the selected nodes for the coarse AGARD 445.6 test case between
the different greedy criteria (top = wing, bottom = exterior boundary). 84

6.4 Comparison of the selected nodes for the fine AGARD 445.6 test case between the
different greedy criteria (top = wing, bottom = exterior boundary). 85

6.5 Comparison of the absolute errors of the different greedy criteria for the coarse
mesh AGARD 445.6 test case. 89

6.6 Comparison of the absolute errors of the different greedy criteria for the fine mesh
AGARD 445.6 test case. 89

6.7 Comparison between the different options to correct for the boundary displacement
error due to coarsening. 90

6.8 Comparison of the selected nodes for the coarse AGARD 445.6 test case for selec-
tion method 1 and 4, when the greedy iteration is stopped as soon as 1% of the
boundary nodes are selected (top = wing, bottom = exterior boundary). 95

6.9 Comparison of the selected nodes for the fine AGARD 445.6 test case for selection
method 1 and 4, when the greedy iteration is stopped as soon as 1% of the
boundary nodes are selected (top = wing, bottom = exterior boundary). 96

6.10 Coarsening and total deformation time for 9 deformation steps with growing am-
plitude for the AGARD 445.6 fine mesh test case. 99

6.11 Coarsening and total deformation time for 9 deformation steps with decreasing
amplitude for the AGARD 445.6 fine mesh test case. 99

7.1 Zoom of the NACA 0012 mesh after deformation. 102

7.2 Mesh of the NACA 0012 test case after deformation. 103

M.Sc. Thesis Laura Uyttersprot

xviii List of Figures

7.3 Deformed mesh of the vortex vibration test case. 105

7.4 Vertical cut through the tip of the deformed elastic flap. 106

7.5 Horizontal cut through the middle of the deformed elastic flap. 106

7.6 Cut through the blade tip of deformed rotor 67 mesh. 107

7.7 Location of negative cells in the deformed rotor 67 mesh. 108

7.8 Negative cells (white) in the AGARD 445.6 EAMD deformed mesh. 108

7.9 Quality comparison of the mesh deformation methods. 110

7.10 Tip displacement comparison for IDW and RBF mesh deformation in the vortex
induced beam vibration test case. 113

7.11 Total pressure during the vortex induced beam vibration simulation at time = 9.7 s. 114

7.12 Deflection of the wing tip trailing edge during the unsteady, coarse mesh AGARD
445.6 simulation . 115

A.1 Example of kd-tree [66] . 128

A.2 Illustration of QP computation [38] . 129

A.3 KD-tree optimisation software architecture [38] 130

B.1 Comparison of the absolute errors of the different greedy criteria for the elastic flap
test case. 131

B.2 Maximum relative error with respect to the number of active boundary nodes for
the different greedy criteria for the elastic flap test case. 132

B.3 Comparison of the selected nodes for the elastic flap test case between the different
greedy criteria (top = flap, bottom = channel). 133

B.4 Comparison of the absolute errors of the different greedy criteria for the coarse
mesh rotor 67 test case. 134

B.5 Maximum relative error with respect to the number of active boundary nodes for
the different greedy criteria for the coarse mesh rotor 67 test case. 135

B.6 Comparison of the selected nodes for the coarse mesh rotor 67 test case between
the different greedy criteria (top = blade, bottom = exterior boundary). 136

B.7 Comparison of the absolute errors of the different greedy criteria for the fine mesh
rotor 67 test case. 137

B.8 Maximum relative error with respect to the number of active boundary nodes for
the different greedy criteria for the fine mesh rotor 67 test case. 138

Laura Uyttersprot M.Sc. Thesis

List of Figures xix

B.9 Comparison of the selected nodes for the fine mesh rotor 67 test case between the
different greedy criteria (top = blade, bottom = exterior boundary). 139

B.10 Comparison of the selected nodes for the coarse rotor 67 test case for selection
method 1 and 4, when the greedy iteration is stopped as soon as 10% of the
boundary nodes are selected (top = blade, bottom = exterior boundary). 140

B.11 Comparison of the selected nodes for the fine rotor 67 test case for selection method
1 and 4, when the greedy iteration is stopped as soon as 10% of the boundary
nodes are selected (top = blade, bottom = exterior boundary). 141

C.1 Imposed perturbation [15]. 146

M.Sc. Thesis Laura Uyttersprot

xx List of Figures

Laura Uyttersprot M.Sc. Thesis

List of Tables

4.1 Number of nodes: NACA 0012. 23

4.2 Number of nodes: Vortex induced beam vibration. 25

4.3 Number of nodes: Elastic flap. 27

4.4 Number of nodes: Rotor 67. 29

4.5 Number of nodes: AGARD 445.6. 32

6.1 Error criteria for greedy method . 88

6.2 Efficiency and quality of the different coarsening criteria for the coarse mesh
AGARD test case. 92

6.3 Efficiency and quality of the different coarsening criteria for the fine mesh AGARD
test case. 92

6.4 Efficiency and quality of the different coarsening criteria for the coarse mesh rotor
67 test case. 93

6.5 Efficiency and quality of the different coarsening criteria for the fine mesh rotor 67
test case. 93

6.6 Efficiency and quality of the different coarsening criteria for the elastic flap test case. 93

6.7 Comparison between selection method 1 and 4 when selecting 1% of the total
amount of boundary nodes for the coarse and fine mesh AGARD 445.6 test case. 96

6.8 Comparison between selection method 1 and 4 when selecting 10% of the total
amount of boundary nodes for the coarse and fine mesh rotor 67 test case. . . . 97

7.1 Settings for the IDW tests. 102

7.2 Settings for the EAMD tests. 102

7.3 Time measurement comparison for RBF, EAMD and IDW. 112

M.Sc. Thesis Laura Uyttersprot

xxii List of Tables

C.1 CFD simulation settings of the vortex induced beam vibration test case 143

C.2 CSD simulation settings of the vortex induced beam vibration test case 143

C.3 CFD simulation settings of the elastic flap test case 144

C.4 CSM simulation settings of the elastic flap test case 144

C.5 CFD simulation settings of the rotor 67 test case 145

C.6 CSM simulation settings of the elastic flap test case 145

C.7 CFD simulation settings of the AGARD 445.6 test case 146

Laura Uyttersprot M.Sc. Thesis

Nomenclature

Greek Symbols

ν Poisson’s ratio

ε Strain tensor

σ Stress tensor

ΓI Boundary between fluid and structure domain

λ First Lamé constant

µ Second Lamé constant or shear modulus

Ω Computational domain

ΦAR Aspect ratio quality metric of a mesh cell

Φortho Orthogonality quality metric of a mesh cell

Φskew Equi-angular skewness quality metric of a mesh cell

Latin Symbols

nb Number of boundary mesh nodes

ni Number of inner mesh nodes

u Displacement vector

n Normal vector

E Young’s modulus or elastic modulus

p Pressure

Abbreviations

ALE Arbitrary Lagrangian-Eulerian

CFD Computational Fluid Dynamics

CSM Computational Structure Mechanics

M.Sc. Thesis Laura Uyttersprot

xxiv Nomenclature

DGM Delaunay Graph Mapping

EAMD Elastic Analogy Mesh Deformation

FMLE Fast Multi-Level Evaluation

FMM Fast Multipole Method

FSI Fluid-Structure Interaction

IDW Inverse Distance Weighting

LERP Linear IntERPolation

MpCCI Mesh-based Parallel Code Coupling Interface

MSA Moving Submesh Approach

QP Quad points, i.e. four pseudo nodes

RBF Radial Basis Function

SLERP Spherical Linear Interpolation

TPS Thin Plate Spline

Laura Uyttersprot M.Sc. Thesis

Chapter 1

Introduction

1.1 Motivation

Fluid-structure interaction (FSI) is a multidisciplinary field that comprises all phenomena
where a flow and a structure interact with each other. The computational modelling of
such phenomena is currently gaining importance due to engineering design trends towards
lighter and more flexible structures. Examples of this can be found in modern wind turbine
[67], aircraft [21] and bridge designs [22]. Furthermore also medical research requires mod-
elling of fluid-structure interaction phenoma such as arterial blood flows [5]. Simulations of
fluid-structure phenomena are important because they can predict the potentially dangerous
instability of coupled systems. Furthermore simulations allow to predict the performance of
designs in their deformed shapes.

Thanks to the significant increase of computation power over the past couple of decades,
complex fluid-structure interaction simulations have now become feasible. Computational
fluid-structure interaction combines computational fluid dynamics (CFD) and computational
structure mechanics (CSM) by means of an interaction interface where the forces and dis-
placements are coupled. The dynamics of the flow results into forces on the structure, which
causes the structure to move or deform. This displacement of the structure in turn causes
the fluid domain to move. Besides the coupling of the two solvers another concern in FSI is
the deformation of the fluid mesh to conform to the deformation of the flexible structure as
illustrated in figure 1.1. In some cases the structure is so flexible that very large deforma-
tions can occur. Therefore an automatic mesh deformation algorithm that can handle large
deformations is a must. The development of such a mesh deformation algorithm is the main
topic of this research project.

The current research project takes place in a collaboration framework between the Faculty of
Aerospace Engineering at the Delft University of Technology and the CFD software developer
NUMECA International. NUMECA International has developed an FSI software package,

M.Sc. Thesis Laura Uyttersprot

2 Introduction

Figure 1.1: Schematic representation of the mesh deformation due to the deformation of the
structure [7].

together with Open Engineering. The software package combines NUMECA International’s
CFD solver FINETM/Open [47] with Open Engineering’s CSM solver Oofelie [51] and is
therefore called FINETM/FSI-OOFELIE. The main goal of the current project is to design,
implement and test a mesh deformation method within the context of this software package.
The meshes in the fluid domain are unstructured hexahedral meshes generated with NUMECA
International’s mesh generator HEXPRESSTM [48].

1.2 Background

This section provides the reader with a general background of computational fluid-structure
interaction. Several of the main issues in fluid-structure interaction, such as temporal and
spatial coupling and mesh deformation, are discussed here.

In general an FSI problem can be divided in a fluid domain Ωf , a structure domain Ωs and a
boundary ΓI which forms an interface between the two domains. At this interface the forces
and displacements should match, which can be expressed by the kinematic and a dynamic
boundary conditions

uf = us on ΓI , (1.1)

psns = pfnf on ΓI , (1.2)

where the subscripts f and s denote the fluid and the structure respectively, u is the dis-
placement vector, p is the pressure and n is the outward pointing normal.

When simulating an FSI problem there are two main options. The first option is to develop
a dedicated solver which solves the fluid and structure problem in one monolithic framework.

Laura Uyttersprot M.Sc. Thesis

1.2 Background 3

The second is to make use of separate fluid and structure solvers which are coupled via
a coupling shell. Due to the fact that monolithic solvers are problem specific, not much
research has been dedicated to this subject. On the other hand many dedicated CFD and
CSM solvers have been developed, which can be used as part of partitioned FSI solvers. One
of the main difficulties with partitioned solvers is the temporal coupling. If the temporal
coupling is not done properly the accuracy of the simulation will decrease significantly.

Temporal coupling can either be done with a loosely coupled or a strongly coupled algorithm.
In a loosely coupled scheme the solution of the flow and the structure is computed only once
per time step. Such a scheme introduces a partitioning error due to the time lag between
the two solvers. In strongly coupled schemes sub-iterations are used for each time step such
that the flow and structure boundary conditions are converging before going to the next time
step. For FSI problems where the structure deforms significantly, strongly coupled schemes
are advised.

Besides temporal coupling between the solvers, also spatial coupling is needed. The forces have
to be transferred from the fluid to the structure and the displacements have to be transferred
from the structure to the fluid. This would be an easy task if the fluid and structure mesh
would match up at the boundary. However this is usually not the case as the flow simulation
requires a much finer mesh than the structure simulation. Therefore interpolation methods
have to be used to transfer the variables across the boundaries. Several transfer algorithms
are described in the work of de Boer [13].

Fluid equations are usually discretised using the Eulerian framework, meaning that the fluid
particles are moving through the mesh and the equations are expressed in spatial coordinates.
The structure on the other hand is usually discretised using the Lagrangian framework where
the mesh is fixed to the material points and hence material coordinates are used. In fluid-
structure interaction the domain of the fluid changes due to the deformation of the structure.
Therefore it is inconvenient to have a fixed fluid mesh. This is solved by using the Arbitrary
Lagrangian-Eulerian (ALE) formulation [16], which can also be referred to as the dynamic
mesh formulation. In the ALE formulation the fluid mesh moves according to the bound-
ary change, therefore it is neither Eulerian (fixed) nor Lagrangian (moving with material
particles), but somewhere in between.

Due to the use of the ALE method, the fluid mesh has to move conforming to the displacement
of the structure. One might first think that the mesh generator can be used at each time
step to generate a new mesh. However this is a complex, time consuming task which also
leads to interpolation errors from the old to the new mesh [28]. The second option is to
deform the mesh based on structural analogies or interpolation methods. A drawback of mesh
deformation is that usually the mesh quality deteriorates in time, which affects the accuracy
of the simulation. Furthermore the fact that the mesh deformation has to be executed at
each time step requires high efficiency.

M.Sc. Thesis Laura Uyttersprot

4 Introduction

1.3 Research Question, Aims and Objectives

This section gives a detailed overwiew of the direction and goals of the research project. First,
the main research question in this project can be stated as

Which mesh deformation method is the optimal choice in terms of robustness,
efficiency and user-friendliness for implementation in commercial FSI software
applied to a wide variety of problems using unstructured polyhedral meshes?

The goal of the project is to implement a mesh deformation module into the commercial FSI
software FINETM/FSI-Oofelie, developed by a cooperation between NUMECA International
and Open-Engineering. This mesh deformation method has to fulfil four main requirements,
in order of importance:

• The mesh deformation method has to be robust. This means that the quality of the
mesh has to remain as high as possible after several consecutive deformations. Even for
very large deformations the mesh deformation should generate meshes that are valid,
i.e. no negative cells are present. This is very important because the simulation has to
be aborted in case negative cells are present. Furthermore the quality of the mesh is
important to maintain the computational accuracy of the simulation [68].

• The mesh deformation method has to be efficient. Due to the fact that the mesh defor-
mation has to be executed at each time step of the simulation, it is important that the
computational cost remains low. Especially in the case of very large industrial meshes,
containing millions of cells, the cost of mesh deformation can become prohibitively
high. Therefore the method should scale well for large meshes and has to be applicable
in parallel simulations.

• The mesh deformation method has to be user-friendly. This requirement is important
because the method is implemented in commercial software. The customers have to be
able to use the mesh deformation module without much difficulty or user input. For
example the use of complex input parameters that need tweaking should be avoided.

• The implementation of the mesh deformation method should be as simple and concise as
possible. This is particularly important for commercial software, because the software is
under continuous development by a large team of people. Therefore a simple implemen-
tation will limit code maintenance and debugging cost. This requirement is however
inferior to the previous requirements, as a complex robust method will be preferred over
a simple method which cannot do large deformations. However the complexity of the
method can drive the decision between two methods that otherwise perform equally
well.

Laura Uyttersprot M.Sc. Thesis

1.4 Mesh Quality Measures 5

Figure 1.2: Computation of volume of hexadron. [50]

bb

c

d

b

c

d

Figure 1.3: The left cell is concave because the volume of the tetrahedron abcd is negative. The
right cell is convex. [50]

1.4 Mesh Quality Measures

The properties of the mesh have an important influence on the accuracy of the solution. In
order to assess whether the quality of the mesh after a deformation is sufficient there is a need
for mesh quality measures. Ultimately, one would assess the quality of the mesh by computing
the error in the solution. However this would be time consuming and also requires knowledge
of the exact solution, which is often not at hand. Therefore mesh quality measures, that are
based on the geometric properties of the mesh, have been introduced in HEXPRESSTM [50].

The minimum quality requirement for any mesh is that no inverted cells should be present.
A cell is inverted when the signed volume is negative, therefore inverted cells are also called
negative cells. The volume of a hexahedron is computed by splitting it up into 24 tetrahedra
as illustrated in figure 1.2. The equation for the signed volume Vhexa is then given by

Vhexa =

∑6
1

∑4
1[−a · (b× c)]

6
(1.3)

A second form of a degenerate cell is the concave cell, as shown in the left of figure 1.3. To
check whether a cell is concave, a tetrahedron is constructed for each vertex as illustrated for
vertex a in figure 1.3. If at least one of these tetrahedra has a negative volume, the cell is
concave.

The last form of a degenerate cell is a twisted cell. This is a cell where a face is rotated in its

M.Sc. Thesis Laura Uyttersprot

6 Introduction

Figure 1.4: Twisted cell. [50]

own plane by an angle of 180◦ or more. This can be further explained by means of figure 1.4
where either the red or the blue tetrahedron has a negative volume.

The occurrence of degenerate cells should always be avoided when possible. In case negative
cells are generated the simulation is automatically stopped. For twisted or concave cells the
simulation will continue, however their occurrence might still cause stability or robustness
issues for the solver. Furthermore concave and twisted cells can result into negative cells after
cell subdivision, for example during refinement of the mesh.

Besides the occurrence of degenerate cells the quality of the mesh can also be assessed with
metrics that result in a value ranging from good to bad. The first mesh quality metric is
orthogonality. The cell orthogonality is computed by means of the angle between three vectors.
These three vectors connect the centres of opposite faces of the cell. After normalisation of
these vectors, for each vector the angle between the vector and the plane formed by the other
two vectors is computed as

Γijk =
π

2
− cos−1 (hi · (hj × hk)) . (1.4)

The orthogonality metric Φortho is then computed by taking the minimum value of these
angles in degrees

Φortho = min

(
Γijk

180

π

)
. (1.5)

It can be seen that an orthogonality measure of 90◦ indicates a perfectly orthogonal cell,
whereas a value equal to or below 0◦ means the cell is degenerate. In general it is advised
that the minimum orthogonality should be higher than 5◦ [49].

A second important metric is the equi-angular skewness of a cell. This is calculated by
computing the 12 dihedral angles θ corresponding to the 12 edges of a cell. After finding
the maximum θmax and minimum θmin dihedral angles of the cell, the equi-angular skewness
Φskew of the cell can be computed as follows

Φskew = max

(
θmax − 90

90
,
90− θmin

90

)
(1.6)

A skewness of 0 indicates a perfect cell, and 1 indicates that the cell is degenerate.

Laura Uyttersprot M.Sc. Thesis

1.5 Outline 7

The last mesh quality metric discussed in this section is the aspect ratio criterion. The aspect
ratio of a hexahedral cell is given by the ratio of longest to the shortest edge.

ΦAR =
hmax
hmin

(1.7)

Usually a mesh will have large aspect ratio in viscous boundary layers, and low aspect ratio
cells in the far field.

1.5 Outline

The outline of the remainder of this thesis report is as follows. First, chapter 2 gives a brief
overview of the software in which the mesh deformation method is implemented. Next chapter
3 gives an overview of the current state of the art mesh deformation methods. In chapter 4,
the test cases that are used throughout the thesis, are presented. The implemented inverse
distance weighting (IDW) mesh deformation method is introduced with great detail in chapter
5. This is followed in chapter 6 by a presentation of possible efficiency improvements, of which
one, the boundary coarsening method, is implemented and explained in further detail. Finally,
the performance of the implemented IDW mesh deformation method is compared to the radial
basis funcation (RBF) and elastic analogy mesh deformation (EAMD) method in chapter 7,
by means of five different test cases. The thesis is concluded by several recommendations and
conclusions in chapter 8.

M.Sc. Thesis Laura Uyttersprot

8 Introduction

Laura Uyttersprot M.Sc. Thesis

Chapter 2

NUMECA International Software

In this project a mesh deformation method will be designed specifically for the CFD software
FINETM/Open from NUMECA International. FINETM/Open is NUMECA’s CFD Flow
INtegrated Environment for complex external and internal flows. This software package is
composed of three separate systems [47]

• HEXPRESSTM,

• FINETM/Open flow solver,

• CFViewTM.

The first system, HEXPRESSTM, is the mesh generator [48]. The generated meshes are
unstructured and fully hexahedral, i.e. no prisms, tetrahedra or pyramids are present.
HEXPRESSTM meshes are generated in five main steps

• Initial mesh

• Adapt to geometry

• Snap to geometry

• Optimize

• Viscous layers

The first step generates an initial mesh with all perfectly orthogonal cells. This mesh is then
adapted to match the characteristic geometry lengths by means of refinement. The snapping
phase projects the mesh on the geometry and recovers lower dimensional features. Then the
mesh is optimised by means of smoothing algorithms. Finally viscous layers are inserted along
the solid boundaries when necessary. [49]

M.Sc. Thesis Laura Uyttersprot

10 NUMECA International Software

The second system, FINETM/Open flow solver, is the core of the software. It is responsible
for all aspects of the flow simulation. The solver is designed to be able to handle a wide range
of simulation cases, both with external and internal flow. It can handle all types of fluids
(incompressible, low-compressible, condensible and fully compressible) and speed regimes (low
speed to hypersonic). The solver uses the finite volume discretisation of the equations and is
capable of doing multigrid and parallel computations to accelerate the process. [47]

The FINETM/Open flow solver has two integrated coupling modules that allow for fluid-
structure interaction. The first module is FINETM/FSI-OOFELIE. It is a fully integrated
solution for strongly coupled fluid-structure interaction simulations. As the name indicates
it combines FINETM/Open with the CSM software Oofelie, developed by Open Engineering.
The communication between the two solvers is done with the Message Passing Interface
(MPI) protocol. The temporal coupling scheme between the two solvers is a strongly coupled
staggered approach. Hence at each time step several iterations are done until synchronisation
between the two solutions is obtained. [46]

The second coupling module is the mesh-based parallel code coupling interface (MpCCI). This
is an interface to perform multi-physics simulations, developed by the Fraunhofer Institute
(SCAI). The interface consists of a server that can couple two or more solvers such as a
CSM and a CFD solver. The MpCCI allows for several global and cell face values to be
communicated between the solvers. In the case of FSI, MpCCI would be used to pass the
displacement of the structure to the fluid and the pressure of the fluid to the structure. Note
that MpCCI can only be used for loosely coupled systems as no sub-iterations are present.
[46]

The last system, CFViewTM, is a graphical user interface that allows to visualise all the
results.

Laura Uyttersprot M.Sc. Thesis

Chapter 3

Mesh Deformation Algorithms

The interaction between fluids and moving structures has been a topic of research for many
years. Furthermore mesh deformation methods are also applied extensively in aerodynamic
shape optimisation. As such many mesh deformation methods have been designed and inves-
tigated in the past. This chapter aims to provide a brief overview of these mesh deformations
methods. The first three sections describe three different groups of mesh deformation al-
gorithms: mesh connectivity, point-by-point and hybrid. Next, in section 3.4 an overview
is given of the mesh deformation methods that are already available in the FINETM/Open
software. Finally, section 3.5 gives a synthesis of the described methods.

3.1 Mesh Connectivity Schemes

In mesh connectivity based schemes the mesh topology is needed to move cells based on the
displacement of its neighbouring cells. These methods are usually based on some physical
analogy, such as elasticity or diffusion. The most popular of the connectivity based schemes
is the spring analogy [4], where the mesh is represented by a network of springs, whose
spring stiffness is related to some geometric quantity such as the length of the edge. The
basic spring analogy scheme cannot prevent negative cells due to edge cross-overs. Therefore
several improvements, such as the torsional [17], semi-torsional [8][73], ball-vertex [9] and
ortho-semi-torsional [40] spring analogy method have been introduced. All these methods
significantly increase the robustness of the spring analogy method, but usually also introduce
an extra computational cost.

Another structural analogy scheme is based on elasticity, and models the mesh as a linear
elastic solid [39]. The main challenge when using the elastic analogy is how to model the
elastic properties of the mesh. Several criteria can be used to stiffen the cells that are most
prone to inversion. These criteria can be geometry [28], distance [11], distortion [3] or strain
field [26] based. The elastic analogy is significantly more robust than the basic spring analogy,

M.Sc. Thesis Laura Uyttersprot

12 Mesh Deformation Algorithms

but also introduces an extra computational overhead.

The last group of mesh connectivity based schemes are elliptic smoothing techniques, which
model the mesh deformation system as a diffusion problem. Here the Laplacian equation is the
most used smoother [36]. Similar to the the elastic and spring analogy, a variable diffusion
coefficient is necessary to increase the robustness of the method. However, even with this
variable diffusivity, the Laplace equation is often only able to handle small deformations and
does not maintain an orthogonal mesh. Helenbrook [25] provided a solution to this problem
by using the biharmonic operator which allows to impose a second set of boundary conditions,
such that the near-boundary cell quality is maintained. However, the biharmonic operator is
also significantly more expensive than the Laplacian equation.

In order to increase the quality of the meshes that are deformed with structural analogy
schemes, Samareh [58] introduced the use of quaternion algebra. These quaternions are used
to represent the rotations of the boundary. Just like the displacement vectors, the quaternions
can be interpolated through the mesh by means of mesh connectivity schemes such as the
spring analogy or the Laplacian method. Finally the position of the mesh nodes can be
updated by combining the influence of the rotation and translation component. The usage of
quaternions increases the orthogonality compared to the original spring analogy method [58].

A disadvantage of all mesh connectivity based methods, is that for different mesh topologies,
the implementation will be different. Also irregularities, such as hanging nodes, where only
one of the neighbouring elements is subdivided, require special treatment. Furthermore mesh
connectivity based methods often involve solving a system of partial differential equations
with computational techniques such as finite elements or finite volumes and are therefore
usually quite expensive. Due to the connectivity information involved in the scheme, it is
often not straightforward to implement them in parallel. Alternatively the efficiency can be
increased with a multigrid approach [71], which introduces extra complexity. Moreover non-
linear terms can cause slow convergence, resulting in a large amount of iterations. Structural
analogies also often lead to stiff matrix systems, especially in the case of viscous meshes with
high aspect ratio cells. This means that only small displacements can be treated, or larger
displacements have to be divided in smaller sub-displacements. As such structural analogy
methods are usually not ideal for viscous flow FSI simulations.

3.2 Point-by-Point Schemes

Point-by-point schemes typically solve the mesh deformation problem by interpolating the
displacement of the boundary nodes to the volume nodes. Usually these schemes do not
require any connectivity information. This has the advantage that arbitrary mesh types
with hanging nodes can be treated in a uniform way. Additionally point-by-point schemes
can easily be implemented in parallel. One of the most popular point-by-point schemes is
based on radial basis function (RBF) interpolation as introduced by de Boer et al [14]. This
method uses the displacement of the boundary nodes to construct an interpolation function
that is a sum of radial basis functions. One of the advantages of the RBF method is that

Laura Uyttersprot M.Sc. Thesis

3.3 Hybrid Schemes 13

it can handle large deformations, with sufficient quality. Furthermore its implementation
is straightforward and easily done in parallel. Also the method does not require different
coefficients for different test cases, such as is often the cases with structural analogy methods.
Despite all the advantages, the RBF in its most basic form is not applicable to large industrial
FSI cases, because the cost of solving the system scales with O(n3

b), and of the evaluation
scales with O(nbni), where ni is the number of inner mesh nodes and nb is the number of
boundary nodes. Rendall and Allen [54] proposed to use a greedy algorithm in order to select
a reduced set of surface nodes, while minimising the surface error. This method showed
good results, both in terms of efficiency and robustness. However an unwanted surface error
is introduced at the unused boundary nodes. This was resolved by adding a very efficient
correction step based on a simple decaying nearest neighbour interpolation [55].

Witteveen [70] showed that Inverse Distance Weighting (IDW) interpolation can be used
instead of RBF interpolation to deform the mesh. Thanks to the fact that IDW is an explicit
interpolation technique, it does not require the expensive matrix inversion to solve the system.
As such, the IDW technique can be significantly faster that RBF, with only a moderate
reduction in robustness. However the cost of the evaluation (just like for RBF) scales with
O(nbni) and therefore the method becomes expensive for large 3D cases. To resolve this issue
Luke et al [38] introduced an efficient kd-tree optimisation which uses approximations for the
far-field nodes.

Another point-by-point scheme is the Delaunay Graph Mapping (DGM) method as introduced
by Liu et al [33]. In this method the Delaunay graph of the boundary nodes is used in
order to interpolate the boundary displacement to the volume mesh by means of barycentric
coordinates. The DGM method has proven to be very efficient compared to many other mesh
deformation schemes, such as the spring analogy method. However, it does not maintain
orthogonality in case of rotations, and larger displacements might have to be split into smaller
sub-displacements.

Allen [1] introduced a surface influence technique, where each node is updated based on the
deformation of the nearest nodes on both the moving and the far-field surface. Several other
novel point-by-point schemes can be found in the literature. These include barycentric coor-
dinate interpolation [64], disk-relaxation [74] and neural networks [62]. These novel methods
will not be discussed further here, as they are still in the earlier stages of their development.

