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Abstract

Motivation: Imaging mass spectrometry (IMS) has become an important tool for molecular characterization of biological tissue. However,
IMS experiments tend to yield large datasets, routinely recording over 200 000 ion intensity values per mass spectrum and more than 100 000 pix-
els, i.e. spectra, per dataset. Traditionally, IMS data size challenges have been addressed by feature selection or extraction, such as by peak picking
and peak integration. Selective data reduction techniques such as peak picking only retain certain parts of a mass spectrum, and often these de-
scribe only medium-to-high-abundance species. Since lower-intensity peaks and, for example, near-isobar species are sometimes missed, selec-
tive methods can potentially bias downstream analysis toward a subset of species in the data rather than considering all species measured.

Results: \We present an alternative to selective data reduction of IMS data that achieves similar data size reduction while better conserving the
ion intensity profiles across all recorded m/z-bins, thereby preserving full spectrum information. Our method utilizes a low-rank matrix comple-
tion model combined with a randomized sparse-format-aware algorithm to approximate IMS datasets. This representation offers reduced di-
mensionality and a data footprint comparable to peak picking but also captures complete spectral profiles, enabling comprehensive analysis and
compression. We demonstrate improved preservation of lower signal-to-noise ratio signals and near-isobars, mitigation of selection bias, and re-
duced information loss compared to current state-of-the-art data reduction methods in IMS.

Availability and implementation: The source code is available at https://github.com/vandeplaslab/full_profile and data are available at https://
doi.org/10.4121/abefd47a-bdec-493e-a742-70e8a369788.

However, the outstanding multiplexing capability of IMS-
capable instruments generates vast amounts of data, often
containing spatially resolved information for thousands of
molecular species in a single experiment (Caprioli et al. 1997,
Alexandrov 2012, Spraggins et al. 2019). The volume and
high dimensionality of IMS data present significant chal-
lenges in data processing, analysis, and interpretation
(Alexandrov 2012). One of the primary challenges is data re-
duction, as raw IMS datasets typically consist of hundreds of
thousands to millions of spatial locations, i.e. pixels, each as-

1 Introduction

Imaging mass spectrometry (IMS) is an analytical imaging
technology that enables molecular mapping of complex bio-
logical samples, such as tissues, biofilms, or dispersed cells
(Caprioli et al. 1997, McDonnell and Heeren 2007, Bien
et al. 2022, Perry et al. 2022, Esselman et al. 2023). IMS
combines the sensitivity and specificity of mass spectrometry
with spatial information. It enables researchers to concur-
rently measure the distribution of hundreds to thousands of

molecular species throughout tissue sections or other hetero-
geneous samples without the need for labeling target mole-
cules (Caprioli ef al. 1997, McDonnell and Heeren 2007,
Aichler and Walch 20135, Buchberger et al. 2018). This capa-
bility holds strong potential for probing the lipidomic, glyco-
mic, metabolomic, and proteomic content of biological
samples across a wide range of applications, spanning from
fundamental research in biology and medicine to the develop-
ment of novel diagnostics and therapeutics (Rubakhin ez al.
2005, Kaspar et al. 2011, Vaysse et al. 2017).

sociated with a mass spectrum containing hundreds of thou-
sands of ion intensities. These datasets contain a mixture of
high- and low-intensity peaks as well as features with varying
signal-to-noise ratios (SNRs). Managing such large datasets
requires effective data reduction techniques that extract
meaningful information while minimizing computational
burden and storage demands (Verbeeck ez al. 2020).

Current data reduction in IMS can be broadly categorized
into acquisition-time and post-acquisition approaches (see
Supplementary Materials for a more elaborate overview).
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Acquisition-time methods reduce data during collection, typi-
cally resulting in a sparse representation rather than describ-
ing spectra in the full mass domain. Post-acquisition
methods, often user-controlled, include peak picking, spectral
integration, and spatial cropping (Monchamp et al. 2007,
Alexandrov 2012, Anderson et al. 2016). These methods aim
to further convert IMS data into more manageable represen-
tations (Alexandrov 2012, Verbeeck et al. 2020). However,
methods like peak picking can miss low-intensity, low SNR
peaks, and near-isobars, potentially introducing bias. Recent
efforts have improved peak-picking accuracy (Gonzilez-
Ferndndez et al. 2023), but challenges remain in handling
near-isobaric species and low-intensity peaks.

