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ABSTRACT
Nonlinear Fourier Analysis (NFA) is a powerful tool for

the analysis of hydrodynamic processes. The unique capa-
bilities of NFA include, but are not limited to, the detection of
hidden solitons and the detection of modulation instability,
which are essential for the understanding of nonlinear phe-
nomena such as rogue waves. However, even though NFA
has been applied to many interesting problems, it remains
a non-standard tool. Recently, an open source software li-
brary called FNFT has been released to the public. (FNFT
is short for ”Fast Nonlinear Fourier Transforms”.) The li-
brary in particular contains code for the efficient numeri-
cal NFA of hydrodynamic processes that are approximately
governed by the nonlinear Schroedinger equation with peri-
odic boundary conditions. Waves in deep water are a prime
example for such a process. In this paper, we use FNFT
to perform an exemplary NFA of typhoon data collected by
wave buoys at the coast of Taiwan. Our goals are a) to
demonstrate the application of FNFT in a practical scenario,
and b) to compare the results of a NFA to an analysis based
on the conventional linear Fourier transform. The exposition
is deliberately educational, hopefully enabling others to use
FNFT for similar analyses of their own data.

INTRODUCTION
In 1967, Gardner et al. found an ingenious new

method to solve the Korteweg-de Vries (KdV) equation [1].
Their approach was soon after extended to the nonlinear

∗Address all correspondence to this author. Email: s.wahls@tudelft.nl.

Schroedinger equation (NSE) by Zakharov and Shabat [2].
Today, many important nonlinear evolution equations are
known to be solvable in this way, which is traditionally called
inverse scattering transform method. However, since scat-
tering transforms generalize the conventional Fourier trans-
form, today often the term nonlinear Fourier transforms
(NFTs) is used instead. NFTs offer interesting possibili-
ties for data analysis that can reveal nonlinear effects hid-
den from conventional linear analysis. In the area of wa-
ter wave data analysis, Osborne and coworkers have cre-
ated a large body of pioneering work, much of which is
contained in the book [3]. It is important to point out that
there is not one NFT that covers all cases. On the con-
trary, the NFT is specific to the assumed nonlinear evolu-
tion equation (e.g., KdV or NSE) and boundary conditions.
Furthermore, the mathematics behind NFTs is unfamiliar
to many engineers. Despite many interesting results (see,
e.g., [4,5,6,7,8,9,10,11,12,13]), NFT-based data analysis
is thus not widely used at the moment.

The goal of this paper is to foster the general adoption
of NFT-based analysis. We summarize many of the smaller
details which are usually spread through the literature in one
place. Furthermore, we explicitly show how the software
library FNFT [14] can be used to perform an analysis of
deep water data using the NFT for the periodic NSE. Our
hope is that this exposition will enable engineers unfamilar
with NFTs to perform their own analysis quickly.

The paper is structured as follows. In the next two sec-
tions, the theoretical background beyond the NSE and the
NFT for the periodic NSE is provided. Then, the physical
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interpretation of this NFT is discussed. Finally, we discuss
the software library FNFT and demonstrate an analysis of
free surface buoy data recorded before the coast of Taiwan
using both the NFT and the linear Fourier transform.

THE NONLINEAR SCHROEDINGER EQUATION (NSE)
Wave trains

We consider the surface elevation of a unidirectional
modulated wave train [15, Ch. 17.7],

a(x, t) = Re
[
A(x, t)ei(k0x−ω0t)

]
, (1)

where x denotes location, t denotes time, Re[·] denotes
the real part and e and i denote Euler’s and the imaginary
number, respectively. We assume that the complex enve-
lope A(x, t) of the wave train is bandlimited, i.e., the two-
dimensional Fourier transform Â(k,ω) of A(x, t) satisfies

Â(k,ω) :=
∫ ∞

−∞

∫ ∞

−∞
A(x, t)e− i(kx+ωt) dk dω = 0 (2)

whenever |k| > K or |ω| > Ω. Here, the constants K,Ω > 0
denote the half-bandwidths w.r.t. to the location and time
variables, respectively. We assume that |k0| ≫ K and
|ω0|≫Ω such that a(x, t) changes much faster than A(x, t) in
both time and space. Under these assumptions, the com-
plex envelope A(x, t) of a surface elevation can be recov-
ered using the Hilbert transform [16, p. 491], [3, Ch. 13]

A(x, t)ei(k0x−ω0t) = a(x, t)− iF−1
t [i sign(ω)Ft [a](ω)] (t), (3)

where Ft [a](ω) =
∫ ∞
−∞ a(t)e− iωt d t and F−1

t denote the
Fourier transform w.r.t. t and its inverse, respectively, and
sign(ω) = 1 for ω ≥ 0 and sign(ω) =−1 for ω < 0.