3.3 Hybrid Schemes

Recent mesh deformation research often proposes the use of hybrid mesh deformation strate-
gies. These hybrid methods apply more than one mesh deformation strategy to deform the
mesh. The reason to apply more than one technique is that each technique can be applied
based on its own strengths to appropriate problems. Often a robust, but expensive, mesh
deformation method is combined with a less robust but efficient method. One example is
to apply a robust method to a coarse level grid and to interpolate this deformation to the
fine grid with a cheaper method, as done in the moving submesh approach of Lefrançois [32].

M.Sc. Thesis Laura Uyttersprot

14 Mesh Deformation Algorithms

Another approach is to introduce several deformation steps as in Martineau’s and Georgala’s
[41] predictor-corrector scheme. The first step is a fast rigid body initialisation, followed by a
more robust structural analogy scheme in the second step. Hybrid approaches have also been
proven to be efficient in moving viscous meshes, by adapting a different method to the viscous
layers than to the rest of the mesh. The method for the viscous layers makes specific use of
the high aspect ratio characteristic of these cells [29][43]. Finally also the surface correction,
when applying boundary node coarsening in RBF mesh deformation, can be seen as a hybrid
method. For example Kowollik [31] proposed to use the DGM method for the correction step.

3.4 Review of Mesh Deformation Available in FINETM/Open

Two different mesh deformation methods are already present in NUMECA’s CFD software
FINETM/Open, namely the quaternion method and the radial basis function interpolation
method. Furthermore, the implementation of the elastic analogy mesh deformation (EAMD)
has started, however the development has not been finalised yet due to limited performance
so far. The three methods are explained in more detail in the following sections.

3.4.1 Mesh Deformation with Quaternions

The implementation of the quaternion method is based on the quaternion method of Samereh
[58] as described in section 3.1. This means that the deformation is split up in a rotation and
translation component and then interpolated through the mesh. The interpolation into the
mesh is done with the Laplacian smoothing method. In order to increase the efficiency of this
method, the rigid body initialisation of Martineau and Georgala [41] as described in section
3.3 was added as an initial guess for the mesh node positions. This method performs well for
small deformation cases, however in case of large deformations the method fails, especially
when viscous layers are present. For further details of the combined method the reader is
referred to [30].

3.4.2 Mesh Deformation with RBF

Deformation with RBF is the default deformation module in FINETM/Open. The imple-
mented method is based on the work of de Boer [14]. RBF mesh deformation uses the
displacement of the boundaries to construct an interpolation function u(x) that is a sum of
radial basis functions

u(x) =

nb∑
b=1

αbφ(‖x− xb‖) + p(x), (3.1)

where xb are the boundary nodes in which the displacement is known, p is a polynomial, nb
is the number of boundary nodes, αb are coefficients and φ is a basis function with respect to

Laura Uyttersprot M.Sc. Thesis

3.4 Review of Mesh Deformation Available in FINETM/Open 15

the Euclidean distance ‖·‖. The coefficients αb and the polynomial have to be chosen in such
a way that the known displacements at the boundary nodes are interpolated exactly

u(xb) = ub, (3.2)

where ub are the known displacements at the boundary in one specific direction, because each
direction (x, y, z) is interpolated separately. Furthermore there is the additional requirement
for the coefficients αb that

nb∑
b=1

αbq(xb) = 0, (3.3)

where q can be any polynomial with a degree less or equal than the degree of polynomial p.
In order to find the coefficients αb and the linear polynomial, equations 3.2 and 3.3 can be
transformed into the following matrix system[

ub
0

]
=

[
M b,b P b

P T
b 0

] [
α
β

]
, (3.4)

where α contains the coefficients αb, β contains the coefficients of the linear polynomial p,
M b,b is the nb × nb interpolation matrix given by

Mjk = φ(‖xj − xk‖), (3.5)

and P b is a matrix which is determined by the choice of polynomial. In the case of a first
degree polynomial, P b is given by an nb × 4 matrix

P b =


1 x1 y1 z1

1 x2 y2 z2
...

...
...

...
1 xnb

ynb
znb

 . (3.6)

Finally the displacement values of the internal grid points ui at location xi can be found by
applying the interpolation function

ui = u(xi), (3.7)

for each spatial direction separately.

Note that the size of the system in equation 3.4 is (nb + 4) × (nb + 4). This is a lot smaller
than the size of the systems that have to be solved in mesh connectivity schemes, which is
approximately ni × ni. However, in mesh connectivity schemes the matrix system is usually
sparse, such that it can be solved iteratively. The RBF system on the other is a dense system,
which requires a direct matrix inversion or more complicated solvers.

Several RBFs could be used for mesh deformation. In FINETM/Open, the user can choose
between two radial basis functions, namely the thin plate spline (TPS) with global support
or the Wendland function with compact support (radius defined by the user). The user also
has the option to turn on boundary node coarsening by using the multigrid levels that are

M.Sc. Thesis Laura Uyttersprot

16 Mesh Deformation Algorithms

used by the CFD solver. The user decides which multigrid level should be used for boundary
node coarsening. A drawback of using a coarse grid is that the displacement at the boundary
is not exact, and no correction has been included.

Finally to increase the robustness for specific cases it is possible to set an outer boundary as
floating. This means that all the nodes on this boundary will be considered as inner nodes,
such that they can move. The downside of floating nodes is that there is no guarantee that
they will remain on the boundary face.

3.4.3 Elastic Analogy Mesh Deformation

The elastic analogy mesh deformation (EAMD) method implemented in FINETM/Open is
largely based on the work of Denayer [44]. This method is a variation on the standard
elastic analogy, using an orthotropic basis transformation. In this section first the basic
elastic analogy method is explained, followed by a description of the specific method used in
FINETM/Open .

In the elastic analogy method, the displacement field of the mesh is determined by the equi-
librium equation for elasticity

∇ · σ = 0 on Ω, (3.8)

where σ is the stress tensor and Ω is the computational domain. For an isotropic material
the constitutive linear elastic relation between stress and strain may be written

σ = λTr(ε)I + 2µε, (3.9)

where ε is the strain tensor, Tr the trace and λ and µ are the Lamé elastic constants. The
Lamé constants are a material property, alternatively they can be written in terms of the
Young’s modulus E and the Poisson’s ratio ν as

λ =
νE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
. (3.10)

Furthermore a linear relation between the stress tensor and the displacement is used

ε =
1

2

[
∇u+∇uT

]
. (3.11)

In case of a three dimensional problem in Cartesian coordinates, the six components of the
stress tensor of equation 3.9 can be written as

σxx
σyy
σzz
σxy
σxz
σyz

 =



(2µ+ λ) λ λ 0 0 0
λ (2µ+ λ) λ 0 0 0
λ λ (2µ+ λ) 0 0 0
0 0 0 2µ 0 0
0 0 0 0 2µ 0
0 0 0 0 0 2µ





εxx
εyy
εzz
εxy
εxz
εyz

 , (3.12)

Laura Uyttersprot M.Sc. Thesis

3.4 Review of Mesh Deformation Available in FINETM/Open 17

Figure 3.1: Definition of the weighting coefficient φ based on the Laplacian solution [44].

and the six components of the strain tensor from equation 3.11 are given by



εxx
εyy
εzz
εxy
εxz
εyz

 =



∂u
∂x
∂v
∂y
∂w
∂z

1
2

(
∂u
∂y + ∂v

∂x

)
1
2

(
∂u
∂z + ∂w

∂x

)
1
2

(
∂v
∂z + ∂w

∂y

)


. (3.13)

In the implemented EAMD method the Young’s modulus is varied throughout the mesh
according to

E = 8aφ
b
, (3.14)

where a and b are empirical coefficients and φ is a weighting coefficient that is obtained from
the Laplacian solution (∇2φ = 0) where the boundary condition is φ = 1 at the moving
boundary and φ = 0 at the fixed boundary as illustrated in figure 3.1. The Poisson’s ratio ν
is set to 0.3 throughout the whole mesh.

The same weighting coefficient φ is also used in order to solve the linear elastic deformation
using orthotropic direction in the coordinate system in order to keep the orthogonality of
the deformed mesh. For each cell a local orthogonal basis is created, where one vector n is
orthogonal to the isometric weighting coefficient line and the other two vectors t and t are
tangential to n, as illustrated in figure 3.2. By using this approach the equations of linear
elasticity are solved for an orthotropic, or more specifically a transverse isotropic material,
instead of an isotropic material. The orthotropic solution is obtained by applying a change
of basis to the original equations.

�(x,y,z) = P Tσ(n,t,t)P , (3.15)

ε(x,y,z) = P T ε(n,t,t)P , (3.16)

M.Sc. Thesis Laura Uyttersprot

18 Mesh Deformation Algorithms

Figure 3.2: Local basis created on the isometric lines of the weighting coefficient [44].

where

P =

nx ny nz
t1x t1y t1z
t2x t2y t2z

 , (3.17)

and σ(n,t,t) and ε(n,t,t) are obtained analogous to equation 3.12 and 3.13 respectively,
only the subscripts x, y and z have to be replaced by n, t1 and t2 respectively. The above
system results into the following relation

σ(x,y,z) =



σxx
σyy
σzz
σxy
σxz
σyz

 =



C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66





εxx
εyy
εzz
εxy
εxz
εyz

 , (3.18)

where Cij are coefficients as given in the appendix of [53]. For conciseness the subscript
(x,y, z) is omitted from now, since all the next equations are in the Cartesian system. In
order to facilitate the numerical solution of the above system, it is split up into an isotropic
part and an orthotropic part. If the matrix in equation 3.18 is named Cortho and the matrix
in equation 3.12 is named Ciso then one can write

σ = Cisoε+ (Cortho − Ciso)ε. (3.19)

When solving this system the second term is treated explicitly as a source term. The first
term is split further into explicit and implicit terms. Let us first recall that the first term in

Laura Uyttersprot M.Sc. Thesis

3.5 Overview 19

equation 3.19 can be written in non-matrix notation as in equation 3.9. By combining this
with equation 3.11 the first term can be rewritten as

Cisoε = µ∇u+ µ(∇u)T + λtr(∇u), (3.20)

which is split into explicit and implicit terms as follows

Cisoε = (2µ+ λ)∇u︸ ︷︷ ︸ + µ(∇u)T + λItr(∇u)− (µ+ λ)∇u︸ ︷︷ ︸ .
implicit explicit

(3.21)

Finally the equilibrium for elasticity can be computed by solving ∇ · σ = 0 and by moving
the explicit terms to the right hand side.

∇ · [(2µ+ λ)∇u] = −∇ ·
[
µ(∇u)T + λItr(∇u)− (µ+ λ)∇u

]
−∇ · [(Cortho − Ciso)ε] .

(3.22)

The right hand side is solved explicitly based on the displacement of the previous iteration.
This system is solved iteratively by means of the preconditioned conjugate gradient method,
where the inverse of the diagonal matrix is used as pre-conditioner. When the solution changes
less than a predefined tolerance, the iterations are stopped.

The elastic analogy method allows to have two types of boundary conditions: fixed or sliding.
At a fixed boundary the displacement is zero throughout the iterations. At a sliding boundary
the displacement is defined tangential to the boundary, or in other words the displacement
normal to the boundary is zero.

3.5 Overview

A broad structured overview of the existing mesh deformation methods is given in figure
3.3. Based on this overview and the discussion in the previous paragraphs, a few general
conclusions can be drawn. Firstly it can be stated that there is not one method that is the
best for all applications. This is due to the fact that robustness and efficiency seem to be
contradicting terms in the world of mesh deformations. A method is either very robust but not
efficient or very efficient but not robust or somewhere in the middle. Therefore in applications
where deformations are small other methods will be preferred than in applications with very
large deformations. This also leads to the fact that in FSI software that is used in the industry,
usually a range of mesh deformation algorithms is present. The most common methods in
industry practice still are the mesh connectivity based methods (mainly the spring analogy),
followed by radial basis function interpolation.

Secondly the most common methods can be ordered in terms of robustness and efficiency
as illustrated in figure 3.4. Note that this schematic is only a rough estimation based on a
compilation of the literature. The actual robustness and efficiency is highly dependent on the
specific implementation details, the type of deformation and the scale of the problem. Mesh-
connectivity based solutions, will converge fast in case of small deformations, however for

M.Sc. Thesis Laura Uyttersprot

20 Mesh Deformation Algorithms

Mesh
Deformation

Methods

Mesh
Connectivity

Based
Point-By-PointHybrid

Spring Analogy

Elastic Analogy

Elliptic
Smoothing

Using fine and
coarse mesh

Separate
method for

viscous layers

Correction step
after RBF with
reduced data

points

Radial basis
function

interpolation

Inverse
Distance

Weighting
Interpolation

Delaunay graph
mapping

Rigid body
initialisation Novel methods

Figure 3.3: Overview of existing mesh deformation methods.

Figure 3.4: Most common mesh deformation methods ordered based on robustness and efficiency.

Laura Uyttersprot M.Sc. Thesis

3.5 Overview 21

complex or large deformations the CPU time can increase considerably. On the other hand,
the CPU time of point-by-point schemes is not influenced by the type of deformation. In
many point-by-point schemes, such as RBF and IDW, the number of boundary points is the
determining factor of the CPU time. These methods are very fast in 2D cases, however can
become prohibitively expensive for 3D cases. For mesh-connectivity based methods, the total
number of nodes plays an important role in CPU time. In terms of robustness, the structural
analogies can suffer from poor diffusion of the displacements to the far field, especially when
the variation in structural properties is not chosen carefully. RBF usually delivers the highest
quality meshes, however due to the fact that the displacements in different directions are not
coupled to each other, the orthogonality close to the deforming surface might deteriorate for
certain cases such as the bending of a beam.

In this thesis the inverse distance weighting method is further developed. This choice is based
on the fact that it combines a good robustness, which is of comparable quality to RBF, with
a much higher efficiency as the interpolation function is formed explicitly. Moreover, the
method has a low complexity level, which makes it easily maintainable. Finally the method
is also believed to be user-friendly, as it does not have many user-parameters. The following
chapters will aim to provide a detailed overview of the developed IDW method.

M.Sc. Thesis Laura Uyttersprot

22 Mesh Deformation Algorithms

Laura Uyttersprot M.Sc. Thesis

Chapter 4

Test Cases

In this chapter the five test cases that will be used throughout the report are presented.
A variety of test cases is chosen to illustrate different performance properties of the mesh
deformation method. Both 2D and 3D applications, with smaller and larger scale meshes,
are used. For all test cases a large deformation is imposed, which is based on the resulting
deformation of previously done simulations. In this chapter each section will present one test
case.

An important property of a test case, in regards to the IDW mesh deformation CPU time,
is the amount nodes in the mesh. The mesh is divided into boundary nodes, which lie on
the domain surfaces, and inner nodes, which are located in the volume mesh. The boundary
nodes can be divided further into moving, sliding and fixed nodes. The moving nodes have
a displacement which is imposed by the structure solver. They are located on the moving
object, such as a wing, flap or airfoil. The fixed nodes are nodes that remain fixed throughout
the simulation. Usually these can be found at the exterior boundaries. Finally the sliding
boundary nodes are nodes which are allowed to slide along the surface they are located on.

4.1 Rotation of 2D NACA 0012 Airfoil

Table 4.1: Number of nodes: NACA 0012.

Without sliding nodes With sliding nodes

Inner Nodes 30,336 30,336

Boundary Nodes 768 768

- Moving 384 384

- Fixed 384 0

- Sliding 0 384

Total 31,104 31,104

M.Sc. Thesis Laura Uyttersprot

24 Test Cases

The first test case is a 2D rigid body rotation of a NACA 0012 airfoil. This test case is meant
to illustrate the capability of the mesh deformation method to withstand significant rotations.
The mesh, depicted in figure 4.1 consists of 31104 nodes, of which 768 are boundary nodes,
as indicated in table 4.1. This mesh has a minimum orthogonality of 19.76◦ and a maximum
skewness of 0.81. In order to make this a particularly challenging test case, the mesh has
viscous layers around the airfoil, with a cell height of the order of 10−6 of the chord length and
an aspect ratio up to 2096. The diameter of the computational domain is 80 chord lengths.
In the NACA 0012 test case a rigid rotation is imposed of 90◦ around the leading edge of the
airfoil. This deformation is applied in one time step. Depending on the situation, a sliding
boundary condition might be used for the exterior boundary. What such a sliding boundary
condition entails exactly is explained further in section 5.4.

Figure 4.1: Undeformed mesh for the NACA 0012 test case.

4.2 2D Vortex Induced Beam Vibration

The second test case is a 2D vortex induced beam vibration. The set-up of this test case
is illustrated in figure 4.2. The beam is flexible and will deform due to the load exerted by
the von Karman vortices shed behind the square. This displacement has been computed by
means of a time-dependent CFD computation, using the structure modes as an input. The
structure mode shapes were computed by means of a FEM simulation and are displayed in
figure 4.3(a). The settings for the structure and fluid simulation are given in appendix C.1.
During the simulation the beam undergoes a periodic motion, which grows during the initial
transient phase and then remains at a constant amplitude. For the tests throughout the
report, the maximum displacement which occurred during the CFD computation is imposed

Laura Uyttersprot M.Sc. Thesis

4.2 2D Vortex Induced Beam Vibration 25

Table 4.2: Number of nodes: Vortex induced beam vibration.

Without sliding nodes With sliding nodes

Inner Nodes 28,708 28,708

Boundary Nodes 948 948

- Moving 354 354

- Fixed 594 0

- Sliding 0 594

Total 29,656 29,656

directly, in one deformation step. This maximum displacement, with a tip motion amplitude
of 2.4 cm, is shown in figure 4.3(b).

The mesh for the vortex vibration test case is displayed in figure 4.4. It consists of 29,656
nodes, of which 948 are boundary nodes, as summarised in table 4.2. The quality of the
initial mesh is characterised by a minimum orthogonality of 49.11◦ and a maximum skewness
of 0.54. Hereafter the vortex induced beam vibration test case will be referred to as vortex
vibration. For more information about this test case the reader is referred to reference [19].

Figure 4.2: Set up of the vortex induced beam vibration test case [19] (dimensions are in cen-
timetres).

M.Sc. Thesis Laura Uyttersprot

26 Test Cases

(a) Structural modes [15]. (b) Imposed deformation.

Figure 4.3: Deformation of the vortex induced beam vibration test case.

Figure 4.4: Mesh for the vortex induced beam vibration test case.

Laura Uyttersprot M.Sc. Thesis

4.3 Elastic Flap in a Duct 27

4.3 Elastic Flap in a Duct

Table 4.3: Number of nodes: Elastic flap.

Inner Nodes 110,775

Boundary Nodes 17,282

- Moving 2,273

- Fixed 7,584

- Sliding 7,425

Total 128,057

This test case considers an elastic flap inside a 3-dimensional duct, as illustrated in figure 4.5.
The flap is attached at the middle of the back plate of the duct and is placed at an angle of
15◦. The flow enters the duct on the right and exits at the left. Thanks to the gaps between
the flap and three walls of the duct, it is possible for the flow to move past the flap. However,
the flap forms an obstacle to the flow, and hence the flow exerts a force on the flap, which
causes the flap to deform. More information about this test case can be found in [19].

The deformation of the flap can be computed in an unsteady CFD simulation which uses
the mode shapes of the elastic flap as an input. The flap undergoes a damped oscillation,
before reaching a steady deformed position. For the purpose of testing the mesh deformation
algorithm, the maximum displacement that occurred during the CFD simulation is imposed
directly. The simulation settings to achieve this result are summarised in appendix C.2.

The maximum displacement of the flap is illustrated in figure 4.6. The amplitude of the
motion is 0.01m at the tip of the flap. This displacement is especially tricky for the mesh
motion algorithm, since it is a relatively large displacement in relatively close proximity of
three surrounding walls. As such the upper, lower and front wall receive a sliding boundary
condition, such that the surface mesh can follow the displacement of the flap.

The mesh of the elastic flap case consists of 128,057 nodes, of which 17,282 are boundary nodes
as listed in table 4.3. The initial mesh, visualised in figure 4.7, has a maximum skewness of
0.19, while the minimum orthogonality is 67.49◦.

M.Sc. Thesis Laura Uyttersprot

28 Test Cases

25

15°

0.2

INLET

12.1

Z

X

(a) Set-up of elastic flap test case.

5.2

6
.4

4.8

4
.8

Z

Y

(b) Inlet.

Figure 4.5: Elastic flap test case (dimensions in cm).

Figure 4.6: Deformation of the flap.

(a) External view.

Z

X

(b) Internal view.

Figure 4.7: Initial mesh of the elastic flap test case.

Laura Uyttersprot M.Sc. Thesis

4.4 Rotor 67 Blade Deflection 29

4.4 Rotor 67 Blade Deflection

This test case considers the deformation of a blade of the NASA rotor 67, which is a transonic
axial-flow fan, as defined by Strazisar et al [63]. The geometry of the rotor is depicted in figure
4.8. It consists of 22 blades with a tip gap of 0.1016 cm. The axial width of the rotor is 23.2 cm.
The radius of the rotor at the blade tip is 25.7 cm at the inlet and 24.3 cm at the outlet. At
the hub, these radii are 9.64 cm and 11.6 cm respectively.

Due to the fact that all the blades of the rotor are identical, the computational domain of
this test case only consists of one blade in a channel with periodic boundaries. Two meshes
are considered, a coarser and a finer one, as shown in figures 4.9(a) and 4.9(b) respectively.
The number of nodes in the fine and coarse mesh are listed in table 4.4. The minimum
orthogonality for the initial fine mesh is 32.01◦ and the maximum skewness is 0.68. For the
coarse mesh the values are similar with a minimum orthogonality of 31.99◦ and a maximum
skewness of 0.72.

The blade of the rotor undergoes a steady deformation, due to two types of loads: centrifugal
and aerodynamic. The centrifugal deformation can be computed with a CSM simulation.
Whereas for the aerodynamic loads, the deformation can be computed with a modal approach
CFD simulation. Such a computation has been performed by Debrabandere in [15]. However,
since in this thesis the interest lies in the mesh deformation, it has been decided to simply
impose a modal displacement that is larger than the resulting displacement as reported in
[15]. Therefore the resulting modal displacement of the CFD simulation (see appendix C.3),
which uses 30 mode shapes, is multiplied with a factor of 5. This means that the shape of
the blade deformation does not represent a realistic one as the modal shapes are exaggerated
and the non-linear terms are not represented. The deformed blade is shown in figure 4.10.
The tip displacement is 0.53 cm at the leading edge and 0.22 cm at the trailing edge. This
deformation is not large when compared to the size of the blade, however the challenge for
this test case lies in the fact that there is only a 0.1 cm gap between the blade and the shroud.
This gap is shown in figures 4.11 for both the fine and the coarse mesh. To maintain a good
mesh quality after the deformation, it is important to impose a sliding boundary condition
at the shroud.

Table 4.4: Number of nodes: Rotor 67.

Coarse Fine

Inner Nodes 82,887 697,935

Boundary Nodes 17,730 70,914

- Moving 4,941 19,641

- Fixed 9,156 36,552

- Sliding 3,633 14,721

Total 100,617 768,849

M.Sc. Thesis Laura Uyttersprot

30 Test Cases

Figure 4.8: Geometry of rotor 67.

SHROUD

HUB

OUTLETINLET

BLADE

X

Z

(a) Coarse mesh.

X

Z

(b) Fine mesh.

Figure 4.9: Initial mesh of the rotor 67 test case.

Laura Uyttersprot M.Sc. Thesis

4.4 Rotor 67 Blade Deflection 31

Figure 4.10: Deformed shape of the rotor 67 blade.

(a) Coarse mesh.

(b) Fine mesh.

Figure 4.11: Cut through the mesh, showing the small gap between the blade and the shroud.

M.Sc. Thesis Laura Uyttersprot

32 Test Cases

4.5 AGARD 445.6 Wing Deflection.

Table 4.5: Number of nodes: AGARD 445.6.

Coarse Fine

Inner Nodes 339,967 2,785,983

Boundary Nodes 33,602 134,402

- Moving 5,205 20,713

- Fixed 28,397 113,689

- Sliding 0 0

Total 373,569 2,920,385

This test case considers the deflection of the AGARD 445.6 wing, as experimentally studied
in [72]. The wing has a NACA 65A004 airfoil, a root chord of 0.5587 m, a quarter-chord sweep
angle of 45◦, a half wing span of 0.762 m and a taper ratio of 0.6, as illustrated in figure 4.12.
The domain extends to 5 chord lengths in front of the wing and 4.5 chord lengths behind the
wing and it is 10 chord lengths high, with the wing placed in the middle.

For this test case, once again, a coarse and a fine mesh are used (see figure 4.13). The
minimum orthogonality of the initial fine mesh is 26.26◦ and the maximum skewness is 0.60.
The coarse mesh has a slightly lower initial quality with a minimum orthogonality of 24.48◦

and maximum skewness of 0.75. Moreover the fine mesh is quite large, with nearly 3 million
grid points, whereas the coarse mesh has less than 400,000 grid points.

The deflection of the AGARD 445.6 wing can be computed with a modal approach CFD
simulation. For this simulation the first six modes are taken from the experimental data of
Yates [72]. A velocity perturbation in the vertical direction is imposed during the first 0.05 s.
This perturbation induces a change in the lift, which causes the wing to deflect. If the flow
conditions are above the flutter limit, this motion will be amplified. The settings for the
simulation and the imposed perturbation are presented in appendix C.4. The largest modal
displacement that occurred during the flutter simulation, is directly imposed throughout this

Figure 4.12: Dimensions of the AGARD 445.6 wing test case (meters).

Laura Uyttersprot M.Sc. Thesis

4.5 AGARD 445.6 Wing Deflection. 33

(a) Coarse mesh. (b) Fine mesh.

Figure 4.13: Mesh of the AGARD 445.6 wing test case.

M.Sc. Thesis Laura Uyttersprot

34 Test Cases

Figure 4.14: Deformation of the AGARD 445.6 wing.

report. This modal displacement is illustrated in figure 4.14. The magnitude of the motion
at the wing tip is 0.1 c at the leading edge and 0.3 c at trailing edge, where c is the wing root
chord. The motion consists of both a bending and twist mode. Thus this test case can be
used to illustrate the ability of the mesh deformation algorithm to handle complex motions,
with a rotation component around different axes.

Laura Uyttersprot M.Sc. Thesis

Chapter 5

Inverse Distance Weighting Mesh
Deformation

In this chapter inverse distance weighting mesh deformation is explained in detail. The first
section provides a detailed background of inverse distance weighting interpolation. Next,
in section 5.2, the basic implementation in FINETM/Open and the choice of the weighting
function with its different input parameters are explained. This is followed by a detailed
description of how rotations are included in the method, in section 5.3. An important addition
to this IDW mesh deformation method, namely the option for sliding nodes on the boundary,
is detailed in section 5.4. Finally, the difference between absolute and relative deformations
is highlighted in section 5.5.

5.1 Background of Inverse Distance Weighting Interpolation

This section provides the reader with a detailed background regarding IDW interpolation.
The first part gives a more general background, whereas the second part focusses on IDW
applied to mesh deformation.

5.1.1 General Principle of Inverse Distance Weighting Interpolation

Inverse Distance Weighting (IDW) interpolation is an explicit technique for multivariate in-
terpolation of scattered data points. It was first introduced in 1968 by D. Shepard in the
frame work of geographical information systems [59]. In its basic form, IDW interpolation
computes the interpolated value u at a given point x as a weighted average of the known
values at the data points uj = u(xj). The equation of the IDW interpolation function is

M.Sc. Thesis Laura Uyttersprot

36 Inverse Distance Weighting Mesh Deformation

given by

u(x) =

∑N
j=0wj(x)uj∑N
j=0wj(x)

, (5.1)

where N is the number of data points and wj(x) is the weighting function. This weighting
function is proportional to the inverse of the distance. Its standard form is given by

wj(x) =
1

‖x− xj‖p
, (5.2)

where ‖·‖ is the Eucledian distance operator and p is a power parameter. The power pa-
rameter p has to be larger than one in order for the function to be differentiable [60]. Large
values of p result in an interpolation that is influenced mainly by the closest data points,
leading to steep gradients over low intervals. On the other hand lower values of p result in
smooth interpolations where the solution at a point is also influenced by more distant data
points. Often the parameter p = 2 is chosen because it yields satisfactory results for the least
computational effort (since the Eucledian distance contains a square root).

Inverse distance weighting is intensively used in many geographical information systems to
create surfaces through spatial data points. Examples can be found in for example hydrology
[65], geography [57] and climatology [45]. As such many different forms of IDW exist in order
to improve its performance for specific applications. One example is the use of only a certain
amount of nearby points or points within a specified radius, in order to make the method
more efficient for large spatial applications [59]. Another option is to include slope data in
order to solve the fact that local peaks should not always be located at the data points [59],
which is the case in the standard method. Another example is the use of spatially varying
power parameters, according to varying spatial patterns of the data [37].