Here, we introduce a novel data model for IMS measure-
ments that addresses missing values through sparse-format-
aware low-rank matrix approximation. This approach offers
an alternative to traditional data reduction methods for IMS,
mitigating selection bias and minimizing information loss
early in the analysis pipeline by preserving full spectrum in-
formation rather than only selective sub-windows of the mea-
sured mass range. Additionally, to handle the computational
demands and large memory requirements of modern IMS
datasets, we explore the use of randomization strategies to
optimize low-rank factorization methods and implement
obtaining such a representation of an IMS dataset.

2 Materials and methods

Consider a MALDI-TOF IMS dataset M (€ R™*"), where m
is the number of pixels/spectra, 7 is the number of #1/z-bins
recorded by the instrument, and Mj; is the ion intensity value
associated with the i-th pixel and j-th m/z-bin. This dataset
consists of real-valued ion intensities, where a row of M is a
spectrum associated with a specific spatial location in the tis-
sue and where a column of M is a particular m/z-bin consid-
ered across all pixels. The latter can be reconstructed into a
so-called ion image, reporting the spatial distribution and
abundance of a specific m/z-bin’s intensities. For some IMS
experiments, the intensity values Mj; are clipped by the instru-
ment (e.g. explicitly by acquisition-time data reduction or im-
plicitly by the instrument’s limit-of-detection), effectively not
reporting intensity values below a certain relative ion count
k. Ion intensity clipping is sometimes expressly performed to
induce a sparse regime on the recorded signals, often to save
disk space. (In this context, sparsity refers to the number of
non-zero values in measurements, i.e. high sparsity implies
many zero values. A sparse regime implies that measurements
contain many zero values.) Regardless of the reason for
clipping to occur, we want to explicitly deal with the missing
values introduced by it. Therefore, we propose to model clip-
ping as a function f : R"*" — R"™*",

f(M) = [f(M)l,,, ., (1a)

where f;;(M) is defined for each entry (i,j) as:

for i€[1,m] and j € [1,n]. The resulting (sparsified) dataset
f(M) € R"*" can be stored in a sparse matrix format, a data
structure that only explicitly stores non-zero values and their
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locations in the matrix, leaving zero values to be implicitly rep-
resented without consuming memory. Most post-acquisition
data reduction methods ignore the non-linear operator, f(-) (see
Supplementary Materials). By applying a sampling operator
Pa(:) to M, essentially a relaxation for f(M), we acknowledge
that there are missing values in M and avoid the assumption
that those missing values are necessarily zeroes when modeling.
The sampling operator also avoids that those missing values
(potentially) negatively impact the model. Specifically (Candes
and Plan 2010), Pq : R”*" — R"*" is defined as

M; if (i) € Q

0 if (ij)¢0 2)

[Pa (M)]ij = {

fori e [1,m],j € [1,n], and where Q is the set of indices corre-
sponding to the (known, reported) sampled values, as
obtained from the instrument and after any acquisition-time
data reduction. We denote (7,7) € Q as the set Q., making Q
and Q, complementary subsets of all entries in M. We can
formulate the modeling of an IMS dataset M implicitly as a
missing value problem, wherein a low-rank matrix approxi-
mation X of M is sought in the presence of missing data. The
M-approximating matrix X can be considered an underlying
model for the observed measurements in M, and the rank of
X denotes the dimension of the subspace containing the ap-
proximating matrix (see Supplementary Materials).

Since the proposed rank-optimization problem is non-
convex, NP-hard, and thus difficult to calculate, we instead
solve a convex relaxation of the problem [see Supplementary
Equation (S1)] using the singular value thresholding (SVT) al-
gorithm (Cai et al. 2010, Candes and Plan 2010):

minimizey || X]|],,

subject to Pq(M) = Pqo(X). )
This program is shown to exactly recover the solution of the
original problem [see Supplementary Equation (S1)] under spe-
cific conditions, e.g. incoherence of bases and sampling distribu-
tion (Candes and Recht 2012). As proving a condition’s validity
is considered to be as hard as solving the original problem [see
Supplementary Equation (S1)], the conditions cannot be veri-
fied. Thus, we will assume that conditions are met.
Nevertheless, we will discuss the sampling distribution assump-
tion in the Case Study section of this article, as it is closely inter-
twined with the clipping mechanism during acquisition-time
data reduction.

