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Aerodynamic Model Identification of the Flying V
from Wind Tunnel Data

Alberto Ruiz-García∗, Roelof Vos†, Coen C. de Visser‡

Delft University of Technology, Delft, 2629 HS, The Netherlands

The aerodynamic model identification of a novel aircraft configuration known
as the “Flying V” is presented. A global longitudinal aerodynamic model is
estimated using static wind tunnel data from a 4.6% sub-scale model. The
aerodynamic model structure, unknown a priori, is determined from the data
using a modified stepwise regression technique. Orthogonal polynomial models
using Multivariate Orthogonal Functions and non-orthogonal spline models in
the angle-of-attack dimension are defined for the estimation of the measured
aerodynamic coefficients. The estimated models are validated against a partition
of the data not used for the estimation, which shows that an adequate model
fit and good prediction capabilities are attained. Spline models achieve better
results in terms of fitting and show a better matching between the estimation
and validation data. All estimated models are considered adequate, with a
maximum relative Root Mean Square error below 8% for the polynomial models
and below 3% for the spline models.

Nomenclature

Latin Symbols
b Wing span of the half model, [m]
c̄ Reference chord, [m]
CX , CY , CZ Force coefficients in body axes, [N]
Cl, Cm, Cn Moment coefficients in body axes, [N·m]
F Force [N]
G Orthogonalization matrix
J OLS cost function
L,M,N Roll, pitch and yaw moment, [N·m]
M Moment, [N·m]
n Number of regressors in model
N Number of samples
pj Original regressors, j = 1, 2, ..., n
q Dynamic pressure, [kg·m/s2]
S Wing area, [m2]
v Residual vector
V Wind speed, [m/s]
V̂ Dimensionless wind speed, [-]
x State vector
X Regression matrix
X,Y, Z Aerodynamic forces in body axes, [N]
y Output vector
z Measurement vector

Greek Symbols
α Angle of attack, [deg, rad]
δ Control surface deflection [deg]
θ Parameter vector
ξj Orthogonal regressors, j = 1, 2, ..., n

Subscripts
0 original
Xb, Y b, Zb Balance reference frame
i, j integers

Acronyms
BLUE Best Linear Unbiased Estimator
CFD Computational Fluid Dynamics
MAC Mean Aerodynamic Chord
OJF Open Jet Facility
OLS Ordinary Least Squares
PSE Predicted Square Error
RMS Root Mean Square Error
SVD Singular Value Decomposition
VIF Variance Inflation Factors
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I. Introduction
In pursuit of a strong reduction of the global-warming impact of large, long-range transport aircraft, a
new aircraft configuration was proposed in 2015 [1]. This configuration, dubbed “Flying V”, is essentially
a highly-swept flying-wing aircraft with the passenger cabin inside the wing. Initial studies carried out
at Airbus showed how this conceptual design could theoretically outperform the Airbus A350, improving
by 10% its aerodynamic efficiency and having a slightly lower operating empty weight. This conceptual
design was improved by Faggiano et al. [2], who optimized the planform geometry and aerodynamic surfaces
increasing the aerodynamic efficiency of the aircraft to 23. Moreover, the wing parameterization utilized an
oval fuselage cross section, a structurally efficient pressure vessel devised by Vos et al. [3]. Rubio Pascual and
Vos showed that the installation of over-the-wing turbofan engines is very sensitive to location and could
cause a penalty in aerodynamic efficiency of 10% [4]. An impression of the Flying V is shown in Fig. 1.
Based on the optimized aerodynamic shape of Ref. [2], Palermo and Vos performed wind tunnel tests on a
4.6% scaled wind tunnel modelt at a Reynolds number of one million. They demonstrated an untrimmed
maximum lift coefficient of 1.02, an aerodynamic center excursion over angle of attack as much as 55%c̄ due
to vortex formation, and a trimmed maximum lift coefficients are 0.68 [5].

Fig. 1 Artist impression of the Flying V, a long-haul passenger aircraft, seating more than
300 passengers in a standard two-class configuration.

While Palermo and Vos studied the effect of control power and the mutual interaction of the trailing-edge
control surfaces, an aerodynamic model was not derived from the data. An aerodynamic model allows to
predict the response of the aircraft at conditions that might not have been tested. At the same time it
provides a better understanding of the aerodynamic behavior without detailed knowledge of the underlying
physical effects such as flow separation or vortex formation. Such a model is needed if one wants to predict
the performance and handling qualities of the aircraft. It also opens different lines of work for control system
design, such as the design of an Automatic Flight Control System or control allocation studies.

To derive the aerodynamic model of an airplane, different theoretical approaches are possible such as
panel methods, strip theory, high-fidelity CFD, or a variety of methods developed from the experience
acquired throughout the years (e.g. U.S. Air Force DATCOM) [6]. Nevertheless, even with the increased
computational power available nowadays, wind tunnel tests and flight tests are still needed to assess the
nonlinear aerodynamics that happen, for example, at high angle-of-attack.The main objective of the present
work is therefore to derive a global longitudinal aerodynamic model of a sub-scale Flying V aircraft from
wind-tunnel data.

