TU Delft

Deep learning approaches to short term traffic forecasting
Capturing the spatial temporal relation in historic traffic data

Thomas Kuiper

Supervisor: Elena Congeduti

'EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Thomas Kuiper

E-mail of the student: T.I.Kuiper @student.tudelft.nl
Final project course: CSE3000 Research Project
Thesis committee: Elena Congeduti, George Losifidis

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

The amount of cars on the roads is increasing at
a rapid pace, causing traffic jams to become com-
monplace. One way to decrease the amount of traf-
fic congestion is by building an Intelligent Trans-
portation System (ITS) which helps traffic flow op-
timally. An important tool for an ITS is short
term traffic forecasting. Better forecasts will en-
able the ITS to proactively prevent congestion. Re-
cent years have seen a great increase in the avail-
ability of traffic data. As a result deep learn-
ing approaches have begun to emerge as mod-
els of choice in the short term traffic forecasting
domain. Among deep learning approaches Long
Short Term Memory (LSTM) and Temporal Con-
volutional Networks (TCN) have both shown state-
of-the-art performance in general forecasting tasks
as well as promising results in traffic forecasting.
This work has compared both of these approaches
in terms of capturing the temporal spatial correla-
tion and scalability. The LSTM showed more abil-
ity to capture the temporal spatial correlation while
both architectures seemed equally scalable.

1 Introduction

The rapid urbanisation of the world has increasingly brought
more people together, causing many roads around the world
to face increasing numbers of vehicles. As a result traffic jams
are becoming common place. Traffic congestion can lead to
economical damages, increased road accidents, more pollu-
tion etc. Therefore it would be greatly beneficial to reduce
the amount of traffic congestion.

Building more infrastructure is an effective solution, how-
ever it can cost a lot of time and money while also being lim-
ited by space. Instead it is often more viable to use control
strategies to reduce congestion in traffic. By adjusting speeds
or rerouting in real time, a lot of traffic congestion can be
avoided. These control strategies are part of what became
known as Intelligent Transportation Systems(ITS), which try
to use innovative solutions to achieve maximum usage out of
the available road network. At the basis of any ITS is traf-
fic forecasting which enables proactive decisions to prevent
congestion.

Plenty of research into traffic forecasting has already been
done over the last decades. Several flow-theory models [4]
and statistical based models [5], have been proposed and used
successfully for a long time. In recent years the amount of
available data has become abundant due to the deployment
of traffic sensors, most previously used models however can-
not take advantage of this. The curse of dimensionality pre-
vents these models from learning the deeper correlation hid-
den within the data leaving them with a shallow understand-
ing. The correlation in traffic data can be more challenging to
learn than a typical forecasting problem because traffic pre-
diction involves temporal and spatial correlations. A model
that can capture both the temporal and the spatial dependen-
cies in this large amount of data is needed.

Neural network (NN) approaches have shown to be able to
overcome the curse of dimensionality due to distributed cal-
culations. Although conventional NN’s are not the best fit to
capture temporal-spatial dependencies, many deep learning
architectures have shown to be capable of capturing these de-
pendencies. In [12] and [1] long-term-short-memory(LSTM)
models are proposed for traffic forecasting. The authors of
[8] used a deep convolutional NN (CNN) to build a traffic
prediction model. Both of these types of models are known
for their state-of-the-art performance on time-series forecast-
ing problems|7], and have shown good performance in traffic
forecasting.

This work aims to compare LSTM and CNN architectures
in the domain of traffic forecasting. Whilst both show good
performance, it is not yet known what architecture is best
at capturing the temporal-spatial correlation. By comparing
these two relatively simple architectures deductions can be
made about the capabilities of more complex architectures
that are based on LSTM or CNN features.

2 Methods

This section explains the key concepts that are used.

2.1 The dataset

The data used is a month of signals from 130 traffic sensors
in the city center of The Hague. The original signals are mag-
netic field readings which are converted into a number of cars
passing over said sensor every 15 minutes. In this form the
data can be used for analysis.

