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Chapter 1

Introduction

Different techniques for the calculation of aircraft responses to atmospheric turbulence
are used in the world today. These techniques involve different turbulence models and °
different aircraft models. The turbulence model described herein originates from a general
statistical description of a stochastic process. This process will be simplified in order
"to get a workable model of the atmosphere. It should be noted that this model is only
valid for flight conditions in very specific circumstances. The Delft model simplifies the
atmospheric turbulence to a two-dimensional sinus-shaped wind-field, whereas Etkin’s Four
Point Aircraft Model sees turbulence as a sinusoidal wave of shearing motion. In this
report a description of the Four Point Aircraft Model according to Ref. (Etkin, 1980) will
be presented for both the symmetrical and asymmetrical equations of motion. First of all,
the relevant mathematical definitions and assumptions will be summarized in the following
sections. This report investigates both the Delft University of Technology (DUT) and Four
Point Aircraft (FPA) model methods and will discuss the differences.

1.1 A General Statistical Description

Atmospheric turbulence is a random process which describes the chaotic motion of the air.
The random velocity vector u of the air is a function of position r = (z;, zz,z3)T and time
t. The wind velocity vector has three components

Ug = ug(t,$1,$2,$3) (11)
Vg = Ug(t,$1,$2,2:3)
wy, = wg(t,xl,l'g,l‘:;) (13

In general we can write the gust vector as:

u(r,t) = (u1, uz,us)’ (1.4)
Note: the velocity vector u is random, but will not be overstriped to simplify notations. The
. velocity vector, as in equation (1.4), describes a multivariate (u1, us, us) and multivariable
(z1,z2, Z3,t) process.



2 Introduction

In the following we will be dealing with the relative, or separation, time 7 instead of absolute
times ¢ and with the relative, or separation, distance vector £ = (¢1,£2,£3)7 instead of the
absolute positions r = (21, 22, z3)T.

The relevant correlation and spectrum functions can now be defined. The relevant defini-
tions are summarized in the following.

The general matrix of correlation functions is:

Cﬂ(z,t;z+§,t+r)=E{y.(z,t)-u(z+§,t+f)}= (1.5)

Ejui(n,t) - ma(z+§t+1)p E ur(r,t) - ua(r+§,t+7)p E ur(r,t) - us(z+ €, 4+ 7)
= | E{us(z,t) - m(z+&t+7)) Eun(r,t)-ux(z+§t4+7) Equa(z,t)-us(z+§t+7)
E{ua(r,t) - ui(z+ &t +7)t Eus(n,t)-u(r+&t+7)p Equs(nt) us(z+§t+7)

This correlation function, equation (1.5), is a 3x3 matrix where each element is an ensemble
average of the product of two velocity components separated both in space and time.
Equation (1.5) describes an unstationary flow, whose statistics changes with position and
time. However, if the statistical properties do not vary considerably in time, the random
process can be assumed to be stationary and only the difference in time, as described by the
variable 7, is important. Furthermore, for many applications it is acceptable to model the
process as homogeneous, with no spatial variation of statistics, therefore only the difference
in space ¢ is important. The covariance matrix, Cuu, becomes a function of time and space
displacements only:

Cul6,7) = E{u(r,t) u(r+ &t +7)} (1.6)

Fourier transformation of the covariance matrix Cyy (€, 7) yields the spectral density matrix
which is also a 3x3 matrix and is independent of absolute time and space,

400 p4o0 pto0  pto0 ;
Sw(ﬂ’“’)=/_w /_°° /_w  Cu(ntir+gt+r) e Q&) dg, de, des dr (1.7)

with Q and w respectively the wave-number vector = (Q,9,,Q.)T and circular fre-
quency.

An approximation almost universally accepted, see Ref. (Etkin, 1980), and quite valid for
almost all cases of flight in a turbulent atmosphere is that temporal changes in the velocity
field are negligible compared with the apparent temporal changes felt by the vehicle as it
passes through spatial gradients. This implies that in flight at speed V on the X-axis (e.g.
the stability frame of reference’s X-axis), in which the actual perceived rate of change is,




1.2 Correlation Functions and the Integral Scale of Turbulence 3

D 0 0
D= B + VE (1.8)
the partial time derivative can be neglected. This is known as the frozen field approxima-
tion. The approximation may not be valid when the airspeed V is very small in which case
the first term may become dominant. It is generally assumed that the frozen field theory
is valid when the following condition is satisfied,

2

e <
Q| =

The frozen field assumption results in time-independent power spectral densities. This
assumption is not valid for aircraft landing in windshear conditions, V/STOL aircraft and
helicopters in hover.

1.2 Correlation Functions and the Integral Scale of
Turbulence

The correlation matrix Cyy(€), and the power spectral density matrix Sy, (§2), are defined
by:

Cu(§) = E{u(r) - u(r + &)} (1.9)

/ / +w/ Cuu(€) e7(24) de; dg; de (1.10)

At this point the correlation matrix in analytical form, as defined by Batchelor, can be
introduced,

Cij(€) = o*

(f(ﬁ) —9(§)
52

&k + 9(5)5-'3') (1.11)

with, |
E=8+6+8

and,

é = (€1a€2,€3)T

The correlation function, equation (1.11) holds for any model of homogeneous isotropic
turbulence and is based on the fundamental correlation functions f(¢) and g(€). The




4 ' ‘ Introduction

correlation between the velocities parallel to a connecting line between two points is termed
the ’longitudinal’ correlation f(£). The correlation between velocities normal to a line
connecting the two points is termed the ’lateral’ correlation g(¢). The functions f({) and
g(¢) can be found theoretically. Von Karman has derived these fundamental correlation
functions by Fourier transforming his empirically found spectral densities.

Von Karman correlation functions:

longitudinal:
TO=rg (1.339Lg) Ky (1.339Lg) (1.12)
lateral:
9 I'(3) (1-339Lg> [K% (1.339Ly) T2 (1.3391;9) Ky (1_339L9>} (1.13)
with,

T(z) = /0 Tl et dt (1:14)

which may be approximated by using the following series expansion,

: i TL' z-1
[(z) = lim, 2(z4+ 124+ 2)...(z+n—-1) "
K denotes the modified Bessel function of the second kind,
/2
Kn(z) = PEm——— [I-m(2) = Im(2)] (1.15)

In this expression, I, denotes the modified Bessel function of the first kind of order m,

In(z) = 37" Jm(j2)

where I,,, is the standard Bessel function of the first kind, which may be approximated by,

Im(2) = (;)m i ! P(fn—i):c +1) (9%

k=0

s

5
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Dryden has used a different approach and has fitted the correlation functions to windtunnel
data. The Dryden correlation functions are,

Dryden correlation functions:

longitudinal:
fe)=et (1.16)

lateral:

o) =% (1- 5+ (117)

The longitudinal turbulence scale L, and lateral scale L) are defined by the longitudinal
and lateral correlation functions f(¢) and g(¢),

longitudinalscale : L, = / - f(€) d¢ ' (1.18)
0 .
lateralscale : L) = /oo g(é) d¢ (1.19)
, 0
Keep in mind that for isotropic turbulence, that is,
o =u2=0v2=uw? (1.20)
or,
=g? =g =g°
ug vg wg
the longitudinal scale L, equals twice the lateral scale L,
L, =2L (1.21)

The turbulence model can now completely be described by its scale length L, and by its

variance o2. :

In this report the atmospheric turbulence is considered to be stationary, isotropic, homo-
geneous with a Gaussian distribution. The Dryden correlation functions and spectra will
be used further in this report for their rational expressions. For the frequency range where
the aircraft responses are calculated, the Dryden spectra and the von Karman spectra show
good resemblance. Only for higher frequencies the von Karman spectra will give a better fit
for the spectra of atmospheric turbulence. For rigid aircraft, however, the Dryden spectra
will produce acceptable results. If flexible aircraft, or structural motions are considered, it
is preferred to use the von Karman spectra since for higher frequencies the von Karman
spectra resemble experimental data more accurately.
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Chapter 2

Delft University of Technology
Models

2.1 Introduction

When modelling turbulence inputs a distinction can be made between symmetrical and
asymmetrical turbulence inputs. Symmetrical gust velocities will give rise to symmetri-
cal aircraft responses where as asymmetrical turbulence will cause asymmetrical aircraft
responses, thus assuming small disturbance theory and therefore decoupling of symmetric
and asymmetric aircraft motions is allowed. In this chapter a distinction will be made
between symmetrical and asymmetrical aircraft responses. The first can be regarded
as a one-dimensional process, the second as a two-dimensional process. First, a two-
dimensional velocity field, see figure 2.1, will be described which can easily be reduced to
a one-dimensional velocity field, see figure 2.2.

2.2 Turbulence Modelling

Two-dimensional stochastic turbulence can be considered as a superposition of infinitely
many elementary fields of flow, see Ref. (Gerlach & Baarspul, 1968). In each of these
elementary fields, the gust velocity varies sinusoidally along the X.-axis as well as along
the Y,-axis. The two-dimensional velocity-fields satisfy the expressions,

Ug(z, y) = ugma:Re {ej(9z$+9yy)}
U5(2,4) = Vgpe, Re /74 M0} (2.1)
wg(m) y) = wgm.a:Re {ej(QI=+ny)}

with u,, v, and w, respectively the horizontal, lateral and vertical gust components in

the X.,Y., Z. frame of reference. The one-dimensional fields can be produced from the
two-dimensional turbulence fields if §2,, is set equal to 0. Equation (2.1) is then reduced to,
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ug(z) = ugma:Re{ej(n”’)}
U5(2) = Vppe, Re {2} (2.2)
wy(z) = wgm,Re{ej(n”)}

Equation (2.2) is used for the calculation of symmetrical gust inputs. In the following,

another interpretation is given for the expressions in equation (2.1). As an example, the
expression for u, in equation (2.1) is therefore written as,

Uy = Ug,..Re {ej(n"+n”y)}
= u,,...Re{(cosQz + j sinQ;z) (cosQyy + 7 sinQlyy)}

= U, (c0sQz cosQyy — sinQzz sinQlyy)

= Ug (2}, y) - ugz(za y) (23)

According to this expression the elementary two-dimensional turbulence field can be con-
sidered as the superposition of two separate fields in each of which the gust velocity varies
sinusoidally in the X,- as well as in the Y,-direction, see figures 2.1 and 2.3,

Ug (2,Y) = Ugpe. €08z coslyy
(2.4)

Ug(2,Y) = Ugmas SInSlT s1nQyy

The characteristic difference between the two fields u,, (z,y) and ug,(z,y) is that the first is
symmetric with respect to the vertical O, X.Z.-plane and the second is antisymmetric with
respect to this plane. Quite similarly, the v,- and w,-fields can be separated in symmetric
and antisymmetric parts,

Vg, (Z,Y) = Vgna.c050:z coslyy (antisymmetric)

) . . : (2.5)
Vg, (Z,¥) = Vgpa.sinlez sinllyy (symmetric)
We, (2,Y) = Wyna,c088dT cosQyy (symmetric) (2.6)
W, (2,Y) = Wona,Stnflez sinflyy (antisymmetric) '

The expressions (2.1) permit two apparently different interpretations of the way in which
the gust velocity varies in the elementary field of flow. In order to gain more insight
in the construction of the elementary flow field, the figures 2.1 and 2.3 are numerically
superimposed. The resulting image has been plotted in figure 2.4.

In nominally steady straight flight, the aircraft’s plane of symmetry usually coincides with
the O.X.Z.-plane. As a consequence the symmetric parts u,, (z,y), vg,(z,y) and wy, (z,y)
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of the elementary fields can only cause symmetric deviations from steady flight. For sym-
metrical motions Q, is set to zero. According to equation (2.5), the vg,(z,y)-field can be
omitted when considering symmetrical aircraft responses. Only the u, and w, turbulence
fields will be considered for symmetrical aircraft responses. The three antisymmetric parts
Ug, (z,y), v4(z,y) and wy,(z,y) of the elementary turbulence fields will be used for the
calculation of the asymmetrical aircraft responses.

