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Introduction

The past century surveillance methods have been increasing, however the field of surveillance is never com-
pleted. By developing new surveillance methods, safety can be increased at sensitive public areas. This re-
search is focused on investigating the possibilities of locating single acoustic sources based on emitted noise.

A possible application could be drone localization. In December 2018 drones were spotted around Gatwick
Airport. Due to potential collision risks, the airport was closed resulting in more than hundreds of flights to
be cancelled and over a thousand flights were impacted. Commercial drones are often too small for radar
equipment to be picked up [9]. Therefore the location of small commercial drones can be hard to determine.
The methods proposed in this research could be of interest considering extensions of current surveillance
methods.

Another application could be tracking marine life under water. Some sea animals communicate under water
by means of sound. These sound waves could be captured by under water microphones. This would re-
quire additional research due to the difference in environmental aspects. By implementing the localization
methods to the under water environment, it might be possible to locate sea animals based on the sound they
produce. The gathered information could become of importance to monitor under water wild life popula-
tions.

The research is aimed at locating an acoustic source using different approaches. The research compares a
proven global optimization method with two methods which have not yet been combined with 3-dimensional
acoustic source localization. Global optimization methods and neural networks were implemented to local-
ize acoustic sources.

The research was done as a graduation project in the section Aircraft Noise and Climate Effects of the Aerospace
Engineering faculty at Delft university of Technology. The section focuses on investigating noise aspects and
climate impact related to the aviation industry.

The report is divided into three main components. The first part contains a scientific paper, the second part a
literature survey and the final part includes supporting information. The scientific paper presents the meth-
ods which were investigated during the research. After explaining, the methods were tested on simulated and
experimental data. The results are used to quantify the performance of the methods and compare them. The
second part contains a literature survey, which has been conducted at the start of the research. The literature
survey was used to obtain knowledge in the field of acoustics and optimization. The final part consists of sup-
portive information. Some of the fundamentals used in the scientific paper are explained more extensively.
Besides supportive information, additional results are presented.

xiii
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A comparison of 3-dimensional acoustic localization methods based
on global optimization and neural networks

Daan Schoorl, ∗

Delft University of Technology, Delft, The Netherlands

Abstract

This paper presents a research on the localization of an acoustic source in a 3-dimensional space. The
application could be an addition to current surveillance methods by localizing acoustic sources. The investi-
gated localization methods are global optimization and neural networks. The evaluated global optimization
methods consist of differential evolution, i.e a variation of the well-known genetic algorithm and the butterfly
optimization algorithm. The neural network investigated during the research was a multi-layer perceptron
network, which was trained using synthetic data. The three approaches are compared using both simulated
and experimental data. Performance of the three methods was assessed by determining their accuracy in
locating the acoustic source and the corresponding computational demand. Although the neural network
showed low computational demands (neglecting the training phase) compared to differential evolution and
the butterfly optimization algorithm. The accuracy of the localization was better for the approaches based
on the global optimization methods.

1 Introduction

In the past years, the commercial availability and pop-
ularity of drones has been increasing. There are few
limitations when it comes to buying drones and in
many cases there is no operating knowledge required.
The absence of these requirements can lead to threats
for society or public facilities. Possible threats could
be violating peoples privacy, attacks on public facil-
ities or public annoyance due to noise. The incident
at Gatwick Airport in December 2018 showed that a
drone is capable of disrupting an entire airport. As
current surveillance methods fall short of resolving
this issue, new methods should be developed to in-
crease safety [1].

One of the possibilities to localize drones is based
on the noise produced by drones. In addition, there
are many other application where source localization
is of importance. The noise can be captured by a
microphone array. A proven method to localize and
quantify acoustic sources using arrays is beamform-
ing. This method uses the phase differences of the
received signal over the microphones. Beamforming
can be used to estimate source levels at locations in
a scan plane. A beamform plot presents these source
levels in a 2-dimensional image. Low levels indicate
no source and high levels present sources. Calculat-
ing the source level at each of the scan points could be
considered an exhaustive search. When applying an
exhaustive search, the method is restricted to a lim-
ited amount of unknowns which prevent the method
of being suitable for more general applications. Beam-
forming can be extended from the second dimen-

sion to the third dimension by adding multiple grid
planes. This will increase the exhaustive search to be-
come more computational demanding. Therefore new
methods are required to solve this issue. Global opti-
mization methods are one of the possibilities. Global
optimization methods are capable of searching large
solution spaces based on few assumptions. A disad-
vantage of global optimization methods is the possi-
bility of finding a local optimum instead of the global
optimum. Beamform plots arguably show higher en-
ergy levels not only at the location of the source, but
also at locations where there is no source, called side-
lobes. Sidelobes could be interpretend as local op-
tima which can set global optimizations methods off
track. However global optimization methods do have
the ability of escaping local optima while searching
the global optimum [2].

The method of Malgoezar et al. has proven to be
capable of locating one or multiple acoustic sources in
a 3-dimensional space. To achieve this result he com-
bined differential evolution with beamforming energy
functions to efficiently search through acoustic envi-
ronments. Beneficial of the work of Malgoezar et al.
is the reduction in required forward calculations and
high accuracy while maintaining a high probability of
locating the global optimum [3][4].

In the work of Arora and Singh, they introduce
the butterfly optimization algorithm. This global op-
timization method is inspired by the movement of but-
terflies. In their work they compare the butterfly op-
timization algorithm with other global optimization
methods, including differential evolution. The com-
parison is made by applying optimization techniques
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to a set of 30 benchmark functions. They search for
the optimal solutions of the benchmark functions to
evaluate the performance of the tested methods. The
performance of the global optimization methods are
compared using mean deviation, standard deviation
and speed. The results indicate that the butterfly op-
timization algorithm is capable of finding global op-
tima with a fast convergence speed [5].

In recent years deep learning has made rapid de-
velopment in a wide variety of research fields. In
the work of Kujawski et al. a convolutional neu-
ral network was used to locate acoustic sources using
simulated microphone array data. The convolutional
neural network was trained by feeding 2-dimensional
beamform images. The investigated square scan plane
had x and y dimensions ranging from −0.343 to 0.343
[m] at a fixed distance of 0.343 [m] from the micro-
phone array. The amount of grid points at which
beamforming was applied consisted of 51 by 51 points.
The frequencies investigated ranged from 500 to 6500
[Hz]. The goal of the research was to locate acous-
tic sources and determine their source strength. The
method appeared to be effective at locating a single
acoustic point source with sub-grid accuracy. When
investigating acoustic sources at higher frequencies,
more side lobes arise resulting in a more challeng-
ing environment to locate acoustic sources. During
the evaluation of the performance, the estimated lo-
cation accuracy of the convolutional neural network
appears to be independent of the frequency. However
combining convolutional neural networks with beam-
forming does come with shortcomings. To estimate
2-dimensional locations and source strengths of a sin-
gle acoustic source, a beamform image is required.
Therefore the method is subjected to an exhaustive
search prior to application [6].

At the moment deep learning is an attractive tool
to process data. By training algorithms to recog-
nise patterns in data, a wide variety of problems can
be solved at high speeds. Ma and Liu [7] compared
beamforming, DAMAS and convolutional neural net-
works to locate simulated acoustic sources. To test
each of the three methods, simulated data was fed to
the methods to compare the localization accuracy at
different frequencies. The convolutional neural net-
work was trained by presenting cross spectral ma-
trices with corresponding locations. The research is
aimed at locating multiple acoustic sources in a 2-
dimensional x and y plane with dimensions between
−0.8 [m] and 0.8 [m]. The acoustic sources were
placed at a fixed radial distance of 2 [m] from the
microphone array. The work concludes that convolu-
tional neural networks are capable of locating multiple
acoustic sources. Specifically at higher frequencies the
accuracy of the estimates for source position appears
to be increasing.

Castellini et al. used a different approach to com-
bine neural networks with a phased microphone array.
In the research a multi-perceptron neural network was
used to analyze measurements taken by a microphone
array. The aim was to locate acoustic sources in a

2-dimensional plane. Castellini applied a few mathe-
matical operations to reshape the cross spectral ma-
trix for the neural network. By using the cross spec-
tral matrix almost directly, most of the steps used
with beamforming are not required. The locations of
the acoustic sources considered by Castellini varied
between −0.5 [m] and 0.5 [m] in the x and y plane.
The sources were located at a fixed radial distance
of 2 [m] from the microphone array. The network
was trained with a synthetic data set consisting out
of 1000000 cross spectral matrices each corresponding
to a different source location. The network has proven
to be capable of locating acoustic sources and finding
the corresponding source strengths [8].

The aim of the research presented in this pa-
per is to compare acoustic localization methods
based on different approaches. Often research done
with a phased microphone array is focused on a 2-
dimensional search in the x and y directions with fixed
radial distance z. This is likely a result of all mi-
crophones being positioned in the x and y plane and
therefore obtain less accurate measurements in the ra-
dial direction [4]. This research will include the radial
direction and therefore search for acoustic sources in
a 3-dimensional search space.

In section 2 the methodology is described. The
principles of the optimization methods and artificial
neural networks are explained. Section 3 presents the
applications of all three methods. This section con-
nects theory to practice by explaining how the meth-
ods are combined with locating acoustic sources. The
localization methods are compared based on simu-
lated and experimental data. The results will evaluate
the performance of each method in section 4. After
the results are presented, possible impacting factors
are discussed in section 5. Finally section 6 will state
the findings of the research in the conclusion.

2 Methodology
In this study acoustic localization is investigated us-
ing three methods. The first method considered is
differential evolution, the second method the butterfly
optimization algorithm and the third method makes
use of neural networks. Differential evolution and
the butterfly optimization algorithm can be classified
as metaheuristic methods. A metaheuristic method
has the capability of searching through large solu-
tion spaces making no or few assumptions. All three
methods were set to use cross spectral matrices of
the acoustic data measurement by the arrays. Based
on the acoustic data the locations of single acoustic
sources are estimated in a predefined search area. The
input data consisted of simulated and experimental
data.

2.1 Differential evolution
Differential evolution is based on an iterative process
to optimize candidate solutions to an optimization
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problem. Each iteration is denoted as a generation
and the number of iterations is set to give a high
probability of finding the solution to the optimization
problem. The method combines existing populations
with new populations and keeps the improved solu-
tions at the next generation. Besides keeping the most
suitable solution, differential evolution keeps some of
the less attractive solutions, thereby creating possibil-
ities to escape local optima. The population consists
of q members. The population members are presented
by mk,u in which k specifies the number of the genera-
tion and u denotes an individual population member.
mk,u is a vector containing the elements of a possi-
ble solution to the optimization problem. In case of a
3-dimensional search the three elements of mk,u are
x, y and z. Considering the acoustic solution space
mk,u will start at a randomly chosen location within
the limits of the search area. Partner population bk,u

is created from population mk,u, presented in formula
1.

bk,u = mk,u1
+ F (mk,u2

−mk,u3
) (1)

The variable of u1,u2,u3 ∈ {1, 2, , q} denote spe-
cific members of population mk,u. The subscript u
values in equation 1 are chosen at random, denoting
that partner populations are generated by combining
random chosen population members from the current
population. F denotes a scalar multiplication factor
with a preset value between 0 and 1. Increasing the
value of F will result in larger differences between
population members mk,u and partner populations
bk,u.