To derive the aerodynamic model, a System Identification approach is proposed. The field of System
Identification deals with the creation of a mathematical model from data gathered during experiments in
order to describe a system based on the observed input and output behavior. To determine the aerodynamic
model of the Flying-V subscale test article, two main problems are addressed in the present work: the
determination of an adequate model structure, and the estimation of its parameters. Because of the novelty
of this aircraft configuration, no existing models are available in the open literature. Therefore, the model
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structure is determined from experimental data obtained during a dedicated wind tunnel test campaign.
To determine an adequate model structure, stepwise regression stands out as a good candidate to tackle

this problem, as it is a well known statistical technique which has been successfully used in the field of
aerodynamic model identification to derive an adequate model structure [7–10]. Several statistical metrics
can be used to help with the model selection process. In some references where Multivariate Orthogonal
Functions are used the model selection process is automatic and based on a single metric, the Predicted
Square Error (PSE), and regressors are added to the model in order of greatest to smallest reduction of
the cost function [11–13]. On the other hand, usual stepwise regression is based on correlations and on
the partial and total F-statistic[14] for the addition of regressors and final model selection. More complex
estimation methods such as B-splines[15, 16], Multivariate Simplex Splines[17], or Neural Networks[18] are
not considered for this early phase of the study. The main reasons are the limited data available and the
uncertainty if such powerful methods are indeed required.

In the present work orthogonal polynomial models using Multivariate Orthogonal Functions [11] and
non-orthogonal spline models are postulated. To compare their prediction accuracy, independent model
identifications are performed. It should be noted that only static wind tunnel data is used for the derivation
of the aerodynamic model. Therefore, a dynamic model could not be estimated. Nevertheless, once dynamic
data from a scaled flight test article is available, the presented technique can also be used to estimate a
complete dynamic model of the Flying V.

The paper is structured as follows. A description of the wind tunnel model and the conducted experiments
is given in Section II. The mathematical models for the polynomial and spline estimation are presented in
Section III. The methodology for the model structure determination and the metrics used for the model
selection are discussed in Section IV. The estimated polynomial and spline models are presented in Section
V and mutually compared according to their statistical qualities. Finally, some concluding remarks are given
in Section VI.

II. Experiment Description
The data for the present work come from a series of wind tunnel tests performed in January 2019. A 4.6%-
scaled half model of the Flying V was built to conduct these tests. It was designed using the so-called Froude
scaling law in order to duplicate the inertial and gravitational effects in a later flight test and hence to be able
to predict the rigid-body modes for the full-scale aircraft [19]. The scaling factor of 4.6% was the maximum
possible given the current drone regulations in the Netherlands. It corresponds with a model weight of 25
kg. Engine and winglet were left out of the study and were not implemented in the model. However, the
methodology proposed in this work does not depend on the aircraft configuration, and can be used again
once these components are added to estimate their contributions.

The wind tunnel used for the tests was the Open Jet Facility (OJF) from the Faculty of Aerospace
Engineering of Delft University of Technology. Its cross section is a 285×285 cm octagon, and the wind speed
ranges from 3 to around 30 m/s. The velocity deviations in the vertical plane measured two meters from
the outlet are smaller than 0.5%, and the longitudinal turbulence intensity level is smaller than 0.24% [20].
A CAD model of the setup and the basic dimensions of the wind tunnel model are shown in Fig. 2. The
different components of the setup can be distinguished in the figure. The model is elevated from the bottom
wall of the wind tunnel in order to avoid interactions with the wind tunnel-wall boundary layer. A reflection
plane was placed in order to aerodynamically isolate the wing from the connection to the balance. The
connection between wing and balance was shielded from the wind by means of an aerodynamic cover, which
connected to both the splitting plane and the reflection plane and prevented the air from influencing the
balance measurements.

The test-article is a thin-walled fiber-glass wing, with three control surfaces. The exact dimensions and
positions of this model are reported in a previous study [5]. The reference area of the model is S = 0.9345
m2, has a semi span of b/2 = 1.495 m, and a reference chord of c̄ = 0.729 m. The wing consists of two
tapered wing trunks with a leading-edge kink positioned at 63% of the semi-span. Inboard of the kink, the
leading-edge sweep angle measures 64.4 degrees, while outboard of the kink, the leading-edge sweep angle
is 37.8 degrees. The aspect ratio of the wing is 4.78 with a taper ratio of 0.131. The outer wing is twisted
linearly, with a washout angle of 4.3 degrees at the wing tip.

The aerodynamic forces and moments were measured using a six-axis balance. The wind speed was
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OJF Test section

Flying V model (left wing)

Reflection plane

Splitting plane

Balance + turntable

Support table

Rotating circles
connected to the 
turntable and balance

1101.02

OJF Test section
130.1

1
4
9
5

Aerodynamic shield

Fig. 2 Drawing of the experimental setup in TU Delft Open Jet Facility (OJF). Isometric
view (left) and side view with basic dimensions (right). All dimensions in millimeters.

automatically controlled by the wind tunnel through the fan rotational speed and measured at the beginning
of the test section by means of a pitot tube. The control surfaces deflections were measured using calibrated
potentiometers connected to the actuators’ shafts. The angle of attack was set by a turntable connected to
the wing. As no other angle-of-attack measurements were available, the commanded position was assumed
to equal the actual angle-of-attack of the wing. A summary of the instrumentation used for the test and its
basic characteristics are shown in Table 1, where the values for the standard deviation of the measurements
come from the calibration of the balance and the potentiometers. No calibration data is available for the
wind speed measurements or the angle of attack from the turntable.

