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2 1. Introduction

How do we explain the world around us? Two wise men started the search for an
answer thousands of years ago and became two of the most influential philosophers.
Their debate still remains with us today. Plato believed true knowledge comes from
the mind, which is rational, and not from the senses, which can be fooled. In
contrast, Aristotle believed the senses allow us to learn and interact with the world
around us. Despite this ongoing debate, we use our senses to experience the
world around us. Of all our senses, the sense of sight contributes the most to our
awareness. From the moment we wake up until the time we go to sleep; we use
our sense of sight in almost everything we do. However, nowadays, 285 million
people worldwide experience problems with visual perception and are either blind
or have an impaired visual function [1]. This significantly influences their quality
of life and creates problems in their daily activities. The number of people with
visual problems is expected to grow even further as the population is ageing and
many eye diseases are age related [2]. Furthermore, various eye diseases cause
around 80 % of the existing visual impairment [1]. Many of them can be prevented,
slowed down or cured by applying existing knowledge and technology [1, 2]. Hence,
efficient ways to prevent, diagnose or cure eye diseases are required. This includes
both the examination of the retina and the extraction of imaging biomarkers for
disease diagnosis, prognosis and/or monitoring.

1.1. Human eye
Known as the most complex organ after the brain, our eyes are responsible for
receiving 80 % of the information from the surrounding world that reaches us [3].
With only 2.5 cm in diameter and more than two million operational parts, the eyes
allow us to sense shapes, colors, and dimensions of objects in the world around
us. However, this would not be possible without light. To be able to see anything,
the eyes first need to collect, focus and process light. Light is reflected from an
object, moves through space and reaches our eyes. The light that enters the eye
is projected onto the back of the eyeball and captured and processed by the retina
after which the stimuli are being sent to our brain, which deciphers the information
about the appearance, location and movement of the objects we are looking at.

1.2. Formation of an image and the anatomy of the
eye

After reaching our eyes, light first passes through the transparent layer of tissue at
the front of the eye, the cornea. The cornea is the eye’s main focusing element,
responsible for transmitting and refracting the light into the eye. It is located on
top of the iris, which with the pupil controls the amount of light that enters the eye.
Afterwards, the light passes through another transparent structure, the lens, which
focuses the light onto the retina. Before it reaches the retina, the light passes
through a dense, transparent gel-like substance, called the vitreous that fills the
eyeball and ensures the eye holds its spherical shape. Finally, the light hits the
retina, which reacts to the presence and intensity of light by sending impulses to
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Figure 1.1: An illustration of a cross-section of a human eye with indications of its most important parts.

the brain via the optic nerve (a bundle of more than a million nerve fibers). Within
the retina, the macula is the area that contains special light-sensitive cells allowing
us to see fine details. Located behind the retina are the choroids, responsible to
nourish the retina through the blood vessels, which grow in the choroid. Finally, the
white outer coat surrounding the eye is the sclera. A schematic of the cross-section
of the eye is shown in Figure 1.1.

1.3. The retina and retinal layers
The retina is a light-sensitive tissue structure located at the back of the eye. The
inner (anterior) surface of the retina is adjacent to the vitreous of eye, whereas the
outermost parts (superior) of the retina are tightly attached to the choroids. The
retina is composed of various types of cells, illustrated in Figure 1.2, which form
different layers as follows:

1. The inner limiting membrane (ILM) is the boundary between the retina and
the vitreous.

2. The retinal nerve fiber layer (RNFL) consists of fibers from ganglion cells,
which leave the retina through the optic nerve head.

3. The ganglion cell layer (GCL) contains the nuclei of the ganglion cells.

4. The inner plexiform layer (IPL) contains the axons of bipolar cells and
amacrine cells and the dendrites of ganglion cells.

5. The inner nuclear layer (INL) contains the nuclei of horizontal cells, bipolar
cells, amacrine cells, and Müller cells.

6. The outer plexiform layer (OPL) contains cone and rod axons, horizontal cell
dendrites and bipolar dendrites.
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Figure 1.2: An illustration of a cross-section of the retina showing the organization of cells that compose
the retinal tissue.

7. The outer nuclear layer (ONL) contains cell bodies of cones and rods.

8. The external limiting membrane (ELM) contains clusters of junctional com-
plexes between the Müller cells and the photoreceptors.

9. The ellipsoid zone (EZ) is mainly formed by mitochondria.

10. The integration zone (IZ) corresponds to the contact cylinder which are
formed from the tips of the RPE cells that encase part of the cone outer
segments.

11. The retinal pigment epithelium (RPE) contains supporting cells for the neural
portion of the retina.

1.4. Eye diseases
A healthy eye is essential for good vision. Thus, when vision starts to deteriorate, it
is important to examine the eye as well as the retina. With this examination, it can
be determined whether the cause of the change in vision is an eye disease because
early diagnosis and treatment can help to preserve good vision and prevent vision
loss. There are many types of eye diseases, however within this thesis, the focus is
only on a few of them: glaucoma, age-related macular degeneration, central serous
retinopathy and retinitis pigmentosa.

Glaucoma, known as ”the sneak thief of vision”, is a retinal eye disease which
causes irreversible damage to the optic nerve head and is as such one of the leading
causes of irreversible blindness in the world [3]. The disease is associated with an
increased intra-ocular pressure and develops slowly without noticeable sight loss
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Figure 1.3: Images that simulate the effect that some eye diseases have on vision. a) A scene as
viewed by a person without any visual impairment. The same scene as viewed by a patient suffering
from glaucoma, AMD, CSR and RP is shown in b), c), d) and e), respectively.

for many years. If diagnosed early, the disease can be controlled and permanent
vision loss can be prevented [4].

Age-related macular degeneration (AMD) is among the leading causes of vision
loss in people of age 50 and older [3]. It causes damage to the macula, which
results in a blurred area near the center of vision. Over time, the blurred area may
grow larger or blank spots in the central vision may develop. By itself, it does not
lead to complete blindness, however, the loss of central vision can interfere with
simple everyday activities.

Central serous retinopathy (CSR) is a disorder causing temporary visual impair-
ment. When active, it is characterized by a build up of fluid around the central
macular area which results in blurred or distorted vision. The vast majority of fluid
will resolve spontaneously within three to four months and vision usually returns to
normal.

Finally, retinitis pigmentosa (RP) refers to a group of genetic disorders that
affect the retina’s ability to respond to light. The disease is inherited and causes
slow vision loss, beginning with decreased night vision and loss of peripheral vision.
Eventually, it leads to blindness. There is no cure for retinitis pigmentosa, however,
there are treatments that have shown to slow down the disease progression [5].

All aforementioned eye diseases affect the retina in a different manner and,
therefore are the cause of different types of vision loss. An example of how vision
is affected by each of the mentioned diseases is shown in Figure 1.3. To further
investigate the causes of these and other eye disease and their effect on the retina
and its layers, an efficient way to examine the retina in vivo is needed.
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Figure 1.4: a) A schematic of the Michelson interferometer. A single ray of light is split into two rays by
a beam splitter. Each of the two rays than travels along a different optical path (one to the reference
mirror, the other to the sample). The rays are reflected back to the beam splitter where they are
reunited to produce an interference pattern. The interference pattern depends on the difference in the
path length of the two rays and will be imaged by the detectors. b) A schematic of the SD-OCT system.
The system contains the interferometer, however the interference between the sample and reference
beams is detected as a spectrum. The spectrum is spread out a grating and captured by a high-speed
line camera. The resulting spectrum is then inverse Fourier transformed to provide a depth scan.

1.5. Optical coherence tomography
With the rapid development of imaging technologies in the last decade, 3D ex-
amination of the retina has become possible. By means of an imaging technology
called optical coherence tomography (OCT), in vivo images of retinal structures with
a high spatial resolution can be produced [6]. OCT operates similarly to ultrasound,
but uses light instead of sound. The light of a low coherence light source is split,
by a beam splitter, into the two arms of an interferometer: the sample arm and the
reference arm. The light of the sample arm enters ones eye and a small fraction is
reflected (back-scattered) from the retina. This small amount of the reflected light
interferes with the light of the reference arm. The described principle is the basic of
an OCT system and is often implemented via Michelson interferometer [7], which
is illustrated in Figure 1.4a. In spectral domain OCT (SD-OCT), the length of the
reference arm is kept fixed [8, 9]. The light passes through a spectrometer, that
can reveal the depth from which the light was reflected. The spectrum is captured
by a charge-coupled device (CCD) array and digitized. Dedicated signal processing
of the recorded spectrum including a Fourier transform yields the reflected signal
as a function of depth in the sample, often referred to as an A-line. Scanning the
beam over the retina creates an image that shows the internal detail of the retina,
including the retinal layers. The schematic drawing of a SD – OCT system is shown
in Figure 1.4b.

In general, OCT provides a technique for fast, non-invasive and non-contact
investigation of the retina as well as structural changes that occur as a result of
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Figure 1.5: Typical example of a macular and peripapillary B-scan from a healthy subject is shown in a)
and b), respectively. Arrows point to the fovea (center of the eye’s sharpest vision) in the macular scan
and optic disc (blind spot) in the peripapillary scan.

retinal diseases. Example of a slice (B-Scan) from the 3D volume of the macular
(around the macula) and peripapillary (around the optic nerve head) region of the
retina are shown in Figure 1.5.

1.6. Challenges for automatic segmentation of reti-
nal structures

Accurate quantification of retinal structures in 3D scans as acquired with OCT sys-
tems provides clinically useful information about the retina. It enables valuable
input for the diagnostics, prognostics and monitoring of retinal diseases. Extraction
of quantitative image-based features that provide relevant biological information,
referred to as imaging biomarkers, can also be performed. However, manual ex-
traction of these imaging biomarkers is a potentially subjective and time-consuming
job due to the required precision and large data size. Hence, an objective and au-
tomatic tool that extracts clinically useful information from OCT images, such as the
thickness of layers or the presence and extent of emerging pathologies, is needed.

However, automatic segmentation of the retinal layers and pathologies remains
a challenging task. First, OCT images suffer from speckle noise [10], which de-
creases the quality of an image and limits the contrast and thus complicates precise
identification of boundaries of retinal layer. Second, thin layers in the outer retina
are difficult to detect as their size is on the order of the axial resolution and their
contrast can be similar to that of the noise [11]. Third, a single tissue layer, which
is often considered as a homogeneous region, shows large intensity fluctuations.
This is partially due to the decrease in sensitivity of the OCT system as a function
of depth, which causes the intensity of a (tilted) homogeneous tissue layer to de-
crease with depth [12]. Further, abrupt intra-layer intensity variations can also be
caused by a disease [13]. Fourth, the blood vessels in the anterior retina absorb a
large amount of the incoming light and thereby cast a shadow onto the posterior
layers. This creates large lateral discontinuities in signal intensity of these layers,
which hamper an automatic segmentation task. Finally, large disruptions of the
retina, called lesions, might occur as a result of a disease. This can affect both
the topology and morphology of the retina. Further, lesion segmentation can be
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Figure 1.6: Typical examples of B-scans from diseased eyes with arrows pointing to some of the seg-
mentation challenges present in these eyes. In glaucoma affected eye, shown in a), arrows point to the
RNFL, whose thickness is reduced when compared to healthy eyes. In scan of patients suffering from
AMD, shown in b), lesion called drusen appear underneath the retina, as indicated by the arrow. In OCT
scans of eyes affected by CSR, shown in c), arrows point to areas which change in intensity as well as
presence of fluid pockets. Finally, scans of eyes affected by RP, shown in d), reveal that several outer
retinal layers are no longer visible. Arrows point to area where the visibility of retinal layers varies.

challenging as lesions can vary considerably in size, shape and location. Figure
1.6 shows examples of a typical B-scan of eyes affected by glaucoma, age-related
macular degeneration, central-serous retinopathy and retinitis pigmentosa in which
some of the segmentation challenges are indicated.

1.7. Attenuation coefficient
Image contrast in OCT images originates from variations in reflectivity of different
structures. As many eye diseases are accompanied with cellular changes in the
tissue, this is bound to induce changes to the reflectivity properties of the corre-
sponding tissue. One example of this is glaucoma, a retinal disease characterized
by the loss of ganglion cells and their axons (situated within the RNFL) [14]. As a
results of this cell loss, the internal reflectivity of the RNFL was shown to be reduced
in eyes affected by glaucoma when compared to healthy eyes [15]. However, inter-
pretation of OCT signals is not straightforward as it depends on many other factors,
such as the strength of the light beam and the scattering properties of tissue that
light passes through before reaching a certain depth.

Hence, attenuation coefficients were proposed as a means to characterize the
optical scattering properties of the tissue [16]. As a tissue property, attenuation
coefficients are illumination invariant and many imaging artefacts are reduced. As
such, the investigation of attenuation coefficient is more reliable that the raw OCT
signal. The reduction in imaging artefacts can be observed from Figure 1.7 where
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Figure 1.7: An example of the raw OCT B-scan (a)) and the corresponding attenuation coefficient image
(b)). Arrows point some of the imaging artefacts that are present in the OCT data, variance in intensity
of the RPE and gaps caused by blood vessels.

both a raw OCT and its attenuation coefficient image are shown.
The conversion of the raw OCT data to attenuation coefficients is based on the

principle behind Beer-Lambert’s law. This law relates the attenuation of light to the
properties of the medium through which the light is travelling as follows:

𝐿 = 𝐿 𝑒 (1.1)

where 𝐴 are the optical properties of the medium, 𝐿 and 𝐿 are the power of light
before and after traveling through a certain medium, respectively. In OCT, the light
passes through the tissue, interacts with it and is reflected from a certain depth.
This attenuated and back-reflected signal is picked-up by the systems’ detector.
Thus, by using Beer-Lambert’s law under assumptions that almost all light is atten-
uated within the imaging depth of the OCT system and that the fixed fraction of the
attenuated light is reflected back towards the OCT system’s detectors, the detected
OCT signal can be written as:

𝐼(𝑧) = 𝛼𝛽𝜇(𝑧)𝐼 𝑒 ∫ ( )d (1.2)

where 𝛼 represent a fraction of attenuated light that is back scattered from a certain
depth 𝑧, 𝛽 is a conversion factor that accounts for the digitization of the signal, 𝜇(𝑧)
is depth-dependent attenuation coefficient and 𝐼 is the irradiance of the incident
light beam at depth 𝑧 = 0 [15].

1.8. Thesis outline
The research project, described in this thesis, took place as part of a collaboration
between Delft University of Technology and Rotterdam Ophthalmic Institute. The
goal of the project was to develop an automatic segmentation framework for retinal
layers and lesions in 3D peripapillary and macular SD-OCT scans, which allows
extraction of clinically useful imaging biomarkers, such as the presence, thickness
or attenuation coefficient of a certain layer and the presence and spatial extent of
lesions.

Chapter 2 addresses retinal layer segmentation by introducing a loosely cou-
pled level set framework. The framework operates on 3D OCT volumes after con-
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version into attenuation coefficients. All interfaces between retinal layers are seg-
mented simultaneously by utilizing image data and anatomical knowledge about the
retina. The performance of the method was evaluated on peripapillary and macu-
lar SD-OCT scans of healthy subjects and glaucoma patients by comparing manual
annotations and results obtained from the automatic segmentation method.

Chapter 3 presents an extension of our original loosely coupled level sets
framework to eyes suffering from two topology-disrupting retinal diseases: CSR
and AMD. The main contributions are the introduction of auxiliary interfaces for
pathologies, the ability to cope with abrupt local intensity variation within layers
and robust initialization of the level sets. The approach was evaluated on eyes
affected by CSR and AMD.

Chapter 4 presents a method for the segmentation of the outer retinal layers,
which simultaneously determines the number of visible layers and segments them.
The method is based on a model selection approach that balances the goodness of
fit with the model complexity of competing models. The accuracy and reproducibility
of the method were evaluated on healthy eyes, as well as its ability to segment eyes
affected by RP.

Chapter 5 presents a clinical application of the method presented in Chapter
2. The presented method was utilized for a volume segmentation of the RNFL, after
which attenuation and thickness maps of the RNFL were created. Afterwards, the
correlation between local glaucomatous damage in both RNFL attenuation coeffi-
cients and RNFL thickness maps and areas of decreased retinal sensitivity in visual
field maps was visually determined.

Chapter 6 presents the conclusion and outlook.
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Abstract
Optical coherence tomography (OCT) yields high-resolution, three-
dimensional images of the retina. Reliable segmentation of the retinal
layers is necessary for the extraction of clinically useful information. We
present a novel segmentation method that operates on attenuation co-
efficients and incorporates anatomical knowledge about the retina. The
attenuation coefficients are derived from in-vivo human retinal OCT data
and represent an optical property of the tissue. Then, the layers in the
retina are simultaneously segmented via a new flexible coupling approach
that exploits the predefined order of the layers. The accuracy of the method
was evaluated on 20 peripapillary scans of healthy subjects. Ten of those
subjects were imaged again to evaluate the reproducibility. An additional
evaluation was performed to examine the robustness of the method on a
variety of data: scans of glaucoma patients, macular scans and scans by a
two different OCT imaging devices. A very good agreement on all data was
found between the manual segmentation performed by a medical doctor and
the segmentation obtained by the automatic method. The mean absolute
deviation for all interfaces in all data types varied between 1.9 and 8.5 μm
(0.5-2.2 pixels). The reproducibility of the automatic method was similar to
the reproducibility of the manual segmentation.
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2.1. Introduction
Today, 200 million people worldwide are either blind or have poor visual function
which can significantly deteriorate their quality of life [1]. Around 80% of the
existing visual impairment is caused by various eye diseases that can be prevented,
slowed down or even cured by applying existing knowledge and technology [1].
Furthermore, since life expectancy is rising and many eye diseases are age-related,
the number of people with reduced visual function and blindness is expected to
increase by 1-2 million people per year [2]. To accommodate such a large number
of people with visual problems, an efficient way to prevent or cure eye diseases is
necessary. To diagnose and monitor many eye diseases, one needs to investigate
the retina. With the rapid development of imaging technologies in the last decade,
a three-dimensional examination of the retina has become possible.

Optical coherence tomography (OCT) provides a non-invasive, non-contact
imaging technique that can be used to produce in vivo images of retinal struc-
tures with a high spatial resolution [3]. Accurate quantification of retinal structures
in these 3D scans can be a very tedious job due to the required precision and large
data size. Therefore, automatic extraction of clinically useful information from OCT
scans, such as the thickness of a layer, is required. A critical step for quantifying
the thickness of retinal layers is segmentation. To achieve reliable measurements
of the thickness, the segmentation needs to be both reproducible and accurate.
Furthermore, the segmentation method should perform well on a range of images
as one would like to use one algorithm to segment peripapillary and macular scans
obtained from different OCT systems. For screening purposes, the method should
be able to pick up subtle differences between healthy and diseased eyes, whereas
for disease staging and treatment monitoring small changes in diseased eyes must
be detected.

Early work on segmentation of retinal layers included the analysis of intensity
variations [4], intensity based Markov models [5] and adaptive thresholding [6].
These approaches suffered from intensity inconsistencies within the same layer
and discontinuities in layers due to shadows caused by retinal blood vessels. As
a consequence, more advanced methods were necessary which lead to the devel-
opment of complex segmentation approaches. These approaches include active
contours [7, 8], level sets [9–12], dynamic programming [13–17] and graph cuts
[18–21]. Machine learning based approaches which rely on support vector ma-
chines [10, 22], cluster analysis [23, 24] and random forest classifiers [12, 20, 25]
were also presented. Although most of the aforementioned methods perform rea-
sonably well, they may yield anatomically incorrect results. Anatomical knowledge
such as the order of the layers is exploited only when segmenting OCT data by
using a hierarchical approach [8, 10, 14, 16, 17, 20, 24, 25]. However, the se-
quential segmentation of layers from the inside out may propagate errors to the
next layer without the possibility to correct for them. A method that simultane-
ously segments multiple layers has been published recently [12]. In this method,
a digital homeomorphisms constraint [26] is used to preserve the right relationship
between layers. This constraint, although preserving the arrangement of the layers
in the retina, lacks the ability to incorporate prior knowledge, e.g. thicknesses of
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Figure 2.1: A few consecutive B-scans of attenuation coefficients comprising the 3D retina. The blue line
indicates an A-scan. The 3D coordinate system is indicated with arrows in the top left corner. The full
names of all retinal layers and their abbreviations are: 1) vitreous; 2) retinal nerve fiber layer (RNFL); 3)
ganglion cell layer (GCL) with inner plexiform layer (IPL); 4) inner nuclear layer (INL); 5) outer plexiform
layer (OPL); 6) outer nuclear layer (ONL); 7) inner segment (IS) with outer segment (OS); 8) retinal
pigment epithelium (RPE); 9) choroid. Notations used for layers ( , ) and interfaces ( , ) in the
segmentation framework are shown with yellow letters.

layers. Furthermore, this method is based on a random forest classifier which, like
other machine learning approaches [10, 20, 22–25], may learn the changes in the
appearance of the layers, but operates in a non-transparent manner. Hence, it is
difficult to interpret how it works and how it can be further improved. Prior knowl-
edge on thicknesses of layers has been used as minimum and maximum distances
between two simultaneously segmented surfaces [18–20]. As a result, a specific
shape was imposed on each surface. Further, most of the mentioned methods, with
exception of [17, 20, 24], were evaluated only on healthy and/or diseased eyes of a
particular area of the eye imaged with a single OCT device. Finally, a more detailed
and complete review on recent research in retinal layer segmentation can be found
elsewhere [27, 28].

This paper presents a new method for segmenting the retinal layers in OCT data.
The method greatly extends our preliminary two-dimensional version [11]. It op-
erates on the attenuation coefficients [29] derived from OCT data and incorporates
anatomical knowledge about the retina. The attenuation coefficient is an optical
property of the tissue, and as such is not affected by common imaging artefacts.
A retinal layer’s attenuation coefficient is therefore more uniform than its OCT sig-
nal. Hence, complex segmentation approaches that adapt to intensity variations
are not needed and a method that operates in a transparent manner can be used.
Anatomical knowledge about the retina such as the order of the layers is exploited.
In addition, we can incorporate a priori knowledge about the attenuation coefficient
and thickness for one or more layers. Simultaneous segmentation of the interfaces
between the layers assures anatomically correct segmentation results, without er-
ror propagation as would occur in sequential processing. Interfaces are detected
by using a level set approach, where prior knowledge about the retina and image
data is incorporated in a probabilistic framework. An example of a few consecu-
tive attenuation coefficients images of the retina with layer annotations is shown in
Figure 2.1. Results on the following interfaces are presented: the vitreous - RNFL,
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the RNFL - GCL, the IPL - INL, the INL - OPL and the OPL - ONL, as well as the IS
ellipsoid and the RPE boundary. The accuracy and reproducibility of the method is
evaluated as well as the applicability to segment glaucoma affected eyes, different
areas of the eye and two different OCT modalities (spectrometer based and ex-
perimental OFDI OCT system with a central wavelength of 870 nm and 1050 nm,
respectively). Validation is performed by comparing the automatically and manually
segmented interfaces.