The SVT’s advantage lies in utilizing matrices in sparse and
low-rank format without requiring dense memory storage,
crucial for large IMS datasets. However, the singular value
decomposition’s (SVD’s) time complexity (Dongarra et al.
2018) remains a bottleneck for MALDI-TOF IMS datasets,
leading to the adoption of a divide-factor-conquer (DFC) ap-
proach to address this issue (see Supplementary Materials).
Besides the sparse-format-aware SVT approach and its SVD-
related modification to calculate our low-rank approxima-
tion of IMS data, we also explore a second method that has a
similar solving program as in Equation (3), but it relaxes the
equality into an inequality constraint:

minimizey ||X]],,

subject to || Pa (M) - Po(X)|[2 <.
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The latter enables the use of a fixed point continuation (FPC)
algorithm for solving instead (Candes and Plan 2010, Ma
et al. 2011). This second program accounts, in addition to
missing values, for low-intensity dense noise (e.g. Gaussian
noise) in the measurements, which is also inherently present
in IMS data. The disadvantage of this algorithm is that it
requires a dense-format matrix of similar size as M to be
stored in memory (for the MALDI-TOF IMS dataset in this
article, this amounts to 1649.769 GB). As such, it is clear
that whether SVT or FPC is the better choice for solving these
optimization problems depends on the resources available
and the needs of the subsequent analysis. Finally, note that
both SVT and FPC’s practical implementations have a § and =
parameter that arise as part of their solving algorithms. These
hyperparameters require a priori setting (or optimization).
We specify their setting for each experiment in the
Supplementary Materials.

Furthermore, to deal with both SVD complexity and mem-
ory load, we make use of the DFC approach (Mackey et al.
20135). It consists of three steps and provides a framework
that we can apply to both the SVT and FPC algorithms for
obtaining an approximation X of matrix M with completion
for the complete dataset M. Its specifics are provided in the
Supplementary Materials.

3 Case studies

We demonstrate the method’s applicability across different
but relatively common instrumental platforms for IMS.
Although these case studies focus on specific datasets, the
algorithms have not been customized to any particular instru-
mental setup or IMS dataset type, suggesting that the basic
approach could be useful in other types of IMS experiments
as well. In a first case study, we establish that an IMS dataset
representation using a low-rank matrix factorization ap-
proach can outperform an equally small IMS dataset repre-
sentation using traditional peak picking in a no-missing value

Total lon Current Image

case. We demonstrate this on Fourier-transform ion cyclo-
tron resonance (FT-ICR) IMS data (Fig. 1). In the second case
study, we investigate the reconstruction error (i.e. on sam-
pled/known values, € Q), the imputation error (i.e. on miss-
ing values, € Q.) and the global error (i.e. on all entries,
€ (QUQ,)) on the same FT-ICR IMS dataset as in the first
case study (Fig. 1). To mimic missing entries in the FT-ICR
data, we implement two sampling schemes. The goal of the
third case study is to evaluate the methodology, specifically,
the SVT and FPC algorithms with the DFC approach, directly
on TOF IMS data that inherently include missing values
(Fig. 2). This dataset consists of 312 249m/z-bins for
1 320 876 spectra (1.65 TB in dense matrix format). The
evaluation is both quantitative, using an error score and com-
pression factor, and qualitative, with a focus on visualizing
advantages and limitations that are relevant to analytical
chemists. The data preprocessing can be found in the
Supplementary Materials.

3.1 Case study 1: low-rank matrix factorization
outperforms traditional peak picking

We first demonstrate that, in addition to retaining full spec-
trum information, a low-rank matrix approximation can
achieve a lower reconstruction/global error compared to
peak picking in a no-missing value case. Having established
this baseline, we can then expand our problem setting with
missing values in the second case study.

The best rank-k approximation with respect to the
Frobenius norm (a measure we will use throughout this arti-
cle) is given by the truncated SVD (Eckart and Young 1936,
Mirsky 1960). Since peak picking can be viewed as a form of
(low-rank) matrix approximation by selecting specific col-
umns from a dataset (with a column representing a selected
peak), we can assert that peak picking is, at best, as effective
as the truncated SVD. In Table 1, we observe a 39.1% differ-
ence in reconstruction error (which is equal to the global er-
ror in the absence of missing values) between the truncated

x101°
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Figure 1. MALDI FT-ICR IMS measurement of human kidney tissue. The experiment was conducted using a 15T Bruker MALDI FT-ICR mass
spectrometer (Bruker Daltonics, Billerica, MA, USA) with 50-um pixel size, covering the m/zrange from 552 to 1600 in negative ionization mode. For
further sample preparation specifics, see the Supplementary Materials. The raw data were exported to a custom file format and normalized using 5-
95%-TIC. The dataset contains 3780 spectra, each consisting of 1 372 421 m/z-bins. For further data preprocessing specifics, see the Supplementary
Materials. The top panel shows the spatial distribution, represented as a total ion current image (i.e. the summation over the normalized spectral axis).