Table 1 Available instrumentation for the wind tunnel tests

Measurement Sample rate Std. deviation Remarks

Force (balance X-axis) FXb [N] 2 kHz 0.02 Average over 10 s.
Force (balance Y -axis) FY b [N] 2 kHz 0.05 Average over 10 s.
Force (balance Z-axis) FZb [N] 2 kHz 0.05 Average over 10 s.
Moment (balance X-axis) MXb [N·m] 2 kHz 0.01 Average over 10 s.
Moment (balance Y -axis) MY b [N·m] 2 kHz 0.01 Average over 10 s.
Moment (balance Z-axis) MZb [N·m] 2 kHz 0.07 Average over 10 s.
Wind speed V [m/s] 2 kHz - Average over 10 s.
Angle of attack α [deg] - - Set by the turntable
Control surface deflections δi [deg] 100 Hz 0.5 Average over 10 s.

III. Parameter Estimation
As discussed in the introduction, the aerodynamic model identification of the Flying V presents two main
challenges: a model structure determination, in which the dependencies of each aerodynamic coefficient
with the independent variables must be found, and a parameter estimation, where the values of the set of
parameters that best describe the system of interest are estimated. The latter is treated in this section, since
the model structure determination makes use of the parameter estimation to find a suitable model structure.

In the wind tunnel experiment, both the dependent and independent variables can be measured directly.
Therefore, the estimation can be done using an equation-error method. It is assumed that the measurements
of the dependent variables (the aerodynamic forces and moments) are corrupted with noise, and that the
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independent variables (airspeed, angle of attack, and control surface deflections) are known without error.
Each observation can be described by the measurement equation:

z(i) = y(i) + v(i), i = 1, 2, ..., N (1)

where z is the measurement vector, y is the true value of the dependent variable, and v is a vector of
measurement errors. These three vectors have dimensions of [N × 1], where N is the number of samples.
The dependent variables are the dimensionless aerodynamic coefficients of forces and moments in body axes.
The forces and moments are assumed to depend on a state vector which includes the independent variables
(also called regressors) that are varied during the tests.

CX(x) =
X(x)

qS
, Cl(x) =

L(x)

qSb

CY (x) =
Y (x)

qS
, Cm(x) =

M(x)

qSc̄

CZ(x) =
Z(x)

qS
, Cn(x) =

N(x)

qSb

(2)

The state vector is given by: x = [α, V̂ , δ1, δ2, δ3], where V̂ is the wind speed normalized with a reference
speed in order to avoid large differences in the magnitudes of the regressors.

A. Model Postulation
An estimator is a function that finds the values of the parameter vector θ̂ that best describes the observed
model behavior, that is, the fitting of the model output to the measured data when the same inputs are
applied. The estimator to construct is limited by the available information about the parameters and noise
statistics. Since the probability density of the parameters and the noise is unknown, the model is formulated
according to the least squares assumptions: θ is considered to be a vector of unknown constant parameters,
and v is considered to be a random vector of measurement noise. With these assumptions, the least squares
regression finds the best estimate in a single shot for a given model structure. It is assumed that the
dependent variable, that is, each aerodynamic coefficient, can be written as:

y = θ0 +

n∑
j=1

θjpj , (3)

or:
y = X · θ; X = [1,p1,p2, ...,pn], (4)

where pj are functions of the independent variables, X is the regression matrix, and θ is the parameter
vector to be estimated. Each aerodynamic coefficient Ca is modeled as:

Ca = Ca0 +

nα∑
n=1

Cαn · αn +

nδ1∑
n=1

Cδn1
· δn1 +

nδ2∑
n=1

Cδn2
· δn2 +

nδ3∑
n=1

Cδn3
· δn3 +

nV̂∑
n=1

CV̂ n · V̂ n + [coupling terms] (5)

An underlying assumption with this approach is that the aerodynamic forces and moments can be approx-
imated arbitrarily close by a multivariate Taylor series in the independent variables. Because of this, they
become inaccurate far from zero, especially for high angles-of-attack as it is confirmed experimentally in Sec.
V).

Because of the known shortcomings of polynomial models, spline models are developed such that larger
regions of the flight envelope can be covered with a single global model. The simple “+ basis function”
is used for this spline implementation because of its simplicity and its reported adequacy [7, 8, 15]. Only
spline terms in the angle of attack are included. Each aerodynamic coefficient Ca = CX , CY , ... is modeled
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as follows:

Ca = Ca0 + Caα(α) + Caδ1(α, δ1) + Caδ2(α, δ2) + Caδ3(α, δ3) + CaV̂ (α, V̂ ) + [coupling terms];

Caα(α) =

nα∑
n=0

Cαn · αn +

k∑
l=1

Cαd
l
(α− αl)

d
+;

Caδi(α, δi) =

nδi∑
n=0

Cδni
· δni +

k∑
l=1

Cδiαl
· δi · (α− αl)

0
+, i = 1, 2, 3;

CaV̂ (α, V̂ ) =

nV̂∑
n=0

CV̂ n · V̂ n +

k∑
l=1

CV̂ αl
· V̂ · (α− αl)

0
+.