5.1.2 Inverse Distance Weighting in Mesh Deformation

Inverse distance weighting was first introduced as a mesh deformation method by Witteveen
[70] in 2009. His IDW mesh deformation method uses the standard inverse distance weighting
interpolation as introduced in equation 5.1 and 5.2. The value to be interpolated for mesh
deformation is the known displacement of all boundary nodes. However for a good mesh
quality it is preferable to also interpolate the rotation. Witteveen proposes to use different
values for the power parameter p for moving and fixed boundary nodes and for rotations and
translations: pmov,r, pmov,t, pfix,r and pfix,t.

A beneficial property of the IDW for mesh deformation is, that it is an extremum conserving
interpolation method. However when also including rotations, this property is lost, meaning
that internal nodes could move outside of the domain. In order to prevent this situation, it
is checked for each of the N contributions in equation 5.1 whether this contribution would
move the point out of the domain. If this is the case, then this contribution is modified such
that it places the node onto the boundary of the domain. As such the inner mesh nodes will
never be able to cross the outer boundary.

Laura Uyttersprot M.Sc. Thesis

5.1 Background of Inverse Distance Weighting Interpolation 37

A major advantage of this explicit interpolation technique, compared to RBF, is that the time
consuming step to directly solve the system which requires O(n3

b) operation, where nb is the
number of boundary nodes, is no longer present. Additionally the implementation of the IDW
technique is fairly straightforward since no mesh connectivity has to be taken into account.
This makes it possible to deform arbitrary mesh topologies, even with hanging nodes, without
any modifications. Finally the IDW method can easily be parallelised.

Luke et al [38] further modified the IDW mesh deformation method to increase its perfor-
mance. The first modification is to assign a rigid body displacement field to each boundary
node. The rotation component is estimated by finding the rotation that best matches the
rotation of edges and normals to faces that reference the given node. For each boundary node
b a displacement field can be defined as follows

sb(x) = ub +Mbx− x, (5.3)

where Mb is the rotation matrix associated with boundary node b. More information about
rotation matrices can be found in section 5.3.1.

The interpolation function is now a vector function given by

u(x) =

∑nb
b=0wb(x)sb(x)∑nb

b=0wb(x)
. (5.4)

The second modification to the method is that an improved weighting function is chosen

wb(x) = Ab

[(
Ldef
‖x− xb‖

)a
+

(
αLdef
‖x− xb‖

)b]
, (5.5)

where Ab is the area weight assigned to boundary node b, Ldef is an estimated length of
the deformation region, α is an estimated size of the near body influence region and a and
b are the power parameters. Luke et al suggest the values a = 3 and b = 5 for the power
parameters, according to their numerical tests. The parameter Ldef is usually computed au-
tomatically as the furthest distance from any mesh node to the center of the mesh. Parameter
α determines the weight of the near boundary nodes over the more distant ones. This should
usually be higher when the displacement is more variable. Therefore parameter α can be
computed automatically as the maximum difference between a node displacement and the
average displacement field as a fraction of Ldef

α =
η

Ldef

nb
max
b=1
‖sb(xb)− smean‖ , (5.6)

where

smean =

nb∑
b=1

ab · sb(xb), (5.7)

where ab = Ab/
∑nb

j=1Aj is the normalised node weight. The symbol η represents a user
parameter which determines whether the deformation should be more local (small η) or spread
throughout the domain (large η). Generally η = 5 results in good results. In order to
guarantee good near-boundary mesh quality it is important to set α ≥ 0.1.

M.Sc. Thesis Laura Uyttersprot

38 Inverse Distance Weighting Mesh Deformation

Compared to Witteveen’s method, Luke’s method results in better preservation of the or-
thogonality of the viscous layers in the mesh, even better than for RBF. This is thanks to
the addition of the second term in the weighting factor with a higher power parameter. Fur-
thermore Luke et al propose an efficiency improvement technique using a parallel tree-code
optimisation, which allows for a high efficiency and good scaling for large industrial meshes.
For more details about this tree-code optimisation, the reader is referred to section 6.1.1.

5.2 Basic Implementation in FINETM/Open

Based on the background provided in the previous section, IDW can be implemented in
FINETM/Open . This section will describe the most basic implementation and its parameters.
Step-by-step improvements to this basic implementation will be described in the following
sections.

5.2.1 The Interpolation Function

For the basic implementation it has been chosen to interpolate the given boundary displace-
ments ub, without taken into account rotations. The interpolation function u(x) is then given
by

u(x) =

∑nb
b=1wb(x)ub∑nb
b=1wb(x)

, (5.8)

where nb is the number of boundary nodes and wb(x) is a weighting function proportional to
the inverse of the distance d = ‖x− xb‖. The exact form of the chosen weighting function
will be explained in the next section. The interpolation function has to be evaluated for
all inner mesh nodes. Therefore it is easy to see that the cost of this method scales with
O(ninb). Furthermore the implementation is very straightforward as it only involves two
simple for -loops, as illustrated in the pseudo code below.

for all inner nodes do
for all boundary nodes do

evaluate weighting function wb(xi);
numerator += wb(xi)ub;
denominator += wb(xi);

end
u(xi) = numerator / denominator;

end

Note that for the fixed boundary nodes ub is the zero-vector, which means that the step to
update the numerator can be skipped to increase the efficiency of the method. To avoid the
cost of doing an if -statement for each boundary node, the most efficient implementation is

Laura Uyttersprot M.Sc. Thesis

5.2 Basic Implementation in FINETM/Open 39

done by splitting the boundary node for-loop in two loops, one for the moving nodes and one
for the fixed nodes. This is illustrated in the following piece of pseudo-code.

for all inner nodes do
for all moving boundary nodes do

evaluate weighting function wb(xi);
numerator += wb(xi)ub;
denominator += wb(xi);

end
for all fixed boundary nodes do

evaluate weighting function wb(xi);
denominator += wb(xi);

end
u(xi) = numerator / denominator;

end

In the above pseudo-code the evaluation of the weighting function is now also separated for the
moving and fixed boundary nodes. As a consequence it is easy to apply different parameters
in the weighting function for either moving or fixed boundary nodes.

5.2.2 The Weighting Function

The chosen weighting function in IDW has an important influence on the resulting mesh
quality. Therefore it is attempted in this section to choose the optimal weighting function for
mesh deformation. As a starting point the weighting function of Luke et al [38], as given in
equation 5.5 is used. This weighting function has five different parameters, namely

1. Ab: area weight assigned to boundary node b,

2. Ldef : estimated length of the deformation region,

3. α: estimated size of the near body influence region,

4. a: 1st power parameter,

5. b: 2nd power parameter.

In order to understand the influence of these parameters, a basic 2D test case is set up. The
test case consists of 1× 1 moving square inside a 10× 10 fixed square, as illustrated in figure
5.1. The inner square will be moved 1.5 units up and 1.5 units to the right in one deformation
step.

First, the following values for the default parameters are chosen

• Ab = 1,

M.Sc. Thesis Laura Uyttersprot

40 Inverse Distance Weighting Mesh Deformation

Figure 5.1: Initial 2D mesh of the test case.

• Ldef = 5
√

2,

• αmov = 0.1,

• αfix = 0.0,

• a = 3,

• b = 5.

Most of these parameters, have been chosen in accordance to the proposed values of Luke et
al [38]. The first exception is Ab = 1, which is equivalent to ignoring this value. The second
exception is that two values for α are chosen, one for the moving boundary αmov = 0.1 and one
for the fixed boundary αfix = 0.0. The value αmov = 0.1, is based on the maximum difference
between the displacement of a boundary node and the average boundary displacement, as in
equation 5.6. For a rigid body translation, all nodes have the same displacement and this
parameter would have been zero. However Luke et al proposed a minimum value of α = 0.1.
Since the fixed boundary is not moving, there is no reason to strive for a better near-boundary
quality preservation. Therefore αfix is set equal to zero. Finally note that Ldef = 5

√
2 is

based on the computation of the furthest distance from any mesh node to the centre.

In figure 5.2 the resulting mesh is shown for a series of parameter variations. First, the default
result is shown in figure 5.2(a). In all other figures, the changed parameters are indicated.
In figure 5.2(b) the effect of including the area of the boundary nodes Ab in the weighting
function, is shown. Compared to the default case, where Ab has been omitted, the largest
distortion of the mesh occurs closer to the moving boundary. This is due to the fact that the
fixed boundary has a larger surface area, and hence the weight of the fixed outer boundary is
increased, relative to the moving boundary. Similar results were found in a series of other test
cases, because the fixed boundary is almost always a lot larger than the moving boundary.
When omitting this Ab from the weighting function, more weight is given to regions where the
mesh is finer. These regions are usually the regions where the mesh quality is most critical.
Therefore it is a desired property to give more weight to these regions, such that they will

Laura Uyttersprot M.Sc. Thesis

5.2 Basic Implementation in FINETM/Open 41

deform less. Note, that this also means that a refinement or coarsening of the boundary mesh,
will lead to a different interpolation function.

In figure 5.2(c) the parameter Ldef is multiplied by 1000. In this case this leads to a distorted
mesh. It certainly does not make sense to play with this parameter as it is used to scale the
weighting function, such that it becomes unitless. Moreover small variations in this parameter
did not seem to have any noticeable influence on the final result. Therefore the choice of Ldef
equal to the maximum distance between any mesh node and the mesh centre, seems to be
appropriate.

The influence of parameter α is clear in figures 5.2(d) and 5.2(e). When α is increased, the
near-boundary region, where the mesh remains more or less rigid, grows. Increasing αmov
certainly has a positive effect on the quality of the boundary layer mesh. It is clear that
in case the moving object is small compared to the total mesh, αmov can be set larger, in
order to maintain a large region of good quality around the moving object. However, it also
has the negative side effect that the deformation, then has to be absorbed over a smaller
outer region, leading to steep gradients. Therefore it is usually best to use αmov = 0.1 seeing
as this already maintains a good boundary layer quality, and leaves room for dissipation of
the deformation. Similarly αfix should be chosen low, such that the region around the fixed
boundary can be used to absorb the deformation. In figure 5.2(a) it is clear that even for
αfix = 0.0, the quality of the fixed wall boundary layer remains high.

The influence of the power parameters a and b becomes clear in figures 5.2(f) through 5.2(i).
A lower power parameter, results in smoother results, meaning that also the near-boundary
region will be affected. On the other hand, higher power parameters, lead to steep gradients,
where the deformation is absorbed over a small interval in between the two boundaries. When
looking carefully at figure 5.2(f) it can be seen that for a = 2, the cells close to the moving
boundary decrease in quality. This situation should usually be avoided, as the near-boundary
quality, is the most critical for obtaining good CFD results. On the other hand, increasing the
power parameter to a = 4 (see figure 5.2(g)), is clearly not desirable. The mesh remains rigid
at both boundaries, and all the motion is absorbed in a small interval, leading to negative
cells. Additionally, changing parameter b does not have a large influence on the solution
as long as α is low, as can be seen in figure 5.2(h), where b is increased to 7. When αmov
is increased to 0.8 at the same time, negative cells are created because the gradient of the
deformation is too steep over a very small interval.

In conclusion, the following weighting function has been chosen

wb(x) =

[(
Ldef
‖x− xb‖

)a
+

(
αLdef
‖x− xb‖

)b]
, (5.9)

where

• Ldef = maxnb
b=1(c− xb), where c = 1/nb

∑nb
b=1 xb,

• αmov = 0.1,

• αfix = 0.0,

M.Sc. Thesis Laura Uyttersprot

42 Inverse Distance Weighting Mesh Deformation

(a) Default parameters (b) Ab = area of boundary
node b

(c) Ldef = 2
√

5× 1000

(d) αmov = 0.8 (e) αfix = 0.8 (f) a = 2

(g) a = 4 (h) b = 7 (i) b = 7 and αmov = 0.8

Figure 5.2: The influence of the different parameters.

Laura Uyttersprot M.Sc. Thesis

5.3 Boundary Node Rotations 43

• a = 3,

• b = 5.

The values for Ldef , a and b will be fixed values which cannot be changed by the user. Keeping
a and b fixed, has the additional advantage that one can avoid using the C++ pow-function,
which seems to be a rather expensive operation, by simply writing c3 = c · c · c. The values for
α are default parameters, which usually do not have to be changed. However, when necessary,
they can be adjusted by the user. Tweaking these parameters is usually straightforward. In
case the mesh is too distorted close to a boundary, its α value has to be increased. On the
other hand, when the mesh distortion is in between the two boundaries, the α values have to
be lowered.

5.3 Boundary Node Rotations

As mentioned before, it is important to include boundary node rotations in the IDW interpo-
lation method, in order to maintain an orthogonal mesh close to the moving surface. However,
including rotations causes additional difficulties which do not occur when only translations
are considered. First of all, at each boundary node only the displacement is given, hence the
rotations will somehow have to be determined. Secondly a decision has to be made about
how these rotations have to be interpolated to the volume mesh. The following paragraphs
will explain how these issues have been tackled.

5.3.1 Rotation Methods

In general two ways can be found to represent rotations in mesh deformation: matrix and
quaternion. The following two sections give a brief description of both methods.

Rotation Matrix

The matrix representation is mainly used in combination with Euler angles. Euler angles
represent the rotation around three Euclidean axes, x, y and z, with angles θx, θy and θz
respectively. Each Euler angle rotation can be expressed by one rotation matrix as follows:

Mx =

1 0 0
0 cos θx sin θx
0 − sin θx cos θx

 , My =

 cos θy 0 sin θy
0 1 0

− sin θy 0 cos θy

 , Mz =

 cos θz sin θz 0
− sin θz cos θz 0

0 0 1

 .

(5.10)

The final rotation matrix representing the rotation is a multiplication of the three matrices.
Here it is important to notice that the order of the rotations matters, because rotations do
not commute. This representation by Euler angles has historically been the most popular.

M.Sc. Thesis Laura Uyttersprot

44 Inverse Distance Weighting Mesh Deformation

However, Euler angles can cause Gimbal lock, the loss of one rotational degree of freedom.
This is caused by ignoring the interactions between the different rotations [61].

Alternatively rotation matrices can also use the axis angle method, where a rotation angle θ
and a unit rotation axis n = [nx ny nz]

T are defined. The rotation matrix is then given by

M =

 cos θ + n2
x(1− cos θ) nxny(1− cos θ)− nz sin θ nxnz(1− cos θ) + ny sin θ

nynx(1− cos θ) + nz sin θ cos θ + n2
y(1− cos θ) nynz(1− cos θ)− nx sin θ

nznx(1− cos θ)− ny sin θ nzny(1− cos θ) + nx sin θ cos θ + n2
z(1− cos θ)


(5.11)

Rotation Quaternion

For the purpose of interpolation of rotations, quaternions form a better alternative, both
in terms of computational resources and the proper treatment of rotation information (safe
from Gimbal lock). Thanks to their powerful properties, quaternions are often used in com-
puter graphics and spacecraft navigation. From a mathematical perspective, quaternions are
hypercomplex numbers, with one real and three imaginary terms:

Q = q0 + q1 · i+ q2 · j + q3 · k, qα ∈ R (5.12)

where

ii = jj = kk = −1,

ij = −ji = k,

jk = −kj = i,

ki = −ik = j.

The real number represents the angle of rotation and the three imaginary numbers represent
the axis of rotation. As such a quaternion Q can be represented by one scalar and one
Cartesian vector:

Q = [r,v], r = q0, v = [q1 q2 q3]. (5.13)

The scalar and vector component are given by

r = cos
α

2
, (5.14)

v = a · sin α
2
, (5.15)

where α is the rotation angle and a is the unit axis of rotation. For clarity, the most rele-
vant properties of quaternions are listed here. However for a more complete description of
quaternions the reader is referred to [61] and [2].

• Associative: (Q1 ·Q2) ·Q3 = Q1 · (Q2 ·Q3),

• Distributive: Q1 · (Q2 +Q3) = Q1 ·Q2 +Q1 ·Q3,

Laura Uyttersprot M.Sc. Thesis

5.3 Boundary Node Rotations 45

• Not commutative: Q1 ·Q2 6= Q2 ·Q1,

• Conjugate of a quaternion: Q∗ = q0 − q1 · i− q2 · j − q3 · k,

• Magnitude of a quaternion: ‖Q‖ =
√
Q ·Q∗ =

√
q2

0 + q2
1 + q2

3 + q2
4,

• Inverse of a quaternion: Q−1 = Q∗/(Q ·Q∗),

• Unit quaternion: ‖Q‖ = 1,

• For unit quaternion: Q−1 = Q∗.

In order to find the new position of point p after rotation, with quaternion algebra, first the
point’s position vector p is converted into a quaternion P = [0,p]. Then the rotated position
Pr is found with

Pr = Q · P ·Q−1. (5.16)

Since a rotation quaternion is always a unit quaternion, the property Q−1 = Q∗ can be used

Pr = Q · P ·Q∗. (5.17)

Here the multiplication of quaternions is given by

Q1 ·Q2 = [r1, v1] · [r2, v2] = [r1r2 − v1 · v2, r1v2 + r2v1 + v1 × v2] (5.18)

In case of multiple consecutive rotations, the rotations can be combined into one rotation
quaternion

Q = Qn ·Qn−1 · · ·Q2 ·Q1, (5.19)

where the number also indicates the order of rotation.

5.3.2 Determining the Rotation of a Boundary Node

For each boundary node, only the position vector x and the displacement vector u are known.
In order to include rotations in IDW mesh deformation, the rotation for each boundary node
will first have to be determined. Based on the description in the previous section, it is clear
that quaternions have advantages over rotations matrices. Therefore it is chosen to represent
the boundary rotations with quaternions. The goal is to find a translation vector t and a
rotation quaternion R for each boundary node, such that

Xd = R ·Xu ·R∗ + T, (5.20)

where the subscripts u and d indicate the undeformed and deformed states respectively and
Xu, Xd and T are quaternions representing position and translation vectors as follows

Xu = [0,x],

Xd = [0,x+ u],

T = [0, t].

M.Sc. Thesis Laura Uyttersprot

46 Inverse Distance Weighting Mesh Deformation

In order to determine the boundary node rotation quaternions, a set of neighbouring nodes
of each boundary nodes will have to be considered. One could opt to use the nodes that are
directly connected to a certain boundary node [58]. Alternatively one can use the cell centres
of the neighbouring faces [42]. However in this thesis, it was chosen to first determine the
quaternions of the faces, according to the work of Kovalev [30], and then interpolate to the
face’s nodes. Which method one chooses mainly depends on the specific code architecture of
the mesh at hand. Since the method of Kovalev had already been used in FINETM/Open
(see section 3.4.1), it was a straightforward choice.

The rotation of a boundary face is determined in three steps, as shown in figure 5.3. Let’s
consider the deformed and undeformed position of the face, as the input of the method. In
the first step the face centres of both the undeformed and deformed face, are moved to the
origin. Here, the face centre c is computed as the average of the position vectors xj of all the
corners of the face

c =
1

n

n∑
j=1

xj , (5.21)

where n is the number of face corners. The updated positions x′ of the vertices, after the
first step are computed as

x′u = xu − cu (5.22)

x′d = xd − cd (5.23)

In the second step the undeformed face is rotated such that its normal aligns with the normal
of the deformed face. Therefore, first the unit normal n to a face is computed as the average
of the unit normals to two consecutive face corner position vectors

n =
1

n

n∑
j=1

xj × xj+1

‖xj × xj+1‖
. (5.24)

Note that xn+1 = x1, because the nodes are numbered in a consecutive manner, as shown in
figure 5.3. Now the first axis of rotation is computed as the unit vector which is perpendicular
to both the deformed and undeformed normal

a1 =
nu × nd
‖nu × nd‖

. (5.25)

The angle of the first rotation is equal to the angle between the deformed and undeformed
normal, computed as

α1 = arccos

(
nu · nd
‖nu‖ ‖nd‖

)
(5.26)

This unit axis of rotation a1 and angle of rotation α1, are used to find the first rotation
quaternion R1 with equations 5.13 to 5.15. Now the updated position vectors x′′u of the
undeformed face can be found by applying this rotation to all the face corners

X ′′u = R1 ·X ′u ·R∗1, (5.27)

Laura Uyttersprot M.Sc. Thesis

5.3 Boundary Node Rotations 47

nd
nu nd

nd

x’1,d

x’2,d

x’3,d

x’4,d

x’’1,u

x’’2,u

x’’3,u

x’’4,u

cucd

(1a) (1b)

o

nd

x’1,d

x’2,d

x’3,d

x’4,d

(2a) (2b)

(3a) (3b)

x’’’1,u

x’’’2,u

x’’’3,u

x’’’4,u

o

x1,u x2,u

x4,u

x3,u

x1,d

x2,d

x3,d

x4,d

x’1,d

x’2,d

x’3,d

x’4,d
x’1,u x’2,u

x’4,u x’3,u

x’1,d

x’2,d

x’3,d

x’4,d

x’1,u
x’2,u

x’4,u
x’3,u

x’1,d

x’2,d

x’3,d

x’4,d

x’’1,u

x’’2,ux’’4,u

x’’3,u

Figure 5.3: Three steps to find the rotation of a boundary face.

M.Sc. Thesis Laura Uyttersprot

48 Inverse Distance Weighting Mesh Deformation

where X ′′u = [0, x′′u] and X ′u = [0, x′u].

The third and last step, rotates the undeformed face around the normal vector, such that the
corners of the faces are aligned as well as possible. The axis of this rotation, is simply the
unit normal to the deformed face

a2 =
nd
‖nd‖

(5.28)

The angle of the second rotation, is given by the average angle between deformed and unde-
formed position vectors of the face corners

α2 =
1

n

n∑
j=1

arccos

(
xj,u · xj,d
‖xj,u‖ · ‖xj,d‖

)
. (5.29)

This unit axis of rotation a2 and rotation angle α2 determine the second rotation quaternion
R2, by equations 5.13 to 5.15. The final rotation quaternion for the face is then given by R

R = R2R1 (5.30)

Once the rotation quaternions of the boundary mesh faces are known, the rotation quater-
nions of the boundary mesh nodes can be computed via interpolation. This interpolation is
done with spherical linear interpolation or SLERP. The spherical linear interpolation of two
quaternions is computed as [61]

QSLERP =
sin[(1− w)ω]

sinω
Q1 +

sin[wω]

sinω
Q2, (5.31)

where 0 ≤ w ≤ 1 is the weight for the second quaternion, and ω is the angle between the two
quaternions computed as

ω = arccos(Q1 ·Q2) (5.32)

To compute the spherical linear interpolation QSLERPn of multiple quaternions Q1, Q2, ..., Qn,
the following procedure can be applied [30]

QSLERP2 = SLERP

(
Q1, Q2,

w2

w1 + w2

)
(5.33)

QSLERP3 = SLERP

(
QSLERP2 , Q3,

w3

w1 + w2 + w3

)
(5.34)

...

QSLERPn = SLERP

(
QSLERPn−1 , Qn,

wn∑n
j=1wj

)
(5.35)

For the purpose of computing the rotation quaternion of a node, the above procedure is
applied using the rotation quaternions of all n faces connected to this node, with equal
weights wj = 1

n .

Once the rotation quaternion R for all boundary nodes is known, the translation vector t can
be computed with equation 5.20.

Laura Uyttersprot M.Sc. Thesis

5.3 Boundary Node Rotations 49

Figure 5.4: Difference between LERP and SLERP. a) The angle v is interpolated in three steps.
b) LERP: the secant is divided in equal pieces, resulting in small angles at the sides and large
angles in the middle. c) SLERP: interpolation with equal angles. [12]

5.3.3 Interpolation of Rotations to Volume Mesh

IDW will be used to interpolate both the translation and rotation component into the volume
mesh. For the translation component this is straightforward, following the general IDW
method

t(x) =

∑nb
b=1wb(x)tb∑nb
b=1wb(x)

, (5.36)

where t(x) is the translation vector of the volume mesh node at position x, nb is the number of
boundary nodes, wb(x) is the weighting function and tb is the translation vector of boundary
node b. For the rotation component however, several methods can be applied. These methods
are introduced in the following paragraphs.

Linear Interpolation of Quaternions

The first option is to to apply the same procedure to the rotation component as the one used
for the translation component

R(x) =

∑nb
b=1wb(x)Rb∑nb
b=1wb(x)

, (5.37)

where Rb is the rotation quaternion of boundary node b. Note that the resulting rotation
quaternion is not necessarily a unit quaternion, and therefore it has to be normalised. The
displacement u of a volume mesh node at position x can then be computed as

U(x) = R̂(x)XR̂∗(x)−X + T (x), (5.38)

where U = [0, u], X = [0, x], T = [0, t] and R̂(x) is the normalized quaternion R(x).

The above described method, which is called linear interpolation or LERP, has one main
limitation. This limitation is the fact that the interpolation has a varying velocity, which is
larger in the middle than at the sides. This is due to the fact that a simple linear interpolation
yields a secant between two quaternions, as illustrated in figure 5.4 (b).

M.Sc. Thesis Laura Uyttersprot

50 Inverse Distance Weighting Mesh Deformation

Figure 5.5: Uncertainty of SLERP for interpolation of multiple quaternions. [42].

Spherical Linear Interpolation of Quaternions

To resolve the varying velocity problem of LERP, the interpolation of the rotation quaternions
can be done with SLERP, as described in equations 5.31 to 5.35. The used weights for
SLERP are equal to the IDW weights w(x) and n is the total number of boundary nodes.
SLERP of two quaternions yields the shortest route along a great arc on the unit sphere.
Furthermore the angular velocity of the interpolation is constant, as illustrated in figure 5.4
(c) [12]. The disadvantage of SLERP, is that for multiple quaternion interpolation SLERP
is not uniquely defined. When the interpolation order changes, the results will also change.
This uncertainty in the result is illustrated in figure 5.5. Once the translation component
has been computed with equation 5.36, and the rotation component has been computed with
SLERP, the displacement can again be computed with equation 5.38.

Linear Interpolation of Logarithm of Quaternion

The uncertainty in the interpolation result of multiple quaternions is due to the non-
commutative property of quaternions in multiplication [42]. This can be eliminated by cal-
culating in Lie algebra space, using the exponential map [23]. If a quaternion is given by
equations 5.13 to 5.15, then the logarithm of this quaternion is given by [42]

ln(R) = [0,
α

2
a], (5.39)

where a is the unit axis of rotation and α is the angle of rotation. It can be seen that the
logarithm of the quaternion is actually a three-dimensional vector. In [42] it is shown that
the exponential map of SLERP, can be approximated with a LERP of the logarithms of the

Laura Uyttersprot M.Sc. Thesis

5.3 Boundary Node Rotations 51

quaternions. Therefore the interpolation of rotations could be done as follows

ln(R(x)) =

∑nb
b=1wb(x) ln(Rb)∑nb

b=1wb(x)
, (5.40)

This interpolated exponential map can then be converted back to a quaternion as follows

R = [cos
α

2
, sin

α

2
a], (5.41)

α

2
= ‖ln(R)‖ , (5.42)

a =
ln(R)

‖ln(R)‖ . (5.43)

Since the summation of vectors is commutative, this interpolated quaternion is uniquely
determined.

Linear Interpolation of Displacement Field

Finally it is also possible to avoid interpolating rotations, by first determining the displace-
ment at a certain position due to the rotation, and then interpolating this displacement. Let
us first consider the displacement field s(x) of a boundary node b

[0, sb(x)] = Rb[0,x]R∗b − [0,x] + [0, tb]. (5.44)

As proposed in the IDW method of Luke et al [38], this displacement field can be interpolated
with IDW

u(x) =

∑nb
b=1wb(x)sb(x)∑nb

b=1wb(x)
. (5.45)

5.3.4 Results of Mesh Deformation with Rotations

In total four different methods for the interpolation have been introduced

1. LERP of quaternions,

2. SLERP of quaternions,

3. LERP of logarithm of quaternions,

4. LERP of displacement field.

In this section the performance of these four rotation interpolation methods is compared to
each other. This is done by using five different test cases, as described in chapter 4. In all
these test cases relatively large deformations are applied in one step.

M.Sc. Thesis Laura Uyttersprot

52 Inverse Distance Weighting Mesh Deformation

(a) Only translation (b) Rotation method 1 (c) Rotation method 2

(d) Rotation method 3 (e) Rotation method 4

Figure 5.6: View of the mesh of NACA 0012 airfoil after 90◦ rotation.

First let us have a look at the resulting mesh qualities. The orthogonality and skewness are
shown in figures 5.10 and 5.11 respectively. Remember that a perfect orthogonality value is
90◦, whereas a perfect skewness value is zero. Then it becomes clear that method 4 yields
the highest quality for all test cases except for the NACA airfoil rotation. The three other
methods yield results that are very similar to each other in terms of quality. Except for the
rotor 67 test case, where method 3 performs significantly worse than method 1 and 2. This
might indicate that the logarithm approximation used in method 3 is not always accurate.

