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Phased Arrays With Shaped Elevation Patterns
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Microwave Sensing, Signals and Systems Group, Department of Microelectronics, Faculty of Electrical Engineering,

Mathematics, and Computer Science, Delft University of Technology, Delft, The Netherlands

Abstract—Both thermal and electromagnetic performance of
substrate-integrated waveguide (SIW) and microstrip line-fed
shaped-beam arrays with slot and patch radiating elements are
conducted. Three array types operating at 26 GHz band, namely
SIW slot array, SIW array with patches, and proximity coupled
patch array, are considered. The array performances regarding
shaped radiation pattern stability with frequency and maximal
temperature at the power amplifier chips are discussed. The
study highlights intriguing trade-offs between radiation pattern
performance and cooling ability in phased arrays.

I. INTRODUCTION

Next-generation base station phased arrays at millimeter-
wave bands between 24-40 GHz promise increased data rate
and connectivity [1]. However, they suffer from large beam-
forming complexity and extreme heat generation by the power
amplifiers [2]. Therefore, the electromagnetic (i.e. bandwidth,
radiation pattern) and thermal (i.e. maximal array tempera-
ture, temperature uniformity) requirements should be jointly
considered in a modern antenna system design [3].

A phased array of series center-fed subarrays with fixed
and cosecant-squared (csc2) shaped elevation pattern decreases
the complexity of beamforming at the base stations, while
ensuring equalized powers at the line-of-sight users [4]. Such
subarrays can be realized with different feeding techniques
(e.g. microstrip line, substrate-integrated-waveguide (SIW))
and with different radiators (e.g. slot, slot and patch), which
leads to different electromagnetic and thermal performances.

In complementary to the work in [5], this paper analyzes,
for the first time, the electro-thermal trade-offs in different
types of 26 GHz phased arrays with shaped elevation patterns
with a focus on array temperature distributions and frequency-
dependent radiation pattern performances.

Section II describes the antennas under investigation. Sec-
tion III and IV discuss the electromagnetic and thermal per-
formances, respectively. Section V concludes the paper.

II. ANTENNA MODEL

Three 12x12 planar arrays based on three types of 12x1
subarray designs are used: (1) SIW-fed slotted array, shown in
Fig. 1(a), which is extended from the design in [5] and adjusted
for center-feeding. (2) SIW-fed slot-patch array, shown in
Fig. 1(b), which is adopted from [5] and adjusted for center-
feeding. (3) Microstrip-line-fed proximity-coupled patch array,
shown in Fig 1(c), which is taken from [5].

The detailed design parameters of all three designs can be
found in [6]. Losses are included in simulations. Waveguide
ports are utilized to adjust feeding amplitudes and phases at
the two half-sections (up and down) of the array.

III. ELECTROMAGNETIC PERFORMANCE OF ARRAYS

The full-wave simulations of the three planar arrays were
performed in CST Microwave Studio using the time-domain
solver. Fig. 2 compares the elevation patterns radiated from
three planar arrays compared with the synthesized csc2 pattern
from a 12x1 subarray based on the array factor (excluding the
element gain) [5].

Following the error formulations in [5], Fig. 3 shows the
beam squint and csc2 pattern-shape distortion (with normal-
ized gain) comparison with frequency. Among the arrays under
investigation, the proximity-coupled array shows the most
steady pattern shape and beam pointing, which is followed by
SIW-fed slot with patch, and the most basic SIW-fed slot. The
realized gain (max. co-pol at scan direction and max. cross-
pol. in visible space) vs azimuth scan angle (0-30-60 deg.)
at 26 GHz is shown in Table I. It is seen that the proximity-
coupled array performs the best among the three phased arrays
both in co-pol and cross-pol levels.