(6)

where n• is the maximum order considered for each of the regressors, k is the number of knots, and (α−αl)
d
+

is defined as:

(α− αl)
d
+ =

{
0 α < αl

(α− αl)
d α > αl

(7)

A knot of order d has Cd−1 continuity; that is, the model has d − 1 continuous derivatives at that knot
location. The knots are placed every three degrees in the angle-of-attack range to model local nonlinearities.
To implement the spline model, each knot is modeled as a different regressor, and, as such, has its own
associated coefficient θ̂j .

Coupling terms between the angle-of-attack and the other independent variables are included in the
spline terms Caδi and CaV̂ . However, because of the high collinearity among regressors with knots in close
locations, only a few of these spline couplings are included. Usual polynomial coupling terms such as (αd ·δei )
are also allowed in the model in order to improve the fitting without such large penalties in the parameter
variances.

B. Parameter Estimation Method
To find the parameter vector estimate θ̂, Ordinary Least Squares (OLS) is used. It is the simplest form of least-
squares regression, and has been successfully applied in the past for aerodynamic model identification [11,
21, 22]. To derive the OLS estimator, it is assumed that 1) the independent variables are not contaminated
with noise, 2) the dependent variable is contaminated with uniformly distributed noise (white noise), and 3)
the residuals are uncorrelated with the independent variables. If these assumptions hold, the Gauss-Markov
Theorem states that the OLS estimator is the BLUE [23] (Best Linear Unbiased Estimator, where “best”
implies minimum variance) and it can also be shown that the estimates are consistent and efficient[24].

The errors (residuals) are assumed to be zero-mean and to have a constant covariance:

E[v] = 0, E[vvT ] = σ2I (8)

The well-known cost function for OLS and the parameter vector estimate that minimizes it are:

J =
1

2
[z−Xθ]T [z−Xθ] =

1

2
[vTv], θ̂ = (XTX)−1XT z (9)

In order to derive confidence bounds for the parameters and the model output the noise is assumed to be
given by a normal distribution, an assumption which is checked afterwards. The measurement error variance
σ2 is unknown and needs to be estimated from the measured data. An unbiased but model-dependent
estimate for σ2 can be found based on the residuals:

σ̂2 =

N∑
i=1

[z(i)− ŷ(i)]2

N − n
, (10)

which only gives adequate results if the model structure is adequate [14].
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IV. Model Structure Determination
Up to this point, it has been assumed that the model structure, that is, the functions pj that define the
regression matrix, is known. However, they also need to be determined since the result of the estimation
differs greatly from one model structure to another. An adequate model structure is such that 1) sufficiently
fits the data, 2) allows for a successful parameter estimation, and 3) has good prediction capabilities[22].
The number of parameters in the model should be kept as small as possible since large numbers of regressors
lead to overparameterization issues. The residual between the model and the measurements always decreases
with the addition of regressors, so the model fit to the data always improves. However, noise and outliers
eventually enter the model, which degrades its prediction capabilities. This section presents the method to
determine the model structure.

A. Modified Stepwise Regression
The core of the model structure determination routine is the so-called Modified Stepwise Regression as it is
presented by Klein et al. [25]. Usually, stepwise regression relies only on statistical metrics to select which
regressors are to enter or leave the model. However, experience shows that this leads to a large number of
terms in the model, which increases overfitting and worsens the prediction capabilities. Therefore, a user-
guided selection is done, and priority is given to regressors that carry some useful meaning (e.g. Cmα) and
to regressors with low degrees (that is, α2 before α7). The model selection process starts by including the
bias in the model, and then the following steps are repeated at every iteration:

1) Forward selection: correlations of the regressors with the dependent variable and their partial F-
statistic are calculated to select a significant regressor to enter the model.

2) Backward elimination: significance of all regressors is evaluated by means of a newly calculated F-
statistic after the addition of the last regressor. If some regressor’s significance is below a certain
threshold, it is removed from the model to keep it as simple as possible.

3) Definition of new dependent variable: a new dependent variable is calculated subtracting the current
model output to focus on the characteristics that have not been modeled yet.

4) Model analysis: at the end of each iteration, a model analysis is performed in order to evaluate each
model’s performance and select the best one. This analysis includes the calculation of covariances,
correlations, collinearity among regressors, and residual statistics.

The stepwise regression routine stops when no more regressors are available or when the remaining regressors
are not significant enough to be included. In the specific case of the spline models, since each knot location
and degree is modeled as an independent regressor, this method finds the most significant knot locations
and the most significant degrees. These are the only ones present in the final models.