For the 2D test cases the mesh quality can also easily be assessed by looking at the mesh
itself, as shown in figures 5.6 to 5.8. Figure 5.6(a), 5.7(a) and 5.8(a) show the resulting mesh,
when the basic implementation, without rotations, is used. It is clear that when rotations are
not included in the interpolation, the mesh is not orthogonal at the moving boundary.

Visually, most of the resulting meshes using rotation methods 1-4, look very similar. The
one exception is rotation method 4 in the NACA test case, as shown in figure 5.6(e). This
difference is due to the large rotation angle of 90◦. When interpolating the displacement
due to rotation, instead of the rotation itself, the resulting position will be along a straight

Laura Uyttersprot M.Sc. Thesis

5.3 Boundary Node Rotations 53

(a) Only translation (b) Rotation method 1 (c) Rotation method 2

(d) Rotation method 3 (e) Rotation method 4

Figure 5.7: Detailed view of the mesh of NACA 0012 airfoil after 90◦ rotation.

M.Sc. Thesis Laura Uyttersprot

54 Inverse Distance Weighting Mesh Deformation

(a) Only translation (b) Rotation method 1 (c) Rotation method 2

(d) Rotation method 3 (e) Rotation method 4

Figure 5.8: Detailed view of the mesh of the vortex induced beam vibration test case after
deformation.

line, instead of along an arc. This is illustrated in figure 5.9, where an interpolation is done
between a 0◦ and a 90◦ rotation with equal weights w = 0.5. In case of interpolation with
method 4, the resulting position is in in the middle of the straight line connecting the two
positions. This will have the resulting effect that the mesh seems to be shrinking. For all
other interpolation methods, the resulting position is always on the arc connecting the two
positions, which yields a better result for large rotations.

When looking at the CPU times for the different methods in figure 5.12, method 2 jumps out
as the slowest method. This is due to the fact that SLERP requires several trigonometric
function evaluations which are expensive operations. Method 1 and 3 are the fastest, because

Method 4

Method 1-3

Figure 5.9: Comparison of the different methods for the interpolation between a 0◦ and 90◦

rotation

Laura Uyttersprot M.Sc. Thesis

5.3 Boundary Node Rotations 55

0

5

10

15

20

25

30

35

40

45

NACA Vortex Rotor Flap AGARD

O
rt

h
o

g
o

n
a

li
ty

 (
d

e
g

)

Test Cases

Method 1

Method 2

Method 3

Method 4

Figure 5.10: Comparison of orthogonality for the four rotation interpolation methods.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NACA Vortex Rotor Flap AGARD

Sk
e

w
n

e
ss

Test Cases

Method 1

Method 2

Method 3

Method 4

Figure 5.11: Comparison of skewness for the four rotation interpolation methods.

0

50

100

150

200

250

300

350

400

NACA Vortex Rotor Flap AGARD

C
P

U
 t

im
e

 (s
)

Test Cases

Method 1

Method 2

Method 3

Method 4

Figure 5.12: Comparison of CPU time for the four rotation interpolation methods.

M.Sc. Thesis Laura Uyttersprot

56 Inverse Distance Weighting Mesh Deformation

only summations are required. Finally method 4 is slightly slower than 1 and 3, due to the fact
that first the rotation has to be applied to a vector, which requires some extra multiplications.

In conclusion it can be stated that for large pure rotations, such as the NACA test case,
method 1 or 3 should be used, since they result in high quality meshes for low computational
cost. For more general deformation test cases, such as the bending of a wing, it would be
advised to use method 4 for the best possible mesh quality. However if the deformations are
small and CPU time is more important, method 1 could be used. In general method 2 should
be avoided, due to the high computational cost.

5.4 Sliding Boundary Nodes

So far, two types of boundary conditions, moving and fixed, have been used. In this section a
third type of boundary condition is introduced, namely the sliding boundary condition. This
boundary condition allows for nodes to move, while remaining on the specified boundary.
This is particularly interesting for deformation cases where the gap between the moving and
fixed boundary is small. The fixed boundary condition can then be replaced with a sliding
boundary condition, such that the sliding boundary can follow the displacement of the moving
boundary. One example of a fluid-structure interaction problem where this condition occurs,
are turbo-machinery cases, such as the Rotor 67 test case from chapter 4.

5.4.1 Sliding Boundary Strategy

In structural analogy mesh deformation methods, such as the elastic and spring analogy,
sliding boundary nodes are often incorporated by means of a Neumann boundary condition
[28][25], where the motion is restrained to be tangential to the undeformed domain. This is
fairly straightforward to implement in all mesh strategies where discrete mesh connectivity
methods are used to solve a system of equations. However, since IDW is a point-by-point
method, a different strategy was chosen for the sliding boundaries. This section first explains
the foundation of the method and then introduces further improvements and adaptations to
increase the robustness.

The chosen sliding boundary strategy can easily be explained by means of figure 5.13. The
figure shows a schematic deformation case, where a rectangular block is rotated. The top and
bottom boundaries are fixed boundaries, whereas the left and right boundaries are sliding
boundaries. Three main steps can be distinguished in the sliding boundary strategy

1. Compute the displacement of the sliding boundary nodes using IDW interpolation.
Here, the data points for the interpolation are the fixed and moving boundary nodes,
i.e. nb = nfix + nmov. (See figure 5.13 (3))

2. Snap the sliding boundary nodes to the closest point on the domain boundary. (See
figure 5.13 (4))

Laura Uyttersprot M.Sc. Thesis

5.4 Sliding Boundary Nodes 57

3. Compute the displacement of the inner mesh nodes using IDW interpolation. Here, all
boundary nodes, including the sliding ones, are used as data points in the interpolation,
i.e. nb = nmov + nslide + nfix. (See figure 5.13 (5))

This strategy treats the sliding boundary nodes as a mix between inner mesh nodes and
boundary nodes. First they are inner nodes, for which the displacement has to be computed.
Then, once the displacement is known, they become boundary nodes. As boundary nodes,
they will be included as data points in the interpolation, just like the fixed and moving
boundary nodes.

This strategy is simple and does not add much complexity to the IDW mesh deformation
method. However, a couple of considerations have to be made. First of all, an extra parameter
has to be accounted for. Just like αmov and αfix, as introduced in section 5.2.2, a parameter
αslide, will be needed. Usually the value of αslide can be set equal to 0.1, just as for the
moving boundary. However, for specific test cases the user might choose to adjust this when
necessary. These adjustments can be done in the same way as described in section 5.2.2 for
αmov and αfix. When the user wishes a higher mesh quality close the sliding boundary αslide
can be increased. On the other hand when the user wants to make sure that the area where
the deformation is absorbed is as large as possible, αslide can be decreased such that the mesh
close to the sliding boundary will also deform.

The most difficult part of the sliding strategy, however, would be to implement the snapping
method, to make sure the sliding nodes remain on the domain boundary surface. Luckily,
in HexpressTM, such a function was already available. Normally this function is used in the
process to generate unstructured meshes. However, it can just as easily be used during the
mesh deformation process. The used function finds the closest point on the domain boundary,
using a triangulation to define the domain geometry [30].

Next, it is important to consider the domain topology when snapping nodes to the domain.
The domain topology consists of three types of elements, namely vertices, edges and faces.
Each boundary node in the mesh is linked to one of these elements, i.e. a boundary node is
either a node on a topological vertex, a node on a topological edge or a node on a topological
face. Since it is important to preserve the domain topology, all mesh nodes should always
be snapped onto the element that they are connected to. This means, for example, that
a boundary node that was originally on a domain edge, will remain on that specific edge.
However, for certain CFD domains, this gives rise to problems. Look for example at the
domain of the Rotor 67 test case in figure 5.14(a). Here you can see that the shroud of the
domain actually consists of seven topological faces. The same can be seen in the domain of the
elastic flap test case in figure 5.15(a), where both the top and bottom of the channel consist
of two topological faces and the left face is composed of three topological faces. Of course,
when using the sliding boundary node condition, it is preferable to treat these examples as
one face, seeing as the division is merely a fictional one, that was introduced for meshing
purposes.

To resolve these topological issues, the concept of topological sliding face groups, is introduced.
All faces in such a sliding face group will consequently be treated as if they were just one

M.Sc. Thesis Laura Uyttersprot

58 Inverse Distance Weighting Mesh Deformation

Moving boundary node

Sliding boundary node

Fixed boundary node

Inner node

Object

(1)
Original mesh

(2)
Move the moving boundary nodes

according to the displacement of the
object

(3)
Move sliding boundary nodes using
the moving and fixed nodes as data

points

(4)
Snap sliding boundary nodes to the

closest point on the geometrical
boundary of the domain

(5)
Move the inner mesh nodes using all
(fixed + moving + sliding) boundary

nodes as data points

Figure 5.13: Schematic overview of sliding boundary strategy

Laura Uyttersprot M.Sc. Thesis

5.4 Sliding Boundary Nodes 59

(a) Domain definition of the rotor 67 test
case.

(b) Domain definition of the rotor 67 test
case after the definition of sliding groups.

Figure 5.14: Domain definition of rotor 67 test cases before and after the introduction of topo-
logical sliding face groups.

(a) Domain definition of the elastic flap test
case.

(b) Domain definition of the elastic flap test
case after the definition of sliding groups.

Figure 5.15: Domain definition of the elastic flap test case before and after the introduction of
topological sliding face groups.

M.Sc. Thesis Laura Uyttersprot

60 Inverse Distance Weighting Mesh Deformation

face. For example, in the rotor 67 test case, the user will appoint one sliding face group,
consisting of the seven faces in the shroud. For the elastic flap test case, the user will assign
three sliding face groups:

• Topological sliding face group 1 = Top: faces 1 and 2.

• Topological sliding face group 2 = Bottom: faces 3 and 4.

• Topological sliding face group 3 = Left: faces 5 to 7.

Inside the mesh deformation algorithm the topological sliding face groups are then used to
redefine the domain topology. Four changes are made

1. All faces in one group are treated as if they were one face.

2. All edges that are embedded in one sliding face group are ignored.

3. All edges that form a boundary between the same sliding face groups are treated as if
they were one edge, i.e. they form one sliding edge group.

4. All topological vertices that are embedded within one sliding face group or within one
sliding edge group are ignored.

Concretely, this can be illustrated by means of the elastic flap domain. In figure 5.15(a) the
original domain definition is shown, whereas in figure 5.15(b) the redefined domain, after
the introduction of sliding groups, is illustrated. Note that lower-case symbols are used for
the original domain and upper-case symbols are used for the new domain. In the first step
the grouped faces are redefined as one face, i.e. F1 = f1 + f2, F2 = f5 + f6 + f7 and
F3 = f3 + f4. Then in the second step, edges e1, e8, e9 and e10 are removed, because they
are embedded in one face group. Next, in step 3, the remaining sliding edges are grouped if
they form a boundary between two sliding face groups. This means that E1 = e2 + e3 + e4
(boundary between F1 and F2) and E2 = e5 + e6 + e7 (boundary between F2 and F3).
Finally, in step 4 the topological vertices within one group are ignored. This means that
v1 and v2 can be removed, because they lie within edge E1 and v3 and v4 can be removed
because they lie within edge E2. The same process can be applied to the domain of the rotor
67 test case, to obtain the new domain as in figure 5.14(b).

The final consideration that has to be made when using sliding boundaries, is the fact that
multiple sliding boundaries can be used, as is the case for the elastic flap. This is particularly
a problem when these sliding faces border to each other. The reason being, that only the
moving and fixed nodes serve as data points in the IDW interpolation to update the positions
of the sliding nodes. This means that the nodes on one sliding face receive no displacement
information from the nodes on other sliding faces. As such, it is as if the boundaries between
the different sliding faces are not there. This can lead to problems, because the IDW defor-
mation method with rotations is not extremum conserving. Consequently sliding nodes can
easily move past the boundaries of their plane. When these nodes are then snapped back

Laura Uyttersprot M.Sc. Thesis

5.4 Sliding Boundary Nodes 61

Figure 5.16: Poor quality mes, resulting from improper treatment of sliding boundary.

to their topological surfaces, a bunch of them will be snapped on top of each other at the
boundary of the topological surface. On the other hand the sliding boundary nodes, could
also move away from the boundaries of their topological surfaces, such that large spacings in
the mesh are created. An example of a mesh where multiple sliding face were used is shown
in figure 5.16.

The problem, caused by using multiple sliding nodes, can most clearly be illustrated, by
using the schematic example from figure 5.13 again. This time, it is chosen to use a sliding
boundary condition for the whole outer boundary, as indicated in figure 5.17. The block
receives the same pure rotation as before. When applying IDW interpolation (with rotations)
to the sliding boundary, the whole outer boundary will actually rotate with the same angle
as the block. This is due to the fact that all the data points for the interpolation are moving
boundary nodes, with the same rotation component. Now, when the sliding boundary nodes
are snapped back to their respective topological elements, a poor distribution of the sliding
boundary nodes results. Several corner nodes are even snapped on top of each other in the
corners. This is obviously not an acceptable result. Therefore it is essential that when IDW
is used to update the sliding boundary, the appropriate data points are selected. These data
points should also include sliding boundary nodes, such that the boundaries of the domain
can be preserved.

In order to resolve the issues in test cases with multiple sliding faces, the original sliding
strategy is adjusted. The new strategy splits the computation of the sliding boundary nodes
in two phases. First the sliding edges are updated and then the sliding faces are updated.
When updating the sliding edge nodes all boundary nodes, except for the sliding nodes on its
neighbouring faces, are included as data points. Due to the fact that the sliding node displace-
ments are not known yet, the included sliding data points have a fictional zero-displacement.
The reason why the sliding nodes on neighbouring faces are left out as data points is because
they would restrain the motion of the sliding edge.

M.Sc. Thesis Laura Uyttersprot

62 Inverse Distance Weighting Mesh Deformation

(1)
Pure rotation of the inner block

(2)
Move sliding boundary nodes using

the moving nodes as data points

(3)
Snap sliding boundary nodes to the

closest point on the geometrical
boundary of the domain

Figure 5.17: Schematic example of a poor quality mesh deformation when choosing the sliding
boundary condition for the whole outer boundary.

In the next step, when the nodes on topological sliding faces are updated, the data points for
the IDW interpolation function include all moving and fixed boundary nodes and the sliding
nodes on edges. However since the amount of nodes on an edge is remarkably lower than
the amount of nodes on a face, a compensation in the weighting function has to be done. A
simple adjustment is made, where the weighting function for the nodes on sliding edges is
simply multiplied by a factor. This factor is equal to the amount of nodes on sliding faces
divided by the amount of nodes on sliding edges. A final structured overview of the sliding
strategy is given below

1. Adjust the domain topology.

2. Compute the displacement of nodes on topological sliding edges with IDW interpolation.
The included data points are

(a) all moving boundary nodes,

(b) all fixed boundary nodes,

(c) all sliding boundary nodes, except for the nodes on neighbouring sliding faces. All
sliding boundary data points have a zero-displacement.

3. Snap the displaced sliding nodes to the closest point on their respective topological
edges.

4. Compute the displacement of nodes on sliding topological faces with IDW interpolation.
The included data points are

(a) all moving boundary nodes,

(b) all fixed boundary nodes,

(c) all sliding nodes on topological edges, with weighting function multiplied by factor
f = number of nodes on sliding faces

number of nodes on sliding edges

Laura Uyttersprot M.Sc. Thesis

5.4 Sliding Boundary Nodes 63

5. Snap the displaced sliding nodes to the closest point on their respective topological
faces.

6. Compute the displacement of inner mesh node displacements with IDW interpolation.
The included data points are

(a) all moving boundary nodes,

(b) all fixed boundary nodes,

(c) all sliding boundary nodes.

Note that when using IDW interpolation, it is very easy to adapt which nodes are included as
data points. Since IDW interpolation consists of a simple summation over all data points, it
is easy to leave certain data points out of the sum. On the other hand, for RBF interpolation
this would be more difficult because it is not an explicit interpolation method. Depending on
which data points have to be included, a new interpolation function will have to be created,
which could be a costly procedure.

5.4.2 Sliding Boundary Results

In this section two different test cases for which sliding nodes are necessary, are discussed.
The first one is the rotor 67 test case. Due to the very small gap between the rotor blade and
the shroud of the turbo-engine, a sliding boundary condition has to be imposed at the shroud
to maintain a good mesh quality. The second test case is the elastic flap. This test case has
a relatively large deformation, within a confined space. Therefore, both the top, bottom and
left panel of the channel have a sliding boundary condition.

Firstly, the rotor 67 test case is examined. In figure 5.18 the shroud of rotor 67 is shown. The
left figure shows the resulting surface mesh without sliding nodes (i.e. the shroud remains
fixed), and the right figure shows the resulting surface mesh with sliding nodes. The red lines
indicate the original positions of the surfaces. When the sliding boundary condition is used,
the shroud mesh has moved slightly to the right and to the bottom of the image. Even though
this might seem to affect the quality of the shroud mesh in a negative sense, it is actually
very beneficial for the volume mesh quality, as the shroud mesh has followed the movement
of the blade (if you could see through the shroud in figure 5.18(b) you would see the blade tip
right underneath it). The fact that the shroud mesh has followed the blade movement leads
to a better orthogonality of the mesh between the shroud and the blade. This can clearly
be seen when looking at a cross-section through the length of the blade, as in figure 5.19.
Without sliding nodes (left), the cells between the shroud and the blade have become skewed.
The blade even seems to cut through the mesh, as the mesh cannot follow the motion of the
blade. When using the sliding boundary condition at the shroud (right), the cells between
the blade and the shroud remain orthogonal. The good quality of the mesh can also be
assessed quantitatively. The resulting mesh with sliding nodes has a minimal orthogonality
of 33.77◦ and a maximal skewness of 0.72. This is only a small reduction compared to the
original mesh quality with a minimal orthogonality of 31.99◦ and a maximal skewness of 0.72.

M.Sc. Thesis Laura Uyttersprot

64 Inverse Distance Weighting Mesh Deformation

(a) Without sliding nodes (b) With sliding nodes

Figure 5.18: View of the shroud of rotor 67.

However, when no sliding nodes are used the mesh has negative cells, which means a minimal
orthogonality of 0◦ and a maximum skewness of 1.

For the elastic flap test case the surface mesh is shown in figure 5.21. On the left, the surface
mesh remains fixed (i.e. no sliding boundary), whereas on the right the surface mesh follows
the deformation of the flap (i.e. with sliding nodes). Once again this leads to significant
differences in deformed mesh quality, as can be seen from a horizontal cross-section through
the middle of the channel in figure 5.20. Without sliding nodes, the mesh cannot follow the
deformation of the flap, leading to negative cells. On the other hand, when sliding nodes
are used, the mesh shows a smooth transition between the flap and the wall of the channel.
Moreover, when sliding nodes are used a minimum orthogonality of 41.74◦ and a maximum
skewness of 0.55 indicate that the mesh remained of high quality.

Laura Uyttersprot M.Sc. Thesis

5.4 Sliding Boundary Nodes 65

(a) View of the cutting plane position

(b) Without sliding nodes (c) With sliding nodes

Figure 5.19: Cutting plane through the blade, showing the small gap between the rotor blade
and the shroud.

M.Sc. Thesis Laura Uyttersprot

66 Inverse Distance Weighting Mesh Deformation

(a) View of the cutting plane position

(b) Without sliding nodes (c) With sliding nodes

Figure 5.20: Horizontal cutting plane through the middle of the channel, showing the gap between
the flap and the channel wall.

Laura Uyttersprot M.Sc. Thesis

5.5 Absolute and Relative Displacements 67

(a) Without sliding nodes (b) With sliding nodes

Figure 5.21: 3D view of the deformed elastic flap mesh.

5.5 Absolute and Relative Displacements

Displacements can be defined with respect to either the initial mesh or the mesh of the pre-
vious time step. These two methods are referred to as absolute and relative displacements
respectively. Both methods give different results and could moreover be implemented differ-
ently. This section will briefly discuss these issues.

In general it can be stated that the largest deformations can be performed when applying this
deformation in several steps, using relative displacements. This is demonstrated by means
of the orthogonality metric in figure 5.22 for the vortex induced beam vibration test case.
Note that the skewness results are not displayed here, as they show the same trends. One
tenth of the modal displacement as displayed in figure 4.3(b) is added to the motion at each
deformation step. The relative method only breaks down after the tip displacement has
reached 5 cm. On the other hand, the absolute displacement method manages to perform
equally well as the relative method until a tip displacement of 3 cm is obtained. Beyond the
3 cm amplitude, the quality of the mesh drops quickly and negative cells occur at around
3.5 cm.

Despite the good performance of the relative method for large deformations, it has a main
drawback which becomes clear when a periodic motion is applied. Namely, the mesh is not
guaranteed to return to its initial quality when passing through the initial position. This
situation is demonstrated in figure 5.23 for the vortex induced beam vibration test case,
where the following oscillating motion is applied

u(t) = sin (0.5t) · umodal, (5.46)

where t is the displacement step and umodal is the original modal displacement from figure
4.3(b). It is clear that the relative deformation method breaks down quickly after only a few

M.Sc. Thesis Laura Uyttersprot

68 Inverse Distance Weighting Mesh Deformation

Figure 5.22: Comparison of the minimum orthogonality reached with absolute and relative dis-
placements for the beam vibration test case.

oscillations, whereas the quality of the absolute method always oscillates around the initial
mesh quality.

Figure 5.23: Comparison of the minimum orthogonality during an oscillating motion of the vortex
beam when using absolute and relative displacements.

Therefore, a different method might be chosen for different deformation types. A large steady
deformation should be done with relative displacements and smaller oscillating motions should
be done with absolute displacements. The question remains how to deal with oscillating
motions that have very large amplitudes which cannot be deformed with the absolute method.
In such a case a hybrid method might be recommended, where relative displacements are used
to reach the maximum amplitude, and once the object is back at its original position, the
quality of the mesh is reset by using one absolute displacement from the initial mesh. However,
due to time constraints, this avenue has not been investigated here and remains a topic for
future research. One alternative to allow for larger deformation is to increase the size of the
domain, such that there is more room to dissipate the displacements. However, this solution

Laura Uyttersprot M.Sc. Thesis

5.5 Absolute and Relative Displacements 69

can only be applied to external flows, where the user has the freedom to choose the size of
the domain. The drawback of increasing the domain size is that the CFD time will increase
proportionally.

In addition to the type of motion, the choice between the absolute and the relative method
also depends on the mesh deformation method used. Structural analogies are best in combi-
nation with relative displacements, as this allows the iterations to start from a good initial
condition. On the other hand, when the RBF method is chosen it is customary to use abso-
lute displacements, as this allows to only invert the system matrix once, at the start of the
computation. The inversion of the matrix is so costly that for a mesh of less than 1 million
points it can take up to one day to complete. Once the matrix has been inverted, it can be
re-used for several computations.

Also for the IDW method it is possible to store the interpolation weights wb(x) from equation
5.8, such that they can be re-used at every time step. There are however a very large amount
of weights, namely ni × nb. This can quickly grow to an unacceptable amount of data of
several gigabytes. Even if it is taken into account that the weights only have to be stored for
the moving and sliding boundary nodes, as for the fixed nodes simply the sum of all these
weights could be stored, the size remains unacceptable. For example for the coarse mesh
AGARD 445.7 test case, ni × nmov = 1, 769, 528, 235. If the distances have to be stored in
double precision (1 double = 8 bytes), the storage required is equal to 13.184 GB. For the
AGARD 445.7 fine mesh, this even increases to 430 GB. Moreover, it should not be forgotten
that reading and writing data from a file also requires some time. This means that not much
time can be saved by storing and re-using the weights when the cost to compute the weights
is relatively low. Especially when storing data at network locations, which is often the case
in industry environments, the reading time becomes large. Therefore this path is not further
investigated here.

In FINETM/Open the user has the choice between absolute and relative displacements by
means of an expert input parameter. The recommendation is to use absolute displacements
for oscillating motions and relative displacements otherwise. For most of the test cases which
are presented here, only one (large) deformation step is done. This means that a relative and
an absolute displacement is the same.

M.Sc. Thesis Laura Uyttersprot

70 Inverse Distance Weighting Mesh Deformation

Laura Uyttersprot M.Sc. Thesis

Chapter 6

Efficiency Improvements

The IDW mesh deformation method as presented in this thesis, is a point-by-point method
and hence has the advantage that it can easily be implemented in parallel. Despite this
advantage, the cost of this deformation method can quickly become dominant for large 3D
simulations. This is due to the fact that the cost of the method is of the order O(ninb),
where ni is the amount of inner mesh nodes and nb is the amount of boundary nodes. It is
important to note that in three-dimensional cases, the number of surface nodes grows at a
rate of O(n

2
3), where n is the total number of mesh nodes. Finally this leads to a total cost

of O(n
5
3) [38]. In this chapter, a possible solution to this problem is presented. First a range

of efficiency improvement methods are reviewed based on available literature, in section 6.1.
Next, the implementation of the chosen method is explained in detail in section 6.2. Finally
the results of this efficiency improvement are presented in section 6.3.

6.1 Efficiency Improvement Methods

The aim of this section is to present a brief literature overview of possible methods to increase
the efficiency of inverse distance weighting interpolation, specifically for the application in
mesh deformation. These methods can generally be sub-divided in two philosophies. The
first is to find an approximate solution to the exact problem, whereas the second tries to
find an exact solution to an approximate problem. Each subsection presents one possible
method to increase the efficiency of IDW mesh deformation. These methods come from
different backgrounds and tackle the problem in different ways. It has to be noted that most
of the methods have not been proven effective for IDW mesh deformation, however they
have the potential to give good results. Finally the last paragraph gives conclusions and
recommendations concerning the presented methods.

M.Sc. Thesis Laura Uyttersprot

72 Efficiency Improvements

6.1.1 Tree-Code Optimisation

In [38] Luke et al present a tree-code optimisation to increase the efficiency of IDW for large
scale meshes. The method is inspired by tree-code optimisations that are frequently used in
N-body simulations, such as the Barnes-Hut method and the Fast Multipole Method (FMM).
The introduced method is based on the idea that nearby nodes should be treated exactly,
whereas distant nodes can be approximated as one group.

Firstly the boundary nodes are organised in a kd-tree, such that clusters in the boundary
nodes are identified. Next it is necessary to approximate the effect of a group of nodes by
means of a set of four pseudo-nodes, called quad points. From this approximation a fast
kd-tree evaluator can be build. For each volume node the kd-tree is descended recursively.
At a vertex of the tree it is checked whether the error of the approximation meets a certain
tolerance. If this is the case, the quad points are used, otherwise the tree has to be descended
further.

The advantage of using such a kd-tree is that it automatically reduces the error near the
boundaries, because in this region nearby leaves of the tree will be evaluated as an exact
expansion. Typically a target error of 1% is sufficient for mesh deformation.

It is also possible to parallelise the kd-tree method, by dividing the vertices and leaves of the
tree over several processors. A drawback is that the evaluation of the IDW interpolation leads
to load imbalance because the nodes close to the boundaries tend to visit more leaves than
the nodes further away from the boundaries. However this can be solved by redistributing
the nodes based on the measured load imbalance of the previous evaluation.

Although no information is given about how the efficiency of the tree code evaluation compares
to exact evaluation, it is demonstrated that its evaluation phase can be more than ten times
faster compared to the RBF evaluation phase. Moreover it is demonstrated that the method
can deform a 100 million node mesh distributed over 192 processors in less than 20s. [38]

For a more detailed description of the method, the reader is referred to appendix A.

6.1.2 Boundary Node Coarsening

Boundary node coarsening or data point reduction is a method that is popular to increase
the efficiency of RBF mesh deformation. Since also in IDW mesh deformation the number of
boundary nodes is one of the driving factors in the cost of the method, it is a good idea to
investigate coarsening of the boundary nodes as an IDW efficiency improvement strategy.

The reduction of data points was first applied to RBF mesh deformation by Jakobsson and
Amoignon [27]. They proposed to select boundary nodes by means of a minimum distance
between data points, according to the following procedure:

Laura Uyttersprot M.Sc. Thesis

6.1 Efficiency Improvement Methods 73

1. Choose a minimal distance d between data points.

2. Organise all the boundary nodes into one long array. Select the first node as the first
data point to initialise the procedure.

3. The next data point is the next point in the array whose distance to all previously
selected nodes is at least d.

4. Continue the procedure until the end of the array is reached.

For the boundary nodes, which are not selected as data points, the displacement is not
imposed, but will be computed by the interpolation just like for the volume mesh nodes. This
means that an error is introduced at the boundary, i.e. the difference between the actual
boundary node displacement and the computed interpolated displacement. However, even
when selecting a relatively small amount of data points, this error is usually not very large
[27].