2.2. Methods
Starting from the raw OCT data, a number of processing steps was performed to de-
lineate the interfaces between the retinal layers. Figure 2.2 presents the flowchart
of the developed segmentation method which consists of four main groups: pre-
processing, retinal feature detection, noise suppression and the actual layer seg-
mentation method. First, pre-processing transformed the intensities of the raw
A-scans to attenuation coefficients. Then, registration was performed to re-align all
B-scans. Second, we detected and segmented the optic nerve head (ONH), blood

Figure 2.2: Flowchart of the presented retinal layer segmentation method comprised of four main stages
indicated by different colors: pre-processing, segmentation of key retinal features, noise suppression,
and the actual retinal layers segmentation.
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vessels, and the retina. The ONH and blood vessels are structures that disturb the
normal appearance of the layers in the retina and should therefore be addressed
differently from the layers themselves. Furthermore, we provided a rough estima-
tion of the inner and outer boundaries that surround the retina. Third, we applied a
structure-driven anisotropic Gaussian filter to suppress noise in the data. Fourth, we
applied the developed layer segmentation method, which simultaneously detected
multiple interfaces that separate the retinal layers, to the filtered data. Within the
method a novel coupling approach was used, which exploited anatomical knowledge
of the retina to ensure anatomically correct results.

The pre-processing, retinal feature detection and noise suppression are de-
scribed in 2.2.2, 2.2.3 and 2.2.4, respectively. The developed segmentation frame-
work is described in 2.3, including the initialization (2.3.5) and a description of the
selection of parameter values (2.3.6).

2.2.1. Data
The OCT data for this study was obtained from an ongoing study on glaucoma in
the Rotterdam Eye Hospital (Rotterdam, the Netherlands). Both healthy subjects
and glaucoma patients were randomly selected with the inclusion criteria of no
ophthalmic disease for the healthy subjects and moderate glaucoma for the patient
group. Moderate glaucoma was defined based on a visual field test (Humphrey
Field Analyzer; Carl Zeiss Meditec, USA) with a mean deviation between -6 and -12
dB.

Peripapillary and macular scans were acquired with two imaging devices: the
Spectralis OCT system (Heidelberg Engineering, Germany) and an experimental
optical frequency domain imaging (OFDI) system [30]. The spectrometer-based
Spectralis has a broadband light source with a central wavelength of 870 nm. The
scan protocol for peripapillary scans combined 193 B-scans composed of 512 A-
scans of 496 pixels into one volume. For macular scans the volume contained 143
B-scans composed of 384 A-scans of 496 pixels. The system employed an eye-
tracker and was set to average five B-scans before moving to the next B-scan. The
field-of-view was 20∘x20∘ and 15∘x15∘ for peripapillary and macular scans, respec-
tively. The scanned data was strongly anisotropic with a voxel size of approximately
3.9x11.3x30 μm in z, x and y direction which are the axial, the fast lateral and the
slow lateral scanning axes, respectively.

The swept source based experimental OFDI system operated at a central wave-
length of 1050 nm. The scan protocol acquired 1100 A-scans of 1024 pixels and

Table 2.1: Number and types of scans used in this study

Number of subjects Area of the retina Imaging device Condition

20 Peripapillary Spectralis Normal
10 Macula Spectralis Normal
10 Peripapillary Spectralis Glaucoma
8 Peripapillary 1050 nm OFDI Normal



2. Loosely coupled level sets for simultaneous 3D retinal layer
segmentation in optical coherence tomography

2

19

Figure 2.3: Venn diagram showing how the 27 healthy subjects are divided over the 38 ”normal” scans
in the three groups (peripapillary and macular scans imaged with Spectralis and perippapillary scans
imaged with 1050 nm OFDI).)

combined them into a B-scan. A full volumetric scan contained 200 B-scans. The
system did not employ an eye tracker and no B-scan averaging was used. The
field-of-view was 20∘x20∘. The voxel size was approximately 4.7x5.5x25 μm in z,
x and y direction.

Table 2.1 provides a summary on the number and type of subjects and scans
used in this study and Figure 2.3 shows the intersection of healthy subjects be-
tween different types of scans. One B-scan was randomly selected from each vol-
umetric scan for manual annotation. Manual segmentation was done on a slice-
by-slice basis by a medical doctor using ITK-SNAP (publicly available at http:
//www.itksnap.org). The expert was asked to delineate all interfaces between
the vitreous-RNFL and the RPE boundary. No special instructions were given how
to handle the layers that encompass blood vessels and what to do near the ONH.

2.2.2. Pre-processing
Pre-processing comprised two consecutive steps. First, the intensities of the raw
OCT data were compensated for noise and depth-dependent decay after which
they were transformed into attenuation coefficients [29]. The noise floor was es-
timated from image data that did not contain any object. For the 1050 nm OFDI
system, this resulted in a constant noise level. For the Spectralis data, however,
a depth-dependent noise signal was found which may be caused by limitations of
the spectrometer and post-processing of the spectra. Further, the signal decay was

modelled as: 𝑅(𝑧) = ( sin( )) 𝑒𝑥𝑝 ( ln( )𝑧 ), where 𝑧 is the normalized depth
and 𝜔 denotes the width of the Gaussian component of the decay [31]. The value
for 𝜔 was determined from the signal that was generated by putting a constant scat-
tering surface at different depths. It was estimated to be 0.81 and 2.1 for the 1050
nm OFDI and the Spectralis OCT, respectively. Newly acquired data was adjusted
for noise and signal decay by subtracting the estimated noise level and dividing the
results by the estimated signal decay. The corrected data was then transformed
into attenuation coefficients. Being a tissue property, attenuation coefficient is illu-
mination invariant and various artefacts such as intensity fluctuation within layers

http://www.itksnap.org
http://www.itksnap.org
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Figure 2.4: An example of the raw OCT B-scan (left), which was transformed according to the manufac-
turers recommendations for display purposes using √(.), and the corresponding attenuation coefficient
image (right).

are therefore largely reduced. An example of the raw OCT B-scan, with clearly no-
ticeable intensity fluctuations within the RNFL, and the corresponding attenuation
coefficient image, with more homogeneous intensity within all layers, is shown in
Figure 2.4.

Second, despite the integrated eye-tracking of the Spectralis OCT, some mis-
alignment between consecutive B-scans remained. The misalignment violates the
assumptions of spatial correlation between adjacent B-scans and continuity of the
interfaces. As a result, the interfaces cannot be segmented correctly in and near
misaligned scans. Therefore, a 2D cross-correlation was applied to adjacent pairs
of B-scans to calculate the lateral and axial displacement. This information was
then used to align all B-scans to the central frame to account for possible eye or
head motion.

2.2.3. Segmenting retinal features: optic nerve head, retina
and vasculature

The optic nerve head (ONH) is the location where ganglion cell axons exit the
eye to form the optic nerve (the ”blind spot”). As a result, there are no retinal
layers within the ONH area. Detection of the optic nerve head was done with a
3D structure tensor by using a measure of planarity defined as , where 𝜆
and 𝜆 are the largest and the second largest eigenvalue, respectively [32]. The
planarity measurement shows high values where the structure is planar and low
values where it starts to become cylindrical, spherical or isotropic. In our data, the
layers in the retina have a planar structure and the optic nerve head interrupts that
planar structure. The Gaussian scales at which the gradient 𝜎 and smoothing 𝜎
of the structure tensor were computed corresponded to the smallest layer thickness
(𝜎 = 20 μm) and to the diameter of the optic cup (𝜎 = 575 μm), respectively. The
A-scans in which all pixels had a planarity measure smaller than 0.5 were considered
to belong to the ONH area. The detected region was then expanded by including
ten neighbouring A-scans from each side of the region.

The inner and outer boundaries of the retina are represented by respectively
the vitreous-RNFL interface and the RPE boundary. A rough indication of these
boundaries was found by using a minimum cost path search applied to individual
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B-scans [33]. The cost function was computed from the Gaussian derivative in z-
direction(𝑔 ) by 1 + (𝑔 ∗ 𝐼)/(max(𝑔 ∗ 𝐼)). Two additional nodes with zero cost,
that connect each pixel in the first and the last A-scans were added. These nodes
acted as the source and sink, so no initial points needed to be selected. The RPE
boundary was detected first and the area below it was excluded from the retina.
Next, the vitreous-RNFL interface was detected.

The blood vessels in the retina, which provide a continuous blood supply to the
inner retinal cells, interrupt the normal appearance of the layers and it is unclear
to which layer these vessels belong to. Blood vessel detection was accomplished
on a so called ”en-face image” which was created as an axial summation of the
3D-OCT data between the vitreous-RNFL interface and RPE boundary as retrieved
in the aforementioned retina segmentation. Then, a vesselness enhancement filter
[34] was applied to the en-face image using a Gaussian scale that corresponded
to the smallest vessel width (𝜎 = 7 μm). Finally, the vessels were segmented by
thresholding the image and removing all connected objects that were smaller than
15 pixels.

2.2.4. Noise suppression
To suppress noise with a minimal increased blur, images were smoothed by using
a steerable anisotropic Gaussian filter [35]. The filtering was applied to individual
B-scans based on the orientation obtained from the 2D structure tensor. The scale
of the Gaussian derivatives to compute the gradient corresponded to the smallest
layer thickness (𝜎 = 20 μm) and the Gaussian tensor smoothing corresponded
to the smallest inner retina thickness (𝜎 = 120 μm). The filtering was performed
only along the estimated orientation with the anisotropic Gaussian filter size set to
𝜎 = 32 μm. This means that structures smaller than 32 μm will be suppressed.
During the filtering, normalized convolution [36, 37] was used to avoid blurring
across the blood vessels.

2.3. Segmentation framework
The presented level set framework simultaneously optimized the segmentation of
all interfaces in the retina based on image information and anatomical knowledge
about the properties of the layers. At each iteration of the optimization process,
histograms of the attenuation coefficients were derived for each layer and the like-
lihood of all pixels along the interface belonging to the adjacent layers was deter-
mined. Then, prior information about the order of the layers and, if applicable,
for one or more layers a prior for the attenuation coefficients and/or thickness was
incorporated. Finally, geometric constraints were imposed on the solution to con-
trol the smoothness of the resulting interfaces and to prevent the interfaces from
folding around noise structures.

To simultaneously segment all interfaces, loosely-coupled level sets were intro-
duced. Image-based information and prior information were combined in a proba-
bilistic framework and were used, together with the geometric constraints, to steer
the level sets.
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2.3.1. Representation of layers and interfaces
Before describing the segmentation method in more detail, some notation and def-
initions used throughout the paper are presented. As mentioned, the segmentation
method detects the interfaces that separate the layers. One way of representing an
interface is by using an implicit level set function (𝜙). Such function is then evolved
by solving the partial differential equation: +𝐹|∇𝜙| = 0, where 𝐹 stands for the
force acting on the level set [38]. In our application, an interface is defined as the
zero level set 𝐶 = {𝑥, 𝑧, 𝑦|𝜙(𝑥, 𝑧, 𝑦, 𝑡) = 0}. The interfaces are numbered starting
with the vitreous-RNFL interface and every interface 𝐶 is represented by its own
level set function 𝜙 . The 𝑖 layer (𝑙 ) is enclosed by two interfaces, 𝐶 on top and
𝐶 at bottom. The volume in-between those two interfaces is denoted with Ω . The
(downward pointing) normal vector can be expressed as n = ∇

|∇ | = (𝑛 , 𝑛 , 𝑛 ).
Finally, the update of the level set, in our approach, is given as:

𝜕𝜙
𝜕𝑡 = −Δ𝑡 ((𝑃𝑟(𝑙 |𝜇) − 0.5) + 𝛼𝜅 + 𝛽𝜁 ) |∇𝜙 | (2.1)

where 𝑃𝑟(𝑙 |𝜇) is the probability of a voxel to belong to layer 𝑙 , 𝜇 the attenuation
coefficient of that voxel, and 𝜅 and 𝜁 the geometric regularization terms. The
weights of different terms are denoted by 𝛼 and 𝛽, while Δ𝑡 is the time step.

The probabilistic term expresses the posterior probability of pixels along an in-
terface to belong to the adjacent layers as:

𝑃𝑟(𝑙 |𝜇) = 𝑃𝑟(𝜇|𝑙 )𝑃𝑟(𝑙 )
∑ ∈{ , } 𝑃𝑟(𝜇|𝑙 )𝑃𝑟(𝑙 )

(2.2)

where 𝑃𝑟(𝜇|𝑙 ) is the likelihood based on the available image data and 𝑃𝑟(𝑙 )
the prior probability. Probabilities larger than 0.5 indicate that a voxel belongs to
the layer before the interface, whereas probabilities smaller than 0.5 indicate that
a voxel belongs to the layer after the interface. Since the volume of a layer 𝑙 is
represented by its voxels in the set Ω , the likelihood 𝑃𝑟(𝜇|𝑙 ) is approximated by
𝑃𝑟(𝜇|Ω ). The prior probability, 𝑃𝑟(𝑙 ), combines prior knowledge on the attenua-
tion coefficients values of layers (𝑃𝑟(𝜇 |𝑙 )) as well as prior knowledge on the order
of the layers and their thicknesses (𝑃𝑟(𝐷 )) as 𝑃𝑟(𝑙 ) = 𝑃𝑟(𝜇 |𝑙 )𝑃𝑟(𝐷 ). During si-
multaneous detection, the probability 𝑃𝑟(𝐷 ) assures the correct ordering of layers,
the probability 𝑃𝑟(𝜇|Ω ) allows adaptation to image data, whereas the probability
𝑃𝑟(𝜇 |𝑙 ) makes the approach less sensitive to noise. To ensure resulting posterior
probability remains between 0 and 1, 𝑃𝑟(𝑙 ) = (1 − 𝑃𝑟(𝜇 ))(1 − 𝑃𝑟(𝐷 ))

Furthermore, probabilities larger than 0.5 should decrease the level set func-
tion and hence move the position of the interface downwards (in the positive z-
direction), while probabilities smaller than 0.5 should increase the level set function
and move the interface upwards. Since the probabilistic term returns values be-
tween 0 and 1 and the level set function is a signed distance function, a constant
of 0.5 is subtracted from the probabilistic term to transform it into a suitable force
that together with the regularization terms steers the level set function.

The ONH and blood vessels indicate areas where the normal appearance of the
layers in the retina is interrupted and were therefore excluded from the segmenta-
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Figure 2.5: A typical example of an anatomically incorrect segmentation result. Areas where interfaces
erroneously cross each other are marked with a yellow ellipses.

tion. This was done by setting the posterior probability to the non-informative value
of 0.5 within the detected areas. As a result, the excluded areas were influenced
only by the geometric terms in the equation 2.1.

2.3.2. Coupling through order of layers and thickness priors
Delineation of multiple interfaces in the retina using independently propagating level
sets can be problematic as the detected interfaces can cross each other as shown
in Figure 2.5. This is incorrect because the architecture, i.e. spatial organization,
of the retina is fixed. Using this knowledge and incorporating it into a new segmen-
tation method which optimizes a series of coupled level sets, the proper order of
the layers will be assured. Furthermore, the information about the position of one
interface can be used as an aid in correctly segmenting another. To fully exploit
this anatomical knowledge, simultaneous detection of all interfaces is performed.

Coupling is used to allow simultaneous propagation of multiple level set func-
tions. Most known coupling approaches concentrate on segmenting regions
[26, 39–42] rather than on interfaces by avoiding overlap between the regions and
allowing each pixel to be assigned to only one region. Further, through these ap-
proaches it is not possible to enforce relationships between regions, so anatomical
knowledge such as the order of the layers or their thicknesses is not possible to in-
corporate. A concept of digital homeomorphism [12, 26] could be used to maintain
proper order of the layers, but it lacks the ability to incorporate prior knowledge on
thicknesses of layers. Furthermore, the complexity of known coupling approaches
either increases with the number of regions [39, 40] or they cannot be extended to
segment an arbitrary number of regions [41, 42]. Therefore, these approaches are
neither applicable to ordered interfaces nor do they offer the flexibility we need,
such as the ability to incorporate prior knowledge and the ability to simultaneously
segment an arbitrary number of interfaces.

In our framework, a flexible coupling approach, which can be applied to any
layered structure and extended to an arbitrary number of interfaces, is used. The
idea behind the approach is to restrict the propagation of one interface 𝐶 to the
area between the two neighbouring interfaces 𝐶 and 𝐶 . This was modelled
as the probability that a pixel at a certain depth (z-coordinate) belongs to the layer
before the interface given the position of the two neighbouring interfaces and is



2

24
2. Loosely coupled level sets for simultaneous 3D retinal layer

segmentation in optical coherence tomography

Figure 2.6: An illustration of the coupling probabilities (CP) to realize interface coupling for interface
along an A-scan based on the position of neighboring interfaces ( , ) and the thickness prior for
a layer before ( ) and after ( ) the current interface. The possible positions of the current interface
are those which receive a CP of 0.5. The blue curve is composed of shifted Heaviside functions (H),
whereas the red curves correspond to the regularized Heaviside functions ( ). a) Without thickness
priors imposed on the layer before and after the current interface, the CP of the current interface is non-
descriptive, i.e. the probability is equal to 0.5 indicating that it can be positioned anywhere between
the neighboring interfaces. b) Imposing a thickness prior ( , ) on the layer before the current
interface restricts the position of the current interface to the region in which the CP is approximately
0.5. c) Adding a thickness constraint by the layer after the current interface ( , ) restricts the
position of the current interface even further.
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illustrated in Figure 2.6a. The probability function was set to 1 before the interface
𝐶 which moved the position of the interface downwards. The probability after
the interface 𝐶 was set to 0 which moved the position of the interface upwards.
Setting probabilities in this manner will preserve the order of the layers and ensures
that the interfaces do not cross each other. Furthermore, the probability was set
to the non-informative value of 0.5 for the interval between the two neighbouring
interfaces (𝐶 , 𝐶 ). This ensures that the propagation of the level set function
for the i-th interface will be based on other, image-based, information in that region.

Although a proper ordering was ensured, interfaces can get trapped in a local
minimum due to a poor initialization or weak image-based information. To improve
the robustness of the algorithm, prior knowledge on the minimal and maximal thick-
nesses of layers can be used. These thicknesses were then used as distances be-
tween interfaces. If a certain distance between interfaces was used, the probability
changed such that the position of the interface moved in a way that ensured that
distance is achieved. This is illustrated in Figure 2.6b, where prior knowledge on
the thicknesses of a layer before an interface is used. The minimal and maximal
thickness of a layer before an interface are denoted with 𝑧 and 𝑧 , respec-
tively. The probability has a value of 1, not only before the interface 𝐶 but also,
for a distance 𝑧 away from it. Defining probability in this manner moves the
position of the interface downward to ensure that the minimal thickness is adhered
to. To comply with the maximal thickness of a layer, the probability has a value of
0 after a distance 𝑧 away from the interface 𝐶 . Similarly, the minimal and
maximal thickness of a layer after an interface can be added. This is illustrated
in Figure 2.6c, where the minimal and maximal thickness are denoted with 𝑧
and 𝑧 . Additionally, to introduce more flexibility into the model, the probability
for coupling can be represented with a smoother version as shown in Figure 2.6a.
Finally, the coupling probability is defined for every A-scan as follows:

𝑃𝑟(𝐷 ) =
= 1 − 0.5min(𝐻 (𝜙 (𝑧 − 𝑧 )), 𝐻 (𝜙 (𝑧 + 𝑧 )))
− 0.5max(𝐻 (−𝜙 (𝑧 − 𝑧 )), 𝐻 (−𝜙 (𝑧 + 𝑧 )))

(2.3)

where 𝐻 is the regularized Heaviside function, which is in our case based on
the error function 𝐻 (𝑧) = 0.5 + 0.5 erf(𝑧/𝜖).

2.3.3. Steering by attenuation coefficients
The coupling described in the previous section allowed simultaneous detection of
multiple interfaces by limiting the propagation of the interface. However, other
information was still needed to retrieve the correct segmentation of it. This was
done by exploiting the differences in the attenuation coefficients between both sides
of an interface.

Using tentatively segmented volumes of the layers, the normalized histograms
of the layer before (ℎ ) and the layer after (ℎ ) an interface were computed.
These histograms modelled the likelihoods for observing attenuation coefficients
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values in layers around the interface. The probability 𝑃𝑟(𝜇|Ω ) was therefore set to
ℎ (𝜇), whereas the probability 𝑃𝑟(𝜇|Ω ) was equal to ℎ (𝜇). These probability
were further used in expression 2.2 to determine whether a pixel belongs to a layer
before or after the interface based on the current positions of the interfaces.

Since layers in the retina interact differently with the incoming light, information
about their optical properties was used to make the approach more robust. The
(weak) prior probabilities on the attenuation coefficients of the layers that surround
an interface was modelled as:

𝑃𝑟(𝜇 |𝑙 ) = 𝛾 erf( log(𝜇) − log(𝜇 )
𝜎 ) + 0.5 (2.4)

The values 𝛾, 𝜇 and 𝜎 control the magnitude, threshold and slope of the proba-
bility, respectively. The magnitude controls the strength of the prior, the threshold
indicates the attenuation value between that of the surrounding tissues, and the
slope controls the smoothness of the transition between the surrounding tissue.
Figure 2.7 shows an example of the probability of the attenuation coefficients with
the parameters indicated. The values for the aforementioned parameters will be
described in section 2.3.6.

2.3.4. Geometrical constraints on level sets
The geometric constraints on the resulting level set were imposed by two regular-
ization terms. The conventional curvature term, defined as 𝜅 = ∇ ⋅ni, was used to
penalize the length of the interface. This term imposes the necessary smoothness
to avoid a heavily curved interface that closely follows the speckle noise pattern in
the OCT data. An additional regularization term was implemented to prevent an
interface to fold back on itself.

An example of an interface that folds back is depicted in Figure 2.8a. This
behaviour is anatomically unlikely to occur and needs to be prevented. The non-
folding constraint regulates the orientation of the normal vector to the level set
function and thus prevents anatomically incorrect behaviour.

To prevent interfaces from folding back, the mean curvature and normal vectors
to the level set function were used. Normal vectors with a negative component
(upward pointing) in the z-direction were considered to violate the anatomically
correct situation (depicted by red arrows in Figure 2.8b). The level set function in
those areas was then updated based on the sign of the curvature and the projection
of the level set normal onto the x-y plane. The sign of the curvature determined
the sign of the update in the level set function, where a negative value will result in
a decrease (negative update) of the level set function whereas a positive value will
result in an increase (positive update) of the level set function. Furthermore, the
projection of the normal onto the x-y plane controls the strength of the change. In
Figure 2.8c, green arrows show the direction and strength of the force induced by
this regularization term. The term is expressed by:

𝜁 (𝜙 ) = (1 − 𝐻(𝑛 )) sgn(𝜅 )√(𝑛 ) + (𝑛 ) (2.5)
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Figure 2.7: Example of prior probability of the attenuation coefficients (red curve) around the position of
the interface (vertical dashed line). The normalized histogram of the layer before and after an interface
are shown in blue and green, respectively. The values , and control the strength of the prior, the
assumed attenuation value at the interface, and the slope of the probability as indicated on the figure.
A smaller value of will result in a sharper slope of the probability. The sign of depends on whether
the layer before an interface has a lower or a higher attenuation coefficient. In this figure, the layer
before an interface is darker than the one after it ( ), hence the sign of is negative.

where 𝑛 , 𝑛 and 𝑛 are the x, z, y component of the normal vector, respectively.
The effect of this regularization term on an interface is shown in Figure 2.8d.