IV. THERMAL PERFORMANCE OF ARRAYS

The thermal performances of the arrays are evaluated by
considering the power amplifier (PA) chips as heat sources.
In this study, a generic PA chip that feeds four subarrays
is considered. The thermal performance of the arrays are
obtained by exciting three PA chips simultaneously with unity
power. ANSYS ICEPAK software is employed for steady-state
computational-fluid-dynamics based thermal simulations. The
side view of one chip to array surface and the two-resistor
thermal model [3] used for the chip can be seen in Fig.
4. Following the assumption in [3], the junction-case (Rjc)
and junction-board (Rjb) resistances are equal to 10 and 15
Kelvin/Watts (K/W ).

The environment is chosen to be still air; therefore, results
represent temperature values under natural convection. The

(a) SIW-slot (b) SIW-slot-patch (c) Proximity-coup.

Fig. 1. Center-fed planar array models (probe feed is not realized).
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Fig. 2. Comparison of elevation pattern shapes at 26 GHz.

(a) Beam squint (b) Pattern distortion

Fig. 3. Comparison of beam squint and csc2-pattern distortion with frequency.

TABLE I
REALIZED GAIN VS AZIMUTH SCAN ANGLE AT 26 GHZ

Proximity-coupled SIW-slot-patch SIW-slot

Scan angle 0 deg

Max. co-pol (dBi) 25.66 24.79 24.98
Max. x-pol (dBi) -5.75 -3.88 -4.77

Scan angle 30 deg

Max. co-pol (dBi) 25.16 24.85 24.64
Max. x-pol (dBi) -4.68 -0.96 -1.66

Scan angle 60 deg

Max. co-pol (dBi) 22.88 22.22 21.87
Max. x-pol (dBi) -1.94 4.09 3.05

array surface temperature plots belonging to three different
arrays can be seen in Fig. 5. The results demonstrate that arrays
having SIW type of feeding structure perform better compared
to arrays having microstrip type of feeding regardless of the
radiator type (slot or patch). The SIW slot array thermally
performs the best due to its large metallic surface creating
a boundary between the environment and hot metal. This
boundary greatly increases the natural convection; therefore,
yields lower temperatures by 100C.

Furthermore, the maximal junction temperatures are com-
pared in Table II, where the SIW-fed slot array performance
with different ground thickness values (than the standard 0.035
mm thickness) is also included. As the SIW structure acts as
a large metallic heatsink, increasing its thickness will increase
the heat transferred from the junction, resulting in lower
junction temperatures. By arranging the ground thickness, the
junction temperature can be reduced below 1250C without

Fig. 4. Side view of the generic ICEPAK simulation environment and the
thermal model of the PA chip.

(a) (b) (c)
Fig. 5. Surface temperature of (a) SIW-fed slot array, (b) SIW-fed slot-patch,
(c) proximity-coupled patch array (rotated by 90 deg. with respect to Fig. 1).

TABLE II
JUNCTION TEMPERATURES OF DIFFERENT ARRAYS WITH NATURAL

CONVECTION (PASSIVE COOLING)

Ground Thickness [mm] Junction Temp. [0C ]

Proximity Coupled 0.035 150.2

SIW-slot-patch 0.035 143.53

SIW-slot

0.035 139.01
0.05 134.2
0.1 127.7
0.15 124.3

affecting the radiation characteristics.

V. CONCLUSIONS

For the first time, both electromagnetic and thermal per-
formances of SIW- and microstrip-fed arrays with slot and
patch radiating elements have been analyzed. Three shaped-
beam arrays are used for demonstration: SIW-fed slot array,
SIW-fed slot-patch array, and proximity-coupled patch array.
Through multiphysics simulations, it is shown that the SIW-
based slot array fully outperforms two other arrays in terms of
thermal performance yielding maximum junction temperature
to be about 100C lower than in other arrays. At the same
time, the proximity-coupled patch array shows the most stable
performance over a large frequency band. From this compar-
ison, one can conclude that SIW technology is preferable for
relatively narrow-band arrays if thermal performance matters.
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