
The impact of branching and merging strategies on KPIs in open-source software

Serban Ungureanu1

Responsible Professor: Sebastian Proksch1

Supervisor: Shujun Huang1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Serban Ungureanu
Final project course: CSE3000 Research Project
Thesis committee: Sebastian Proksch, Shujun Huang, Marco Zuniga

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
Continuous Integration (CI) practices have be-
come central to open-source software (OSS) de-
velopment, yet the relationship between branching
strategies, merge habits, and CI performance re-
mains underexplored. Understanding their role is
crucial for explaining the variation in CI outcomes
and for refining development practices. We em-
pirically examine how branching models (feature-
based vs. trunk-based) and merge characteristics
(size and frequency) affect key performance indi-
cators (KPIs).
Using a dataset of 565 GitHub repositories, we an-
alyze both short-term trends and long-term evolu-
tion of development strategies. We find that while
feature branching is strongly associated with higher
delivery frequency and lower defect counts, trunk-
based workflows (though rare) sometimes outper-
form in lead time and recovery. Similarly, frequent
merges correlate with faster delivery and shorter
lead times, regardless of size. A longitudinal subset
reveals that projects shift toward feature-based de-
velopment over time, but do not consistently adopt
smaller or more frequent merges.
We also highlight methodological limitations in
mining GitHub. Future research should incorpo-
rate longitudinal repository tracking and developer
surveys to capture workflows that are invisible to
snapshot-based analysis. This study contributes to
a nuanced understanding of how code management
practices shape CI outcomes in collaborative OSS
projects.

1 Introduction
Open-source software (OSS) underpins much of today’s tech-
nology, from operating systems to cloud platforms, with an
estimated value over $8.8 trillion. Without OSS, software
costs would be 3.5 times higher [12]. As development has
matured, Continuous Integration (CI) has become widely
adopted in the OSS ecosystem [22; 24], enhancing the speed,
reliability, and coordination of software delivery.

While prior research confirms the general benefits of
adopting CI [22; 24], it often treats CI as a uniform prac-
tice. For instance, Baltes et al. find that CI adoption does not
significantly change commit behavior [2], and Islam and Zi-
bran observe a positive association between passing builds
and code review activity [13]. However, these studies at-
tribute outcomes to CI itself, without considering how differ-
ences in development workflows may shape CI performance,
or by equating them solely with build success.

This is a notable gap. Branching and merging are funda-
mental to how teams coordinate changes, and directly influ-
ence delivery cadence, code review dynamics, and release re-
liability. Despite their central role in integration workflows,
their impact on CI outcomes remains underexplored.

This study addresses that gap by examining whether
branching and merging workflows provide measurable ben-
efits in open-source CI projects. We focus on feature-based

versus trunk-based development, and on the size and fre-
quency of merges, asking whether these practices correlate
with better outcomes on key CI performance indicators.

To that end, the following research questions are posed:

RQ1: Does feature branch development show a clear im-
provement in CI KPIs compared to trunk-based devel-
opment?

RQ2: Do frequent, small merges correlate with better CI
KPIs compared to infrequent, large merges?

RQ3: How do code management strategies evolve over the
lifetime of a project?

To answer these questions, we evaluated repositories from
GitHub on a set of KPIs: delivery frequency, delivery size,
change failure rate, mean time to recovery, and change lead
time, in line with industry standards [7]. The repositories are
analyzed based on whether they follow feature or trunk-based
development, and the size and frequency of merges. Based
on these groupings, the KPIs are calculated for each category
and compared to assess differences in performance.

Our findings show that while trunk-based development is
relatively rare, it can outperform feature-based workflows in
terms of change lead time and recovery speed. Conversely,
feature-based development is more prevalent and associated
with higher delivery frequency and lower defect counts. Re-
garding merging habits, frequent merges are consistently
linked to faster delivery and shorter lead times, whereas
merge size appears to have little effect. Notably, projects tend
to adopt more structured feature branching over time, but do
not significantly change their merge frequency or size. Fi-
nally, we reflect on key limitations of GitHub mining, espe-
cially in capturing rebased commits and implicit workflows,
which future studies should address through longitudinal and
developer-centric approaches.

2 Related Work
Continuous Integration (CI) has become a foundational prac-
tice in modern software development, prompting extensive
research into its benefits, challenges, and impact. Existing
work has examined CI from multiple perspectives, includ-
ing its technical efficacy and social implications, but com-
paratively less attention has been paid to the structural de-
velopment strategies that underlie CI practices. Our study
builds upon this landscape by empirically linking project-
level CI performance to branching strategies and merge be-
havior across a large sample of open-source repositories.

CI benefits As previously mentioned, many studies have
already confirmed the popularity and general benefits of
adopting CI [24; 22; 11]. These works serve as a founda-
tion for understanding the value of CI, without differentiating
how specific development workflows might influence these
outcomes.

Detecting branching strategies The work of Gupta et al.
[10] has been instrumental in detecting whether projects em-
ploy trunk-based development or feature branch develop-
ment. Their methodology for identifying branching strate-
gies served as a foundation for our methodology, which we

subsequently extended. However, they do not investigate the
performance implications of these strategies, which our work
aims to uncover.

Pull requests in the context of CI Prior work has also ex-
amined how pull request workflows interact with CI. Zam-
petti et al. [23] found that CI failures are frequently discussed
in PR threads, but do not consistently block merges. Vale
et al. [21] showed that pull requests reduce the incidence
of merge conflicts, though communication activity alone is
not a strong predictor. These findings emphasize the so-
cial and procedural dimensions of modern development prac-
tices, which our work complements through a large-scale
KPI-focused analysis of branching strategies.