In formula 2 is determined whether an original
population member or a member from the partner
population is selected to create new descendants dk,u.

dk,u,v =

{
mk,u,v if r ≥ pc

bk,u,v if r < pc
(2)

The crossover probability pc defines the threshold
on which population members are selected to proceed
towards the next generation. The values of F and pc
can be altered to tune the algorithm. Parameter r
defines a uniform distributed random value between
0 and 1. In formula 3 a comparison is made between
energy values E from descendants dk,u and current
generation mk,u.

mk+1,u =

{
dk,u if E(dk,u) < E(mk,u)

mk,u if E(dk,u) ≥ E(mk,u)
(3)

Based on the values obtained for the energy func-
tion, the current population or the descendants are
selected for the next generation. This process is re-
peated until the preset amount of generations is com-
pleted. The acoustic source location corresponding to
the population member with the least overall energy
value is saved during each generation. The differen-
tial evolution algorithm used during this research is
a minimization problem. The energy values of the

population members mk,u and descendants dk,u can
be determined by the following formulas. First rn,j
is created, containing the distance between each of
the microphones and the locations selected by the al-
gorithm. Distance rn,j is presented in formula 4, in
which n denotes a specific microphone and j the lo-
cation of a potential acoustic source specified by the
algorithm.

rn,j =
√

(xn − xj)2 + (yn − yj)2 + (zn − zj)2 (4)

In formula 5, the so called steering vector gn,j is
presented.

gn,j = e−2πif(
rn,j

c ) (5)

The steering vector contains the phase difference
between the input signals obtained from the simulated
microphone array. When the steering vector compo-
nents gn,j between each of the microphones and one
specific location are combined vector g can be con-
structed. Steering vector g can be used to calculate
beamform output B(x, y, z, f) according to formula 6.

B(x, y, z, f) =
g∗Cg

∥g∥4
(6)

The beamform output presents the acoustic re-
semblances between the phase differences at different
grid locations. When the beamform output is deter-
mined at a single point, this can be denoted as the
energy value. Therefore the method estimates acous-
tic source levels at locations chosen by the algorithm,
without using a grid. The method strives to find the
location within the search area with the most optimal
energy value. The final generation will present the
overall best estimated source location [4] [9] [10]. A
flowchart of the method is presented in figure 1.

2.2 Butterfly optimization algorithm
The butterfly optimization algorithm originates from
butterflies communicating by scent. The method is
based on an iterative process in which butterflies move
through the search area, searching for the highest pos-
sible energy value. The movement of the butterflies
is based on the positions of other butterflies. The al-
gorithm is set to maximize the solution. The initial
step at iteration t = 1 is to allocate all butterflies xt

i

to a random chosen location within the search area.
The vector xt

i denotes the x, y and z coordinates of
butterfly i at iteration t. The energy function used to
evaluate the fitness is determined by formula 4, 5 and
6, equivalent to the energy function used by differen-
tial evolution. The values obtained from the energy
function will be used to determine the stimulus in-
tensity I. The stimulus intensity is defined as the
normalized energy value. By normalizing the energy
value, the impact of source strength is deducted from
the localization process. In formula 7 is presented how
the perceived magnitude of fragrance h is calculated.
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Figure 1: Flowchart differential evolution [10]

4



h = bsmIa (7)

The perceived magnitude of fragrance is used to
determine the location of the butterflies at the next
iteration. Constant bsm denotes the sensor modal-
ity and constant a the power exponent. Because the
value of h will impact the step size, the values of bsm
and a can be tuned to impact the convergence speed
due to their impact the perceived magnitude of fra-
grance h. After the perceived magnitude of fragrance
h is determined for each butterfly, the butterfly with
the highest value of h is selected to be the fittest but-
terfly and labeled k. Therefore vector xk contains
the coordinates corresponding to the fittest butter-
fly. The location of the fittest butterfly at each itera-
tion is automatically saved to the next iteration, pre-
serving the best results throughout all iterations. To
proceed towards the next iteration a choice is made
whether to proceed in a global search or in a local
search. For each butterfly at each iteration a uniform
random value r is chosen and compared with the pre-
set switch probability ps. The search type for each
butterfly in each iteration is described by formula 8.

xt+1
i =

{
global search if r < ps

local search if r ≥ ps
(8)

When a butterfly is selected to take a step within
the global search, it will move towards the fittest but-
terfly according to formula 9.

xt+1
i = xt

i + (r2xk − xt
i)hi (9)

Otherwise a butterfly is selected to proceed in a
local search and moves towards a random chosen com-
bination of two other butterflies described by formula
10.

xt+1
i = xt

i + (r2xt
j − xt

l)hi (10)

The vectors containing the locations of xj and xl

are randomly chosen location vectors of other butter-
flies during the same iteration. The iterations are re-
peated until the preset number of iterations are com-
pleted [5] [11]. A flowchart of the butterfly optimiza-
tion algorithm is presented in figure 2.

2.3 Artificial neural network
The past years artificial intelligence has developed
rapidly. Inspired by the sophisticated functionality
of the brain, the method became a popular data pro-
cessing tool. One of the branches of artificial intel-
ligence is neural networks. A neural network con-
sists of layers, links and nodes. Each layer contains
of a number of nodes and the nodes of different lay-
ers are connected by weighted links. This research
will make use of a multi-layer perceptron network. A
multi-layer perceptron network has the capability of
mapping non-linear relations between input and out-
put data. During the training process, each of the

training cycles executed by a neural network is called
an epoch. Training is meant to determine the value
of the weights. Weights are found using optimiza-
tion methods. The output of each node depends on
its input and its activation function. The activation
function combines the node inputs to determine its
output. The input and output layer of a neural net-
work are bounded by the parameters of the problem.
The size of the input layer is equal to the number of
elements in the data. The number of output nodes
is bounded by the desired output. During this re-
search the number of input nodes is determined by
the number of elements in the cross spectral matrix.
The number of output nodes is 3, which is defined
by the estimates containing x, y and z coordinates.
A neural network is trained by feeding samples and
corresponding solutions to the network. Based on the
difference between the estimates of the neural network
and the actual solutions the weights of the links are
adapted. By training a neural network with sufficient
training data, the network has the ability to recog-
nize patterns within the data. Once the training has
been completed, the neural network has the ability of
estimating outputs at a rapid pace [12] [13].

Researchers have applied different types of neural
networks to process simulated or recorded data ob-
tained from phased microphone arrays. The applica-
tion is subjected to a wide variety of design choices de-
pending on the purpose of the neural network. Neural
networks have a completely different approach com-
pared to global optimization methods. One of the key
architecture choices in designing a neural network is
the optimizer. The optimizer determines the weight
changes and strives to minimize the error of the loss
function. The loss function is a measure to quantify
the error between the trained network estimates and
the actual source locations. Different loss functions
can be used depending on the application of the net-
work.

The learning rate of the neural network controls
the step size at which the weights are adapted. By
using large steps a neural network is able to learn
fast. However, choosing a large learning rate can
negatively impact the performance of the model by
finishing with a sub optimal set of weights. A smaller
learning rate may lead to finding a more optimal set
of weights at the cost of longer training time. Figure
3 visualizes possible differences between step sizes for
a 2-dimensional situation. The situation presented on
the left side of figure 3 describes large steps, creating
the possibility of stepping over the global optimum.
The situation on the right side of figure 3 presents
small steps, resulting in longer training times with a
more optimal solution. When using a learning rate
too small there is a possibility of ending up in a local
optimum.
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Figure 2: Flowchart butterfly optimization algorithm
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Figure 3: Difference in learning rate, large learning rate
(left) and small learning rate (right)

The activation functions of the nodes define its
output relative to the input. Each node in the same
layer has the same activation function as these are se-
lected per layer. The activation functions considered
in this research are rectified linear units and a lin-
ear activation function. The rectified linear unit is a
default choice in many feed forward neural networks
today and is presented by figure 4.

Figure 4: Rectified linear units (ReLU) activation
function.

During the research a feed forward neural network
was used. A feed forward network allows a signal
only to move from input to output, these networks
are mainly used for pattern recognition. The rectified
linear unit reacts close to a linear function. The rec-
tified linear unit activation function has a threshold
value of 0 and is presented in formula 11.

f(x) = max(0, x) (11)

The rectified linear unit implies the output is 0
if x < 0 and the output is a linear function f(x) if
x > 0. The value of x denotes the nodes input value.
The rectified linear unit activation function can only
provide outputs which are larger or equal than zero
[14] [15].

During the research, the final layer of the neu-
ral network contains a linear activation function. A
linear activation function is commonly used as the
output layer for regression problems. The linear ac-
tivation function enables the final output values to
become positive and negative, which is desired con-
sidering the position of the microphone array relative
the search area [8] [16].

The neural network created during this research
is inspired by the neural network of Castellini et al.
[8]. The cross spectral matrix could be considered an
image which stores the phase relations of the acoustic
scenario. Depending on the design choices, the cross
spectral matrix is reshaped before being fed to the

neural network. Castellinis approach on feeding data
to the neural network is based on the principle that
every cross spectral matrix is hermitian by nature.
The cross spectral matrix contains phase differences
between microphone signals. Therefore the diagonal
elements should contain phase differences between an
input signal of single microphones with the same in-
put signal. Since the phase difference between an in-
put signal and itself should be 0, the diagonal can
be considered contaminated else wise. Therefore the
main diagonal values are set equal to 0. Before feeding
the cross spectral matrix to the neural network, the
cross spectral matrix is split over its diagonal. The
imaginary values are removed from the upper right di-
agonal and the real values are removed from the lower
left diagonal. Both parts are joined again forming a
reshaped cross spectral metric preserving all relevant
information. This process is visualised in figure 5. Be-
fore feeding the reshaped cross spectral matrix to the
neural network the matrix is normalised between val-
ues of 0 and 1. The normalised cross spectral matrix
is split up into rows which are concatenated to form
a single row containing a whole cross spectral matrix.

3 Case Studies

3.1 Simulation set-up
During the simulations all three methods were tested
and trained to estimate acoustic source locations
within the search area. The search area consists of
a cube with sides of 40 [m] each. The microphone
array was positioned in the middle of the bottom sur-
face facing up towards the search area. The simulated
microphone array consists of 64 microphones. The mi-
crophone configuration of the array used during the
simulations is presented in figure 6.

-1 -0.5 0 0.5 1

x [m]

-1

-0.5

0

0.5

1

y
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]

Figure 6: 64 Microphone positions of simulated phased
microphone array

In the center of the microphone array, the micro-
phones are located close together. Microphones lo-
cated close together are preferable to record high fre-
quencies due to small wavelength λ. At the outer
parts of the microphone array the microphones are
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Figure 5: Cross spectral matrix division of Castellini

more spread, making the outside areas more suitable
to capture large wavelengths. Formula 12 displays the
relation between wavelength λ and frequency f . The
constant c denotes the speed of sound. The process-
ing of simulations and experiments is conducted using
a 2017 Macbook Pro with 2.9 GHz Quad-Core Intel
Core i7 processor and 16 GB 2133 MHz LPDDR3 ram
storage.

λ =
c

f
(12)

Simulated data was used to train and compare the
methods. Each of the simulated cross spectral matri-
ces accommodates a single omni-directional acoustic
source at a uniformly random selected location within
the search area. The sources emit a tone at f = 3000
[Hz] with a source strength of 10−8 [Pa2]. Formula 13,
14 and 15 present the simulation of a single cross spec-
tral matrix under ideal circumstances. Formula 13
presents the construction of predicted signals, phase
variations over the array and the effect of geometri-
cal spreading on the level. Parameter rm denotes the
distance between the acoustic source and each of the
n microphones.

am =
1

rm
e−2πjf(rm)/c (13)

In formula 14, output vector y(f) is obtained
by multiplying the steering vector am with acoustic
waveform s(f).

y(f) = am(xs)s(f) (14)

In formula 15, vector output y(f) is multiplied
with the transposed complex conjugate of y(f) and
divided by 2 to obtain cross spectral matrix.

C =
y(f)y(f)∗

2
(15)

This process is repeated to obtain multiple cross
spectral matrices corresponding to different source po-

sitions. To compare the three methods a test data set
was generated consisting of 1000 cross spectral matri-
ces and corresponding source locations.

3.1.1 Differential evolution

The first method tested on the test data set was differ-
ential evolution. Differential evolution was executed
while using the setting parameters displayed in table
1.