The bottom panel displays the summed mass spectrum.
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Figure 2. MALDI qTOF IMS measurement of Staphylococcus aureus-infected mouse kidney tissue. The infection-induced abscesses are visible as dark
areas in the total ion current image. The experiment was performed using a Bruker timsToF Flex mass spectrometer (Bruker Daltonics, Billerica, MA,
USA) with 5-um pixel size, covering a m/z range from 400 to 2000 in negative ionization mode. For further sample preparation specifics, see the
Supplementary Materials. The raw data were exported to a custom file format and normalized using 5-95%-TIC. The dataset contains 1 320 876 spectra,
each consisting of 312 249 m/zbins. For further data preprocessing specifics, see the Supplementary Materials. The top panel shows the spatial
distribution of the total ion current image. The bottom panel displays the summed spectrum.

Table 1. Comparison of truncated SVD and peak picking results.?

Method Rank Reconstruction Compression factor Dense data
error % x 100% w.r.t. dense format footprint (GB)
Raw - 0 - 20.7510
Peak picking (100 peaks) 100 60.5 13724 0.0015
Peak picking (123 peaks) 123 58.2 11158 0.0019
Truncated SVD 100 21.4 11158 0.0019

? The reconstruction error is used throughout this article as a metric to measure how well (full) spectrum information is captured. A larger error implies
that more information is lost. Hence, a low error is desired. However, note that an error of 0% is (probably) not desired as the data contains noise and it
would be desirable to filter off this noise, leading to a (small) error. From this table, we observe that a factorization approach, the truncated SVD, leads to a
substantial decrease in reconstruction error (up to 39.1%) compared to peak picking. The truncated SVD is carried out by truncating an SVD performed by
the GESDD routine. Peak picking is performed by matching (i) the rank and (ii) the data footprint, i.e. MBs on disk. The raw data in dense matrix format

have a storage footprint of 20.751 GB.

SVD (factorization) and peak picking (100 peaks, see
Supplementary Materials for extended numbers of picked
peaks). Even if we compare the reconstruction error for a
similar data footprint, this still amounts to a difference of
36.8%. While a reconstruction score can be a rather abstract
form of capturing full spectrum information content, we
highlight in Fig. 3 a concrete difference between the raw IMS
data, a low-rank representation (rank-100), and a conven-
tional peak-picked representation. This example demon-
strates that not only is the overall ion intensity profile
preserved in the factorization representation but also a low-
abundant peak at m/z 778.524 is effectively retained, where
the peak-picked representation misses this peak entirely. Both
the metric used in Table 1 and the example of missing low-
abundance peaks in Fig. 3 illustrate that low-rank matrix fac-
torization can outperform traditional peak picking when it
comes to IMS dimensionality reduction. However, while
SVD is a strong factorization method, it may not always be
optimal, e.g. when dealing with missing values in the data.

3.2 Case study 2: reconstruction and imputation
quality when dealing with missing values

Having established that a factorization approach is favorable
over peak picking in a no-missing value situation, our factori-
zation approach is now evaluated in a missing value scenario.
For this case study, we therefore implement two sampling
schemes to mimic missing values in IMS data:

(a) Selects the top 8.9% of intensity values (to establish
the in-sampling set Q, i.e. the known values), with all
other (lower) intensity values removed (making up the
out-of-sampling set Q., i.e. missing values),

(B) Selects 8.9% of entries, not based on intensity but, uni-
formly at random (in-sampling set Q, i.e. the known
values), with all other values removed (out-of-sampling
set Q., i.e. missing values).

Scheme a mimics commonly employed IMS acquisition-time
data reduction, while scheme g examines discrepancies
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Figure 3. MALDI FT-ICR spectrum of a particular pixel showing the raw, low-rank, and peak-picked data in a particular m/z-window of the mass spectrum.
The area, highlighted around m/z 778.524, shows a low-abundant peak missed by the peak-picking representation, yet accurately captured and
reconstructed by the low-rank factorization representation (see Supplementary Materials for the corresponding raw and imputed ion images). This is
achieved at identical compression ratios for both representations. If low-abundant peaks are of interest, factorization-based representations are probably

better suited to reduce the dimensionality of IMS datasets.