Later, Rendall and Allen [54] noted that Jakobsson’s method to select a reduced amount of
data points does not try to minimise the error at the boundary. Therefore they introduced a
greedy algorithm that selects data points to achieve a certain error bound. A greedy selection
algorithm is an algorithm that at each iteration appends point(s) based on a local error
assessment. It is greedy because at each iteration the algorithm corrects only for the largest
local error, not taking into account the global consequences of this choice. Note that the
greedy algorithm starts from a random initial point, or small set of points, and adds points
per iteration, until the stopping criterion is met. This means that the greedy algorithm will
require less time when less nodes are selected. Or in other words, the coarser the final surface
mesh is, the more efficient this method becomes.

In order to accelerate the greedy-algorithm it is possible to select more than one point in each
iteration. For example one could use the direction of the error to select two points with an
angle of at least 90 degrees between their respective errors [69]. This can be done by first
selecting the point with the largest error, and secondly selecting the point with the largest
error that has at least an angle of 90 degrees with respect to the first selected node.

Experiments have shown that the error in surface displacement is approximately inversely
proportional to the number of greedy iterations. Moreover, the final number of selected
surface nodes is usually independent of the initial selection of surface nodes [54]. This leads
to a mesh deformation algorithm cost that only depends on the number of volume mesh nodes
and not on the number of boundary nodes. One particular result showed that when using
only 3% of the boundary nodes, the error was only 0.022% of the maximum deformation [56].
Moreover when the number of boundary nodes is reduced with a certain factor, the evaluation
cost is reduced with this same factor.

Finally, Kowollik et al [31], have proposed to coarsen the boundary mesh by using a kd-tree
method. Their method consists of the following five steps

1. Construct a kd-tree with specified maximum and minimal region bounds.

M.Sc. Thesis Laura Uyttersprot

74 Efficiency Improvements

2. Create bounding boxes for each leaf cell.

3. For each bounding box, generate search points. This can be one central point, 8 corner
points or 8 gauss points, depending on the test case.

4. For each search point, find the closest surface mesh node.

5. Drop the surface nodes that have been selected more than once.

The advantage of this method, over the greedy method, is that it is not dependent on the
deformation of the structure. This means that a black box approach can be used, where the
coarse boundary nodes are selected beforehand.

The main drawback of coarsening the boundary is that the boundary nodes which are not
included as data points are moved through the interpolation, rather than with their exact im-
posed displacement. This surface error can however be corrected for by means of a secondary
motion scheme. Rendall and Allen [55] proposed to use a simple nearest point correction. The
advantage of using this nearest point correction is that the method remains meshless. Another
method that could be used for the correction step is the Delaunay Graph Mapping method
of Liu et al [33]. In [31] it was demonstrated that using this method gives results which have
a comparable mesh quality to the full RBF method, even with a large reduction (up till 98%)
of control points. However, also other correction methods such as the linear spring analogy
or Laplacian smoothing could be used. Moreover also less conventional methods such as the
advancing front technique of Gerhold and Neumann [20] would be appropriate.

The quality of this hybrid scheme, which combines the coarsened RBF with a correction
step, lies in the fact that two methods are used, where each method is used based on its
own strengths. The RBF maintains orthogonality very well, but is prohibitively expensive for
large applications. The correction method does not have to maintain orthogonality, but has
superior efficiency. As such the resulting technique is both robust and efficient, without the
drawbacks.

6.1.3 Local Inverse Distance Weighting

A frequently applied method to reduce the computational cost of RBF mesh deformation is
the use of a local support radius. This means that the interpolation at a certain volume
mesh node is only dependent on the surface mesh nodes that are within a certain radius.
Also in IDW interpolation a local support radius is one of the oldest and most used methods
to increase its efficiency [60][52]. One drawback to using a local support radius is that it is
possible that some nodes have no data points within their radius and other nodes might have
too many. Therefore it is possible to use the set of N closest surface nodes to a volume node
in order to compute the interpolation, instead of using a fixed support radius. However, this
method is more involved as it requires an efficient method to find nearest neighbours, which
can be expensive. In order to minimise these drawbacks the two approaches can be combined.
This is done by first selecting a maximum and a minimum amount of nodes that should be
included for the interpolation at each volume node. Then an initial search radius is chosen

Laura Uyttersprot M.Sc. Thesis

6.1 Efficiency Improvement Methods 75

based on the average source point density and the required amount of nodes. During the
interpolation it is checked for each point how many nodes there are within the initial search
radius. If the amount is within the set minimum and maximum bounds, the initial radius is
kept. Otherwise it will be set larger or smaller in case there were not enough or too many
nodes within the initial search radius respectively. When using a local IDW interpolation the
weighting function has to be adjusted such that it goes to zero at the radius R. One option
is the following function as proposed in [60]

wb(x) =


1

‖x−xb‖ if 0 < ‖x− xb‖ < R
3 ,

27
4R

(
‖x−xb‖

R − 1
)2

if R
3 < ‖x− xb‖ ≤ R,

0 if R < ‖x− xb‖
, (6.1)

however this function can be adapted in different ways. For example Franke proposed a
simpler scheme [18]

wb(x) =

(
(R− ‖x− xb‖)+

R ‖x− xb‖

)2

, (6.2)

where

(R− ‖x− xb‖)+ =

{
R− ‖x− xb‖ if ‖x− xb‖ < R

0 if ‖x− xb‖ > R
(6.3)

Using a local support radius has the difficulty to select the proper radius. When the selected
radius is too small, the resulting interpolation might show bad properties. In the case of mesh
deformation the support radius is dependent on the size of the deformation.

6.1.4 Fast Multi-Level Evaluation

Livne and Wright [35] introduced a fast multi-level evaluation (FMLE) to speed up the evalu-
ation phase in RBF interpolation. The idea of the method is to evaluate the sum at a coarser
level grid, which is then interpolated back to the fine grid. The method consists of three main
steps

1. Anterpolation: compute the interpolation coefficients for the coarse Cartesian mesh

2. Coarse Level Summation: evaluate the interpolation sum on the coarse level grid.

3. Interpolation: interpolate the coarse level solution back to the fine level mesh, using a
centered pth-order interpolation.

This method specifically applies to smooth radial basis functions. It decreases the cost of the
RBF evaluation part from O(ninb) to O((nb +ni)(ln(1/δ))d) where δ is the desired accuracy,
d is the dimension, ni is the number of evaluation points (or volume mesh nodes) and nb is
the number of data points (or boundary mesh nodes). When using radial basis functions that

M.Sc. Thesis Laura Uyttersprot

76 Efficiency Improvements

have a singularity, such as for example the Thin Plate Spline (TPS) at r = 0, the interpolation
error cannot be controlled in the region around r = 0. In such a case the function has to be
split into a smooth and a local part. The local part can then be evaluated exactly, because
it only has a local support, and the smooth part can be evaluated with the FMLE method.
This consequently also requires working with a hierarchy of coarser level grids.

De Boer [14] showed that using FMLE for a smooth RBF indeed gives a significant efficiency
increase: 35 times faster for an accuracy of 10−13 and 2000 times faster for an accuracy of
10−3 compared to the exact evaluation. However when using a hierarchy of grids applied to
the piecewise smooth TPS function the efficiency drops drastically, which can be accounted
to the fact that the density of the data points is not uniform.

Due to the fact that IDW also has a singularity at r = 0, the question remains whether FMLE
is a suitable method to increase the efficiency. Furthermore the division of the function into
a local and a smooth part also complicates the implementation.

6.1.5 Fast Multipole Method

The fast multipole method (FMM) [24] is often applied in N-body simulations. Its strategy is
similar to the kd-tree optimisation in the sense that a tree data structure is used to separate
the far-field and near-field contributions in the interpolation. As such the far-field contribu-
tions are evaluated with an approximation, whereas the near-field contributions are evaluated
exactly. The difference with the method presented in section 6.1.1 lies in how the far-field
is approximated. In FMM multipole expansions are used, which allow to group the far-field
contributions. Using FMM can bring back the order of the method to O(n).

The FMM has already been proven to be applicable to RBF interpolation [6], however not yet
in the context of mesh deformation. This can be attributed to the fact that the implementation
of the method is quite involved [14]. Furthermore Luke et al [38] noted that it is not clear at
what point the FMM would actually perform better than their kd-tree method. This combined
with its complexity leads to the conclusion that FMM applied to IDW mesh deformation will
not be further investigated here.

6.1.6 Moving Submesh Approach

Lefrançois [32] introduced a new method, which uses a combination of a coarse and a fine
grid, called the Moving Submesh Approach (MSA). In this method first a coarse level grid
is generated with a random meshing algorithm, by specifying a large cell size. This coarse
mesh is then updated using a robust mesh deformation method, for which Lefrançois opted
to use the elastic analogy. Finally the deformation of the coarse mesh is interpolated to the
original fine mesh by using an interpolation method, similar to the finite element approach.
One limitation of this method is that the background mesh needs to consist of triangular
elements in 2D or tetrahedral elements in 3D. The resulting method is very efficient and

Laura Uyttersprot M.Sc. Thesis

6.1 Efficiency Improvement Methods 77

robust. However it is possible that the topology of the background mesh is visible in the fine
mesh. In that case an additional post-smoothing step might be required.

Liu et al [34] demonstrated that also the RBF method is suitable to move the background
mesh. Moreover they introduced another interpolation technique from the coarse to the fine
mesh, using the area or volume ratios, determined by the position of the fine level node in the
coarse level cell. The method is proven to be able to deal with large rotations, translations
and deformations, with a quality comparable to radial basis function interpolation and an
efficiency of two orders of magnitude higher.

It is clear that the MSA method could also be using IDW interpolation to update the coarse
mesh. The remaining issue is how to generate the background mesh. In both of the above
references the background mesh is generated separately at the start of the computation. This
would require an extra input mesh from the user, plus additional knowledge to decide upon
the size of the coarse level cells. Moreover in both examples the background mesh is required
to be triangular or tetrahedral. With the application into FINETM/Open in mind, only a
hexahedral or hybrid mesh will be available to work with. Therefore the interpolation method
from fine to coarse mesh might have to be adapted. However, since each hexahedral element
can easily be subdivided into imaginary tetrahedral cells, this should not impose a significant
problem. The application in FINETM/Open would also allow to use the existing coarse level
agglomerations from the multigrid approach as the background mesh.

6.1.7 Conclusions and Recommendations

In total six methods have been discussed which might be used to increase the efficiency of
IDW mesh deformation. Each of these methods has its own advantages and drawbacks. Based
on the background provided in the previous sections, some conclusions can be drawn.

• The FMM is the most complex method. Moreover, it has no clear advantages over the
tree-code optimisation method. Therefore it is not recommended to use this method.

• For the FMLE method it is not clear whether good results can be obtained, due to
the singularity of the IDW interpolation function. As such, this method is also not
recommended.

• For the MSA method, several considerations have to be taken. One will need to have
a coarse background mesh available in order to apply this method. In FINETM/Open ,
the agglomerated multigrid levels could be used for this purpose. However, due to the
object-oriented architecture of the code, the multigrid levels are only available in the
CFD solver part and not in the mesh deformation part. Therefore, even-though this
method might be a good method to apply to IDW, it will not be considered further
here.

• The locally supported IDW method could be very beneficial for mesh deformation cases
where the deformation is small compared to the size of the mesh. However, in our
particular case of FSI, this would usually not be the case. Additionally, the use of a

M.Sc. Thesis Laura Uyttersprot

78 Efficiency Improvements

local IDW interpolation could also affect the quality of the mesh, as the motion cannot
be propagated far into the volume mesh.

• The kd-tree method seems to be particularly useful to increase the efficiency of IDW
mesh deformation. However this method is also fairly complex and limited information
about this method is available as it is fairly new.

• The method of boundary node coarsening is particularly appealing because of its sim-
plicity and the fact that it can be applied to both RBF and IDW, which is not the case
for the kd-tree method. Additionally, the boundary node coarsening method has been
proven highly effective to increase the efficiency of RBF mesh deformation and similar
results should be expected for IDW.

Based on this list of conclusions, the boundary node coarsening method is chosen to be
implemented here. The exact details of the implementation are given in the following section.

6.2 Boundary Node Coarsening

As explained in section 6.1.2, there are several methods to coarsen the boundary mesh. How-
ever so far only one method tries to select an optimal set of boundary nodes, which reduces
the introduced boundary error. This method is the greedy algorithm as presented in [54].
Moreover, thanks to the explicit nature of the IDW interpolation function, it is easy to up-
date the interpolation function at each iteration of the greedy method. Therefore, the greedy
method is chosen to coarsen the boundary mesh in this thesis project. The following sections
will elaborate on the details of the boundary node coarsening implementation.

6.2.1 The Greedy Algorithm

The greedy algorithm can be explained in five steps:

1. Select an initial active point or set of active points to start the iteration. This can
simply be the first point of the list of boundary nodes.

2. Use the active list of boundary nodes to construct a surface interpolation.

3. At each boundary node, compute the norm of the error between the interpolated dis-
placement and the actual displacement at the boundary node.

4. Append the point with the largest error to the active list. Now this point is included in
the construction of the surface interpolation function, as such the error at that point is
per definition equal to zero.

5. Iterate until the target error bound is met at all the inactive nodes or until a set number
of nodes has been selected.

Laura Uyttersprot M.Sc. Thesis

6.2 Boundary Node Coarsening 79

In this thesis it was chosen to use all the corners of the boundaries to start the greedy iteration.
This choice makes sure that these crucial points of the domain are represented exactly.

At each iteration of the greedy algorithm a new interpolation function has to be computed,
including the one extra contribution of the new active node. For RBF interpolation, this
requires either solving the system at each greedy iteration or adding a local correction to
the function from the previous step [54]. For IDW, however, this is easy because it simply
requires adding the contribution of the active node to the sums of the IDW interpolation
function. Even when rotations are included this can easily be done. It simply requires storing
the numerator and denominator for each inactive node for both the translation and rotation
component. There is one rotation method however, which is difficult to combine with the
greedy method. This is the SLERP rotation method. As mentioned in section 5.3.3, the
SLERP interpolation is dependent on the order of interpolation. This means that when the
greedy method is used, the order in which the active nodes are added to the list, is also the
order in which the interpolation for the inner nodes will have to be done. This is in itself not
problematic, however the code had already been structured in a way that the interpolation
for the inner nodes always applied an order of moving, sliding and then fixed. The reason why
the moving, sliding and fixed nodes are grouped is that it allows to avoid if -statements for
each boundary node, which makes it more efficient. Therefore, the current implementation
does not allow to combine boundary node coarsening with the SLERP rotation interpolation
method. This is however not a problem as several other methods, such as LERP and LERP-
log are available, which give very similar results, as explained in section 5.3.

One additional difficulty, when using the greedy method for boundary node coarsening, is the
treatment of sliding boundary nodes. In order to apply the greedy method, the displacement
of all nodes has to be known. However, the displacement of the sliding nodes is not known
beforehand. This problem can be tackled in several ways. First of all it is possible to assume
a displacement of zero for all sliding nodes during the greedy algorithm. This option has
the advantage that it is very simple, although it also leads to the selection of more nodes
on the sliding boundary as necessary, as the assumption of a zero displacement leads to
bigger errors at the sliding boundary. Additionally this method gives no guarantees about
the actual maximum interpolation error after coarsening, as it is not based on the actual
displacements. The second option is to first coarsen the fixed and moving boundary, then
update the position of the sliding boundary, and then coarsen the whole boundary (including
the sliding boundary), now taking the active nodes of the moving and fixed boundary as
a starting point. This method is more involved, as it requires several steps, and several
considerations have to be made when multiple sliding faces are used. In both of the above
methods, the new position of the sliding boundary is based on the coarse mesh. This means
that there might be some errors at the boundaries with other surfaces. In order not to
jeopardise the robustness of the IDW mesh deformation method, it is chosen to compute
the position of the sliding boundary nodes before coarsening is done. This means that the
IDW interpolation function for the sliding nodes will be based on the original surface mesh,
without coarsening, which might make the computation of the sliding boundary displacement
expensive. However, since the amount of sliding boundary nodes is usually limited to a couple
of surfaces, this is not a limiting factor.

M.Sc. Thesis Laura Uyttersprot

80 Efficiency Improvements

6.2.2 Greedy Error Functions and Stopping Criteria

In this section a detailed description will be given of the choice of error function and stopping
criteria for the greedy algorithm. Several options are proposed and compared to each other
in a series of test problems.

The greedy algorithm needs an error signal to select the surface nodes. This error function
can either be based on geometrical arguments or interpolation errors. For the purpose of
mesh deformation Rendall and Allen [56] have demonstrated that the actual surface error,
i.e. the norm of the error between the actual surface displacement and the interpolated surface
displacement, is the most effective error signal. One disadvantage of this error choice is that
the displacement of the boundary has to be known, and hence this requires selecting a new
set of points for each new deformation step. Alternatively the unit error function can be used
to select a reduced data set only once at the start of the computation. This is identical to
imposing a unit displacement to the boundary, instead of the actual displacement. However
using the unit function gives no guarantees that a certain target error bound is met at each
deformation step. Therefore, when using the unit function, usually more boundary nodes
will have to be selected, compared to when the surface error function is used. This in turn
results in a higher cost of the interpolation phase for the inner mesh nodes. Additionally
some preliminary test cases showed that the greedy method has a low cost compared to the
total cost of the mesh deformation. As such, it is chosen to use the surface error function
and perform the greedy algorithm at each iteration. Section 6.4 will discuss how this can be
applied more efficiently during time-dependent simulations.

For the greedy coarsening method to be useful, it has to be combined with a good choice
of stopping criteria. When the surface error function is used, the greedy algorithm can be
stopped as soon as a pre-defined error bound is met. This error bound will, however, be
problem dependent. Since it is preferable to have a method that requires the least possible
problem dependent inputs, it is attempted here to find several criteria that can be applied
more universally. The performance of each criterion is demonstrated by means of both the
coarse and fine mesh AGARD 445.6 test case. The test results for the elastic flap and rotor 67
(fine and coarse mesh) demonstrate the same characteristics and can be reviewed in appendix
B.

Criterion 1

The first, logical choice is to scale the errors ε with a fixed reference length lref , such that a
relative, dimensionless error ε̂ is achieved

ε̂ =
ε

lref
. (6.4)

The reference length, should represent the scale of the problem. In this case it was chosen to be
equal to the aerodynamic reference length, as this is already available during the simulation.
The greedy algorithm can then be stopped when all errors are smaller than the desired

Laura Uyttersprot M.Sc. Thesis

6.2 Boundary Node Coarsening 81

maximum relative error, which will usually range from 10−3 to 10−2

εmax
lref

< k, where k ≈ 10−3 → 10−2. (6.5)

The maximum relative error achieved, with respect to the number of selected nodes, is shown
in figure 6.1(a) and 6.2(a) for the coarse and fine mesh AGARD test case respectively when
k = 0.01. For both meshes, the selected number of active boundary nodes is around 340 out
of an original of 33,602 and 134,402 boundary nodes for the coarse and fine mesh respectively.
This indicates that the selected number of nodes is independent of the mesh, and rather
depends on the geometry and deformation of the problem. Moreover it is remarkable that by
only selecting 340 nodes, the error is already smaller than 1% of the root wing chord. For
the fine mesh this means that only 0.26% of the entire boundary is used. The selected nodes
are visualised in figures 6.3(b) and 6.4(b) for the coarse and fine mesh respectively. Here it is
clear that the amount of nodes that has been selected on the moving boundary is very small
compared to the number of nodes selected on the outer boundary. This might be due to the
fact that in the AGARD test case the parameter αmov = 0.3, whereas αfix = 0.1, which
means that the area around the moving boundary will be deformed in a more rigid fashion.

Criterion 2

The second stopping criterion is based on the idea that not all boundary nodes require the
same maximum error. It is reasonable to assume that the boundary nodes in viscous layers
might require a smaller error than the boundary nodes at the exterior boundaries where the
cells are larger. Therefore, a second choice of error function is to scale the surface error ε with
the boundary cell height h corresponding to a boundary node

ε̂ =
ε

h
. (6.6)

This will automatically lead to a higher selection of nodes where the cells are smaller. For
this method a good stopping criterion would be to stop when the relative error is smaller
than 1, since this means that the error at the boundary is smaller than its cell height

εmax
h

< k, where k ≈ 1. (6.7)

The maximum relative error function for criterion 2 is plotted in figures 6.1(b) and 6.2(b),
for the coarse and fine mesh respectively. From these results it is clear that a lot more active
nodes (18959) are selected for the fine mesh compared to the coarse mesh (4733). This is due
to the fact that the boundary height in the fine mesh is twice as small, which means that
many extra nodes have to be selected to reach such a low error. The noise in the displayed
signals is caused by the fact that each time an extra node is selected, this reduces the error
around the node, but at the same time it can also introduce an error further away from the
node. When looking at the selected nodes in figures 6.3(c) and 6.4(c), it can be seen that
the nodes are mainly selected in the areas where the boundary height is very small. It is
remarkable that for the right hand exterior boundary nearly no nodes are selected, as the
cells in this far field boundary are relatively high. This can be problematic as it means that
the absolute error at this boundary is quite large, and such a large error cannot always be
corrected properly with the correction step as described in section 6.2.3. On the other hand,

M.Sc. Thesis Laura Uyttersprot

82 Efficiency Improvements

0 50 100 150 200 250 300 350
Points

10−3

10−2

10−1

M
a
x
.
R
e
l.
E
r
r
o
r

(a) Criterion 1 (k = 0.01)

0 1000 2000 3000 4000 5000
Points

10−1

100

101

102

M
a
x
.
R
e
l.
E
r
r
o
r

(b) Criterion 2 (k = 1)

0 200 400 600 800 1000 1200 1400
Points

10−3

10−2

10−1

M
a
x
.
A
b
s
.
E
r
r
o
r

(c) Criterion 3 (k = −10−6)

0 500 1000 1500 2000 2500 3000 3500
Points

100

101

102

M
a
x
.
R
e
l.
E
r
r
o
r

(d) Criterion 4 (k1 = 5, k2 = 0.01)

Figure 6.1: Maximum relative error with respect to the number of active boundary nodes for the
different greedy criteria for the coarse mesh AGARD 445.6 test case.

Laura Uyttersprot M.Sc. Thesis

6.2 Boundary Node Coarsening 83

0 50 100 150 200 250 300 350
Points

10−3

10−2

10−1

M
a
x
.
R
e
l.
E
r
r
o
r

(a) Criterion 1 (k = 0.01)

0 5000 10000 15000 20000
Points

10−1

100

101

102

103

M
a
x
.
R
e
l.
E
r
r
o
r

(b) Criterion 2 (k = 1)

0 100 200 300 400 500 600 700 800 900
Points

10−3

10−2

10−1

M
a
x
.
A
b
s
.
E
r
r
o
r

(c) Criterion 3 (k = −10−6)

0 1000 2000 3000 4000 5000 6000
Points

100

101

102

103

M
a
x
.
R
e
l.
E
r
r
o
r

(d) Criterion 4 (k1 = 10, k2 = 0.01)

Figure 6.2: Maximum relative error with respect to the number of active boundary nodes for the
different greedy criteria for the fine mesh AGARD 445.6 test case.

M.Sc. Thesis Laura Uyttersprot

84 Efficiency Improvements

(a) Without coarsening (b) Criterion 1 (k = 0.01) (c) Criterion 2 (k = 1)

(d) Criterion 3 (k = −10−6) (e) Criterion 4 (k1 =
5, k2 = 0.01)

Figure 6.3: Comparison of the selected nodes for the coarse AGARD 445.6 test case between the
different greedy criteria (top = wing, bottom = exterior boundary).

Laura Uyttersprot M.Sc. Thesis

6.2 Boundary Node Coarsening 85

(a) Without coarsening (b) Criterion 1 (k = 0.01) (c) Criterion 2 (k = 1)

(d) Criterion 3 (k = −10−6) (e) Criterion 4 (k1 =
10, k2 = 0.01)

Figure 6.4: Comparison of the selected nodes for the fine AGARD 445.6 test case between the
different greedy criteria (top = wing, bottom = exterior boundary).

M.Sc. Thesis Laura Uyttersprot

86 Efficiency Improvements

the mirror face at the root of the wing, has a lot of active boundary nodes. This is due to
the fact that the mesh originates from a structured mesh, where the cells along this wall are
of equal size as the cells around the wing.

Criterion 3

For the next error criterion, the fact that the maximum error achieved varies logarithmically
with the number of active nodes, is used. This can be seen in figures 6.1(a) and 6.2(a) (note
the logarithmic scale for the vertical axis). This means that, at the start, adding nodes is very
effective, resulting in a rapid decrease in the error. However after adding a certain amount of
nodes to the active list, this decrease will stagnate, and the error will only continue to drop
very slowly. Therefore it makes sense to use the slope of the maximum absolute error function
as a stopping criterion. This slope can be approximately computed by doing a least-squares
fit to the list of maximum errors of each greedy iteration. The linear least-squares fit has the
following form

εmax(x) = c0 + c1x+ c2x
2 + c3x

3, (6.8)

where x = 1
N , ci are the polynomial coefficients, εmax is the maximum error and N is the

number of active boundary nodes. To accurately represent the slope at the last node of the
maximum error function, it suffices to do the least-squares fit to the last added active nodes.
Here it was chosen to do a fit to the last 500 nodes. Moreover this fit does not have to be
done at every greedy iteration, but can for example be done every 100 iterations. The slope
of the absolute error function is negative, and it is desirable for the greedy algorithm to stop
when the slope approximates zero. Experiments have proven that a good stopping criteria
would be around −10−6

dεmax
dN

< k, where k ≈ −10−6. (6.9)

The error function for the third error criterion is shown in figures 6.1(c) (coarse mesh) and
6.2(c) (fine mesh). Due to the fact that for this criterion the error is not scaled, the absolute
errors are displayed. The function itself is actually the same as for criterion 1, only the scale
is different. It is surprising that for this criterion significantly more nodes are selected for
the coarse (1340) than for the fine mesh (840), even when the same maximum value for the
slope of −10−6 is used. This might be due to the fact that the computed slope is only an
approximation and the noise in the signal can reduce the accuracy of the computed slope.
Moreover it can be noted that more nodes are selected than for criterion 1. This indicates
that the chosen error bound for criterion 1 might not have been sufficiently small. However,
if an error bound of 0.001 instead of 0.01 would have been selected, a large amount of nodes
would be added to the list of active nodes, as it is clear that the error is only dropping slowly.
Therefore using criterion 3, allows to use the greedy criterion in an efficient manner, without
imposing a specific error bound.

Criterion 4

Finally, the last choice of error function to be introduced in this thesis is a combination of
the first and the second criterion. When using the surface error relative to the cell height,

Laura Uyttersprot M.Sc. Thesis

6.2 Boundary Node Coarsening 87

this means that the surface error will be extremely small for viscous layers. However, since a
correction step is also being used, it might not be necessary to reach such a small error bound
as it will lead to a large amount of active boundary nodes. This could be solved by setting a
larger stopping criterion, such as five for example. On the other hand, this will result in large
errors at the exterior boundaries, which might be problematic for the correction step, as it
is only designed for small corrections. By combining the first and second criterion, both the
error relative to the cell height and the error relative to a certain reference length can be kept
small. This will make sure that enough nodes are selected for both the viscous boundary and
the exterior boundary. The combination of the two criteria is done as follows. First for the
small cells, the following criteria should hold

εmax
h

< k1, where k1 ≥ 1, (6.10)

where h is the height of the boundary cell and k1 is the error bound, which for this case will
be equal to or larger than 1. Secondly for all boundary nodes, the maximum error relative to
the aerodynamic reference length lref is required to remain below a certain upper bound k2

εmax
lref

< k2, where k2 ≈ 10−3 → 10−2. (6.11)

Both criteria should hold at the same time. From equations 6.10 and 6.11 it can be seen that
the first criterion violates the second one if

h >
k2lref
k1

. (6.12)

This can be prevented by creating a pseudo height h′ as follows

h′ =

{
h if h ≤ k2lref

k1
,

k2lref
k1

if h >
k2lref
k1

.
(6.13)

The stopping criterion for the greedy loop then becomes

εmax
h′

< k1. (6.14)

For this criterion, k1 = 10 for the fine mesh and k1 = 5 for the coarse mesh test case. These
values are chosen differently because the cell height of the fine mesh is twice as small as the
cell height of the coarse mesh. For the parameter k2 the same value of 0.01 is chosen as in
criterion 1. Note that when using criterion 2 for the AGARD test case, it would not have
been possible to choose a value of 5 or 10 for the error bound, because this would lead to
prohibitively large errors at the exterior boundary. The relative error functions for both the
coarse and the fine mesh are shown in figures 6.1(d) and 6.2(d) respectively. In this case
more nodes are selected for the fine mesh (5609) than for the coarse mesh (3233). When
comparing this to the original amount of boundary nodes, only 4% of the total fine mesh
boundary nodes are selected, whereas for the coarse mesh 10% of the boundary nodes are
selected. Finally when looking at the distribution of the selected nodes in figures 6.3(e) and
6.4(e), it is clear that, compared to the second criterion more nodes are selected on the right
hand outer boundary, whereas the amount of nodes on the wing has slightly decreased due

M.Sc. Thesis Laura Uyttersprot

88 Efficiency Improvements

to the fact that k1 > 1 for criterion 4. On the other hand, when comparing the results to the
selected nodes for criterion 1, more nodes are selected on the wing, and surprisingly, also more
nodes are selected on the outer boundary. This is probably due to the fact that including
more nodes on the wing, introduces additional errors in the outer boundary. Therefore, also
more nodes on the exterior boundary are necessary to compensate for the additional moving
boundary nodes.