B. Regressors Orthogonalization
Since only five independent variables can be used to construct the regressors (wind speed, angle of attack,
and the deflections of the three control surfaces), the pool of regressors needs to be defined with combina-
tions of these regressors up to different orders, such as αp, V p, αp · δqi , . . . . With such a model, collinearity
problems arise during the model structure determination routine, leading to the ill-conditioning of (XTX)−1,
which worsens the accuracy of the estimation. To solve these collinearity problems, an orthogonal pool of
regressors is created using the method presented by Morelli and DeLoach, which is based on a Gram-Schmidt
orthogonalization procedure and allows for an easy de-orthogonalization [26]. Starting from the bias term
(p0 = ξ0 = 1), all regressors are successively orthogonalized with respect to the previous ones. The jth

orthogonal function is given by:

ξj = pj −
j−1∑
k=0

γkjξk; γkj =
ξTk pj

ξTk ξk
, j = 1, 2, ..., n (11)

By rearranging the indices γkj in a matrix G, one can express the orthogonal regressors (now the columns
of the regression matrix X, in order to keep the same notation) in terms of the original regressors (columns
of X0) as:

X = X0 ·G−1; X = [ξ0, ξ1, ..., ξn], X0 = [p0,p1, ...,pn] (12)
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C. Metrics and Variables for Model Selection
The decision for the model selection is based on several statistical metrics instead of relying on a single one.
The same methodology for model selection is applied for both the orthogonal polynomial models (Eq.5) and
the non-orthogonal spline models (Eq. 6).The paragraphs below discuss the various statistical metrics that
are used in the present work for model selection.

The overall fit to the data is assessed with the relative Root Mean Square error (RMSrel), normalized
with the difference between the maximum and minimum values of the variable being estimated:

RMSrel(v) =

√
1

N

N∑
i=1

v(i)2

|max (z)−min (z)|
. (13)

A relative RMS value of 1 indicates that the error is of the order of magnitude of the range of the dependent
variable. Morelli suggests in Ref. [11] to use the Predicted Square Error as an useful metric for model
selection, based on the work of Barron [27]. It measures the model fit through the Mean Square Error (the
square of the RMS), and includes an overfit penalty which increases linearly with the number of regressors
in the model n:

PSE =
1

N

N∑
i=1

v(i)2︸ ︷︷ ︸
Mean Square Error

+ σ̂2
max

n

N︸ ︷︷ ︸
Overfit penalty

(14)

The value of σ̂max needs to be estimated from the data. Barron proposes in the same reference an estimate
which is independent of the model structure:

σ̂2
max =

1

N

N∑
i=1

(z(i)− z̄)2 (15)

The well-known coefficient of determination R2 is also used, which measures the proportion of the variation
explained by the terms other than the bias [28] :

R2 = 1−

N∑
i=1

v(i)2

N∑
i=1

(z(i)− z̄)2
(16)

Finally, the overall statistical significance of the regression is measured with the F-statistic:

F =
N − n

n− 1
·

R2

1−R2
(17)

High values of both the F-statistic and the coefficient of determination are indicators of good model quality.
The parameter variances and covariances are also used to decide on the model selection. They can be

regarded as a measure of the sensitivity of the estimates to the noise, so they should be kept as small as
possible. Finally, a residual analysis for each model is performed to guarantee that the assumptions made
for the OLS estimation are consistent.

V. Results
In the results of this study are presented. First, the dataset is described in subsection A. Subsequently, the
polynomial model and spline model are presented in subsections B and C, respectively. In subsection D, the
performance of these two models is compared.
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A. Data Coverage
The designed test matrix is constrained by the maximum speed achievable by the wind tunnel (∼ 30 m/s)
and the balance load limits stemming from the large size of the model. A fine coverage in the α−δi planes is
achieved, and a coarser one for the airspeed, which is limited by the available test time and the wind tunnel
operation. In a large number of runs the test conditions are randomized in order to minimize the effect of
systematic bias errors[29].

The data is split into an estimation and a validation dataset. The validation dataset is defined using
roughly half of the runs from the wind tunnel test, and the model from the estimation dataset is tested
against it to minimize overparameterization issues. The region of validity of the model is defined by the
convex hull of the estimation dataset, which is the smallest convex set that contains the data. Outside this
region no measurements are taken, so one should not extrapolate outside it since new, unmodeled effects
might occur. Figure 3 shows two cuts of the estimation convex hull, along with the points from both datasets.
It can be seen that all validation data points are inside the estimation convex hull so the estimated models
are valid inside the validation dataset as well.
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Fig. 3 Convex hull of the estimation dataset (α− V and α− δ1 cuts)

B. Polynomial Model Estimation
Different pools of regressors were used for the different coefficients, and the order of the regressors for the
orthogonalization is carefully chosen for each of them, by applying a previous stepwise regression to the data
without orthogonalizing the regressors. The most correlated regressors found with the stepwise regression
routine are good candidates to be the first ones to be orthogonalized to keep the model as compact as
possible. The maximum degree of the regressors is driven by the value of the parameter variances, which
increases with higher order regressors.

Once the model structure has been determined and fixed for each coefficient, the de-orthogonalization
is done in order to recover the dependencies in terms of the original independent variables. The final
aerodynamic model structure for the longitudinal coefficients after de-orthogonalizating is shown below, and
the values of the parameters including their confidence bounds (confidence level α = 0.05 → 95%) are
presented in Tables 2, 3, and 4.
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CX = CX0 + CXα · α+ CXα2 · α2 + CXα3 · α3 + CXα4 · α4 + CXδ1 · δ1+
+ CXδ2 · δ2 + CXδ3 · δ3 + CXδ21

· δ21 + CXδ22
· δ22 + CXV̂ · V̂ + CXV̂ 2 · V̂ 2

(18)

CZ = CZ0 + CZα · α+ CZα2 · α2 + CZα3 · α3 + CZδ1 · δ1 + CZδ2 · δ2+
+ CZδ3 · δ3 + CZV̂ · V̂