Spatial NSE
Under the additional assumptions that the water is deep

and the complex envelope is small, the complex envelope
obeys the spatial NSE (see, e.g., [17,18,15,3])

i [At +CgAx]+µAxx +ν |A|2A = 0, (4)

where the subscripts indicate partial derivatives. The val-
ues of the coefficients for gravity waves in water of infinite
depth were derived by Zakharov [17], [3, Ch. 2.5.3]:

Cg =
ω0

2k0
, µ =− ω0

8k2
0
, ν =−

ω0k2
0

2
. (5)

Hasimoto and Ono derived coefficients for water of finite
depth h [18], [3, Ch. 2.5.2]. With ω2

0 = gk0σ , σ = tanh(k0h)
and g denoting gravitational acceleration, they are given by

Cg =
c
2

[
1+

(1−σ2)k0h
σ

]
where c :=

ω0

k0
, (6)

µ =
−g

8k0σω0

{[
σ − k0h(1−σ2)

]2
+4k2

0h2σ2(1−σ2)
}
, (7)

ν =
−k4

0
2ω0

(
c

2ω0

)2{ (9−10σ2 +9σ4)

2σ2 (8)

+
4c2 +4(1−σ2)cCg +gh(1−σ2)2

C2
g −gh

}
. (9)

In what follows, we shall assume that µν > 0. With respect
to the coefficients (6)–(8), that is k0h ⪆ 1.363 [18, p. 807].

This condition is necessary for the existence of both
envelope solitons [15, Ch. 17.8] and modulational instabil-
ities [15, Ch. 17.7], [13, Sec. 3.2]. (The case µν < 0 is
obtained e.g. by multiscale-avering the KdV equation [19].)

Temporal NSE
The spatial NSE however is not suitable for our pur-

poses (time series analysis). To arrive at a suitable tem-
poral NSE, we follow [3, Ch. 12.2]. Since At +CgAx ≃ 0 at
leading order (e.g., [20, Eq. 26], [21, p. 612]),

Axx = (Ax)x ≃ (−C−1
g At)x =−C−1

g (Ax)t ≃C−2
g Att . (10)

We substitute this approximation in (4) and multiply both
sides of the resulting equation with C−1

g . This leads to the
temporal NSE, which is suitable for time-series analysis:

i
[
C−1

g At +Ax
]
+µC−3

g Att +νC−1
g |A|2A = 0. (11)

Note that since the roles of x and t are reversed in the tem-
poral NSE, k0 and ω0 should be switched in (3) [3, 13.5].

Normalized Temporal NSE
We now bring the temporal NSE into a normalized form

that typically used in the NFT-related literature. The follow-
ing change of coordinates will be used [3, Ch. 12.2],

X =
µ

C3
g

x, T = t− x
Cg

, u(X ,T ) = ρA(X ,T ), ρ :=

√
C2

gν
2µ

. (12)

First, we substitute A = ρ−1u in the temporal NSE (11):

iρ−1 [C−1
g ut +ux

]
+µC−3

g ρ−1utt +νC−1
g ρ−3|u|2u = 0. (13)
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We multiply both sides of (13) with µ−1C3
gρ and simplify the

result using the relation

µ
C3

g
ρ−1 =

µ
C4

g

(
ν

2µ

)−1/2

=
ν

2C4
g

(
ν

2µ

)−3/2

=
ν

2Cg
ρ−3. (14)

This leads us to

i µ−1C3
g
[
C−1

g ut +ux
]
+utt +2|u|2u = 0. (15)

Applying the multi-dimensional chain rule to (12) shows that

ut = uX Xt +uT Tt = 0+uT , (16)
utt = (uT )t = uT X Xt +uT T Tt = 0+uT T , (17)

ux = uX Xx +uT Tx =
µ

C3
g

uX − 1
Cg

ut . (18)

We substitute these relations in (15) and finally arrive at

iuX +uT T +2|u|2u = 0. (19)

This is the normalized temporal NSE.