2.2.1 Symmetrical Turbulence Modelling

The aerodynamic forces and moment acting on the aircraft due to symmetrical turbulence
are written as X, Z and M to which the subscript g, which stands for gust, is added:
Xy , Zy and M, . These three variables are functions of the gust velocities u; and w,
or their non-dimensional equivalents ¢, and a, and the time derivatives of them. The
gust velocities affecting symmetrical aircraft motions have been derived in the foregoing

(Qy = 0),

Ug(.'IJ, y) = ugmaz Cos Qz’z (2 7)
wg (xi y) = wgmaz Cos sz
or, using their non-dimensional equivalents,
. U
B = 2
|4
w
a, = =2
|4

For calculating the aerodynamic forces and moment caused by “symmetrical gusts” we can
express, for example, X, as a series expansion,

0X 80X, 4, 0X, 14,
x, = 9%, A9 UgC | OFg UsC | 2.8
© T Bg, TGV TR v | 29
ana 0Xy &g | 0X, &2
Oy ° 9SLV 3.5_";;3 2

+

1 oo o=
+ o0 (2nd order terms with respect to i, ay, E‘%E, 9‘%—, . ) +
1
+ 3 (CEE Y4 etc.

Only if the expansion is extended towards an infinite number of derivatives this expres-
sion can be regarded as an exact description of the aerodynamic force due to turbulence.
However, due to the assumption that @, and o, remain sufficiently small (i.e. of the same
order of magnitude as 4 and o) only the linear terms in the above series expansion are

maintained. Also the derivatives with respect to %%E—Q, %%3, ... are omitted. The resulting
expression for X, then becomes,

0%, , 0X, 4y | 0X, BX, &,¢

— 79 99~ — = .
Xs = 38, Y a%g/_fV_*-aagag.*—aﬁ‘gﬁV (29)

I
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The aerodynamic forces X;, Z, and moment M, may be expressed in non-dimensional
coeflicients,

X,
“x = Ly
Z
Cz, = —%pVgS (2.10)
Mg
Cme = Ty2g
Le., the expression for Cx, reads,
Cr = L o, 1 X, Uyt
s 1pV2S 0, to 2pV2S ol V
10X, 1  0X, &,
T TV B0, T V5 558 V 21
or, in an abbreviated notation,
& G,
Cx, —Cxugug-i-Cxug—V—+Cx°gag+0xag Vv (2.12)
In a similar way Cz, and Cr,, can be written as,
7 &,C
Cz, CZu, Ug + Czug-v- + Czagag + Czug % (2.13)
Crmy = Coma, g + cm,,g“Tg/f + Cra, % + Crma, V° (2.14)

The partial derivatives, Cx, , Cx,,, etc. will be called “gust derivatives”. The gust
derivatives Cx, , Cz,, and Cn,, are usually neglected. All other gust derivatives can be
expressed in terms of stability derivatives. The steady gust derivatives Cx,,, Cz,, and
Cm., are equal to the steady stability derivatives Cx,, Cz, and Cr,. Furthermore, the
steady gust derivatives Cx,,, Cz,, and Cp.,, are equal to the steady stability derivatives
Cx., Cz, and C,,,. The unsteady gust derivatives Cxag CZag and Cmag are equal to
respectively Cx, — Cxq, Cz, — Cz, and Cry — Cry,-

2.2.2 Asymmetrical Turbulence Modelling

As mentioned earlier the asymmetrical turbulence inputs are ug,(z,y), vy, (z,y) and wy,(z,y).

For simplicity they will be written as uy, v, and wy. Or using their non-dimensional equiv-
alents,
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U
r o= 8
ug—V
Vg
,Bg—‘_/'
w
ag——g'
1%

The aerodynamic sideforce Cy;, rolling moment C;, and yawing moment C,, may be written
as,

. 3,b

Cy, = Cyug Ug + Cypg By + Cysgé‘g;' + Cyag Qg
. 3,b

C, = Clugug + CIﬁgﬂg + C’Bg%}— + Czagag : (2.15)
. 3,b

Coy = Cuyiy + Cug By + Cny B2 4 Ci

The above parameters Cy,,, Cy,,, etc. will also be called gust derivatives. These partial
derivatives will be discussed next.

Aerodynamic force and moments due to gust velocities parallel to
the longitudinal axis (u,)

For calculating the aerodynamic force and moments caused by the antisymmetric part of
the elementary u,-field, equation (2.4), only u,, has to be considered here,

ng(z,y) = ugma: Sinﬂ?z Sinﬂyy

Next, the longitudinal gust velocity in the O.X.Z.-plane will be referred to simply as u,.
Also the index 2 of ug,(z,y) will be omitted, so,

ug(z,y) = uy sin Qyy (2.16)

with
Uy = Ugp,, SID T

Due to the variations of uy(z,y) in the Y,-direction, a rolling and a yawing moment will
act on the aircraft, see also figure 2.5. Only the contribution of the wing to the rolling
moment, Cy,, and the yawing moment, C,, will be taken into account. The sideforce, Cy,,
due to this turbulence velocity u,(z,y) is supposed to be negligible.

The calculation of the rolling moment acting on the wing, is based on the assumption that
the additional lift due to this turbulence component can be computed by means of the

| il o sl ioss
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strip-theory. A chordwise strip of the wing of width dy at a distance y from the plane of
symmetry contributes to the rolling moment, see figure 2.5,

dL, = —q %p{[V + ug(z,y)) - V2} cydy
= —q -;-p {2ug(:c, y)V + (ug(:z:,y))z} cydy (2.17)
assuming (uy(z,y))? ~ 0 and using equation (2.16), equation (2.17) becomes,
dL, = —pV ug,,, sinfl:z cic sinflyy y dy (2.18)

Consequently the total rolling moment due to the u,-field is,
&
Ly, = -2pV u, /2 cic sinflyy y dy (2.19)
0

This rolling moment can be expressed by means of a non-dimensional coefficient Cj,

Ly 4y 2 .
G, = V75 = S8V Jo cc sinflyy y dy (2.20)

Next the non-dimensional rolling moment coefficient Ci,, is written by using a newly in-
troduced gust derivative Cj, (€ %,

b .
G, = Cu, (Qy ‘2‘) Ug (2.21)
where,
4, = 2
%
Hence,
b 4 3 .
Chay (S -2—) = —--S—b/(; cc sinflyy y dy (2.22)

For sufficiently small values of Qy%, i.e. for long wavelengths of uy(z,y) in the Y,-direction,
the velocity u,(z,y) varies approximately linearly along the wingspan. For these small
values of Qy%, ug(z,y) can be approximated, by replacing sinflyy by Qy,

ug(x,y) = ugflyy (2'23)

This velocity distribution corresponds to the additional velocity due to a constant yawing

velocity r,
Au = —ry (2.24)

When further elaborating the expression for Cj, , use is made of this similarity. The rolling
moment acting on the wing due to a constant yawing velocity r can also be calculated by

5t
L
o
&
B

|
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means of the strip-theory. An element of the wing of width dy at a distance y from the
plane of symmetry contributes to the rolling moment,

1
dL = ¢ 4 2V ry cy dy (2.25)
The total rolling moment on the wing then is,
b
_ : 2 5 _ rbl oo
L= 2pV1"/0 acy”dy =C,, 57 2pV Sb (2.26)
The contribution of the wing to the stability derivative C), is accordingly,
8 (3 '
Crw = 5 /0 cey® dy | (2.27)
This expression for Cj,, can be related to C,, expressed by equation (2.22),
b
b b f2 n§) d
Cray(y3) = =G, 3B & (2.28)
Jo ecy? dy
We will now introduce the non-dimensional function h(€,2),
b
b b3 )
h(ﬂy§) = —2-f° c'i siflyy y dy (2.29)
& acy?dy
Using equation (2.29), Ci,, can be written as, '
b b
Cry (U35) = =Cur, h(8y35) (2.30)

It may be assumed, that the relation (2.30) between Cj, and Cj,, holds true with some
accuracy, also if C;, is not obtained by means of the strip-theory.

In an identical manner the yawing moment acting on the wing due to the longitudinal gust
velocity uy(z,y) is derived. This moment can be written as,

N, = Cn, 3pV?Sb (2.31)
where, ,
Cny = Cnu, (y3) g (2.32)
and,
b b
Gy (U3) = =Conry A(S3) (2.33)

In the latter expression the function k(€2,2) again is represented by equation (2.29).

RS R

I st et
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Aerodynamic force and moments due to gust velocities parallel to
the lateral axis (5,)

When considering the asymmetric force and moments exerted on the aircraft by the vg-
field, only the antisymmetric part of this flowfield is of interest. Omitting the index 1, this

part is presented by,
vg(Z,Y) = Vgpna, 08z cosyy

The variation of v, along the wingspan will be neglected. This amounts to the assumption
cos§lyy = 1.
Then v, is written as,
Vg = Ugpas €082 (2.34)
The gust velocity v, causes a gust angle of sideslip S,,
Yg

By = v (2.35)

which is quite analogous to the gust angle of attack. The gust angle of sideslip causes an
aerodynamic force and moments which are computed in the same way as the forces and
moments due to the gust angle of attack for the symmetrical case. The results of such
calculations are,

Cy, = (Cvs, +Cy,,Ds) B, (2.36)
ng = (Czﬁg + C'iang) ,Bg (2.37)
Cny = (Cug, +Cny Ds) Bs (2.38)

The gust derivatives Cy,_ , Ci,, and Cn,, can be expressed entirely in the stability deriva-
tives Cy,, Ci,, Cn, and are equal to them. Analogous to the corresponding expressions for
the symmetric gust derivative Cn,,, Cybg is written as,

1
Cysg = Cy‘é + ECy, (2.39)

It should be remarked, that only the contribution of the fuselage and the vertical tailplane
to Cy, have to be taken into account, since only these parts of the total Cy, arise as a
result of a local velocity parallel to the Y-axis. Therefore,

Cyﬁg = CY;S C}’ﬁ CYB + %CYT f4v

Cs, = Ci Cy,, = Ci,+3C,, (2.40)
- _ 1

C'"'ﬁg == Cﬂg Cnlég —- Cnﬁ + E nr!+v

When considering aircraft having a straight wing and relatively small tailplane, the deriva-
tives Cyé, C 5 and C, , may usually be neglected.
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Aerodynamic force and moments due to gust velocities paiallel to
the vertical axis (a,)

When considering the asymmetric force and moments exerted on the aircraft by the w,-
field, only the antisymmetric part of this field is of interest. Omitting the index 2 this part
is represented by,

we(z,y) = wy,,,. sinflzz sinQyy

This wy-field causes a gust angle of attack ay,

ay(z,y) = w (2.41)

which varies in the direction of flight as well as along the wingspan. Denoting the gust
angle of attack in the O.X.Z,-plane by ay,

Qg = Qg SINST (2.42)

it follows,
ag(z,y) = ay sinlyy (2.43)

The calculation of the rolling and yawing moments due to the ay-field has a great similarity
to the corresponding calculation for the 4,-field. The rolling moment can be written as,

L,=0, %pVZSb (2.44)
where, ;
Ci, = Ci,, (Qy’z') Qg (2.45)
and likewise the coefficient for the yawing moment is,
| b
Cng = Ch,, (Qyi) Qy (2.46)

For sufficiently small values of Q,, i.e. for long wavelengths in the Y,-direction, the distri-
bution of the gust angle of attack along the span of the wing can again be approximated
by replacing sinQyy by Q,y, ‘
' ag(z,y) = oy yy (2.47)
This distribution of the angle of attack corresponds to the additional angle of attack due

to a constant rolling velocity p,

-2
Aa = 7Y (2.48)

As a consequence, for sufficient small values of Qy the gust derivatives C’lagh(Qy%) and
Cnagh(ﬂy%) can be expressed in terms of parts of the stability derivatives Ci, and C,,

AR
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contributed by the wing, i.e. Ci,, and Cy,, . After some elaboration, the following results
are obtained,

b : b
Ciay(u3) = iy, H(Ry3) (2.49)
and,
b b
Cnag (Qyi) = Cnpw h(QyE) (2-50)

where the function h(Qy%) has been given previously. For the sake of simplicity the side
force due to a, will be neglected, so,

Cy,, =0

This simplification corresponds to the assumption that Cy, = 0.