Code review dynamics Complementing these, Cassee et
al. [6] assess how the introduction of CI affects the vol-
ume of code review communication itself. Their regression-
discontinuity analysis over 685 GitHub projects shows that
the number of general and line-level review comments per
pull request decreases significantly after adopting Travis-CI,
while the number of follow-up code changes remains stable.
These findings suggest that CI offloads part of the review bur-
den, functioning as a “silent helper” by automating tasks that
would otherwise require manual comments.

Effects on builds Islam and Zibran [13] conducted a large-
scale empirical study analyzing over 3.6 million builds from
1,090 open-source projects to investigate which development
factors affect individual CI build outcomes. Their findings
indicate that the number of changed lines, modified files,
and built commits per task significantly influence build suc-
cess or failure, while factors such as contribution model and
branching strategy do not. Unlike our work, which focuses
on project-level performance metrics, their study centers on
build-level reliability, offering complementary insights into
the operational behavior of CI systems.

Linking workflows to CI performance While prior stud-
ies have investigated CI outcomes from angles such as build
stability, review behavior, and communication dynamics, few
have systematically linked these outcomes to the underlying
development strategies that shape them. Our work addresses
this gap by analyzing how branching models and merge habits
influence project-level CI KPIs across 565 repositories. By
extending classification techniques and focusing on measur-
able delivery metrics, we offer an empirical bridge between
structural workflows and their practical impact on continuous
integration performance.

3 Methodology
Our methodology had three main phases: selection and col-
lection, grouping based on exhibited behaviors, and measur-
ing the KPIs.

Dataset selection Our data collection criteria were primar-
ily informed by the work done by Beller et al. [3] on the
TravisTorrent project, which offers reasonable baselines for
selecting projects for evaluation:

[...] we restricted our project space using es-
tablished filtering criteria to all non-fork, non-toy,

somewhat popular (>10 watchers on GITHUB)
projects with a history of TRAVIS CI use (>50
builds) in Ruby (898) or Java (402)

While our criteria are not identical (for example we do not
care about programming language), this served as a valuable
initial reference point.

The selection process used the SEART GitHub Search En-
gine [8], which allowed for the discovery of repositories that
meet the agreed criteria. Specifically, repositories were re-
quired to have between 50 and 10,000 commits, be created
before 1 May 2024, and have at least one commit between
1 April 2025 and 1 May 2025. Additional filters excluded
forks and retained only repositories with at least 10 watch-
ers, an open-source license, open issues, and an active pull
request history.

We applied these search criteria to ensure the selected
repositories exhibit sustained development activity and real-
world relevance. By filtering for a minimum number of
commits, recent activity, and community engagement (e.g.,
watchers), as well as requiring the use of GitHub-native
features like issues, pull requests, and licensing, we target
projects that are actively maintained and reflective of typical
development workflows.

This query returned approximately 13,700 repositories.
Out of this set, a total of 90 repositories were picked uni-
formly at random, by shuffling the full list and selecting the
first 90. This number was picked as a compromise between
sample size and time constraints. Out of the 90 repositories,
2 proved to have issues during data collection, and only 88
were kept.

In addition to the initially selected repositories, a secondary
dataset of 477 more was incorporated, for a total of 565. This
dataset, collected independently by fellow TU Delft student
Atanas Buntov [5], follows similar selection criteria and was
merged with the primary dataset to enhance coverage. As
both studies are being published simultaneously, no direct
cross-referencing is possible.

Our initially collected 88 repositories will be referred to as
the native dataset, and the combined dataset of all 565 repos-
itories will be referred to as the extended dataset. We make
both datasets available at Zenodo [17; 19].

Figure 1: Age of collected repositories

Figure 2: Repository sizes (measured in #LOC)

To ensure variety within the dataset, programming lan-
guage was not included as a selection criterion. Similarly,
project size and age were not filtering factors; repositories of
various sizes (see Figure 2) and ages (see Figure 1) were col-
lected. Only projects that appeared to be extremely small,
resembling hobby work or personal abandonware, were ex-
cluded. Grouping of the projects was performed retrospec-
tively to ensure a fair and representative sample of active
software, excluding toy examples, hobby projects, and aban-
doned repositories.

Developed tools For data collection and KPI analysis, the
research team developed CI-tool-du, a Java codebase. Ad-
ditionally, a suite of Python scripts named pyrp was devel-
oped to support additional data collection and analysis. The
specific tools and scripts used for each step of the analysis
are detailed in the following sections. We make both tools
available at Zenodo [16; 20].

Data collection Repository data is collected from the
GitHub API. For the selected repositories, the following data
was obtained: branches, commits, pull requests, issues1, re-
leases and deployments. User data was not obtained. The
cutoff date for the data was set to 01/01/2024.

After data was collected using CI-tool-du, we still
needed more data to perform our analysis. We enrich the
original metadata with per-PR commit identifiers and line-
level change statistics. For each pull request, we retrieve the
list of associated commit SHAs from the GitHub API, as well
as the total number of added and deleted lines. This informa-
tion is integrated into the existing repository metadata files.
Enrichment is only performed for merged pull requests and
is skipped if the data is already present. This action is per-
formed by the pyrp/enrich.py script.

Data analysis To evaluate the relationship between devel-
opment strategies and CI performance, we adopt a time-series
approach. For each repository, KPI values are calculated
across fixed monthly intervals spanning the past 12 months.
This temporal resolution enables a more stable comparison
of trends across projects with varying levels of activity. Af-
ter data collection, repositories are categorized according to

1Issue comments were not included as they were not relevant to
our analysis

their branching model, merge frequency, and merge size,
based on the thresholds described in the following subsec-
tions. For each repository, KPIs are computed using a com-
bination of GitHub API data and local Git clones, aggregated
over fixed monthly intervals. Repositories are then indepen-
dently grouped by branching model (feature-based or trunk-
based) and by merge behavior (based on size and frequency).
For each group, the average KPI values are computed, and
performance is compared between groups: feature-based vs.
trunk-based in one analysis, and between the four merge be-
havior categories in another.
Branching strategy To distinguish between trunk-based
development and feature branch development, we compute
the ratio of direct commits to total commits on the default
branch over time. Direct commits are those made to the
default branch without being part of a merged pull request,
while feature commits are introduced via pull request merges.
Using Git commit history and metadata from the GitHub API
data, we classify each commit based on whether it is associ-
ated with a merged pull request (feature) or not (main).