THE NONLINEAR FOURIER TRANSFORM (NFT) FOR
THE PERIODIC NSE

The first NFT for the NSE by Zakharov and Shabat
[2] considered vanishing boundary conditions for the non-
evolutionary variable. With respect to the normalized tem-
poral NSE (19), that is |u(X ,T )| → 0 fast enough whenever
T →±∞. For water waves, however often (but not always)
periodic boundary conditions are more appropriate:

u(X ,T + ℓ) = u(X ,T ) for all X ,T, (20)

where ℓ > 0 is the period. In the following, we review the
basics of the NFT for the periodic NSE [assuming µν > 0].

Finite gap solutions to the NSE
The theory of the NFT with periodic boundary condition

(20) is centered around a special class of solutions known
as finite gap (or band) solutions [22]. The most common
form for the NSE (19) is due to Kotlyarov [23], where

[logu(X ,T )]T = 2i
n

∑
k=1

µk(X ,T )+2iK, K =−1
2

2n+2

∑
k=1

Ek. (21)

Here, the Ek are certain complex constants that form the
main spectrum and the µk are auxiliary functions that satisfy

[µk]T =−2i
ϑk
√

P(µk)

∏ j ̸=k(µk −µ j)
, P(z) :=

2n+2

∏
j=1

(z−E j), (22)

[µk]X = 4i

(
n

∑
j=1

µ j +K −µk

)
ϑk
√

P(µk)

∏ j ̸=k(µk −µ j)
. (23)

The Riemann sheet indices ϑk = ϑk(X ,T ) ∈ {±1} are signs
that change when the corresponding P(µk) crosses the cho-
sen branch cut of the square root function, which typically is
the negative part of the real axis. (Technically, the µk evolve
on a Riemann surface with two branches. The sheet index
indicates the branch.) By integrating (21), we find that

u(X ,T ) = u(X ,T0)exp

(
2i

n

∑
k=1

∫ T

T0

µk(X ,τ)dτ −2iK(T −T0)

)
,

(24)

where T0 is an arbitrary base point. A few remarks:

• The main spectrum {Ek}2n+2
k=1 is independent of X and

T . Only the auxiliary spectrum {µk(X ,T )}n
k=1 changes.

• The points in the main spectrum form pairs, which are
connected by curves in the complex plane known as
spines (or bands).

• Two points in the main spectrum might be connected by
a spine of length zero, so that they share the same posi-
tion. In that case, the main spectrum point(s) are called
degenerate. Degenerate points in the main spectrum
may trap a point in the auxiliary spectrum that cannot
move and thus does not contribute to the signal.

Fig. 1 shows the main spectrum, the loci of the auxiliary
spectrum and the spines for the following perturbed plane
wave initial condition (coefficients taken from [10])

u(X0,T ) = 1+ ε e−0.822iT , ℓ=
2π

0.822
, (25)

with parameters ε = 0 and ε = 0.22, respectively. In the
unperturbed case shown in Fig. 1(left), we see two non-
degenerate points in the main spectrum (blue circles) at ± i
that are connected by a spine (thick red line). On this spine
are four degenerate main spectrum points. The complete
auxiliary spectrum (black dots) is trapped by degenerate
main spectrum points and thus does not contribute to the
signal. Equation (21) hence implies that [logu]T must be
constant, which is indeed the case: [logu]T = [log1]T = 0.
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FIGURE 1. NONLINEAR SPECTRUM OF THE PLANE WAVE
(25) WITHOUT AND WITH PERTURBATION.

After adding the perturbation, we obtain the nonlinear
spectrum in Fig. 1(right). The four degenerate points have
split up, leading to four new spines that that do not cross the
real axis. The formerly trapped auxiliary spectra are freed
and now contribute to the signal. We close this section with
a few more properties of the nonlinear spectrum.

• The nonlinear spectrum is symmetric with respect to
the real axis. Later only the region Im(λ )≥ 0 is shown.

• There are more degenerate points in main spectrum on
the real axis. However, these are not important here.

• Periodic solutions of the NSE are in general not finite
gap, but can be approximated by finite gap solutions.

• Not all combinations of the parameters Ek and initial
values µk(X0,T0), ϑk(X0,T0) lead to a periodic solution
of the NSE. Conditions are provided in [24] .

NFT for the periodic NSE
The NFT for the NSE (19) with periodic boundary con-

dition (20) takes one period of a finite gap solution,

u(X0,T +T0), 0 ≤ T < ℓ, X0,T0 fixed, (26)

and returns the constants Ek, initial values µk(X0,T0) for
the auxiliary functions and the Riemann sheet indices
ϑk(X0,T0). Given these values and u(X0,T0), we can recover
u(X1,T ) for any desired value of X1 in three steps:

1) Solve (23) for µk(X1,T0).
2) Solve (22) for µk(X1,T ), T0 ≤ T < T0 + ℓ.