Table 2. Comparison of SVT and FPC results, with threshold sampling scheme a.?

Input Reference M Method Rank Recor‘llstl;uctio)l‘l‘ ImputHati(()n | Glosz‘l~ !

Po (M ~X)||y Po, (M - X)| o M - X
M error = e % 100% error = b = % 100% error o X 100%
Raw Raw Peak picking 100 - - 60.5
Raw Raw SVT 100 26.6 66.7 34.7
Raw Raw FPC 100 13.7 59.2 25.0
Raw Low-rank SVT 100 26.5 51.5 31.4
Raw Low-rank FPC 100 6.2 33.2 13.8
Low-rank Low-rank SVT 100 4.9 93.1 34.8
Low-rank Low-rank FPC 100 2.6 83.4 31.0

* A low reconstruction error is observed for all methods for both raw and low-rank inputs and references, comparable to the no-missing values case. The
imputation error is more substantial. However, since these consist mostly of low-intensity values (caused by the clipping operator), their impact is small on
the global error. For SVT, we set parameters 5 = 1 and r = 103 and for FPC, we set 6 = 1.4 and 7 = 107> (see the Supplementary Materials). Peak picking is
performed by picking the 100 highest peaks of the total ion current count of the raw data. For SVT with raw input data, we obtain a 171 rank solution, and
for FPC, a 271 rank solution. For SVT with low-rank input data, we obtain a 131 rank solution, and for FPC, a 111 rank solution. We truncate all solutions
to a rank of 100 for fair comparison. The SVT took on average 64.74 min to converge, while the FPC algorithm took on average 41.89 min.

related to incoherence conditions imposed by most matrix
completion algorithms (Candes and Plan 2010, Candes and
Recht 2012). The 8.9% sampling rate was chosen for IMS fi-
delity, matching the real-world TOF IMS dataset sampling
rate in the third case study. Table 2 presents error scores for
both the SVT and FPC algorithms (without the DFC ap-
proach) using sampling scheme « on the FT-ICR IMS dataset.
It reports:

* Reconstruction error: modeling error for known entries.

* Imputation error: modeling error for missing values.

* Global error: modeling error for both known and miss-
ing entries.

Error scores were calculated with respect to both raw data
and its low-rank approximation. Therefore, the input matrix
is defined as the matrix used as input to our algorithms
[Equations (3 and 4)]. The reference matrix is defined as the

matrix used as reference in the error scores. We considered

two types of input (M) and reference (M) matrices:

* Raw: A dataset with missing values sampled directly from
the raw data (thus including high-rank noise variation),

* Low-rank: A dataset with missing values sampled from a
low-rank version of raw data, obtained through truncated
SVD with rank 100.

Using the low-rank approximation as input (M) and reference
(M) ensures that the low-rank conditions imposed by SVT
and FPC are met, reducing unwanted (often noisy) variation
from impacting the evaluation process.

Finally, note that the presented results stem from single
experiments influenced by various factors (e.g. tissue type,
sample preparation, detector type, raw data structure, noise
levels, algorithmic parameters). Consequently, they are only
evaluated relative to each other.
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3.2.1 Reconstruction, imputation, and global error

As shown in Table 2, both methods exhibit relatively low re-
construction error for non-missing values (between 2.6 % and
26.6%) across all input and reference matrices. This is com-
parable/a slight improvement with respect to the results
found in the first case study. Generally, FPC outperforms
SVT on the raw input matrix, which is expected due to FPC’s
ability to filter out small dense noise. On the other hand,
both methods show only moderate performance on imputa-
tion error for missing values (between 33.2% and 93.1%)
across all input and reference combinations, with FPC show-
ing a slight advantage. This trend, along with similar results
from the uniform sampling scheme f (see the Supplementary
Materials), suggests that while a low-rank factorization rep-
resentation does a great job for capturing non-missing value
entries, its performance as a predictor for missing values is
limited, and further investigation is needed to better under-
stand the underlying causes.

Interestingly, contrary to expectations, the uniform sam-
pling scheme f does not outperform the threshold-based sam-
pling a, despite its closer alignment with incoherence
conditions. This highlights the need to carefully consider the
implications of different sampling strategies.