Commits are grouped into fixed-size time intervals (e.g.,
monthly), and for each interval we record the number of di-
rect main commits and merged pull request commits. The
main commit ratio for each interval is defined as:

main commit ratio =
direct commits

direct commits + merged PR commits
We compute the average ratio across all time intervals. If a

repository has an average main commit ratio greater than 0.8,
we classify it as following a trunk-based development model.
Otherwise, it is considered feature-based [10]. This thresh-
old reflects a strong preference for committing directly to the
default branch, while allowing for moderate use of feature
branches. This method enables a quantitative, time-aware
classification of branching behavior across repositories.

One limitation of this approach is its inability to accurately
classify projects that regularly rebase their feature branches
instead of merging them. In such cases, all commits from the
feature branch are rewritten as if they were made directly to
the default branch, causing these projects to appear, as exclu-
sively trunk-based.

To alleviate this, we extend upon the ratio-based method
described by Gupta et al. [10]. We scan all non-default
branches in each repository’s Git history, and save the SHAs
of all the commits found in those branches. Any commits
found this way are treated as evidence of feature branching,
regardless of whether it was later rebased or merged.

This is done by the non_default_commits.py and
branching.py scripts from pyrp.

This is not a method for detecting rebasing directly, but
it does serve as a correction to classification based solely on
the default branch’s commit history, by capturing evidence
of feature branch activity that may otherwise be obscured.
This does face limitations (such as branches being deleted
after merging or rebasing) which will be expanded upon in
the Discussion section.
Merge size and frequency For detecting whether a
project’s merges are small and frequent, or large and infre-
quent, the pull request data obtained from the GitHub API is

used. A list of commit SHA hashes is obtained from the pull
request’s details. This is then correlated against the git tree
to find the commits that are part of this pull request.

The frequency of merges is simply calculated through the
timestamps present in the pull request data obtained from the
API. We define ’frequent’ merges as occurring at least once
per day, following Martin Fowler’s recommendation that in-
tegrations should happen within ”hours rather than days” to
support effective CI practices [9].

To assess repository scale and support merge size analysis,
we used a tool called Sloc Cloc and Code [4] (scc). scc is
a language-aware static analysis tool that reports line counts
and approximate cyclomatic complexity2.

Using this tool, we compute three line-based met-
rics: code loc (executable lines), doc loc (documenta-
tion/comments), and total loc (non-blank lines). While
complexity is not analyzed directly, it helps distinguish code
from non-code: formats like C or Python yield non-zero val-
ues, whereas Markdown or JSON yield zero, allowing us to
separate code loc from doc loc.

To classify merge sizes, we adopt a relative threshold ap-
proach. Rather than using a fixed number of lines, we define
small merges as those involving at most 1% of a repository’s
total executable code, capped at an upper bound of 400 lines.
This limit is grounded in both industry guidelines and empir-
ical research. Atlassian recommends limiting review scope to
no more than 200-400 lines per session to maintain reviewer
focus and effectiveness [1]. Similarly, empirical studies of
review practices show that the number of defects found drops
significantly as patch size increases, particularly beyond 200
lines [15]. Thus, we can safely consider anything above 400
lines to be a ’large’ PR, regardless of the total size of the
codebase.

Using pyrp, the line of code metrics are obtained from the
variety.py script and the merge size and frequency analysis
is done by the merge_size_and_freq.py script.
Longitudinal analysis of branching and merging trends
To extensively analyze the evolution of code management
strategies over a repository’s lifetime, we selected a random
sample of 50 projects from the extended dataset. The se-
lection was constrained to repositories with an age between
four and five years as of 01/05/2025, ensuring project matu-
rity. For each selected project, we retrieved the full available
commit and pull request history via the GitHub API. Due to
incomplete data in some repositories (e.g., missing commit
timestamps or broken pagination), 3 projects were excluded,
resulting in a final sample of 47 repositories for longitudinal
analysis. We refer to this as the longitudinal dataset and make
it available at Zenodo [18].
KPI Definition and Extraction After the projects are
grouped together based on the thresholds described (using the
pryp script group.py), we calculate KPIs for each group.
For the KPI analysis, we use the same time intervals of one
month, and go back 12 months starting from 01/05/2025. The
KPIs are broadly categorized into delivery efficiency, issue
management, and build quality.

2scc uses a heuristic definition for complexity which is detailed
in its README (github.com)

Delivery Frequency is defined as the average number of
releases in a fixed time interval. Releases, along with their
timestamps, are obtained from the GitHub API. Delivery Size
is defined as the average number of changed lines of code per
release in a fixed time interval. This data is also obtained
from the API. Change Lead Time (CLT) is the average time
from a commit until its inclusion in the next release. This
is calculated as the time from the timestamp of the commit
until the timestamp of the first release that occurs after that
commit.

For the next two KPIs, in order to identify a ’bug issue’, we
evaluate issues and use a heuristic. Specifically, we identify
an issue as a defect if any of its labels or label descriptions
match known keywords (e.g., “bug”, “error”, “defect”) while
excluding those that simultaneously indicate resolution (e.g.,
“fixed”, “resolved”). Due to missing bug-label metadata in
the extended dataset, they are calculated using only data from
the native dataset3.

Mean Time to Recovery (MTTR) is the time from the
introduction of a failure (e.g., issue or failed CI) to its reso-
lution. We measure this as the time from when a bug issue
is created until it is closed. Defect Count is the number of
bug issues open at any time in a set time interval. For Change
Lead Time and Mean Time to Recovery, we measure time in
hours.