Variable Value
Crossover probability pc 0.74
Multiplication factor F 0.64

Population size q 64
Number of generations Ng 400

Table 1: Differential evolution variables

The setting parameters for differential evolution
and the butterfly optimization algorithm were se-
lected to grant each of the global optimization meth-
ods with an equal amount of inversions. An inversion
denotes each time the energy function was calculated.
The number of inversions for differential evolution is
determined by multiplying the number of generations
Ng with population size q.

3.1.2 Butterfly optimization algorithm

The second method tested is the butterfly optimiza-
tion algorithm. The parameter settings used during
simulation are presented in table 2.
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Variable Value
Switch probability ps 0.7
Sensor modality bsm 1.8

Absorption coefficient a 0.1
Number of iterations t 32
Number of butterflies i 800

Table 2: Differential evolution variables

The amount of inversions set for differential evolu-
tion was matched to create equal chances in locating
the acoustic sources. The number of inversions made
by the butterfly optimization algorithm can be deter-
mined by multiplying the number of iterations t with
the number of butterflies i. The energy function used
by the butterfly optimization algorithm is constructed
with the same formulas 4 ,5 and 6 as for differential
evolution. The algorithm is finished when the stop-
ping criterion is met at t = 32 iterations.

3.1.3 Neural network

Before comparing the three methods, the neural net-
work was trained and validated with training data
containing 840000 cross spectral matrices. At each
epoch the data set is shuffled to change the order
at which the samples are presented to the network.
By shuffling the data set at each epoch, the neural
network becomes more suitable at finding a general
pattern in the training data. The data set was split
between 80% training data and 20% validation data.
The first 80% of the samples is used to train the net-
work and the remaining 20% is used to determine the
validation loss. The validation loss can be used to
quantify the progress of the training. The loss func-
tion used during this research is the mean absolute
error. The mean absolute error is presented in for-
mula 16. In which L denotes the number of samples
and el the error between the estimated values and the
actual values.

Mean absolute error =
1

L

L∑
l=1

|el| (16)

At each epoch the loss function is used to deter-
mine the validation loss, this implies comparing the
models estimates with the actual solutions. The mean
absolute error is used to determine the difference be-
tween the estimated and the actual value. When the
validation loss starts to increase, the network starts
overfitting. Overfitting implies the network is becom-
ing very capable of estimating outputs to correspond-
ing inputs within the training data set but less suit-
able at estimating unseen data. Therefore overfit-
ting is a undesired effect. During the training pro-
cess, the validation loss was monitored at each epoch.
Each time the validation loss decreased, a copy of the
weights is saved to preserve the best model param-
eters. The batch size of the neural network was set
at 32 samples. The batch size defines the number
of training samples passing by before updating the

models weighted links. The cross spectral matrices
fed to the neural network were formulated according
to Castellinis method described in section 2.3. Af-
ter training, the neural network was tested using the
same test data set used to test differential evolution
and the butterfly optimization algorithm. The layers
and nodes used in the network are presented in table
3. The network consists of 6 layers including the in-
put and output layer. The first 4 active layers have a
rectified linear unit activation function and the final
layer has a linear activation function.

Layer Neurons Activation function Type
1 4096 - Input
2 400 ReLU Fully connected
3 200 ReLU Fully connected
4 50 ReLU Fully connected
5 20 ReLU Fully connected
6 3 Linear Fully connected

Table 3: Neural network architecture simulation

The optimizer used by the neural network during
the research was stochastic gradient descent. Stochas-
tic gradient descent is an optimizer which can be ap-
plied to change the weights of the links. By changing
the weights of the links, the optimizer aims to re-
duce the error values of the loss function. By training
the neural network with random generated samples,
the method aims to create a network which can solve
general problems. The neural network used during
simulations is presented in figure 7. The figure shows
the first step in which the cross spectral matrix is re-
shaped to vector format before feeding the cross spec-
tral matrix to the neural network. The first layer con-
sists of the input layer which has the same amount of
nodes as there are elements in the cross spectral ma-
trix. The 4096 input nodes result from multiplying
the 64 input signals with its complex conjugates as
described in formula 15.

3.2 Experimental set-up

In addition to comparing the methods based on syn-
thetic data, real measurements were considered. The
microphone array used was a Bionic M-112 from CAE
which contains 112 microphones. Differential evolu-
tion and the butterfly optimization algorithm were
slightly adapted to fit the new microphone configura-
tion. The neural network required new training due to
the increased amount of inputs. The positions of the
microphones are presented in figure 8. The recordings
were made outside, causing exposure to environmen-
tal noise. Figure 9 presents the setup for the record-
ings above grass. The first two recordings were cap-
tured above a grass surface. The third recording was
captured above a stone surface. The size of the search
area used during the simulations was kept constant
during the experiments.
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Figure 7: Multi-layer perceptron network
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Figure 8: 112 Microphone positions of experimental
phased microphone array

Figure 9: Experimental set-up

The acoustic source used during the recordings
was an omni-directional source which emitted a multi-
tone signal consisting out of 5 different frequencies.
The multi-tone emitted frequencies at 200, 1000,
2000, 3500 and 5000 [Hz]. The acoustic source was
placed at different locations to investigate the effect
of surrounding influences. Table 4 presents the coor-

dinates and the surface material at which the acoustic
source an microphone array are located. Since differ-
ential evolution was proven to be successful it was
used to confirm and improve on the measured source
locations. The algorithm was set with an excessive
amount of inversions by increasing the population size
and the number of generations significantly. This pro-
cess was repeated 100 times, all resulting to the coor-
dinates presented in table 4. Because differential evo-
lution was assumed to improve on the measurement
accuracy, the decision was made to continue with the
locations defined by differential evolution.

Recording x[m] y[m] z[m] Bottom
1 -0.4910 0.0972 2.9423 Grass
2 -0.6109 -0.6468 6.4229 Grass
3 -1.0117 0.2855 4.2959 Stone

Table 4: Recorded data locations

The acoustic input received by the phased micro-
phone array consists of pressure differences recorded
over time. The acoustic source was placed on a tripod
to create a stationary source position. The investi-
gated time signal was Hanning weighted, zero-padded
and Fourier transformed to the frequency domain.
The Hanning weighting was included to reduce the
impact of sidelobes in the frequency domain. Zero-
padding was applied to create a more clear represen-
tation of the frequency spectrum. The cross spectral
matrices were extracted from the recorded signal at a
frequency of 3500 [Hz] [17] [18].

The Neural network is trained again due to the
increase in microphones of the second array. The
amount of microphones in the array determines the
size of the cross spectral matrix. The second micro-
phone array consisted of 112 microphones, resulting in
a cross spectral matrix containing 12544 elements. A
new data set was created according to the configura-
tion of the array. Each cross spectral matrix used was
created at a frequency of 3500 [Hz]. During training
the data set was split in 80% training data and 20%
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validation data. 245000 samples were used to train
the network. The decrease in sample size is a result
of computational limitations. Besides the input layer,
the network architecture was kept consistent. The
amount of nodes in the input layer increased from
4096 nodes to 12544 nodes.

4 Results
4.1 Simulation results
The performance of the acoustic localization methods
is evaluated based on accuracy and required process-
ing time. The test data set containing 1000 samples
was used to quantify the results. Table 5 presents
the mean absolute deviation between the simulated
acoustic source positions and the estimates by the lo-
calization methods. Besides the mean absolute devi-
ation (MAD) the table presents the mean processing
time (MPT) of a single sample.

DE BOA NN
MAD [m] 0.0983 0.2417 0.2883
MPT [s] 4.567 1.234 1.634e-4∗

Table 5: Mean absolute deviation (MAD) and mean
processing time (MPT). ∗ Denotes the time to estimate
coordinates after training

The box-plots in figure 10 presents the absolute
deviation between estimates and true source positions
for each method. The absolute deviation of each sam-
ple is determined by calculating the difference be-
tween the estimated coordinates and the actual source
coordinates. Global optimization methods have the
ability of finding local optima instead of the global
optimum. This could be a characteristic of the neural
for network as well. Some outliers are presented in the
boxplots of figure 10. Besides the values presented in
the boxplots, the global optimization methods had a
few outliers which got stuck in a local optimum out-
side the presented window of figure 10. Because the
x, y and z values are correlated, a source location is
likely to either locate a source or to miss out on all
3 coordinates. The neural network appears to have
found a pattern in the cross spectral matrix to esti-
mate acoustic source locations, without getting stuck
in a local optimum. However the neural network has a
wider range in deviation than the global optimization
methods. The second performance metric, process-
ing time varies from fractions to seconds. The Neural
network requires a significant time to train before be-
ing applicable. Once the training process is completed
the neural network requires little processing time com-
pared to the global optimization methods. The his-
tograms in figure 11 present a deviation comparison
of the simulated test data set. The narrow peaks on
the top row shows the high accuracy of differential
evolution. The bottom row presents the results of the

neural network. Especially in radial direction z the
accuracy appears to decrease.

4.2 Experimental results

The recordings described in section 3.2 were tested
with each of the localization methods. Figure 12
presents the power spectral density of recording 1.
The power spectral density visualizes peaks at each
of the frequencies emitted by the omni-directional
source. The strongest peak can be found at 3500
[Hz]. Besides the emitted frequencies, a wide vari-
ety of peaks at other frequencies can be found in the
power spectral density.
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Figure 12: Power spectral density (PSD) of recording 1

Differential evolution and the butterfly optimiza-
tion algorithm use equations 4, 5 and 6 to determine
the energy values at the locations of interest. Each
inversion is executed at a single frequency. Before
feeding the cross spectral matrix to the global op-
timization algorithm, samples at a frequency 3500
[Hz] are selected. To visualize the acoustic environ-
ment a beamform plot is presented in figure 13. The
plot consists of an 8 [m] by 8 [m] zoomed image at
z = 2.8702 [m] (radial source distance). The beam-
form plot presents a mirrored source below the ac-
tual source. This is presumably a reflection from the
omni-directional source on the grass surface. Figure
14 presents a beamform plot of recording 3, recording
3 was captured above a stone surface. The selected
plane had equal dimensions as figure 13 at a radial
distance of 4.2841 [m] from the microphone array.
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Figure 10: Absolute deviation between estimated and true source positions. Differential evolution is denoted
by DE, the butterfly optimization algorithm by BOA and the neural network by NN

Figure 13: Beamform plot of recording 1 at 3500 [Hz]

Figure 14: Beamform plot of recording 3 at 3500 [Hz]

Table 6, 7 and 8 present localization estimates of

the recordings. The differential evolution algorithm
requires the most time to process input signals. How-
ever the method obtains the most accurate results.
The neural network produces estimates at a fraction
of a second with the least accuracy. The butterfly
optimization algorithm is a little less accurate than
differential evolution at a quarter of the processing
time.

x[m] y[m] z[m] Time [s]
Location -0.4910 0.0972 2.9423 -

DE -0.4910 0.0972 2.9423 6.654
BOA -0.4792 0.0848 2.9018 1.325
NN -0.33 0.313 27.528 0.08

Table 6: Locations and estimates of recording 1

x[m] y[m] z[m] Time [s]
Location -0.6109 -0.6468 6.4229 -

DE -0.6109 -0.6468 6.4229 6.196
BOA -0.6095 -0.6455 6.4085 1.326
NN -0.732 -0.494 9.632 0.0814

Table 7: Locations and estimates of recording 2

x[m] y[m] z[m] Time [s]
Location -1.0117 0.2855 4.2959 -

DE -1.0117 0.2855 4.2959 6.384
BOA -1.0118 0.2849 4.2932 1.347
NN -0.723 -0.536 8.386 0.0709

Table 8: Locations and estimates of recording 3
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Figure 11: Histograms containing the simulation results on test data set. Differential evolution is denoted by
(DE), the butterfly optimization algorithm by (BOA) and the neural network by (NN)
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5 Discussion

During the research the search area is kept at con-
stant format, a 3-dimensional cube with sides of 40
[m]. During the simulation stage the full extent of the
search area was available to allocate acoustic sources.
During the experiments a significant part of the search
area was positioned under ground due to the micro-
phone array located on a tripod facing sideways. Con-
sidering the application there is no reason to expect
acoustics from underground, which only leaves room
for error due to reflected signals. Still it is of interest
to see if these reflections are found by the inversion.
In future applications the array could be placed facing
up to increase the effective search area.