2.2 Spatial-Temporal Correlation

Traffic prediction is a time series prediction problem. This
means that given a time sequence [z1, .., 2] the goal is to
predict z;;; where t is the last recorded data point. So an
architecture suited for time series problems should be able
to approximate the dependency between (z¢41, [Zt—p, .., Z¢t])
where b is how far back in time the model looks to predict
($t+1.

Traffic prediction however, is not just a time series prob-
lem, it is a spatial-temporal problem. For each sensor the
correlation between other sensors can also be considered.
More formally this means that given several time sequences
[X1,.., Xs] where X is a time sequence and s is the num-
ber of sensors being considered, the correlation between
(X, X;) also needs to be considered foralli < s & j < s.

2.3 Deep Learning Methods

Deep neural networks are well suited to learning predictive
relationships. A neural network uses a sequence of non-linear
hidden layers followed by an output layer to give the pre-
dictions. The hidden layers will learn intermediate features
that can be put together by the output layer into critical fea-
tures used for prediction [3]. There are many different deep
learning architectures, the ones discussed in this section have
shown great performance in time series predictions as well
as promising traffic prediction results. First Recurrent Neural
Networks (RNN) are introduced, followed by a variant of a

RNN: a Long Term Short Memory (LSTM) architecture, af-
ter which Temporal Convolutional Networks (TCN) will be
discussed.

RNN

A RNN is a Deep learning architecture specialised for se-
quence tasks.

It can take a sequence of inputs [z, .., x¢], after each input
x; it will update its hidden layer h; to h;y; using an update
function. When the last input z; is processed, the final out-
put of the model will be produced. This recurrent structure
enables the output to be effectively based on all inputs. The
reccurent structure can take a variable amount of inputs mak-
ing it ideal for language modelling tasks. Using the language
modelling task as an example, a normal feed forward network
would have to learn for each input all the rules of the language
separately whereas a RNN can learn the rules once and apply
them to all inputs [6].

Though great, RNN’s are not the fit all solution for sequen-
tial problems. Due to the vanishing and exploding gradient
problems, RNN’s accuracy degrades when modelling larger
timespans [12]. A different version of a RNN known as a
LSTM, does a bit better in this regard using gated units that
have a more complex update function.

LSTM

Similar to the RNN, a LSTM also has a recurring structure
that takes a sequence of inputs and after each input it updates
it’s structure. A LSTM treats its hidden layer as a memory
cell that is updated with the gates that connect to it. There
is an input, output and forget gate. This effectively enables
the LSTM to decide whether something is worth keeping in
memory, allowing it to forget irrelevant information. This
way the LSTM architecture can more effectively capture re-
lationships in time than the RNN structure.

TCN

Convolutional networks are typically used for image anal-
ysis. These networks use two-dimensional convolutions to
capture relations along the width and length of an image.
One-dimensional convolutions however can be used to cap-
ture relations along the time dimension. This works well for
small inputs however for larger inputs it can be hard for a
normal convolutional network to find the relations between
timesteps that are far apart. The TCN architecture has a key
feature to solve this which is dilated convolutions. The effect
of dilation is illustrated in Figure 1, by increasing the dilation
rate throughout several layers a wide reach can be achieved
without needing to do more calculations. Using dilated con-
volutions a deep temporal memory can be built up and used
to achieve accurate predictions. Authors of [2] have shown
that in many cases a TCN can perform sequence tasks better
than the commonly used recurrent architectures.

3 Experimental Setup and Results

This section outlines how the experiments are performed, it
also describes what the exact setup is of all the parts and lastly
the results are shown.

Ur—2UT 197
Output

Yo U1 2

d=4

\

LA
A e

Tp—2Xr-1%T

Figure 1: Made by authors of [2]. This figure shows how dilation
can widen the reach of convolutions. A kernel size of 3 is used and
the dilation rate can be seen on the side. Note that a dilation rate of
1 is the same as no dilation.

3.1 Measures

To evaluate two models some measures to compare them by
need to be established.