4 Findings
We present our findings in three parts, corresponding to the
research questions introduced earlier. Each subsection sum-
marizes the methods used, presents the results, and ends with
a brief interpretation.

RQ1: Does feature branch development show a clear
improvement in CI KPIs compared to trunk-based
development?
This subsection explores how branching models relate to
CI performance. We begin by examining how consistently
projects apply a given branching strategy, then compare the
KPI outcomes for projects classified as either feature-based
or trunk-based.

Branching consistency and influencing factors We be-
gin the analysis by examining the consistency over time of
branching strategies within projects. Using the methodology
described, we calculated the ratio of commits directly to the
default branch in time intervals of one month. To determine
consistency, we computed the variance of this ratio over time
for each repository.

Correlation analysis showed that the only moderately sig-
nificant factor observed was with the average number of com-
mits per month (r = −0.197). Other factors taken into ac-
count showed minimal to no correlation: total number of lines
(r = −0.107), ratio of executable lines (r = −0.075), and
project age (r = 0.010) appear to have little to no effect on
model consistency.

Thus, one observation is that projects with more fre-
quent commits tend to exhibit greater consistency in their

3See Section 6 for details

https://github.com/boyter/scc?tab=readme-ov-file#complexity-estimates

Table 1: Average KPI values per group. Time is measured in hours,
Delivery Size in number of lines of code (LOC).

KPI Feature Trunk

Delivery Frequency 2.152 2.042

Delivery Size (LOC) 7824.42 12795.63

Change Lead Time (h) 157.229 169.581

Defect Count 20.268 26.152

Mean Time to Recovery (h) 336.938 284.167

branching model, and that other factors do not directly affect
this.

KPI comparison by branching model Each project is first
classified as either feature-based or trunk-based by averaging
its default branch commit ratio over time. Based on this clas-
sification, the dataset is split into two groups: 522 feature-
based and 18 trunk-based projects. We then compute aver-
age KPI values for each group and compare them to evaluate
differences in CI performance between the two development
models.

Contrary to expectations, trunk-based development per-
forms better on several key indicators. It is associated with
a lower Mean Time to Recovery (284.17h vs. 336.94h) and
a shorter Change Lead Time (157.23h vs. 169.58h), both of
which indicate faster delivery and resolution of changes. Ad-
ditionally, Delivery Size is higher under trunk-based work-
flows (12795 vs. 7824 LOC per interval), suggesting more
substantial changes per release.

However, feature-based development shows advantages in
other areas. It is associated with a higher Delivery Fre-
quency (2.152 vs. 2.042 releases per interval), reflecting
more frequent releases, and a lower Defect Count (20.27 vs.
26.15 bug issues per interval), indicating fewer identified fail-
ures between releases.

Limitations of trunk-based analysis These results chal-
lenge the common assumption that feature-based workflows
are categorically superior. While prior work has advocated
for feature branching due to its support for code review and
parallel development [23], empirical evidence comparing its
effectiveness to trunk-based development remains limited.
Our findings suggest that trunk-based development, though
less common, may deliver comparable or even superior per-
formance under certain conditions.

However, we caution against overinterpreting these results.
The number of trunk-based projects is small relative to the
size of the entire dataset, and some of these repositories ex-
hibit characteristics indicative of mirrors, archives, or down-
stream copies. These traits may confound the KPI results, as
data points we are trying to track may be present somewhere
other than the repositories we are attempting to track.

This aligns with prior observations: the work of
Kalliamvakou et al. states that there are large amounts of mir-
rors on GitHub, and that large amounts of projects use exter-
nal (i.e., non-GitHub) tools [14].

Summary The primary contribution of RQ1 is not a con-
clusive performance comparison between workflows, but
rather a reframing of assumptions. Trunk-based workflows
are both rare and underexamined, yet appear to perform com-
petitively, at least within the limit of our dataset and classi-
fication. Future work should investigate whether these out-
comes reflect advantages intrinsic to a trunk-based workflow,
or are results of other (possibly external) factors.

RQ2: Do frequent, small merges correlate with better
CI KPIs compared to infrequent, large merges?
This subsection investigates whether merge characteristics in-
fluence CI outcomes. Projects are grouped by merge size and
frequency, and their performance is compared across a set of
CI-relevant KPIs.

Merge group classification Each project is first catego-
rized as having either small or large merges, and as merg-
ing either frequently or infrequently. Applying the thresh-
olds defined in our methodology, we obtain the split shown
in Table 2, with a total of four groups: small-frequent
(SF), small-infrequent (SI), large-frequent (LF), and large-
infrequent (LI). We then compute average KPI values for each
of the four groups, shown in Table 3.

Table 2: Merge size and frequency splits for projects

Type Count

Small-Frequent 21

Small-Infrequent 134

Large-Frequent 35

Large-Infrequent 341

Table 3: Average KPI values per group (S = small, L = large, F =
frequent, I = infrequent). Abbreviations: DF = Delivery Frequency,
DS = Delivery Size, DC = Defect Count, CLT = Change Lead Time,
MTTR = Mean Time To Recovery.

KPI SF SI LF LI

DF 3.509 2.385 4.736 1.709

DS 10526 3523 30950 6491

DC 20.052 17.312 41.729 12.667

CLT 137.909 153.282 123.977 164.763

MTTR 409.573 347.660 326.010 312.267

KPI comparison across merge groups Projects with fre-
quent merges (both SF and LF) generally show improved
CI performance. They exhibit notably higher Delivery Fre-
quency (3.509 for SF and 3.476 for LF) compared to their
infrequent counterparts (2.385 for SI and 1.709 for LI), sug-
gesting a more continuous and stable integration process.