3) Use (24) to recover u(X1,T ), T0 ≤ T < T0 + ℓ.

Note that the Steps 2 and 3 together already consti-
tute an inverse NFT. They can be implemented numerically.
Also note that the spatial and temporal evolution are decou-
pled; we can restrict ourselves to a fixed T = T1 in Step 1.

Inverse NFT using Theta Functions
Instead of solving (23) numerically and using (24) in

order to implement an inverse NFT, it is also possible to
solve (22)–(23) analytically using so-called Theta functions

Θ(z | B) :=
∞

∑
m1,m2,...,mg=−∞

exp
(
π izT Bz+2π imT z

)
, (27)

where the complex g×g matrix B is symmetric with negative
definite imaginary part and m and z are column vectors with
g entries. The mi are the elements of the vector m and the
superscript T denotes the transpose. It can be shown that
for suitable choice of the matrix B and vectors a,b,c, (21)
becomes [logu(X ,T )]T = Θ(aX +bT + c | B) [25].

It is unfortunately quite difficult to obtain with this rep-
resentation numerically. Since our software currently does
not support it, we will not consider it further in this paper.

PHYSICAL INTERPRETATION OF THE NONLINEAR
SPECTRUM

In the previous section, the NFT was introduced. Given
a normalized time series u(X0,T ), it returns a main spectrum
consisting of constant complex points Ek, which are paired
by constant curves known as spines, and initial conditions
for a varying auxiliary spectrum µ j(X ,T ). For the physical
interpretation of the NFT, it is important to understand the
relevance of degenerate points in the main spectrum.

Recall that a degenerate point in the main spectrum oc-
curs when two connected points in the main spectrum co-
alesce. A degenerate point in the main spectrum may trap
a point in the auxiliary spectrum that cannot move and thus
does not contribute to the signal. However, any small per-
turbation can separate the two previously co-located points
in the main spectrum so that the previously trapped point
in the auxiliary spectrum is set free and can start to move.
This behavior was illustrated in the previous section using
the plane wave. An arbitrarily small perturbation can free
auxiliary spectrum points trapped by degenerate points in
the main spectrum and can thus lead to large changes as
the wave evolves. Initial conditions that u(X0,T ) that ex-
hibit degenerate (non-real) points in the main spectrum can
thus be susceptible to modulational instability. On the other
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hand, if all (non-real) points in the main spectrum are non-
degenerate, modulational instability does not occur. Clas-
sic works discussing these points in depth are e.g. [26,19].
More recent references are, e.g., [27], [3, Ch. 24], [12].

Another important aspect is that, when considered in
isolation, spines that do cross the real line correspond to
stable modes in the sea state, while spines that do not cross
the real line correspond to unstable modes [4,28,3,13]. An
extensive discussion of the interpretation of the spines is
provided in the recent study [13].

The NFT has in particular been used to gain insight
into the rogue wave phenomenon. Short spines that do not
cross the real axis indicate that one is close to an unsta-
ble situation with degenerate main spectrum. Such spines
have been found to be an important indicator for the pres-
ence of rogue waves even if these rogue waves were not
visible at the location where the measurement was taken
[5,6,7]. The classical breather solutions to the NSE, which
are considered prototypes for rogue waves, are known to
have highly degenerate main spectra [10,9].

THE SOFTWARE LIBRARY FNFT
FNFT [14] is a software library for the numerical com-

putation of NFTs. It in particular contains an algorithm for
the computation of the NFT for the periodic NSE as dis-
cussed in the previous section that is based on [29]. Given
a normalized time series with D samples

un := u(X0,T0 +ndT ), n ∈ {0,1, . . . ,D−1}, dT :=
ℓ

D
, (28)

the routine fnft_nsep computes the corresponding main
spectrum Ek and auxiliary spectrum µk(X0,T0). (The same
routine has recently been used to analyze rogue waves in
optical fiber in [30].) For this paper, a new option to visu-
alize spines has been added. FNFT is mostly written in
the programming language C, but interfaces to MATLAB
and Python are available for convenience. More informa-
tion on obtaining and installing FNFT is available online at
https://github.com/FastNFT/FNFT. The figures shown
in this paper were obtained using version 0.3.0 of FNFT.

In this paper, we demonstrate the use of FNFT via the
MATLAB interface. The following script, which reproduces
much of Fig. 1(right), demonstrates the basic usage.