2.3.5. Initialization
Propagation of the level set functions is done by simultaneously solving the set
of partial differential equations that drive the current segmentation of the retinal
interfaces to its minimum energy state. A rough indication of the inner and outer
boundaries of the retina were estimated as described in section 2.2.3. Using the
same cost function as in section 2.2.3, but considering only the area within the
detected retina, the INL-OPL interface was initialized. The other interfaces were
initialized based on fixed distances from either the RPE boundary, the vitreous-
RNFL or the INL-OPL interface as follows. The IS ellipsoid was initialized to be 40
μm before the RPE boundary. Then, for peripapillary/macular scans, the RNFL-
GCL interface was initialized to be 60/20 μm after the vitreous-RNFL interface; the
IPL-INL interface was initialized to be 20/36 μm before the INL-OPL; the OPL-ONL
interface was initialized to be 48/80 μm before the IS ellipsoid. A typical example of
an initialization and the corresponding final segmentation results for all interfaces is
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Figure 2.8: a) Example of an interface that folds back. b) Sketch of an interface that folds back with
arrows indicating the normal vector to the level set function. Red arrows indicate vectors that violate the
anatomical correctness. c) The interface of b) in which the arrows represent the correction force. The
direction of the change is derived from the sign of the curvature, where negative curvature results in an
negative update in the level set function. The length of the arrows correspond to the strength of the
correction force which is derived from projection of the level set normal on the x-y plane. d) Evolution
of the interface due to the correction term is shown with dashed red line. Final result is shown with
solid red line.

Table 2.2: Minimum thickness priors per layers for the peripapillary and the macular scans

Minimum thickness (𝜇𝑚)
Peripapillary Macular

INL 12 12
OPL 12 16
ONL 20 12

presented in Figure 2.9. This example shows that only a coarse initialization of the
interfaces is required and that correct segmentation results can be obtained with
the developed method even if some of the interfaces are initialized wrongly (e.g.
the RPE boundary which was initialized at the IS ellipsoid in the example).

After this coarse initialization, level set segmentation was performed on indi-
vidual B-scans to get a better initialization for the full volume segmentation. First,
every ninth B-scans was segmented after which the segmentation results were in-
terpolated and used as an initialization for every third B-scan. Again, the results
were interpolated and used as initialization for segmenting individual B-scans which
became the initialization for the full volume segmentation.
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2.3.6. Parameter selection
In the update equation for the level set function (equation 2.1), three parameters
(𝛼,𝛽,Δ𝑡) need to be set. In addition, prior knowledge on thicknesses of layers and
parameters in equation 2.4 need to be determined. All parameters were estimated
from an additional dataset which was independent of those used for the assessment
of the accuracy and reproducibility.

The time step was chosen as: Δ𝑡 = 1/2𝑛, where 𝑛 represents the dimensionality
of the data. This time step satisfies the Courant-Friedreichs-Lewy (CFL) condition
[43] and ensures stability of the level set function. The smoothness of the interface
was controlled by the parameter 𝛼, which was evaluated at 0.65, 1.25, 2.5 and 5.
A good compromise between the smoothness/rigidness of the interface and ability
to follow the subtle changes in the interface was found for 𝛼 = 2.5. The parameter
𝛽 controlled the strength of the folding back correction and was set to the smallest
value that ensured no folding back of the interface which was 1.

The stopping criteria for the level set propagation was a combination of the
maximum number of iterations and a check if the solution is stationary. The solution
was considered stationary if the root mean square difference between the last two
updates of the level set function was smaller than 0.02 pixels for all interfaces. The
maximum number of iterations was set to 300.

We used minimum thickness priors for three layers in the peripapillary and mac-
ular scans as reported in Table 2.2. The maximum thickness prior was used only
for the GCL-IPL layer in peripapillary scans and was set to change spatially. The

Figure 2.9: A typical example of an initialization (top) and the resulting final segmentation (bottom) for
all interfaces.
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Table 2.3: Values for the parameter of the attenuation prior per interface

𝜇 (mm )
Vitreous - RNFL 0.30

RNFL - GCL 1.35
IPL - INL 0.11
INL - OPL 0.18
OPL - ONL 0.08
IS ellipsoid 0.18

RPE boundary 12.75

equation for the maximum thickness prior for the left eye was determined exper-
imentally and was set to: 𝑧 = 88 + 88𝑒𝑥𝑝(− ( )

∗ ) μm, where 𝑦 is the 𝑦
coordinate of the central location of the ONH.

Since the assumed thickness priors are not applicable to the fovea, we detected
in every macular scan the point with the smallest retinal thickness (i.e. the distance
between the vitreous-RNFL and the RPE boundary). No thickness prior was imposed
within a radius of 450 μm from the detected point.

The priors on the attenuation coefficients, given by equation 2.4, were differ-
ent for every interface. Hence the values for 𝛾, 𝜇 and 𝜎 needed to be adjusted
accordingly. Parameter 𝛾 controlled the direction and the magnitude of the error
function and was set to values ±0.45 depending whether the layer before the in-
terface is brighter or darker than the layer after the interface. The resulting prior
probability ranged from 0.05 to 0.95. Further, the values for 𝜇 were determined
experimentally. The normalized histograms of layers that surround an interface
were examined and the value at which the two attenuation coefficient histograms
cross was chosen as the value for 𝜇 . Table 2.3 provides information on the values
used for the parameter 𝜇 . The slope of the error function was controlled by param-
eter 𝜎 and was chosen such that most of the points of the histograms that surround
the interface lie within 2𝜎 of 𝜇 . In this way, the influence of the prior probabil-
ity on the final posterior probability was strong only for the attenuation coefficient
values that were far away from the assumed attenuation value (more than 𝜇 ±𝜎).
This stabilized the posterior probability in case of noisy data. For the attenuation
values that were close to the assumed attenuation value (within 𝜇 ± 𝜎), the prior
probability had a weak influence and the posterior probability was driven by other
information. Finally, the slope was set to a value 2 for all interfaces except for the
vitreous-RNFL interface. There, the slope was set to 0.75 to assure the detached
part of the vitreous was segmented as a part of the vitreous.

2.4. Experiments and results
A quantitative evaluation was performed to assess the accuracy and reproducibility
of the presented method. Two sets of experiments were performed. The accu-
racy and reproducibility of the method was evaluated in the first experiment. In a
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Figure 2.10: An illustration of an interface between two layers is depicted by the blue line. Three possible
segmentation results of that interface are depicted by the green, orange and purple diamond. Although
all three segmentations are correct, they vary in depth.

second experiment, the ability of the method to segment different data types was
examined. In addition to the seven interfaces, the thickness of the RNFL was eval-
uated. Finally, an additional experiment was performed to evaluate the accuracy
and reproducibility of ”The Iowa Reference Algorithms” [18, 21, 44] on our dataset.

For every interface, the accuracy was determined by comparing the results of
the automatic algorithm with the manually segmented data. Manual segmentation
was performed by a medical doctor. The root-mean-square error (RMSE) and the
mean-unsigned-deviation (MUD) were considered. The errors were computed for
every A-scan and then averaged. The reproducibility of manual and automatic
segmentation was also evaluated by the same error measures. A-scans crossing
either the retinal vasculature or the ONH were excluded in calculating the errors.

To eliminate a possible bias due to different criteria in automatic and manual
segmentation, the systematic error was estimated as the mean difference between
the manual and the automatic segmentation using five-fold cross validation. This
systematic error represents a difference that may occur across all retinal images due
to different criteria that a manual annotator and the automated method might have
used to segment the interfaces. In other words, the error was used to adjust the
automatic segmentation to resemble the implicit definition of an interface present in
the manual annotations. To clarify this, an illustration of an interface between two
layers with three possible segmentations is shown in Figure 2.10. Finally, the error
was then subtracted from the automatic segmentation after which the RMSE and
MUD were recomputed. The cross validation was repeated 10 times using different
combination of subjects in the subgroups.

2.4.1. Accuracy and reproducibility evaluation
The main evaluation of the presented segmentation method was done on peripap-
illary scans of normal subjects scanned with Spectralis. The scans of 20 subjects
(one eye per subject) were used to estimate the accuracy of the method. For 10
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Figure 2.11: A scanning laser ophthalmoscopy (SLO) image of the retina where a red square indicates
the scan area. Blue line on the SLO image indicates the B-scan for which both the automatic and
manual segmentation results are shown. The reported images are: A) Peripapillary scan of normal
retina by Spectralis, B) Peripapillary scan of glaucoma patient by Spectralis, C) Macular scan of normal
subject by Spectralis, and D) Peripapillary scan of normal subject by 1050 nm OFDI. The gaps in the
interfaces indicate either the areas of the blood vessels or the optic nerve head where most interfaces
are ill-defined.
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out of those 20 subjects the reproducibility of both the manual and automatic seg-
mentation was estimated by comparing the results of two successive scans. Before
a second scan was made, the subject was asked to stand up, after which the head
and eyes were again realigned with the OCT system.

Figure 2.11 shows an example of the manual annotation and the segmenta-
tion results obtained with the described method. Using the segmentation results
obtained with the developed method one can compute the thickness maps of differ-
ent layers or examine attenuation coefficient values for different layers. Examples
of the 2D thickness map of the RNFL and spatial map of attenuation coefficient
values for the RNFL are shown in Figure 2.12.

Table 2.4 provides detailed results on the accuracy of the automatic method
before and after bias correction as well as the reproducibility. An error of 3.9 μm
corresponded to one pixel along the recorded A-scans. The accuracy evaluation,
after bias correction, showed a RMSE ranging from 3.4 μm to 9.4 μm and a MUD
ranging from 2.7 μm to 7.0 μm. The reproducibility of the automatic method had
a RMSE between 2.7 μm and 6.7 μm, and a MUD ranging from 2.1 μm to 5.1 μm,
whereas, the reproducibility of the manual annotations resulted in a RMSE between
4.2 μm and 10.6 μm and a MUD ranging from 3.1 μm to 7.4 μm.

The Wilcoxon signed test was used to compare the reproducibility of the manual
annotations with the reproducibility of the automatic method and to compare the
accuracy of the automatic method with the reproducibility of the manual annotation.
This test was chosen because it allows a paired test without requiring that the
samples are normally distributed. For all performed statistical test (both in the
current and the following section), when applicable, only results after bias correction
were considered. The resulting p-values are reported in Table 2.4.

2.4.2. Evaluation on various types of data
The second set of experiments was performed to assess the applicability of the
method for a variety of data. Ten macular scans of healthy subject and 10 peri-
paripally scans of glaucoma subjects imaged with Spectralis were considered. In
addition, 8 peripapillary scans of healthy subject were imaged with the 1050 nm
OFDI system.

Table 2.5 reports the accuracy of the automatic method on the aforementioned
data categories before and after bias correction. For glaucoma affected eyes, the
systematic error was estimated from all healthy subjects (from section 2.4.1). An
error of 4.7 μm corresponded to one pixel along the A-scans of the 1050 nm OFDI
system.

Examples of the manual annotations and the segmentation results obtained with
the described method for all three groups are shown in Figure 2.11. In addition,
examples of spatial maps of attenuation coefficient values for the RNFL and the
thickness map of the RNFL for each group are shown in Figure 2.12.

Segmentation of macular scans showed a RMSE between 2.7 μm and 7.6 μm
and a MUD between 1.9 μm and 5.9 μm after bias correction. For segmentation of
the glaucoma affected peripapillary scans, the RMSE and MUD after bias correction
ranged from 3.6 μm to 11.4 μm and from 2.9 μm to 8.5 μm, respectively. Scans
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acquired with the 1050 nm OFDI system had a RMSE of 3.2 - 8.4 μm and a MUD
between 2.6 μm and 5.7 μm after bias correction. Finally, for all data types, indi-
vidual unsigned errors per A-scan were collected and the 95 percentile error was
found to be 13.7 μm.

The Mann-Whitney test was performed to compare the accuracy of each of the
different data types with the accuracy evaluation for the same interface from the
previous section. This test was chosen as it allows comparison of unpaired groups
without requiring that the samples in groups are normally distributed. The resulting
p-values are reported in Table 2.5.

2.4.3. The Iowa Reference Algorithms
We compared our results with those of the publicly available ”The Iowa Reference
Algorithms” (Retinal Image Analysis Lab, Iowa Institute for Biomedical Imaging,
Iowa City, IA). The provided version segments four interfaces: the vitreous-RNFL,
the RNFL-GCL, the IPL-INL and the RPE boundary. However, it marks some areas
of the volume scan as undefined and does not provide any segmentation results
in those areas. On our data sets, the average size of the undefined regions corre-
sponded to 11% of the field of view, but ranged up to 62%.

The Iowa Reference Algorithms were applied to all data and the errors were
analysed excluding the undefined regions. Additionally, the errors of our method
were re-estimated excluding the same regions. All details, including results before
and after bias correction, can be found in Appendix 2.A. In summary, the accuracy
evaluation of The Iowa Reference Algorithms showed a RMSE ranging from 4.1 μm
to 11.8 μm and a MUD ranging from 3.3 μm to 8.5 μm for all data types. The
reproducibility of The Iowa Reference Algorithms had a RMSE between 4.6 μm and
7.8 μm, and a MUD ranging from 3.4 μm to 5.6 μm. These results are similar to
the accuracy and reproducibility of the proposed method.

2.5. Discussion and conclusion
This paper presents a new method to simultaneously segment interfaces between
the layers of the retina in 3D OCT data. The method is based on a novel level
set approach which uses Bayesian inference. The approach incorporates anatom-
ical knowledge about the retina and enforces anatomically correct segmentation
results. Both accuracy and reproducibility of the method were evaluated, as well
as the robustness to segment different data types. A good agreement between the
segmentation performed manually by a medical doctor and results obtained from
the automatic segmentation was found (the MUD for all interfaces in all data types
varied between 1.9 and 8.5 μm (0.5-2.2 pixels)).

Statistical analysis performed on the automatic and manual reproducibility indi-
cates that automatic segmentation is more consistent than manual annotation for
the vitreous-RNFL, and OPL-ONL interface. For other interfaces both the segmen-
tation done automatically and manually are equally good. Furthermore, a paired
comparison between the accuracy of the automatic method and the reproducibility
of the manual annotator shows a statistically significant difference for three inter-
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0.002
3.6
(3.7)

>
0.05

2.9
(3.1)

>
0.05

3.2
(4.4)

0
2.6
(3.8)

0

RPE
bou.

5.2
(5.2)

>
0.05

4.0
(4.1)

>
0.05

6.0
(6.5)

>
0.05

4.6
(5.2)

>
0.05

5.4
(5.4)

>
0.05

3.9
(3.9)

>
0.05

RN
FL

th.
6.8
(7.6)

0
5.3
(5.9)

0
12.0
(12.1)

>
0.05

9.2
(9.2)

>
0.05

9.5
(9.4)

0.01
7.0
(7.0)

0
*Accuracy

of
individualgroups

com
pared

to
the

accuracy
in

table
2.4
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faces (the vitreous-RNFL, the OPL-ONL and the IS ellipsoid) and no statistically sig-
nificant difference for other interfaces, leading to the conclusion that the developed
segmentation method is performing at least as good as the manual annotator.

As there was no reproducibility evaluation on the individual groups in section
2.4.2, additional statistical analysis was performed to compare the accuracy of these
groups with the accuracy reported in section 2.4.1. This was important as the accu-
racy in section 2.4.1 is compared against the performance of the manual annotator.

This additional statistical analysis showed that the developed method works
equally good on glaucoma subjects. More specifically, there was no statistical dif-
ference in the segmentation of the vitreous-RNFL and the RNFL-GCL interface be-
tween healthy and glaucoma affected eyes. This indicates the possibility to use the
developed framework for clinical purposes in the context of glaucoma diagnosis and
management.

The accuracy evaluation and performed statistical analysis shows that the
method can be used to segment scans of different area of the eye. The only pa-
rameter values that needed to be adjusted to segment the macular scans were the
thickness priors (Table 2.2). In addition, for some interfaces (the vitreous-RNFL,
the RNFL-GCL interface and the IS ellipsoid) the method performs better on the
macular scans than on the peripapillary scans. This could be due to the fact that
the macular scans often seem more uniform than the peripapillary scans.

The developed method may be applied to scans obtained with different OCT
devices, without any adjustments to the method. Also, statistical analysis showed
that the segmentation performed on scans obtained with the 1050 nm OFDI system
is better for all interfaces except the RPE boundary. This could be a result of the
age difference in the two groups: the average age of the subjects imaged with
the 1050 nm OFDI system was 42 years, whereas the average age of the subjects
imaged with the Spectralis was 64 years.

Comparison between our method and other retinal segmentation methods found
in the literature is difficult as every method is evaluated on data acquired with a
different OCT device or on different types of retinal images. In addition, there is
no single standard for performing manual annotations or for reporting the accuracy
or reproducibility, so they may vary from method to method. Therefore, we also
segmented our data with the publicly available ”The Iowa Reference Algorithms”
and evaluated its accuracy and reproducibility. The accuracy and reproducibility of
the presented method is comparable to that of ”The Iowa Reference Algorithms”,
indicating that our algorithm performs similar to the current state-of-the-art soft-
ware for retinal layer segmentation. An advantage of our method is that it provides
segmentation results over the whole volume. Furthermore, use of prior knowledge
in our approach is limited to only a few layers, whereas ”The Iowa Reference Algo-
rithms” uses prior knowledge on the minimal and maximal thickness for all layers
[18] thus making the method more difficult to adapt to diseased eyes.

Further comparison with other segmentation methods is done only in a qual-
itative manner. Some of the most recent published work [12, 16, 19, 24, 25],
performed a 3D segmentation on macular scans of healthy subjects and reported
a MUD between 3-7 μm. This result is comparable to our MUD for segmenting
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Figure 2.12: Examples of the generated spatial map of the attenuation coefficient values for the RNFL
and the thickness map of the RNFL from different data types: A) Peripapillary scan of normal retina by
Spectralis, B) Peripapillary scan of glaucoma patient by Spectralis, C) Macular scan of normal subject by
Spectralis, and D) Peripapillary scan of normal subject by 1050 nm OFDI. Spatial maps of attenuation
coefficients for the RNFL were created as an axial mean of the 3D-OCT data between the vitreous-
RNFL and RNFL-GCL interface, whereas the thickness maps of the RNFL were created by measuring the
distance along each A-scan from the vitreous-RNFL interface to the RNFL-GCL interface.

the macular scans (Table 2.5) indicating that we are performing similarly. A mean
absolute deviation between 3-10 μm was reported when segmenting peripapillary
scans of glaucoma subject [20, 24]. Our MUD for segmenting the glaucoma scans
(Table 2.5) ranged between 3 and 9 μm indicating similar accuracy. Furthermore,
some of the previously mentioned methods were evaluated only on healthy and
diseased subjects [12, 19, 25], whereas ours also considers different areas of the
eye and two different OCT devices and thus provides a method more suitable for
segmenting OCT data due to a wider range of evaluated types. Data from different
OCT devices was considered in [17], but only mean retinal thickness was reported.
Other mentioned methods were also evaluated on data from different OCT devices,
but these methods are based on a machine learning approach [20, 24]. As such,
the final result is largely dependent on the number of examples included in the
training set. This can be a limiting factor for adaptation of the method to different
data types [20]. With our method, to segment data from the two different imaging
devices, no changes were needed.

In Figure 2.12, some of the possible applications of the developed method are
presented. Using 3D segmentation of the retina, one can easily create and examine
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thickness maps or spatial maps of attenuation coefficients for different layers in the
retina. Analysis of attenuation coefficients maps could be of a particular interest,
as it was shown that there is a difference between attenuation coefficient values
of healthy eyes and glaucoma affected eyes [45]. Finally, although the approach
operates on attenuation coefficient data, one can use the obtained segmentation
results of the interfaces and map them to the original OCT data.

There are several potential limitations of the presented work. Although the de-
veloped method performs well on glaucoma affected eyes, we expect that some
modifications are necessary to handle topology-disrupting pathologies. However,
we believe some of these pathologies, yielding the accumulation of fluids and micro-
cysts, can be addressed by pre-segmenting and masking, as was done for the blood
vessels and optic nerve head in the current framework. Furthermore, the imposed
prior knowledge about a layer’s thickness and attenuation coefficient values may
not be valid in all other diseases. Despite differences in RNFL attenuation coeffi-
cients between normal and glaucomatous eyes [45], we were able to segment both
normal and glaucoma subjects equally well using the same prior on the attenuation
coefficients. Prior knowledge on the layer thickness is limited to only a few layers
and could easily be adjusted to incorporate other knowledge if required. Further,
the level set method, unlike graph cuts for retinal layer segmentation [18–21],
cannot guarantee a globally optimal solution. However, our framework contains
several adaptations to reduce the chances of an interface getting stuck in a local
minimum. Simultaneous segmentation of all interfaces and coupling between the
level set functions allows correction for most of the possible errors that may occur
during initialization. Additionally, to reduce the sensitivity of the method to speckle
noise, an adaptive noise suppression step was added, which further reduces the
chances of the segmentation getting stuck in a local minimum. An example that
illustrates the robustness of the proposed framework and its capability to generate
a correct segmentation from an erroneous initialization is shown in Figure 2.9. Fi-
nally, from a computational point of view, the presented method is computationally
expensive and takes on average 1 hour and 56 minutes to process a full 3D OCT
scan. However, the computation time has not yet been optimized and could be
substantially improved by sub-sampling, parallelization or improving the stopping
criterion.

Overall, our method provides a flexible, accurate and robust solution in segment-
ing layered structure in the retina. We showed how it can be applied to various data
types (healthy and glaucoma subject; different area of the eye; two different OCT
devices) where it produces similar results. The developed framework allows simple
and intuitive modification of prior knowledge. Our model included prior knowledge
on the attenuation coefficients and thicknesses of the layers, but it could easily be
extended to include other sources of information. Furthermore, we believe that
the presented coupling approach could be applied to any other structure with a
predefined order of the layers and extended to an arbitrary number of interfaces.

Future work will include extension of the method to segment thin membranes in
the outer retina and an evaluation on larger dataset of glaucoma affected eyes to
investigate if the method could be used as an aid to diagnose and monitor glaucoma
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in a clinical setting.

2.A. Appendix
The segmentation results obtained with ”The Iowa Reference Algorithms” were
compared with our manual annotations. For error calculations, undefined regions
and the A-scans crossing either the retinal vasculature or the ONH were excluded.
To compare these results with the results obtained by using our segmentation algo-
rithm, the accuracy and reproducibility of our method were recomputed excluding
the A-scans marked as undefined by ”The Iowa Reference Algorithms”. Table 2.6
and 2.7 provides detailed results on the accuracy of the two automated methods
before and after bias correction and the reproducibility of ”The Iowa Reference
Algorithms” for four interfaces.