During training and testing the neural network
was slightly adjusted between the simulations and the
experimental process. The 4096 inputs used during
simulation were increased to 12544 inputs during the
experimental phase. By investigating the impact of
the input layer on the networks performance, the neu-
ral network could be optimized further. Besides opti-
mizing the network, the network could be enhanced by
increasing the size of the data set used during train-
ing. The neural network used during simulation was
trained using a data set consisting of 840000 samples.
After training, the network was tested with 1000 sam-
ples which were constructed according to the same
process as the training data. During the experimental
phase, the network was trained using 245000 samples,
due to the increase in microphones and computational
limitations. The network was trained with simulated
data after which it was tested with recorded data.
The difference of training and testing with data ob-
tained from different methods could impact the re-
sults. However to obtain training samples working
with synthetic data is a requirement. From the re-
sults is can been seen that this neural network is not
yet capable of locating acoustic sources. Especially
the deviation in radial direction z contributes to re-
duced accuracy.

The multi-tone signal emitted by the omni-
directional source created a signal at 200, 1000, 2000,
3500 and 5000 [Hz]. The 200 [Hz] signal has a large
wavelength λ due to its low frequency. Large wave-
lengths are more challenging to capture with a mi-
crophone array in which the microphones are located
close together. Therefore the higher frequencies are
more accessible to use for localization. The global

optimization methods used during this research base
their search on a single chosen frequency. However
by investigating combinations of multiple frequencies,
more source characteristics might be retrieved. Be-
sides, the global optimization methods outperform the
neural network in accuracy under the conditions of
this research, there is always a possible uncertainty.
The chance for a global optimization method to end
up in a local optimum can not be excluded.

6 Conclusion
In this paper three methods were presented to local-
ize single acoustic sources in a 3-dimensional search
area. The butterfly optimization algorithm and the
multi-perceptron neural network are not yet used to
localize 3-dimensional sources based on a microphone
array. The methods were presented and tested in a
simulation and experimental phase. After testing, the
methods were evaluated based on accuracy and speed.
Under the stated conditions, all three methods are ca-
pable of localizing single acoustic sources in the sim-
ulation process. The accuracy varies in which dif-
ferential evolution appeared to be the most accurate
in locating an acoustic source. Although the neural
network showed to be capable of locating an acous-
tic source with less accuracy, it was able to do so
within a fraction of a second. The capability of esti-
mating acoustic source locations within a small time
window could be a prerequisite considering extending
the method to real time tracking. However sufficient
accuracy remains of greater importance. During the
experimental phase the global optimization methods
proved to be able of locating acoustic sources. The
neural network appears to find some patterns in the
cross spectral matrix with far less accuracy. All three
methods were capable of working with simulated and
experimental microphone array input data. The but-
terfly optimization algorithm performs faster than dif-
ferential evolution at the cost of obtaining slightly less
accurate results. The neural network is able to es-
timate locations significantly faster than the global
optimization methods, however with less accurate re-
sults. Depending on the application, one of the meth-
ods could be selected based on required accuracy or
processing time. Still there is much more potential in
these methods to investigate on what contributions
they could bring to increase surveillance in sensitive
areas.
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Abstract

The past years a significant increase in commercial availability and popularity of unmanned
drones has taken place. This development can result in privacy violations, security concerns
and noise emissions since no expert knowledge is required to control these devices. Conven-
tional surveillance methods are not completely suited to detect and protect against drones [1].
The aim of this literature survey is to investigate current and potential methods in the field of
acoustic localization. Current localization methods that have proven to be capable of finding
acoustic sources are explained, while new methods are introduced. The most familiar method
used in the field of acoustic imaging is Conventional Beamforming (CB). This robust method
is explained and the areas were the methods falls short are noted. Global Optimization (GO)
methods have proven to make up for some of the limitations of CB although not all shortages
are resolved. Therefore this paper elaborates on GO methods by proposing the Butterfly Op-
timization Algorithm (BOA) to improve current applications. Besides CB and GO methods,
new extensions of localization methods are discussed. The implementation of neural networks
on CB maps are presented, and the trade-offs between resolution and accuracy are reviewed.
The report finishes by summarizing acoustic localization methods and the benefits they can
bring.
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“The world as we have created it is a process of our thinking. It cannot be changed
without changing our thinking.”
— Albert Einstein





Chapter 1

Introduction

1-1 Social aspect

In the past decade, the development of drones has increased at a rapid pace. Drones are
becoming more autonomous, and the applications are widely diverse. Conjointly to these ad-
vancements have been the increase in commercial availability and popularity. So far, there is
no expert knowledge required to control small drones. Without mandatory expert knowledge
and with the increase of drones, violations are waiting to happen. The absence of regula-
tions could be expressed in privacy violations, security violations or public annoyance due
to the noise produced. Current surveillance systems are not capable of resolving this issue
yet. Therefore developing new methods could contribute to strengthen current surveillance
methods. Popular drones in the smaller segments are often equipped with 4 or 6 engines.
When drones are flying they produce noise. The noise characteristics depend on weight, size,
rotors and flight manoeuvres. Microphones can record the produced noise. By recording
drone noise and investigating this field, it could become a reality that drones will be tracked
by the noise they produce [1].

1-2 Acoustic imaging

In the field of acoustic localization, multiple techniques are capable of locating acoustic
sources. One of these methods is Conventional Beamforming (CB); this method can be
characterized as simple and robust [4]. Like many other techniques, CB uses a microphone
array as the input for localizing acoustic sources. However, being robust, CB does come with
shortcomings. The number of grid points considered is limited due to the finite aperture of
the array. In addition when using a pre-defined grid the number of points sampled is limited.
The existence of sidelobes contributes to the possibility of finding sources that do not exist.
The method is computational intensive and therefore unsuitable for real-time tracking. Some
methods improve on some of these shortcomings. Global Optimization (GO) methods have
proven to be successful in finding acoustic source locations [4]. GO can reduce the required
amount of calculations due to smart searches within the solution space. However, they have
not been able to provide sufficient speed for real-time tracking yet.

1-3 Research structure

In chapter 2 the working principles and limitations of a microphone are explained. Next in
chapter 3 current methods for acoustic localization are explained. The discussed methods
vary from CB to GO methods and the application of neural networks. Finally, chapter 4
summarizes the findings and proposes possible research objectives.
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Chapter 2

Microphone array

A microphone array is based on the principle of multiple microphones working simultaneously.
By bundling multiple microphones onto a two-dimensional plane, details on sound sources
can be extracted. By spatially spreading the microphones over a two-dimensional plane, the
distances between acoustic sources and microphones differ. The difference in distance results
in arrival time variations; this characteristic can be exploited to obtain information on the
acoustic source. A microphone array has the ability to measure multiple acoustic sources
simultaneously.

2-1 Signal processing

Once the microphone array receives acoustic signals from a sound source, the microphones
translate the pressure differences into voltage changes. For the second step, the system
can be evaluated in the time-domain or in the frequency domain. The frequency domain
is faster, however it is not suitable to track moving sources. The time-domain method is
able to amplify preferred signals while mitigating unwanted signals. The signal’s output
can be Fourier transformed towards the spectral domain to present the spatial distribution
and intensity of acoustic sources. The frequency-domain option is to transform the pressure
signal obtained from the microphones to the spectral domain directly. A Cross Spectral
Matrix (CSM) can be constructed for the frequencies of interest by summing the specified
spectral levels together. A time delay in the time domain results in a phase delay in the
frequency domain. Therefore the time is delayed in the time domain, and the phase is delayed
in the frequency domain. Beneficial of working in the frequency domain is the opportunities
that arise from working with the CSMs and the insights it can deliver in the acoustic sampled
field. By applying beamforming on the received signal, a map can be created to present
spatially acoustic intensities [5].

2-2 Limitations of microphone arrays

One of the advantages and disadvantages of microphones are the ability to pick up all sound
instead of only recording the sound of interest. The Signal-to-Noise Ratio (SNR) can be used
to quantify the relative importance these two contributions. The SNR displays the power
of the signal of interest divided by the power of noise [6]. SNR increases intrinsically when
using multiple microphones simultaneously [7]. Another limitation, the Rayleigh limit will be
explained in subsection 2-2-1.
Figure 2-1 presents a microphone array. In this situation the microphone is situated facing
an omni-directional sound source. The black foam dots protect the microphones as well as
prevent the wind from interfering with the received signals.
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4 Microphone array

Figure 2-1: Microphone array facing an omni-directional sound source

2-2-1 Rayleigh limit

When more than one acoustic source is situated close together, the sources could be recognized
as a single source. Formula 2-1 represents the Rayleigh limit and describes the criteria for
discriminating single acoustic sources [2]. The output of formula 2-1 will present the minimum
required distance between acoustic sources to be able of discriminating them from each other.

R = θBzs = 1.22 czs
fD

(2-1)

R in formula 2-1 describes the Rayleigh limit in [m], θB is the beam width in [rad], zs [m] is
the distance between the microphone array and the acoustic source and L is the microphone
array aperture in [m]. Because the speed of sound c and the array aperture D are fixed
in most cases, the frequency and source distance play a key role in discriminating acoustic
sources.

Figure 2-2 presents two acoustic sources emitting sound at 2000 [Hz]. The acoustic sources
on the images are simulated with varying distances in between. By reducing the separation
between the acoustic sources, it becomes hard to impossible to discriminate the sources from
each other.
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Figure 2-2: Two sources emitting sound at 2000[Hz], output is presented in [dB]. Image obtained
from [2]
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Chapter 3

Localization methods

Chapter 3 describes current localization methods and additional methods which could im-
prove on localization performance. The methods are described based on the formulas and
experiments found in literature. First Conventional Beamforming (CB) will be explained
based on the underlying [8] [2]. Followed by global optimization methods in section 3-2 and
the extension of neural networks in 3-3.

3-1 Conventional beamforming

The objective of CB is to localize and calculate the pressure levels of acoustic sources at
specified grid-points. A microphone array is used to record sound waves in the time domain.
The Fourier transformed pressure amplitudes are captured by vector pl in 3-1, which represent
the pressures measured by a set of microphones.

pl =


p1(f)
p2(f)

...
pN (f)

 (3-1)

The information used for localization as introduced below are the pressure differences over
the array. The phase of the source signal can therefore be unknown without hampering the
localization. The next step is to obtain the Cross Spectral Matrix (CSM). This matrix is
determined by multiplying pl from 3-1 with the transpose of its complex conjugate. The
asterisk sign in formula 3-2 and 3-3 denotes the complex conjugate transposed. The CSM
can differ depending on the goal of the research and available data. Formula 3-2 or formula
3-3 can be used to determine the CSM. Depending on the application, one of the formula’s
can be chosen. Formula 3-2 can be used in case the recorded sound has a small time window.
Formula 3-3 can be used if the recorded time window is larger than a snapshot. Beneficial
of formula 3-3 is the ability to reduce the impact of background noise by combining average
values of the recorded signal. This formula cuts the the measured signal into M samples per
time block. In formula 3-3 the computed blocks have an overlap of 50%.

C = 1
2plpl∗ (3-2)

C = 1
2(2L− 1)

2L−1∑
l=1

plpl∗ (3-3)
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8 Localization methods

In formula 3-4 the distances between each microphone and grid points are determined. The n
in formula 3-4 denotes the microphones number and j denotes the the grid points of interest.

rn,j =
√

(xn − xj)2 + (yn − yj)2 + (zn − zj)2 (3-4)

By inserting frequency f , speed of sound c and rn,j in formula 3-5 the steering vector gn,j
can be determined. The steering vector corresponds to the expected phases over the array
for each grid point j.

gn,j = e−2πif(
rn,j
c

)

rn,j
(3-5)

B(x, y, z, f) = g∗Cg
‖g‖2

(3-6)

The output B(x, y, f) of formula 3-6 is called the beamform output. Presenting B for all grid
points provides a source map. It quantifies how much variation of the CSM matches with the
steering vector g. When measurements and steering vector g have a high level of resemblance,
this indicates a high probability of having an acoustic source nearby. The output obtained
from formula 3-6 is expressed in [Pa2] at a specific frequency f . The beamform output B can
be converted to Sound Pressure Level (SPL) in Decibels (dBs) by filling in formula 3-7.