%%% Setup
P = [0 , 2∗pi / 0 . 8 2 2 ] ; % per iod vec [ T0 , T0+ l ]
D = 256; % num. samples
dT = (P( 2 ) − P( 1 ) ) / D; % step s ize
T = dT∗(0:D−1); % t ime g r i d

u = 1 + 0.22∗exp(−0.822 j∗T ) ; % s i g n a l
kappa = +1; % focus ing NSE

%%% Compute spines , main and aux . spectrum
spines = mex_fnft_nsep ( u , P, kappa , . . .

’ po in ts_per_sp ine ’ , 100) ;
[ mainspec , auxspec ] = mex_fnft_nsep ( . . .

u , P, kappa ) ;

%%% Plo t r e s u l t s
plot ( rea l ( spines ) , imag ( spines ) , ’ . r ’ , . . .

rea l ( mainspec ) , imag ( mainspec ) , ’ ob ’ , . . .
rea l ( auxspec ) , imag ( auxspec ) , ’ . k ’ ) ;

xlabel ( ’Re ( \ lambda ) ’ ) ; ylabel ( ’ Im ( \ lambda ) ’ ) ;
x l im ([ −0.2 0 . 2 ] ) ; y l im ([ −1.5 1 . 5 ] ) ;

The first part of the script computes the samples (28) of
the signal (25). The second part calls FNFT to compute the
spines, main and auxiliary spectrum of the signal. Finally,
the results are plotted. (For more information about the in-
terface to FNFT, run the command help mex_fnft_nsep in
MATLAB.) One difference between Fig. 1(right) and the re-
sulting plot is that does not show the complete loci of the
auxiliary spectrum, µk(X0,T ) with 0 ≤ T ≤ ℓ, but only a few
points µk(X0,T0). Full loci can be obtained by rerunning the
process for different base points T0 until µk(X0,T0) is known
at all T0 of interest, which is essentially a simplified (and
less effective) version of a technique known as base point
iteration (e.g. [3, Ch. 17.5.3]). We skip details since these
loci will not of interest in the following. We remark that the
result can be verified by comparing the plot [or Fig. 1(right)]
with Fig. 4b in [10], where the same nonlinear spectrum has
been computed with a different numerical method. A good
agreement can be observed (note that the spectrum there
is mirrored due to a slightly different definition of the NFT).

ANALYSIS OF FREE SURFACE BUOY DATA
In the following, we demonstrate how real-world data

can be analyzed using FNFT. The data is collected by
buoys operated by the Coastal Ocean Monitoring Center
(COMC), National Cheng Kung University in Tainan, Tai-
wan. The chosen buoy was located in the northeast of Tai-
wan at a water depth of h=20 m. Every hour an recording
of 10 minutes is taken with a sampling rate of 2 Hz. For this
analysis, recordings for which deep water conditions hold
(k0h ⪆ 1.363) were chosen. We consider the time series in
Fig. 2, which was recorded on June 16, 2011, at 02:00.

We start our analysis with the following MATLAB code.

%%% Load dimensional data from t e x t f i l e ( one
a = load ( ’ 11071602.ELA ’ ) ; %%% sample per row )
a = reshape ( a , 1 , [ ] ) ; % conver t to row vec to r

5 Copyright © 2020 by ASME
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FIGURE 2. TIME SERIES USED FOR THE ANALYSIS AND MAGNITUDE OF THE CORRESPONDING COMPLEX ENVELOPE.

D = length ( a ) ; % number o f samples
asser t (mod(D, 2)==0) ; % D should be even

%%% Setup parameters
Fs = 2; % sampling frequency [ Hz ]
Ts = 1/ Fs ; % sampling per iod [ s ]
h = 20; % water depth [m]
g = 9 .81 ; % g r a v i t a t i o n a l acc . [m/ s ^2 ]
P = [0 (D+1)∗Ts ] ; % begin and end of per iod
kappa = +1; % focus ing NSE

% Oversample s i g n a l s ince mex_fnft_nsep needs i t
% to be a power o f two by zero−padding the FFT
Y = f f t ( a ) ;
Dnew = 2^nextpow2 (D ) ;
Y = [Y( 1 :D/ 2 ) zeros (1 ,Dnew−D) . . .