Table 2.6: Accuracy evaluation before (within parentheses) and after bias correction and reproducibility
evaluation of our method and The Iowa Reference Algorithms excluding A-scans crossing blood vessels,
ONH and undefined regions produced by The Iowa Reference Algorithms

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
𝐼𝑜𝑤𝑎 𝑂𝑢𝑟

RMSE
(μm)

MUD
(μm)

RMSE
(μm)

MUD
(μm)

Vitre.-RNFL 5.2 (6.1) 4.1 (4.6) 4.0 (4.1) 3.3 (3.4)
RNFL-GCL 11.8 (12.7) 8.5 (8.9) 8.9 (9.6) 6.7 (7.0)

IPL-INL 8.3 (8.3) 6.3 (6.3) 6.4 (6.4) 5.0 (5.0)
RPE bound. 5.7 (6.1) 4.4 (4.5) 5.0 (5.2) 3.9 (4.2)
RNFL thick. 12.2 (13.4) 8.7 (10.0) 9.9 (10.2) 7.5 (7.5)

𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑏𝑖𝑙𝑖𝑡𝑦
𝐼𝑜𝑤𝑎 𝑂𝑢𝑟

RMSE
(μm)

MUD
(μm)

RMSE
(μm)

MUD
(μm)

Vitre.-RNFL 5.1 3.8 3.0 2.3
RNFL-GCL 7.8 5.6 6.5 5.0

IPL-INL 6.0 4.3 5.9 4.4
RPE bound. 4.6 3.4 5.3 4.2
RNFL thick. 6.1 4.4 6.2 4.6
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Table 2.7: Accuracy evaluation before (within parentheses) and after bias correction of our method
and The Iowa Reference Algorithms on macular scans of healthy subjects and peripapillary scans of
glaucomatous subjects excluding A-scans crossing blood vessels, ONH and undefined regions produced
by The Iowa Reference Algorithms

𝑀𝑎𝑐𝑢𝑙𝑎𝑟 𝑠𝑐𝑎𝑛𝑠
𝐼𝑜𝑤𝑎 𝑂𝑢𝑟

RMSE
(μm)

MUD
(μm)

RMSE
(μm)

MUD
(μm)

Vitre.-RNFL 4.1 (4.4) 3.3 (3.4) 3.2 (3.2) 2.7 (2.7)
RNFL-GCL 5.8 (6.5) 4.6 (5.0) 6.0 (6.9) 4.7 (5.5)

IPL-INL 5.8 (6.9) 4.6 (5.5) 7.4 (7.4) 5.8 (5.8)
RPE bound. 5.2 (6.7) 3.5 (5.1) 5.2 (5.2) 4.0 (4.1)
RNFL thick. 6.9 (8.3) 5.6 (6.7) 6.8 (7.6) 5.3 (5.9)

𝑃𝑒𝑟𝑖𝑝𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦 𝑠𝑐𝑎𝑛𝑠
𝐼𝑜𝑤𝑎 𝑂𝑢𝑟

RMSE
(μm)

MUD
(μm)

RMSE
(μm)

MUD
(μm)

Vitre.-RNFL 4.5 (6.7) 3.5 (5.0) 4.7 (4.7) 3.2 (3.7)
RNFL-GCL 8.6 (10.6) 6.5 (7.7) 8.5 (11.5) 6.2 (8.6)

IPL-INL 9.2 (9.4) 5.9 (6.3) 5.3 (5.7) 4.5 (4.5)
RPE bound. 5.1 (5.6) 3.8 (4.0) 5.2 (5.2) 4.2 (4.2)
RNFL thick. 9.1 (11.9) 7.0 (9.1) 9.7 (11.9) 7.2 (9.1)
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3. Joint segmentation of retinal layers and focal lesions in 3D OCT data of

topologically disrupted retinas

Abstract
Accurate quantification of retinal structures in 3D optical coherence tomog-
raphy data of eyes with pathologies provides clinically relevant information.
We present an approach to jointly segment retinal layers and lesions in eyes
with topology-disrupting retinal diseases by a loosely coupled level set frame-
work. In the new approach, lesions are modelled as an additional space-
variant layer delineated by auxiliary interfaces. Furthermore, the segmenta-
tion of interfaces is steered by local differences in the signal between adja-
cent retinal layers, thereby allowing the approach to handle local intensity
variations. The accuracy of the proposedmethod of both layer and lesion seg-
mentation has been evaluated on eyes affected by central serous retinopathy
and age-related macular degeneration. Additionally, layer segmentation of
the proposed approach was evaluated on eyes without topology-disrupting
retinal diseases. A good agreement between the segmentation performed
manually by a medical doctor and results obtained from the automatic seg-
mentation was found for all data types. The mean unsigned error for all
interfaces varied between 2.3 and 11.9 μm (0.6 - 3.1 pixels). Furthermore,
lesion segmentation showed a Dice coefficient of 0.68 for drusen and 0.89 for
fluid pockets. Overall, the method provides a flexible and accurate solution
to jointly segment lesions and retinal layers.



3. Joint segmentation of retinal layers and focal lesions in 3D OCT data of
topologically disrupted retinas

3

49

3.1. Introduction
Optical coherence tomography (OCT) is a non-invasive, non-contact imaging tech-
nique that can be used to acquire in-vivo images of retinal structures [1]. Its high
resolution enables the investigation of the retinal tissue layers and pathological
changes. In various eye diseases, the thickness of one or more retinal layers is
affected. For example, degeneration of the retinal nerve fiber layer (RNFL) occurs
in glaucoma patients [2], whereas the ganglion cell complex (GCC) gets thinner in
patients with age-related macular degeneration (AMD) [3]. Furthermore, changes
in the properties of a tissue that composes a layer occur. For example, in patients
with glaucoma, the OCT signal and OCT derived attenuation coefficient values of the
RNFL were shown to be reduced when compared to healthy subjects [4], whereas
in patients with central serous retinopathy (CSR), changes in reflectivity of the outer
nuclear layer (ONL) were encountered [5, 6]. Finally, certain pathologies may give
rise to additional structures that are not present in the retinas of healthy subjects.
In dry AMD, small deposits of extracellular tissue, called drusen, form within the
retina. In CSR, the build-up of fluid in the sub-retinal space creates a fluid pocket
that disrupts the outer retinal layers. In diabetic macular edema (DME), retinal
cysts may form inside inner and outer retinal layers.

Accurate quantification of retinal structures, both layers and lesions, provides
clinically relevant information about the retina. Extraction of these imaging biomark-
ers has become an important task as it enables valuable input for diagnostics,
prognostics, and monitoring of retinal diseases. When done manually, this is a
potentially subjective and time-consuming job due to the required precision and
large data volumes. Hence, an objective and automated tool that extracts clinically
useful information, such as the thickness of layers and the presence or extent of
emerging pathologies, is needed.

This need for segmentation of retinal layers and lesions has been recognized
before. However, most existing approaches focus either on extracting information
about a specific lesion in the diseased retina [7–12] or on segmenting the retinal
layers in healthy retinas [13–19] and retinas affected by a disease such as glaucoma
that merely results in thinning of a certain layer without any serious layer deforma-
tion [20–27]. By segmenting only retinal lesions without retinal layer segmentation,
other potentially valuable clinical information about the retina is ignored.

Automatic segmentation of the both retinal layers and lesions that may exist in
pathological retinas, such as sub-retinal fluid, drusen and cysts, remains a challeng-
ing task as the presence of lesions can cause large disruptions of the retina. First,
the topology and morphology of the retina may be affected. Second, the lesions
vary largely in size, shape and location. Third, the OCT intensity of one or more
layers may vary considerably within a scan. Some of the mentioned segmentation
challenges are indicated in Figure 3.1, where a typical B-scan of an eye affected by
CSR and one of an eye affected by AMD are shown. Finally, all the aforementioned
changes in the retina may violate the use of strong prior knowledge on the intensity
and thickness of the layers.

A few approaches have been presented to segment both the retinal layers and
lesions [11, 17, 28–37], but only three of these approaches have evaluated the
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Figure 3.1: The intensity of a retinal OCT B-scan and the estimated attenuation coefficient of a patient
suffering from CSR (top row) and AMD (bottow row). The arrows point to areas where variations in
either the layer’s intensity or the attenuation coefficients occur. The asterisks mark the location of the
lesions, i.e. the fluid pocket in CSR and drusen in AMD.

accuracy of both layer and lesion segmentation [29, 31, 32]. Quellec et al. and
Chiu et al. employed a machine learning approach to segment layers and lesions in
exudative AMD [31] and DME data [29], respectively. Because these two methods
are based on a machine learning approach, they might be difficult to interpret
and improve as well as adapt to other retinal diseases. Indeed, the extension of
machine learning approaches for retinal layer segmentation to other types of retinal
diseases were already reported to be highly dependent on the training dataset [13].
Furthermore, Shi et al. searched for a disease specific footprint by utilizing the
distance between two retinal surfaces and several empirically determined thresholds
[32] to segment lesions and retinal layers in data of retinas affected by serous
pigment epithelium detachment. Finally, in all three approaches, the lesion and
layers are segmented in a sequential manner. Thus, segmentation errors that occur
in the first step may propagate into the second step without the possibility to correct
them.

In this paper, we present an approach to jointly segment retinal layers and le-
sions in eyes with topology-disrupting retinal diseases. The problem is expressed
in the framework of loosely coupled level set (LCLS), previously developed for the
simultaneous segmentation of interfaces between retinal layers in macular and peri-
papillary scans of healthy subjects and glaucoma patients [27]. The new approach
extends and generalizes the existing one, as it can handle local intensity varia-
tions as well as the presence or absence of pathological structures in the retina
[38],[39]. In our framework, lesions are modelled as an additional space-variant
layer delineated by auxiliary interfaces. When a lesion is not present, these ad-
ditional layer will have (near) zero thickness. Furthermore, the segmentation of
interfaces is steered by local differences in signal between adjacent retinal layers
thereby allowing the approach to handle local intensity variations. The method was
evaluated on patients suffering from either CSR or AMD: two topology-disrupting
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retinal diseases. The results of both layer and lesion segmentation are presented.
Seven interfaces were considered: the vitreous - RNFL, the RNFL - GCL, the IPL -
INL, the INL - OPL, the OPL - ONL, the IS ellipsoid and the posterior RPE boundary.
In AMD patients, in addition to the aforementioned interfaces, Bruch’s membrane
was segmented. A complete description of the layers and their definitions is given
in Figure 3.2.

3.2. Method for joint retinal layer and lesion seg-
mentation

The proposed segmentation framework performs the joint segmentation of inter-
faces between retinal layers and lesions. It operates on attenuation coefficient
maps, which are derived from in-vivo human retinal OCT data [40]. The interfaces
are simultaneously segmented by utilizing image data and anatomical knowledge
about the retina, such as the predefined order of its layers. The framework consists
of several processing steps including conversion to attenuation coefficients, retinal
feature detection, noise suppression as well as the actual joint layer and lesion
segmentation method. First, we briefly introduce the conversion to attenuation co-
efficients (3.2.1) and the LCLS framework (3.2.2). Then, we present generalizations
to the framework to deal with segmentation challenges present in the eyes of CSR
and AMD patients such as the local variation in estimated attenuation coefficients
within layers (3.2.3) and the presence of space-variant lesions (3.2.4). Finally, we
provide implementation details on the segmentation of lesions (3.2.5) as well as
on the initialization of the joint segmentation approach (3.2.6), the selection of
parameter values (3.2.7) and the dataset that was used in the evaluation (3.2.8).

3.2.1. Attenuation coefficient
The intensities of the raw OCT data were transformed into attenuation coefficients
[40]. The attenuation coefficient is an optical property of a tissue and as such
illumination invariant. Therefore, various artefacts that are common in OCT images,
such as intensity fluctuation within layers, are largely reduced. Examples of B-scans
from eyes affected by CSR and AMD before and after conversion to attenuation
coefficients are shown in Figure 3.1. As can be seen from the Figure, the eye
affected by CSR shows large local changes in the estimated attenuation coefficients
of several layers in the area of the fluid pocket.

Afterwards, retinal features (blood vessels and rough estimation of the inner
and outer boundaries that surround the retina) were detected and a structure-
driven anisotropic Gaussian filter, to suppress the noise in the data, was applied.
Finally, the developed layer segmentation method, was applied to the filtered data.

3.2.2. Loosely coupled level sets
The LCLS framework employs a probabilistic approach, which incorporates image
data and prior knowledge of the retina to segment the interfaces between retinal
layers. Every interface 𝐶 is represented by its own level set function 𝜙 , which is
propagated according to:
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Figure 3.2: The segmentation results obtained with the LCLS method on a 3D retina composed of
consecutive B-scans of attenuation coefficients. The full names of the segmented retinal layers and
their abbreviations are as follows (from the top of the image): vitreous; retinal nerve fiber layer (RNFL);
ganglion cell layer (GCL) with inner plexiform layer (IPL); inner nuclear layer (INL); outer plexiform
layer (OPL); outer nuclear layer (ONL); inner segment (IS) with outer segment (OS); retinal pigment
epithelium (RPE); choroid. The blue line indicates an A-scan. The 3D coordinate system is indicated with
arrows in the top left corner. Notations used for layers ( , ) and interfaces ( , ) in the segmentation
framework are shown with white letters.

𝜕𝜙
𝜕𝑡 = −Δ𝑡 ((𝑃𝑟(𝑙 |𝜇) − 0.5) + 𝛼𝜅 + 𝛽𝜁 ) |∇𝜙 |, (3.1)

where 𝑃𝑟(𝑙 |𝜇) is the probability of a pixel belonging to layer 𝑙 given the attenuation
coefficient 𝜇 of that pixel, and 𝜅 and 𝜁 the geometric regularization terms. The
weights of the terms are denoted by 𝛼 and 𝛽, while Δ𝑡 is the time step.

The probabilistic term expresses the posterior probability of pixels along an in-
terface belonging to the retinal layer above the interface (𝑙 ) as:

𝑃𝑟(𝑙 |𝜇) = 𝑃𝑟(𝜇|𝑙 )𝑃𝑟(𝑙 )
∑ ∈{ , } 𝑃𝑟(𝜇|𝑙 )𝑃𝑟(𝑙 )

(3.2)

where 𝑃𝑟(𝜇|𝑙 ) is the likelihood based on the available image data inside the set Ω
containing all pixels assigned to layer 𝑙 , and 𝑃𝑟(𝑙 ) is the prior for layer 𝑙 . The prior
probability combines prior knowledge on the attenuation coefficient values and on
the order of the layers and their thickness. Finally, the probability density function
𝑃𝑟(𝜇|𝑙 ) can be approximated by the normalized histogram 𝑃𝑟(𝜇|Ω ) of all pixels
assigned to layer 𝑙 .

Figure 3.2 shows an example of the segmentation results obtained with our
original approach on the scan of a healthy subject as well as some used terminology
including the coordinate system composed of the axial, the fast lateral and the
slow lateral scanning axes in the 𝑧, 𝑥 and 𝑦 direction, respectively. Although our
original approach performed well on healthy and glaucoma affected eyes, some
of its assumptions are problematic when applied to eyes with topology-disrupting
pathologies. In some cases, the layers are no longer homogeneous but show large
attenuation coefficient variations, which affects both the likelihood estimation as
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Figure 3.3: An example of a difference in the estimated attenuation coefficient values within layers by
examination of the local likelihoods (window width set to 565 μm, i.e. 50 pixels) for layers surround-
ing the OPL-ONL interface at two different locations. Although the likelihoods of the two layers vary
considerably for different locations, the contrast remains present (the OPL remains brighter than the
ONL).

well as the use of prior knowledge. Furthermore, the presence of lesions impacts
both the topology and morphology of the retina.

3.2.3. Locally adaptive likelihood
The original LCLS framework globally optimizes the segmentation of all interfaces by
exploiting the differences in the attenuation coefficients between both sides of an
interface across the whole volume. At every iteration of the level set propagation,
histograms of the attenuation coefficients are derived for each layer and from them
the likelihood of pixels along an interface belonging to each of the adjacent layers
is determined.

As already mentioned, some eyes with pathologies show abrupt local changes
in the estimated attenuation coefficients within a layer. This clearly violates the
assumption of homogeneous layers and makes a global approach no longer viable.
However, differences in the estimated attenuation coefficients between both sides
of an interface remain largely preserved on a local scale. Figure 3.3 shows an
example of variations in the estimated attenuation coefficient within layers for two
different locations in a B-scan image.
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Hence, we propose to exploit these local differences by setting a window of
interest around every A-scan and computing normalized histograms from values
within that window instead of considering entire layers. For every A-scan, a rect-
angular window, as indicated in Figure 3.3, with a certain width (described in more
details in section 3.2.7) and a height that extends over the entire image height was
taken. The window then slides from one side of an image to the other side. To
compute the local histogram of a certain layer for a specific A-scan, only data points
that belong to that layer and are within the window of interest are considered.

The computed local histograms now model the likelihoods for observing cer-
tain attenuation coefficient values within layers surrounding an interface, but are
constrained to the region of interest. This is achieved by making the probability
𝑃𝑟(𝜇|Ω ) dependent on the lateral position within a volume and by replacing it with
𝑃𝑟(𝜇|Ω , 𝑥, 𝑦). Similarly, the probability 𝑃𝑟(𝜇|Ω ) also becomes location depen-
dent 𝑃𝑟(𝜇|Ω , 𝑥, 𝑦). This enables the calculation of the posterior probability in
equation 3.2, which is replaced by 𝑃𝑟(𝑙 |𝜇, 𝑥, 𝑦), on a local scale.

3.2.4. Lesion modeling
Lesions, can be contained within a single layer, such as abnormal fluid pockets (e.g.
subretinal fluid in CSR), and drusen in dry AMD, or can extend over multiple retinal
layers, such as retinal cysts (e.g. intra-retinal cysts in CME). If lesions are contained
within a certain layer they could be regarded as an additional layer present within
the retina. As the LCLS framework allows segmentation of an arbitrary number of
layers, we propose to model lesions as an additional layer.

Auxiliary interfaces are introduced to delineate the top and bottom boundary
of the lesion if it is contained within a certain layer. If one of the boundaries of
the lesion coincides with an interface between retinal layers, then a single auxiliary
interface is introduced. These auxiliary interfaces are then propagated according
to equation 3.1 based on image data and anatomical knowledge about the retina.
Although the topology of the retina has changed in these eyes, if lesions are con-
tained within another retinal layer, the anatomical knowledge about the predefined
order of the retinal layers can still be utilized in the same way as in the original
framework.

From the auxiliary interfaces, the segmentation of the lesion is obtained. In the
absence of a lesion, the additional layer will have a near-zero thickness. As such,
the proposed approach provides information about the presence of a lesion as well
as its spatial extent.

3.2.5. Lesion segmentation
In CSR, fluid accumulates above the RPE and creates a subretinal fluid pocket. In
our framework, this fluid is modelled as an additional layer present within another
retinal layer surrounded by the IS ellipsoids and the posterior RPE boundary. Hence,
two auxiliary interfaces are introduced. These auxiliary interfaces are propagated
according to equation 3.1 by utilizing the difference in the estimated attenuation
coefficient values of the surrounding layers and prior knowledge. Prior knowledge
about the order of layers was enforced such that the fluid is contained between the
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IS ellipsoids and the posterior RPE boundary. However, no prior knowledge on the
thickness of the fluid pocket was imposed. Furthermore, prior knowledge about the
attenuation coefficient values on either side an the auxiliary interface is described
in section 3.2.7. As mentioned, in areas and scans without lesions, the additional
layer may shrink to a near zero thickness. In practice, the layer had a thickness
varying between 0 - 3.9 μm, i.e. less than one pixel. Therefore, a thickness of less
than 3.9 μm was interpreted to indicate that no lesion was present at that location.

In AMD, disruption of the RPE occurs and extracellular material starts to accu-
mulate resulting in the formation of drusen. As a result of this disruption, Bruch’s
membrane becomes separated from the posterior RPE boundary. However, the
membrane is only visible below the drusen, whereas in areas and eyes without
drusen it remains adjacent to the posterior RPE boundary and cannot be discerned.
Therefore, drusen can be considered as a layer between the posterior RPE bound-
ary and Bruch’s membrane. As one of the boundaries of drusen coincides with an
interface between retinal layers, only one auxiliary interface is introduced which
corresponds to the Bruch’s membrane. The segmentation of Bruch’s membrane
is frequently obtained by taking a convex envelope of the posterior RPE boundary
[7, 9, 41]. All elevation of the posterior RPE boundary higher that 20 μm [42, 43]
and larger than 25 μm in diameter (as determined by the age-related eye disease
study [44]) are regarded as drusen.

3.2.6. Initialization
Propagation of the level set functions is done by simultaneously solving the set of
partial differential equations that drive the current segmentation of the retinal in-
terfaces to its minimum energy state. The initialization stage of the segmentation
framework, that isbased on a minimum cost path search [45] and that is applied
to individual B-scans, was adapted to accommodate the possible presence of le-
sions. The cost function for the posterior RPE boundary was modified and instead
of initializing the OPL-ONL interface, the IS ellipsoid boundary was initialized. Two
additional nodes with zero cost, that connect each pixel in the first and the last
A-scans were added, to make the initialization process fully automatic.

The RPE is primarily a horizontal layer. However, in eyes affected by dry AMD,
drusen appear as vertical elevations of the posterior RPE boundary and the RPE
is no longer approximately horizontal. Our previously used cost function for the
posterior RPE boundary was based on the derivative in the 𝑧-direction (as the RPE
was horizontal). Due to vertical changes in the RPE, our new approach also included
the derivative in 𝑥-direction in the cost function (𝑓 ), which was defined as follows:

𝑓 = (1 − 𝑔 ∗ 𝐼
max(𝑔 ∗ 𝐼)) + (1 −

abs(𝑔 ∗ 𝐼)
max(abs(𝑔 ∗ 𝐼))) (3.3)

where 𝐼 stand for a B-scan, 𝑔 and 𝑔 are Gaussian derivatives in the 𝑧- and 𝑥-
direction, respectively. For other interfaces (the vitreous-RNFL and IS ellipsoid
boundary), only the derivative in the 𝑧-direction is considered and the cost func-
tion is defined as follows: 𝑓 = 1− ∗

max( ∗ ) . The initialization was performed in
a sequential manner, by first initializing the posterior RPE boundary. Then, the
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vitreous-RNFL interface was initialized by limiting the search region to the area
above the posterior RPE boundary. Finally, the IS ellipsoid boundary was found by
limiting the search area to the region bounded by the vitreous-RNFL interface and
the posterior RPE boundary.

The rest of the retina was initialized based on reported population-average thick-
nesses of retinal layers [46]. Furthermore, the two auxiliary interfaces around the
lesions in CSR data were initialized to be 20 μm below the IS ellipsoid boundary
and 20 μm above the posterior RPE boundary.

3.2.7. Parameter selection
As mentioned before, our LCLS approach combines a data-driven segmentation with
prior knowledge about the retina. The prior knowledge on the thickness of layers
remains the same as in our original approach, whereas the prior knowledge on the
attenuation coefficients was changed for three interfaces.

The priors on the estimated attenuation coefficients were modelled as an error
function (𝑃𝑟(𝜇 |𝑙 ) = 𝛾 erf ( log( ) log( ))+ 0.5) governed by three parameters that
controlled the threshold (𝜇 ), slope (𝜎) and magnitude (𝛾) of the prior probability.
As some of the layers showed large variations in their estimated attenuation coeffi-
cients, the imposed prior was relaxed by reducing the slope of the prior probability.
The parameter that controlled the slope was changed from a value of 2 mm to a
value of 4 mm for the OPL-ONL interface and the IS ellipsoids. Additionally, two pri-
ors on attenuation coefficients were introduced for the two auxiliary interfaces. The
slope of these priors was set to 1 mm, the threshold to 0.4 mm and the magni-
tude to 0.45 and -0.45 for the top and bottom boundary of the lesion, respectively.
Finally, in the used publicly available dataset of retinal scans of AMD patient [47],
the RPE was shown to have lower attenuation coefficient values. Therefore, the
threshold on the posterior RPE boundary for the scans from the publicaly available
dataset was changed to 5.0 mm . For the rest of the data (obtained in Rotterdam
Eye Hospital), this lower threshold caused parts of the choroid to be segmented
as part of the RPE, thus the threshold remained as it was in our original approach
(12.75 mm ).

Another parameter that needed to be set was the window size for the local
histogram calculation. The size of the window needs be large enough to provide
sufficient data points for a reliable likelihood estimation and small enough to adapt
to changes in the attenuation coefficients. Window sizes up to 565 μm (i.e., 50
pixels) were small enough to capture changes occurring in the estimated attenua-
tion coefficient values of the ONL and IS ellipsoids (the two layers with the largest
variation in the estimated attenuation coefficients). As a smaller window size might
not provide meaningful data, a window size of 565 μm was used.