In terms of Change Lead Time, frequent merging is again
associated with better outcomes, particularly in the large
merge group: LF projects show the shortest CLT at 123.98
hours, compared to 164.76 in LI projects. SF projects also
outperform SI projects (137.91h vs. 153.28h). These results
suggest that regardless of size, higher merge frequency is cor-
related with quicker integration of changes.

Interpreting defect count However, when it comes to De-
fect Count, the trend is less consistent. While LF projects
show significantly higher defect counts (41.73), SF and SI
projects are similar (20.05 vs. 17.31), and LI projects show
the lowest average (16.29). This suggests that more fre-
quent merges may lead to more bug reports, but this does
not necessarily indicate lower quality in frequently merging
projects. Higher defect counts could indicate a faster devel-
opment cycle, where issued are identified and surfaced more
rapidly. Conversely, the lower defect counts observed in in-
frequently merging projects may suggest more rigorous re-
view processes, potentially filtering out issues before integra-
tion.

These results could also be influenced by the fact we are
only evaluating reported bugs. It is also possible that projects
that merge infrequently fail to detect issues more often, which
could link to a potential weakness in their review process.
Thus, a lower defect count may imply reduced observability,
rather than improved performance. Future work could clarify
this with deeper analysis of review processes present in such
projects.

Patterns in recovery time No clear relation can be ob-
served between repositories’ merge sizes and frequency, and
Mean Time to Recovery (MTTR). The lowest MTTR is ob-
served in LI projects (312.27h), while SF projects have the
highest (409.57h), suggesting that merge characteristics alone
do not have a consistent effect on recovery time.

Summary These results lend partial support to the notion
that small, frequent merges are beneficial, but they also in-
dicate that merge frequency may matter more than merge
size. Frequent merges correlate with faster delivery and lower
lead times, aligning with best practices advocated in indus-
try recommendations [9; 1], yet largely overlooked in em-
pirical research to date. However, the defect and recovery
metrics complicate this narrative, as they suggest that higher
frequency does not always reduce failures, and that recovery
may depend on other structural factors.

These findings show the importance of frequent integra-
tion as a central factor in CI performance and suggest that
code management strategies aimed at reducing batch size and
increasing merge frequency may yield better delivery out-
comes.

RQ3: How do code management strategies evolve
over the lifetime of a project?

In this subsection, we analyze how branching and merging
behaviors change over time. The longitudinal dataset of 47
mature projects is used to assess long-term trends in develop-
ment workflows.

Figure 3: Trend in the ratio of commits made directly to the default
branch over time.

Figure 4: Branching model evolution over time per project. Darker
cells indicate higher ratios of main commits; white indicates no ac-
tivity.

Branching behavior trends Figure 3 shows a clear down-
ward trend in the ratio of direct commits to the default branch
over a project’s lifetime. This suggests that as projects
mature, direct trunk-based development becomes less com-
mon, likely replaced by more feature-based workflows. The
heatmap in Figure 4 supports this observation, with many
projects transitioning from high main activity (darker shades)
to lower main ratios over time.

Comparing results across the extended dataset used for
RQ1 and RQ2 (which contains data only going back one
year), and the longitudinal dataset used here, reveals that the
mild negative correlation between development activity and
workflow variance weakens slightly over time (r = −0.197
extended vs. r = −0.149 longitudinal). This suggests that
while active projects are somewhat more likely to maintain
consistent workflows in the short term, branching models
may shift over longer periods regardless of activity level.
Other evaluated factors, including total lines of code (r =
−0.107 vs. 0.073), project age (r = 0.010 vs. 0.064), and ex-
ecutable code ratio (r = −0.075 vs. 0.039), show negligible
correlation.

Merge size and frequency trends We analyzed the evolu-
tion of merging habits over time by examining two indicators:
average merge size (in lines changed) and average time be-

Figure 5: Merge size trend over projects’ lifetimes

Figure 6: Merge frequency trend over projects’ lifetimes

tween merges (in days), plotted against the number of months
since a repository’s first recorded merge.

In both cases, we observe only weak downward trends. The
average merge size exhibits a near-flat slope of −8.97 lines
per month, with an R2 value of just 0.0006, indicating no
trend (Figure 5). Similarly, the average number of days be-
tween merges decreases by approximately 0.015 per month
(R2 = 0.0039), which is not significant enough to highlight
a trend (Figure 6).

These findings suggest that, at scale, repositories do not
significantly shift toward smaller or more frequent merges
over time. Any such behavioral shifts are either minimal or
highly context-dependent, rather than being a consistent trend
across projects.

Summary Taken together, these results suggest that
branching strategies tend to evolve toward more structured,
feature-based workflows as projects mature. The observed
trend away from default branch commits reflects this. No-
tably, we find little evidence that codebase size or project
age meaningfully influences this evolution, suggesting that
projects are consistent in their merge size and frequency.

5 Discussion
This section interprets the results of our empirical analysis,
reflecting on the research questions, practical implications,
and directions for future work.

Reassessing branching model assumptions The results
of RQ1 indicate that trunk-based workflows, though signifi-
cantly less common, exhibit comparable or even superior per-
formance on several CI metrics. Trunk-based projects report
lower Change Lead Time and faster recovery (MTTR), sug-
gesting quicker turnaround for changes and failures. How-
ever, they also show larger delivery sizes and higher defect
counts. In contrast, feature-based workflows show higher
delivery frequency and fewer reported defects, reflecting the
benefits of modular, isolated changes.

These findings challenge prevailing assumptions that
feature-based workflows are inherently more effective. Our
results suggest that trunk-based development, under the right
conditions, can achieve performance levels similar to or bet-
ter than those of feature-driven processes. However, the va-
lidity of this comparison is undermined by structural lim-
itations. Trunk-based projects are underrepresented in the
dataset (only 18 out of 565), and many exhibit traits indica-
tive of archival mirrors or downstream forks. This aligns with
prior concerns about GitHub data quality [14], and suggests
that the performance advantages observed may stem from ex-
ternal workflows not visible in GitHub’s metadata.