2.2.3 Correlation Functions

Symmetrical gust

The correlation functions for the one-dimensional gust field can be written as if one only
regards u, and w, as inputs,
Cuguy(§) = E{ug(0)ug(V7)} - (2.81)
Cuguy(§) = E{wy(0)wy(V)} (2.52)

For calculation of the correlations of the one-dimensional gust field we refer to the intro-
duction where in equation (1.11) the following expression for the fundamental correlation

function is given by,
i) = o (L7281 a0, (2.59)

The correlation functions C;; can be calculated using the following longitudinal and lateral
Dryden correlation functions,

f6) = %
9(é) % (1 - 5%9)

where 6 = \/612 + 622 + 532 ) with é = (61: 523 63)T = (VT, 0; O)T
The one-dimensional correlation functions become

Cuguy(€) = ol e T

_yr Vr
Cugu,(§) = o2 e Ts (1 - E)
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Asymmetrical gust

The autocorrelation functions for the two-dimensional case can be calculated from the
following expressions if one assumes that the inputs u,, v, and w, are uncorrelated,

Cug‘“g = E{ug((), 0) u9($7y)}
C"g”y = E{Ug(()’O) vg(m’y)} (2.54)
Cwywy = E{wy(0,0) wy(z,y)}

The autocorrelation functions expressed in equation (2.54) are therefore the diagonal ele-
ments of the covariance matrix of atmospheric turbulence, Cys, equation (1.5) where the
off-diagonal elements all equal zero. The three autocovariance functions will be expressed
in the two basic one-dimensional autocovariance functions f(r) and g(r) as has been done
for the one-dimensional case which was discussed before.

Considering an arbitrary point P in the O.X.Y.-plane, the velocities v, and v, in this
plane can be resolved in components along and perpendicular to O, P,

u, = Uy sina + u cosa = uy ; + Uy % (2.55)
v, = v cosa+ vy stna = v, g + vz i:: (2.56)
The expression for C,,., then reads,
Cups = E{us(0,0) us(e, )} | ()

= B{@0,0) 2 +u0,0Y) () E +un) b}

2

- e (3 +uivnmi (9

+ u(0,0) up(z,y) (i—f) %“2(0’0) u(@y) (:_32/)}

Using these expressions for f(r) and g(r), the two-dimensional autocovariance functions
now become,

C’UQ‘UQ (
CUg‘Ug (
C‘UIQWQ (
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2.2.4 Input Power Spectral Density Functions

The Dryden spectra are given by
L 1

Saa,(w) = 262V9m (2.59)

Sogp,(w) = 02%1+3( Vz (2.60)
1+ ()T

(2.61)

o) = a1 3EsY) (2.62)

" ()]

The spectral density function matrix can be obtained by applying the Fourier transform
to the elements of the covariance matrix. The off-diagonal elements (cross power spectral
densities) of the power spectral density matrix of atmospheric turbulence velocities are
equal to zero, since the cross correlations are assumed to equal zero so the only three
two-dimensional power spectral density functions of interest are,

S“g“g (Q-‘EL!J’ Qng)
Sugvg (QoLy, Uy Ly) (2.63)
S"-Ugwg (Qng, Q!ILQ)

These power spectral density functions are obtained by applying the Fourier transform for
two variables to the two-dimensional autocovariance functions, see equation (2.58).

As an extension to the conventional expression for the Fourier transform, the expression

for the Fourier transform S(Q.L,,Q,L,) of the covariance function for two variables Li,

and # reads,
g

+o0  ptoo ,
S(Q.Ly, 0 L,) = / / C (Z"‘;Ll) e~3(R=2+0y3) dLidLi (2.64)
—-00 J—00 g

9 g

Since the autocovariance functions C (fg—, -g’;) are all strictly even functions, see Ref. (Mul-
der & Vaart, 1993), we can write this as, equation (2.64),

400 p4o00
S(QzLs, QL) = 4/0 /0 C (-Z:— -L—-> cos;z cosflyy d%d—g—
9

The resulting three power spectra, equation (2.63) are obtained by substituting the auto-
covariance functions, equations (2.58),

+o00  ptoo o 2 _r 1 2
SenlOett) = [ [T {8 (245 (-57) (2]
. g

s s [ i [ ]

Sl ) i i

R AL IR

LH
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z .,y
cosQ .z cos§lyy d—d— 2.65
Yy Lg Lg ( )
+o0o oo _r 2 _.r 1 r o\ 2
— 2 5 (Y (12" (2
Sugvg(QzLg, QyLy) 4/0 /0 Ty {e 9 (r) +e Is <1 2Lg> (r) }
z,Y
cosQlz cosflyy d—d-— 2.66
vy Lg‘ Lg ( )
too  ptoo —r 1r
Swgwg(Qng,ﬂng) = 4A /(; . 0’,_2”96 Lg (1 -'-2-2;)
c0s§,z cosflyy dLigd_I% (2.67)
The above integrals can all be expressed in closed form. The results are,

1+ Q202 4+ 40212
Supey QL QL,) = mo?——=a T (2.68)

(1+02L2 +Qz2L2)

14+402L0% + Q212
Supey(QulyyQyLy) = mod ———=20T Ty (2.69)

(1 + 922 + 95L9)

Q202+ Q212
Swyw,(QzLlg, U Lg) = 3mol g v 9 2 (2.70)

Y (140202 + 0212)

There is a close relation between the above two-dimensional power spectral densities and
the corresponding one-dimensional spectral density functions used to compute the sym-
metric motion of an aircraft. The magnitude of a one-dimensional spectral density, i.e.
Sugu, at @ certain value of {;L, can be considered to express the contribution to the to-
tal power contained in the fluctuations of u, at this particular frequency, for a frequency
range A(Q;L,) = 1. In the two-dimensional spectral density function Sy, u,(QsLg, QyLg),
at the Q,L, considered, the same contribution to the power is provided by all frequencies
Q, L, together. The one-dimensional spectrum does not distinguish the value of Ly, at
which the power is contributed. As a consequence the relation between S, , (Q:Ly) and

Suguy(QaLy, QyLy) is,
: 1
Stpus(eLe) = = [ Supuy(QcLs, U Ly) d( L) (2.1)

Corresponding relations hold true for the power spectral density functions of v, and wj.
If the integration of equation (2.71) is carried out, the familiar one-dimensional spectral
density function results,

S (QuL,) = 202 ——

UgUg Ug 1 + QZ_LE | (2-72)
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which is indeed identical to the relevant one-dimensional Dryden power spectrum, equation
(2.59). Similar results are obtained for the power spectral density functions of v, and wy.

2.3 Aircraft Modelling

2.3.1 Symmetrical Aircraft Motions

In this section the equations of motion for a rigid aircraft in a field of atmospheric turbu-
lence will be presented. The equations of motion for a rigid aircraft in smooth atmospheric
conditions have been derived in Ref. (Gerlach, 1981). The general aerodynamic forces and
moment due to atmospheric turbulence have been derived in the previous sections. As a
recapitulation the general aerodynamic forces and moment are in the frequency domain,

C . C
Cxy(w) = () dy(w) + —2(w) og(w) (2.73)
Ug Qyq
C . C
Cz,(w) = —2(w)dy(w) + —22(w) ay(w) (2.74)
Ug Qg
Cmg A~ Cmg
Cmg(w) = —2(w) dg(w) + —2(w) ap(w) (2.75)
Ty oy
We have assumed, however, the aerodynamic frequency response functions may be de-
scribed by,
. Jw tg(w)e Jw ag(w)e
ng(w) = C’xugug(w) + Cxﬁg——v— + Cxagag(w) + Cxég-——v—— (2.76)
. jw tgy(w)c . jw ag(w)c
Cr,w) = Cayigw) +Cz, 225 4 0y o) 405, 2288 o)
Crg©) = oy ig0) + Oy 228 1 6 () + Cmégﬂ"‘;,i’lf (2.78)
or equivalently in the time domain, assuming constant parameters,
) i€ (g€
ng Cxugug + Cx,-‘g.—‘gT + Cxaga_,, -+ Cxég—‘-'j—- (2.79)
R UyC a,c
ng Czug ug + CZag -.%- + Czag oy + Cz&g—é— (2.80)
. UyC GyC
Com, Crna, thg + C’mﬁg% + Crmay g + Cm&g—;— (2.81)

Remember that the unsteady gust derivatives with respect to 3{}5 are usually set to zero.

The equations of motion for a rigid aircraft have been derived in Refs. (Gerlach & Baar-
spul, 1968) and (Etkin, 1972). These equations are valid for small deviations from steady
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horizontal flight. The equations are extended for flight in a turbulent atmosphere and can

be written as follows (with D, = 157%),

Cx, — 2u.D. Cx. Cz, 0
Cz., Cz, +(Cz, —2p) D. —Cx, 2uc+ Cz,
0 0 —D. 1
Cr. Cro + Crmy Do 0 Ch, — 2uK2D,
Cx,, 0 Cx,, 0 Qg
_| Cz,, Cz, Cz, Cz, D.i,
o 0o 0 0 o

Crmu, Cmi, Cma, Cma, | L Dety

The general state-space representation,

z=Az+Bu

can be obtained by rearranging equation (2.83), see Ref. (Broek & Brandt,

final result, in abbreviated notation, is,

T, 2o ¢ 0
Zy 2o 26 Zg
0 0 0 =

m, Mg Mg My

<3 - R
|
o<
<Ig >R =

The definition of these symbols are recapitulated in table 2.1.

2.3.2 Asymmetrical Aircraft Motions

The non-dimensional aerodynamic force and moments due to asymmetric
turbulence are written as,

. 3,b
Cyg = Cyug ug + Cypg Bg + CYBg -'%i,— + Cyagag
C, = C,t,+C ng
, = lugug + Iﬁg,Bg + CBF—V- + Clagag
. 3,b
Cng = Cnug Uy + Cn,gg ;Hg + Cnég% + Cnagag

<R

(2.82)
(2.83)
1984). The
U
iy
%
A
gt
%
(2.84)
atmospheric

Or, with the definition of the gust derivatives, the final expressions describing the asymmet-
ric aerodynamic force and moments, acting on the aircraft due to atmospheric turbulence,

RPNl

s oo

s

T

e

et

101 i e s st 3 o A i o e
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can now be collected,

3,b
Cyg = Cyﬁﬂg + Cyég%- (2.85)
. 35b
Cy = =Cuyig + Cify + Gy, 22 4 G (2.86)
3,b
Cry = —Cryy g+ CngBy+ Chny, % + Ch,, 2 (2.87)

As discussed in the foregoing, the contributions of the longitudinal and vertical gust veloc-
ities to Cj, and Ch,, in the above expressions hold true only if they are used in conjunction
with the following one-dimensional estimators of the power spectral densities of %, and «,

b, 1+02L2 44 Q2L
5/2

Iiya,(QeLg, B) = 03 /°° K39, d(Q,L,) (2.88)

)
0 2" (140212 + Q2L2)
approximated by,
1473 QL2
1+ 72 0202) (147 Q2L2)

Is,s,(QL,, B) = I,(0, B) ( (2.89)

and,
% b 0212 4 Q212
Ipo,(Q:L,,B) =302 R (0, =) 2ot N d(Q,L,) (2.90)
9% g g Vg 5/2 y-e
0 (1+ 0202 +0212)

approximated by,
1+72 QL2

Iagag(Qng’ B) = Iag(O,B) (]. + 7'42 Q?;Lg) (1 + 7'52 Q?;L.g)

(2.91)

In the above equations the parameter B equals -5%9-, the fraction of the aircraft’s wingspan
to the characteristic gust length. The power spectral density of 3, is,