Finally, in the noise suppression step, images were smoothed by using an adap-
tive 1D Gaussian filter [48] along the orientation obtained from the 2D structure
tensor [49]. The previously used scale for filtering was 𝜎 = 32 μm. As this scale
may smooth away small drusen, it was reduced to 𝜎 = 16 μm. The smaller scale is
in accordance with the standard drusen classification (according to the age-related
eye disease study, drusen are all elevation of RPE larger than 25 μm in diameter)
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and will ensure that such structures will not be suppressed.

3.2.8. Data
Volumetric macular OCT scans from 25 patients (one eye per patient) suffering
from CSR were obtained from an ongoing CSR study in the Rotterdam Eye Hospital
(Rotterdam, the Netherlands). The scans of this dataset were acquired with a
Spectralis SD-OCT system (Heidelberg Engineering, Germany) with a field of view
of 20∘x20∘. The scan protocol combined 97 B-scans composed of 512 A-scans
of 496 pixels into one volume. The recorded data was strongly anisotropically
sampled with a voxel spacing of approximately 3.9 x 11.3 x 60.2 mm in the 𝑧,
𝑥 and 𝑦 direction, respectively. The system employed an eye-tracker and was set
to average 5 B-scans before moving to the next B-scan.

Volumetric macular OCT scans from ten patients (one eye per patient) suffering
from AMD were obtained from a publicly available dataset [47]. The scans were
also acquired with a Spectralis OCT system, however the raw OCT was not available.
Instead, the dataset contained images exported in a tagged image file format. It
remains unclear what causes the lower attenuation coefficients of the RPE within
this dataset. For more details on the used scan protocols, we refer the reader to
[47].

For the AMD patients and five CSR patients, two B-scans with lesions were ran-
domly selected from each volumetric scan for manual annotation. For the remaining
CSR patients, one B-scan with lesions was randomly selected. Manual segmenta-
tion was done on a slice-by-slice basis by a medical doctor using ITK-SNAP (publicly
available at http://www.itksnap.org). In data from CSR patients, the expert
was asked to delineate the fluid boundaries and the following interfaces: the vitre-
ous - RNFL, RNFL - GCL, IPL - INL, INL - OPL and OPL - ONL interface as well as the
IS ellipsoids and posterior RPE boundary in data from CSR patients. In data from
AMD patients, in addition to the aforementioned interfaces, the expert was asked
to delineate Bruch’s membrane.

3.3. Experiments and results
A quantitative evaluation was done to assess the accuracy of the presented method.
Four sets of experiments were performed. In the first experiment, the accuracy of
the method to segment eyes with topology disrupting pathologies was evaluated
on data described in section 3.2.8. In the second experiment, the accuracy of the
presented method was evaluated on the same dataset that was used in the original
LCLS paper [27] to assess the performance of the proposed method on eyes without
topologically disrupting pathologies. In the third experiment, we illustrate how
the proposed framework could be applied to obtain segmentation of retinal layers
and cysts in a patient suffering from DME and present the obtained results. The
final experiment was performed to evaluate the accuracy of ”The Iowa Reference
Algorithms” [28, 50, 51] on our dataset.

For every interface, the accuracy was determined by measuring the distance
between manually and automatically segmented interfaces. Both signed and un-

http://www.itksnap.org
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Figure 3.4: Examples of automatic and manual layer and lesion segmentation on a B-scan from a patient
suffering from CSR (top row) and AMD (bottom row).

signed distances were computed for every A-scan and then averaged, resulting in
the mean-signed-error (MSE) and the mean-unsigned-error (MUE). The accuracy
of lesion segmentation was determined by examining the overlap between manu-
ally and automatically segmented lesions. The Dice coefficient, true positive rate
(TPR) and false positive rate (FPR) were considered. These measurements were
computed for every lesion. A-scans crossing the retinal vasculature were excluded
in calculating the errors as the blood vessels interrupt the normal appearance of
the layers and it is unclear to which layer these vessels belong to.

Table 3.1: Accuracy evaluation of the automatic layer segmentation in diseased eyes. Mean signed
(MSE) and unsigned error (MUE) with corresponding standard deviations are reported.

𝐶𝑆𝑅 𝐴𝑀𝐷
MSE
(μm)

MUE
(μm)

MSE
(μm)

MUE
(μm)

Vit.-RNFL -3.4 ± 3.6 3.9 ± 3.0 -2.6 ± 9.3 4.2 ± 8.7
RNFL-GCL -0.0 ± 12.0 6.5 ± 10.1 -3.7 ± 13.1 6.9 ± 11.7

IPL-INL 2.9 ± 14.8 10.1 ± 11.3 -1.1 ± 17.4 9.0 ± 14.9
INL-OPL -9.4 ± 16.6 11.8 ± 15.0 -3.9 ± 14.8 9.3 ± 12.1
OPL-ONL -4.9 ± 19.9 11.9 ± 16.8 -9.4 ± 17.1 11.5 ± 15.7
IS ellip. 0.8 ± 14.5 7.4 ± 12.5 1.9 ± 15.3 4.9 ± 14.5

RPE bou. 2.9 ± 8.1 6.2 ± 5.9 3.6 ± 19.6 8.3 ± 18.2
Bruch m. n/a n/a 1.8 ± 11.3 7.9 ± 8.1
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3.3.1. Accuracy evaluation on retinas with topology-disrupting
pathologies

The main evaluation of the presented segmentation method was done on macular
scans of eyes affected by CSR and AMD. The scans of 25 subjects for CSR and 10
subjects for AMD (one eye per subject) were used to estimate the accuracy of the
method.

Examples of a manual annotation and an automatic segmentation of both layers
and lesions obtained on a CSR and an AMD patient are shown in Figure 3.4. Further,
Table 3.1 provides detailed results on the accuracy of the automatic method for layer
segmentation. An error of 3.9 μm corresponds to one pixel along the recorded
A-scans. The accuracy of layer segmentation showed a MSE ranging from -9.4
μm to 3.6 μm and a MUE ranging from 3.9 μm to 11.9 μm. The accuracy of the
lesion segmentation is given in Table 3.2. The Dice coefficient was 0.89 for fluid
segmentation in CSR patients and 0.68 for drusen segmentation in AMD patients.

Additionally, Figure 3.5 shows a more detailed evaluation of the accuracy of
drusen segmentation with respect to the drusen height (as determined from manual
annotations). As can be seen from the figure, a good correspondence for drusen
with a height larger than 60 μm is generally found. With respect to drusen with
a height between 35 and 60 μm, some appear to be difficult to detect. Further,
drusen with a height smaller than 35 μm are systematically missed by the automated
method. Figure 3.6 shows B-scans with the best and the worst automatic drusen
segmentation results when compared to manual annotation. In both images several
small elevations of the RPE, indicated by white arrows, are missed by the automatic
method. Further, in the image with the best segmentation result, although the

Table 3.2: Accuracy evaluation of the lesion segmentation.

𝐶𝑆𝑅 𝐴𝑀𝐷
TPR 0.93 0.69
FPR 0.12 0.02
Dice 0.89 0.68

Figure 3.5: Dice coefficient of similarity with respect to the drusen height.
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Figure 3.6: Two B-scans from different subjects with manual and automatic segmentation of boundaries
defining drusen. Top row: One of the best automatic segmentation results of drusen as obtained by
visual inspection. Bottom row: Visually the worst automatic segmentation result of drusen in our dataset
in which some small and medium sized drusen are missed. White arrow indicate drusen missed by the
automatic segmentation.

manual and automated segmentation for large drusen appear to be very similar,
the Dice coefficient of similarity for these drusen is not very high, and shows an
overlap of around 80%.

Finally, the obtained segmentation results could be used for visualization of reti-
nal surfaces and 3D renderings of the retina with highlighted areas with lesions.
Additional processing of the segmentation results could also be performed which
offers many possibilities to show relevant clinical information in the easy to inter-
pret method. An example are thickness maps of different layers as well as en-face
images of the detected lesions. For CSR, an example of a 2D thickness map of the
ONL, which was shown to be reduced in eyes affected by CSR, and the fluid pocket
are shown in Figure 3.7. For AMD, an example of a 2D thickness map of the GCC,
which was shown to have a reduced thickness in eyes affected by AMD, and the
drusen height map are shown in Figure 3.7.

Figure 3.7: A fluid and an ONL thickness map for an eye suffering from CSR (top row) and a drusen
and a GCC thickness map for an eye suffering from AMD (bottom row). Detected lesions are outlined in
white.
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3.3.2. Accuracy evaluation on retinas without topology-
disrupting pathologies

Although the proposed method is designed for retinas with a topology-distributing
pathology, it can also be applied to segment normal retinas. To test the method’s
performance on data without topology-distributing pathologies, we applied the pro-
posed method to the data of healthy (20 peripapillary and 10 macular scans) and
glaucoma affected eyes (10 peripapillary scans). Additionally, the Wilcoxon signed
test with a Bonferroni correction was used to compare the accuracy of the proposed
approach with the accuracy of the original method.

Table 3.3 provides detailed results on the accuracy of the proposed method and
the original LCLS method on these data. Errors are expressed as MUE. The accuracy
of the proposed approach, showed a MUE ranging from 2.3 to 9.5 μm, 2.9 to 8.4
μm and 2.8 to 8.5 μm for the healthy macular scans, healthy peripapillary scans
and glaucoma peripapillary scans, respectively. On the other hand, the MUE of the
original approach ranged from 2.7 to 5.9 μm, 2.7 to 7.1 μm and 3.1 to 8.8 μm for
the healthy macular scans, healthy peripapillary scans and glaucoma peripapillary
scans, respectively.

3.3.3. Segmentation of lesion on a retina affected by DME
To further illustrate the generalization of the proposed framework for joint seg-
mentation of retinal layers and lesion, it was applied to a retinal scan of an eye
affected by DME. To obtain the retinal cysts and layer segmentation, the frame-
work described in section 3.2 was applied. The only two required changes were
the introduction of two auxiliary interfaces for cysts segmentation within the OPL
and two priors on their attenuation coefficients. Figure 3.8 shows examples of the
obtained automatic segmentation of both retinal layers and cysts. Additionally, an
en-face image of the auxiliary layer which contains the cyst segmentation is pre-
sented.

3.3.4. The Iowa Reference Algorithms
We segmented our dataset with the publicly available ”The Iowa Reference Algo-
rithms” (Retinal Image Analysis Lab, Iowa Institute for Biomedical Imaging, Iowa
City, IA) for retinal layer segmentation (version 3.6.0). The provided version seg-
ments eleven interfaces of which seven interfaces are considered within this paper:
vitreous - RNFL, the RNFL - GCL, the IPL - INL, the INL - OPL, the OPL - ONL, the
IS ellipsoid and RPE boundary. The software was applied to data from CSR and
AMD patients and MSE and MUE were calculated. All details can be found in Ap-
pendix 3.A. In summary, the accuracy evaluation of The Iowa Reference Algorithms
showed a MSE ranging from -15.3 μm to 40.2 μm and a MUE ranging from 11.6
μm to 55.9 μm for all data types. Overall, the software performed poorly when
segmenting the CSR data and fails to segment some of the AMD scans. The large
error terms for the CSR data seem to be due to the fact that software imposes
rather strict priors on the overall shape of the macula. The fluid region largely cor-
rupts the normal shape of retinal layers making the use of such prior knowledge
difficult. In the AMD data, drusen do not affect the shape of the inner retinal layers
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Figure 3.8: Examples of automatic layer and lesion segmentation on B-scans from a patient suffering
from DME. A cysts thickness maps with the detected lesions outlined in white.

so extensively resulting in a considerably smaller error terms.

3.4. Discussion and conclusion
This paper presents a method to jointly segment retinal layers and lesions in eyes
with topology-disrupting retinal diseases. The method utilizes the local attenuation
coefficient differences between layers surrounding the interfaces and introduces
auxiliary interfaces to segment lesions. Thus, the proposed method can handle
local intensity variation and the presence or absence of pathological structures in
the retina. The accuracy of both layer and lesion segmentation has been evaluated
on eyes affected by CSR and AMD.

A good agreement between the segmentation performed manually by a medical
doctor and results obtained from the automatic segmentation was found (the MUE
for all interfaces in eyes affected by CSR and AMD varied between 3.9 and 11.9
μm (1 - 3.1 pixels)). Furthermore, lesion segmentation showed a Dice coefficient
of 0.68 for drusen segmentation and 0.89 for fluid segmentation. Although the
obtained values for drusen and fluid segmentation both indicate a good overlap
between manual and automatic segmentation, results for fluid segmentation have
a higher Dice coefficient. This result is expected as drusen and fluid pockets vary
largely in size and spatial extent. If small errors occur in the segmentation of a fluid
pocket, they hardly affect the Dice coefficient as a fluid pocket is usually very large.
However, if small errors occur in the segmentation of an individual druse, whose
volume can be very small, they will have a large impact on the Dice coefficient.

Additionally, layer segmentation was also evaluated on healthy (peripapillary
and macular scans) and glaucoma affected eyes (peripapillary scans). The MUE
for all interfaces ranged between 2.3 and 9.5 μm. The obtained results of layer
segmentation on data without topology-disrupting pathology are similar to those
obtained in our original approach [27]. This indicates that the proposed approach
performs well on data without topology-disrupting pathologies. As such, the new
method generalizes the previously presented method since it can handle both eyes
with and without topology-disruptive pathologies.

In Figure 3.8, preliminary results of the segmentation of retinal layers and cysts
in an eye affected by DME are shown. Although the segmentation was not eval-
uated, the preliminary results are encouraging. They show the flexibility of the
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proposed framework to be easily extended to another type of lesion.
Comparing our method with other retinal segmentation methods found in the

literature is difficult. Every method was evaluated on different types of retinal im-
ages and using a different reference standard to report the accuracy. Therefore,
we applied ”The Iowa Reference Algorithms”, publicly available software for reti-
nal layer segmentation, to our dataset and evaluated its accuracy. The software
performed poorly and even failed to segment some of the volumetric scans used
within this paper. Our method achieve much better accuracy than the ”The Iowa
Reference Algorithms”. Comparison with other segmentation methods is done only
in a qualitative manner. In recent work, TPR of fluid lesions were reported rang-
ing between 86 and 96% [7, 28, 30, 35, 36]. Furthermore, techniques for drusen
segmentation reported an overlap ratio of 67% [11], an interclass correlation coef-
ficient of 0.64 [12] and a MUE for the interfaces that surround the drusen ranging
between 3 and 6 μm [7, 17]. The aforementioned approaches either focused on
segmentation of a specific lesion or evaluated only the accuracy of lesion segmen-
tation without evaluating the segmentation of retinal layers. Our method achieved
similar results to those of the existing methods (TPR of 93% for fluid segmentation,
Dice coefficient of 68% for drusen segmentation, MUE for the interfaces that sur-
round the drusen ranging from 4.9 to 8.3 μm). However, our method also jointly
segmented layers and lesion which is beneficial for clinical applications where one
interprets the lesion within the context of retinal layers. In addition, several other
approaches also segmented lesions and retinal layers and evaluated the accuracy of
both [29, 31, 32]. These approaches reported an accuracy of layer segmentation,
expressed as MUE, between 3 and 8 μm in exudative AMD patients [31], between
4 and 13 μm in serous pigment epithelium detachment patients [32] and between
3 and 8 μm in DME patients [29]. These results are comparable to our MUE (3.9 -
11.9 μm). However, these earlier reported approaches required training [29, 31] or
were dependent on empirically determined thresholds [32], which is not required
by the proposed framework.

In Figure 3.7, some of the possible applications of the developed method are
presented. Using 3D segmentation of the retina, one can easily create and examine
en face thickness maps of different layers in the retina or examine the presence,
spatial distribution and extent of a lesion. Additionally, analysis of attenuation co-
efficient maps could be of interest. Our experiments showed that eyes affected
by CSR show large variation in the estimated attenuation coefficient values. The
variation could reflect a real change in optical properties of the layers in question
or could be an artifact due to the assumptions of the model for transformation of
the raw OCT data to attenuation coefficients. Further investigation of the cause of
these variations is beyond the scope of this paper.

Overall, our method provides a flexible and accurate solution to jointly seg-
ment lesions and retinal layers. Similar performance of the proposed method was
achieved on eyes with and without topology-disrupting pathologies. Thus, the ap-
proach show potential for clinical use as it is capable to handle both normal and
topology-disrupting retinas. Future work could include a more extensive evaluation
on eyes with lesions or extension to other retinal diseases.
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3.A. Appendix
The segmentation results obtained with ”The Iowa Reference Algorithms” were
compared with our manual annotations. The accuracy was determined by mea-
suring the distance between manually and automatically segmented interfaces. For
every interface, signed and unsigned distances were computed for every A-scan and
then averaged. Table 3.4 provides detailed results on the accuracy of the of ”The
Iowa Reference Algorithms” for seven interfaces. The software hardly provided any
segmentation results for 2 out of 10 volume scans of AMD patients (B-scans used
for accuracy evaluation in both volumes were marked as undefined and no segmen-
tation results were given). Overall, 95 % of one volume and 85 % of the second
volume was marked as undefined region. The rest of the AMD and CSR data did
not have undefined regions and performed segmentation successfully. Finally, for
comparison purposes, the results of our method on the same dataset are given in
Table 3.1.

Table 3.4: Accuracy evaluation of ”The Iowa Reference Algorithms” in diseased eyes. Mean signed
(MSE) and unsigned error (MUE) with corresponding standard deviations are reported. The error terms
for AMD dataset were evaluated on 8 out of 10 volume scans.

𝐶𝑆𝑅 𝐴𝑀𝐷
MSE
(μm)

MUE
(μm)

MSE
(μm)

MUE
(μm)

Vit.-RNFL -2.7 ± 33.9 21.5 ± 26.6 -8.6 ± 24.0 14.0 ± 21.3
RNFL-GCL 14.5 ± 48.7 32.7 ± 38.8 -9.1 ± 24.9 16.3 ± 21.0

IPL-INL 28.5 ± 64.8 45.3 ± 54.4 -6.8 ± 20.1 13.7 ± 16.4
INL-OPL 39.1 ± 77.1 53.4 ± 67.8 -1.5 ± 19.3 11.6 ± 15.5
OPL-ONL 40.2 ± 79.7 55.9 ± 69.5 -6.0 ± 26.1 17.3 ± 20.4
IS ellip. 41.1 ± 74.4 53.7 ± 65.8 -0.5 ± 25.5 13.1 ± 22.0

RPE bou. -15.3 ± 31.5 23.8 ± 25.6 -7.0 ± 32.2 19.4 ± 26.7
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Abstract
Extraction of image-based biomarkers, such as the presence, visibility or
thickness of a certain layer, from 3D optical coherence tomography data pro-
vides relevant clinical information. We present a method to simultaneously
determine the number of visible layers in the outer retina and segment them.
The method is based on a model selection approach with a special attention
given to the balance between the quality of a fit and model complexity. This
will ensure that a more complex model is selected only if this is sufficiently
supported by the data. The performance of the method was evaluated on
healthy and retinitis pigmentosa (RP) affected eyes. Additionally, the repro-
ducibility of automatic method and manual annotations was evaluated on
healthy eyes. A good agreement between the segmentation performed man-
ually by a medical doctor and results obtained from the automatic segmen-
tation was found. The mean-unsigned deviation for all outer retinal layers
in healthy and RP affected eyes varied between 2.6 and 4.9 μm. The repro-
ducibility of the automatic method was similar to the reproducibility of the
manual segmentation. Overall, the method provides a flexible and accurate
solution for determining the visibility and location of outer retinal layers and
could be used as an aid for the disease diagnosis and monitoring.
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4.1. Introduction
Optical coherence tomography (OCT) is a non-invasive, non-contact, optical imag-
ing technique that can be used to acquire in-vivo images of retinal structures [1].
Due to its high axial resolution and sensitivity, different cell layers that compose
the retina, can be visualized by differences in backscattering, as is shown in Figure
4.1a. Hence, the effect of retinal diseases on both the inner, anterior and the outer,
posterior retinal layers can be investigated.

Retinitis pigmentosa (RP), age-related macular degeneration (AMD) and Star-
gardt disease (SD) are among those eye diseases that cause anatomical changes in
the outer retinal layers. Retinal OCT images of RP subjects show that the external
limiting membrane (ELM) and the ellipsoid zone (EZ) become dimmer or even com-
pletely disappear [2–4], whereas OCT scans of SD show that ELM and the retinal
pigment epithelium (RPE) change in thickness [5, 6]. Therefore, presence, visibility
and thickness of these outer retinal layers are potential biomarkers that can aid in
the diagnosis and monitoring of retinal diseases. Manual annotations and extraction
of these image-based biomarkers can be tedious, time consuming and subjective.

Figure 4.1: An OCT B-scan of a healthy (a) and RP (b) affected retina after conversion to attenuation
coefficient (see section 4.3.1). The arrows point to areas where several outer retinal layers are no
longer visible. Boundaries marked with red lines are obtained with our previously proposed method
(see section 4.3.1) and are used to define the region of interest (the outer retina). The abbreviations of
these interfaces are as follows: 1. OPL - ONL interface, 2. anterior EZ boundary and 3. posterior RPE
boundary. The outer retinal layers and their abbreviations are indicated with blue lines.
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To provide an objective assessment of the relevant retinal layers and thereby an
objective quantification of the biomarkers, automatic segmentation methods are
required.

Automatic segmentation of the layers in the outer retina can be challenging
for the following two reasons. First, the layers are often indiscernible due to the
limited resolution of the eye’s optics and the OCT system [7]. Second, layers may
deteriorate as a result of a disease [2, 6, 8]. Indeed, Lang et al. reported that
segmentation of missing layers might be problematic [9]. Although many automatic
algorithms for the segmentation of retinal layers have been developed [10–20],
only three addressed the problem of vanishing layers [21–23]. First, Yang et al.
[21] segmented the layers of the outer retina in a sequential manner by using a
dual gradient and shortest path search in which some of the layers were allowed
to overlap. However, in their approach the ELM, was not segmented, although it
is of interest in both RP and SD. Second, Kafieh et al. [22] developed a cluster
based approach to detect the ”proper number of layers to be segmented” in retinas
of healthy and glaucoma subjects. However, the approach considered only the
visibility of the ELM and the GCL - IPL interface. Based on the detected visibility
the data was placed into three groups with either 6, 7 or 12 interfaces between the
retinal layers. The framework was tested only on healthy and glaucoma subjects,
thus it remains unclear how it would perform on eyes where several retinal layers
are missing. Finally, Srinivasan et al. [23] used a support vector machine prior to
the actual segmentation ,to divide individual B-scans of mice retinas into two groups
with either eight or ten layers present. However, the number of layers can change
even within a single B-scan, as is shown in Figure 4.1b. Therefore, this method
lacks flexibility since it relies on the strong and sometimes incorrect assumption
that the same number of layers is present across the entire B-scan.

We present a method to simultaneously and locally determine the number of
visible layers in the outer retina and segment them. The method operates on at-
tenuation coefficient images, which represent an optical property of the tissue [24],
and is based on a model selection approach. Standard model selection methods
were applied in our previous work [25], in which no evaluation on the accuracy or
reproducibility of the approach was performed. Here, we propose a modified mea-
sure of information complexity to account for parameter interdependencies and
scaling. Within the model selection procedure specific attention is given to balance
the quality of a fit with the model complexity. Each layer is modelled as a Gaussian
function and several models of the outer retina, each with different number of lay-
ers, are considered. The different models are based on previously reported work
on the visibility of layers and their deterioration [2, 4]. Finally, model parameters
are estimated and the model that best supports the data is selected. The winning
model provides not only the number of visible layers, but also their visibility, po-
sition and identification. Within this paper, the performance and reproducibility of
the method is evaluated on healthy subjects, as well as its ability to segment eyes
affected by RP. Results on the following layers will be presented: the external lim-
iting membrane (ELM), the ellipsoid zone (EZ), the integration zone (IZ), and the
retinal pigment epithelium (RPE) [26] (each layer is represented by the center line
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that passes through that layer as indicated in Figure 4.1).
The outline of this paper is as follows. Section 4.2 presents the methods for

model selection and parameter estimation. Section 4.3 describes how the pre-
sented methods are applied to solve the outer retinal layer segmentation problem.
In Section 4.4, the performance of the methods on healthy and RP affected retinas
is evaluated as well as the reproducibility of both manual and automatic segmen-
tation. Additionally, we show some examples of possible applications, such as the
projection of the number of visible layers for every A-scan onto a 2D en face image.
Finally, the presented methods and the results are discussed in Section 4.5.