As such, the findings for RQ1 do not present a settled
comparison of workflows, but rather a reframing: trunk-
based strategies are rare, potentially misclassified, and un-
derexplored. Their perceived efficiency may stem from low-
collaboration, low-friction update patterns. Future research
should more carefully identify true trunk-based projects and
investigate the environments in which this strategy performs
well.

Merge habits The analysis in RQ2 highlights the role
of merge frequency in shaping CI performance. Frequent
merges, regardless of size, are consistently associated with
faster delivery and lower lead times. This observation af-
firms long-standing industry advice advocating for continu-
ous, small-batch integration [9; 1], but which was not quanti-
fied in empirical studies.

Merge size, on the other hand, has a more ambiguous
impact. While large-frequent projects exhibited the highest
throughput, they also reported the highest defect counts. The
interpretation of this metric is nuanced: higher defect reports
may indicate lower quality, but may also reflect improved
observability or shorter feedback loops. Infrequently merg-
ing projects show lower defect counts, which may stem from
more rigorous review or, conversely, from latent defects go-
ing unreported.

Mean Time to Recovery (MTTR) showed no consistent
trend across merge groups. This suggests that merge char-
acteristics alone are insufficient to predict recovery efficiency
and that other factors may be more determinative.

Overall, the results support the use of frequent integration
as a foundation for CI success, while complicating the as-
sumption that small merges always yield better outcomes.

Strategic shifts over time In addressing RQ3, we find that
most projects trend away from trunk-based development over
time. The ratio of direct commits to the default branch de-
creases consistently across project lifespans, and heatmap
analysis (Figures 3, 4) confirms a shift toward feature-based

workflows as the norm. This aligns with practical expecta-
tions: as projects grow and contributors increase, coordina-
tion overhead rises, necessitating more structured workflows
such as branching and code review.

However, the evolution of merge size and frequency does
not show similar consistency. Both average merge size
and the interval between merges show only weak downward
trends, which are not statistically significant. This implies
that while branching model transitions are common, merge
practices may be more resistant to change, driven more by
team culture or domain-specific needs than by project age.

Interestingly, structural properties such as codebase size,
age, and executable code ratio do not meaningfully predict
branching model variance. This pattern holds in both the
short-term and longitudinal datasets. Only commit activity
exhibits a mild negative correlation with workflow variabil-
ity, suggesting that more active projects are somewhat more
consistent in their approach, but this trend also weakens over
longer timescales.

Implications for developers These findings suggest that
development teams should match their workflow strategy to
the scale and needs of their project. Feature-based workflows
offer modularity, parallelism, and review infrastructure, but
may introduce delays unless tightly managed. Trunk-based
development, while rare, may remain viable in smaller teams
or low-collaboration environments, where the benefits of pro-
cess overhead do not outweigh the costs.

Merge frequency emerges as a more consistent predictor
of CI success than merge size, reaffirming continuous inte-
gration as a best practice. As such, teams should prioritize
frequent, testable merges where possible. Practices such as
stacked pull requests may offer a middle ground between fea-
ture isolation and rapid integration, though more research is
needed to evaluate their effects at scale. We elaborate on this
point in Paragraph 5 (Richer developer-centric data).

Longitudinal repository tracking A key direction for fu-
ture research lies in real-time, longitudinal tracking of repos-
itories. Unlike retrospective mining, which relies on static
snapshots of the current state, continuous tracking would en-
able more precise activity tracking. This approach directly
addresses limitations in our current study, such as the inabil-
ity to observe rebased commits if branches are deleted.

Tracking repositories over time would also make it possible
to study the lifespan of branches, something also not available
through our methodology. This would enable a shift from
binary classifications (main vs. feature) toward a more nu-
anced understanding of development patterns, such as distin-
guishing between short-lived and long-lived feature branches,
or between batch-style integrations and continuous merges.
These distinctions could be analyzed in a similar fashion,
while providing a much richer picture than static classifica-
tion allows.

Additionally, GitHub’s API offers only limited, present-
state information: contributor lists are not temporally scoped,
team membership changes are not exposed, and collaboration
patterns are difficult to observe. With a longitudinal dataset,
it would be possible to track when contributors join or leave,
how they interact with changing workflows, and whether spe-

cific practices correlate with retention or disengagement.
Beyond structural analysis, longitudinal data would lay the

groundwork for connecting technical behaviors to developer
experiences, which points to a second promising direction.
Richer developer-centric data To alleviate issues with
data unreliability, these insights could be complemented with
surveys or interviews. In addition to capturing attitudes to-
ward workflows and tooling, surveys could fill in missing
context about the development environment itself. Many
projects use infrastructure that is not visible through GitHub,
including mailing lists, self-hosted archives, mirrors, and ex-
ternal code review systems [14]. As a result, our current data
suffers from blind spots, especially in projects that do not rely
heavily on GitHub pull requests or issue tracking. Collecting
this information directly from developers would help mitigate
sparsity and provide a more complete view of how real-world
teams coordinate, communicate, and maintain quality in their
CI practices.

Future work could also investigate whether industry do-
main (e.g., web development, systems programming, or ma-
chine learning) and programming language influence CI prac-
tices and development outcomes. Different ecosystems of-
ten rely on distinct toolchains, testing strategies, and col-
laboration models. Similarly, language-specific conventions
and tooling (such as Rust’s cargo, Python’s tox, or Java’s
Maven/Gradle-based pipelines) can shape how developers
structure their workflows and coordinate across teams. A
more granular analysis along these dimensions may uncover
patterns obscured by aggregated metrics, and could also cor-
relate to metrics like developer satisfaction, or the aforemen-
tioned attraction of outside collaborators.