Comparison of the Absolute Errors

Finally a comparison can be made between the different greedy criteria by looking at the
maximum absolute errors that are achieved, as indicated in figures 6.5 and 6.6 for the coarse
and fine mesh respectively. The most peculiar result is that when using criterion 2, the
absolute error actually increases first. Once again this can be explained by the fact that adding
nodes at one place, introduces an error at another place. In this case, initially many nodes
are selected at the moving boundary, which introduces larger errors at the outer boundary.
Eventually this absolute error decreases again, by adding more nodes at the exterior boundary,
such that the error will be below the cell height for all nodes. For criteria 1 and 3 the absolute
error is the same, only the iteration at which the greedy algorithm is stopped is different.
This means that the order in which the nodes are added during the greedy iterations are the
same. This is as expected since the node where the absolute error is the largest is also the
node where the error divided by lref (which is a constant) is the largest. It can be stated that
method 1 and 3 have the same selection criteria with a different stopping criteria. For the
other methods both the selection and stopping criteria are different. When using criterion 1
or 3 the absolute error drops the fastest, which is due to the fact that, at each iteration the
node with the largest absolute error is added to the active list. On the other hand criterion 4
is somewhere in the middle, as both the error with respect to cell height and with respect to
the reference length are decreased simultaneously. The influence of the absolute and relative
errors on the mesh quality will become clear in section 6.3.

Summary of the Criteria

The four error criteria for the greedy iteration are summarised in table 6.1. The second column
gives indicative values that can be chosen by the user. Except for the value for criterion 3,
these values are quite intuitive, and it should not form a problem for the inexperienced CFD
user to set-up these parameters. However, it is also possible to use the default values, as
indicated in the third column.

Table 6.1: Error criteria for greedy method

Criterion Indicative Value Default Value

1. εmax
lref

< k k ≈ 10−3 → 10−2 k = 10−2

2. εmax
h < k k ≈ 1 k = 1

3. dεmax
dN > k k ≈ −10−6 → −10−8 k = −10−6

4. εmax
h < k1 and εmax

lref
< k2 k1 ≈ 1→ 10 and k2 ≈ 10−3 → 10−2 k1 = 3 and k2 = 10−2

Laura Uyttersprot M.Sc. Thesis

6.2 Boundary Node Coarsening 89

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Points

10−2

10−1

M
a
x
.
A
b
s
.
E
r
r
o
r

Criterion 1 (k = 0.01)

Criterion 2 (k = 1)

Criterion 3 (k = −10−6)

Criterion 4 (k1 = 5, k2 = 0.01)

Figure 6.5: Comparison of the absolute errors of the different greedy criteria for the coarse mesh
AGARD 445.6 test case.

0 5000 10000 15000
Points

10−2

10−1

M
a
x
.
A
b
s
.
E
r
r
o
r

Criterion 1 (k = 0.01)

Criterion 2 (k = 1)

Criterion 3 (k = −10−6)

Criterion 4 (k1 = 10, k2 = 0.01)

Figure 6.6: Comparison of the absolute errors of the different greedy criteria for the fine mesh
AGARD 445.6 test case.

M.Sc. Thesis Laura Uyttersprot

90 Efficiency Improvements

Original Mesh

(a) Deformed without coarsening
(b) Deformed with coarsening,

interpolated displacement imposed
at boundary

(c) Deformed with coarsening, exact
displacement imposed at boundary

(d) Deformed with coarsening and
correction step

Boundary Mesh

Volume Mesh

Active Node

Inactive Node

Figure 6.7: Comparison between the different options to correct for the boundary displacement
error due to coarsening.

6.2.3 Correction Step

As explained in the previous section, the use of only a limited set of boundary nodes, means
that the imposed boundary geometry is only satisfied exactly at the active boundary nodes.
For all the inactive boundary nodes there will be an error between the interpolated displace-
ment and the actual imposed displacement. This is illustrated in figure 6.7(b), where the
middle boundary nodes are inactive nodes. If one wants to make sure that the boundary ge-
ometry is preserved exactly, there are two options. The first option, is to still use the imposed
boundary displacements to move the boundary mesh. However, this will only result in a valid
mesh, in case the error at the boundary is smaller than the first cell layer. Otherwise, moving
the boundary to their exact positions might intrude in this layer, causing negative cells, as
shown in figure 6.7(c).

The second option corrects for the error in the boundary layer displacement by means of a
correction step. This means that in figure 6.7, the mesh with erroneous boundary in image
(b), is corrected to the situation in figure (d). This correction step can be seen as a local
secondary mesh deformation step. The main requirement for the secondary mesh deformation
method is that it has to be a highly efficient method. On the other hand, it does not need
to be very robust, as it only has to deal with a small deformation. Several options for the
correction step were discussed in section 6.1.2.

In this thesis it is chosen to satisfy the boundary motion exactly by means of a correction
step. The proposed method of Rendall and Allen in [55] is used, because of its efficiency and

Laura Uyttersprot M.Sc. Thesis

6.2 Boundary Node Coarsening 91

simplicity. This method is a nearest neighbour correction, given by

uc(x) = δnφn(x), (6.15)

where the subscript n indicates the nearest boundary node neighbour, uc(x) is the correction
displacement of an inner node at position x, δn is the displacement of the boundary node
from its interpolated to its exact position and φn(x) is the used RBF. An RBF with compact
support should be chosen, such that the correction step can be limited within a confined
region. As in [55] Wendland’s C2 function will be used here. It is given by

φn(x) =

{
(1− d)4(4d+ 1) if d ≤ 1,

0 otherwise,
(6.16)

where d = ‖x− xn‖ /s and s is the support radius. Since the correction displacement δn is
small, the support radius can be chosen relatively small too. Experiments showed that using
a variable support radius, depending on the magnitude of the corrected displacement, gives
the best results. Concretely, the support radius is scaled with δn for each boundary node. A
factor of ten seemed to be sufficient here, such that the support radius for boundary node n
is equal to

sn = 10 ‖δn‖ . (6.17)

The only issue concerning this correction step is that finding the nearest neighbour of all
volume nodes is an expensive operation if it is done by a ’brute force’ method. This means
that for each volume node the distance to each boundary node is computed and the minimum
distance is found by comparison, which has a total cost of O(ninb). Luckily, other methods
exist to find a volume node’s nearest neighbour. Specifically in FINETM/Open a wave-front
vector distance transform method, has already been implemented in the turbulence model,
which is based on the work in [10]. Since this method has been proven to be fast and
accurate, the same method is pursued here. The idea behind this method is that the closest
boundary node to a certain volume node will usually be close to the closest boundary node
of its neighbours in the volume grid. Thus, if the closest boundary nodes are known for the
neighbours of a volume mesh node, the approximate closest boundary node of this volume
mesh node can be found. This algorithm can be started at the boundary itself, and from there
propagated further into the mesh. For the boundary correction step the distance only needs
to be computed within a certain radius of the boundary. Therefore the wave propagation
can simply be stopped when the maximum defined support radius is reached. To improve
the accuracy of this wave-front method, not only the neighbours of a node, but also the
neighbours of its neighbours are taken into account for both the boundary and volume mesh
nodes. For more details regarding the implementation of this method the reader is referred
to [10].

The addition of the boundary node coarsening method with correction step concludes the
implementation of the IDW mesh deformation method. A high-level flowchart of the complete
IDW mesh deformation algorithm can be found in appendix D.

M.Sc. Thesis Laura Uyttersprot

92 Efficiency Improvements

Table 6.2: Efficiency and quality of the different coarsening criteria for the coarse mesh AGARD
test case.

Criterion nb tcoarse tinner tcorr ttot Ortho Skew

1 (k = 0.01) 338 0.00s 2.10s 1.60s 5.12s 24.17◦ 0.75

2 (k = 1) 4733 9.92s 32.75s 3.04s 46.24s 0.94◦ 0.99

3 (k = −10−6) 1340 2.95s 7.96s 1.37s 12.78s 24.99◦ 0.75

4 (k1 = 5 and k2 = 0.01) 3233 6.42s 20.00s 1.48s 28.62s 25.19◦ 0.75

No coarsening 33602 / 225.16s / 225.66s 24.71◦ 0.73

Table 6.3: Efficiency and quality of the different coarsening criteria for the fine mesh AGARD
test case.

Criterion nb tcoarse tinner tcorr ttot Ortho Skew

1 (k = 0.01) 346 4.5s 16.98s 12.15s 38.25s 23.83◦ 0.73

2 (k = 1) 18959 150.5s 1031.00s 19.64s 1205.80s 0.00◦ 1.00

3 (k = −10−6) 840 8.63s 40.81s 12.24s 66.29s 23.71◦ 0.73

4 (k1 = 10 and k2 = 0.01) 5609 47.75s 287.44s 12.46s 352.3s 25.06◦ 0.73

No coarsening 134402 / 7279.84s / 7284.44s 24.48◦ 0.69

6.3 Results of IDW Mesh Deformation with Boundary Coars-
ening

In this section the resulting mesh qualities and the efficiency of the different greedy coarsening
criteria will be compared to each other for five different test cases. The test cases that are
considered here are the coarse and fine mesh AGARD 445.6 wing, the coarse and fine mesh
rotor 67 and the elastic flap.

The computation time and resulting mesh quality for the five test cases for the different
greedy criteria are listed in tables 6.2 to 6.6. Here, nb is the number of active boundary
nodes, tcoarse is the computation time to coarsen the mesh, tinner is the computation time to
compute the interpolated displacements for the volume mesh nodes, tcorr is the computation
time to perform the correction step, ttot is the total time required to deform mesh, Ortho is the
minimum orthogonality and Skew is the maximum skewness. It is important to remember
that for the orthogonality a high value indicates a high quality mesh, whereas for the skewness
a low value indicates a high quality mesh as explained in section 1.4. Note also that the total
time for the mesh deformation is not exactly equal to the sum of tcoarse, tinner and tcorr. This
is because also other steps are performed within the mesh deformation module, such as the
computation of the rotation component.

The first conclusion that can be drawn from the tables is that the time required to coarsen

Laura Uyttersprot M.Sc. Thesis

6.3 Results of IDW Mesh Deformation with Boundary Coarsening 93

Table 6.4: Efficiency and quality of the different coarsening criteria for the coarse mesh rotor 67
test case.

Criterion nb tcoarse tinner tcorr ttot Ortho Skew

1 (k = 0.001) 2907 3.25s 5.61s 0.62s 11.35s 24.39◦ 0.79

2 (k = 1) 2254 2.81s 5.24s 0.70s 10.69s 30.45◦ 0.74

3 (k = −10−6) 1728 1.94s 3.33s 0.68s 7.83s 0.00◦ 1.00

4 (k1 = 1 and k2 = 0.001) 3958 4.42s 7.96s 0.60s 14.84s 26.04◦ 0.78

No coarsening 17730 / 34.15s / 36.04s 31.77◦ 0.72

Table 6.5: Efficiency and quality of the different coarsening criteria for the fine mesh rotor 67
test case.

Criterion nb tcoarse tinner tcorr ttot Ortho Skew

1 (k = 0.001) 8433 40.95s 145.27s 5.11s 219.63s 22.19◦ 0.79

2 (k = 1) 9597 47.35s 189.68s 6.07s 270.81s 2.05◦ 1.00

3 (k = −10−6) 1228 6.78s 20.21s 6.33s 66.15s 0.00◦ 1.00

4 (k1 = 1 and k2 = 0.001) 14515 67.37s 254.12s 5.12s 355.11s 25.70◦ 0.74

No coarsening 70914 / 1159.90s / 1187.96s 6.51◦ 0.93

Table 6.6: Efficiency and quality of the different coarsening criteria for the elastic flap test case.

Criterion nb tcoarse tinner tcorr ttot Ortho Skew

1 (k = 0.01) 578 0.81s 1.73s 0.93s 6.29s 29.94◦ 0.69

2 (k = 1) 1626 2.08s 4.92s 0.89s 10.57s 31.44◦ 0.74

3 (k = −10−6) 432 0.67s 1.25s 0.89s 5.42s 28.10◦ 0.69

4 (k1 = 1 and k2 = 0.01) 1657 2.16s 5.07s 0.97s 10.84s 31.65◦ 0.73

No coarsening 17282 / 46.89s / 49.63s 41.72◦ 0.55

M.Sc. Thesis Laura Uyttersprot

94 Efficiency Improvements

and to correct the mesh displacement is significantly lower than the time required to compute
the displacement of the inner nodes. Moreover, it can be seen that tcoarse scales with O(nb),
tinner scales with O(ninb) and tcorr scales with the maximum absolute error achieved and the
number of active boundary nodes. This means that tcorr is usually the largest for criterion
2, where the number of boundary nodes and the maximum error are relatively large. On the
other hand, the coarsening time tcoarse is usually larger for criteria 4, as more nodes are added
due to the fact that two criteria are satisfied at the same time, leading to a higher amount of
nodes. The maximum time spend in coarsening is 67 s for criterion 4 in the fine mesh rotor
67 test case. In this case 14,515 active nodes are selected out of a total of 70,914 boundary
nodes. This coarsening time is, however, still only 5% of the total deformation time without
coarsening.

Secondly, in terms of total deformation time, it is clear that, no matter which greedy criterion
is used, a significant reduction in computation time is achieved. In general the increase in
efficiency is higher for the finer meshes. The best efficiency increase is reached for the fine
mesh AGARD 445.6 test case when using criterion 1. For this case the computation time is
38.25 s, or 0.5% of the computation without coarsening which is 7284.44 s (2 h 1 m 24.44 s).
This is a remarkably good result, as it means that a mesh with approximately 3× 106 nodes
can be moved in just over a half a minute, without even using multiple processors. This time
is negligible compared to the time to perform the CFD computations. The lowest efficiency
increase is obtained in the coarse mesh rotor 67 test case when using criterion 4. In this
case the computation time is 14.84 s, or 41% of the computation without coarsening which is
36.04 s. These numbers clearly indicate that the efficiency improvements that can be reached
with coarsening both depend on the test case and the criterion that is used. Some experience
from the user will be required to choose the desired outcome. For very fine meshes, it is
recommended to always apply coarsening. Moreover it is important to note that the efficiency
increase would also be higher if smaller deformations were applied. This is due to the fact
that a lower deformation leads to lower errors, which means that less nodes would be added
to the active list during coarsening.

However, such a reduction in computation time would mean nothing, if it meant that the mesh
quality was very poor. Therefore, it is important to compare this increase in efficiency to the
change in mesh quality. Once again the change in mesh quality is highly dependent on the
test case and the coarsening method used. For most test cases the best results are achieved
when using criterion 4, which is probably due to the fact that it combines the advantages of
criteria 1 and 2. It is remarkable that for the AGARD test cases and the fine rotor 67 case, the
minimum orthogonality even increases when criterion 4 is used, compared to the case without
coarsening. This might be due to the fact that when coarsening is done, the weight distribution
between the moving, fixed and sliding boundary is automatically optimised. Another remark
that can be made, is that when criterion 2 is used for the AGARD test cases and the fine
rotor 67 test case, the quality drops dramatically to the point where negative, concave and
twisted cells occur. This can be explained by the fact that the errors at the outer boundary
are too large for the correction method to correct them. Finally, also criterion 3 seems to
have problems to create good quality meshes for certain test cases. For both rotor 67 test
cases negative cells occur when this criterion is used. In these cases the negative cells are due
to the fact that the errors in the shroud gap are too large. As such, it seems that the slope
criterion is not always capable to define a good point to stop, as there is no guarantee that

Laura Uyttersprot M.Sc. Thesis

6.3 Results of IDW Mesh Deformation with Boundary Coarsening 95

x axis

0.0
0.5

1.0
1.5

y a
xis

−1.0
−0.5

0.0
0.5

1.0

z
ax

is

0.5

1.0

1.5

2.0

x axis

0.0
0.5

1.0
1.5

y a
xis

−1.0
−0.5

0.0
0.5

1.0

z
ax

is

0.5

1.0

1.5

2.0

x axis

−2
0

2
4

6

y a
xis

−4
−2

0
2

4

z
ax

is

−4

−2

0

2

4

(a) Selection method 1 (nb = 15 moving +321
fixed = 336)

x axis

−2
0

2
4

6

y a
xis

−4
−2

0
2

4

z
ax

is

−4

−2

0

2

4

(b) Selection method 4 (nb = 35 moving +301
fixed = 336)

Figure 6.8: Comparison of the selected nodes for the coarse AGARD 445.6 test case for selection
method 1 and 4, when the greedy iteration is stopped as soon as 1% of the boundary nodes are
selected (top = wing, bottom = exterior boundary).

sufficiently small errors are achieved.

In order to find the method which is the most effective in selecting boundary nodes it is
necessary to compare the different selection methods while keeping the number of active
boundary nodes at a fixed value. As stated before the order in which the nodes for criterion 1
and 3 are selected is the same. Hence this will be referred to as selection method 1. Criterion
2 will not be considered further since it is already clear from the previous paragraphs that it
has a poor performance. Finally, the order in which nodes are selected for criterion 4 will be
referred to as selection method 4. A test has been done for both the fine and coarse mesh
AGARD 445.6 case, where 1% of the boundary nodes is selected. Note that for selection
method 1 it is not necessary any more to choose a k-value. On the other hand, for selection
method 4, the values of k1 = 10 for the fine mesh, k1 = 5 for the coarse mesh and k2 = 0.01
for both meshes are chosen. These values are important because they are used to scale the
errors. The resulting coarsened meshes for the coarse and fine mesh are displayed in figures
6.8 and 6.9 respectively. For the same amount of active nodes, selection method 4 selects at
least twice as many moving boundary nodes compared to selection method 1. This is reflected

M.Sc. Thesis Laura Uyttersprot

96 Efficiency Improvements

x axis

0.0
0.5

1.0
1.5

y a
xis

−1.0
−0.5

0.0
0.5

1.0

z
ax

is

0.5

1.0

1.5

2.0

x axis

0.0
0.5

1.0
1.5

y a
xis

−1.0
−0.5

0.0
0.5

1.0

z
ax

is

0.5

1.0

1.5

2.0

x axis

−2
0

2
4

6

y a
xis

−4
−2

0
2

4

z
ax

is

−4

−2

0

2

4

(a) Selection method 1 (nb = 53 moving +1291
fixed = 1344).

x axis

−2
0

2
4

6

y a
xis

−4
−2

0
2

4

z
ax

is

−4

−2

0

2

4

(b) Selection method 4 (nb = 147 moving +1197
fixed = 1344).

Figure 6.9: Comparison of the selected nodes for the fine AGARD 445.6 test case for selection
method 1 and 4, when the greedy iteration is stopped as soon as 1% of the boundary nodes are
selected (top = wing, bottom = exterior boundary).

Table 6.7: Comparison between selection method 1 and 4 when selecting 1% of the total amount
of boundary nodes for the coarse and fine mesh AGARD 445.6 test case.

Method nb tcoarse tinner tcorr ttot Ortho Skew

Coarse mesh AGARD 445.6

1 336 0.95s 2.10s 1.69s 5.57s 24.17◦ 0.75

4 (k1 = 5 and k2 = 0.01) 336 0.94s 2.16s 1.85s 5.67s 24.85◦ 0.75

Fine mesh AGARD 445.6

1 1344 12.41s 65.21s 11.08s 95.59s 23.78◦ 0.73

4 (k1 = 10 and k2 = 0.01) 1344 12.83s 69.29s 13.82s 102.87s 24.97◦ 0.73

Laura Uyttersprot M.Sc. Thesis

6.3 Results of IDW Mesh Deformation with Boundary Coarsening 97

Table 6.8: Comparison between selection method 1 and 4 when selecting 10% of the total amount
of boundary nodes for the coarse and fine mesh rotor 67 test case.

Method nb tcoarse tinner tcorr ttot Ortho Skew

Coarse mesh rotor 67

1 1773 2.16s 3.52s 0.66s 8.34s 0◦ 1.00

4 (k1 = 1 and k2 = 0.001) 1773 2.22s 3.81s 0.69s 8.74s 26.34◦ 0.78

Fine mesh rotor 67

1 7091 34.78s 121.06s 5.45s 191.15s 22.34◦ 0.85

4 (k1 = 2 and k2 = 0.001) 7091 35.77s 131.68s 5.62s 202.84s 18.52◦ 0.89

in the resulting mesh qualities presented in table 6.7, where selection method 4 always has a
slightly higher mesh quality. On the other hand selection method 1 still performs moderately
faster than selection method 4. The reason is twofold. First, due to the fact that the absolute
errors that are reached with selection method 1 are smaller, the correction step requires less
time as the local support radii become smaller. Second, the fact that more moving boundary
nodes are selected by method 4, results in a higher computation time as moving nodes require
more computations for rotations and translations (for all fixed nodes the translation vector is
the zero-vector and the rotation quaternion is the unit quaternion, which allows to compute
the effect of all fixed nodes at once). For the rotor 67 test case the same tests have been
done. This time with a fixed maximum of 10% of the nodes. The results are summarised in
table 6.8, whereas the meshes are visualised in appendix B.4. These tests largely show the
same trends as discussed for AGARD 445.6. One exception is the fact that selection method
1 results in a better quality than selection method 4 for the fine mesh rotor 67 test. An
explanation might be that selection method 4 chooses too many nodes at the blade, which
means that too much weight is assigned to the blade causing the quality of the cells around
the blade to increase, at the cost of a decreasing quality between the blade and the exterior.
It should be noted that for the rotor 67 test case the geometry is more complex and as such
coarsening becomes more difficult.

In general it can be concluded that criterion 4 provides the most stable coarsening method
in terms of resulting mesh quality. This criterion usually also has the highest cost, however,
with an appropriate choice of the criterion boundaries k1 and k2, a good efficiency increase
can be reached. Moreover the previous paragraph has illustrated that this criterion can also
be stopped earlier, by setting a maximum allowed percentage of selected boundary nodes.
Criterion 1 also gives good quality results for a high efficiency, however usually the quality is
slightly lower than criterion 4. On the other hand, criterion 2 has too many shortcomings with
respect to both the quality and the effectiveness, and should therefore not be used. Finally
criterion 3, seems to be slightly less stable, as there are no guarantees about the resulting
errors. Also the fact that the slope is difficult to approximate because of the noise in the
signal, makes this method less reliable. It could potentially be used to get a quick idea of
how many nodes should be selected.

M.Sc. Thesis Laura Uyttersprot

98 Efficiency Improvements

6.4 Coarsening During a Time-Dependent Simulation

In this section it will be investigated whether it is possible to apply the greedy coarsening
method in a more efficient way when a time dependent simulation is done. Such a time-
dependent simulation is usually characterised by a large series of deformation steps (O(103)),
where the difference between two consecutive deformation steps is small. As such it is fair to
assume that the coarsening of the boundary for two consecutive deformation steps will result
in the selection of a similar group of active nodes.

The idea is to use the set of boundary nodes from the previous time step as the initial set to
start the greedy algorithm for the current time step. In figure 6.10 a result is shown where
this strategy is applied to the fine mesh AGARD 445.6 test case. The original method, where
the full coarsening algorithm is repeated for each deformation step, is referred to as ”full
coarsening” and ”incremental coarsening” indicates that the set of coarse nodes from the
previous step is used as the initial set for the current step. The deformation at each time
step is increased with 0.1 of the total modal displacement. From the graph it is clear that
a larger displacement indicates a higher computation time. This is due to the fact that for
a large displacement more active nodes are selected, which induces a higher cost for both
the greedy algorithm and the interpolation step. Secondly, it is clear that the incremental
coarsening method is only slightly faster than the full coarsening method. The reason why
incremental coarsening is almost as costly as full coarsening, is that for incremental coarsening
the interpolated values for all inactive nodes, based on interpolation from the active nodes,
still have to be computed. This is necessary to start the greedy algorithm and to be able
to apply the correction step at the end. The computation of the interpolated values for
the inactive nodes is nearly as expensive as the greedy algorithm itself, as in essence all the
greedy algorithm is doing is progressively computing this value by adding one active node per
iteration. The difference in cost between the greedy algorithm and the computation of the
interpolated values of the inactive nodes is due to the fact that the greedy algorithm has to
compute and compare errors along the way.

Another important note to make, is that because the greedy method is based on errors,
which are zero for the active nodes, it is not possible to use the same greedy algorithm to
remove nodes. This means that if a decreasing motion is applied, the incremental coarsening
method is stuck with the large set of active nodes from the initial deformation step. This is
illustrated in figure 6.11, where the deformation steps of figure 6.10 are applied in reversed
order. From this figure it is clear that applying incremental coarsening is not efficient when
used for decreasing motions. As such figure 6.10, represents the case where the incremental
coarsening method is at its most efficient behaviour.

One way to eliminate the drawbacks of incremental coarsening is by setting up a fixed number
of iterations after which the coarsening is restarted. However, in the case of oscillating or
variable deformations, it is questionable whether the incremental coarsening method will
actually outperform the full coarsening method. As such it is advised to always apply the full
coarsening method in such cases. Incremental coarsening should only be applied in the case
where one is certain that the motion is only in an increasing fashion.

Laura Uyttersprot M.Sc. Thesis

6.4 Coarsening During a Time-Dependent Simulation 99

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9

T
im

e
 [

s]

Deformation steps

Coarsening Time Full

Coarsening Method

Coarsening Time

Incremental Coarsening

Method

Total Time Full Coarsening

Method

Total Time Incremental

Coarsening Method

Figure 6.10: Coarsening and total deformation time for 9 deformation steps with growing ampli-
tude for the AGARD 445.6 fine mesh test case.

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9

T
im

e
 [

s]

Deformation Steps

Coarsening Time Full

Coarsening Method

Coarsening Time Incremental

Coarsening Method

Total Time Full Coarsening

Method

Total Time Incremental

Coarsening Method

Figure 6.11: Coarsening and total deformation time for 9 deformation steps with decreasing
amplitude for the AGARD 445.6 fine mesh test case.

M.Sc. Thesis Laura Uyttersprot

100 Efficiency Improvements

6.5 Conclusion

In conclusion it can be stated that boundary node coarsening is a valuable method to improve
the efficiency of the IDW mesh deformation method. In particular a method where the relative
error with respect to the boundary height is kept small for the smallest cells and the relative
error with respect to the aerodynamic reference length is kept small for the larger cells,
results in high quality meshes. For this method two parameters have to be specified. One
error bound with respect to the cell height (typically 1→ 10) and one error bound with respect
to the aerodynamic reference length (typically 0.01 → 0.001). Alternatively, the easiest way
to do coarsening is by simply setting an error bound for the relative error compared to the
reference length. This usually results only in a slightly lower mesh quality as compared to
when also the error relative to the cell height is minimised and has a higher efficiency. It is
also possible to stop the coarsening before the error bounds are reached by simply setting a
maximum percentage of nodes that is allowed to be selected. The application of boundary
node coarsening can increase the efficiency of the IDW method up to 200 times. Moreover,
the detrimental effect coarsening has on the mesh quality is fairly limited. For some test
cases the resulting mesh quality is even higher when coarsening is applied compared to the
full IDW method without coarsening.

Laura Uyttersprot M.Sc. Thesis

Chapter 7

Results

In this chapter the results of the IDW mesh deformation method are compared to the RBF
and elastic analogy mesh deformation methods as detailed in section 3.4.2 and 3.4.3. All test
cases as presented in chapter 4 are performed for the three methods.

7.1 Test Case Settings

Firstly, the settings used for all the test cases are summarised in table 7.1. Note that in
this table only the parameters that vary between the test cases are given. The scaling factor
for the RBF method is a factor by which the distances are multiplied such that they remain
between 0 and 1. For most cases this was left at the default value of 1. Only for the AGARD
445.6 test it was necessary to change it to 0.0675, which is equal to the inverse of the longest
diagonal of the domain in grid units (= 0.5587 m in AGARD 445.6 case). Furthermore the
Thin Plate Spline function is used for the RBF.