4.2. Methods: Model selection and fitting
4.2.1. Model selection
Model selection is the task of choosing from a set of candidate models, the model
that is best supported by the available data. Two properties are commonly used
in model selection approaches: the goodness of a fit and the model complexity.
The goodness of fit describes how well a model represents the set of observations,
whereas complexity is a property of a model. Often, a more complex model has
more parameters and will therefore result in a better goodness of a fit. However, the
added complexity might not capture the signal, but merely describe noise. When
this occurs, a more complex model over-fits the data. To reduce the possibility
of over-fitting, information about the complexity of a model should be weighted
against the goodness of a fit. Various criteria for model selection have been pro-
posed. In these criteria, the goodness of fit is commonly represented by the like-
lihood associated with the maximum likelihood estimation (MLE) [27]. However,
they differ in terms of how the model complexity is incorporated.

The likelihood ratio test (LRT) provides a widely used basis for model selection
[28]. It is generally used to compare two nested models (i.e., one of the models is
a special case of the other model). The performance of the two models is evaluated
by looking at the ratio of their goodness of fit. The test expresses how much more
likely it is that the data comes from the more complex model rather than the simpler
one. As such, LRT does not incorporate any information about model complexity.

The Akaike information criterion (AIC) is another widely used criterion [29]. It
balances the complexity and goodness of fit, where model complexity is represented
by the number of model parameters. The expression for AIC is as follows:

AIC = −2ln(𝐿) + 2𝑝 (4.1)

where 𝐿 is the likelihood and 𝑝 the number of parameters associated with a
certain model. AIC was shown to perform poorly if the sample size was small
[30], hence a corrected Akaike information criterion was proposed as follows:
𝐴𝐼𝐶 = −2ln(𝐿) + (2𝑝𝑛)/(𝑛 − 𝑝 − 1), where 𝑛 is the sample size [30]. Several
other variations of the Akaike criterion were proposed, such as Quasi-AIC (QAIC)
and Takeuchi’s Information Criterion (TIC). These criteria are beyond the scope of
this paper and not as commonly used as AIC.

The Bayesian information criterion (BIC) appears to be similar to AIC [31]. They
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share the same likelihood term, but differ in the way they penalize a model based
on the number of model parameters. The expression for BIC is as follows:

BIC = −2ln(𝐿) + 2𝑝ln(𝑛). (4.2)

As can be seen from the equations, the difference between BIC and AIC is in the
assignment of a weight for complexity with respect to the sample size. However,
both criteria and their extensions represent complexity as the number of parameters
and do not fully take into account information concerning parameter redundancy,
accuracy and interdependence [32].

The information complexity criterion (ICOMP) is a model selection criterion that
includes information about interdependencies of model parameters and their sta-
bility [32]. The model complexity is based on calculation of the degree of interde-
pendence between the parameters through the inverse Fisher matrix. The inverse
Fisher matrix provides a measure of accuracy of the parameter estimation over the
entire parameter space and can be viewed as the curvature of the likelihood func-
tion. The diagonal elements of the matrix contain information about the variance
of the estimated parameters, whereas the off-diagonal elements contain their co-
variances. By including information about the interdependence, ICOMP provides
a more judicious penalty term than either AIC or BIC [32]. The expression for
calculating the ICOMP value for a certain model is as follows:

ICOMP = −2ln(𝐿) + 2𝐶(ℱ ) (4.3)

where ℱ is the Fisher information matrix and 𝐶 denotes the complexity measure-
ment as:

𝐶(ℱ ) = 𝑠
2 (log(

tr(ℱ )
𝑠 ) − 12 log|ℱ |) (4.4)

where 𝑠 is the rank of ℱ .
Although the parameter stability and orthogonality are taken into account by the

ICOMP measure, the criterion is not scale-invariant. Furthermore, when performing
model selection with ICOMP, it is recommended to specify the model such that each
model parameter is not affected by changes in the remaining model parameters
[32]. If a model is specified such that it does not satisfy this recommendation or
if a parameter scaling could play an important role in ensuring parameter stability,
one could use a modified correlation form of ICOMP:

ICOMP = −2ln(𝐿) + 2𝐶(ℱ ) (4.5)

where the inverse Fisher matrix is replaced by its normalized version as follows:

ℱ = diag (ℱ ) / ℱ diag (ℱ ) /
(4.6)

where diag (ℱ ) is a diagonal matrix containing the diagonal elements of ℱ [32].
This normalized form of the ICOMP criterion is scale-invariant and less affected by
improper model specification [32].
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Figure 4.2: Illustration of simulated data for three examples used in section 4.2.3. The simulated
Gaussians are shown in blue. The values used to generate these Gaussians were ( , , . , . , , ),

( , , . , . , , ), and ( , , , , , . , . , , ) for the first, second and third example,
respectively. Noise was added to these signals (shown in red) after which the model fitting and selection
procedure was performed.

Finally, when performing model selection with each of the aforementioned crite-
ria, the model that yields the smallest criterion value is selected as the model that
is best supported by the data.

4.2.2. Model fitting and parameter estimation
Before the correct model can be selected, the potential models need to be fitted to
the data to find the best model parameters according to the fitting procedure. The
estimation of the model parameters was done by MLE.

Several assumptions were made in estimating the model parameters with MLE.
First, a sequence of observations (𝑤 , 𝑧 ), … (𝑤 , 𝑧 ) can be represented with a
certain model (𝑀(𝜃𝜃𝜃, 𝑧)) and additive measurement noise (𝜖) as 𝑤 = 𝑀(𝜃𝜃𝜃, 𝑧) + 𝜖,
where 𝜃𝜃𝜃 are the model parameters. Second, the measurement noise is indepen-
dent, identically distributed and can be approximated by a Gaussian distribution
𝜖 ∼ 𝒩(0, 𝜎 ). Third, all observations are independent. Under these assumptions,
the log likelihood to be maximized can be written as

ln(L) = −∑(
(𝑤 −𝑀(𝜃𝜃𝜃, 𝑧 ))

𝜎 ) (4.7)

The models used in our approach will be described in more detail in section 4.3.2
and the estimation of the measurement error (𝜎 ) in section 4.3.3.

4.2.3. Numerical examples for model selection
In this section, we give three numerical examples to demonstrate how various
model selection criteria perform in identifying the true model under various con-
ditions.

Several models which differed in the number of parameters were considered.
The models were defined as follows:

𝑀(𝜃𝜃𝜃, 𝑧) =∑𝑎 exp(−(𝑧 − 𝑙 )2𝜎 ) (4.8)
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Table 4.1: Percentage of selection of each model based on different model selection criteria for three
different signal realizations. ( , ), ( , ) and ( , ) represent models composed of one, two
and three Gaussians, respectively.

𝑀 (𝜃𝜃𝜃, 𝑧) 𝑀 (𝜃𝜃𝜃, 𝑧) 𝑀 (𝜃𝜃𝜃, 𝑧)
Example 1 - Two well-separated Gaussians
AIC 0% 98%98%98% 2%
BIC 0% 99%99%99% 1%
ICOMP 0% 97%97%97% 3%
ICOMP 0% 92%92%92% 8%
Example 2 - Two overlapping Gaussians
AIC 45% 50%50%50% 6%
BIC 55%55%55% 43% 2%
ICOMP 16% 73%73%73% 12%
ICOMP 12% 72%72%72% 16%
Example 3 - Three Gaussians
AIC 33% 373737% 30%
BIC 51%51%51% 33% 17%
ICOMP 15% 42% 44%44%44%
ICOMP 6% 30% 64%64%64%

where 𝑘 indicates the number of the Gaussian functions, 𝜃𝜃𝜃 = (𝜃𝜃𝜃 ,… ,𝜃𝜃𝜃 ) and 𝜃𝜃𝜃 =
(𝑎 , 𝑙 , 𝜎 ) with 𝑖 ∈ 1, … , 𝑘 in which 𝑎 , 𝑙 and 𝜎 are respectively the amplitude,
position and width of the Gaussian with index 𝑖.

In the first two examples, data was generated from the true model which has
two Gaussian functions and for two sets of model parameters. In the third example,
data was generated from a true model which consists of three Gaussian functions.
Examples of the simulated data are shown in Figure 4.2. To the simulated signal,
Gaussian distributed random noise was added to result in a signal-to-noise (SNR)
ratio of 10 dB.

In the first example, the simulated data had two Gaussian functions clearly sepa-
rated from each other. In the second example, the two Gaussian functions partially
overlapped. In the final example, the simulated data contained a Gaussian function
with a small amplitude and two partially overlapping Gaussians. For each example,
one thousand noisy realizations were generated for the same 20 z - coordinates.
Three models were considered for the fitting procedure: 𝑀 (𝜃𝜃𝜃, 𝑧) (composed of one
Gaussian function), 𝑀 (𝜃𝜃𝜃, 𝑧) (composed of two Gaussian functions) and 𝑀 (𝜃𝜃𝜃, 𝑧)
(composed of three Gaussian functions). Simulated data for all three examples was
fitted to all three models. Afterwards, for each fit, the corresponding criteria values
were calculated by using the expressions given in 4.2.1.

Table 4.1 shows the ability of the various model selection criteria to identify
the true underlying model by stating how often each model was selected. In the
first experiment, all model selection criteria perform equally well and were able to
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Figure 4.3: Values of complexity measurement for different criterion for one simulated dataset from the
example with two overlapping Gaussians. ( , ), ( , ) and ( , ) represent models composed
of one, two and three Gaussians, respectively.

identify the true underlying model in over 92% of the cases. The results become
more interesting in the second and third example where it becomes more difficult
to distinguish the true model for all model selection criteria. However, ICOMP and
ICOMP perform better than AIC or BIC. By modelling complexity in a more ad-
vanced way, in the second example, they are able to select the correct model in a
larger number of cases (approximately 20% more). In the final and third example,
the benefit of using ICOMP was illustrated, as it is able to recognize the correct
model in 64% of the cases, whereas other criteria selected it in less than 50% of
the cases.

Furthermore, in Figure 4.3 we show for one simulated dataset from the second
example, how the calculated complexity varies between different model selection
criteria. For AIC and BIC, as expected, we see a linear increase in complexity with
the increase of the number of model parameter (the number of parameters is three,
six and nine for 𝑀 (𝜃𝜃𝜃, 𝑧), 𝑀 (𝜃𝜃𝜃, 𝑧) and 𝑀 (𝜃𝜃𝜃,𝑧), respectively). For ICOMP and its
normalized version, the complexity also increases with the number of parameters,
however, no longer in a linear fashion. With ICOMP, the complexity value remains
low for 𝑀 (𝜃𝜃𝜃, 𝑧) (the simplest model) and 𝑀 (𝜃𝜃𝜃, 𝑧) (the true model) and steeply
increases for 𝑀 (𝜃𝜃𝜃 , 𝑧), which would indeed lead to overfitting. ICOMP shows
the same behaviour as ICOMP, however the complexity is smaller than for ICOMP.

As shown from our experiments, when Gaussian functions are clearly separated,
all model selection criteria perform approximately equally well. However, when
Gaussian functions are no longer clearly separable or when a Gaussian function
with a small amplitude is present, as is often the case in the outer retina, both the
ICOMP and ICOMP outperform AIC and BIC. Furthermore, ICOMP , as a results
of its theoretical advantages (scale-invariance and less affected by improper model
specification), performs better than ICOMP. Thus, in the following section, model
selection was performed only with ICOMP .
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Figure 4.4: Graphical representation of the used models of the outer retina and corresponding layers in
each model.

4.3. Outer retina layer segmentation
Several processing steps are performed to segment the layers in the outer retina:
pre-processing, fitting the candidate models, model selection and layer identifica-
tion. First, the pre-processing step detects the region of interest (the location of the
outer retina). Second, the parameters of the various models for the outer retina
are calculated for every A-scan by using MLE. Third, the model selection proce-
dure based on ICOMP is applied to select the model best supported by the data.
Fourth, the labels are assigned to the detected layers.

4.3.1. Pre-processing
The raw OCT data is converted to attenuation coefficients after which the loosely
coupled level sets (LCLS) framework [15] is applied to the converted data to detect
the location of the outer retina. Next, each B-scan is filtered with an 1D Gaus-
sian filter [33] steered along the orientation obtained by a 2D structure tensor [34]
with a gradient and tensor scale of 𝜎 = 25 μm and 𝜎 = 120 μm, respectively.
The standard deviation of the Gaussian filter was equal to the spacing between
subsequent B-scans. Afterwards, each B-scan was sub-sampled such that the ob-
tained spacing along a B-scan matched the spacing between B-scans. Finally, the
region of interest for the parameter estimation and model selection procedure was
set to be between the posterior RPE boundary and the lower of the two following
boundaries: the OPL-ONL interface or 40 μm above the anterior EZ boundary.

4.3.2. Representation of layers and models
In case of a thin reflecting layer (i.e., thin in comparison to the coherence length of
the used light source), the response of the OCT system corresponds to a weighted
and shifted version of the system’s point spread function (PSF), which can be ap-
proximated by a Gaussian function. Since some of the outer retinal layers originate
from structures thinner than the PSF of an OCT system [7], we modelled each of
the layers in the outer retina as a Gaussian function. Furthermore, we consid-
ered several models of the outer retina, each with a different number of layers
and composed of different tissues. These models are created by a superposition of
shifted, scaled and compressed/stretched Gaussian functions and can be written,
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by redefining the models from section 4.2.3, as follows:

𝑀(𝜃𝜃𝜃, 𝑧) =∑𝑎 exp(−(𝑧 − 𝑙 )2𝜎 ) + 𝑐 (4.9)

where 𝑐 is the signal offset (noise floor) and 𝑎 , 𝑙 and 𝜎 are the model parameters
corresponding to respectively the amplitude, location and standard deviation of the
Gaussian function representing layer 𝑖. The variable 𝑘 indicates the number of
Gaussians in a certain model. In our framework, four models of the outer retina
were considered, hence 𝑘 varied from 1 to 4. The models were created such that
they reflected previously published work on the visibility of the outer retinal layers
[7] and their deterioration [3] and are illustrated in Figure 4.4. In the single layer
model, the only visible layer corresponds to the RPE. In the dual layer model, the
ELM becomes visible in addition to the RPE. The triple layer model contains the
ELM, EZ and RPE. The quadruple layer model assumes that all layers in the outer
retina are visible and adds the IZ to the set of visible layers. Finally, although a
layer is defined as a Gaussian function, the final segmentation result is extracted
as the location parameters of the selected model which result in a surfaces that
passes through the corresponding outer retinal layer.

4.3.3. Model fitting and model selection
The model parameters for each model were estimated by maximizing the likelihood
function of equation 4.7. The assumptions mentioned in the section 4.2.2, apply
here as well and the same statistical model is used (𝑤 = 𝑀(𝜃𝜃𝜃, 𝑧) + 𝜖; 𝜖 ∼ 𝒩(0, 𝜎 ))
where the data points (𝑤(𝑧)) in equation 4.7 were natural logarithm values of the
anisotropically filtered attenuation coefficients along an A-scan. The logarithmic
transform of the data was taken because the noise appeared to be multiplicative
(i.e. the noise increased with increasing attenuation coefficients). The measure-
ment error (𝜎 in equation 4.7) was estimated from the filtered and sub-sampled
volumes of the retina which were first flattened based on the available segmentation
of the posterior RPE boundary as obtained by the LCLS method. Then, correspond-
ing A-scans from neighboring B-scans were subtracted from each other and the
variance was calculated for every pair of A-scans. The average of the calculated
variances was computed and its square root used as measurement error for the
entire B-scan. Finally, the signal offset (𝑐), which represents the background sig-
nal, in equation 4.9 was chosen to be fixed, as the parameter had the tendencies
to be overestimated when fitted which lead to incorrect estimation of the Gaussian
function that represents ELM. The value was set to the 5th percentile value present
in an A-scan (within the region of interest).

To improve the robustness of the proposed approach, prior knowledge about the
outer retinal layers was incorporated into the optimization procedure by constraining
the possible values for the the model parameters (𝑎 , 𝑙 , 𝜎 ). The constraints were
imposed to provide guidance to the fitting procedure, however they were still weak
enough such that they do not interfere with the outcome of the fitting procedure in
diseased eyes. The location of ELM was restricted to the area between the OPL-ONL
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Table 4.2: Amplitude constraint for different layers ( ).

Minimal Maximal

ELM 0.01 0.2
EZ 0.5 10
IZ 0.1 2
RPE 3 80

Figure 4.5: An few consecutive macular B-scans forming the retina. The yellow line indicates an A-scan.
The used coordinate system is indicated with arrows in the top left corner.

interface and the anterior EZ boundary (as detected with the LCLS method) and the
other layers had to be within the region bounded by the anterior EZ boundary and
the posterior RPE boundary (also detected with the LCLS method). The standard
deviation of the Gaussians, that represent the layers, was constrained to the range
of 2-40 μm. An additional constraint was put on the amplitude of different layers,
based on prior knowledge of the attenuation coefficients of the different layers
as reported in Table 4.2. This constraint was determined experimentally by using
data from healthy subjects (independent from those used for accuracy evaluation).
Finally, the predefined order of the layers was enforced.

4.3.4. Post-processing specific for retinitis pigmentosa
To improve spatial consistency of the segmented layers, a post processing step
specific for eyes affected by RP is proposed. For this, the number of visible layers
for every A-scan is projected onto a 2D en face image on which further process-
ing is performed. The en face image is decomposed into four binary images each
showing area in which either one, two, three or four layers are visible. Each im-
age is processed by two morphological filtering steps: a morphological opening
(to remove possible noise present as small and isolated structures) followed by a
dilation operation (to connect discontinuities in layers smaller than the structuring
element and create a more continuous result), both using a disk-shaped filter with
a radius of 60 μm). The radius was based on the clinical need (as determined by
the scan protocol for RP patients), which indicates that information smaller that 120
μm are not relevant. The individual images are then summed together to create an
updated en face image. Finally, segmentation of retinal layers is extracted as the
position parameter (𝑙) of the fitted Gaussian model with the number of layers that
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corresponds to the value obtained from the updated en face image.

4.3.5. Data
The OCT data for this study was obtained from the Rotterdam Eye Hospital (Rotter-
dam, the Netherlands) and contained 20 macular scans of healthy subjects and 10
macular scans of RP patients. All scans were acquired with a Spectralis OCT system
(Heidelberg Engineering, Germany). The scan protocol for healthy eyes combined
143 B-scans composed of 384 A-scans of 496 pixels into one volume for 17 eyes.
For three healthy subjects, the scan protocol combined 193 B-scans composed of
512 A-scans of 496 pixels into one volume. For RP affected eyes, the volume con-
tained 37 B-scans composed of 512 A-scans of 496 pixels. The system employed an
eye-tracker and was set to average 5/35 B-scans before moving to the next B-scan
for scans of healthy/RP subjects. The field-of-view was 15∘x15∘ and 20∘x15∘ for 17
healthy and all diseased retinas, respectively. For three healthy retinas, the field
of view was 20∘x20∘. The scanned data was strongly anisotropic with a spacing
of approximately 3.9x11.3x30 μm for healthy eyes and 3.9x11.3x121 μm for RP
affected eyes in the z, x and y direction which correspond to the axial, the fast lat-
eral and the slow lateral scanning axes, respectively. The used coordinate system
is depicted in Figure 4.5.

4.4. Experiments and results
Two sets of experiments were done to evaluate the presented method. In the
first experiment, the performance of the method was evaluated on healthy retinas,
along with the reproducibility analysis. In the second experiment, the performance
of the method on RP affected retinas was examined.

Each volumetric scan was converted to attenuation coefficients and one B-scan
was randomly selected for manual annotations. Manual segmentation was per-
formed by a medical doctor using ITK-SNAP (publicly available on http://www.
itksnap.org/). The expert was asked to delineate all visible outer retinal layers.
Although a single slice was extracted for annotation, the expert had access to the
whole volume scan and could use it as an aid when determining the visibility of the
layers and performing the annotations.

For every layer, both the accuracy of the layer’s localization and the layer’s vis-
ibility (detectability) was examined. The accuracy of how well the two segmenta-
tions agreed in determining the visibility was expressed in a measure of agreement
(defined as the ratio of the true positives and true negatives over the number of
A-scans). Furthermore, we present a measure of sensitivity (defined as the true
positive rate), and negative predictive value. Additionally, the localization accu-
racy was determined by measuring differences between the results of our method
and the manually segmented data. The mean-signed-deviation (MSD) and the
mean-unsigned-deviation (MUD) were considered. The reproducibility of manual
and automatic segmentation was also evaluated by the same error measures.

Finally, to eliminate a possible bias, in the localization accuracy, due to different
criteria in automatic and manual segmentation (e.g. the automatic method might

http://www.itksnap.org/
http://www.itksnap.org/
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Table 4.3: Agreement, sensitivity and negative predictive value of the automated method for determining
the visibility of several layers for different model selection criteria on 20 healthy eyes.

ELM EZ IZ RPE

Agreement
AIC 90% 96% 55% 99%
BIC 90% 95% 47% 99%
ICOMP 91% 97% 68% 99%
ICOMP 91% 97% 70% 99%
Sensitivity
AIC 98% 96% 28% 100%
BIC 98% 95% 18% 100%
ICOMP 99% 97% 55% 100%
ICOMP 100% 97% 56% 100%
Negative predictive value
AIC 72% 33% 39% NaN%
BIC 63% 30% 38% NaN%
ICOMP 56% 65% 48% NaN%
ICOMP 74% 61% 48% NaN%

have always segmented the peak of the Gaussian, whereas the manual annotator
might have segmented one of the sides), the systematic error was estimated by
using 5-fold cross-validation, after which the error was then subtracted from the
automatic segmentation and MSD and MUDwere recomputed. This systematic error
represents a difference that may occur across all retinal images due to different
criteria that a manual annotator and the automated method might have used to
segment the interfaces.

4.4.1. Performance and reproducibility anaylsis on healthy
retinas

The first evaluation of the presented segmentation method was done on macular
scans of healthy subjects. The scans of 20 subjects (one eye per subject) were
used to estimate the performance of the method. For 10 out of those 20 subjects,
the reproducibility of both the manual and automatic segmentation was obtained
by measuring the difference between the segmentation results of two successive
volume scans. Before the second scan was made, the subject was asked to stand
up, after which the OCT system was again aligned with the subject’s head and eyes.
Afterwards, the two scans were registered to each other by internal processing of
the OCT system.

Table 4.3 provides information about the agreement, negative predictive value
and sensitivity of the automatic segmentation in 20 healthy subjects for all model
selection criteria. As seen from the Table, all model selection criteria perform sim-
ilarly for ELM, EZ and RPE. Larger difference can be seen for IZ, in which AIC and
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Figure 4.6: Automatic and manual segmentation results on B-scans from healthy subjects. Examples
shown in a) and b) are from two successive scans of a single subject and illustrate the limited repro-
ducibility of IZ. Example in c) shows disagreement in visibility of parts of ELM and IZ as determined by
automatic and manual segmentation.