This could also provide insights into alternative workflows,
such as stacked diffs4. Stacked diffs are rare, particularly in
the GitHub ecosystem, where they are not directly supported,
leading to the creation of external tools that extend Git. As
such practices gain adoption, future work should explore their
impact on KPIs and developer experience.

The measurability gap in trunk-based development
Contrary to the patterns suggested by our dataset, trunk-based
development is still extremely common by a wide margin. As
noted by Kalliamvakou et al. [14]:

Of the 2.6 million GitHub projects that represent
actual collaborative projects (at least 2 commit-
ters), only 268,853 (10 %) used the pull request
model at least once [...] The median number of pull
requests per project is 2.

However, nearly all of the repositories in our dataset use
feature-based development. This is not merely a filtering ar-
tifact, but a consequence of our selection criteria: reposito-
ries were intentionally chosen to exclude small, inactive, or
personal projects, in order to ensure measurable development
activity and valid KPI computation. As a result, the dataset
disproportionately reflects collaborative, CI-enabled projects,
where trunk-based workflows are far less common. Includ-
ing smaller or inactive repositories would have increased the
number of projects with trunk-based development, but at the

4https://newsletter.pragmaticengineer.com/p/stacked-diffs

https://newsletter.pragmaticengineer.com/p/stacked-diffs

cost of rendering KPI analysis ineffective. Metrics such as
Change Lead Time or MTTR are not meaningful for personal
archives or abandoned projects.

This highlights a broader gap in the literature: while
trunk-based development is prevalent in the long tail of
GitHub repositories, it remains largely unmeasurable in
the ways that CI research currently operates. Future work
could address this gap through survey-based or qualitative
methods, gathering self-reported insights on workflows that
lie outside the bounds of what can be evaluated with tools.
However, such data would not yield the same performance
metrics and would require a shift in evaluation criteria to re-
flect developer perception and intent, rather than delivery out-
comes.

6 Threats to Validity
This study is subject to both internal and external limitations
that may affect the reproducibility and precision of its find-
ings.

Internal threats Several KPIs rely on the presence of
GitHub Releases. Since not all projects use this mecha-
nism consistently, we excluded repositories without formal
releases from those parts of the analysis. This may have bi-
ased results toward projects with more structured or mature
workflows. Additionally, the method used to detect rebasing
relies on developers not deleting old feature branches. Thus,
it cannot fully resolve classification ambiguities, especially
in repositories that frequently delete branches. Finally, for
the computation of Defect Count and Mean Time to Recov-
ery, the extended dataset (n = 565) does not contain all the
required data: namely, the data used for identifying an issue
as a bug (as explained in the Methodology) is missing. Due
to time constraints in obtaining the data, we resorted to using
the native dataset (n = 88) for these KPIs.

External threats Some limitations arise from factors be-
yond our control. Despite efforts to exclude non-primary
repositories, the dataset may still include mirrors, forks, or
downstream copies. This is especially relevant for trunk-
based projects, where upstream activity may distort local KPI
measurements. Additionally, the GitHub API provides only
partial visibility into project workflows. External tools, mail-
ing lists, or alternative CI systems may play a significant role
in development but are not captured in our analysis. This
restricts our ability to fully observe or evaluate certain prac-
tices.

Summary Despite these limitations, the study offers an
empirical foundation for evaluating development strategies
in CI-capable projects and identifies structural gaps that fu-
ture work could address through longitudinal tracking and
developer-centric data collection.

7 Responsible Research
This project involved the analysis of publicly available data
from open-source software repositories. The following con-
siderations were made to ensure responsible and ethical re-
search conduct.

Privacy and anonymity All data was collected from
GitHub’s public API, and no attempt was made to identify
or profile individual developers. Analysis was performed on
aggregate data, with no focus on personal activity or behavior.
Data use Repository data was used solely for academic pur-
poses. While individual project licenses were not explicitly
reviewed, all repositories analyzed were public and not used
in any commercial context.

8 Conclusion
This study examined how code management strategies influ-
ence Continuous Integration (CI) performance across open-
source projects on GitHub. By analyzing 565 repositories
and a longitudinal subset of 47, we evaluated how branch-
ing models, merge practices, and project evolution relate to
key CI metrics such as Delivery Frequency, Change Lead
Time, Defect Count, Mean Time to Recovery, and Deliv-
ery Size.

Our findings challenge the assumption that feature-based
workflows are universally superior. While they are more
common and offer advantages in delivery frequency and de-
fect rates, trunk-based workflows (though rare) can perform
comparably in lead time and recovery under certain condi-
tions. Frequent merging correlates consistently with faster
delivery, supporting established CI recommendations, while
merge size showed a weaker and less stable relationship with
performance.

Longitudinal analysis revealed that projects tend to adopt
more structured, feature-heavy workflows as they mature,
though merge behavior evolves less predictably. Structural
properties such as codebase size or project age showed little
influence on workflow consistency, while development activ-
ity had a mild stabilizing effect.

These insights contribute to a more nuanced understand-
ing of CI success factors and highlight the limitations of
snapshot-based mining. Future research should prioritize lon-
gitudinal tracking and developer-centered data to fill visibility
gaps in modern software workflows.

References
[1] Atlassian. Code review best practices.

https://www.atlassian.com/blog/add-ons/
code-review-best-practices, 2022. Accessed: 2025-06-
09.

[2] Sebastian Baltes, Jascha Knack, Daniel Anastasiou,
Ralf Tymann, and Stephan Diehl. (no) influence of
continuous integration on the commit activity in github
projects. In SWAN 2018: Proceedings of the 4th ACM
SIGSOFT International Workshop on Software Analyt-
ics, pages 1–7, 11 2018.

[3] Moritz Beller, Georgios Gousios, and Andy Zaidman.
Travistorrent: Synthesizing travis ci and github for
full-stack research on continuous integration. In 2017
IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR), pages 447–450, 2017.