1. Accuracy - Root Mean Squared Error (RMSE) score of
predictions as in Formula 1

2. Ability to capture spatial-temporal correlation - How
much can the model improve when increasing the
amount of sensors as input data

3. Scalability - How much does performance degrade when
predicting multiple sensors at the same time

— ;)2 (1)

1 .
MAEZ;Z‘Z‘Z'—IZ‘ (2)

=1

3.2 Experiment

To perform an experiment comparing two different neu-
ral network architectures there needs to be some common
ground. So to make sure both networks have the same
learning capabilities they are made to have around the same
amount of trainable parameters.

Spatial-temporal correlation

To find how well the model can capture the spatial-temporal
correlation a single sensor will be predicted. When using only
the sensor itself as input there is only a temporal correlation
in the data. The accuracy score of this simple model can then
be used as a baseline for the rest of the experiment. When
adding more sensors to the input a spatial-temporal correla-
tion is introduced in the data. The experiment will gradually
introduce more sensors to the input, and measure the accu-
racy. The additional sensors that are added are selected based
on how correlated they are to the sensor being predicted. This

Sensor A

Sensor B

Sensor C

— TCN
LSsT™M

/\p\/\/\/\

RMSE value
o o o o o
° N > o w
RMSE value

w
®

5.6 4

— TCN
LsT™M

- TCN
LST™™M

851

RMSE value

6.0

o 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8

Number of input sensors

10

Number of input sensors

20 o 2 4 6 8 10 12 14 16 18 20

Number of input sensors

12 14 16 18

Figure 2: Three graphs showing the accuracy of predictions in RMSE as amount of input sensors increase. Each graph shows the prediction

of a different sensor, with the TCN as blue and LSTM as orange.

is defined by the Pearsons correlation between the output sen-
sor and all other sensors. There are only a limited amount
of correlated sensors, so we assume that eventually adding
sensors to the input does not increase accuracy anymore, so
the experiment is only performed up until 20 input sensors.
When the accuracy scores are obtained, they are compared to
the previously established baselines to find the improvement.
The ability to capture the spatial-temporal correlation is then
decided by how big the improvement is.

The output sensor chosen to perform the experiment could
affect the outcome. Some sensors have different patterns than
others which could cause a bias towards a certain acrhitecture.
For that reason this experiment is performed with 3 different
output sensors that will be referred to as A, B and C.

Scalability

To test scalability a similar experiment can be performed, in-
stead of varying the amount of inputs, the amount of outputs
are varied. Gradually increasing the amount of outputs while
having all sensors as inputs. As a baseline the average ac-
curacy of prediciting each sensor individually is used. Then
the accuracy scores of the experiment are compared with the
baseline to measure how well the model stays accurate when
predicting multiple sensors.

3.3 Data Preparation

To make the data suitable for a time series problem it needs to
be split into a sequences of chronological steps, where the last
step serves as the desired output and all steps before as the in-
put. This can be done using a sliding window transformation.
Using a specified look-back window size b and starting the
time-step ¢ as b, out of the data a slice as follows can be taken
[t—b,...,t —1,t]. Repeatedly increasing ¢ by one until reach-
ing the last recorded time of the data, will give a data set suit-
able for time series analysis. Before inputting the data into the
models, a normalisation is performed to keep the weights of
the network similarly sized. Then lastly a train/validation/test
split of 60%/15%/25% is used. Using the train set to train the
model, the validation set to tune hyper parameters and the test
set to evaluate the performance.

3.4 Setup

To perform the experiment both the LSTM and TCN model
need to be trained many times for the experiments to reduce
the effects of the inherent randomness of neural networks.
The sections below will detail the consistent hyper parame-
ters and structure used in the models. Hyper parameters were
found by trying a range of common and sensible values, and
selecting the optimal values among them. Both models are
built using the Tensorflow library Keras.

LSTM setup

The LSTM model consists of 3 layers. The first two layers
are both LSTM layers with 128 units, followed by a fully
connected layer that connects the 128 outputs of the second
LSTM with the amount of nodes equal to the number of sen-
sors that are being predicted. This final layer then produces
an output for each sensor predicted. The input data has a
look-back window of 96 timesteps. Meaning that the input to
predict the next step is the previous 24 hours of data. Lastly,
for the training specific parameters a learning rate of 0.001
is used with a batch size of 32 while running for 500 epochs
with early stopping based on the validation set.