SPL = 10 log( p
2
e

p2
e0

) (3-7)

In which p2
e represents the outputs of Bx,y,f and p2

e0 the refrerence pressure. By calculating
the SPL at each grid point and thereby knowing the pressures at each grid point, the source
intensity can be expressed in dBs. The strongest source is the grid point which contains the
highest value in dBs. Multiple sources that are simultaneously present can be found with
CB. This characteristic specifies CB as a simple and robust method. By determining the
SPL at each grid point, the method presents an exhaustive search and requires significant
calculations [4]. A second drawback is a trade-off between grid size. A grid consisting of
more grid points provide more insight. However, this does come at the cost of additional
computation power. CB does not concern multiple potential acoustic sources when analyzing
each grid point. Despite not accounting for multiple sources, the results of finding them are
quite accurate. The method is based on the principle that every grid point has the ability to
contain an acoustic source. Other methods like Global Optimization (GO) elaborated on in
section 3-2 can improve by pinpointing the exact amount of sources prior to calculations. The
formulas to calculate steering vector 3-5 and beamform output 3-6 shown above can vary. The
combination of these factors can change between having accurate localization or to determine
accurate source strength, This phenomenon will be elaborated on in subsection 3-3-1.

3-1-1 Conventional beamform plots

The microphones on the array capture pressure differences over time. By transforming the
signal to the frequency domain the phase differences of the incoming signals can be compared
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[9]. One of the first steps of the CB method is to define the area in which the acoustic source
is expected. CB is very suitable to create 2-dimensional representations of acoustic sources.
The figures 3-1 and 3-2 present two examples of CB plots. The simulated acoustic source
in these plots is located at x = 2[m], y = 3[m] and z = 5[m], noted by the red star in the
figures. Figure 3-1 shows the beamform output in [Pa2] at height (z value) of 4[m] and figure
3-2 shows the beamform output in [Pa2] at a height of 5[m]. By comparing both images, it
can be seen that the red star is accurately found in figure 3-2. Besides the colored side axis
of both figures present the beamform output. The beamform output of the captured source
in figure 3-2 at a height of 5[m] is higher and therefore will be closer to the actual source.
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Figure 3-1: CB plot at 4 meter distance from
simulated source at 3000hz
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Figure 3-2: CB plot at 5 meter distance from
simulated source at 3000hz

By creating multiple layers of 2-dimensional planes and placing them on top of each other a
three dimensional image can be formed. Figure 3-3 shows a CB plot of a simulated acoustic
source at x = 2[m], y = 3[m] and z = 5[m] with a frequency of 2000[Hz]. In figure 3-3 all
beamform output values below the value of 5e − 11[Pa2] are considered to be non existing,
this is done to create a clear visualization of the more present areas of the beamform output.
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10 Localization methods

Figure 3-3 shows the impact of side lobes and local optima besides the global optimum
which represents the acoustic source. The formulas used to calculate the data in the image
are focused on finding the correct source strength rather than have the highest localization
accuracy. In figure 3-3 it can be seen that the combination of CB and a microphone array is
more accurate at localizing an acoustic source in the x and y plane than in the z plane. This
is a result of only having microphones in the x and y plane and not in the z plane.

Figure 3-3: Three dimensional CB plot at 2000[Hz]
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3-2 Global optimization algorithms 11

3-2 Global optimization algorithms

As stated in section 3-1, CB is a simple and robust method to locate acoustic sources. A
downside of CB is the required exhaustive search and being limited to searches in planes
instead of grid-free searches. One of the challenges in finding the correct location of an
acoustic source is caused by the presence of side lobes. Accessory to creating the main signal,
side lobes are created. Side lobes exist at a lower intensity at different angle than the main
acoustic signal. Side lobes could be considered local optima and the main signal could be
considered the global optimum. By having global and local optima alongside each other, the
possibility arises to find a local optimum when searching for the global optimum. Figure 3-4
present a two-dimensional intersection of a main lobe and side lobes.

Figure 3-4: 2D visualization of a main lobe and side lobes. Image obtained from Arpa manual
[3]

Nature is still a great source of inspiration in the process of finding and developing suitable
solutions to real-world problems. A lot of GO methods are based on situations encountered in
nature and it’s ways to solve challenges. One of these challenges could be the search through
three dimensional acoustics. At higher frequencies side lobes have a higher intensity, making
the acoustic landscape more difficult for GO algorithms to find the global optimum. The
paper of Malgoezar et al. [4] shows that it is possible to locate an acoustic source with help of
a GO method. Beneficial of GO is the ability of locating the actual source location with fewer
calculation than CB. Fewer calculations are required because the method does not have to
calculate pressure intensities at every grid point. The use of GO methods does come with the
risk of getting stuck in one of the local optima and thereby finding a faulty source location.

3-2-1 Energy functions

GO methods work by solving an objective function. During the solving process the algorithm
strives to minimize or maximize this function depending on the application. This objective
function is often referred to as the energy function [4]. The energy function can differ de-
pending on the goal of the algorithm. Different goals could be focusing on finding accurate
locations, accurate source intensity or searching for multiple acoustic sources. The energy
function has several input parameters which are adapted during the iterations of the search.
By simulating and experimenting, the quality of the energy function can be evaluated. Two
examples of energy functions are the Bartlett energy function in formula 3-8 and the CSM
energy function in formula 3-9 [4]. The summation in formula 3-9 is done over all M ∗M
elements of the matrices containing the differences between Cmeas and Cmodel,g at a specified
frequency.
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12 Localization methods

EBartlett(g) = y(g, ω)HCmeas(ω)y(g, ω)
‖ y(g, ω) ‖2 tr(Cmeas(ω)) (3-8)

ECSM (g) =
∑

([Re(Cmeas)−Re(Cmodel,g)]2 + [Im(Cmeas)− Im(Cmodel,g)]2) (3-9)

As presented in the formulas, both energy functions have different objectives. The Bartlett
energy function only considers phase differences in pressure obtained from the microphone
array. The energy value of the Bartlett energy function is most optimal when the phase
differences in pressure are fully in phase with the steering vector. The Bartlett energy function
only searches for the location of acoustic sources. Whereas the CSM energy function considers
location and source amplitude [10].

3-2-2 Simulated Annealing

Simulated Annealing (SA) is a method based on the cooling process of metal. The goal of
the algorithm is to optimize a given objective function. During this process, the temperature
changes from high to low. SA starts a high temperature, in this stage there is a significant
chance of accepting solutions which are worse than the previous. When the temperature de-
creases the chance of accepting a solution which is worse than the previous solution decreases.
All solutions are compared, and the beneficial steps are incorporated towards the final objec-
tive function [11]. SA uses randomly chosen initial values and finds the most suitable solutions
based on trial and error. To obtain the best outcome, the process is executed multiple times
while saving the best results. When using slight variations in temperature, the SA method has
a certainty of finding the global optimum. The downside of working with slight temperature
variations is the required increase in calculations. By increasing the amount of calculations,
the required computations increase and thereby extending the computational time. Therefore
SA becomes less suitable for fast searches [12].

3-2-3 Differential Evolution

The second optimization method discussed is Differential Evolution (DE). The method is
based on the genetic algorithm and imitates the natural evolution of species. According to
the method, promising solutions are considered superior and are more likely to reproduce
than less promising solutions. Compared to the exhaustive search performed in CB, the DE
algorithm creates the possibility of calculating more unknown parameters. In the research
done by Malgoezar et al [4], the amount of sources are considered to be known beforehand,
and no predefined grid is used, making this method grid-free. Beneficial of the GO algorithms
is their ability to search large spaces of candidate solutions while having to make barely or
no assumptions on the problem.

The DE algorithm begins with a random set of starting points. After the initial points are
chosen, the algorithm makes new generations to improve the quality of the candidate solutions.
In the process of developing a population, the DE algorithm crosses current generations with
candidate solutions, in which the most suitable candidates or generations are preserved. This
process is repeated to close in on the global optimum as accurate as possible [13][14]. When
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3-2 Global optimization algorithms 13

searching for the global optimum, a possible danger is to get caught in a local optimum. To
prevent the algorithm from getting stuck in local optima, some of the less suitable solutions
have a probability of evolving as well. By doing so, the ability is created to escape local
optima. The chances given to less suitable solutions to evolve decline as the generations
progress [15]. The goal is to optimize the energy function and thereby finding the coordinates
converging to the correct x,y and z parameters. The success of the DE algorithm depend
on the setting parameters. To make sure the algorithm achieves its goal, some parameters
have to be chosen beforehand. The size of the population, the multiplication factor, the
crossover probability and the total number of generations play a crucial role in finding the
global optimum.

3-2-4 Butterfly Optimization Algorithm

This subsection is based on the paper of Arora, and Singh [16]. This paper explains the
concept of the Butterfly Optimization Algorithm (BOA) and compares the algorithm with
different global optimization methods.

The BOA is based on characteristics of butterflies and mimics the behaviour of butterflies
searching for food and mating partners. In both of these searches, scent plays a key role.
In many applications, optimization algorithms are constructed with complex constraints and
dispose only over a limited time to find the global optimum. Modern optimization methods
like Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO) and many more have
proven to increase performance with non-linearity and multi-modality [16] [17].

In the BOA each butterfly produces its own and unique scent. The butterflies scent is used to
distinguish butterflies from each other. The idea of sensing is explained by Arora and Singh
[16] based on sensor modality (c), stimulus intensity (I) and power exponent (a). The sensor
modality captures the energy input obtained by the sensors. Modalities can be described
as light, smell, sound or other stimuli. Formula 3-10 presents a simplification of butterflies
ability to smell, in which h is the perceived magnitude of fragrance.

h = cIa (3-10)

In formula 3-10 h could be seen as relative because the ability to get smelled depends on
the emitting and the receiving butterfly. When the value of a is chosen to be equal to 1,
no absorption of the scent occurs, and each butterfly smells the particular butterfly with the
same intensity. This situation could only be present in an ideal environment. In case a = 0, no
scent is emitted at all, and none of the other butterflies will be able to pick up the smell. Next,
the value of c is essential, as this significantly impacts the algorithm’s convergence speed. In
this concept, butterflies with less intensity are attracted towards butterflies that emit a scent
with a higher intensity. In the BOA algorithm, there are three rules that clarify butterflies
behaviour. The first rule is that every butterfly emits a scent, giving other butterflies the
ability to become attracted. The second rule implies that every butterfly will move either
at random or towards other butterflies based on the received scent. Third, each butterfly’s
intensity of scent is affected by the obtained values from the solution space.

The BOA is constructed to work in 3 phases. The phases are initialization phase, the iteration
phase and the final phase. During the initialization phase the objective of the algorithm is
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noted, the setting parameters are defined and the limitations of the search area are set. Next
the initial butterfly population is created at random chosen locations in the search area. The
amount of butterflies does not vary during the iterations. In the second phase the butterflies
will move through the search area at each iteration. Each iteration causes the butterflies to
move towards new locations and adapt their fitness values according to formula 3-10. The
search strategy is divided into two categories, the global search and the local search. Formula
3-11 represents steps of butterflies who move towards the global optimum. Parameter k∗
indicates the butterfly which found the most suitable objective at that specific iteration. In
Formula 3-11, the xti represents a solution vector for the ith butterfly in iteration t. The
values for r is chosen at random between [0, 1].

xt+1
i = xt

i + (r2 × k∗ − xt
i )× hi (3-11)

xt+1
i = xt

i + (r2 × xt
j − xt

k)× hi (3-12)

In formula 3-12, xt
j and xt

k present the solution vectors of butterflies j and k at iteration t.
If the values of xt

j and xt
k are equal or very similar, the butterfly will converge towards a

local optimum. Because butterflies are subjected to environmental vectors like wind, rain or
predators, they can be split into fractions searching for global and local optima. A probability
of p is used for butterflies to switch between a common global search or an extensive local
search. The algorithm is finished after one of the stopping criteria is met. Possible stopping
criteria could be: maximum computer power used, the preset limit of iterations is reached, the
iterations are not improving fast enough, or a specified error rate was found. Once a chosen
criterion is met and the algorithm has been executed, the fittest solution can be presented.

