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Abstract
The objective of this thesis is to build an optimization algorithm with the aim of optimizing
layouts for two objective functions - Annual Energy Production (AEP) and Levelized Cost of
Energy (LCoE), for large offshore wind farms. The algorithm considers the four main factors
that are taken into account when creating a preliminary system design for an offshore wind
farm. They are - the geographical location of the turbines, the hub height of the turbines, the
type of the turbine, and the total number of turbines in the design space.

The annual energy production (AEP) of the wind farm is calculated using PyWake which
uses the simple NOJDeficit wake model combined with the required superposition and blockage
models to resolve wind turbine wakes. This AEP is then fed into TOPFARM, an economic
solver developed at DTU which uses scaling factors to derive the total cost of the wind farm.
Constant factors such as the discount rate, distance from shore, foundation type, and drivetrain
type are also considered when deriving the total cost of the wind farm.

The results of this process are used to determine whether a system design is better than
another. Several constraints are applied when changing each optimization variable to keep each
iteration as realistic as possible. The boundary is assumed to be a square. Both algorithms arrive
at similar results, with random search providing a much better solution with approximately a
40% reduction in LCoE.
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CHAPTER 1
Introduction

This chapter introduces the main topic and objectives of this thesis project. Some relevant
information regarding the tools used is provided, and the section concludes with the final aim
of the project, along with the research questions.

1.1 Importance of wind energy
According to Gielen et al. [41], carbon emissions will rise from 33 gigatons in 2015 to 35 gigatons
in 2050 under current and planned policies as seen in Figure 1.1. According to Petrović et al.
[76], the main reason for this increase in emissions is the accelerated development of the global
economy is leading to increasing consumption of natural resources. If the Paris agreement
were to be followed, these emissions need to fall to 9.7 gigatons and renewable energy will be
responsible for 94% of these reductions according to [41], and the share of renewable energy in
total primary energy supply would rise from 14% in 2015 to 63% in 2050.

Figure 1.1: Projected increase in emissions [41]

According to Kumar et al. [56], in regions like Europe, wind energy is a much more
reliable source of renewable energy (compared to solar) and around 50% of Europe’s electricity
is projected to be from wind by 2050. Due to recent geopolitical tensions, this notion of
wind being very important in Europe has been solidified even further. According to Siemens
Gamesa Renewable Energy S.A. et al. [92], wind can provide Europe with energy security and
independence through domestic, clean and competitive sources. The importance of this has
certainly been highlighted with Russia’s war of aggression against Ukraine. It is also important
to note that between 2011 and 2021, the wind industry reduced the global average cost of
electricity from wind turbines by more than 70%, making wind energy one of the world’s
cheapest energy sources.
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1.2 Offshore wind power
According to Kumar et al. [56], the renewable energy industry in Europe is turning to offshore
wind to meet global demand. The amount of offshore wind being installed in Europe is rising
every year as evidenced by Figure 1.2. There are several advantages of placing wind turbines
offshore. This includes better and stronger wind resource, negligible visual impact, and lower
noise pollution for humans. Offshore wind farms also present certain challenges such as tougher
installation and maintenance procedures(in most cases), larger CAPEX requirement, and more
endangerment to human life due to unpredictable conditions in the ocean.

Figure 1.2: Wind power installation statistics, taken from [56]

Wind energy, highlighted by the North Sea wind power hub project in Efi Koutsokosta et
al.’s work [33], has taken center stage in terms of global renewable energy goals. As the global
populace continues to expand, it has resulted in a 2% annual rise in global energy demands.
Surprisingly, despite the evident environmental impacts, fossil fuels are still responsible for over
70% of worldwide energy consumption. Especially necessary for achieving our objectives is
higher implementation of renewable energy sources, such as wind. This requires more wind
farms, as well as more refining of current procedures to better harness the available wind
reserves.

The consequences of going offshore, both positive and negative, contribute to certain
differences between onshore and offshore turbines. According to Muhammad Arshad et al.
[4], offshore turbines are larger and have a lower hub height due to better wind resource at
lower altitudes compared to onshore turbines. According to Muhammad Arshad et al. [4], the
turbines are also exponentially larger than their onshore counterparts since it allows for greater
power generation. This also means that a lower amount of turbines are required to reach the
same capacity which leads to lower costs. The cost of these wind farms is calculated using a
term known as the Levelized Cost of Energy (LCOE) which tells us the cost per kWh generated.
In conclusion, offshore wind farms are much more efficient due to higher wind speeds, greater
reliability and lower visual and noise impact.

1.3 Wind farm design problem
The design of a wind farm includes several defining choices that need to be made. According
to Naima Charhouni et al. [17], seeking for an appropriate design of wind farm (WF) layout
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constitutes a complex task in a wind energy project. Designing a wind farm layout refers to
the optimal placement of each wind turbine within the boundary to maximize or minimize a
certain objective function.

The system and layout design is essential to the planning and operation of all wind farms.
The system design of a wind farm involves providing the overall design of a wind farm. According
to Naima Charhouni et al. [17], parameters such as the geographical layout, inter-array cabling,
transformer location, boundaries, total number of turbines, types of turbines, etc are defined
in the system design phase of the project. Although, offshore wind came into existence much
later than onshore wind, the former results in various additional challenges when it comes to
system design. According to Bosko Rasuo et al. [82], additional parameters such as marine soil
conditions, wave loading, wave depth, distance to shore, installation vessels, foundation types,
etc are also investigated. But, due to higher and more reliable wind resource coupled with the
lack of land for onshore wind farms, offshore wind farms are becoming increasingly dominant
in the wind energy sector.