Next, the IDW method parameters include the α-values and the rotation interpolation
method. As explained in section 5.3, it is necessary to choose method 1 for large rota-
tions, such as in the NACA 0012 test case, and method 4 for all other cases. Additionally,
the default values for the α-parameters are: αmov = 0.1, αslide = 0.1 and αfix = 0.0. The
αmov and αfix values are increased for the AGARD 445.6 test case, to ensure high near
boundary quality. This is possible since the mesh has more than enough room to dissipate
the displacements. On the other hand the αslide value is decreased for the vortex vibration
case to leave more area to absorb the deformation. For more information about changing the
α-values the reader is referred to section 5.2.2. No coarsening is used for neither IDW nor
RBF. This is done because at the moment different coarsening strategies are implemented for
both methods, which would make a good comparison impossible.

The default settings for the EAMD tests are indicated in table 7.2. The elastic coefficients

M.Sc. Thesis Laura Uyttersprot

102 Results

1 and 2 are the values of a and b in equation 3.14. Note also that the values for the sliding
faces are not always equal between the IDW and EAMD tests (see table 7.1). This is due to
the different nature of both methods, where IDW spreads the motions much further into the
mesh, which leads to the fact that it is more useful to slide the exterior boundaries.

Table 7.1: Settings for the IDW tests.

Test case IDW EAMD RBF

αmov αfix αslide Rotation Sliding Sliding Scaling Factor

NACA 0012 0.1 0.0 0.1 1 Exterior Exterior 1

Vortex vibration 0.1 0.0 0.0 4 Exterior - 1

Elastic flap 0.1 0.0 0.1 4
Top,
bottom,
front

Top,
bottom,
front

1

Rotor 67 0.1 0.0 0.1 4 Shroud Shroud 1

AGARD 445.6 0.3 0.1 - 4 - - 0.0675

Table 7.2: Settings for the EAMD tests.

Poisson Coefficient 0.3

Elastic Coefficient 1 5.0 for 2D and 3.0 for 3D

Elastic Coefficient 2 3.0 for 2D and 1.0 for 3D

Tolerance 10−5

(a) EAMD (b) RBF (c) IDW (exterior fixed)

Figure 7.1: Zoom of the NACA 0012 mesh after deformation.

Laura Uyttersprot M.Sc. Thesis

7.2 Quality 103

7.2 Quality

7.2.1 Rotation of 2D NACA 0012 Airfoil

(a) EAMD (b) RBF

(c) IDW (exterior fixed) (d) IDW (exterior sliding)

Figure 7.2: Mesh of the NACA 0012 test case after deformation.

The resulting meshes for the NACA 0012 test case are shown in figures 7.1 (zoomed in at the

M.Sc. Thesis Laura Uyttersprot

104 Results

airfoil) and 7.2 (complete mesh). It is clear that the elastic analogy method is not able to
withstand such a large rotation in one step. The trailing edge of the airfoil pierces through the
mesh and 3178 negative cells are formed. This result highlights EAMD’s poor performance in
capturing rotations. Also in figure 7.2(a) it can be seen that the EAMD does not spread the
deformation through the domain, but only tries to deform the mesh locally. This is especially
a poor result, because the outer boundary has a sliding boundary condition, but still does
not move.

Secondly, when looking at figures 7.1(b) and 7.2(b), it seems that RBF mesh deformation
provides much better results. However, due to the presence of very high aspect ratio boundary
layer cells, RBF deformation leads to four negative cells. This illustrates that also RBF has
difficulty in dealing with very large rotations, especially due to a low robustness in the near-
boundary region. This can once more be attributed to the fact that the motion is absorbed
locally around the airfoil, and not spread to the exterior boundary.

On the other hand, the IDW mesh deformation leads to a good mesh quality. When a sliding
boundary condition is imposed at the exterior boundary (see figure 7.2(d)), the result is even
such that the whole mesh is simply rotated by an angle of 90◦, which means that the mesh
quality remains exactly the same. If the sliding boundary condition would have been imple-
mented for RBF, the same result would have been obtained. However, as mentioned before,
implementing the same sliding strategy for RBF, would be more expensive and complex, and
has thus not been done so far.

Even without using the sliding boundary feature (figure 7.2(c)), the IDW method produces
a high quality mesh, where the deformation is absorbed mainly in the region in the middle
between the inner and the outer boundary. The zoom of the airfoil even looks identical for
both IDW with or without sliding, which is why figure 7.1(c) is only presented once. In the
case with a fixed exterior boundary, the minimum orthogonality remains the same as the
initial one (19.74◦), whereas the maximum skewness increases from 0.81 to 0.92. Overall, this
test cases clearly illustrates IDW’s superiority to capture rotations compared to RBF and
EAMD. Also the sliding boundary feature clearly shows its advantages.

7.2.2 2D Vortex Induced Beam Vibration

The vortex vibration test case results in valid meshes for all mesh deformation methods.
However, there are still important differences between the three methods. First of all, this
test case reveals one of the drawbacks of the IDW method. Namely, if all outer boundaries
are kept fixed, the inner mesh is quite distorted in the middle between the top boundary and
the beam, as shown in figure 7.3(c). The minimum orthogonality in this mesh is 16.23◦ and
the maximum skewness is 0.83. These values are probably too low to ensure a good CFD
computation. The problem of the squeezed cells is caused by the explicit nature of the IDW
interpolation equation, which propagates the displacement information based on a distance
criterion. At some point between the two boundaries, the displacement information coming
from one boundary might contradict the information coming from the other boundary. This
can cause different nodes over a short interval to move in opposite directions, which leads

Laura Uyttersprot M.Sc. Thesis

7.2 Quality 105

(a) EAMD (b) RBF

(c) IDW (fixed exterior) (d) IDW (sliding exterior)

Figure 7.3: Deformed mesh of the vortex vibration test case.

to skewed cells. However, the problem is easily solved by imposing sliding boundaries where
necessary. This is shown in figure 7.3(d), where all the outer boundaries are allowed to slide.
Especially the right and the top boundary follow the beam movement, leading to a high mesh
quality with a minimum orthogonality of 39.07◦ and a maximum skewness of 0.60.

Next, RBF deformation has no problem to deform the mesh for the vortex vibration test
case, as it interpolates the motion very smoothly. The resulting mesh quality is only slightly
lower than when IDW with a sliding exterior is used. On the other hand, the EAMD method
causes a region of poor quality cells at the bottom right of the beam. Therefore the EAMD
has the lowest quality with a minimum orthogonality of 23.88◦ and a maximum skewness of
0.94, as indicated in figure 7.9.

7.2.3 Elastic Flap in a Duct

The results of the elastic flap test case are depicted in figures 7.4 and 7.5. These results
clearly illustrate the need for sliding boundaries. The RBF method does not have this sliding
capability, which means that bottom, top and front face cannot follow the motion of the flap.

M.Sc. Thesis Laura Uyttersprot

106 Results

As a result, the deformed RBF mesh has 158 negative cells, which occur around the bottom
and top of the tip of the elastic flap as can be seen in figure 7.4(b).

(a) EAMD (b) RBF (c) IDW

Figure 7.4: Vertical cut through the tip of the deformed elastic flap.

(a) EAMD (b) RBF (c) IDW

Figure 7.5: Horizontal cut through the middle of the deformed elastic flap.

Thanks to the three sliding faces (top, bottom and front) in the EAMD and IDW test, meshes
without negative cells are produced. However, EAMD does produce 21 concave and 24 twisted

Laura Uyttersprot M.Sc. Thesis

7.2 Quality 107

cells. This can be attributed to the inability of EAMD to deal with sharp edged objects. For
such cases the elasticity coefficients should be extremely high close to the object, relative to
the rest of the mesh. It might be that these bad quality cells could have been avoided by
using the optimal distribution of elasticity coefficients. However, the search for the optimal
distribution of these coefficients is a study of its own, which will not be elaborated upon here.

Finally, IDW mesh deformation has no problem to deform the mesh, as can be seen in figures
7.4(c) and 7.5(c). The minimum mesh quality remains high with values of 41.72◦ and 0.55 for
the minimum orthogonality and maximum skewness respectively. This high quality is due to
both the sliding boundary and IDW’s ability to maintain a high near-boundary mesh quality.

7.2.4 Rotor 67 Blade Deflection

Similar to the elastic flap, the rotor 67 test case highlights the need for sliding boundaries.
The resulting mesh in the gap between the blade and the shroud is illustrated in figure 7.6
for the three methods. When looking at the RBF results (figure 7.6(b)), one can see that
the deformation of the blade causes the cells to stretch quite heavily. Therefore, 158 negative
cells are formed between the blade and shroud, as shown in figure 7.7(a).

At the same time this test case also shows that a sliding boundary alone in not sufficient,
as the EAMD method with sliding shroud still results in a mesh with 54 negative cells (see
figure 7.7(b)). These negative cells are caused by two factors. Firstly, there is the limitation
of EAMD that the sliding boundary cells are moved according to the definition of a surface
of revolution for the shroud. This definition comes from an external file that specifies the
shroud radius at various axial locations. However, if the interpolation between these points
is different compared to the exact definition of the shroud, negative cells can occur. On the
other hand, some negative cells are once again caused by EAMD’s lack of smoothness around
sharp corners, as illustrated in figure 7.6(a).

Finally, the IDW method results in a good quality mesh, with an orthogonality and skewness
values that are nearly identical to the initial mesh as indicated in figure 7.9. This good result
is entirely thanks to the fact that the shroud follows the movement of the blade exactly (see
figure 7.6(c)).

(a) EAMD (b) RBF (c) IDW

Figure 7.6: Cut through the blade tip of deformed rotor 67 mesh.

M.Sc. Thesis Laura Uyttersprot

108 Results

(a) RBF (b) EAMD

Figure 7.7: Location of negative cells in the deformed rotor 67 mesh.

7.2.5 AGARD 445.6 Wing Deflection

Finally the AGARD 445.6 test case illustrates the performance of the three methods for a
common wing deflection problem. In this problem, the domain is large compared to the wing,
meaning that there is space for the deformation to be spread through the domain. Therefore
this is a typical test problem where a sliding boundary is not necessary. In this case, the RBF
and IDW method have a similar performance, with only a negligible difference in minimum
mesh quality, as depicted in figure 7.9. More surprisingly, this minimum mesh quality is
even slightly better than the initial mesh quality. The EAMD method, on the other hand,
struggles with the large deformation in combination with high aspect ratio boundary layer
cells. Therefore causing 161 negative cells close to the wing tip, as can be seen in figure
7.8. As such this test case illustrates the RBF’s and IDW’s superiority when it comes to
maintaining high boundary layer quality and spreading the deformation through the domain.

Figure 7.8: Negative cells (white) in the AGARD 445.6 EAMD deformed mesh.

Laura Uyttersprot M.Sc. Thesis

7.2 Quality 109

7.2.6 Quality Overview

Finally, a complete overview of the quality for all test cases is given in figure 7.9 (note that
for the cases for which no bar is shown the value is equal to zero). From this figure it can be
concluded that IDW always results in a higher than or equal quality with respect to RBF and
EAMD. Especially IDW’s ability to maintain a high near-boundary quality and to spread the
deformation far into the volume mesh, has revealed to be important properties of IDW. For
cases where sliding boundaries are not essential, such as the AGARD 445.6 and the vortex
vibration problem, the RBF also results in a high quality. If a comparison would have been
made for all the test cases, without using sliding boundaries, RBF might have come out
the strongest, since its interpolation function is smoother than the one for IDW. However,
the fact that RBF is not an explicit interpolation makes it more difficult to use the same
sliding strategy as introduced in this thesis. The current sliding strategy requires several
steps where interpolations are based on different sets of data points. Applying the same
method to the RBF deformation would mean that for each set of data points, the system for
the interpolation function has to be solved, which is a costly operation. Finally, the EAMD
method has proven to be of inferior quality compared to the other two methods, mainly
caused by poor deformation of small cells.

M.Sc. Thesis Laura Uyttersprot

110 Results

Figure 7.9: Quality comparison of the mesh deformation methods.

Laura Uyttersprot M.Sc. Thesis

7.3 Computational Cost 111

7.3 Computational Cost

Next to the quality of the deformed mesh, attention should be paid to the computational
cost of the method. These costs are summarized for all tests in table 7.3. A first note that
should be made, is that in order to have a fair comparison, no coarsening has been applied
to either RBF nor IDW. The reader interested in the performance of IDW with coarsening
is referred to chapter 6.2. Secondly, it should be noted that the cost of RBF is split into
the matrix inversion phase to solve the system and the evaluation phase of the interpolation
function. This is split up, because usually the matrix inversion is only done at the start of
the computation.

Firstly, it is clear that both RBF and IDW are much faster than EAMD for 2D test cases.
This is mainly caused by the iterative nature of EAMD which requires to solve the system
several times until convergence is reached. RBF also appears to be faster than IDW in 2D.
This is probably caused by an implementation difference, where the 2D case in IDW is treated
as a 3D case with a zero z-component. For RBF a 2D case only has two coordinates, making
the evaluation faster.

When looking at the 3D cases, however, the IDW method is clearly the fastest one. Even
when the time to solve the RBF system would not be taken into account, IDW is still about
three times faster than RBF. Although the time difference between IDW and EAMD has
become proportionally smaller, IDW is still more than six times faster than EAMD for all
test cases. The largest mesh presented in this table is the AGARD 445.6 one, with 373,569
nodes. This is still smaller than most industrial test cases, and for extremely large cases with
several millions of cells, EAMD might be faster than the full IDW method. However taking
into account that for such a large case IDW should be done with coarsening, IDW will still
be the most efficient method.

Finally it is important to realise that for RBF, not only the large matrix inversion time of
more than one hour, but also the memory required to do this inversion, is a limiting factor.
The used memory during the AGARD 445.6 RBF mesh deformation computation is 5.0 GB,
whereas this is only 818 MB for the IDW method. Also the size of the matrix stored on disk
is 4.2 GB for the AGARD 445.6 test case. Moreover the true advantage of IDW will become
clear when parallel computations are considered. The evaluation phase for both IDW and
RBF are easily implemented in parallel. However, for the RBF it is difficult to implement
the matrix inversion in parallel. This means that in a parallel computation, the IDW will
perform even better compared to RBF.

M.Sc. Thesis Laura Uyttersprot

112 Results

Table 7.3: Time measurement comparison for RBF, EAMD and IDW.

Test case RBF solution RBF evaluation EAMD IDW

NACA0012 0.08s 0.30s 3m 25.73s 0.45s

Vortex vibration 0.43s 0.44s 1m 04.63s 0.88s

Elastic flap 1h 49m 44.64s 1m 39.40s 7m 6.6s 37.67s

Rotor 67 1h 57m 17.78s 1m 14.87s 40m 1.67s 28.14s

AGARD 445.6 13h 32m 39.16s 10m 15.25s 18m 34.10s 2m 44.30s

7.4 Modal CFD Simulation of Vortex Induced Beam Vibra-
tion

This test illustrates the effect of the chosen mesh deformation method on the CFD computa-
tion. Both the RBF and IDW mesh deformation method are applied to the unsteady modal
computation of the vortex induced beam vibration, with parameters as indicated in appendix
C.1. For both the IDW and RBF method absolute displacements are used. This means that
the quality of the mesh will not deteriorate during the simulation as explained in section 5.5.
As a result the minimum mesh quality is reached at the maximum tip displacement. These
results have already been presented in section 7.2.2. The minimum quality of the IDW mesh
at maximum displacement is just slightly higher than for the RBF, as illustrated before in
figures 7.9(a) and 7.9(b).

The tip displacement of the beam during the simulation is shown in figure 7.10. It can be
seen that the two plots are nearly identical. The only difference being that the amplitude
of the motion is slightly higher for the IDW result. The difference between the maximum
tip displacements is equal to 0.05 cm. Moreover when comparing the total pressure in figures
7.11, it can be seen that the pressure fields are nearly identical. Therefore it can be concluded
that the mesh deformation method only has a small influence on the aerodynamic results for
this test case, thanks to the fact that both RBF and IDW maintain a high mesh quality
during the complete simulation.

In terms of efficiency it has already been mentioned before that RBF is faster than IDW
for a 2D simulation due to an implementation difference. The RBF treats a 2D case by only
using two coordinates, whereas the IDW treats a 2D case as a 3D case with three coordinates,
where the last coordinate is always zero. The total time spent in the IDW mesh deformation
module is equal to 19m 26.33s and for RBF this is 11m 22.80s. This leads to an average time
per deformation step of 1.17 s for IDW and 0.68 s for RBF. With respect to the total CFD
computation time, IDW is still very efficient as the total time to deform the mesh is only 3%
of the total time to perform the CFD simulation which is 10h 29m 6.59s.

Laura Uyttersprot M.Sc. Thesis

7.4 Modal CFD Simulation of Vortex Induced Beam Vibration 113

0 2 4 6 8 10
−3

−2

−1

0

1

2

3

time [s]

y−
di

sp
la

ce
m

en
t [

cm
]

IDW
RBF

Figure 7.10: Tip displacement comparison for IDW and RBF mesh deformation in the vortex
induced beam vibration test case.

.

M.Sc. Thesis Laura Uyttersprot

114 Results

(a) IDW

(b) RBF

Figure 7.11: Total pressure during the vortex induced beam vibration simulation at time = 9.7 s.

Laura Uyttersprot M.Sc. Thesis

7.5 Modal CFD Simulation of AGARD 445.6 Wing Deflection 115

7.5 Modal CFD Simulation of AGARD 445.6 Wing Deflection

This last test illustrates the efficiency of the IDW method with coarsening in a full CFD
simulation. An unsteady simulation of the coarse mesh AGARD 445.6 wing is done, using a
modal analysis with the first six mode shapes of the wing. The CFD simulation settings are
given in appendix C.4. For the coarsening parameters criterion 4 is chosen with values k1 = 1
and k2 = 0.01. The resulting tip displacement during the simulation is shown in figure 7.12.
These results are comparable to the tip displacement as presented in [15].

The average time per IDW deformation step is equal to 29.29 s. Note that the deformation
time varies between time steps due to the fact that coarsening is applied. The greedy algorithm
will select more nodes for larger displacements, leading to a higher deformation time. The
average time per deformation step is only 7% of the time to perform one CFD time step,
which is equal to 7m 09.87s. This leads to the conclusion that IDW with coarsening can be
applied efficiently during FSI simulations.

0 0.2 0.4 0.6 0.8
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

time [s]

y−
di

sp
la

ce
m

en
t [

m
]

Figure 7.12: Deflection of the wing tip trailing edge during the unsteady, coarse mesh AGARD
445.6 simulation

M.Sc. Thesis Laura Uyttersprot

116 Results

Laura Uyttersprot M.Sc. Thesis

Chapter 8

Conclusions and Recommendations

In this thesis it has been attempted to find the best possible mesh deformation method for use
in industrial fluid-structure interaction problems with any type of unstructured mesh. The
goal was to identify, develop and test a method that is both robust, efficient and user-friendly.
From this research the following conclusions and recommendations have been drawn.

8.1 Conclusions

A mesh deformation algorithm based on IDW interpolation, incorporating sliding boundary
nodes and boundary nodes coarsening, has been developed and tested. The algorithm is
robust, efficient and user-friendly and applicable to a large variation of FSI problems of
industrial scale.

Firstly, a literature review concerning existing mesh deformation methods highlighted that
many mesh deformation algorithms have been designed in the past. These methods can be di-
vided into point-by-point schemes, mesh connectivity schemes and hybrid schemes. However,
so far, none of these methods have come forward as the best technique, as they all have their
specific drawbacks. One relatively new method did stand out thanks to its high robustness
in combination with a low computational cost and complexity. This method is the inverse
distance weighting (IDW) interpolation method.

IDW is a point-by-point technique, which can easily be implemented in parallel and applied
to any type of mesh. The method interpolates the displacements into the volume mesh by
means of an interpolation function that depends on the inverse of the distance between the
boundary and the inner nodes. Thanks to the explicit nature of the IDW function, it is
not necessary to solve a system, which is the expensive part of the RBF mesh deformation
method.

M.Sc. Thesis Laura Uyttersprot

118 Conclusions and Recommendations

It has been shown that by including boundary node rotations, the deformed mesh quality
is increased compared to when the displacements are simply treated as translation. The
rotations are represented by quaternions. Several interpolation methods for the quaternions
were identified. The method where the displacement due to rotation is interpolated for each
volume node, performs the best for general bending and deformation problems. For problems
where very large or pure rotations occur, the linear interpolation of the quaternions should
be used.

A new strategy to impose a sliding boundary condition has been proven to significantly
increase the robustness of the method for deformation problems where there is only a small
space between the moving and the outer boundaries. A common example of such a problem
is the deformation of blades within turbo-machinery components. For the rotor 67 test case,
the mesh quality after deformation of the blade virtually stays the same as the original mesh
quality, when the shroud is treated as a sliding boundary. On the other hand, without this
sliding condition, negative cells are formed.

An efficiency improvement, which coarsens the boundary mesh by means of a greedy algo-
rithm, has been implemented. Even though the original IDW method is already very efficient,
the cost still grows linearly with the amount of boundary nodes. One deformation step of a
test problem with approximately 3 million cells of which over 100,000 are boundary nodes,
takes about two hours to complete in serial mode. When applying the coarsening strategy to
the same test case, the computation time can drop down to six minutes while maintaining the
same mesh quality. Alternatively, the computation time can drop even further to less than
one minute, by allowing a slightly lower resulting mesh quality. The boundary coarsening
method makes the IDW scheme efficient for large-scale industrial problems. Moreover, the
deformation time becomes negligible compared to the CFD computation.

Compared to the radial basis function and the elastic analogy method, the IDW method has
superior near-boundary mesh quality. This allows to have a high quality deformation of high-
Reynolds numbers meshes. Furthermore the overall minimum mesh quality is of a comparable
level to the very robust RBF method. In problems that include large boundary rotations or
small gaps between the moving and the outer boundary, the IDW method even proves to be
superior than RBF and EAMD. Also the IDW computation time is significantly lower than
both RBF and EAMD, even without applying boundary mesh coarsening. When only the
function evaluation phases of RBF and IDW are compared, IDW is up to three times faster
than RBF for 3D problems. Moreover IDW does not require an expensive matrix inversion at
the start of the simulation, which means that several hours of computation time and several
gigabytes of memory can be saved. Also compared to the EAMD method, IDW is at least 7
times faster for all test cases.

Moreover, IDW has proven to be the only method capable to deform the mesh for all five of
the presented test problems. As such it has been proven to be a widely applicable method.
Also the application to the different test cases required a low amount of user input. Only the
sliding boundaries have to be chosen and sometimes the α-parameters or rotation method
can be changed to increase mesh quality. The variation of these parameters is intuitive and
straightforward.

Laura Uyttersprot M.Sc. Thesis

8.2 Recommendations 119

8.2 Recommendations

Even though the presented IDW scheme could already be released in a commercial software,
there are still several improvements that could be considered in future research

• Currently IDW is only implemented in a serial mode. Its true performance will become
apparent when the method is implemented in parallel. The most costly part of the
method is the computation of the displacement of the inner mesh nodes, which takes up
nearly 100% of the total computation time. Since this step consists of a simple double
loop over all inner and active outer boundary nodes, it can easily be coded in parallel
by dividing the inner nodes over several processors, while the information about the
boundary nodes is sent to each processor.

• Section 5.5 already briefly introduced a comparison between absolute and relative dis-
placements. It could be recommended to investigate an automatic procedure to choose
and switch between the two methods. For example, the relative method can be used
during a simulation and each time the shape of the object approaches the initial position,
the mesh deformation is reset by an absolute displacement step.

• Even though the boundary coarsening method has been proven to provide very good
results for IDW, another option could be to use the kd-tree method of Luke et al [38].
At the moment there is no information about which of the two methods would perform
the best. However, the advantage of the coarsening method remains that it can be
applied to both RBF and IDW.

• Also the option to use a local radius for the IDW interpolation could be investigated
further, especially in case one is interested in optimisation problems where the geometry
is only deformed locally. For FSI problems this method is less relevant.

• In order to further increase the robustness of IDW, it could be investigated whether
different power parameters should be used for rotations and translations as proposed
by Witteveen [70].

• When coarsening is applied in an unsteady simulation, the selected boundary nodes
at two consecutive time steps will be similar. As such it might not be necessary to
perform the full greedy scheme at each iteration. Section 6.4 briefly introduced some
possibilities for coarsening across multiple time steps. However so far this method is only
useful for increasing deformations and the gain in computation time is small. Further
methods could be investigated, such as performing the coarsening every N time steps,
and re-using the active boundary in between.

• For modal analysis CFD simulations, the mode shapes could be used to perform efficient
mesh deformations. Once the interpolated displacement for each of the mode shapes
is known, the values for the generalised displacements can be used to add the different
deformed positions together in order to obtain the final deformed mesh at each time
step. This would mean that IDW only has to be applied once for each mode shape at
the start of the deformation, which would make this method extremely efficient.

M.Sc. Thesis Laura Uyttersprot

120 Conclusions and Recommendations

• Since the IDW method is more efficient without the use of boundary node rotations it
could be useful to first deform the complete mesh, without rotations, and then apply a
rotation optimisation step only to the cell layers closest to the boundaries in order to
ensure a good mesh quality there. This is based on the IDW mesh optimisation scheme
as presented by Witteveen in [70].

Laura Uyttersprot M.Sc. Thesis

Bibliography

[1] C. Allen. Parallel universal approach to mesh motion and application to rotors in forward
flight. International Journal for Numerical Methods in Engineering, 69(10):2126–2149,
2007.

[2] S. L. Altmann. Rotations, quaternions, and double groups. DoverPublications. com,
2005.

[3] P. Bar-Yoseph, S. Mereu, S. Chippada, and V. Kalro. Automatic monitoring of element
shape quality in 2-d and 3-d computational mesh dynamics. Computational Mechanics,
27(5):378–395, 2001.

[4] J. T. Batina. Unsteady euler airfoil solutions using unstructured dynamic meshes. AIAA
paper, 115:1989, 1989.

[5] Y. Bazilevs, V. Calo, Y. Zhang, and T. Hughes. Isogeometric fluid-structure interaction
analysis with applications to arterial blood flow. Computational Mechanics, 38(4-5):310–
322, 2006.

[6] R. Beatson and N. G.N. Fast evaluation of radial basis functions: part i. Advances in
Computational Mathematics, 11:253–270, 1999.

[7] H. Bijl, A. van Zuijlen, A. de Boer, and D. Rixen. Fluid-structure interaction (wb1417)
- an introduction to numerical coupled simulation. Lecture Notes, Faculty of Aerospace
Engineering, Delft University of Technology, Delft, Netherlands, May 2008.

[8] F. J. Blom. Considerations on the spring analogy. International Journal for Numerical
Methods in Fluids, 32(6):647–668, 2000.

[9] C. L. Bottasso, D. Detomi, and R. Serra. The ball-vertex method: a new simple spring
analogy method for unstructured dynamic meshes. Computer Methods in Applied Me-
chanics and Engineering, 194(39):4244–4264, 2005.

[10] D. E. Breen, S. Mauch, and R. T. Whitaker. 3d scan conversion of csg models into
distance volumes. In Volume Visualization, 1998. IEEE Symposium on volume visuali-
sation, pages 7–14, New York, NY, USA, 1998.

[11] G. Chiandussi, G. Bugeda, and E. Oñate. A simple method for automatic update of
finite element meshes. Communications in Numerical Methods in Engineering, 16(1):1–
19, 2000.

M.Sc. Thesis Laura Uyttersprot

122 Bibliography

[12] E. B. Dam, M. Koch, and M. Lillholm. Quaternions, interpolation and animation.
Datalogisk Institut, Københavns Universitet, 1998.

[13] A. de Boer. Computational fluid-structure interaction. PhD thesis, Technische Univer-
siteit Delft, 2008.

[14] A. De Boer, M. Van der Schoot, and H. Bijl. Mesh deformation based on radial basis
function interpolation. Computers & Structures, 85(11):784–795, 2007.

[15] F. Debrabandere. Computational methods for industrial fluid-structure interactions. PhD
thesis, Université de Mons, 2014.

[16] J. Donea, S. Giuliani, and J. Halleux. An arbitrary lagrangian-eulerian finite element
method for transient dynamic fluid-structure interactions. Computer Methods in Applied
Mechanics and Engineering, 33(1):689–723, 1982.

[17] C. Farhat, C. Degand, B. Koobus, and M. Lesoinne. Torsional springs for two-
dimensional dynamic unstructured fluid meshes. Computer methods in applied mechanics
and engineering, 163(1):231–245, 1998.

[18] R. Franke. Scattered data interpolation: tests of some methods. Mathematics of compu-
tation, 38(157):181–200, 1982.

[19] Fraunhofer Institute for Algorithms and Scientific Computing (SCAI). MpCCI 4.2.1-3
Documentation, 2012.