(19)

Cm = Cm0 + Cmα · α+ Cmα2 · α2 + Cmα3 · α3 + Cmα4 · α4 + Cmδ1 · δ1+
+ Cmδ2 · δ2 + Cmδ3 · δ3 + Cmδ21

· δ21 + Cmδ22
· δ22 + Cmδ1δ2 · (δ1 · δ2)+

+ Cmαδ21
· (α · δ21) + Cmαδ22

· (α · δ22) + Cmα2δ1 · (α
2 · δ1)+

+ Cmα2·δ2 · (α
2 · δ2) + CmV̂ · V̂ + CmV̂ δ1

· (V̂ · δ1)

(20)

Table 2 CX polynomial model coefficients

Parameter Value ± confidence bounds

CX0 −2.029 · 10−2 ± (8.556 · 10−4)

CXα 4.288 · 10−2 ± (2.662 · 10−3)

CXα2 9.792 · 10−1 ± (2.227 · 10−3)

CXα3 −1.617 · 10−2 ± (7.731 · 10−2)

CXα4 −1.519 ± (1.639 · 10−1)

CXδ1 1.060 · 10−2 ± (6.473 · 10−4)

CXδ2 7.162 · 10−3 ± (1.193 · 10−3)

CXδ3 6.893 · 10−4 ± (1.294 · 10−4)

CXδ21
−3.928 · 10−2 ± (2.945 · 10−3)

CXδ22
−2.047 · 10−2 ± (4.027 · 10−3)

CXV̂ 8.727 · 10−3 ± (3.708 · 10−4)

CXV̂ 2 −3.075 · 10−3 ± (3.318 · 10−4)

Table 3 CZ polynomial model coefficients

Parameter Value ± confidence bounds

CZ0 −7.583 · 10−2 ± (5.310 · 10−3)

CZα −1.943 ± (1.564 · 10−2)

CZα2 −1.026 ± (1.288 · 10−1)

CZα3 1.866 ± (2.343 · 10−1)

CZδ1 −1.353 · 10−1 ± (5.239 · 10−3)

CZδ2 −8.462 · 10−2 ± (6.915 · 10−3)

CZδ3 −5.012 · 10−3 ± (7.192 · 10−4)

CZV̂ 3.747 · 10−2 ± (7.564 · 10−3)
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Table 4 Cm polynomial model coefficients

Parameter Value ± confidence bounds

Cm0 3.361 · 10−2 ± (2.788 · 10−3)

Cmα −1.069 · 10−1 ± (5.938 · 10−3)

Cmα2 −2.883 · 10−1 ± (6.506 · 10−3)

Cmα3 −8.492 · 10−1 ± (1.839 · 10−1)

Cmα4 4.088 ± (3.731 · 10−1)

Cmδ1 −1.482 · 10−1 ± (2.139 · 10−3)

Cmδ2 −1.092 · 10−1 ± (1.433 · 10−3)

Cmδ3 −6.377 · 10−2 ± (3.673 · 10−3)

Cmδ21
1.039 · 10−1 ± (1.608 · 10−2)

Cmδ22
3.400 · 10−2 ± (1.127 · 10−2)

Cmδ1δ2 6.120 · 10−2 ± (1.248 · 10−2)

Cmαδ21
−5.459 · 10−1 ± (5.529 · 10−2)

Cmαδ22
−2.125 · 10−1 ± (4.211 · 10−2)

Cmα2δ1 1.729 · 10−1 ± (4.450 · 10−2)

Cmα2δ2 1.775 · 10−1 ± (3.443 · 10−2)

CmV̂ 8.071 · 10−3 ± (3.664 · 10−3)

CmV̂ δ1
2.203 · 10−3 ± (4.492 · 10−4)

C. Spline Model Estimation
Splines are used to cope with the inability of polynomials to model the complete measured range of angles of
attack. Once the spline estimation is completed, Multivariate Orthogonal Functions are introduced using the
already estimated model structure to sort the regressors orthogonalization in order of significance. Although
the orthogonal spline models exhibit smaller variances and no collinearity, the non-orthogonal models show
a closer similarity between the estimation and validation dataset (fit, whiteness, and normality) keeping the
variances sufficiently small, so they are accepted as better models and are the only ones shown here.

Since non-orthogonal regressors are used for the spline estimation, the collinearity among them needs to
be addressed to validate the estimation. The equations for the longitudinal coefficients are presented below,
and the value of the coefficients in Tables 5, 6, and 7.

CX = CXα · α+ CXα2 · α2 + CXδ1 · δ1 + CXδ2 · δ2 + CXδ3 · δ3+
+ CXV̂ · V̂ + CXV̂ 2 · V̂ 2 + CXα2

20
· (α− α20°)

2
+

(21)

CZ = CZ0 + CZα · α+ CZδ1 · δ1 + CZδ2 · δ2 + CZδ3 · δ3 + CZV̂ · V̂+

+ CZα1
11

· (α− α11°)+ + CZα2
17

· (α− α17°)
2
+

(22)

11

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
O

ct
ob

er
 2

6,
 2

02
0 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

0-
27

39
 



Table 5 CX spline model coefficients

Parameter Value ± confidence bounds

CXα 4.590 · 10−2 ± (3.49 · 10−3)