3-2-5 Bidirectional optimization

In the article of Ahandani et al. [18] variations are made based on the DE algorithm. One
of the modifications is to let the algorithm work in multiple directions, the Bidirectional
Differential Evolution (BDE) method. If moving forwards in the solution space does not result
in better objectives, a high probability holds that backward movement will. The modified DE
algorithm appeared to have a higher success rate than the original DE algorithm; however,
the modified algorithm does consume more time than the original algorithm. In the research
of Sharma et al. [19], the idea is discussed and applied to change search directions if an
objective function is becoming less attractive. The modification was applied on the BOA as
well and thereby calling it the Bidirectional Butterfly Optimization Algorithm (BBOA). The
BBOA is characterized as more greedy than the BOA. According to [19] the BBOA algorithm
helps to escape local optima and accelerates the convergence rate. Whether the application
is suitable of tracking sound sources and benefits, the algorithm has yet to be proven.
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3-2-6 Particle Swarm Optimization

In 1995 Kennedy and Eberhart proposed the optimization technique called PSO [20]. The
algorithm was based on the social behaviour of bird flocking, fish schooling and animals which
operate in a swarm. Swarm animals move in a cooperative manner; they learn from each other
and share their own experiences with others. By operating in this manner, the PSO shares
characteristics with evolutionary algorithms. This characteristic is expressed by using a large
swarm that simultaneously investigates the solution space in search of the global optimum. In
the research of trying to mimic animal social behaviour with computers, five basic principles
were set by Mark Millonas [21]. These principles could be defined as swarm intelligence.

• Proximity, The group should be able to make basic time and space calculations to
respond directly to environmental impulses.

• Quality, the swarm should be able to estimate the quality of food or whether a location
is safe.

• Diverse response, the swarm should have multiple ways of communicating with each
other as this is a beneficial property in a changing environment.

• Stability, the swarm should not change its behaviour mode based on each fluctuation
as this costs energy and might not be a valuable investment.

• Adaptability, when it appears the change of investing in different behaviour, the group
should have the ability to switch.

The stability and the adaptivity principle are somewhat conflicting; however, they do not
rule each other out. The five principles describe the main behaviour properties of an artificial
life system. During its iterations, the swarm is continuously searching the solution space
for optimal solutions. At each moment in the search for the optimal values, each member
of the swarm can memorize the optimal locations of itself and is aware of the other swarm
members optimal locations. After each iteration is executed, all information is combined
to determine the next point of interest. All swarm members are constantly changing their
states until the global optimum is found [22]. The initial PSO algorithm appeared not to be
very efficient. The initial algorithm could not find the optimum if it was not on its preset
path. This situation is unlikely to appear, and therefore the PSO algorithm was adapted. In
1998 Shi and Eberhart [23] updated the algorithm without adding much complexity. In this
update, the velocity vectors were adapted to contain weights. The update proved to have a
better performance. This performance was quantified by comparing time spent finding the
optimum, number of iterations and chance of finding the optimum.

The most significant differences between PSO algorithm and BOA is their origin. The PSO
algorithm is based on coordinated group behaviour of birds flocking, fish schooling or animals
that operate in a swarm. The BOA is based on social individuals looking for food or other
butterflies. Another difference between the algorithms is the availability of information. In
the PSO algorithm, all swarm members are assumed to know all other members’ information.
In the BOA algorithm, not all information is known to all butterflies and therefore, some
information could be lost. So far, no research has been conducted to determine the impact of
this loss [16].
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3-3 Combining neural networks with conventional beamforming

The following method combines neural networks with conventional beamforming. According
to CB, a pre-defined grid is created in which pressure or phase differences are presented. Low
frequencies result in relatively large wavelengths [λ] as follows from formula 3-13 [2]. The
spatial resolution for low frequencies is restricted. This is a result of required dimensions of
the microphone array combined with large wavelengths.

λ = c

f
(3-13)

The application of using deep learning on image recognition has made rapid development
in the past years. By allowing an algorithm to learn, it obtains possibilities to circumvent
mathematical calculations. Reiter and Bell [24] published a paper in which they show the
possibility of estimating acoustic sources on photo-acoustic images. This achievement was
accomplished with the help of neural networks. The goal of a neural network was to determine
the location of the acoustic source.

In the method described by Adam Kujawski et al. [25], CB images are combined with neural
networks to locate the sound source on CB images. The location coordinates in the two-
dimensional grid planes are related. Convolutional Neural Networks (CNN) are capable of
working with spatially correlated and multidimensional data. These properties make CNN
suitable to image processing tasks. Therefore CNN architecture appears to be a suitable
candidate to locate acoustic sources on CB images. CNNs are build up with a feed-forward
architecture consisting of multiple layers, often referred to as kernels. Those properties create
the ability to generalize given inputs and identify objects efficiently. The optimization of the
model applies supervised learning. In the training stage of the algorithm the model is given
a set of test data. The test data exists of input data and known output data. By feeding
the input data and expecting the output data, the parameters of the algorithm can be tuned
in order to improve the algorithm. One of the strengths of CNN is the implementation of
weight sharing into the design; by doing so, the number of parameters that require training
is substantially reduced which leads to improved generalization. Additionally, the classifi-
cation stage has a build-in extraction stage, which both require a learning process. In the
extraction stage significant features from the raw data are automatically found. Third, the
implementation of CNNs is less complicated compared to artificial neural networks [26].

In the article of Kujawski [25] use was made of the residual network (ResNet), a derivation of
CNNs. The Residual Network (ResNet) was chosen due to its improvements in classification
and regression tasks and its ability to work with small-sized images. CB images in the work of
Kujawski have a low resolution of 51∗51 [25]). CNN is often used for images consisting of more
pixels and therefore not every architecture is suitable to work with images of a lower resolution.
The difference between the ResNet and CNNs is the presence of added shortcuts. The shortcut
sends the input data parallel through the filters alongside the standard processing path called
identity mapping. Both images are combined at the end of the filters, thereby learning
the ResNet only to map residual data between the input and output. The ResNet thereby
solved the problem of increasing training errors and improving accuracy [27]. The work of
Kujawski [25] shows it is possible to identify acoustic sources with sub-grid precision. At
large Helmholtz numbers, the error in distance increases slightly, and the best localization
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performance is obtained at the lower range Helmholtz numbers. This phenomenon applies
for every localization method

3-3-1 Selecting the correct steering vector

As stated earlier, CB does not account for multiple sources during its iterations. However,
the CSM is impacted by all acoustic sources around. When multiple sources emit sound,
the sound waves can interfere and create a different pressure field then a single source would
create individually. As a result of multiple acoustic sources emitting simultaneously, the CSM
is influenced as well. The sound waves created by each monopole can be considered separate
until the waves meet and the collide together. If the receiver of the sound is sufficiently far
away, the sound can be interpreted as originating from a single source. The knowledge of
knowing the amount of sources can be helpful choosing a suitable energy function.

In the research of Sarradj [28] none of the investigated steering vectors are suitable to provide
both accurate localization and correct source strength. The steering vectors used are described
as trade-offs by either choosing a steering vector that is superior at locating sound sources
or choosing a steering vector that is superior at finding the source strength. The figures 3-5
and 3-6 present plots of a simulated acoustic sources. In these plots the received intensity
is plotted against an increasing value of X. The simulated source in figure 3-5 is located at
point [0, 0, 0] and the source in figure 3-6 is located at [2, 3, 5] both in meters. In both plots
the Y and Z axis are fixed. These images present the impact of different steering vectors in
combination with beamform output B. In the top half of the images the intensity is shown
in [Pa2] and the bottom half of the images this value is normalized, to emphasis relative
behaviour.
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Figure 3-5: CB plot of intensity vs X coordinate, with fixed Y and Z coordinates at location
X=0 [m], Y=0 [m] and Z=0 [m]

-10 -8 -6 -4 -2 0 2 4 6 8 10

x [m]

0

0.5

1

1.5

2

In
te

n
s
it
y
 (

w
it
h

 l
o

c
a

ti
o

n
 b

a
s
e

d
 s

te
e

ri
n

g
 v

e
c
to

r)
 [

P
a

2
]

10
-11 3000[hz] conventional beamform plot

B1

B2

B3

-10 -8 -6 -4 -2 0 2 4 6 8 10

x [m]

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

liz
e

d
 I

n
te

n
s
it
y
 [

P
a

2
]

3000[hz] conventional beamform plot

B1

B2

B3

Figure 3-6: CB plot of intensity vs X coordinate, with fixed Y and Z coordinates at location
X=2 [m], Y=3 [m] and Z=5 [m]
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In the figures 3-5 and 3-6 different steering factors and beamform outputs are used to empha-
size their impact. The formulas 3-14 until 3-19 are used to create images 3-5 and 3-6. Image
3-5 shows the impact of combining the value r in the denominator of the steering vector g1
and having the steering vector to the power 4 in the denominator of B1. When distances
become further from the source, B1 increases significantly for values of r which are further
away from the actual source. This causes incorrect results and could impact GO methods by
creating global optima which do not exist. The combination of steering vector g2 with output
B2 has the ability of locating the acoustic source most accurate however this combination is
less suitable in finding the correct source intensity. The third combination of steering vector
g3 with output B3 is most suitable in finding the correct intensity of the acoustic source
however this method is less accurate in finding the correct location. This leads to a trade-off
between finding the correct source intensity or accurate localization, as discussed by Sarradj
in [28]. This problem could be solved by first localizing the acoustic source and once the
location is found to perform an additional step to obtain the correct source intensity with
steering vector 3-18 and output formula 3-19. The definitions of parameters and formulas are
explained in section 3-1.

g1 = e
−2πifr

c

r
(3-14)

B1 = g′Cg
||g||4 (3-15)

g2 = e
−2πifr

c (3-16)

B2 = g′Cg
||g||4 (3-17)

g3 = e
−2πifr

c

r
(3-18)

B3 = g′Cg
||g||2 (3-19)
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Chapter 4

Summary

This chapter will summarize the findings from the literature survey. The synthesis between
topics are tightened, and possible contributions are stated. In the second chapter the working
principle and limitations of a microphone array are reviewed. The third chapter explains
techniques which can be used to localize acoustic sources. The discussed techniques are
Conventional Beamforming (CB), Global Optimization (GO) and a trade-off is made in the
neural network’s method of Sarradj. The third chapter finishes by elaborating on variation
of steering vectors and their impact.

CB described in chapter 3 has the capability of locating acoustic sources in a three dimensional
grid. This localization process is based on the principle that each location can be characterized
by having an unique phase gradient. The output matrix of CB presents scale of how much the
phase gradient of the Cross Spectral Matrix (CSM) matches with the steering vector g. When
the beamform output B(x, y, f) and steering vector g have a high level of resemblance, this
indicates to a high probability of correctly locating an acoustic source. CB does not account
for multiple acoustic sources when analyzing each grid point. The method is based on the
principle of every grid point having the ability of housing an acoustic source. Other methods
like GO profit from pinpointing the exact amount of sources prior to calculation, this grants
the ability to account for changes in the CSM. This can be achieved by adapting the energy
function. Limitations of CB are the mandatory use of a predefined grid and therefore having
to make the redundant calculations. By determining the pressure differences in each grid
point, the required computational capacity increases, therefore this method is labeled as an
exhaustive search and is considered a time consuming approach. GO methods like Differential
Evolution (DE) and Simulated Annealing (SA) approach the optimization problem without
a predefined grid. These methods offer a lot of potential and are proven to be capable of
finding a global optimum. The BOA found in section 3-2-4 is compared to many other global
optimization techniques and appears to have the promising results. Therefore it would be
interesting to apply the BOA to acoustic source localization to see if the search performance
can be improved.