1+302L2

(1+02L2)° (252

Sﬁgﬁg (Q-'f-‘LQ) = Ulzig

The values of I3,(0, B) and 71, 73, 73 in the approximated power spectral density function
for the longitudinal gust velocity and of I,,(0, B) and 74, 75, 7 in the approximated power
spectral density function of the vertical gust velocity are represented as functions of B
in tables 2.3, 2.4 and 2.5. In the following discussion, the simplifying but not essential
assumption is made, that the aircraft may be considered as a rigid body. The asymmetric
motions of the aircraft, considered as small deviations from steady, symmetric and level
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flight are described by the following four linear differential equations, Refs. (Etkin, 1972)
and (Gerlach & Baarspul, 1968) (with D, = -{’7%@1),

Cy, ~2mDy  CL Cy, Cy, — 4p B
0 1D, 1 0 o | _
Cl, 0 Ci, — 4uK3Dy  Ci, +4pueKxzDs ‘2?{7 -
Crg 0 Chn,+4mKxzDy Cn, —4mK5Ds ria
0 Cyﬁ CYég 0 i
0 0 0 0 8,
() G, G, Cu, @) || Dif, (2.93)
Cn,,g (Qy%) Cng Cnt C‘nag (Qy%) Clg

If these equations of motion are to be used in conjunction with the model of random
atmospheric turbulence described in the previous sections, it is possible to modify the
right-hand side of these equations. Provided the power spectral density estimates [

gﬁg
and I,,q, are used for 4, and «y, the equations (2.93) can be written as,

Cy, —2wDy Cp Cy, Cy, — 4 B
0 —%Db 1 0 9~ _
Ci, 0 Ci, —4mK3Dy  Ci, + 4uKxzDy 2|
Crs 0 Cn,+4mKxzDy Cn, —4mK3Dy A
0 C'y‘s Cy‘-; 0 i
o 0 0 0 8,
| -C. C, C, G, || D, (2.94)
~Chr,y, Cry Ca " Ch,., oy

The general state-space representation, can be obtained by rearranging the equations
(2.94), see Ref. (Broek & Brandt, 1984). The final result, in abbreviated notation, is,

B T 0 ys yp O Ug
@ 0 0 2% 0 @ 0 0 0 O Bq
f| = + 2.95
A A M A A SR A
2 ng 0 n, n, 2 Mu, Ty Mg, Tag Qy

The definition of these symbols are recapitulated in table 2.2.
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X Z M
Cm .
C C ESnG. 00 - W
u ch: 14 Cz‘ v mutCz, 2uc=Cgzg.
¢ 2uc g Zu,;—Czd c ZuCKf,
Cm.,.
C c
a Y_C’xu v Cz v ma+Czq 2pc=Cg.
g 2uc € 2uc-Cgz, g 2u.K%
Cxty s
0 KCZQ K —CXu Y_ Xo 2uc—Cgz
€ 2uc € 2uc—Cgz. g 2pcK{
a
2uc+Cyg
A4 Cxq V 26140z, \ 4 Cmq+Crmg 2uc=Cg
q E 2uc g Zuc-Czé g 2ucK§,
Cm
T
6 K Cx5g K Cz&; K CMGG +CZ6e 2#:-02‘.!
¢ T 2pc € 2uc—Cz, 4 2ucK§,
Cm,
U vCixu | ¥ _C2ug Kcm“g +C2ug T Z5
g € 2uc € 2uc~Cz, g 2ucK%
Cm .
—Ta
a, | £ OXag | v_C2aq A4 Omag +Cza, 2ue—Cz,
g € 2ue c 2u¢—Cza g Zuch,
Crm.,;
. L
o, | X Oxag | v_C% v Cmag 24, 2ue=Cz4
91 & 2u € 2uc~Cz, | & 2ucK%

Table 2.1: Symbols appearing in the symmetrical equations of motion’s state-space repre-
sentation of the DUT Model.
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Y L N
ﬂ Kc" 1% ClsK%+Cn5sz v ClpKXZ‘f'cnng(
b 2y b 4#b(K§{K%"K3(z) b 4“5(K§K%_K2XZ)
veo,
4 b 2u, 0 0
N I N
5 Zms bauy(K3K3-K%,) | b 4u(K%K}-K%z)
r | ¥Cxu=tm | v _C,K7+C0n Kxz Y O Kxz+4Cn K
b 2up b 4y K';}K%—Kg(z) b 4ub(K§K§—K§tz)
5 | v | v KitCnsKxz | v i Kxz+Cog, KY
e b 2up b 4uy (K% K%3-K% ;) | b 4u(K%K%-K% ;)
8 v | vCiKst0n; Kxz | v CisKxz+Cns K
r b 2 b auy (K% K3-K% ;) b 4uy( K% K% -K% 5)
" 0 1% CEQK%'*'C"ug Kxz v Clungz-*-CnIlg K%
g b auy (K3 K%3-K%,) | b aus(K3K%L-K% ;)
2 2
g, | v | wleKitonsxz |y Otgg Kx24Cngy Kx
9 b 2up b apy(KYK3-K%;) | b 4m(K%K%-K% ;)
. ) . K2 . (o} : 2
,B Kcyﬁg _‘f_clﬂg Z+cnﬁgKXZ A4 lﬁngz+cn's9 Kx
9 b 2u b auy(KYK%3~K% ;) | b 4m(KYK%-K% ;)
o 0 KC| K%"'cn wKXZ Kcl KXZ+C"PW Kg(
9 5 4#b2K§(K%_K§(zi b 4%?1"3(1\’%—"’3(25

Table 2.2: Symbols appearing in the asymmetrical equations of motion’s state-space rep-

resentation of the DUT Model.
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Table 2.4: 7, 7, and 73 in the approximated power spectral density function of the hori-

B

Iﬁg (OiB)

Uag

Ia,(0,B
96(0 )

ag

0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.125
0.10
0.075
0.0625
0.05
0.03125
0.015625

0.7856621
0.7026423
0.6159092
0.5261885
0.4345357
0.3424367
0.2519903
0.1662091
0.1263831
0.0895637
0.0567340
0.0422104
0.0292262
0.0132418
0.0039835

0.5380229
0.4843205
0.4273037
0.3674375
0.3054225
0.2422765
0.1794823
0.1192077
0.0909742
0.0647137
0.0411580
0.0306902
0.0212969
0.0096887
0.0029280

Table 2.3:

I, (0.B)

and I, (0,B)

2
af‘g

2
o
ag

as a function of B.

B

1

T2

T3

0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.125
0.10
0.075
0.0625
0.05
0.03125
0.015625

0.662562
0.607202
0.544252
0.472419
0.406748
0.346800
0.288690
0.231815
0.202945
0.172928
0.141145
0.124455
0.106813
0.077782
0.048239

2.311377
1.241514
1.016470
0.895606
0.832718
0.788367
0.747955
0.706023
0.682303
0.653908
0.618429
0.596290
0.569551
0.512936
0.423350

2.298718
1.204641
0.949548
0.793271
0.703821
0.642029
0.590821
0.545338
0.522628
0.497035
0.467082
0.448961
0.427748
0.383390
0.312979

zontal gust velocity, as a function of B.
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B T4 Ts Te
0.50 0.480764 | 1.492572 | 1.527124
0.45 0.458294 | 1.332911 | 1.358464
0.40 0.426746 | 1.120000 | 1.140000
0.35 0.386097 | 1.787000 | 0.773000
0.30 0.337007 | 1.589747 | 0.552325
0.25 0.279943 | 0.551119 | 0.482539
0.20 0.218703 | 0.488882 | 0.390730
0.15 0.162684 | 0.440944 | 0.324153
0.125 0.136627 | 0.417279 | 0.296144
0.10 0.111941 | 0.392720 | 0.271229
0.075 0.087681 | 0.365723 | 0.247885
0.0625 0.076006 | 0.351389 | 0.237504
0.05 0.064521 | 0.336211 | 0.227862
0.03125 | 0.047613 | 0.310788 | 0.214478
0.015625 | 0.033226 | 0.283501 | 0.202983

Table 2.5: 74, 7s and 7% in the approximated power spectral density function of the hori-
zontal gust velocity, as a function of B. -
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Chapter 3

Four Point Aircraft Models

3.1 Introduction

In this chapter the Four Point Aircraft (FPA) model will be described. This FPA-model
is a further development of the Linear Field Model. The Linear Field Model is a one point
aircraft model, whereas the FPA-model uses a discretized aircraft on which four points are
located over the aircraft’s configuration. With respect to these four points, the turbulence
inputs will be defined by calculating correlation functions with respect to these points.
From these correlation functions the input Power Spectral Density (PSD) functions of the
gust inputs will be calculated using MATLAB’s Fast Fourier Transform (FFT). In this
manner the resulting aerodynamic forces and moments, induced by atmospheric turbu-
lence, are calculated using normal stability derivatives and the corresponding atmospheric
disturbances’ inputs.

3.2 Turbulence Modelling

3.2.1 Linear Field Models

In the linear field approximation the turbulence inputs to the equations of motion, and
hence the equations of motion themselves, differ from those as developed at DUT. The
gust velocities uy, v, and w, are assumed to be linear functions of the ordinates z, y and
z, but since most aircraft may be assumed to be planar, the gradients in Z-direction can
be neglected. We are now only interested in z and y gradients of the three turbulence
velocities in addition to their values at the mass centre.

The velocity vector of a gust field is a random function of time and space. The wind
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velocity vector W has three components,
. Ug ug(t, z,y,2)
W=|v, | =] vtz y,2) (3.1)
Wy w_q(t,:z:,y,z)
A region is now considered, small enough to represent the turbulent field as a linear function

from the origin. The windvector is considered to be only a function of place (frozen field
analysis). The wind velocity vector can now be written as, see Refs. (Robinson, 1991) and

(Etkin, 1980),

W(r) =Wy + ExT + EoF + @4F (3.2)
with,
___ Ugo
Wo = Vgo (33)
Wgo
ur 0 O
E, = 0 v, O (3.4)
0 w:
0 € ¢
E, = e, 0 € (3.5)
| ¢y €& 0
[ 0 -r4 qu
Wy = TA 0 —pa (3.6)
| —g4 pa O

where W, is the vector of turbulence magnitude at the centre of gravity, E; is the matrix
of axial rate of strain, F, is the matrix of shear rate of strain and @ is the matrix of rigid

body rotation. In the above are,

_ u
W= v ] (3.7)
L wg
[z
T=|y (3.8)
|z
P4 Gu _ %
1 dy gz
[u}=5[8—:—%’-} (3.9)
TA 55:- — 5‘5
dw dv
€x 1 g—g +z§
€& | = ) 5 T 3_" (3.10)
€z 3. T By
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Expanding equation (3.6) the following relation is found,
ugo+%z+g—:y+%z
W= | v+ 52z + 5ty + 522 (3.11)
@go+-g—2m+g—‘;y+%—fz

3.2.2 Gust Gradients

If the turbulence is considered to be constant over the aircraft the terms F,, F; and & can
be neglected. This consideration is called the point approximation and is only valid if the
scale of turbulence is large compared to the dimensions of the aircraft, see figure 3.6.

In the linear field approximation the gust velocities uq4, v, and w, are linear functions of
z, y and 2. Since a conventional aircraft is considered to be planar the only interest lies
with the gust gradients in z— and y—directions. Also the gust velocities ug,, vg, and wy,
at the centre of gravity are not considered at this moment. Only the spatial rate of change
of atmospheric disturbances is considered.

The gust velocities are written as,

Ou Ou
ug = a—: z+ a_yg (3.12)
0 7]
vg=£z+-§;ﬁy (3.13)
_ Owy Ow, :
Wy = Fz_ z+ —a—y— (3.14)

Of these six gradients, two of them (% and %9-) represent strains with velocity fields
which have small effect on the longitudinal aerodynamics and none at all on the lateral
aerodynamics. The gradient du,/0z represents the difference in u, along its longitudinal
axis. This gust penetration effect for u, will be neglected, as has been done in the DUT-
model. This because of the low-frequent buildup of aerodynamic forces and moment due
to turbulence in “u,” direction (phugoid mode excitation).

The gradient dv,/0y represents the difference in v, along its lateral axis and has small
effect on longitudinal and lateral aerodynamics, and will also be neglected.

Thus, four gust gradients remain: du,/8y, Ov,/0z, Ow,/0z and Jw,/dy.