BIC perform worse that ICOMP and ICOMP . This confirms findings from section
4.2.3. Further, although with only slight difference, ICOMP performs better that
ICOMP, thus all further evaluation will be based on ICOMP selection criteria.

Table 4.4 provides detailed results on the performance (including results before
and after bias correction) and reproducibility of the automatic method. An error
of 3.9 μm corresponded to one pixel along the recorded A-scans. The localization
accuracy evaluation, after bias correction, showed a MSD ranging from -0.1 μm
to 0.1 μm and a MUD ranging from 2.6 μm to 3.3 μm. The reproducibility of the
automatic method had a MSD between -1.5 μm and 0.1 μm, and a MUD ranging
from 1.7 μm to 2.5 μm, whereas, the reproducibility of the manual annotations
resulted in a MSD between -0.8 μm and 0.6 μm and a MUD ranging from 2.7 μm
to 3.6 μm.

The agreement and negative predictive value, between manual and automatic
segmentation in healthy subjects varied strongly for the different layers, whereas
the sensitivity analysis of the accuracy remains high. The reproducibility analy-
sis, shows the lowest agreement and sensitivity for the IZ for both manual and
automatic segmentation. For the ELM, the reproducibility of the agreement and
sensibility for the manual annotations were 86% and 92%, respectively. For the
automatic method these values were 99% and 100%. The negative predictive value
of automatic reproducibility was undefined (reported as NaN) for all layers except
IZ, whereas the negative predictive value of manual reproducibility varied. Unde-
fined values are due to not having any true negatives (i.e. given the used models
(described in section 4.3.2), the automatic method will always have at least one
layer identified and segmented).

Figure 4.6 shows examples of the manual annotation and the segmentation
results obtained with the presented method on several B-scans from different sub-
jects. The first two examples are B-scans used for reproducibility analysis, which
illustrate how the visibility of the IZ varies between two successive scans. In the
third example, a disagreement in the visibility of parts of the ELM and IZ as anno-
tated by manual and automatic segmentation is shown.
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Figure 4.7: Automatic (before and after post-processing) and manual segmentation results on several
B-scans from different eyes affected by RP.

Using the segmentation results obtained with the developed method one can
create en face images with the number of visible layers in the retina for a concise
examination. Examples of such 2D en face images for healthy eyes are shown in
Figure 4.8. In these images, the number of retinal layer varied between 3 and 4,
as was expected when examining a healthy retina.

4.4.2. Performance analysis on retinitis pigmentosa affected
eyes

The second set of experiments was performed to assess the performance of the
method on ten eyes (one eye per subject) affected by RP. For these eyes, the sys-
tematic error was estimated from all healthy subjects (from section 4.4.1). Table
4.5 provides detailed results on the agreement, negative predictive value and sen-
sitivity before and after post-processing (as described in section 4.3.4) and on the
errors of the automatic method before and after bias correction. The MSD before
post-processing (and after bias correction) was ranging from -2.9 μm to 1.2 μm
and the MUD was ranging from 3.4 μm to 4.9 μm, whereas after post-processing
(and after bias correction) the MSD varied between -2.3 μm to 3.3 μm and the MUD
ranged from 3.5 μm to 5.9 μm. The agreement in visibility of layers between two
segmentation, before post-processing was 81%, 86%, 94% and 100% for ELM,
EZ, IZ and RPE, respectively. The agreement after post-processing was higher
(87%, 94%, 97% and 100% for ELM, EZ, IZ and RPE, respectively). The sensitivity
and negative predictive value also increased after post-processing step. Figure 4.7
shows examples of the manual annotation and the automatic segmentation results
before and after post-processing on B-scans of eyes affected by RP.

Again, with the obtained results, en face images with the number of visible
layers can be created. Examples of such 2D en face image with the number of
visible layers for RP affected eyes are shown in Figure 4.8. As can be seen from the
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images, large parts of the retina have only one layer visible. These areas correspond
to a diseased part of the retina and are in agreement with pathological changes (the
peripheral rod cells are affected first) in patients suffering from RP.

4.5. Discussion and conclusion
This paper presents a method to simultaneously determine the number of visible
layers in the outer retina and segment them. The method is based on a model selec-
tion approach with special attention given to balance the quality of a fit with model
complexity. As such, the model selection procedure ensures that a more complex
model is selected only if sufficiently supported by the data. The approach is able
to cope with layers that may or may not be present within an image and provides
not only the number of visible layers, but also their position and identification.

The performance of the method was evaluated on healthy and RP affected eyes.
A good agreement between the manually obtained segmentation and the results
obtained from the automatic segmentation was found. The MUD, after bias correc-
tion, for all layers in healthy and RP affected eyes varied between 2.6 and 5.9 μm
or 0.7 - 1.5 pixels.

Reproducibility measures of the manual and automatic method are similar for all
layers except for ELM, where the agreement in visibility and sensitivity of automatic
method were better than that of manual annotations. In cases where ELM was
poorly visible, manual annotations were not consistent, although it is highly un-
likely that ELM would not be present in a healthy retina. This reduced agreement in
visibility is also reflected in the agreement analysis of healthy subjects where these
inconsistent manual annotations are compared against automatic result. Further-
more, reproducibility analysis of both manual and automatic segmentation indicates
that IZ varied the most in its visibility. This is consistent with the known variability
in visibility even in healthy retinas [7].

The localization accuracy evaluation in eyes affected by RP shows similar errors
before and after post-processing, however after post-processing the agreement,
sensitivity and negative predictive value increased. The agreement, after post-
processing, is slightly higher for IZ, when compared to the corresponding agree-
ment of healthy eyes. The reason for the higher agreement for IZ is due to the fact
that this layer is hardly visible in the data used for the evaluation (all scans in which
IZ was visible are given in Figure 4.7). Despite being hardly visible in RP data, the
segmentation of IZ shows relatively high sensitivity and negative predictive value,
indicating good segmentation results.

A relatively simple post-processing step largely improved the spatial consistency
of the automatic method. The post-processing was made to be disease specific
and could easily be modified. The amount of consistency was based on the need
for local analysis (size of the structures for morphological operations was based on
the the clinical need - the used scanning protocol for RP indicates that information
smaller than 120 μm is not relevant). The paper provides a general tool for the
segmentation of the outer retinal layers, whereas post-processing permits including
disease-specific prior information, thereby adapting to a specific task (e.g. in some
eye diseases large areas are expected to be affected whereas in other diseases,
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Figure 4.8: A scanning laser ophthalmoscopy (SLO) images of the retina (a blue square indicating the
scan area) overlaid with an en face images with the number of visible layers in healthy eyes (a) and (b)
and retinitis pigmentosa (results after post-processing) affected eyes (c) and (d).

small local changes could occur).
Our approach is among the first approaches to locally estimate the number of

outer retinal layers and segment up to four of these layers. A few other segmen-
tation approaches have been proposed to solve the problem of varying numbers of
the retinal layers. Yang et al. [21] segmented outer retinal layers in RP subjects,
without considering ELM, and reported errors ranging between 3 and 5 μm. Kafieh
et al. [22] developed a cluster based approach in which, among outer retinal layers,
only the visibility of ELM was considered. The approach was evaluated on healthy
and glaucoma subjects and the reported performance, expressed as MUD, of the
outer retinal layers segmentation was 4 - 7 μm. Finally, Srinivasan et al. [23] seg-
mented the retinal layers in mouse retina. The reported MUD varied between 2 and
4 μm. However, the approach lacks in flexibility as it assumes the same number of
layers across an entire B-scan. The results reported in these three approaches are
in line with ours, although our approach provides a more generic solution to the
outer retinal layer segmentation problem.
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In Figure 4.8, an example of the possible application of the developed method is
presented. One can project the number of visible layers onto a 2D image, which al-
lows quick examination and identification of the possible pathologies. Furthermore,
in case of a follow-up, one can investigate the extent of the present pathology be-
tween two visits and quickly assess disease progression or treatment efficacy.

The developed framework was applied to healthy and RP affected retinas, but
could easily be extended to other retinal diseases that affect the visibility or presence
of layers in the outer retina. For this, the models of the outer retina should be
created such that they reflect prior knowledge about the deterioration of the retinal
layers. Furthermore, the approach allows simple and intuitive modification of prior
knowledge through constraints imposed during the fitting procedure. However, one
should be reluctant to impose hard constraints as they may cause anomalies to be
missed.

Overall, our method provides a flexible and accurate solution to the outer retinal
layer segmentation problem. The approach determines the visibility of the outer
retinal layers in OCT images and as such could provide valuable insights into disease
progression patterns. Furthermore, it could be used as a tool for disease diagnosis
and monitoring, as well as assessing and comparing the efficiency of both existing
and possible new treatments.
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Abstract
For glaucoma management, establishing a reliable correlation between infor-
mation about structural (as assessed by means of optical coherence tomogra-
phy (OCT)) and functional damage (as assessed by means of visual field (VF))
in the retina is of critical importance. Currently, VFs suffer from high variabil-
ity, whereas structural examination is limited to the thickness properties of
retinal nerve fiber layer (RNFL) in a narrow band. We propose to exploit the
RNFL thickness over the whole OCT volume scans, as well as other optical
properties of RNFL, such as attenuation coefficient (AC) to assess the rela-
tionship between structural and functional damage of the retina in glaucoma
patients. We visually determined and scored correlations between local glau-
comatous damage in both AC RNFL and RNFL thickness maps with areas
of decreased retinal sensitivity in the corresponding VF. The agreement be-
tween the defects in the VF and the corresponding defect in the OCT derived
maps was determined by a score on a scale of 1 (good correlation) to 4 (poor
correlation). In total, 178 eyes of glaucoma patients were included and 374
individual correlations were scored. The percentage of correlation scores 1,
2 and 3 were somewhat higher for RNFL thickness compared to RNFL AC,
with differences of 2.1%, 1.6% and 0.5%, respectively. The percentage of
RNFL thickness with score 4 was 1.1% lower than for RNFL AC. In 66% of
the scores, there was an optimal agreement between the correlation scores.
However, in 34% of the correlations, the AC and thickness scores disagreed.
In the disagreement cases, the superior performance of the RNFL thickness
– VF correlation compared to the RNFL AC – VF correlation was again con-
firmed, however in almost half of the disagreement cases (43%) the RNFL AC
– VF maps performed better. A general conclusion is that, within the used
dataset, AC were not as effective in detecting glaucomatous damage as the
thickness. The RNFL thickness outperformed RNFL AC. However, our results
indicate that RNFL AC seem to hold additional information that may be used
to improve the structure-function correlations in glaucoma.
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5.1. Introduction
Today, 285 million people worldwide are either blind or have poor visual function
which significantly deteriorates their quality of life [1]. A large percentage of existing
visual impairments is caused by various eye diseases that can be prevented or
slowed down by using existing technologies and applying current clinical practices
for monitoring and treatment. Glaucoma is among the main causes of avoidable
visual impairment [2] and the number of people with glaucoma is expected to
increase to 76.0 million in 2020 and 111.8 million in 2040 [3]. The disease causes
deterioration of the ganglion cells axons that form the optic nerve, which results
in defects within the visual field. If left untreated, the disease can even lead to
blindness [4].

Currently, the diagnosis and progression monitoring of glaucoma includes the
assessment of functional damage in the visual field as well as examination of the
structural damage in the retina. Functional damage is commonly evaluated with
standard automated perimetry (SAP) which tests local retinal sensitivity by mea-
suring responses to optical stimuli. Due to its subjective nature, SAP suffers from
high variability of the results which may greatly confound the interpretation of the
test [5–7] and make progression analysis very difficult [8–10]. Structural integrity
of the retina is assessed by optical coherence tomography (OCT) imaging modality
[11–14]. From obtained OCT scans, various properties retinal layers, such as thick-
ness or intensity, can be extracted [15–17]. For glaucoma, the retinal nerve fiber
layer (RNFL), which contains the ganglion cell axons, is of specific interest [18].
Current clinical practice is commonly limited to examination of peripapillary scans
of the RNFL (ppRNFL) thickness, at approximately 1.7 mm from the center of the
optic nerve head (ONH), to assess glaucomatous damage.

Several studies have indicated that patients can present structural changes in
the RNFL before any detectable changes in SAP [19–21]. On the other hand, there
are studies that show evidence of functional deterioration without any measurable
changes in the currently performed structural tests [22]. This clearly illustrates the
need for combining structural and functional information as it may provide valuable
input into glaucoma detection and progression monitoring [23, 24].

Establishing a reliable correlation between information about structural and
functional damage in the retina is therefore of critical importance in glaucoma
management. Many studies have proven that it is challenging to combine this in-
formation into a single structure-function correlation [25–28]. Resulting structure-
function correlations are generally weak and several factors, such as within and
between test-variability and biological variability of the glaucomatous damage are
thought to play a role [29–32]. As reduction in the variability of SAP is generally
difficult (requires modifications of currently used procedure and test algorithms or
acquisition of more data) [33], using more of the available information from OCT
images [34, 35] may prove beneficial to improve the structure-function correlation
and could help clinicians understand the fundamental changes that lead to glauco-
matous damage.

Current structural examination of glaucomatous damage in the retina is limited
to the thickness properties of RNFL in a narrow circular band around the optic nerve
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head (ONH). With the increase in scanning speed of modern OCT systems it has be-
come feasible to use volumes scan and consequently create enface thickness maps
that cover the entire scan area. Indeed, the benefit of examination of a larger area
in the retina for glaucoma diagnosis was already indicated [36]. However, these
enface maps have not yet been used in their full potential to detect glaucomatous
damage resulting in a loss of clinically relevant information. Furthermore, in addi-
tion to the standard thickness measurements, other OCT-derived retinal properties
may contain clinically useful information.

Several published studies introduced different techniques that extract quantita-
tive information from the OCT signal, and showed their potential as new diagnostic
methods or biomarkers for glaucoma [37–40]. In these studies, changes in the op-
tical tissue properties are associated with the structural state of the tissue [41–44].
Pons et al. showed that the RNFL has a decreased reflectivity (mean OCT signal
within RNFL) in eyes affected by glaucoma [45]. However, the interpretation of
OCT signal is not straightforward and is highly dependent on many factors such as
the intensity of the light beam or its shape and focus. Recent studies introduced a
model that relates OCT signal to attenuation coefficient (AC) of the tissue [46–50].
The RNFL AC describes how much of the OCT light is scattered and/or absorbed
within the RNFL [47] (e.g. a highly attenuating structure has a high AC). As an
optical property of the tissue, ACs are easier to interpret than the raw OCT data as
they are less affected by imaging artefacts [49]. The potential of using AC to detect
glaucoma was shown by earlier studies in which RNFL AC values were reduced in
eyes affected by glaucoma when compared to normal eyes [50]. In addition to
showing different optical properties between diseased and healthy eyes, when pre-
sented in an enface image the AC values were shown to vary within a single scan
which may or may not coincide with thickness changes [46].

In this study, we visually determined and scored correlations between local
glaucomatous damage in both AC RNFL and RNFL thickness maps with areas of de-
creased retinal sensitivity in the corresponding visual field maps. The optical prop-
erties and thickness of the RNFL are exploited over the whole OCT volume scan and
thus a significantly larger percentage of the available information in the volume scan
was used when compared to the current clinical practice. We hypothesized that the
RNFL AC information that we extracted from the standard OCT images may not
coincide with information extracted from the RNFL thickness measurements. Thus,
a direct comparison between the scored correlation of the defects in the RNFL AC
and RNFL thickness maps with the corresponding visual fields was performed. The
main goal of the paper is to determine whether AC could provide additional insight
into glaucomatous damage when compared to OCT thickness maps.

5.2. Methods
Several steps were performed to analyze the correlation between OCT derived RNFL
thickness and AC maps with corresponding visual field maps, in patients affected
by glaucoma. In brief, patients first needed to be selected and both OCT scans
and visual fields acquired. Second, the acquired OCT scans were processed with
our previously developed segmentation software [51] to obtain the boundaries that
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enclose the RNFL after which the AC and thickness maps of the RNFL were created.
Third, manual annotations of the visible defects in OCT derived maps as well as
visual fields were performed by a medical doctor. Four, the correlation between the
annotated defects in OCT derived maps and annotated defects in visual fields was
scored.

The procedure of patient selection, OCT data acquisition and visual field ac-
quisition are described in section 5.2.1, 5.2.2 and 5.2.3, respectively. Automatic
processing performed on OCT scans is described in section 5.2.4. Manual annota-
tion of defects and the correlation analysis are described in section 5.2.5.

5.2.1. Subjects and data selection
The study population consisted of glaucoma patients enrolled in a longitudinal
prospective study called the Rotterdam Glaucoma Imaging Study. The patients
visited the Glaucoma Service of the Rotterdam Eye Hospital every 6 or 12 months
for their standard clinical checkup. Both eyes of all participants were measured with
a spectral domain (SD) OCT (Spectralis OCT, Heidelberg Engineering GHmB, Heidel-
berg, Germany) and standard automated perimetry (Humphrey field analyzer (HFA)
24-2 SITA Standard, Carl Zeiss Meditec, Dublin CA, USA). The most recent visit of
the participants was selected for this paper. If the measurements met the device
specific quality criteria (described in more detail in the following two subsections),
they were included in the study. If the quality of any of the most recent measure-
ments was considered poor, the previous visit of that participant was used. Both
eyes of a single participant were included if they met the inclusion criteria. There
was no selection of patients based on the stage of the glaucomatous damage —
very mild but also advanced glaucoma are therefore represented in this study. A
total of 178 eyes was included in this study. The patients received pressure reg-
ulating drugs and if necessary surgery was performed, including implant surgery.
Cataract surgery was allowed but after cataract surgery the subjects were excluded
for a one year period in order to ensure that the eye has fully recovered from the
procedure. Other ocular surgery or any co-morbidity in the form of other ocular or
systemic diseases, such as diabetes, were not allowed. All participants in the study
signed written informed consent. The study met all commitments under the Dec-
laration of Helsinki and Good Clinical Practice (GCP) guidelines and was approved
by the Medical Ethics Committee of the Erasmus Medical Center, Rotterdam, The
Netherlands.

5.2.2. Optical coherence tomography data
20∘x20∘ volumetric OCT scans were acquired with the image centered on the optic
nerve head (ONH). The scanning protocol acquired a volume containing of 193 B-
scans of 512 A-scans of 496. The system employed an eye-tracker and was set to
average five B-scans before moving to the next B-scan. The scan was considered of
poor quality if the Spectralis OCT scan quality score was below 20dB. Furthermore,
each individual scan was subjected to a visual inspection and monitored for unex-
pected ocular pathology. Poorly centered scans (ONH not centered in the image),
so-called ”cut scans” (in which a portion of the retina does not fall within the ac-
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quisition window) and scans with large intensity differences caused by differences
in the scanning depth were excluded.

5.2.3. Standard automated perimetry data
Standard automated perimetry (HFA 24-2 SITA standard test algorithm) was used
to measure the visual field integrity of each participant. Only measurements with
fixation losses, false positives and false negatives under 20% were considered re-
liable. If the percentage was higher, the measurement was excluded and replaced
by an earlier visit.

5.2.4. Automatic processing
The raw SD-OCT images were automatically converted into AC images [46]. After-
wards, the interfaces between retinal layers were segmented by using a previously
presented level set based segmentation method developed for healthy and glau-
coma affected eyes [51]. For this study, only those interfaces that enclose the RNFL
(vitreous - RNFL and RNFL - ganglion cell layer (GCL)) interface were of interest.
Based on the obtained segmentation, enface AC and thickness maps were derived.
Enface RNFL AC maps were created from the mean AC value within the RNFL along
every A-scan. Further, enface RNFL thickness maps were created by measuring the
distance along each A-scan from the vitreous - RNFL interface to the RNFL - GCL
interface.

5.2.5. Correlation methodology and statistics
Local glaucomatous defects in OCT derived maps (both thickness and AC) and cor-
responding visual fields were visually identified and manually annotated by a med-
ical doctor. Annotations performed on OCT derived thickness and AC maps were
then transformed to a standardized template, thereby masking the origin of the
annotations. This made annotations from AC maps indistinguishable from those
made on thickness maps. Finally, the defects on the OCT templates were matched
with defects in the visual fields and vice versa and the correlation was qualitatively
scored.

Within each OCT derived map the annotator searched for the local wedge shaped
RNFL defects representative of glaucomatous damage [4, 52, 53]. Defects had to
follow the trajectory of the retinal nerve fibers [54] and had to be continuous to the
ONH border. Once a defect was identified, it was annotated (ITK-SNAP, freely avail-
able at http://www.itksnap.org). No limit was set on the number of defects
that could be annotated within a single map. The scans were processed in batches
of 30 scans. In each batch, first all RNFL AC maps were annotated, followed by the
annotations on the RNFL thickness maps. Next, these annotations were translated
into a standardized template. This template offers only information on the width
and the location of the defect at 1.4 mm from the center of the optic nerve head. In
this manner, the RNFL AC and RNFL thickness annotations became indistinguishable
from each other and masked grading in the next step of the analysis was ensured.
An example of the manual annotations and the standardized template is shown in
Figure 5.1.

http://www.itksnap.org
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Figure 5.1: Example of the used RNFL AC and RNFL thickness maps with annotated defects. The
annotations of defects were translated to a standardized template to ensure masked grading between
the structural defects and those found in the visual fields. The template shows only information on the
width and location of the defect at 1.4 mm from the center of the optic nerve head.

The visual field data was processed in a comparable manner. The total deviation
probability map of the HFA test report was as used as a template for the annotation
of local visual field defects. When performing the annotations, the medical doctor
was allowed to use all the available information on the HFA report to determine the
size and boundaries of the local defects. Prior knowledge of common shapes of
visual field defects in glaucoma was incorporated to define the edges of the local
defects [53]. If a point on the deviation probability map was 𝑝 < 0.5, then it was
marked. No limit was set on the number of defects that could be annotated within
a single field. Because the annotation of structural and functional defects was done
independently from each other, the number of annotated defects in the OCT maps
and VF maps could differ.

Finally, each defect on the OCT templates was visually matched with a defect in
the corresponding visual fields and vice versa. Each of the matches was then graded
as 1: probable correlation, 2: possible correlation, 3: questionable correlation or 4:
unlikely correlation. A fifth score, ’NA’, was used when there was a defect present
on the RNLF AC or thickness map, but no corresponding defect was found on VF.
The matching and grading process resulted in two lists of graded correlations; one
with the scores for the RNFL AC – VF correlation and another with the scores for
the RNFL thickness – VF correlation. Additionally, to determine whether there is
statistically significant difference between the graded correlation of defects found
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Figure 5.2: Illustration of the scoring procedure between the standarized templates and defects annoted
on the visual field. The first template has two defects, whereas the second one shows only one defect.
The green defect was scored as a ’possible correlation’ for both templates. The defect annotated in
blue has a corresponding defect only in the first templates where it was scored as ’questionable’. In the
second template, no convincing defect was found thus the correlation was scored as ’unlikely’.

on AC and thickness maps, the Wilcoxon Signed Ranks test was performed. All
p-values below 5% were considered as statistically significant. Finally, a confusion
matrix of the correlation scores was calculated.