Another interesting technique is the extension of neural networks to CB. In section 3-3 is
explained how neural network can be combined with CB. The method applies neural network
imaging on CB maps in order to locate the acoustic source. This process is executed after CB
has taken place and a source map has been generated. Beneficial of this method is the ability
to locate acoustic sources with sub-grid accuracy. The limitation of using Convolutional
Neural Networks (CNN) in combination with CB, is the required use of CB maps which are
considered computational exhaustive. Interesting would be to investigate if reducing the grid
resolution on the CB images could still result in accurate results obtained from the neural
network. This could lower the total computation time if less redundant calculations are
requisite.
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22 Summary

Last the microphone array is discussed in chapter 2. The chapter discusses the spatial con-
straints due to the Rayleigh limit. Combined with the CB method of section 3-1 the working
principle of a microphone array is explained. Interesting would be to find out what the cor-
relations could be between the raw data obtained from the microphone array and known
source locations. If so, what parameters would be interesting to investigate. This approach
might result in possibilities of bypassing searching algorithms by recognition of patterns in
the obtained raw data. Key role will be to have sufficient data to verified potential finds.
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List of Acronyms

ABC Artificial Bee Colony
BBOA Bidirectional Butterfly Optimization Algorithm
BDE Bidirectional Differential Evolution
BOA Butterfly Optimization Algorithm
CB Conventional Beamforming
CNN Convolutional Neural Networks
CSM Cross Spectral Matrix
dB Decibel
DE Differential Evolution
GO Global Optimization
PSO Particle Swarm Optimization
ResNet Residual Network
SA Simulated Annealing
SNR Signal-to-Noise Ratio
SPL Sound Pressure Level
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1
Introduction

The following chapters will provide background information on the theories used in the scientific paper of
part I. Section 2.1 will explain the principles of beamforming, followed by signal processing, which explains
design choices made during the research. The process of emitting an acoustic tone to localizing an acoustic
source is covered. Background knowledge and parameter choices of the global optimization methods are
explained in section 3. Section 4 elaborates on the fundamentals of neural networks and substantiated
design choices. The final chapters will contain the appendices with additional beamform plots and results.
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2
Microphone array

2.1. Beamforming
Beamforming is based on the comparison between input signals of multiple microphones at slightly
different positions. By combining all input signals, information on source location and strength can be
recovered. Figure 2.1 presents the microphone array used during the experiments.

Figure 2.1: Microphone array with omni-directional source setup

During the recordings each microphone records sound pressures over a specified time interval K . The
microphones convert pressure differences to a digital input signal. The input signals in the time domain are
noted by xk with discrete time steps tk , k = 0, ...,K −1. To analyze the input signal in the frequency domain,
signal xk is Fourier transformed to the frequency domain by formula 2.1.

Xm =∆t
K−1∑
k=0

xk e−2πi tk fm (2.1)

The parameter ∆t used in formula 2.1 presents the sample distance in time. The sample distance is
determined by dividing 1 with sampling frequency fs and is presented by formula 2.2.

∆t = 1

fs
(2.2)
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The signal Xm presents the Fourier transformed signal xk at discrete frequencies m, m = 1, ..., M . By Fourier
transforming the input signals of each microphone, a matrix can be determined. The matrix will exist of N
rows and M columns, in which N denotes the number of microphones and M the number of discrete
frequencies. Processing of input signals is explained in more detail in section 2.5.
Based on the frequency of interest, column b can be selected from matrix Xm . The column presents an input
signal at a single discrete frequency from each of the microphones. In formula 2.3, the cross spectral matrix
C is created. The cross spectral matrix can be determined by multiplying single column b of matrix Xm with
its transposed complex conjugate.

C = Xm,b X ∗
m,b (2.3)

In conventional beamforming a scan plane is determined at a fixed distance z from the microphone array.
The plane can be divided into grid points as presented in figure 2.2.

Figure 2.2: Conventional beamforming, consisting of a microphones (black dots) and grid plane

The locations of the microphones are key knowledge in the beamforming process. Formula 2.4 can be used
to determine the distance between the grid points and the microphones. The red lines in figure 2.2 visualize
a few of the distance values of rn, j

rn, j =
√

(xn −x j )2 + (yn − y j )2 + (zn − z j )2 (2.4)

The values of rn, j can be implemented in the so called steering vector described by formula 2.5 in which the
individual vector elements gn(ζ j , fm) are determined.

gn(ζ j , fm) = e−2πi fm
rn, j

c

rn, j
(2.5)

The steering vector contains phase information of the different microphone inputs at specified frequency
fm . Beamform output B(ζ j , fm) in [Pa2] can be determined according to formula 2.6, by combining all
elements in steering vector gn with cross spectral matrix C .
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B(ζ j , fm) = gn
∗Cgn

||gn||2
(2.6)

By determining the acoustic source strength at each of the grid points, a map can be created presenting the
acoustic landscape at a fixed plane above the microphone array. By determining the beamform outputs at
all grid points, the grid point with the highest beamform output is likely to accommodate an acoustic
source. By increasing the number of grid points in the scan plane, the beamform image becomes more
accurate [5][6]. Figure 2.3 presents a beamform plot at a radial distance of 5 [m] at frequency 3000 [Hz]. The
beamform plot demonstrates a single acoustic source located at x = 2 [m] and y = 3 [m].

Figure 2.3: Beamform plot at 3000 [Hz], the red cross denotes the actual source position

2.2. Side lobes
When using a microphone array to record acoustic sources, additional non-existing sources can be found.
The main lobe of the signal corresponds to the highest energy level. However other locations can present
energy levels without accommodating an acoustic source, these energy levels are called side lobes. The
presence of side lobes is undesirable as they form local optima at locations which do not accommodate
actual sources. A solution to reduce the impact of side lobes is to increase the density of microphones on the
microphone array. However the positions of microphones are based on the application of the array. The
distance between the microphones relate to the frequencies of interest. High frequencies require a high
density of microphones and low frequencies allow more spacing between microphones but require a large
aperture. Another method to reduce the impact of side lobes is windowing. By applying a window function,
for example Hanning or Hamming to the signal, the influence of side lobes can be reduced. However when
applying Hanning or Hamming to the input signals, the outer microphones are significantly surpressed. In
the post-processing stage, the method of incoherent averaging can also be applied to reduce the impact of
side lobes. Formula 2.7 presents incoherent averaging.

Bi ncoh(ζ j ) = 1

M f

M f∑
m=1

B(ζ j , fm) (2.7)

First multiple beamform plots are required at multiple frequencies. Next, the beamform outputs are
summed and divided by the total number of frequencies M f . The side lobes located at different positions
are frequency dependent and will be reduced while the strong main lobe can be preserved.
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2.3. Steering vector
In section 2.1 the principles of beamforming are explained. Based on the principle of beamforming, the
energy function can be implemented. The energy function applies beamforming only at specific locations
without being subjected to a beamform grid. The global optimization methods investigated in this research
make use of the energy function to determine the energy value at their current positions within the search
area. The combination of the steering vector and beamform output formulas determine the energy function.
Multiple energy functions are available and each has different advantages and disadvantages compared to
each other. In the research of Malgoezar et al.[4], 2 different energy functions are compared. The Bartlett
and the cross spectral matrix energy function of which the cross spectral matrix energy function includes
source strength estimation. The Bartlett energy function is presented by 2.8

EB ar tl et t =
g( f )T Cmeas ( f )g( f )

||g( f )||2tr (Cmeas ( f ))
(2.8)

The vector g( f ) denotes the steering vector at frequency f . The matrix Cmeas ( f ) denotes the measured cross
spectral matrix. The trace function in the denominator specifies the values located on the diagonal of the
cross spectral matrix. The diagonal of the cross spectral matrix defines the phase differences between single
microphone inputs, which should be non-exiting. Therefore the diagonal is assumed to be contaminated
and the diagonal values are set to zero. The cross spectral matrix energy function is described by 2.9.

EC SM =
N∑

q=1

N∑
r=1

{
[Re(Cmeas q,r )−Re(Cmodel q,r )]2 + [Im(Cmeas q,r )− Im(Cmodel q,r )]2

}
(2.9)

The energy function used in formula 2.9 compares the values of the cross spectral matrix with the values of a
modeled cross spectral matrix and squares them. The summation is taken over all the elements present in
the cross spectral matrices.

During the research of Malgoezar et al. both energy functions were tested on multiple scenarios. The
functions were tested on simulated and experimental data. The simulation contained searches for single or
multiple mono-pole sources emitting at a single frequency. The experiments were conducted in an
an-echoic room with speakers serving as the acoustic source. Both of the energy functions were combined
with differential evolution to locate the acoustic source within the search area. The Bartlett energy function
has the detriment of not determining the source strength. However the localization performance was better
compared to the cross spectral matrix energy function. Therefore this research proceeds using the Bartlett
energy function [4].

2.4. Rayleight limit
When two acoustic sources are located close together, spatial resolution can determine whether its possible
to distinguish the acoustic sources from each other. If the main lobe of one source overlaps the main lobe of
another source, the sources can be seen as a single source. Spatial resolution also called the Rayleigh
criterion, defines the limit at which acoustic sources can be seen as separate sources. Formula 2.10 defines
the spatial resolution in a scan plane.

θB zs = 1.22
czs

f L
(2.10)

The angular resolution can be defined by θB , parameter zs denotes the distance between the microphone
array and the scan plane, constant c the speed of sound, L the array aperture and f the investigated
frequency. The spatial resolution can also be noted as the Rayleigh distance according to R = θB zx . The
criterion holds under the assumption that the provided sources are located close to the origin of (0,0). Figure
2.4 presents an example of two simulated acoustic sources at multiple frequencies. The acoustic sources are
located at (−0.15,0,2) and (0.15,0,2) [m] with a source strength of 7∗10−5 [Pa2]. The frequencies presented
in the beamform plots emit tones at 3000, 2000 and 1000 [H z], while the other values remain constant. By
decreasing the frequency and thereby increasing wavelength λ, the sources are overlapping. Overlapping of
acoustic sources is undesired as the sources can not be distinguished anymore [4] [6] [8].
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(a) Two sources at 3000Hz

(b) Two sources at 2000Hz

(c) Two sources at 1000Hz

Figure 2.4: Two acoustic sources at multiple frequencies
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2.5. Signal processing
During the research, the global optimization methods and neural networks were trained and tested on
simulated and experimental data. The recordings present an acoustic source emitting a single or multi-tone
signal. The signals are recorded or simulated in the time domain, in which they are captured by
microphones. More specifically, during the research 2 microphone arrays are used consisting of 64 and 112
microphones. A microphone works according to the principle of measuring pressure over time and
converting these differences to voltage changes. Once the experimental or simulated recordings were
obtained, the signals were converted from the time domain to the frequency domain. By investigating
signals in the frequency domain, the ability arises to search at specific frequencies within the investigated
signals. The investigated frequencies can characterise specific sources. The fast Fourier transform was used
to convert the signals from the time domain to the frequency domain. The fast Fourier transform is a
computational faster form of the discrete Fourier transform and often used to process signals. The Fourier
transform can be determined using formula 2.1 and at discrete time samples presented in formula 2.2.
Formula 2.11 presents the frequency resolution, in which N denotes the amount of specified samples.