Considering a planar airplane, see figure 3.1, we see that the gust downwash at coordinate
(z,y) is equal to equation (3.14). However, if the vehicle is pitching and rolling, the
contribution of its rates of rotation to the wing’s normal velocity at the same coordinate
(z,y) is, see figure 3.2, ‘



32 Four Point Aircraft Models

Wuingnermat (1Y) = PY — 4T (3.15)

with p and ¢ the respective rates of rotation. Thus, the wing boundary conditions (normal
relative wind w, — Wying,,,m.) Produced by equations (3.14) and (3.15) are identical if,

- 9w 0w

and the wings pressure distributions will be the same whether it is rotating or exposed to
a linear gust gradient. For this reason we can write,

Ow, _ Ou,
Py = By ) 9 = — Oz

and treat the net effective pitch and roll rates (insofar as aerodynamic forces and moments
are concerned) as (¢ — g;) and (p — p;). Therefore, the aerodynamic forces and moments
induced by these gust gradients may be written as (in non dimensional form, assuming
small disturbance theory and, hence, decoupling of symmetric and asymmetric aircraft
motions),

(3.16)

Cx, = Cx,, % (3.17)

Cz,=Cz, % (3.18)

Crmy = Crey 2 (3.19)
and,

Cy, = Cy,, 12’9—; (3.20)

c, =G, ‘;’L; (3.21)

Cpy = Cr, ’2’—-‘;/’3 (3.22)

Furthermore, the two remaining gust gradients are, see figure 3.3,

Oug 0%
g oy’ %" Bz

and, therefore, the corresponding force and moment contributions become (again assuming
decoupling of symmetric and asymmetric aircraft motions),

(3.23)

Tlgb ngb

s oy T O gy

Cy, = Cy,, (3.24)
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r1.b re, b
ng = Clrxg 2{7/ + 1,29 2;/, (3.25)
Tlgb T2 b

Chr

.= C’,,,lg 0 +Cn,,, 2‘9/, (3.26)
Note the minus sign in the ¢, and r;, turbulence inputs. The reason for this notation is
made clear in figures 3.2 and 3.3, showing an unswept wing and vertical tail system. The
relative velocity distribution across the wing associated with du,/0y and that associated
with the yaw rate r are identical when r = r;,, and the normal relative velocity at the fin
associated with dv,/0z is the same as that for the yaw rate r when r = r,,.

3.2.3 Four Point Aircraft Models

In respectively the previous chapter and previous section a general statistical description
has been presented for both the DUT model and linear field approximation. One of the
drawbacks of the linear field model is that this model is only valid over a limited frequency
range. Etkin’s four point aircraft model, which overcomes to some extent this drawback
of the linear field approximation, will be introduced. As far as the aircraft models are
concerned, both the four point model and the linear field model are equal. However, when
the input correlation and spectral densities are concerned, they differ for both models.

For small wavelength, e.g. small \;, the linear field approximation exaggerates the sim-
ulated aircraft responses, see figure 3.6 For high turbulence wave lengths the linear field
approximation is quite good, see for example figure 3.5. If the wave length becomes smaller
then, for example, the aircraft’s length or wingspan, from figures 3.5 and 3.6 it can be seen
that the linear field approximation is no longer accurate. In fact, the correlation between
turbulence speeds at the important aerodynamic surfaces and the centre of gravity is lost
when we are using the linear field approximation. Therefore, the linear field approximation
is valid up to a prescribed frequency or wave length. For longitudinal turbulence the wave
length is limited to A\, > 10 I, and for lateral turbulence the wave length is limited to
Ay > 10 b with respectively [, and b equal to the taillength and wingspan. See also for
example figure 3.6 where the effect of aircraft size is demonstrated.

Etkin’s four point aircraft model, (Etkin, 1980), overcomes the above mentioned drawbacks
of the linear field approximation. This four point aircraft model is a better approximation
for lower turbulence wavelengths in both the x- (A;) and y- (},) directions. In this model,
the gust velocities are considered at four points, see figure 3.7, and these four points are
used to define the gust gradients introduced in the previous section. For u, and v, we
use the values at the centre of gravity (u,, and v, ), but because the vertical turbulence
velocity w, is so important, we take it to be the average at the three wing points. By
choosing the points “0”, “1” and “2” on a straight line, as shown in figure 3.7, sweepback
is neglected.
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Contrary to the FPA /Linear-Field-model, the DUT-model accounts for every spectral com-
ponent, see for example :

0212 + QL2
5/2
(1+ 0222+ 0222)"

o . b
.%%MmezﬂaLA P(Qy3)

d(yLy) (3.27)
while for example the one-dimensional input spectrum of the linear field model is limited

by the span of the aircraft, b, and the turbulence scale length, L, see reference (Scholtens,
1989)

1 % 0212 4+ QL2 |
Lagas(Ley B) = 77 [ (0L, LT dQ,L)  (328)
s (1+02L2 + Q2L2)
with b
B=s

The inputs for the Four Point Aircraft Model considered in this section are,

U, = Up

Vg = Vo

wy, = 3 (wo + wy + wy)
w1 — We
w3 — Wo

qg = lh
Uz — U

1'19 = b’
Vo — U3

7‘29 = lv

The subscripts 0, 1, 2 and 3 in the turbulence speeds refer to the points depicted in figure
3.8. The parameters [, and [, are respectively the distance between the aerodynamic
centres of the horizontal tailplane and the centre of gravity and the distance between the
vertical tailplane and the centre of gravity. For the parameter ¥ a generally used value of
0.85 b is used with b the wingspan. This parameter, however, may change considering the
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spanwise lift distribution, i.e. compare the wing lift distribution for wings with or without
winglets.

In conclusion, the dimensional turbulence inputs for the symmetric and asymmetric aircraft
motions become,

Symmetric turbulence inputs

T
Usym = [“g Wy ‘Ig]

Asymmetric turbulence inputs -

T
Yasym = Vg Pg T1, r2g]
Normally, the time rate of change with respect to these turbulence inputs are considered

as well. In this case, only the rate of change of w, (symmetric aircraft motions) and v,
(asymmetric aircraft motions) is considered,

Symmetric turbulence inputs

-iisym = [0 1'1)9 0]T

Asymmetric turbulence inputs

y—asym = [’Ug 0 O O]T

and, therefore, the dimensional inputs for the aircraft models become,

Symmetric turbulence inputs

. 1T
%ym = [ug wg qg ’U)g]

Asymmetric turbulence inputs

CYpsym = [Ug Pg T14 T2, ’Ug]

R

SRR B T
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3.2.4 Correlation Functions

In this section the correlation functions will be presented for each turbulence input, both
symmetric as asymmetric. The correlation functions will be derived using the four point
aircraft model, see figure 3.8.

As an example, consider py,

w; — w2
o=y
The autocorrelation function Cj; is,
Coun(r) = Elpa(t) polt +7)} (330
= 5 B{(wn — ws)(u} — v}
= o [B{wwl) + B{wsup) — E{ww}) — B{wyw))]

where w; and w; are values of w, at points “1” and “2” at time ¢, and w] and wj are values
of w, at the same points at time ¢t + 7. The points “0”, “17, “2” and “3” in figure 3.8
respectively have the coordinates (z;,0,0)7, (zi, %',O)T, (z1, —%,O)T and (z; - 1,,0,0)7.
The points “0’ ”, 1’ ”, “2° ” and “3’ ” in figure 3.8 respectively have the coordinates
(z1 + V1,0,0)7, (21 + V7, %’,O)T, (z1+ Vr, —%l, 0)T and (Vrz; — 1,,,0,0)7. Therefore, in
figure 3.8 the separation vectors éz.j become,

£, = (V0,07
€, =Vr,-¥,07
-§-21’ = (VT, b/’ O)T

€, = (V7,0,0)7

Recalling the correlation matrix equation (1.11),

Bus} = 0u(6) = o* (L2 1 a0
with,
G+8+8 (3.31)
and, §; the i-th element of the vector §_’.J., and that we are dealing with the vertical gust
velocity w (for p,), in the correlation matrix equation (1.11) ¢ = j = 3, the u; and

u; both become us (which corresponds to the vertical gust velocity w). Therefore, the
autocorrelation Cy,,,, equation (3.31), becomes,




3.2 Turbulence Modelling 37

-2
Coone(T) = 33 [Cas(V'T,0,0) — Cas(V7,¥,0)] (3.32)
or using equation (1.11),
(b/)Z .
Eg—z— CPng(T) = 9(61) - g(€3) (333)
with non-dimensional seperation vectors £ equal to,
61 _ _ Vr
oL, G =\ I, (3.34)
&, vr\? ¥\’ »
oL, = (s = oL, + oL, (3.35)

In a similar way, the other auto- and crosscorrelation functions for the other turbulence
inputs may be derived in a similar manner. They are summarized in the following.

(™) _ 5g() — g(e0) - o(60) (3.36)

——(b’)zc;;’z’”(r) = f(&2) ~ K1 f(€s) ~ (1 - K1) g(&a) (3:37)

PC’;—;“(T) = 2g(&) — g(é6) — 9(é7) (3.38)
Guate@ _ 4(¢,) (3.39) _

C—'f”g‘;(—T) = 9(&) (3.40)

Coanal) _ Lg(6) + So(6a) + 2otes) (3.41)

oD _ 5(65) - g(61) + 29(68) - 20(62) (3.42)
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Pns® _ 2k, lo(er) - F(&0)

lv_@gﬂ = g(&) — 9(&)
Prirsa® _ Ky lo(6s) - F(6)] + Ka 1(62) — 9(60)
With,
K, = E‘L,—:)Z 2
(8) + (&)
K- \5) GE)
(%) + (&)

b |V,
aL, ' |aL, ' al,
& _ |
aL, > lal, oL,

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)
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b o (Yo (Y
aLy o= \ (al’g aLy) i (20L9) (350
& . |(vr L) ¥ o\?
al, bo = \ (aLg B aLg> + (2aLg> (3:55)

Graphs of these correlations are given in figures 3.10 to 3.20 in which the longitudinal
and lateral correlation functions according to Dryden were used (f(¢) and g(§)). They
are functions of V7 /L, and the parameters b'/Ly, l,/L, and l,/L,. The correlations are
plotted in dimensional form. The kinks in some of the correlation functions are the result
of the FPA representation. They occur at that value of V7/L, for which the tail arrives
at the position occupied 7 = 1“} or 7 = & seconds earlier by the centre of gravity (gust
penetration effect). The results presented in figures 3.10 to 3.20 are calculated for the
example aircraft, a Cessna Ce-3500 Citation, see figure 3.9. The data for this aircraft is

presented in table 4.1.

3.2.5 Input Power Spectral Density Functions

For the calculation of the input auto and cross power spectral densities, the auto and cross
correlation functions are Fourier transformed. For this purpose the MATLAB routine £ft
may be used, and an estimate for the power spectral densities (periodograms) is obtained.
The Fast Fourier Transform algorithm is based on,

N-1
1K) = 3 Cln] e~3*%" | (3.56)
n=0
with I[k] the power spectral density’s estimate (“periodogram”) and C[r] the correlation
function. See also the examples in the next chapter. The numerically calculated power
spectral densities are given in figures 3.21 to 3.35. These power spectral densities are also
given in dimensional form.

3.3 Aircraft Modelling

3.3.1 Symmetric Aircraft Motions

For the FPA model the aerodynamic forces and moment, induced by symmetrical gusts,
are written as, '

Cx, = Cx.,dg+ Cxo, a0+ qug%— (3.57)

Cz, = Ca,ig+ Cray0y +Cr,, o + Cz, 5 (3.58)
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(9]]

Qay

Crmy = Crmu,flg + Crma, &g + Crmg, ng/E + Cme 5 (3.59)
with,
Cxug = Cx,
Czug = Cg, (3.60)
Cmug = Cmu
Cxag = Cx,
Cr., = Caz. (3.61)
Cra, = Cima
CXQg = _Cxq
Cz, = —Cz (3.62)
Cmqg = _Cmq

and Cz, and C, the normal stability derivatives with respect to the acceleration along
the Z, stability frame of reference axis.