CXα2 7.484 · 10−1 ± (1.29 · 10−2)

CXδ1 8.103 · 10−3 ± (1.86 · 10−3)

CXδ2 6.727 · 10−3 ± (1.50 · 10−3)

CXδ3 7.246 · 10−3 ± (1.69 · 10−3)

CXV̂ 2.276 · 10−2 ± (2.03 · 10−3)

CXV̂ 2 1.011 · 10−2 ± (1.66 · 10−3)

CXα2
20

1.921± (7.88 · 10−2)

Table 6 CZ spline model coefficients

Parameter Value ± confidence bounds

CZ0 8.554 · 10−2 ± (5.53 · 10−3)

CZα 1.869± (8.62 · 10−3)

CZδ1 1.284 · 10−1 ± (5.31 · 10−3)

CZδ2 7.395 · 10−2 ± (3.70 · 10−3)

CZδ3 4.303 · 10−2 ± (4.77 · 10−3)

CZV̂ 3.126 · 10−2 ± (5.14 · 10−3)

CZα11
5.559 · 10−1 ± (2.44 · 10−2)

CZα2
17

3.176± (1.22 · 10−1)

Cm = Cm0 + Cmα · α+ Cmδ1 · δ1 + Cmδ2 · δ2 + Cmδ3 · δ3 + CmV̂ · V̂+

+ Cmδ1δ2 · δ1δ2 + Cmδ2δ3 · δ2 · δ3 + Cmδ22
· δ22 + Cmαδ22

· α · δ22+
+ Cmα2

20
· (α− α20°)

2
+ + Cmα2

26
· (α− α26°)

2
++

+ Cmδ1α2 · δ1 · (α− α2°)
0
+ + Cmδ1α23 · δ1 · (α− α23°)

0
++

+ Cmδ2α−7
· δ2 · (α− α−7°)

0
+ + Cmδ2α14

· δ2 · (α− α14°)
0
++

+ Cmδ3α8
· δ3 · (α− α8°)

0
+

(23)

D. Model Comparison and Discussion
The characteristics of the estimated models are presented in Table 8, which includes the errors from the
estimation and validation data sets as well as the all the other metrics used for the selection. All models
are considered adequate in terms of model fit. Their high values of the F-statistic and the coefficient of
determination are indicators of a good model. The maximum absolute relative residuals for the models are
presented in Table 9, where it can be seen that the pitching moment coefficient has relatively large values for
the maximum residuals (especially in the validation dataset), which could indicate some model deficiencies
or the presence of outliers in the data due to measurement errors. The spline models show a better fitting
except for the forward force coefficient CX . It is also clear that the values of the studied metrics for the
estimation and validation datasets match better for the spline models, which suggests a degree of overfitting
present in the polynomial ones.

Because of the large range of angles-of-attack that the models aim to approximate (α ∈ [−10, 30]°),
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Table 7 Cm spline model coefficients

Parameter Value ± confidence bounds

Cm0 2.440 · 10−2 ± (3.02 · 10−3)

Cmα 1.461 · 10−1 ± (3.41 · 10−3)

Cmδ1 9.921 · 10−2 ± (7.30 · 10−3)

Cmδ2 8.065 · 10−2 ± (9.34 · 10−3)

Cmδ3 7.077 · 10−2 ± (4.85 · 10−3)

CmV̂ 1.383 · 10−2 ± (2.81 · 10−3)

Cmδ22
4.729 · 10−2 ± (1.05 · 10−2)

Cmαδ22
2.243 · 10−1 ± (3.75 · 10−2)

Cmδ1δ2 4.165 · 10−2 ± (1.11 · 10−2)

Cmδ2δ3 3.312 · 10−2 ± (1.08 · 10−2)

Cmα2
20

5.545± (2.50 · 10−1)

Cmα2
26

8.353± (1.48 · 100)
Cmδ1α2 4.691 · 10−2 ± (7.99 · 10−3)

Cmδ1α23 5.040 · 10−2 ± (9.99 · 10−3)

Cmδ2α−7
3.080 · 10−2 ± (9.87 · 10−3)

Cmδ2α−7
3.383 · 10−2 ± (3.87 · 10−3)

Cmδ3α8
1.476 · 10−2 ± (5.73 · 10−3)

Table 8 Model characteristics comparison

RMSrel (est.) RMSrel (val.) F-statistic R2 PSE σ̂2

CX polynomial 1.42 % 2.42 % 2.452 · 104 99.74% 5.422 · 10−5 7.193 · 10−6

CX spline 1.99% 1.97% 1.602 · 104 99.49% 5.164 · 10−5 1.411 · 10−5

CZ polynomial 1.42 % 2.38 % 3.870 · 104 99.70% 1.881 · 10−3 4.236 · 10−4

CZ spline 0.75% 0.96% 1.249 · 105 99.92% 1.9 · 10−3 1.165 · 10−4

Cm polynomial 2.54 % 7.24 % 2.516 · 103 98.00% 9.416 · 10−5 4.732 · 10−5

Cm spline 2.13 % 2.75 % 2.894 · 103 99.27% 9.084 · 10−5 3.362 · 10−5

Table 9 Maximum absolute relative residuals

max(|vrel|) (est.) max(|vrel|) (val.)