TCN setup

The TCN uses 6 residual blocks which consist of two one-
dimensional convolution layers, each followed by a RelU ac-
tiavtion and a dropout layer of 0.2. Every block has some
parameters for its convolutions. The amount of filters (or
output channels) each block has is structured as follows:
[64, 128,128,128, 64, no_outputs] where the no outputs is
the amount of sensors being predicted. Each layer has a dila-
tion rate 2¢ where i starts at 0 and for each subsequent layer i
gets incremented by 1. Both the residual block structure and
dilation rate is modelled after the TCN built by authors of [2].
Across all blocks a kernel size of 3 is used in combination
with causal padding to ensure the predictions are only based
on the past. The input data once again is 96 timesteps (or
24 hours), with the same run time parameters as the LSTM
model.

3.5 Results

Each result data point in the following section is an average of
10 training cycles. Meaning all parameters were initialized,

trained and evaluated 10 times. The results are also shown
in two metrics RMSE and Mean Absolute Error (MAE) as in
formula 2. RMSE is the metric the models are trained on,
MAE gives a view that is not biased to larger absolute errors.

LSTM TCN Improvement
Inputs | RMSE | MAE | RMSE | MAE [LSTM | TCN
1 6.14 4.13 6.46 4.16 Baseline
2 6.02 4.04 6.54 4.11 -0.12 | +0.08
4 5.78 3.88 6.39 4.04 | -036 | -0.07
6 5.74 3.84 6.40 4.02 | -039 | -0.06
8 5.72 3.84 6.36 4.03 -0.42 | -0.10
10 5.67 3.83 6.45 4.03 -0.47 | -0.01

Table 1: Results of the first experiment from sensor A. One sensor
is predicted with different amount of input sensors. Shows the accu-
racy of both models as well as the improvement in RMSE compared
to the baseline is shown.

Spatial-Temporal Correlation Experiment

In Table 1 the results of the first experiment with sensor A
can be found. Across the board the LSTM model has a better
accuracy. Furthermore compared to the baseline the LSTM
shows more improvement with an increase of inputs, showing
that it is more capable of learning the spatial-temporal corre-
lation. The results of all 3 experiments have been graphed in
figure 2, from which similar conclusions can be drawn. The
LSTM model significantly improves as inputs increase for all
sensors. For sensors A and C the TCN struggles to improve
its score, but for sensor B it shows improvements. However
the accuracy varies a lot even after averaging over 10 cycles,
making the TCN seem less capable of finding the effective in-
formation and filtering out the useless information. Whereas
the LSTM stays fairly consistent even when the added data
does not provide new insights. So it is fair to say these results
point to the LSTM architecture being more accurate and also
more effective at learning the spatial-temporal correlation.

Scalability Experiment
The results of this experiment can be found in Figure 3. The
results see both the LSTM and TCN increase by about the
same amount of RMSE. It seems both models experience the
same accuracy loss trend when tasked with predicting an in-
creasing amount of sensors at the same time. Although it
is possible to build a seperate model for each or for a small
amount of sensors, on a large scale it would be a lot less costly
and a lot more efficient if this could be done in one model.
When scaling up, the TCN architecture could get an ad-
vantage over the LSTM with its faster runtime. A recurrent
architecture like LSTM can only do 1 step at a time because
the next step is dependent on the previous. The TCN however
can calculate its convolutions in parallel, meaning if there
is enough processing power and memory it can be sped up
tremendously.

4 Conclusions and Future Work

This work describes two deep neural network based traffic
prediction models. They were implemented and compared
with each other in two different experiments. It was found

Scalability

— LST™M
TCN

10 4

RMSE value

T T T T T
0 20 40 60 80 100 120
Number of predicted sensors

Figure 3: Accuracy of predictions in RMSE while amount of output
sensors increase. The amount of input sensors is kept constant at
130. The RMSE calculated is the average of the RMSE of each
individual predicted sensor.

that the TCN and LSTM scale similarly with some upside
of faster potential training time for the TCN. However the
LSTM shows better performance in accuracy and ability to
capture the spatial-temporal correlation. So it can be con-
cluded that the LSTM is a better pick for this case study. The
results also suggest that for a short-term traffic forecasting
problem, a LSTM based architecture is most likely worth try-
ing.