Also, remember that now ¢, is defined as,

ow
G = —-—azy (3.63)
since the original minus sign in,
Ow
9 = _3_:: (3.64)

is corrected for in the aerodynamic model.

Therefore, the non-dimensional turbulence inputs for the four point aircraft model are,

I &
u= [ag o &7 %] (3.65)

The equations for symmetric aircraft motion are extended for a flight in a turbulent atmo-
sphere, and will be written as,
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Cx, — 2uc.D. Cx. Cz 0 &
CZu CZa + (CZC'. - 2#0) Dc _CXO 2#(: + CZq «
0 0 -D, 1 0
Cmu Cma + Cmch 0 Cmq - 2#CK}2,'DC %76
Cx., Cx., Cx, Cx, iy
Cz., Cz., Cz, Cz, o,
- 0 0 0 0 g‘g/_a (3.66)
Cruy Cmay Cmg, Cms D. .oy
The general state-space representation will be written as,
z=Az+Bu (3.67)
or, '
& T, To xz O U Ty, ZTa, Tq, ZTa U
c:r |z oz ze 2 a + Zu, Za, Zq, Za o,
6| |0 o o X 0 0 0 0 0 S
9"75 My Me Mg ™y i My, Mo, Mg, Mg S
(3.68)

The definition of these symbols are recapitulated in table 3.1. The turbulence inputs are
generated by calculating the correlation functions numerically and then numerically Fourier

transforming them to input spectra (using MATLAB’s FFT routine fft.m).

3.3.2 Asymmetric Aircraft Motions

For the four point aircraft model the aerodynamic forces and moment, induced by asym-

metrical gusts, are written as,

Byb Pgb rlgb ra b

Cy, = CngIBg + CY V + Cy, Yoo oy + C, Yo, QY Cerg YA
Co = CuopPo+Cp5r V + i, 557 + O, 57 + O, 5

_ ﬂg pgb r1,b T24b

Cng - "/59 ﬂg + Cnﬁ V Cnpg 2V Cﬂ'"lg ?VT + Cﬂ‘"2g 2V

with,

(3.69)
(3.70)

(3.71)
(3.72)
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Cy,, = Cb,
C,, = C,
Cns, = Chp
CYPg = CYPw
Cng = C’Pw
C"pg = C"pw
Cy,, 0

C,, = —Ci,
Cry = —Chy,
Cy,2 = Cy,v
¢, = C,
Cny = Chn,

(3.73)

(3.74)

(3.75)

(3.76)

and Cy,, Ci, and Chnj the normal stability derivatives with respect to the acceleration along

the Y, stability frame of reference axis.

Note that in the latter equations the subscripts w and v denote the contributions to the

stability derivatives of the wing and the vertical tailplane respectively.

Also, remember that r;, is now defined as,

. Oy,
L=
y
since the original minus sign in,
. Ou,
L= "5,
Y

is corrected for in the aerodynamic model.
Summarizing, the turbulence inputs for the linear field approximation become,

: T
u. = |g, Peb ragb Tab Bob
—asym v ov 2V V

(3.77)

(3.78)

(3.79)
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The equations for asymmetric aircraft motion are extended for a flight in a turbulent
atmosphere, and will be now written as,

C’y‘9 - 2#6 D, CL
0 ~1p,

Cly 0

Chry 0
Cy,,

0
Cl,,
Chg,

Cy,
1

Czp — 4,ubK)2( Dy
Cn, +4us KxzDs
Cypg Cy,l 9 Cyrzg

0 0 0
Clpg Ci Tig Ci r2g
Cryy Chry, Comy

Cy, — 4w
0
Ci, + 4 Kxz Dy
Cn,. - 4#1,K%Db

Q
=
>

Qo
"nl:'.'u
°'< o

w
¥

w
anw
o

L Vv

€t ™

Pk

)

v

(3.80)

The general state-space representation, can be obtained by rearranging these equations.
The final result, in abbreviated notation, is,

B Y5 Yo Yp Ur
¢ {_|0 0 2§ 0
{% Tl 0 L L
A ng 0 n, n,

B Ys,
0
fi +1 5
¥ i
2V ng,

ypg y"'lg yrzg y[J

0 0 0
by by Iy 1
npg n,lg. n,.zg nﬁ

&

©
LS

3 3
Sk

€

(3.81)

The definition of these symbols are recapitulated in table 3.2. The turbulence inputs are
generated by calculating the correlation functions numerically and then numerically Fourier
transforming them to input spectra (using MATLAB’s FFT routine fft.m).
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X Z M
Crmy+Cz, s
o | vox |v_c2 v St =t
g 2uc € 2uc~Cyg, 3 2ucK$
Cm,
a v Cx, \4 Czo v Cmat+Czq 2uc—Cgz
c 2uc c 2uc—Czé 5 2ucK§,
Cm
a | ¥ Cx; | v_Cz, v Oma¥C24 523
T 2uc [ Zuc-Czé g 2ucK§,
Cxg it
0 v Cz Vv_—Cxp v XoZue=Cy
€ 2uc g ZuC—Czé ¢ 2ucKY
2uc+Cyz
K CXg ! 2p.+Cz K Cmq+Cmé 2#:—0&
9| T2 | T2tz | T 2ucKy,
Crmg, +Cz,, gt
s y_th v Czs, |4 me, +C 24, Tuc—Cy
€ € 2uc g 2uc—Cz° c 2/4,:1(%,
Cz
q
v Cxq | v_C2zq v Crmgg +Cmq Zpe=Cgz,
9% | %0 | T2we-Cg, | © 26K
C c _Cmg
u ch"g v Czug v mug+C24 2uc=Cz .
g T 2uc 5 ZuC—Czé 5 Zuch,
Cm.,
a v Cxﬂ \4 Czﬂg v cm°9 +Cz°9 2Fc-cza'
g ¢ 2uc E2uc—Czé ¢ 2u¢K§,
Cm:
——mg
a v Cxé's v Czag vy Cmég +Cz&g 2uc=Czq
91 & 2u g 2uc~Cz, | € 2ucK3y

Table 3.1: Symbols appearing in the symmetrical equations of motion’s state-space repre-
sentation of the Four Point Aircraft (FPA) model.
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Y L N
3 vy v CigK3+CngKxz v CisKxz+0ng K%
b 2u b 4up (K3 KL~K% 5) b aup(KYK%-K% ;)
B VCYE- v CxBK§+Cnp;sz v cleXZ+Can§(
b 2u b 4up(K% K% -K% ) b au(K3K%-K% ;)
ve,
@ ™ 0 0
p v Cy v Ci, KZ+Cn,Kxz v Ci,Kxz+Cn, K%
b 2up b 4uy (KL K%-K%5) b 4uy(KLK3-K% ;)

VCy—4u | V _Ci,K3+Cn-Kxz vV Ci, Kxz+Cn K%

v Cis K3+Cns Kxz

, v 4

T b 4u, (K3 K% -K% ;) b auy(K% K3-K% 5)

6 CYG v ClsaK%‘FCn&q Kxz Kcl5a KXZ+C"6a Kg(
a

b aus(K5K3-K%y) | b 4us(KZK3-K%z)

\%4 c‘s,- Kxz+Cny_ K%

or - -
b 4“°(K3(K%‘K3(z) b 4“5(K§(K§‘K§tz)
P %4 Ci,  K5+Cnp, Kxz v Cipg Kxz+Cnp, K%
s b au(KiK3-Ka) | b am(KEK3-K%)
. chrlg K%+Cnr, Kxz v Clry, Kx24Cnry, K%
1o b an(K5KG-KYz) | P em(KEKG-K%;)
, v v clrzg K%+Cnr2g Kxz v Czrzg Kxz+Cnry, K%
2o | B 2 b auy(KYKy-K%;) | b 4w(K3K3-K% ;)
3 VCY§ v CtpK%+Cnﬁsz v Cszxz+C'npK§(
g b 2u b auy(KYK%-K% 5) b apy (KL K%-K% ;)

Table 3.2: Symbols appearing in the asymmetrical equations of motion’s state-space rep-
resentation of the Four Point Aircraft (FPA) model.
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Chapter 4

Results

4.1 Comparing DUT and Four Point Aircraft Models

The aircraft models according to the Delft University of Technology (DUT) and the Four
Point Aircraft model theory, are in fact the same. The only difference involves the calcu-
lation of the input spectra. As with respect to the latter, the major difference between
these two models is that the DUT model is in fact a One Point Aircraft Model, see Ref.
(Mulder & Vaart, 1993), as compared to the Four Point Aircraft Model according to Ref.
(Etkin, 1980).

In this chapter results will be presented for the Cessna Ce-500 Citation. The flight condition
(approach) and stability and control derivatives are given in table 4.1.

4.2 Models for Symmetric Aircraft Motions

4.2.1 Aircraft Models and Input Spectra for Symmetrical Lon-
gitudinal Turbulence

In this section the aircraft and input models for symmetrical longitudinal turbulence u,
will be given.

The non-dimensional aerodynamic forces and moments due to symmetrical longitudinal
turbulence u, are according to the DUT and Four Point Aircraft Model (with 4, = %),

CXg = CXug '&g .
Cz, = Czug g (4.1)
Cmg = Cm,, g

& ies
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Also, for both the DUT and Four Point Aircraft Model, the input correlation function
Ci,a,(7) are equal,
Ca,a,(T) = agg e_f;

Remember that both the DUT and Four Point Aircraft Model are here one point models
and, therefore, the separation vector { equals [V'7,0, O]T. The absolute value equals § = V7,
which is to be used in the definition of the correlation function. Slight differences occur
in the results of the input power spectral density S;,4,(w). In figure 3.21 the input power
spectral densities for 4, are given. The analytically derived PSD function according to the
DUT model equals,

2Ly 1
Ug 174 1 + (Lg%)2

The numerically obtained input PSD function for the Four Point Aircraft Model equals,

Sﬁgﬁg (w) =20

N-1 _j27rkn N-1 2 _£ _J'21rkn
Iagﬁg[k] = E C,;g,;g[n] e’ N = Z o3, € lg 777N
n=0 n=0

or with ¢ = V n At (with A7 the sampling time interval),

N-1 _Vnar 2k
Iﬁgﬁg [k] = Z Ut?w e T e ¥

n=0

In figures 4.1 to 4.4 the output PSD functions of the state variables 4, ¢, 6 and 9‘76 are
given. Only for higher frequencies the spectra do not coincide, since the power spectral
density estimate I;,3,[k] is a biased estimate for the input spectrum Sg,q,(w). Over a wide
frequency range the PSD functions coincide, as it should be, since both the DUT and Four
Point Aircraft Model are in fact equal (both aircraft and input model).
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4.2.2 Aircraft Models and Input Spectra for Symmetrical Verti-
cal Turbulence

In this section the aircraft and input models for symmetrical longitudinal turbulence w,
will be given.

The non-dimensional aerodynamic forces and moments due to symmetrical longitudinal
turbulence w, are according to the DUT Model (with oy = 3#),

DUT Model
Cx, = Cx. a,+Cx. g‘q-:
’ TV
Cz, = Cz,, 05+ Cz, -a% (4.2)
Qg€
Cmg = Cmag ag+Cmag %
with,
Cxa, = Cxa
Cz., = Cz, (4.3)
Crma, = Chm,
Cxs, = Cxo—Cx,=0
CZ"’g = Czé—czq (4'4)
Cmg,g = Cmé—Cmq

The non-dimensional aerodynamic forces and moments due to symmetrical longitudinal
turbulence w, are according to the Four Point Aircraft Model (with oy = 3% and ¢, = %—”j),

Four Point Aircraft Model

ng = Cxug ag+C'qu qT/-

q,C Q@,C
ng = Czag Qg +Cqu'%+CZé -Tg/— (4.5)
Cry = Crmay @ + Crmyy 25 4 Cmy 22
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with,

Cxa, Cx.,
Czag = (g, (4.6)
Crmay = Chma
Cxe, —Cx,
Cz, = —Cz, (4.7)
Crmgy = —Cm,

The input correlation functions for both the DUT and Four Point Aircraft Model are,

Qg0 ( ) [»3 g(s)
g Qg :.)al 9

with § = Vr.