Threshold sampling scheme a removes low-intensity
entries, primarily associated with noise. Hence, it requires the
imputation of noisy features by a low-rank model. However,
this scheme generally fails to satisfy incoherence conditions,
leading to poor imputation error in general. The poor perfor-
mance could, for example, be caused by the spatial correla-
tion of low-abundance values, which is particularly evident in
specific m/z-bins and distinct (positive) spatial areas across
the tissue. As illustrated in Fig. 4, under an intensity-
magnitude driven sampling scheme a, a high-intensity m/z-

m/z-bin 885.571
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bin at 885.571 is missing only a few values (white entries),
while a low-intensity m/z-bin at 756.254 can be missing
many values.

In contrast, a uniform sampling scheme g is expected to
perform better because it more closely aligns with incoher-
ence conditions and treats all ion species the same. However,
we observe worse reconstruction and imputation errors com-
pared to scheme a. This is probably related to (i) the low
8.9% sampling rate (i.e. 91.1% of all intensity entries are
missing in this dataset and there is relatively little signal to
model with), and (ii) the predominant number of low signal-
to-noise m/z-bins in the raw data. Consequently, uniform
sampling leads to a significant loss in high-valued,
“informative” entries. We expect that the imputation error
for sampling procedure a and both reconstruction and impu-
tation error for sampling procedure § could benefit from ad-
vanced feature scaling. Additionally, introducing chemical
noise (e.g. speckle noise) into our data before applying the
sampling scheme could cause high-intensity values to become
missing, albeit at a lower rate, which may further reduce the
imputation error.

Nevertheless, both methods achieve a global error that is
25.7-46.7% lower than that of peak picking, which has a
global error of 60.5%, representing a substantial improve-
ment in terms of full spectrum information, even in the pres-
ence of missing values. Moreover, note that the imputation
error does not significantly influence the global error score
since low-intensity features (at least 100-fold smaller than the
base peak) contribute less to the global error—due to the
properties of the Frobenius norm and because the sampling
scheme a retains high-intensity values (see Supplementary
Materials for ion image examples). Overall, this result implies
that full spectrum information is better captured by the
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Figure 4. MALDI FT-ICR ion images from a single m/z-bin of the low-rank input matrix with threshold sampling scheme a. The top image depicts an m/z
bin with high intensity and thus, with the scheme «, a low number of missing values. The bottom image depicts an m/z-bin with low intensity and thus,

with scheme a, a high number of missing values.
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proposed low-rank factorization methodology than by peak
picking, both when missing values are present as well as
when they are absent (see Supplementary Materials for k-
means clustering comparison).

3.3 Case study 3: advantages and disadvantages of
low-rank matrix completion for missing value TOF
IMS data

In this case study, we forgo synthetically generated missing
values, for which the ground truth is known, and apply our
approach on IMS data with intrinsic missing values.

3.3.1 Reconstruction error and compression factor

The performance metrics for this third case study, including
the reconstruction error and compression factors, are sum-
marized in Table 3. They highlight that both SVT and FPC
exhibit comparable performance. While a reconstruction er-
ror of ~20% might seem substantial at first, it actually repre-
sents a 30% reduction in information loss compared to
traditional peak picking, all while maintaining the same data
footprint and enabling full profile analysis in downstream
workflows. Furthermore, all methods demonstrate high com-
pression factors, with the IMS representation’s footprint be-
ing ~2500 times smaller compared to a dense matrix format
and 600 times smaller than a sparse matrix format, compara-
ble to those achieved by peak picking.

3.3.2 Spectral error distribution and biological interpretation

We further investigate the distribution of reconstruction
errors for individual spectra, referred to as the spectral error
score (see Supplementary Fig. S14a and c). This score is cal-
culated both for

a) the 100 m/z-bins with the largest total ion current count
across the dataset; and

b) the largest 100 m1/z-bins per spectrum, i.e. the top peaks
in each individual spectrum.

The distributions of spectral error scores reveal patterns that
correlate with biology for both SVT and FPC methods under
both scoring criteria (¢ and b). Interestingly, the spectral error
is slightly lower for the largest individual spectrum peaks (b),
as the top dataset-wide peaks (@) might not be present in ev-
ery spectrum. The error distributions appear to be a mixture
of two Gaussian-like distributions with different means and
standard deviations. Spatial reconstruction of these distribu-
tions (Supplementary Fig. S14b and d) reveals distinct tissue
regions that may correlate with the total ion current count

(Fig. 2). Moreover, no clear relationship is observed between
these distributions and the number of non-zero values per
spectrum (see Supplementary Fig. S18). This suggests signifi-
cant heterogeneity in molecular distributions within the tis-
sue, rather than issues related to incoherence, might be
influencing the reconstruction quality, especially in
Staphylococcus aureus-infected regions.