In future work more complex architectures can be com-
pared. Authors of [11] proposed a gated TCN architecture to
predict traffic, while authors of [9] propsed a graph convolu-
tional model for traffic prediction. Another interesting model
that could be considered is one that combines a LSTM and
convolutional architecture, which was found to have good re-
sults in [10]. Lastly it would be interesting to see if results
could improve from decreasing the timesteps in the data from
15 minutes to 10 or 5.

5 Responsible Research

There are no ethical concerns with the data that is used, there
are no privacy concerns involved with it nor can it be used for
unethical purposes.

Neural networks inherently have some variability causing
them to not always produce reliable or consistent outcomes.
To account for this all reported findings are averaged out over
several training cycles. This should ensure that when repro-
duced similar results will be found. Furthermore, a detailed
setup is given in the Experiment section for the neural net-
work architectures. This combined with access to the source
code should give other developers enough information to be
able to reproduce the experiment.

References

[1] Zainab Abbas, Ahmad Al-Shishtawy, Sarunas Girdzi-
jauskas, and Vladimir Vlassov. Short-term traffic pre-

[10]

[11]

[12]

diction using long short-term memory neural networks.
In 2018 IEEE International Congress on Big Data (Big-
Data Congress), pages 57-65, 2018.

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. An em-
pirical evaluation of generic convolutional and recurrent
networks for sequence modeling, 2018.

Yoshua Bengio, Aaron Courville, and Pascal Vincent.
Representation learning: A review and new perspec-
tives. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 35(8):1798-1828, 2013.

Carlos F. Daganzo. The cell transmission model: A dy-
namic representation of highway traffic consistent with
the hydrodynamic theory. Transportation Research Part
B: Methodological, 28(4):269-287, 1994.

Xiang Fei, Chung-Cheng Lu, and Ke Liu. A bayesian
dynamic linear model approach for real-time short-term
freeway travel time prediction. Transportation Research
Part C-emerging Technologies - TRANSPORT RES C-
EMERG TECHNOL, 19:1306-1318, 12 2011.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

Bryan Lim and Stefan Zohren. Time-series forecast-
ing with deep learning: a survey. Philosophical Trans-
actions of the Royal Society A: Mathematical, Physi-
cal and Engineering Sciences, 379(2194):202-209, feb
2021.

Xiaolei Ma, Zhuang Dai, Zhengbing He, Jihui Ma,
Yong Wang, and Yunpeng Wang. Learning traffic as
images: A deep convolutional neural network for large-

scale transportation network speed prediction. Sensors,
17(4), 2017.

Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-
temporal graph convolutional networks: A deep learn-
ing framework for traffic forecasting. In Proceedings of
the Twenty-Seventh International Joint Conference on
Artificial Intelligence. International Joint Conferences
on Artificial Intelligence Organization, jul 2018.

Haiyang Yu, Zhihai Wu, Shuqin Wang, Yunpeng Wang,
and Xiaolei Ma. Spatiotemporal recurrent convolu-
tional networks for traffic prediction in transportation
networks, 2017.

Changxi Zhao. Traffic flow prediction model based on
temporal convolutional network. In 2023 17th Interna-
tional Conference on the Experience of Designing and
Application of CAD Systems (CADSM), volume 1, pages
1-4, 2023.

Zheng Zhao, Weihai Chen, Xingming Wu, Peter C. Y.
Chen, and Jingmeng Liu. Lstm network: a deep learning
approach for short-term traffic forecast. IET Intelligent
Transport Systems, 11(2):68-75, 2017.

http://www.deeplearningbook.org
http://www.deeplearningbook.org

	Introduction
	Methods
	The dataset
	Spatial-Temporal Correlation
	Deep Learning Methods
	RNN
	LSTM
	TCN

	Experimental Setup and Results
	Measures
	Experiment
	Spatial-temporal correlation
	Scalability

	Data Preparation
	Setup
	LSTM setup
	TCN setup

	Results
	Spatial-Temporal Correlation Experiment
	Scalability Experiment

	Conclusions and Future Work
	Responsible Research