[4] Ben Boyter. scc - sloc, cloc and code. https://github.
com/boyter/scc, 2024. Accessed: 2025-06-09.

https://www.atlassian.com/blog/add-ons/code-review-best-practices
https://www.atlassian.com/blog/add-ons/code-review-best-practices
https://github.com/boyter/scc
https://github.com/boyter/scc

[5] Atanas Buntov. Dataset used in the thesis ”evaluating
the impact of collaboration modes on software delivery
efficiency in open-source projects”. https://doi.org/10.
5281/zenodo.15681547, June 2025.

[6] Nathan Cassee, Bogdan Vasilescu, and Alexander Sere-
brenik. The silent helper: The impact of continuous in-
tegration on code reviews. In 2020 IEEE 27th Interna-
tional Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 423–434, 2020.

[7] Google Cloud. Dora metrics: The four keys. https:
//dora.dev/guides/dora-metrics-four-keys/. Accessed:
2025-05-02.

[8] Ozren Dabic, Emad Aghajani, and Gabriele Bavota.
Sampling projects in github for MSR studies. In 18th
IEEE/ACM International Conference on Mining Soft-
ware Repositories, MSR 2021, pages 560–564. IEEE,
2021.

[9] Martin Fowler. Continuous integration. https:
//martinfowler.com/articles/continuousIntegration.html,
2006. Accessed: 2025-06-03.

[10] Yash Gupta, Yusaira Khan, Keheliya Gallaba, and
Shane McIntosh. The impact of the adoption of contin-
uous integration on developer attraction and retention.
In 2017 IEEE/ACM 14th International Conference on
Mining Software Repositories (MSR), pages 491–494,
2017.

[11] Michael Hilton, Timothy Tunnell, Kai Huang, Darko
Marinov, and Danny Dig. Usage, costs, and benefits
of continuous integration in open-source projects. In
Proceedings of the 31st IEEE/ACM International Con-
ference on Automated Software Engineering, ASE ’16,
pages 426–437, New York, NY, USA, 2016. Associa-
tion for Computing Machinery.

[12] Manuel Hoffmann, Frank Nagle, and Yanuo Zhou. The
value of open source software. SSRN Electronic Jour-
nal, jan. 2024.

[13] Md Rakibul Islam and Minhaz F. Zibran. Insights
into continuous integration build failures. In 2017
IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR), pages 467–470, 2017.

[14] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe,
Leif Singer, Daniel M German, and Daniela Damian.
An in-depth study of the promises and perils of min-
ing GitHub. Empirical Software Engineering, 21:2035–
2071, 2016. Publisher: Springer.

[15] Chris Kemerer and Mark Paulk. The impact of design
and code reviews on software quality: An empirical
study based on psp data. Software Engineering, IEEE
Transactions on, 35:534–550, 07 2009.

[16] Kiril Panayotov, Daniel Rachev, atns bntv, and user-
ban3000. Zakrok09/ci-tool-du: v1.0.0. https://doi.org/
10.5281/zenodo.15711350, June 2025.

[17] Serban Ungureanu and Atanas Buntov. Extended
dataset used in the thesis ”the impact of branching and

merging strategies on kpis in open-source software”.
https://doi.org/10.5281/zenodo.15707347, June 2025.

[18] Serban Alexandru Ungureanu. Longitudinal dataset
used in the thesis ”the impact of branching and merg-
ing strategies on kpis in open-source software”. https:
//doi.org/10.5281/zenodo.15710413, June 2025.

[19] Serban Alexandru Ungureanu. Native dataset used in
the thesis ”the impact of branching and merging strate-
gies on kpis in open-source software”. https://doi.org/
10.5281/zenodo.15707333, June 2025.

[20] userban3000. userban3000/pyrp: Initial release. https:
//doi.org/10.5281/zenodo.15707311, June 2025.

[21] Gustavo Vale, Angelika Schmid, Alcemir Rodrigues
Santos, Eduardo Santana de Almeida, and Sven Apel.
On the relation between github communication activity
and merge conflicts. Empirical Software Engineering,
25(1):402–433, Jan 2020.

[22] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov.
Quality and productivity outcomes relating to continu-
ous integration in github. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engi-
neering, pages 805–816, 8 2015.

[23] Fiorella Zampetti, Simone Scalabrino, Rocco Oliveto,
Gerardo Canfora, and Massimiliano Di Penta. How
open source projects use static code analysis tools in
continuous integration pipelines. In 2017 IEEE/ACM
14th International Conference on Mining Software
Repositories (MSR), pages 334–344, 05 2017.

[24] Yangyang Zhao, Alexander Serebrenik, Yuming Zhou,
Vladimir Filkov, and Bogdan Vasilescu. The impact of
continuous integration on other software development
practices: a large-scale empirical study. In Proceedings
of the 32nd IEEE/ACM International Conference on Au-
tomated Software Engineering, ASE ’17, pages 60–71.
IEEE Press, 2017.

https://doi.org/10.5281/zenodo.15681547
https://doi.org/10.5281/zenodo.15681547
https://dora.dev/guides/dora-metrics-four-keys/
https://dora.dev/guides/dora-metrics-four-keys/
https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/articles/continuousIntegration.html
https://doi.org/10.5281/zenodo.15711350
https://doi.org/10.5281/zenodo.15711350
https://doi.org/10.5281/zenodo.15707347
https://doi.org/10.5281/zenodo.15710413
https://doi.org/10.5281/zenodo.15710413
https://doi.org/10.5281/zenodo.15707333
https://doi.org/10.5281/zenodo.15707333
https://doi.org/10.5281/zenodo.15707311
https://doi.org/10.5281/zenodo.15707311

	Introduction
	Related Work
	Methodology
	Findings
	Discussion
	Threats to Validity
	Responsible Research
	Conclusion