5.3. Results
The presented methodology allows a direct comparison between the correlation of
the local RNFL defects in the RNFL AC and RNFL thickness maps with the defects
in visual fields. For each included eye the agreement between the defects in the
visual field and the corresponding defects in the OCT derived maps was determined
by a score on a scale of 1 (good correlation) to 4 (poor correlation). To clarify
the presented methods and outcome parameters, an individual case is illustrated
in Figure 5.2. In this example, there a good agreement between one defect in
visual fields and in both OCT derived maps (depicted in green) and a second defect
(depicted in blue) visible only in the RNFL AC map. The first defect was graded by
a score ’possible’ (grade 2) for both the RNFL AC and RNFL thickness map defects.
For the second defect, the correlation was weaker and the defect was graded by a
score ’questionable’ (grade 3) for the RNFL AC maps and score ’unlikely correlation’
(grade 4) for the RNFL thickness map as no defect was visible there.

In total, 178 eyes of glaucoma patients were included and 374 individual cor-
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relations were scored. The mean number of defects identified and annotated in
the RNFL thickness maps, the RNFL AC maps and corresponding visual fields were,
1.95, 1.89 and 2.15 respectively. The participants were not selected based on
the severity of the glaucomatous damage. This resulted in a standard automated
perimetry mean deviation (MD) that ranged from -31.18 to 1.40 with a mean MD of
-9.81. The mean age of the participants was 69.15, and 45% of the patients were
of female gender.

The results of the correlation between OCT derived maps and visual fields are
presented in Figure 5.3. The figure shows the frequency of assigned scores for
the correlation of defects between OCT derived maps and visual fields. The x-
axis represents the 5 correlation scores and the y-axis represents the frequency of
occurrence. Additionally, for each score two bars are shown; one for the RNFL AC
map and one for the RNFL thickness map. Upon visual inspection of Figure 5.3, the
percentage of defects assigned to each group appears similar. The data showed
a decrease in frequency with an increasing score up to score 4, which comprises
nearly half (45%) of the total correlation scores. This means that in almost half of
the local defects that were annotated in the OCT derived maps a poor correlation
with the VF defects and vice versa was found. In 2.7%, a local defect was found in
the OCT derived maps, but no local defect was found in the VF. The percentage of
correlation scores 1, 2 and 3 were somewhat higher for RNFL thickness compared
to RNFL AC, with differences of 2.1%, 1.6% and 0.5% respectively. In contrast,
the percentage of RNFL thickness score 4 was 1.1% lower than RNFL AC. These
differences indicate that the overall correlation is better between the defects found
in the RNFL thickness maps and their corresponding VF defects (mean score 2.74),

Figure 5.3: Histogram illustrating the frequency of the scores for the RNFL AC and RNFL thickness
correlations with the visual field defects. The data is presented in 5 correlation score groups: 1: probable
correlation, 2: possible correlation, 3: questionable correlation, 4: unlikely correlation, and NA: a defect
found on either of the OCT maps with no corresponding defect in the VF available to be correlated.
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Figure 5.4: Examples of individual cases with manual annotation in different scoring scenarios (both
OCT derived maps and visual fields). a) A good agreement between the structural defects in both OCT
derived maps and corresponding VF defect. b) Poor agreement between a structural defect in both OCT
maps and corresponding VF defects. c) Good agrement with a structural defect in RNFL thickness maps
and no defect visible defect in RNFL AC maps. d) Good agreement with a structural defect in RNFL AC
maps and no defect visible in RNFL thickness maps. e) Agreement in structural defects in both OCT
derived maps with a higher correlation score for a ’green’ defect found on the RNFL thickness map. f)
Agreement in structural defects in both OCT derived maps with a higher correlation score for a ’green’
and ’red defect’ found on the RNFL AC map.

than the defects in the RNFL AC maps (mean score 2.87). The Wilcoxon signed -
ranks test showed that the difference was statistically significant (p<0.05).

The differences between the two grading scores for the two OCT derived maps
were summarized in Table 5.1 by means of a confusion matrix. This confusion ma-
trix visualizes the agreement between each of the paired scores. In 66% (245/374)
of the scores, there was an optimal agreement between the two correlation scores.
However, in 34% (129/374) of the correlations the AC and thickness scores dis-
agreed. Even in the disagreement cases, the superior performance of the RNFL
thickness – VF correlation compared to the RNFL AC – VF correlation was confirmed
(in 57% (74/129) of the disagreement cases RNFL thickness had a higher correla-
tion score than the RNFL AC). More interesting, in almost half of the disagreement
cases (43%; 55/129) the RNFL AC – VF maps performed better and seem to hold
additional information that may be used to improve the structure-function correla-
tions in glaucoma.

Different levels of disagreement between the correlation scores were identified.
Examples of disagreement in correlation scores are presented in Figure 5.4. The
most extreme mismatches occurred 20 times. In these cases, a correlation pair for
RNFL thickness – VF was identified but either the structural or the functional defect
was missing for the RNFL AC – VF correlation (16 cases), and vice versa (4 cases).
In all other disagreement cases (109 cases), defects were found in both maps, but
either RNFL thickness or RNFL AC received a higher score.

5.4. Discussion and conclusion
With the proposed approach, by visually locating and grading defects, the exper-
imental possibilities and limitations of OCT AC images were explored leading to
speculations on the clinical possibilities of this method. The correlations between
defects in the OCT derived maps and the VF defects were used to assess the indi-
vidual ability of RNFL thickness and RNFL AC to detect defects in the visual field.

A general conclusion is that, within the used dataset, AC were not as effective
in detecting glaucomatous damage as the thickness. The RNFL thickness outper-
formed RNFL AC based on the mean score. However, our results indicate that
RNFL AC may improve the structure-function correlation in glaucoma. The correla-
tion scores were better for RNFL AC in 55 cases (43%) of the 129 correlations that
disagreed. In other words; in 55 cases the structural defects in the OCT images
were easier (or better) to identify when we used the RNFL AC maps. This may
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Table 5.1: Confusion matrix showing the number of correlation scores for each combination of RNFL
thickness and RNFL AC. In 245/374 or 66% of the scores (in bold) both correlation scores received the
same grade. In 129 cases, the scores disagreed. In 57% (74/129; marked with blue) of the scores that
disagreed the RNFL thickness did better, whereas in 43% (55/129 marked with red) of the cases, the
RNFL AC – VF correlation performed better.

AC score
1 2 3 4 NA

Th
ic
kn
es
s

sc
or
e

1 66 15 3 16 2
2 16 32 4 12 4
3 2 7 16 8 0
4 10 8 8 131 10
NA 0 0 0 4

lead to a conclusion that the RNFL AC maps contain useful information not visible
within RNFL thickness maps. However, future work is needed to evaluate if and
how information from RNFL AC and RNFL thickness can be combined to enhance
the overall structure-function correlation. The combination of thickness information
with information based on the optical properties of the RNFL has shown to be of
value before. Gardiner et al. showed that there is a correlation between the rate
of damage seen on the VF of glaucoma patients and a combined value of RNFL
thickness with the amount of specular reflectivity derived from the OCT signal [40].

Visual comparison of the RNFL AC and RNFL thickness maps indicates differences
in the size and location of the annotated defects. These differences could be caused
by either intra grader variability or by differences between the amount of lost RNFL
(as represented by the RNFL thickness maps) and changes in optical properties of
the RNFL (axon loss and possibly other cellular processes, as expressed by RNFL
AC maps). Currently it is unclear what these cellular processes exactly comprise.
We believe that the thinning of the RNFL occurs after the initial damage to the
RNFL and that the thinning may therefore be preceded by processes that change
the RNFL AC values. In other words; possibly RNFL AC visualizes the active process
of local damage.

The procedure of visual identification and the subjective scoring of each of the
correlations, which may be biased by intra grader variability, might be considered
as a limitation of the performed study. Since all gradings, of both thickness and
AC images, were performed by a single grader, the variability is expected to be
approximately the same in all the images and the influence on the outcome of the
correlation is assumed to be minimal. In future studies, the intra and, if applicable,
inter grader variability should be addressed before making any definitive conclusions
on the clinical applicability. Further, our most important finding is directly linked to
the used approach (visual identification and subjective scoring); more structural
defects would have been detected if we used all available information from the VF,
thickness and AC maps. In 55 cases, the identification of structural defects would
have been more comprehensive if the information extracted from the RNFL AC maps
was used in addition to RNFL thickness data.
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This explorative study paves the way for future studies. Whether RNFL AC
images could help investigators understand the etiology of glaucoma is unclear. We
speculate that that thinning of the RNFL due to glaucoma is preceded by changes
in the optical properties within the RNFL and other layers of the retina. The actual
loss of axons is the result of programmed cell death [55] and this loss is likely to
be preceded by a loss of function. The correlation between the optical properties
of the RNFL in a specific region of the retina and the function in this region has not
yet been established. We speculate that RNFL AC images could detect so called
pre-perimetric damage before thinning of the RNFL occurs [38, 40]. This should be
addressed by using longitudinal data.
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An efficient way to prevent, diagnose or treat eye diseases includes examination
of the retina and the extraction of quantitative imaging biomarkers. By means of
optical coherence tomography (OCT), the retina can be visualized and investigated
in vivo. Three-dimensional structural information about the thickness of a certain
layer, its presence or attenuation coefficient values as well as presence or absence
of lesions provide valuable input for disease diagnosis, prognosis and/or monitoring.
Manual extraction of these image-based biomarkers is time consuming and tedious.
Thus, in this thesis we present and evaluate automatic techniques for segmentation
of retinal structure.

6.1. Technical developments
In Chapter 2, a loosely coupled level set method that simultaneously segments
multiple interfaces between layers of the retina is described. The method is based
on a level set approach which uses Bayesian inference and through which image
data is combined with prior knowledge about the retina. Within the method a novel
coupling approach is presented, which exploits anatomical knowledge about the
order of the layers in the retina to ensure anatomically correct segmentation results.
Both the accuracy and reproducibility of the method were evaluated, as well as the
robustness to segment different data types. A good agreement between manual
and automatic segmentation was found: the mean unsigned error (MUD) for all
interfaces in all data types varied between 1.9 and 8.5 μm. The reproducibility of
automatic segmentation was in the same ranges as the reproducibility of manual
annotators. Finally, the developed segmentation method performs at least as good
as the manual annotator, as the accuracy of the automatic segmentation was similar
to the reproducibility of a manual annotator.

In Chapter 3, a method to jointly segment retinal layers and lesions in eyes
with topology-disrupting retinal diseases is presented. The method extends and
generalizes the existing loosely coupled level set framework, as it can handle local
intensity variations as well as the presence or absence of pathological structures in
the retina. In this generic framework, lesions are modelled as an additional space-
variant layer delineated by auxiliary interfaces and the segmentation of interfaces is
steered by local differences in the signal between adjacent retinal layers. The accu-
racy of both interfaces and lesion segmentation was evaluated on eyes affected by
central serous retinopathy and age-related macular degeneration. Additionally, ac-
curacy of interface segmentation was evaluated on eyes without topology-disrupting
retinal diseases. The developed approach performed well with a MUD between 3.0
and 12.5 μm for interface segmentation in all data types and a Dice coefficient of
0.73 for drusen segmentation and 0.92 for fluid pockets segmentation.

In Chapter 4, a method to simultaneously determine the number of visible lay-
ers in the outer retina and segment them is presented. The method is based on a
model selection approach with a special attention to balance the quality of the fit
with model complexity. Layers in the outer retina are modelled as Gaussian func-
tions and several models of the outer retina are considered. The considered models
reflect previously reported work on the visibility of layers and their deterioration.
The accuracy of the method was evaluated on healthy and retinitis pigmentosa
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affected eyes. Further, the reproducibility of both automatic method and manual
annotations was evaluated on healthy eyes. Overall, a good agreement was found
between manual and automatic segmentation with the agreement in determining
the number of visible layers over 70 % and a MUD that varied between 2.7 and 6.7
μm. The reproducibility of automatic segmentation was similar to that of manual
annotator.

6.2. Clinical application
In Chapter 5, the loosely coupled level sets framework from Chapter 2 was used
to obtain segmentation of the interfaces that surround the retinal nerve fiber layer
(RNFL). By using the obtained segmentation, attenuation coefficient and thickness
maps of the RNFL were created, in which local glaucomatous damage was visually
determined. Afterwards, correlations between the local damage in the obtained
maps and areas of decreased retinal sensitivity in the corresponding visual fields
were scored and a difference between the correlation of visual fields with either
attenuation coefficient or thickness maps was evaluated. The overall correlation
scores of attenuation coefficients and thickness appear to be similar, however, they
differ in a large number of cases and seem to provide complementary information.

6.3. General discussion
This thesis describes automatic segmentation methods for both inner and outer
retinal layer and lesion segmentation which were applied to scans of the retina ob-
tained by optical coherence tomography (OCT). The first method, a loosely coupled
level set framework, focuses on segmentation of interfaces between retinal layers.
The second method, extends the original loosely coupled level set framework to
eyes affected by topology-disrupting diseases. The third and final method focuses
on the segmentation of outer retinal layer. Finally, an example of clinical application
of the loosely coupled level set framework is shown.

The developed methods provide robust and accurate solutions for segmentation
of both inner and outer retinal layers and lesions. The approaches were developed
such that they combine image data with anatomical knowledge about the retina.
During the development of the methods, special attention was given to ensure
all imposed prior (anatomical) knowledge was rather simple, intuitive and easily
changeable. This is best illustrated within Chapter 3 where prior knowledge about
attenuation coefficients was changed for several layers which clearly indicates how
the proposed loosely coupled level set framework can be flexible and adaptable.

Throughout the thesis, the proposed methods were applied to various types of
data (diseased and healthy, different area of the eyes and different imaging de-
vices). Overall, the methods were applied to over 300 retinal OCT scans. Not all of
the segmented scans were evaluated in a quantitative manner, however, qualita-
tive evaluation indicates that most of the scans were segmented well. Errors may
occur in approximately 5 out of 100 volume scans, e.g. in parts of B-scans the
inner nuclear layer - outer plexiform layer and outer plexiform layer - outer nuclear
layer interfaces may be segmented higher or the RNFL - ganglion cell layer inter-
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face lower. This often occured in B-scans which were tilted (in which retinal layers
extend over the entire depth range). In such a case, although the roll-off correction
was performed, the attenuation coefficients of layers varied considerably within a
B-scan which may be the cause of these errors.

There are several potential clinical applications of the proposed methods. For
example, by using the segmentation obtained by the original or extended loosely
coupled level set framework, retinal surfaces could be visualized and renderings of
the retina with highlighted lesion regions obtained. Additional processing of the re-
sults could also be performed to show clinical information in a simple manner (e.g.
en face thickness maps of different layers). The proposed method for the outer
retinal layer segmentation could be used to create en face images with the number
of visible layers in the retina which would allow quick examination and detection
of pathologies. Further, although thickness is among the most frequently used
properties of retinal layers for disease diagnosis and monitoring, other properties
may be useful. Chapter 4 shows how the investigation of attenuation coefficients
across the entire scan area provides additional information. Other properties might
be useful, such as intensity values of one or more layers (both locally and glob-
ally), presence of a certain layer or orientation of the RNFL bundles. The proposed
properties could also be useful in a case of a follow-up, where one could quickly
compare the extent of pathologies and assess progression.

For better management of eye disease, extraction of image-based biomarkers
is of utmost importance. To enable quick and accurate extraction, automatic image
analysis plays an essential role. This thesis provides the methodology needed to
facilitate the extraction of biomarkers and proposes several of them. Any of the
proposed biomarkers may provide valuable input into disease progression patterns
or aid the disease diagnosis and monitoring procedures.



Summary

Quantitative image-based biomarkers of retinal structures, extracted from 3D scans
acquired with optical coherence tomography (OCT) systems, provide clinically useful
information and enable valuable input for the diagnostics, prognostics and moni-
toring of retinal diseases. Manual extraction of these imaging biomarkers is time
consuming and tedious. Thus, in this thesis we set out to develop and evaluate
automatic techniques for the segmentation of retinal structure which then enable
the extraction of image based biomarkers.

Retinal layer thicknesses are among the most frequently used image based
biomarkers. To facilitate the extraction of these thickness maps, a novel loosely
coupled level set (LCLS) framework is proposed to simultaneously segment inter-
face between retinal layers. The framework employs a flexible coupling, which
allows a global optimization of the entire 3D retina and thereby avoids error prop-
agation as may occur in sequential methods. Further, the framework operates on
attenuation coefficients and combines image data with prior knowledge about the
retina.

Certain retinal pathologies may give raise to additional structures in the retina
such as cysts or drusen, which cause serious layer deformation. The original LCLS
framework is adapted to deal with such changes in the retina and to jointly segment
retinal layers and lesions. In this approach, lesions are modelled as an additional
space-variant layer delineated by auxiliary interfaces. In the absence of lesions, the
thickness between the auxiliary interfaces reduces to (nearly) zero. Furthermore,
the segmentation of interfaces is steered by local differences in signal between
adjacent retinal layers thereby allowing the approach to handle local intensity vari-
ations.

Retinal diseases can also cause anatomical changes in the outer retinal layers
and affect their visibility in OCT images. A method to simultaneously determine the
number of visible layers in the outer retina and segment them is proposed. The
developed method is based on a model selection approach with special attention
given to balance the quality of the fit with model complexity. This will ensure that
a more complex model is selected only if sufficiently supported by the data. The
proposed approach does not only provide information about the number of visible
layers, but also about their position and identification.

The proposed methodology has been developed to aid the process of clinical
decision making and gain more insight into disease progression and efficiency of a
treatment. An example of possible application of the developed methods is already
proposed within this thesis. The correlation between local glaucomatous damage in
attenuation coefficient and thickness maps of the retinal nerve fiber layer and areas
of decreased retinal sensitivity in visual field maps are visually scored. Afterwards,
the difference between the correlation of visual fields with either attenuation co-
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efficient or thickness maps was evaluated. The overall correlation scores appear
similar, however, they seem to provide complementary information.

Quantitative evaluation of the proposed methods was performed on a variety of
data, which include scans of different areas of the eye, different imaging devices
as well as scans of healthy and diseased eyes. Several diseases were considered
including glaucoma, age-related macular degeneration, central serous retinopathy
and retinitis pigmentosa. Automatically obtained results were compared to manual
annotations made by medical doctors. A good agreement between the two seg-
mentations was found on all data, with the mean unsigned difference which was
mostly between 3 and 8 μm and never more than 13 μm.

Overall, the developed methods provide flexible, robust and accurate solutions
for segmentation of both inner and outer retinal layers as well as lesions in both
healthy and diseased eyes. The techniques show potential for clinical use and could
easily be used to extract various retinal layer properties which could further be used
to aid disease diagnosis, prognosis and monitoring.



Samenvatting

Kwantitatieve op afbeeldingen gebaseerde biomarkers van retinale structuren, af-
geleid uit 3D scans gemaakt met optische coherentie tomografie (OCT) systemen,
leveren klinisch bruikbare informatie op voor de diagnose, prognose en opvolging
van retinale aandoeningen. Een handmatige extractie van zulke biomarkers uit af-
beeldingen is een tijdrovend en monotoon proces. Daarom hebben we ons in dit
proefschrijft de ontwikkeling en evaluatie van automatische technieken voor het
segmenteren van retinale structuren tot doel gesteld, waarmee het mogelijk wordt
om biomarkers uit afbeeldingen af te leiden.

De dikte van retinale lagen wordt vaak gebruikt als afbeeldings-biomarker. Om
het bepalen van deze dikte-kaarten mogelijk te maken wordt een nieuw zwak-
gekoppeld level set framework (loosely coupled level set; LCLS) geïntroduceerd
om gelijktijdig de scheidingen tussen retinale lagen te bepalen. Dit framework ge-
bruikt een flexibele koppeling dat een globale optimalisatie van het hele netvlies in
3D mogelijk maakt en daarmee de propagatie van fouten, zoals dat bij sequenti-
ële methoden kan voorkomen, voorkomt. Daarnaast werkt dit framework op basis
van attenuatiecoëfficiënten en wordt data uit de afbeeldingen gecombineerd met
voorkennis van het netvlies.

Bepaalde pathologieën kunnen resulteren in nieuwe structuren in het netvlies,
zoals cysten en drusen, waardoor de lagen sterk vervormd worden. Het oorspron-
kelijke LCLS framework is daarom zo aangepast dat het om kan gaan met degelijke
veranderingen in het netvlies zodat gelijktijdig de retinale lagen en de laesies geseg-
menteerd kunnen worden. In deze methode worden laesies gemodelleerd als een
extra, plaats-afhankelijke laag, afgebakend door additionele grenzen. Waar laesies
afwezig zijn, nadert de afstand tussen deze additionele grenzen tot nul. Daarnaast
wordt de segmentatie van de begrenzingen gedreven door lokale signaalverschil-
len tussen aangrenzende retinale lagen, waardoor deze methode variaties van de
lokale intensiteiten kan opvangen.

Retinale aandoeningen kunnen ook anatomische veranderingen in de buitenste
retinale lagen veroorzaken en de zichtbaarheid van die lagen in OCT beelden be-
ïnvloeden. Hiervoor wordt een methode voorgesteld om tegelijkertijd het aantal
zichtbare lagen in de buitenste deel van het netvlies te bepalen en deze te segmen-
teren. De ontwikkelde methode is gebaseerd op een modelselectie waarbij speciaal
wordt gelet op het evenwicht tussen hoe goed het model de data beschrijft en
de complexiteit van dit model. Hierdoor wordt ervoor gezorgd dat een complexer
model uitsluitend wordt geselecteerd als dit voldoende ondersteund wordt door de
data. De voorgestelde methode geeft niet alleen informatie over het aantal zicht-
bare lagen, maar ook over hun positie en identificatie.

De voorgestelde methodologie is ontwikkeld ter ondersteuning van de klinische
besluitvorming en om meer inzicht te krijgen in de progressie van een aandoe-

121



122 Samenvatting

ning en de effectiviteit van een behandeling. Een voorbeeld van een mogelijke
toepassing van de ontwikkelde methodes wordt voorgesteld in dit proefschrift. De
correlaties tussen plaatselijke glaucomateuze schade in kaarten van attenuatieco-
ëfficiënten en dikte van de retinale zenuwvezellaag en gebieden met afgenomen
retinale sensitiviteit in gezichtsvelden werden subjectief beoordeeld. Vervolgens
werd het verschil van correlatie van gezichtsvelden met attenuatiecoëfficiënt- of
diktekaarten geëvalueerd. Gemiddeld zijn de correlatiescores vergelijkbaar, maar
ze lijken complementaire informatie te bevatten.

Een kwantitatieve evaluatie van de voorgestelde methodes werd uitgevoerd op
verschillende data sets, waaronder scans van verschillende delen van het oog, ver-
schillende afbeeldingsapparatuur en afbeeldingen van gezonde ogen en ogen met
een aandoening. Meerdere oogaandoeningen werden bekeken, waaronder glau-
coom, leeftijdsgebonden maculadegeneratie, centrale sereuze retinopathie en re-
tinitis pigmentosa. Automatisch verkregen resultaten werden vergeleken met hand-
matige annotaties van artsen. Er werd een goede overeenkomst tussen de twee
segmentaties gevonden voor alle data sets, met een gemiddeld absoluut verschil
dat meestal tussen de 3 en 8 μm was en nooit meer bedroeg dan 13 μm.

Alles overziend bieden de ontwikkelde methoden een flexibele, robuuste en
nauwkeurige oplossing voor de segmentatie van lagen in zowel de binnenzijde als
de buitenzijde van het nervlies en van laesies in gezonde en aangedane ogen. Deze
technieken hebben de potentie voor klinische toepassingen en kunnen eenvoudig
worden gebruikt om verschillende eigenschappen van retinale lagen te bepalen,
die vervolgens gebruikt kunnen worden voor diagnose, prognose en opvolging van
oogaandoeningen.
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