Four Point Aircraft Model

Cupo, (1) = 0* (5906 + 59(6) + 29(69))

2

I Q

Cogae(T) = 7 (29(&1) — 9(£4) — 9(65))

l

N0

and, since the the w, and g, inputs are correlated (see chapter 3),

2

Cuunes(T) = 33,; (9(6s) — 9(61) + 29(6s) — 29(£2))

The separation vectors used in the above correlation functions are summarized in table
4.2. For the calculation of the input power spectral density functions, the correlation
functions are transformed to the frequency domain using a Fast Fourier Transform (FFT).
The input power spectral densities will be corrected for the non-dimensional inputs, e.g.,
Sagay(w) = T,%Swgwg (w), etc..

The input power spectral density of oy = 3£ according to the DUT model is,
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2'ﬁ 1+3 (L9%)2
v [1 - (Lg%)zr.

The input PSD functions for the Four Point Aircraft Model are calculated using MATLAB’s
Fast Fourier Transform routine fft.m.

Sagag(W) =0

In figure 3.22 the input PSD functions for «, are given. In, respectively, figures 3.23 and
3.24 the input PSD functions for &, and ¢, (not 9{}—5) are depicted. In figure 3.25 the cross
power spectral density of a, and %& is given.

In figures 4.5 to 4.8 the output PSD functions of the state variables 4, «, 6 and 4 are given.
The results almost coincide over a wide frequency range. Especially for higher frequencies
the spectra do not coincide, since the power spectral density. estimates for the four point
aircraft model are biased.

4.3 Models for Asymmetric Aircraft Motions

4.3.1 Aircraft Models and Input Spectra for Asymmetrical Lon-
gitudinal Turbulence

In this section the aircraft and input models for asymmetrical longitudinal turbulence u,
will be given.

DUT Model

The correlation function for u, is written as,

Cuguy (2:9) = 72, {f(r) (3) +at) (g)}

with f and g the Dryden correlation functions. The power spectral density function be-
longing to uy, may be calculated analytically and equals,

140202440212
S"Q“Q(Q’Lg’nyl’g) = Wagy : ) 95/2 (4'8)
(140212 + 0212)

The non-dimensional aerodynamic forces and moments caused by asymmetrical longitudi-
nal turbulence u, are written as (with 4, = 3£, see also chapter 2),
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b, .

Cy, = CYug(QyE)uyzo (4.9)
b, b,.

C, = Cuy(@u3)ity = ~Cy W3y (4.10)
b,. b,.

Cng Crug (Qyi)ug = —Ch,, h(QyE)uy (4.11)

with,

B(Q é) _ éfog cic sinflyy y dy
K 2 fo% acy? dy

The non-dimensional aerodynamic force and moments caused by asymmetric longitudinal
turbulence u, may now be written as,

Cy, = 0 (4.12)
b

Gy = O, (y3)hg (4.13)

Cn, = Cnug(nyg)ag (4.14)

The input power spectral density for 4, is equation (4.8).
However, now the cumulative effect of all asymmetric longitudinal turbulence u, in Y- (or
,-) direction is taken and the periodogram I3 g, is defined as,

oo 14 Q212 + 4022
Iﬁgﬁg(QILy’B) = U?lg / hZ(ng) + z g + v 95/2 d(Qng)
° (1+zLz+0202)

and is approximated by,

1472 Q212

I;.:.(Q:L,,B)=1;,(0,B 4.15
sis(OeLs, B) = 12,0, B) (1+7 02L2) (1+ 72 02L2) (4.15)
Equation (4.15) is used in conjunction with,
Cyg Cyug Ug ‘ (4.16)
ng = Czug’ag (4.17)
Crny = Cha,,ly (4.18)

and,
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Cv,, = 0 (4.19)
C{ug = -C,, (4.20)
Cnug = —Cp,, (4.21)

which are now independent of frequency {2, since all effects of the asymmetrical longitudinal
turbulence u, in Y- (or §2,-) direction, is accounted for in the effective one-dimensional
power spectral density I; q,(Q:Lg, B). As an input periodogram, equation (4.15) is usually
written as, '

1472 (‘”L)

(e (55)) (1472 (5))

Values for 7, 72, 73 and I3, (0, B) are summarized in tables 2.4 and 2.3.

L
Iagag (w) = T/'?-Igg(o, B)

(4.22)

Four Point Aircraft Model

The aircraft responses to asymmetrical longitudinal turbulence u, are now described using
the input ry,,

r, = %% ~ (4.23)

The autocorrelation function of this input equals,

g (1) = 2375 1(6) = K (&) = (1 = Ki)g(65) (@28)

See table 4.2 for the definition of the separation vectors.

The non-dimensional aerodynamic force and moments caused by asymmetric longltudJnal
turbulence u, (r1,) are written as,

b

Cy, = O, ’;;, (4.25)
r1,b

C, = C, 2‘{/ (4.26)
Tlgb

Chyg nry S (4.27)

with,

D i i

11 R 18 Dl i S
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Cy,, =0 (4.28)
Cl"ly = —lew (429)
Crry, = —Ch, (4.30)

The subscript w denotes the contribution of the wing to the derivatives C;, and Cj,.

The input power spectral density function for ry,, S, r,, (w), is calculated numerically from
the autocorrelation function C., ,, (7).

In, respectively, figures 3.28 and 3.31 the input PSD functions for 4, and %{’,ﬁ are given.

In figures 4.9 to 4.12 the output PSD functions of the state variables 8, ¢, {% and ,_,'—“}
are given. The results coincide remarkably well over a wide frequency range. It must be
pointed out that the aircraft models for both the DUT and Four Point Aircraft Model
are equal, however, the calculation of the input power spectral densities is completely
different for both models. Also, for the Four Point Aircraft Model all effects of turbulence
in Q, direction are accounted for in the numerically obtained input power spectral density
function S, ,,,(w) which found its origin in the correlation function C, r,, ().

4.3.2 Aircraft Models and Input Spectra for Asymmetrical Lat-
eral Turbulence

In this section the aircraft and input models for asymmetrical lateral turbulence v, will be
given.

DUT Model

The correlation function for v, is written as,

Cogry(2,9) = 02, {f(’") (2)2 *(r) (£>2}

r r

with f and g the Dryden correlation functions. The power spectral density belonging to
v, may be calculated analytically and equals,

1+4Q202+ Q217

Sy (R Ly, QyLy) = 702
i "(1+02L2 4 ﬂng)S/ 2

(4.31)
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When considering the asymmetric force and moments exerted on the aircraft by the v,-field,
only the antisymmetric part of this flowfield is of interest. Therefore, the v, variations along
the aircraft’s lateral axis (Y-axis), or, the v, variations in ), direction, will be neglected.
The gust velocity v, now only causes a gust angle of sideslip 8, = §#. The effective one-
dimensional power spectral density for v, is calculated from equation (4.31) by integrating
this equation over all possible frequencies §2,,

1+3Q2L2

S"g”g(ﬂng) = 0'1219 92 (432)

(1+0212)
br, using the radial frequency w,
2

143 (%

Svguy (W) = azg% ( 4 2) 5 (4.33)
1+ (42) )

The non-dimensional aerodynamic forces and moments caused by asymmetrical lateral
turbulence v, are written as (with g, = ),

Bab

Cy, = Cyﬁgﬂg+0y (4.34)
ng = Clﬁgﬁg-{-c EV_ (4.35)
Cry = ,Bg -ﬂv (4.36)
with,
.C}’ﬁg = Cy, (4.37)
Ci, = Ci (4.38)
Crg, = Cng - (4:39)
and,
1
Cybg = CY/S_*--Q-CY’H»'J (4.40)
' 1 .
lesg = Clb+§CI"f+v (441)
1
Coz, = Cny+5Cn,,., (4.42)

] il o N b

)

R
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The input power spectral density for 3, is equation (4.32) divided by V?, or, Sg,g,(w) =
77 Suguy (W)
V2 gy

Four Point Aircraft Model

The aircraft responses to asymmetrical longitudinal turbulence v, are described using also
the input v,. This input, however, is correlated with turbulence inputs ry, = %‘—;9- and
= %

T2, = 3¢ . .
The necessary correlation functions are,

C‘UgUg (T) = 02 g(fl)

20‘ Kz

Cugriy(T) = (9(&2) — f(&2))

Cuyra, (7) = ‘j— (9(62) - 9(67))

See table 4.2 for the definition of the separation vectors.

The non-dimensional aerodynamic force and moments caused by asymmetric lateral tur-
bulence v, are written as (with 8, = 3%, etc.),

1, b

Cyg = Cypgﬂg'i'CY ,3_,, -I-C,1 2V +Cy,.29 1'22{/ (4.43)
1,b b

Cly = Cip,By+ 0,57 ﬂg +0, L o+ Gy, ’;‘9/ (4.44)
1,b b

Cry = Cnp By + Cn, ﬂg 2 + Coryy 5 + oy 27 (4.45)

with,

Cvs, = Cv, (4.46)

Ci, = Cig (4.47)

Cnﬁg = Cnp (448)

Cy,.lg = 0 (4.49)

C’ug = "Clr.., (4.50)

Cry, = —Ch, (4.51)

§
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Cerg = Cy,, (4.52)
Clrzg = C,, (4.53)
C"rz, = (Ch, (4.54)

and Cyﬁ, C 5 and C,. the normal derivatives with respect to the acceleration along the
aircraft’s lateral axis. The subscripts w and v respectively denote the contribution of the
wing and the vertical tailplane to the derivatives Ci, and C,,.

The input auto and cross power spectral density functions, are calculated numerically
from the autocorrelation functions. In, respectively, figures 3.26 and 3.27 the input PSD
functions for B, and f, are given.

In figures 4.13 to 4.16 the output PSD functions of the state variables 3, ¢, {% and %
are given. Again, the PSD functions of the output variables correlate well over a wide
frequency range for both models. In fact, both aircraft models are, again, equal. Only the
input PSD functions differ for the DUT and Four Point Aircraft Model.

Also, note again that for higher frequencies the spectra do not coincide, since the power
spectral density estimates for the four point aircraft model are biased.

4.3.3 Aircraft Models and Input Spectra for Asymmetrical Ver-
tical Turbulence

In this section the aircraft and input models for asymmetrical vertical turbulence w, will
be given.

DUT Model
The correlation function for w, is written as,

ngwg (13, y) = Uigg(?‘)

with g the Dryden correlation function. The power spectral density belonging to w, may
be calculated analytically and equals,

272 272
Suyun (L, L) = 3m0s, el ¥ Tl .
(1+02L2 + Q2L2)
The non-dimensional aerodynamic forces and moments caused by asymmetrical vertical

turbulence w, are written as (with o, = 3%),

(4.55)
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b

Cy, = Cyag (Q,,E)ag =0 (4.56)
b b

Clg = Clag (Qyi)ay = Clpw h(Qy_z-)ag (4‘57)
b b

Cry = Cnay(y3)e = Cryy h(Qy3)e (4.58)

with,

b
b b [Z cic sinfQ,y y dy
h(@y5) = g LAl

Iy
2 [Poacydy

‘'The non-dimensional aerodynamic force and moments caused by asymmetric vertical tur-
bulence w, may now be written as,

Cy, = 0 (4.59)
b v

G, = Clag(Qy'Q')ag (4.60)
b

Cry = Cnoy(z)ey (4.61)

The input power spectral density for a, is equation (4.55). However, now the cumulative
effect of all asymmetric vertical turbulence w, in Y- (or §,-) direction is taken and the

periodogram I, ., is defined as,

b ) QL+ QL3
5/2
2" (140212 + 212)”

Tayoy(QuLy, B) = 302, /0 h2(Q, d(Q,L,)

and is approximated by,

1+ 72 QL2

Inyay(Q:Ly, B) = L, (0, B) (4.62)

2% (1+r202L2) (1472 02L2)
Equation (4.62) is used in conjunction with,
Cv, = Cv.,a (4.63)
ng = Czag oy (4.64)
Cng = Chna,04 (4.65)

and,
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Cr,, = 0 (4.66)
C., = Ci, (4.67)
Chay = Chpy (4.68)

which are now independent of frequency (2, since all effects of the asymmetrical vertical
turbulence w, in Y- (or Q,-) direction, is accounted for in the effective one-dimensional
power spectral density Io,q,(2:Lg, B). As an input periodogram, equation (4.62) is usually
written as,

L 1+ 72 ("’Tﬁ“)z
Tagay(w) = 7/ 1a,(0, B) (1 + 72 (%1)2) (1 +72 () )

1%
Some values of T4, Ts, 76 and I, (0, B) are summarized in tables 2.5 and 2.3.