∆ f = fs

N
(2.11)

The frequency resolution captures the step size between investigated frequencies and denotes the smallest
frequency changes which can be detected. When evaluating a signal, the frequency resolution should be
sufficiently small to capture enough details on the investigated signal.
However there are many additions which can be combined with the Fourier transform to obtain more
desirable results. A signal can be zero padded. Zero padding implies adding zeros to the signal before
feeding the signal to the Fourier transform. By adding more zeros to the signal the frequency steps decrease,
which results in better visualisation when presenting the signal without altering signal properties. Another
reason to apply zero padding is speed. The fast Fourier transform can be computed faster when the amount
of samples is a factor of 2, therefore an investigated signal can be supplemented with zeros to obtain a power
of 2 samples. A third method which can be applied to process signals combined with the Fourier transform
is windowing. By multiplying the signal with a windowing function, signal characteristics can be
highlighted. Windowing can minimize error sources which are present in the signal, for instance the impact
of side lobes can be reduced. During the research a Hanning window and zero-padding were applied before
converting the signal to the frequency domain [6].



3
Global optimization methods

The first 2 methods investigated were global optimization methods. The first method considered was
differential evolution and the second method the butterfly optimization algorithm. Both meta-heuristic
algorithms aim to find the global optimum within the search area. While doing so the methods make use of
the energy function to quantify the fitness of the potential source locations. In section 2.3 is determined to
use the Bartlett energy function, due to its capabilities of accurate source localization. However global
optimization methods have the ability of easily altering energy functions according to the application. The
energy function could be changed to focus on finding accurate source strengths or localizing multiple
sources.

3.1. Algorithm tuning
During the simulation and experimental phase both algorithms were set to have an equal amount of forward
calculations. A forward calculation can be noted by each time the energy value is obtained from the energy
function. Both of the global optimization methods posses setting parameters. These parameters are set by
increasing the amount of simulations and monitoring the performance of the algorithms. First a single
parameter is optimized, by changing only one setting parameter while the other setting parameters remain
constant. After the most suitable setting parameter is found, this parameters is temporary fixed. This
process is repeated for each of the setting parameters in search for the optimal setting parameters. During
the investigation on simulated and experimental data the search area remained constant. The search area
consisted of a 3-dimensional squared cube with sides of 40 [m] each. The search area is presented by figure
3.1
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Figure 3.1: Simulated and experimental search area, the red dot denotes an acoustic source



4
Neural networks

The technology of deep learning dates back until the 1940s. The method appears to be new due to its variety
in names and unpopularity throughout the years. The name changes relate to the different researchers
implementing their ideas and perspectives. The method of deep learning is inspired by the brain however
not all researches acknowledge this resemblance. The applications could better be interpreted as modelling
specific biological functions. Current applications of deep learning appear to be more focused on creating
general frameworks than the relation to its biological inspiration. Some researchers do not express their
concern on the connection with neural science and obtain their inspiration from mathematical
fundamentals instead.
In a feed-forward neural network the inputs flows through the network without connecting the output back
to the network. When a feedback connection is added to a feed-forward network, the network becomes a
recurrent neural network. During the research, use was made of a feed-forward multi-layer perceptron
neural network. Beneficial of this type of network is its ability to estimate output values. Estimating output
values is a requirement considering the localization of acoustic sources.

4.1. Layers & activation function
A neural network consists of multiple layers. The first layer is denoted as the input layer, followed by a single
or multiple hidden layers and the final layer is the output layer. In literature there are multiple
interpretations on whether to count the input layer, as no mathematical changes occur within the input
layer. Each layer contains nodes, the number of nodes in the input layer is determined by the number of
input elements. The number of nodes in the output layer is defined by the desired output. The number of
input nodes used during this research was bounded by the number of elements in the cross spectral matrix.
The cross spectral matrix contains information on phase relations between microphone inputs, on which
location estimates will be based on. The output was specified by x, y and z coordinate estimates of potential
acoustic sources. The amount of layers in a neural network can be described by the depth and the amount of
nodes in a layer can be denoted by the width. By increasing the number of nodes and layers, the neural
network is able to resolve more complex problems. However by increasing the number of nodes and layers,
the network requires additional training due to the increase in trainable parameters. During the research use
is made of fully connected networks. A fully connected network implies, that the nodes in each layer are
connected to all of the nodes in its neighbouring layers. Figure 4.1 presents an example of the fully
connected network used during the research.
Each layer in the neural network contains an activation function. The activation function defines the output
of a node considering its inputs. Most activation functions contain a simple mathematical function which
decides whether to suppress node inputs or feed the inputs through. The activation function enables a
neural network to solve non-linear problems. Without non-linear activation functions, the neural network
would become a linear regression problem solver. During this research two types of layers are considered,
the rectified linear unit and a linear layer. The rectified linear unit is an example of a non-linear activation
function which is often used as a default choice in hidden layers. Equation 4.1 and figure 4.2 present the
rectified linear unit. The value of x denotes the input value of the node.
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Figure 4.1: Multi-layer perceptron neural network

f (x) = max(0, x) (4.1)

Figure 4.2: Rectified linear units (ReLU) activation function

It can be seen, that the rectified linear unit activation function disregards input values below 0 and only
accepts values above 0. When an input value is equal or lower than 0, the nodes output is 0. Besides the
rectified linear unit there is a wide variety of activation functions which can be assigned to hidden layers.
The second activation function considered is a linear function. Choosing a linear activation function as the
output layer is a common design choice in a multi-layer perceptron network. The linear activation function
creates the ability for output values to obtain positive and negative values [3] [2]. The linear activation
function is presented by formula 4.2 and figure 4.3.

f (x) = x (4.2)

Figure 4.3: Linear activation function
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4.2. Optimizers
Another important design parameter is the optimizer. Optimizers are algorithms with the capability of
changing weights and in some cases the learning rate as well. The goal of the optimizer is to reduce the
values of the loss function as much as possible. The loss function denotes the difference between estimates
and actual outputs. Explanation on the loss function is elaborated on in 4.3.
There is a wide variety of optimizers, each comes with its own advantages and disadvantages. During the
research two optimizers were tested, the Adam optimizer and the stochastic gradient descent. Adam is short
for adaptive moment estimation. Currently the Adam optimizer is a popular choice due to its good and fast
results. However a lot of researcher still apply the stochastic gradient descent by stating, that the stochastic
gradient descent finds more optimal solutions at longer training time. The stochastic gradient descent
originates from the well-known gradient descent method. During this research both of these optimizers were
tested. The stochastic gradient descent appeared to perform better during the simulation process. Therefore
the decision was made to proceed this research with the stochastic gradient descent optimizer [3] [7].

4.3. Training
One of the most characteristic trades of the neural network is their capability of finding patterns in data
based on learning. By training a neural network, relations can be found between input and output data.
Once the connection between input and output is found, the method has the ability of rapidly estimating
new output values. Usually the data sets used in the training process of neural networks are split up in a
training set, a validation set and a test set. The training set, the largest set is used to train the network. Next
the validation set is used to quantify the training progress. At each cycle the entire training and validation
data set is fed to the neural network, this is noted as an epoch. The training is finished when the preset
amount of epochs is achieved. Between each of the epochs the order of the samples within the data set is
shuffled. A sample is denoted by an input with corresponding output. The samples are shuffled to train the
neural network in a general manner and prevent the network of getting accustomed to the order of the
samples. Once the training is completed, the unseen test data set is fed to the network to check the final
performance of the network. This learning process is considered supervised learning, as the network is
trained with matched input and output data [2].
During training the samples of the data set are fed to the neural network. Before feeding the data to the
network, the data set is split into multiple batches. A batch can be denoted as a part of the complete data set.
At the end of a single batch moving through the network, the coordinate estimates are compared with the
actual source coordinates and the link weights are updated. When the number of samples in the data set is
not an exact multiple of the batch size, the last batch is filled with the residual samples.
The learning rate specifies the step size at which an optimizer searches towards the global optimum. Some
optimizers have the ability to change the learning rate during the training process. Figure 4.4 presents a
2-dimensional comparison between different learning rates.

Figure 4.4: Difference in learning rate, large learning rate (left) and small learning rate (right)

By choosing a large learning rate the neural network is able to learn fast. However when choosing a large
learning rate the possibility exists of stepping over the global optimum. Choosing a learning rate to small
guarantees at finding an optimum, however this does not necessarily has to be the global optimum.
Therefore the size of the learning rate can have a significant influence on the performance of the algorithm.
The loss functions can be used to quantify the difference between the model estimates and the actual values.
Based on the output of the loss functions, the optimizer can adapt the link weights within the network.
During the research two loss functions are tested. The considered loss functions are the mean absolute error
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and the mean squared error. The mean absolute error is presented by formula 4.3 and the mean squared
error is presented by 4.4.

Mean absol ute er r or = 1

L

L∑
l=1

|el | (4.3)

Mean squar ed er r or = 1

L

L∑
l=1

(el )2 (4.4)

The value el presents the difference between the actual and estimated output values [3]. The training was
based on a systematic approach, in which model parameters were adapted based on results. The model
architecture used by Castellini et al. in [1] was used for inspiration of the initial approach. From there a
variation of design parameters were changed and compared. Table 4.1 presents the nodes, layers and
activation functions used during simulation.

Layer Neurons Activation function Type
1 4096 - Input
2 400 ReLU Fully connected
3 200 ReLU Fully connected
4 50 ReLU Fully connected
5 20 ReLU Fully connected
6 3 Linear Fully connected

Table 4.1: Neural network architecture used during simulation

The choice of model parameters are presented in table 4.2. These design parameters appeared to be most
successful during tuning of the network.

Design parameter Chosen parameter
Optimizer Stochastic gradient descent

Loss function Mean absolute error
Batch size 32

Learning rate 0.01

Table 4.2: Selected design parameters
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5
Appendix 1

Figure 5.1 and figure 5.2 present beamform plots at multiple frequencies. The beamform plots are presented
at frequencies 1000, 2000, 3500 and 5000 [Hz]. All images present the same acoustic source at different
locations above grass and stone surfaces. Figure 5.1 presents the recording at t = 4 seconds. Figure 5.2
presents the recording at t = 7 seconds. Although the beamform plots are very similar, minor changes can be
seen by investigating the side lobes. By investigating multiple selections of time within single recordings,
potential unwanted noise inputs can be highlighted.
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(a) Recording 1 above a grass surface at 1000 (Hz) (b) Recording 3 above a stone surface at 1000 (Hz)

(c) Recording 1 above a grass surface at 2000 (Hz) (d) Recording 3 above a stone surface at 2000 (Hz)

(e) Recording 1 above a grass surface at 3500 (Hz) (f) Recording 3 above a stone surface at 3500 (Hz)

(g) Recording 1 above a grass surface at 5000 (Hz) (h) Recording 3 above a stone surface at 5000 (Hz)

Figure 5.1: Beamform plots above different surfaces at multiple frequencies second 4 of the recording
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(a) Recording 1 above a grass surface at 1000 (Hz) (b) Recording 3 above a stone surface at 1000 (Hz)

(c) Recording 1 above a grass surface at 2000 (Hz) (d) Recording 3 above a stone surface at 2000 (Hz)

(e) Recording 1 above a grass surface at 3500 (Hz) (f) Recording 3 above a stone surface at 3500 (Hz)

(g) Recording 1 above a grass surface at 5000 (Hz) (h) Recording 3 above a stone surface at 5000 (Hz)

Figure 5.2: Beamform plots above different surfaces at multiple frequencies second 7 of the recording
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Appendix 2

Figure 6.1 presents a scatter plot containing results of the simulation. The rows are sorted by method, the
columns are sorted by coordinates. The x, y and z estimates are plotted against the actual source
coordinates. It can be seen, that the neural network has the least straight lines compared to the global
optimization methods. This is a result of obtaining the least accurate estimates. Often when one of the
estimated coordinates of the global optimization methods is not correct, the other two coordinates are
neither correct. This is a result of the global optimization method getting stuck in a local optimum. A neural
network could possibly be sensitive to correlated misses as well.
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Figure 6.1: Actual source locations presented against simulated estimates
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