CX polynomial 4.96% 6.52%
CX spline 7.11% 6.57%

CZ polynomial 3.99% 6.20 %
CZ spline 2.35% 2.92%

Cm polynomial 9.51% 17.60%
Cm spline 9.32% 10.62%
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polynomial models fail to explain some of the nonlinearities present in the data. A solution could be to split
the data using the value of the angle of attack, which would lead to a piecewise continuous model.

Figure 4 shows two slices from the polynomial and spline model of the pitching moment coefficient, along
with the calculated prediction confidence bounds. Normality of the residuals was assumed to calculate these,
and normality tests were passed with positive results. The normality assumption is also reinforced since, as
can be seen in the figure, most data points fall within the calculated confidence bounds.
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Fig. 4 α − δ1 slice of the polynomial and spline model for the pitching moment coefficient
(colored surface) and prediction confidence bounds (transparent surfaces)

It also is interesting to compare the “local model quality” of the spline models with respect to the
polynomial models. That is, how the model quality changes for the different values of the independent
variables. In this case, the angle-of-attack is the variable of choice since it is the most significant one. To do
so, the validation residuals are split according to their value of the angle-of-attack in segments of 5 degrees,
and the relative RMS is calculated for each of these segments. The results are shown in Fig. 5, where it can
be seen that the overall local quality of spline models is better, and has a smaller spatial variability than
in the polynomial models. It can also be observed that the assumption that the residuals are uncorrelated
with the independent variables (angle-of-attack in this case) holds much better for the spline models than
for the polynomial ones.

From the fitting point of view, it is clear that spline models are superior. The spline models used in
this work are, however, susceptible to collinearity issues. Therefore, it is worth to check a limited set of
indicators to ensure that collinearity remain within acceptable bounds. Commonly used indicators are the
Variance Inflation Factors (VIF), which measure the collinearity of the jth regressor with respect to the rest
of the regressors in the model, and how large the parameter confidence intervals become with respect to
those from an orthogonal framework [14] . The condition indices of the Singular Value Decomposition (SVD)
of the regression matrix are also used, which measure the ratio between the maximum singular value and
the remaining ones. A large value indicates that the associated eigenvalue is very small compared to the
largest one, or in other words, that two regressors are almost linearly dependent. The collinearity indicators
from the spline model for the pitching moment coefficient are shown in Fig. 6 as an example, since it is
the coefficient with the highest levels of collinearity. It can be seen how some of the parameters exhibit
reasonably large VIFs, which show that there is room for improvement by using an orthogonal framework.
On the other hand, all SVD condition indices are smaller than the limit proposed by Klein for moderate
collinearity [21].

Even though all collinearity indicators remain within acceptable bounds a priori, a sensitivity analysis is
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Fig. 5 RMS of five-degree segments in the angle-of-attack range to assess local spatial quality
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Fig. 6 Variance Inflation Factors and SVD condition indices of the spline model for Cm
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conducted on the parameters to see how their change would affect the accuracy of the estimation. To do so,
they are perturbed with a value equal to their estimated confidence bounds and the difference in the value
of the RMS is recorded. The results are presented in Fig. 7, along with the values for the polynomial model
as a comparison with an orthogonal framework.
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Fig. 7 Parameters sensitivity analysis results for the polynomial and spline model for Cm

The results, as one may expect, are better for the polynomial model, with a maximum increase of ∼ 0.15%
of the RMS on the validation dataset, whereas for the spline model the maximum increase is more than double
this value. On the other hand, the increase in RMS in the estimation and validation datasets behaves more
similarly for the spline model, which is, of course, a desirable outcome, which hints to overfitting of the
polynomial models. All in all, the increase of the error from these perturbations is fairly small, and the effect
of the present collinearity in the spline models is considered relatively harmless.

VI. Conclusions
A first global aerodynamic model for the Flying V has been estimated from longitudinal, static wind tunnel
data from a 4.6% half model. Orthogonal polynomial models and non-orthogonal spline models in the angle-
of-attack dimension were used for the model estimation, achieving compact models with tight confidence
bounds. They were validated against a partition of the data showing good prediction capabilities and
reasonably random, uncorrelated residuals. The polynomial models attained good fitting, with a relative
RMS for the validation dataset being around 2.5% for CX and CZ , and about 7% for Cm. Spline models
outperformed the polynomial models, with a relative RMS below 2% for CX , 1% for CZ , and 3% for Cm,
which demonstrates their higher approximation capability. The resulting models are analytical functions in
the state and control variables, which can be used to determine the aerodynamic forces and moments of the
subscale model at any given flight condition inside the models’ region of validity.

The polynomial models show some model deficiencies due to the large range of the measured angles
of attack. Data partitioning is recommended to keep adequate polynomial models, which would lead to a
piecewise continuous aerodynamic model. On the other hand, the proposed spline implementation is rather
limited since it only considers splines in the angle-of-attack dimension and no continuity constraints are
enforced at the knots. Increasingly complex spline models, such as B-splines or multivariate simplex splines,
seem a natural next step to improve the estimation. Since no previous validated data from the Flying V
is available, it is uncertain whether the dataset is free of systematic errors and errors in the independent
variables, which would introduce a bias in the estimates. Sub-scale flight tests, or further investigations in
the wind tunnel are required in order to gain more confidence in the measured data.
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