(4.69)

Four Point Aircraft Model -

The aircraft responses to asymmetrical vertical turbulence w, is now described using the
input p,,

3w9
The autocorrelation function of this input equals,
Cpgl’g (T) (b’) (g(gl) 9(63)) (4.71)

The non-dimensional force and moments caused by asymmetric vertical turbulence w, (p,)
are also written as,

b

Cv, = Oy, (4.72)
pgb

C, = Cl”?V (4.73)
Pgb

Cn, = Cn,g 29V (4.74)

and,

Cypg =0 (4.75)

C[Pg = Cle (4'76)

CnPg = C"’Pw (4 * 77)
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The subscript w denotes the contribution of the wing to the derivatives Ci, and Ci,.

The input power spectral density function for py, Sp,p,(w), is calculated numerically from
the autocorrelation function Cjp,p,(7)

In, respectively, figures 3.29 and 3.30 the input PSD functions for oy and %9‘,3 are given.

In figures 4.17 to 4.20 the output PSD functions of the state variables 3, ¢, {% and ;—‘b, are
given. The results, again, coincide remarkably well over a wide frequency range. It must
be pointed out that the aircraft models for both the DUT and Four Point Aircraft Model
are equal, however, the calculation of the input power spectral densities is completely
different for both models. Also, for the Four Point Aircraft Model all effects of turbulence
in , direction are accounted for in the numerically obtained input power spectral density

function Sp,,,(w) which found its origin in the correlation function Cpp,(7).
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Teg, = 0.30 ¢
w = 44291 N 1% = 59.9 m/sec b = 15
m = 4514 kg h = 3048 m KZ = 0.012
S = 242 m? p = 09046 kg/m® KZ = 0.037
¢ = 2022 m Pe = 102 Kxz = 0.002
b = 1336 m K% = 0.980
Cx, = 0 Cz = -1.1360
Cx, = -0.2199 Cz, = -2.2720 Cme = 0
Cx., = 0.4653 Cz, = -5.1600 Cm, = -0.4300
Cz, = -1.4300 Cmsy = -3.7000
Cx, = 0 Cz, = -3.8600 Cm, = -7.0400
Cx, = 0 Cz, = -0.6238 Cms; = -1.5530
Cy, = -0.9896 Cy, = -0.0772 Cny, = 0.1638
Cy, = -0.0870 Cy,, = -0.3444 Cn, = -0.0108
Cy. = 0.4300 Ce,, = 0.2800 C., = -0.1930
Cy,, = 0 Ce, = -0.2349 Cr,, = - 0.0286
Cy,, = 0.3037 Ce, = 0.0286 Crn;, = -0.1261

Table 4.1: Stability and control derivatives of flight condition for Cessna Ce-500 Citation.
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Results

&

£2

€3
¢4
€5
és
&

€8

éo

Table 4.2: Definition of seperation vectors as used in auto- and crosscorrelation function

calculation.




Chapter 5

Concluding Remarks

In this report two different approaches for calculating the symmetric and asymmetric air-
craft responses to atmospheric turbulence have been presented. The Delft University of
Technology (DUT) model, see Ref. (Mulder & Vaart, 1993), which is basically a one point
aircraft model, is compared to a Four Point Aircraft Model, according to the theory of
Etkin, see Ref. (Etkin, 1980). Only frequency domain simulations are possible with the
latter, although the theory may be extended to a time domain approach, see appendix B.

The results of both the DUT and FPA model methods coincide remarkably well over
a wide frequency range, although the approaches of setting up the aircraft model and
calculating the input power spectral densities differ considerably. In fact, both aircraft
models are equal, however, the calculation of input power spectral density functions differs
considerably. For the FPA model one can speak of Power Spectral Density decomposition,
hence, using several (correlated) inputs. Results have been presented for the Cessna Ce-500
Citation. ‘

The FPA model is limited to a certain frequency range whereas the DUT model can be
used over an unlimited frequency range. This limitation is a result of the four point linear
field approximation.

It must be pointed out, that the DUT model uses analytically derived input Power Spectral
Density functions, while these input spectra are calculated numerically for the FPA model.
For the latter model the numerically calculated Power Spectral Density functions are de-
rived from auto- and crosscorrelation functions, obtained from time domain simulations.
Care must be taken by choosing the sampling-interval, total simulation time and, thus, the
number of sample points, since important modes’ identification may be cancelled out by
the discretization interval.
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Appendix A

Frequency Domain Simulations

For frequency domain simulations the transfer functions of output variables to all gust
inputs may be calculated using MATLAB. However, an important observation must be
made; some of the inputs may be correlated and hence input cross power spectral densities
may exist. The transfer functions from all inputs to outputs are calculated using the mv2fr

routine in MATLARB:

MV2FR Frequency response of MIMO system
MV2FR(A,B,C,D,W) calculates the MVFR matrix of the system:
MVFR = MultiVariable Frequency Response

Ax + Bu
Cx + Du

X
y

-1
G(s) = C(sI-A) B +D

Vector W contains the frequencies, in radians, at which the
frequency response is to be evaluated. Each component matrix
of the resulting MVFR matrix has as many columns as

inputs and as many rows as outputs.

MV2FR(NUM,COMDEN,W) calculates the MVFR matrix from the
transfer function description G(s) = NUM(s)/COMDEN(s)

where NUM is multivariable matrix of polynomial coefficients and
COMDEN is the vector containing Common Denominator polynomial
coefficients in descending powers of s.

MV2FR(A,B,C,D,W,iu) and MV2FR(NUM,COMDEN,W,iu) are provided for
compatibility with the CONTROL TOOLBOX’s NYQUIST.
They produce an MVFR matrix for a single input, iu, and the results
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are returned as one row per frequency.

The CONTROL TOOLBOX’s BODE function is provided by
[MAG,PH]=R2P (MV2FR(A,B,C,D,W,iu))

Dr M.P. Ford 4th August 1987

Copyright (c) 1987 by GEC Engineering Research Centre & Cambridge Control Ltd
MRNOO19

An example is given below.
Example

A three-input/single-output may be defined by its state space definition as,

Iy apl1 aiz ais 151 bii b2 bis Uy
T2 = a1 G2 G323 z2 + | b1 bap b2
T3 a3l azz2 ass \ I3 bsy b3z bas \ us
(A.1)
I, Uy
Y = [ c1 C2 C3 ] T2 + [ di dy d3 ] Uz

\:03 \Ua

Assuming a three-input/single-output system according to,

Y (w) = Hyw, (w)U1(w) + Hyw, (w)U2(w) + Hyu, (w)Us(w) = Hyu(w)u(w)
the power spectral density of this output equals,

Syy(w) = Hy, (w) Syu(w) H;u(“’)T
with,

Hyy(w) = [Hyu, (w) Hyu, (w) Hyyy (w)]

and,

Suyuy (W) Suyuz (W) Suyus(w)
Sy_t_l(w) = | Swu (w) Suzuz (w) Suzua (w)
Susuy (@) Suguy (W) Sugus (W)

If inputs are uncorrelated, the input cross power spectral densities equal zero and the input
power spectral density matrix becomes,

Suyuy (W) 0 0
S&&(w) =10 Suzuz (w) 0
0 0 Sugus (W)

E 77 in

—_—
-

0 A o



Appendix B

Time Domain Simulations

Although the model presented by (Etkin, 1980) can only be used for frequency domain
simulations, time domain simulations may be performed as well.

Considering that the power spectral densities of the concerning input variables are calcu-
lated numerically, there seems to be no analytical form for them. However, it is always
possible to approximate these power spectral densities by prescribed analytical formulae
of which the unknown parameters are to be identified. This problem may be addressed as
a curve fitting problem. In this section a linear least squares technique for fitting a real
set of data will be presented.

Considering that the numerical frequency data set of a power spectral density is known
and let this data be described.-by S(w;) for ¢ = 1 to N (N are the number of frequency
points considered). The power spectral density data is accompanied by a set of frequency
data called w(:), again for ¢ = 1 to N. The power spectral density data S(w) will be
approximated by the analytical PSD function P(w), which will be described by,

2
Plw)= (1 +7{{Zaj) (7;:72 w?) (B.1)
The analytical function P(w) will now be defined as the fraction of two polynomials,
P = 53 (8.2)
with,
N(w) = K1 + 13 &° (B.3)
D)= (14+m«’) (1+2?) (B.4)

Now consider the error €(w) between the actual data S(w) and the approximating data
P(w) by,
((w) = 5(0) = Po) = S(w) - %% (B.5)
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and defining a cost function equal to,

N
K=Y () (B.6)
=1
and to solve this problem for the unknown parameters K, 71, 72 and 73 for the smallest
cost function Ji, leads to a non-linear problem because of the non-linear parameters 7,
and ;. However, by introducing a new error function according to,

e(w) = S(w) : D(w) — N(w) (B.7)
and a new cost function,
N
J = ; (ewi))” (B.8)

it leads to a linear problem in all unknown parameters Ki, 1, 72 and 73! A simple matrix
inversion will provide the unknown parameters. Remember that the analytical power
spectral density model,

Ky 4y w?
14+mw)(1+7w?)

P(w) =
can also be written in the form,

1+ 72 (%9-)2

Pw)=K — — (B.9)
(1+7’12 (=) ) (1+7'22 (22) )
with,
K = K, (B.10)
|4
T = ’)’11— ) (Bll)
g
| %
T = ’)’ZL— (B12)
[
_ sV
T3 = Kl Lg (B-13)

This only holds if 11, 42 and <5 are non-negative.

8
i
b4
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Figure 2.3: Two-dimensional anti-symmetrical flowfield
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Figure 2.4: Two-dimensional flowfield resulting from superposition of symmetrical and

anti-symmetrical flow fields

Y

Figure 2.5: The contribution to the rolling moment by a chordwise strip of the wing.
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Figure 3.1: The downwash at point (x,y) of a planar aircraft

Figure 3.2: The downwash at point (x,y) of a planar aircraft due to rolling and yawing
motion, with w(z,y) = py — gz
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Figure 3.3: The turbulence input ry,, with r;, = —%'fl
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Figure 3.4: The turbulence input r;,, with ry, = %
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Figure 3.5: Comparison of the Linear Field Approximation and the Four Point Model
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Figure 3.7: The Four Point Approximation
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Figure 3.8: The separation vectors of the Four Point Model
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Figure 3.9: The Cessna Ce-500 Citation
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Figure 3.12: Non-dimensional autocorrelation function C.,., for the four point aircraft
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Figure 3.14: Non-dimensional autocorrelation function C,,, for the four point aircraft
model

0.15

—Lg=150m

Rrir1

.0-1 1 i 1 i L
-2 -1 (o] 1 2
time (s]

Figure 3.15: Non-dimensional autocorrelation function Cy, ,,, for the four point aircraft
model
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Figure 3.16: Non-dimensional autocorrelation function C,, r,, for the four point aircraft
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Figure 3.17: Non-dimensional autocorrelation function C.,,, for the four point aircraft

“model
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Figure 3.19: Non-dimensional autocorrelation function C,,, for the four point aircraft
model
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Figure 3.24: Input power spectral density of symmetrical gust 2.
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Figure 4.18: Power spectral density of ¢ due to asymmetrical gust w,
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H((F)zpb = (T)ZP3) =24 + ((V)6PF ~ (T)6PD)»eM)((3FT+q) /ZoubTs.g)
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