3.3.3 Methodological effects on reconstructed ion images
and spectra
Although high-intensity ion images and peaks are recovered
well (see reconstruction error and spectral error score, and
the Supplementary Materials for ion image examples), distor-
tions may occur in the reconstructed spectra and individual
ion images of very low intensity (Supplementary Fig. S15).
Commonly observed distortions included (i) small peak
shifts, i.e. shifting of peak distribution along the m/z axis, (ii)
peak widening, i.e. smearing peaks over larger m/z ranges,
and (iii) peak prediction, i.e. imputation of peaks not present
in the raw spectrum, but predicted on the basis of dataset-
wide observed patterns. It should be noted that these effects
are not necessarily incorrect, that they may arise from genu-
ine corrections for small non-linear misalignments due to in-
strumentation or noise, or from other instrumental artifacts.
Notably, these distortions are more prominent in low-
intensity peaks (mostly around and below 10° relative inten-
sity in peak height), which is consistent with the optimization
process focused on minimizing the Frobenius norm. This
introduces (iv) a recovery bias that favors better reconstruc-
tion of high-intensity peaks, as also observed in this TOF
IMS dataset. From a spatial perspective, caution is warranted
when interpreting very sparse ion images as biologically
meaningful. For example, the predicted ion image of m/z
1284.10, is based on only very few measurements (see raw
ion image of m/z 1284.10, Supplementary Fig. S15). These
low-abundant species-centric effects, whether desired or
undesired, can potentially be mitigated in the future through
advanced feature scaling and an improved model. They
should also always be considered within the context of peak
picking approaches, which often leave no record of low-
abundant species to begin with.

3.3.4 Preservation of near-isobaric species

Near-isobaric species, molecular species with nearly identical
mass-to-charge ratios but different chemical compositions,
pose significant challenges for accurate peak detection. These
species are often overlooked in peak picking due to their low
intensity relative to dominant peaks, or may be incorrectly

Table 3. Comparison of SVT and FPC results, with randomized projection divide-factor-conquer approach.?

Method Rank Reconstruction Compression factor Compression factor Dense data
error w x100% w.r.t. dense format w.r.t. sparse format footprint (GB)

Raw - 0 - - 1649.769
Peak picking (123 peaks) - 52.0 2525 642 0.653

SVT 100 21.6 2525 642 0.653

Raw - 0 - - 1649.769
Peak picking (129 peaks) - 51.4 2405 611 0.686

FPC 105 23.6 2405 611 0.686

? A substantial improvement for the reconstruction error is observed for both SVT and FPC in comparison to peak picking, while compression factors and
data footprint are equal. For SVT, we set parameters § = 1.7 and 7 = .5 and for FPC, we set 5 = 1 and 7= 1.5 x 10~ (see the Supplementary Materials). Peak
picking matches the data footprint, i.e. MBs on disk. The raw data in dense matrix format have a storage footprint of 1649.769 GB, and storing it in a sparse
matrix format (e.g. compressed sparse column) amounts to 279.648 GB. The full process of dividing, factoring, and combining took around 12 h for the SVT

and around 8 h for the FPC.
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integrated as a single species. In Supplementary Fig. S16, we
present an example of such a near-isobaric species, at approx-
imately m/z 725.53 (blue area), located close to a dominant
species at m/z 725.51 (orange area). Due to their proximity,
near-isobaric species are frequently neglected. Integrating the
orange and blue areas separately, reveals different spatial mo-
lecular distributions, indicating that these m/z-ranges corre-
spond to distinct molecular species. When applying peak
picking, the best-case scenario consists of integrating the or-
ange area and neglecting the blue area, potentially missing
the near-isobaric species. In the worst-case scenario, both
areas are integrated as one, and the dominant peak’s intensity
overshadows that of the near-isobaric species, leading to the
loss of unique spatial information. In both cases, the unique
near-isobaric information is lost. However, our methods suc-
cessfully preserve this information by approximating the full
spectrum without requiring prior specification of their posi-
tions on the m/z-axis. This ensures that near-isobaric species
are more accurately captured and represented, maintaining
the unique spatial and molecular information they provide.
Preserving near-isobaric species is an important factor in im-
proving analysis specificity. Specificity on an instrumental
and/or (bio)chemical level is an important driver in IMS
(Spraggins et al. 2019), being able to maintain it in the analy-
sis is thus of utter importance.