Y(D/2+1 :end)]∗Dnew/D;
a_new = rea l ( i f f t (Y ) ) ;
t_new = ( 0 :Dnew−1)∗Ts∗(D−1) / (Dnew−1);

% Compute complex envelope ( s t i l l w i th
% c a r r i e r ) using the H i l b e r t t rans form .
A_w i th_ca r r i e r = h i l b e r t ( a_new ) ;

% Compute sampling f req and f req g r i d f o r
% a_new ( run ” doc f f t ” f o r more i n f o )
Fs_new = 1 / ( t_new ( 2 ) − t_new ( 1 ) ) ;
f_new = Fs_new∗[(0:Dnew/ 2 ) (−Dnew/2+1 : −1) ] /Dnew;

% The peak of the spectrum prov ides the c a r r i e r
% frequency and wave number [ Osborne 2010 , 13 .3 ]
[~ , i ] = max( abs ( f f t ( A_w i th_ca r r i e r ) ) ) ;
w0 = 2∗pi∗f_new ( i ) ; k0 = w0^2 / g ;

% Remove the c a r r i e r to ob ta in A
A = exp(−1 j∗w0∗t_new).∗ A_w i th_ca r r i e r ;

The interpolation method used in the middle of this
script is known as band-limited interpolation. The last part
of the script implements (3) for x = 0. Note that the sign
of ω0 is switched as we are considering a time series (see
the remark below (11)). The absolute value of the resulting
complex envelope A(t) is also shown in Fig. 2. We continue
our analysis with the follwing MATLAB script.

% Compute parameters f o r the no rma l i za t i on
asser t ( k0∗h >1.363) ; % check f o r deep water
s = tanh ( k0∗h ) ; sx = 1−s ^2 ; c = w0 / k0 ;
Cg = c/2∗(1+sx∗k0∗h / s ) ; mu = −g/(8∗k0∗s∗w0)∗ . . .

( ( s−k0∗h∗sx)^2+4∗k0^2∗h^2∗s^2∗sx ) ;
nu = −k0 ^ 4 / 2 /w0∗(c / 2 / s)^2∗((9−10∗s^2+9∗s ^ 4 ) / . . .

2 / s^2+(4∗c^2+4∗sx∗c∗Cg+g∗h∗sx ^ 2 ) / ( Cg^2−g∗h ) ) ;

% Normalize s i g n a l and compute spines , spect ra
rho = Cg∗sqrt ( nu / 2 /mu) ; u = rho∗reshape (A , 1 , [ ] ) ;
spines = mex_fnft_nsep ( u , P, kappa , . . .

’ po in ts_per_sp ine ’ , 1000) ;
[ main_spec , aux_spec ] = mex_fnft_nsep ( u , P, +1 ) ;

This script normalizes the complex envelope A(t) us-
ing (6)–(8) and (12). Then, we compute the spines and the
main spectrum as already described in the previous sec-
tion. The resulting nonlinear spectrum is shown in Fig. 3.

Finally, we plot the conventional linear spectrum of the
complex envelope for a comparison using the script below.

% Plo t r e s u l t s w i th scaled axes f o r eas ie r
% comparison wi th the non l inea r spectrum .
f igure ;
stem(−(2∗pi∗f_new ) / 2 , abs ( rho∗f f t (A ) / Dnew ) ) ;
xlabel ( ’ −\ p i f � [ Hz ] ’ ) ; x l im ([ −0.8 0 . 3 ] ) ; grid on ;
ylabel ( ’ \ rho |A( f ) | ’ ) ; y l im ([−1e−5 0 . 0 0 4 5 ] ) ;
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The result is shown in Fig. 4. Since for very small wave
envelopes it is known that the NFT reduces to a kind of
Fourier series with Re(λ ) ≈ −2(2π f ), we have scaled the
horizontal axis accordingly for easier comparison with Fig.
2. Similarly, since we analyzed u= ρA nonlinearly, the verti-
cal axis is scaled by ρ. Since we removed the carrier earlier,
the zero frequency corresponds to the carrier frequency. In
our case, it was ω0

2π ≈ 0.17 Hz. We observe that the two
spectra are very similar, which suggests that nonlinear ef-
fects are weak in this case. In particular, we cannot observe
any unstable modes in the nonlinear spectrum (the spines
all cross the real axis). For a more detailed analysis of an-
other case with strong nonlinearity, we refer to [13].

CONCLUSION
In this paper, the background for using the NSE as a

model for deep-water wave trains and the NFT for the peri-
odic NSE as a tool to analyze corresponding data has been
surveyed. We explicitly demonstrated how the software li-
brary FNFT can be used to perform such an analysis, and
compared the results to a conventional linear analysis. We
remark that FNFT is under constant development. In par-
ticular, we are working to improve support for KdV-NFTs.
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