[20] T. Gerhold and J. Neumann. The parallel mesh deformation of the dlr tau-code. In New
Results in Numerical and Experimental Fluid Mechanics VI, pages 162–169. Springer,
2008.

[21] P. Girodroux-Lavigne, J. Grisval, S. Guillemot, M. Henshaw, A. Karlsson, V. Selmin,
J. Smith, E. Teupootahiti, and B. Winzell. Comparison of static and dynamic fluid-
structure interaction solutions in the case of a highly flexible modern transport aircraft
wing. Aerospace science and technology, 7(2):121–133, 2003.

[22] M. Glück, M. Breuer, F. Durst, A. Halfmann, and E. Rank. Computation of fluid-
structure interaction on lightweight structures. Journal of Wind Engineering and Indus-
trial Aerodynamics, 89(14):1351–1368, 2001.

[23] F. S. Grassia. Practical parameterization of rotations using the exponential map. Journal
of graphics tools, 3(3):29–48, 1998.

[24] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. Journal of
computational physics, 73(2):325–348, 1987.

[25] B. T. Helenbrook. Mesh deformation using the biharmonic operator. International
journal for numerical methods in engineering, 56(7):1007–1021, 2003.

[26] S.-Y. Hsu and C.-L. Chang. Mesh deformation based on fully stressed design: the
method and 2-d examples. International Journal for Numerical Methods in Engineering,
72(5):606–629, 2007.

Laura Uyttersprot M.Sc. Thesis

Bibliography 123

[27] S. Jakobsson and O. Amoignon. Mesh deformation using radial basis functions for
gradient-based aerodynamic shape optimization. Computers & fluids, 36(6):1119–1136,
2007.

[28] A. A. Johnson and T. E. Tezduyar. Mesh update strategies in parallel finite element com-
putations of flow problems with moving boundaries and interfaces. Computer methods
in applied mechanics and engineering, 119(1):73–94, 1994.

[29] D. B. Kholodar, S. A. Morton, and R. M. Cummings. Deformation of unstructured
viscous grids. AIAA paper, 926:2005, 2005.

[30] K. Kovalev. Unstructured hexahedral non-conformal mesh generation. PhD thesis, Vrije
Universiteit Brussel, Brussels, Belgium, December 2005.

[31] D. S. C. Kowollik, M. C. Haupt, and P. Horst. Mesh deformation with exact surface re-
construction using a reduced radial basis function approach. In International Conference
on Computational Methods for Coupled Problems in Science and Engineering. Institute
of Aircraft Design and Lightweight Structures (IFL), 2013.

[32] E. Lefrançois. A simple mesh deformation technique for fluid–structure interaction based
on a submesh approach. International Journal for Numerical Methods in Engineering,
75(9):1085–1101, 2008.

[33] X. Liu, N. Qin, and H. Xia. Fast dynamic grid deformation based on delaunay graph
mapping. Journal of Computational Physics, 211(2):405–423, 2006.

[34] Y. Liu, Z. Guo, and J. Liu. Rbfs-msa hybrid method for mesh deformation. Chinese
Journal of Aeronautics, 25(4):500–507, 2012.

[35] O. Livne and G. Wright. Fast multilevel evaluation of 1d piecewise smooth radial basis
function expansions. In SIAM Conference on Geometric Design and Computing, 2006.

[36] R. Löhner and C. Yang. Improved ale mesh velocities for moving bodies. Communications
in numerical methods in engineering, 12(10):599–608, 1996.

[37] G. Y. Lu and D. W. Wong. An adaptive inverse distance weighting spatial interpolation
technique. Computers & Geosciences, 34(9):1044–1055, September 2008.

[38] E. Luke, E. Collins, and E. Blades. A fast mesh deformation method using explicit
interpolation. Journal of Computational Physics, 231(2):586–601, 2012.

[39] D. R. Lynch and K. O’Neill. Elastic grid deformation for moving boundary problems in
two space dimensions. Finite elements in water resources, 2, 1980.

[40] G. A. Markou, Z. S. Mouroutis, D. C. Charmpis, and M. Papadrakakis. The ortho-semi-
torsional (ost) spring analogy method for 3d mesh moving boundary problems. Computer
Methods in Applied Mechanics and Engineering, 196(4):747–765, 2007.

[41] D. Martineau and J. Georgala. A mesh movement algorithm for high quality generalised
meshes. AIAA Paper, 614:2004, 2004.

M.Sc. Thesis Laura Uyttersprot

124 Bibliography

[42] D. Maruyama, D. Bailly, and G. Carrier. High quality mesh deformation using quater-
nions for orthogonality preservation. In 50th AIAA Aerospace Sciences Meeting including
the New Horizons Forum and Aerospace Exposition, Nashville, Tenessee, January 2012.
ONERA.

[43] D. R. McDaniel and S. A. Morton. Efficient mesh deformation for computational sta-
bility and control analyses on unstructured viscous meshes. In Proceedings of the 47th
AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace
Exposition, pages 2009–1363, 2009.

[44] G. D. Nayer. Interaction fluide-structure pour les corps élancés. PhD thesis, Ecole
Central de Nantes, 2008.

[45] M. Ninyerola, X. Pons, and J. M. Roure. Monthly precipitation mapping of the iberian
peninsula using spatial interpolation tools implemented in a geographic information sys-
tem. Theoretical and Applied Climatology, 89(3-4):195–209, 2007.

[46] NUMECA International. User Manual FINETM/Open v2.12 (Including OpenLabs) Flow
Integrated Environment. Chausse de la Hulpe 189, B-1170 Brussels, BELGIUM, Decem-
ber 2012.

[47] Numeca International. FineTM/open with openlabs, 2013. http://www.numeca.com/

en/products/finetmopen-openlabs, accessed 26 September 2013.

[48] Numeca International. HexpressTM: Unstructured full-hexahedral meshing, 2013.
http://www.numeca.com/en/products/automeshtm/hexpresstm, accessed 26 Septem-
ber 2013.

[49] NUMECA International. User Manual HEXPRESS TM v2.12 Unstructured Grid Gen-
erator. Chausse de la Hulpe 189, B-1170 Brussels, BELGIUM, March 2013.

[50] NUMECA International. User Manual HEXPRESSTM/Hybrid. Chausse de la Hulpe
189, B-1170 Brussels, BELGIUM, 2013.

[51] Open Engineering. Oofelie::multiphysics, 2012. http://www.open-engineering.com/

index.php/eng/Products/OOFELIE-Multiphysics2, accessed 14 July 2013.

[52] G. Papari and N. Petkov. Reduced inverse distance weighting interpolation for painterly
rendering. In Computer Analysis of Images and Patterns, pages 509–516. Springer, 2009.

[53] G. Parwatha. Development of Elastic Analogy Mesh Deformation (EAMD) in
FINE/Open. Numeca International, 2012.

[54] T. Rendall and C. Allen. Efficient mesh motion using radial basis functions with data
reduction algorithms. Journal of Computational Physics, 228(17):6231–6249, 2009.

[55] T. Rendall and C. Allen. Parallel efficient mesh motion using radial basis functions
with application to multi-bladed rotors. International journal for numerical methods in
engineering, 81(1):89–105, 2010.

[56] T. Rendall and C. Allen. Reduced surface point selection options for efficient mesh
deformation using radial basis functions. Journal of Computational Physics, 229(8):2810–
2820, 2010.

Laura Uyttersprot M.Sc. Thesis

http://www.numeca.com/en/products/finetmopen-openlabs
http://www.numeca.com/en/products/finetmopen-openlabs
http://www.numeca.com/en/products/automeshtm/hexpresstm
http://www.open-engineering.com/index.php/eng/Products/OOFELIE-Multiphysics2
http://www.open-engineering.com/index.php/eng/Products/OOFELIE-Multiphysics2

Bibliography 125

[57] T. Robinson and G. Metternicht. Testing the performance of spatial interpolation tech-
niques for mapping soil properties. Computers and electronics in agriculture, 50(2):97–
108, 2006.

[58] J. A. Samareh et al. Application of quaternions for mesh deformation. NASA TM,
211646:2002, 2002.

[59] D. Shepard. A two-dimensional interpolation function for irregularly-spaced data. In
Proceedings of the 1968 23rd ACM national conference, pages 517–524. ACM, 1968.

[60] D. Shepard. A two-dimensional interpolation function for irregularly-spaced data. In
ACM National Conference, pages 517–524, Cambridge, Massachusetts, 1968. Harvard
College.

[61] K. Shoemake. Animating rotation with quaternion curves. ACM SIGGRAPH computer
graphics, 19(3):245–254, 1985.

[62] D. Stadler, F. Kosel, D. Čelič, and A. Lipej. Mesh deformation based on artificial neural
networks. International Journal of Computational Fluid Dynamics, 25(8):439–448, 2011.

[63] A. J. Strazisar, J. R. Wood, M. D. Hathaway, and K. L. Suder. Laser anemometer
measurements in a transonic axial-flow fan rotor. NASA STI/Recon Technical Report N,
90:11245, 1989.

[64] S. Sun and B. Chen. An algebraic deformation approach for moving grid based on
barycentric coordinates. In Computational Intelligence and Software Engineering (CiSE),
2010 International Conference on, pages 1–4. IEEE, 2010.

[65] G. Q. Tabios and J. D. Salas. A comparative analysis of techniques for spatial interpo-
lation of precipitation. JAWRA Journal of the American Water Resources Association,
21(3):365–380, 1985.

[66] University of Washington Computer Science and Engineering. K-d trees, 2002.

[67] G. Van Kuik and J. Dekker. The flexhat program, technology development and testing
of flexible rotor systems with fast passive pitch control. Journal of Wind Engineering
and Industrial Aerodynamics, 39(1):435–448, 1992.

[68] A. van Zuijlen, A. de Boer, and H. Bijl. Higher-order time integration through smooth
mesh deformation for 3d fluid–structure interaction simulations. Journal of Computa-
tional Physics, 224(1):414–430, 2007.

[69] G. Wang, H. H. Mian, Z.-Y. Ye, and J.-D. Lee. An improved point selection method
for hybrid-unstructured mesh deformation using radial basis functions. In 21st AIAA
computational Fluid Dynamics Conference, San Diego, CA, June 2013.

[70] J. A. Witteveen. Explicit and robust inverse distance weighting mesh deformation for
cfd. AIAA Paper, 165, 2010.

[71] Z. Yang and D. J. Mavriplis. Unstructured dynamic meshes with higher-order time
integration schemes for the unsteady navier-stokes equations. AIAA paper, 1222(2005):1,
2005.

M.Sc. Thesis Laura Uyttersprot

126 Bibliography

[72] E. C. Yates Jr. Agard standard aeroelastic configurations for dynamic response i-wing
445.6. Technical report, DTIC Document, 1988.

[73] D. Zeng and C. R. Ethier. A semi-torsional spring analogy model for updating un-
structured meshes in 3d moving domains. Finite Elements in Analysis and Design,
41(11):1118–1139, 2005.

[74] X. Zhou and S. Li. A new mesh deformation method based on disk relaxation algorithm
with pre-displacement and post-smoothing. Journal of Computational Physics, 2012.

Laura Uyttersprot M.Sc. Thesis

Appendix A

Tree Code Optimisation

In order to understand the tree-code optimisation it is first necessary to briefly introduce
what kd-trees are. A kd-tree or k-dimensional tree, is a data structure that organises spatial
data in order to be able to perform faster processing for specific problems such as a nearest
neighbour search or a fast look-up. The kd-tree is organised in such a way that data clusters
are found. An example of a kd-tree is shown in figure A.1. Starting from the complete set
of data points, the data is split in two sets of equal number of data points along the axis of
widest spread. This process is repeated until each set consists of a defined number of nodes.
The bottom level partition consists of the leaves of the tree. The partitions at all other levels
are called the vertices of the tree.

The kd-tree method requires the approximation of the effect of a group of boundary nodes.
Therefore the following sum will have to be approximated

f(x) =

nb∑
b=1

1

‖x− xb‖p
, (A.1)

Now it is possible to find a small set of pseudo nodes, that approximates the influence of a
group of nodes at a distance. When choosing four pseudo nodes, the sum of equation A.1 can
be approximated as follows

f(x) ≈ 1

4

(
1

‖x− q1‖3
+

1

‖x− q2‖3
+

1

‖x− q3‖3
+

1

‖x− q4‖3
)
, (A.2)

where q1, q2, q3 and q4 are the location of the pseudo nodes, which will be called quad points
or QPs. One property of the QPs is that they have to have the same center as the collection
of boundary nodes that they approximate. Therefore the location of q4 can be computed,
once the other three QP locations are known

q4 = 4

(
nb∑
b=1

xb

)
− (q1 + q2 + q3) . (A.3)

M.Sc. Thesis Laura Uyttersprot

128 Tree Code Optimisation

Figure A.1: Example of kd-tree [66]

The other three QP locations will have to be computed by means of a non-linear least-squares
method which minimises the approximation error given by

err =

∥∥∥∥f(x)− 1

4

(
1

‖x− q1‖p
+

1

‖x− q2‖p
+

1

‖x− q3‖p
+

1

‖x− q4‖p
)∥∥∥∥2

(A.4)

In order to be able to minimise the error, a test sphere is created which has a radius r = 3Re,
where Re is the radius of the smallest enclosing sphere that contains all the nodes xb with
the center located at the center of the collection of nodes. On this test sphere 20 nodes
are selected, being the corners of a dodecahedron that is circumscribed by the test sphere.
In figure A the procedure of finding the QPs is illustrated. The larger blue dots represent
the computed QPs, for the collection of nodes illustrated by the smaller white dots. Once
the location of the QPs are known, the errors of the approximation are sampled at different
locations on different test sphere radii. This provides a model for the approximation errors.

Next to finding the location of the QPs it is also important to find the value of the rotation and
translation component at the QPs. In order to assign a rotation and translation component
to the four QPs, a term-by-term least squares fit is done, which again preserves the centroidal
value.

From the presented approximations, it is possible to build a fast kd-tree evaluator. The
architecture of the optimised IDW mesh deformation method is illustrated in figure A. The
blocks with a double frame are only executed once, at the start of the computation. The other
blocks are computed at each deformation step. Firstly, a kd-tree of all the boundary nodes is
constructed. In order to reduce the depth of the tree, each leaf is a bin of 32 boundary nodes.
Then for each tree vertex the four QP locations are computed. Next the error estimates of

Laura Uyttersprot M.Sc. Thesis

129

Figure A.2: Illustration of QP computation [38]

the QP approximations have to be computed. Hence for each kd-tree vertex the QPs, the
sphere radius and the measured errors are stored.

At each simulation step the rotation (M) and translation (b) component have to be computed
for each QP, together with the corresponding error estimate. Once all components of the
approximation are known, the fast evaluation per volume node can start. For each volume
node the kd-tree is descended recursively. At a vertex of the tree it is checked whether the
error of the approximation meets a certain tolerance. If this is the case the QPs are used,
otherwise the tree has to be descended further. Note that when descending the tree, the
closest children are visited first, because they will have the largest impact on the error.

M.Sc. Thesis Laura Uyttersprot

130 Tree Code Optimisation

Figure A.3: KD-tree optimisation software architecture [38]

Laura Uyttersprot M.Sc. Thesis

Appendix B

Coarsening Results

B.1 Elastic Flap

Figure B.1: Comparison of the absolute errors of the different greedy criteria for the elastic flap
test case.

M.Sc. Thesis Laura Uyttersprot

132 Coarsening Results

(a) Criterion 1 (k = 0.01) (b) Criterion 2 (k = 1)

(c) Criterion 3 (k = −10−6) (d) Criterion 4 (k1 = 1, k2 = 0.01)

Figure B.2: Maximum relative error with respect to the number of active boundary nodes for the
different greedy criteria for the elastic flap test case.

Laura Uyttersprot M.Sc. Thesis

B.1 Elastic Flap 133

(a) Without coarsening (b) Criterion 1 (k = 0.01) (c) Criterion 2 (k = 1)

(d) Criterion 3 (k = −10−6) (e) Criterion 4 (k1 =
1, k2 = 0.01)

Figure B.3: Comparison of the selected nodes for the elastic flap test case between the different
greedy criteria (top = flap, bottom = channel).

M.Sc. Thesis Laura Uyttersprot

134 Coarsening Results

B.2 Rotor 67 Coarse Mesh

Figure B.4: Comparison of the absolute errors of the different greedy criteria for the coarse mesh
rotor 67 test case.

Laura Uyttersprot M.Sc. Thesis

B.2 Rotor 67 Coarse Mesh 135

(a) Criterion 1 (k = 0.001) (b) Criterion 2 (k = 1)

(c) Criterion 3 (k = −10−6) (d) Criterion 4 (k1 = 1, k2 = 0.001)

Figure B.5: Maximum relative error with respect to the number of active boundary nodes for the
different greedy criteria for the coarse mesh rotor 67 test case.

M.Sc. Thesis Laura Uyttersprot

136 Coarsening Results

(a) Without coarsening (b) Criterion 1 (k = 0.001) (c) Criterion 2 (k = 1)

(d) Criterion 3 (k = −10−6) (e) Criterion 4 (k1 =
1, k2 = 0.001)

Figure B.6: Comparison of the selected nodes for the coarse mesh rotor 67 test case between
the different greedy criteria (top = blade, bottom = exterior boundary).

Laura Uyttersprot M.Sc. Thesis

B.3 Rotor 67 Fine Mesh 137

B.3 Rotor 67 Fine Mesh

Figure B.7: Comparison of the absolute errors of the different greedy criteria for the fine mesh
rotor 67 test case.

M.Sc. Thesis Laura Uyttersprot

138 Coarsening Results

(a) Criterion 1 (k = 0.001) (b) Criterion 2 (k = 1)

(c) Criterion 3 (k = −10−6) (d) Criterion 4 (k1 = 1, k2 = 0.001)

Figure B.8: Maximum relative error with respect to the number of active boundary nodes for the
different greedy criteria for the fine mesh rotor 67 test case.

Laura Uyttersprot M.Sc. Thesis

B.3 Rotor 67 Fine Mesh 139

(a) Without coarsening (b) Criterion 1 (k = 0.001) (c) Criterion 2 (k = 1)

(d) Criterion 3 (k = −10−6) (e) Criterion 4 (k1 =
1, k2 = 0.001)

Figure B.9: Comparison of the selected nodes for the fine mesh rotor 67 test case between the
different greedy criteria (top = blade, bottom = exterior boundary).

M.Sc. Thesis Laura Uyttersprot

140 Coarsening Results

B.4 Comparison of Selection Methods for Rotor 67

x axis

10 12 14 16 18 20 22 24

y a
xis

−4
−2

0
2

4
6

8
10

z
ax

is

−2
0
2
4
6
8
10
12

x axis

10 12 14 16 18 20 22 24

y a
xis

−4
−2

0
2

4
6

8
10

z
ax

is

−2
0
2
4
6
8
10
12

x axis

10
15

20
25

y a
xis

−5

0

5
10

z
ax

is

0

5

10

(a) Selection method 1 (nb = 349 moving + 514
sliding + 910 fixed = 1773)

x axis

10
15

20
25

y a
xis

−5

0

5
10

z
ax

is

0

5

10

(b) Selection method 4 (nb = 418 moving + 718
sliding + 637 fixed = 1773)

Figure B.10: Comparison of the selected nodes for the coarse rotor 67 test case for selection
method 1 and 4, when the greedy iteration is stopped as soon as 10% of the boundary nodes are
selected (top = blade, bottom = exterior boundary).

Laura Uyttersprot M.Sc. Thesis

B.4 Comparison of Selection Methods for Rotor 67 141

x axis

10 12 14 16 18 20 22 24

y a
xis

−4
−2

0
2

4
6

8
10

z
ax

is

−2
0
2
4
6
8
10
12

x axis

10 12 14 16 18 20 22 24

y a
xis

−4
−2

0
2

4
6

8
10

z
ax

is

−2
0
2
4
6
8
10
12

x axis

10
15

20
25

y a
xis

−5

0

5
10

z
ax

is

0

5

10

(a) Selection method 1 (nb = 1588 moving +
2066 sliding + 3437 fixed = 7091).

(b) Selection method 4 (nb = 1708 moving +
3027 sliding + 2284 fixed = 7091).

Figure B.11: Comparison of the selected nodes for the fine rotor 67 test case for selection method
1 and 4, when the greedy iteration is stopped as soon as 10% of the boundary nodes are selected
(top = blade, bottom = exterior boundary).

M.Sc. Thesis Laura Uyttersprot

142 Coarsening Results

Laura Uyttersprot M.Sc. Thesis

Appendix C

Simulation Settings

C.1 Vortex Induced Beam Vibration

Table C.1: CFD simulation settings of the vortex induced beam vibration test case

Fluid model Incompressible air

Flow model Laminar Navier-Stokes

Inlet velocity 0.315 m.s−1

Outlet pressure 101325 Pa

Solid boundary Adiabatic

Time step size 0.01 s

Number of time steps 1000

Number of iterations per time step 100

Number of modes 4

Damping coefficient 0 for all modes

Table C.2: CSD simulation settings of the vortex induced beam vibration test case

Number of elements 768

Element type CPE4

Young’s modulus 200 kPa

Poisson’s ratio 0.35

Density 2 kg.m3

M.Sc. Thesis Laura Uyttersprot

144 Simulation Settings

C.2 Elastic flap in a duct

Table C.3: CFD simulation settings of the elastic flap test case

Fluid model Air as perfect gas

Flow model Turbulent Navier-Stokes

Turbulence model Spalart-Allmaras

Inlet velocity 8 m.s−1

Outlet pressure 101325 Pa

Solid boundary Adiabatic

Time step size 0.00015 s

Number of time steps 1000

Number of iterations per time step 100

Number of modes 14

Damping coefficient 0 for all modes

Table C.4: CSM simulation settings of the elastic flap test case

Number of elements 800

Element type C3D20R

Young’s modulus 100 MPa

Poisson’s ratio 0.49

Density 1000 kg.m3

Laura Uyttersprot M.Sc. Thesis

C.3 Rotor 67 Blade Deflection 145

C.3 Rotor 67 Blade Deflection

Table C.5: CFD simulation settings of the rotor 67 test case

Fluid model Air as perfect gas

Flow model Turbulent Navier-Stokes

Turbulence model Spalart-Allmaras

Rotation speed 16,043 RPM

Inlet tip relative Mach number 1.35

Inlet tip relative velocity 454 m.s−1

Inlet total pressure Exp. profile [63]

Inlet total temperature Exp. profile [63]

Inlet turbulent viscosity 1× 10−5m2 · s−1

Outlet pressure at r = 0.1961m 121,833.2 Pa

Solid boundary Adiabatic, no slip

Number of iterations 1000

Number of modes 30

Damping coefficient 0 for all modes

Table C.6: CSM simulation settings of the elastic flap test case

Number of elements 1,702

Element type C3D15

Young’s modulus 142.2 GPa

Poisson’s ratio 0.3

Density 4,539.5 kg.m3

Rotation speed 16,043

M.Sc. Thesis Laura Uyttersprot

146 Simulation Settings

C.4 AGARD 445.6 Wing Deflection

Table C.7: CFD simulation settings of the AGARD 445.6 test case

Fluid model Air as perfect gas

Flow model Turbulent Navier-Stokes

Turbulence model Spalart-Allmaras with extended wall function

Mach number 0.5

Freestream velocity 172.4555 m.s−1

Freestream temperature 297.27

Freestream pressure 36494.82 Pa

Freestream turbulent viscosity 0.0001 m2.s−1

Solid boundary Adiabatic, no slip

Time step size 0.0005 s

Number of time steps 1400

Number of iterations per time step 25 (with CPU booster)

Number of modes 6

Damping coefficient 0 for all modes

Figure C.1: Imposed perturbation [15].

Laura Uyttersprot M.Sc. Thesis

Appendix D

IDW Mesh Deformation Flow Chart

M.Sc. Thesis Laura Uyttersprot

148 IDW Mesh Deformation Flow Chart

Input:
 - coordinate arrays for inner nodes and moving, sliding and fixed

boundary nodes.
- displacement array for the moving boundary nodes

- mesh

Re-topologisation of sliding
boundary

Compute moving boundary node
rotations

Compute moving boundary node
translations

If (rotations) TRUE

FALSE

Compute mesh deformation
parameter Ldef

If (sliding)

Compute displacements of nodes on
sliding edges

TRUE

Compute displacements of nodes on
sliding faces

FALSE

If (rotations)

Compute sliding node
rotations

Compute sliding node
translations

TRUE

FALSE

Coarsen boundary

If(coarsening) TRUE

Compute inner node
displacements

FALSE

Correct boundary node displacementsIf(coarsening) TRUE

Update the positions of the
complete mesh

FALSE

End
Output: Updated mesh.

Laura Uyttersprot M.Sc. Thesis

149

1

M.Sc. Thesis Laura Uyttersprot

	Preface
	Summary
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	1.1 Motivation
	1.2 Background
	1.3 Research Question, Aims and Objectives
	1.4 Mesh Quality Measures
	1.5 Outline

	2 NUMECA International Software
	3 Mesh Deformation Algorithms
	3.1 Mesh Connectivity Schemes
	3.2 Point-by-Point Schemes
	3.3 Hybrid Schemes
	3.4 Review of Mesh Deformation Available in FINETM/Open
	3.4.1 Mesh Deformation with Quaternions
	3.4.2 Mesh Deformation with RBF
	3.4.3 Elastic Analogy Mesh Deformation

	3.5 Overview

	4 Test Cases
	4.1 Rotation of 2D NACA 0012 Airfoil
	4.2 2D Vortex Induced Beam Vibration
	4.3 Elastic Flap in a Duct
	4.4 Rotor 67 Blade Deflection
	4.5 AGARD 445.6 Wing Deflection.

	5 Inverse Distance Weighting Mesh Deformation
	5.1 Background of Inverse Distance Weighting Interpolation
	5.1.1 General Principle of Inverse Distance Weighting Interpolation
	5.1.2 Inverse Distance Weighting in Mesh Deformation

	5.2 Basic Implementation in FINETM/Open
	5.2.1 The Interpolation Function
	5.2.2 The Weighting Function

	5.3 Boundary Node Rotations
	5.3.1 Rotation Methods
	Rotation Matrix
	Rotation Quaternion

	5.3.2 Determining the Rotation of a Boundary Node
	5.3.3 Interpolation of Rotations to Volume Mesh
	Linear Interpolation of Quaternions
	Spherical Linear Interpolation of Quaternions
	Linear Interpolation of Logarithm of Quaternion
	Linear Interpolation of Displacement Field

	5.3.4 Results of Mesh Deformation with Rotations

	5.4 Sliding Boundary Nodes
	5.4.1 Sliding Boundary Strategy
	5.4.2 Sliding Boundary Results

	5.5 Absolute and Relative Displacements

	6 Efficiency Improvements
	6.1 Efficiency Improvement Methods
	6.1.1 Tree-Code Optimisation
	6.1.2 Boundary Node Coarsening
	6.1.3 Local Inverse Distance Weighting
	6.1.4 Fast Multi-Level Evaluation
	6.1.5 Fast Multipole Method
	6.1.6 Moving Submesh Approach
	6.1.7 Conclusions and Recommendations

	6.2 Boundary Node Coarsening
	6.2.1 The Greedy Algorithm
	6.2.2 Greedy Error Functions and Stopping Criteria
	Criterion 1
	Criterion 2
	Criterion 3
	Criterion 4
	Comparison of the Absolute Errors
	Summary of the Criteria

	6.2.3 Correction Step

	6.3 Results of IDW Mesh Deformation with Boundary Coarsening
	6.4 Coarsening During a Time-Dependent Simulation
	6.5 Conclusion

	7 Results
	7.1 Test Case Settings
	7.2 Quality
	7.2.1 Rotation of 2D NACA 0012 Airfoil
	7.2.2 2D Vortex Induced Beam Vibration
	7.2.3 Elastic Flap in a Duct
	7.2.4 Rotor 67 Blade Deflection
	7.2.5 AGARD 445.6 Wing Deflection
	7.2.6 Quality Overview

	7.3 Computational Cost
	7.4 Modal CFD Simulation of Vortex Induced Beam Vibration
	7.5 Modal CFD Simulation of AGARD 445.6 Wing Deflection

	8 Conclusions and Recommendations
	8.1 Conclusions
	8.2 Recommendations

	Bibliography
	A Tree Code Optimisation
	B Coarsening Results
	B.1 Elastic Flap
	B.2 Rotor 67 Coarse Mesh
	B.3 Rotor 67 Fine Mesh
	B.4 Comparison of Selection Methods for Rotor 67

	C Simulation Settings
	C.1 Vortex Induced Beam Vibration
	C.2 Elastic flap in a duct
	C.3 Rotor 67 Blade Deflection
	C.4 AGARD 445.6 Wing Deflection

	D IDW Mesh Deformation Flow Chart