3.3.5 Retention of lower-intensity ion species and

bias mitigation

Our approach effectively mitigates bias by retaining lower-
intensity ion species that are commonly disregarded by peak
picking, especially when only the largest peaks are retained.
We identified several mi/z-bins representing peaks corre-
sponding to biologically relevant lipids and adducts, which
were preserved in our analysis despite their low intensity
(Supplementary Fig. S17). The specific m/z values include:

* The lipid LPE 18:1 at m/z 478.29 (confirmed by liquid
chromatography mass spectrometry),

* A 4-(dimethylamino)cinnamic acid (see Supplementary
Materials) adduct of PE O-(36:3) at m/z 917.54,

e [CL(77:2)+Na-2H]- at m/z 1552.12.

These m/z-bins are not isotopic peaks and thus provide
unique information about species abundant in different spa-
tial regions in the tissue. These examples are only a few from
a large group of peaks (1000+) that are preserved for this
TOF IMS dataset. Retaining low SNR signals enhances the
detection of species in downstream analyses, reducing confir-
mation bias by reporting on nearly all instrument-detected
peaks rather than narrowing the analysis pre-maturely to a
set of high-abundant species. Retention of lower-intensity ion
species in the computational representation and analysis is an
important factor in maintaining sensitivity throughout the
chain from sample preparation to instrument to computa-
tional analysis to biological insight.

4 Conclusions

This article explored the application of matrix factorization
algorithms on IMS data, focusing on the goal of dimensional-
ity and data footprint reduction, addressing the issue of miss-
ing values, and evaluating both quantitative and qualitative
outcomes. For a no-missing value case, a low-rank
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factorization-based representation of IMS data improved the
reconstruction error by 39.1% over peak picking while con-
currently maintaining a full spectrum profile for all spectra in
the dataset. In the missing value case, we achieved low recon-
struction errors for both SVT- and FPC-based approaches,
comparable to the no-missing value case. We also highlighted
the persistent challenge of reducing imputation errors, which
could potentially be mitigated through advanced feature scal-
ing that accounts for the specific characteristics of IMS data
and an improved data model. For the missing value case, we
demonstrated a substantial reduction in full spectrum infor-
mation loss (global error) up to 40% compared to traditional
peak picking methods, while achieving compression factors
similar to peak picking. Our experiments revealed that ma-
trix completion algorithms offer significant advantages in
maintaining sensitivity by preserving lower-SNR signals and
mitigating selection bias. At the same time, we demonstrated
the preservation of specificity by retention of near-isobaric
species in the analysis through our full profile approach.
These improvements are expected to enhance downstream
analysis by providing a richer, more complete reduced repre-
sentation of IMS data while also providing dimensionality re-
duction capabilities comparable to traditional peak picking.
The importance of this research lies in the introduction of a
framework for IMS data reduction by factorization in an
early stage and with awareness of missing values. This frame-
work enables high compression rates, up to 2500-fold com-
pared to dense matrix storage formats and up to 600-fold
compared to sparse matrix storage formats, while preserving
substantially more full profile information than peak picking.
We emphasize the importance of utilizing full spectra in
downstream analysis to avoid premature or biased informa-
tion loss, as often occurs with peak integration or peak pick-
ing. However, our methods also have limitations, such as
peak shifting and widening, low-intensity peak prediction,
and the prediction of very sparse ion images.

Looking forward, future work could focus on exploring
on-the-fly low-rank approximation schemes that can be
employed during data acquisition to enhance accuracy and
reduce computational burden. Additionally, it will be impor-
tant to incorporate considerations for non-negativity, mea-
surement sparsity, and uncertainty. Addressing issues related
to peak shifting, widening, and normalization also emerges as
a critical area for further research.

In conclusion, our study shows that low-rank factorization-
based representations of IMS data can substantially advance the
field by reducing full spectrum information loss by 30-40%
compared to traditional peak picking methods. This work high-
lights the potential of matrix factorization and, in particular,
completion algorithms for avoiding premature feature selection
and for lifting IMS data analysis to the full profile level.
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