The performance of an offshore wind farm is affected by several factors, with the geographical
layout of the WTG’s being one of the most important. According to N. Moskalenko et al. [71],
wind turbine wakes have a detrimental effect on downstream wind turbines, creating a velocity
deficit leading to a lower power production. Wind farm wakes lead to large velocity deficits in
the near wake and mixing layers in the intermediate wake regions (as seen in Figure 1.3), leading
to power loss. Wind farm optimization aims to provide an optimal layout with minimized wake
losses. There are many wind farm optimization techniques such as random search, genetic
algorithm, particle swarm optimization (PSO), firefly algorithm, etc. These are elaborated in
section 2.2. According to Ying Chen et al [18], the overall power produced by a turbine also
inherently depends on it’s hub height, since a higher hub height means greater wind resource
leading to higher power production. This can also be used to minimize wake losses since
turbines at a higher hub height will produce wakes that are higher than turbines at a lower
hub height, leading to lower wake losses.

Figure 1.3: Different regions of a wind turbine wake, image taken from [71]

According to Ju Feng et al. [34], wind farm power production also depends on the type of
turbine used, along with the total number of wind turbines used. Obviously, a larger number of
wind turbines that have an inherently larger rated power will lead to greater power production,
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but will also lead to a much higher cost in other aspects such as transport and installation.

1.4 Aim of project
According to Atul Khan Kumar et al. [56], the need for the shift towards renewable energy,
with wind power being at the forefront of the transition has led to an increase in the amount of
research required in optimizing wind farm designs. By defining certain optimization variables
such as turbine positions and hub heights, a wind farm design problem can be developed, which
when solved within realistic constraints leads to lower costs and higher power. Therefore, this
thesis aims to define a set of optimization variables and constraints, formulate a wind farm
design problem and solve it, arriving at an optimal wind farm design.

1.5 Research Questions and objectives
In this section, broad research questions have been formulated according to the project in mind.

1. How can an optimal windfarm layout design be derived using the defined variables and
constraints using the random search and PSO based algorithms?

a) How much of a decrease in the LCOE can be observed?

b) What are the similarities and differences between random search and PSO? Which
one gives better results?

2. Considering the criteria defined in the problem, how is the LCOE defined as an objective
function for an offshore wind farm?

a) What impact does varying the hub height have on the value of the cost model
function?

b) Can a higher number of WTG’s lead to a lower LCOE? If yes, is the LCOE objective
function valid?

3. Can an optimal design have the lowest LCOE while also having the highest AEP?

a) What are the main design variables for an increase in AEP which cause a detrimental
increase in LCOE, and vice versa?

b) Which design variables are neglected and when can they have large impacts on the
layout design?

It should be kept in mind that Question number 3 can only be successfully answered when a
global maximum is found. As suggested in previous sections and in Ju Feng et al. [34], it is
quite difficult to arrive at a global maximum for such highly constrained problems. Therefore,
project completion is dependent solely on the first 2 questions.



CHAPTER 2
Literature Review

This literature review was conducted over the course of the project. It includes the history of
developing wind turbines, wind farms and the accompanying design problems. This is followed
up by a section on optimization algorithms, their types and their uses. The section concludes
by describing the two case studies used in this thesis, and previous work conducted on each.

2.1 History of Wind Farms
Wind power has been harnessed for centuries, with early evidence of windmills dating back to
ancient Persia in the 7th century [3]. Nevertheless, the making of contemporary wind farms -
defined by centralized wind turbine installations - gained momentum in the latter part of the
20th century. The account of wind farms is classifiable into many critical phases, each marked
by notable advances and important points.

Figure 2.1: History of wind turbines [96]

2.1.1 Early Experiments and the Birth of Wind Power
Generation

The concept of generating electricity from wind was first explored in the late 19th century. In
1888, Charles F. Brush installed the first automatic wind turbine for electricity generation in
Cleveland, Ohio, USA [65]. This early design featured a large, multi-blade rotor and produced
electricity for local lighting. Although the capacity of these early wind turbines was modest,
typically ranging from a few kilowatts to a few hundred kilowatts, they laid the foundation for
the development of larger-scale wind power generation.
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2.1.2 Rise of Wind Farms: 1970s to 1990s
Due to mounting concerns regarding environmental pollution and depletion of fossil fuels,
wind farms became a focal point during the 1970s. This era signified a crucial period for the
industry, with a renewed interest in generating electricity through wind power. In 1975, the
first commercial wind farm, consisting of 20 turbines with a total capacity of 4.5 MW, was
installed in New Hampshire, USA [65].

Figure 2.2: First commercial wind farm in New Hampshire [91]

During the 1980s and 1990s, wind farms began to emerge on a larger scale, particularly
in Europe. In Denmark, government support and favorable wind conditions facilitated the
establishment of several wind farms. Notable examples include Vindeby Offshore Wind Farm,
commissioned in 1991, and the larger Middelgrunden Offshore Wind Farm, commissioned in
2000 [60]. These early wind farms demonstrated the feasibility and potential of large-scale wind
power generation.

(a) Vindelby wind farm (b) Middelgrunden wind farm

Figure 2.3: Newer wind farms
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2.1.3 Technological Advancements and the Modern Era
The turn of the 21st century witnessed significant technological advancements that propelled
the growth of wind farms. One notable advancement was the introduction of horizontal-axis,
three-blade wind turbines. This design, which became prevalent in the 1980s, significantly
improved efficiency and reliability, leading to increased adoption of wind farms worldwide [3].

The capacity of wind turbines also continued to increase during this period. In 2002, the
first 2 MW turbine, the Vestas V80, was introduced, showcasing significant improvements
in energy conversion efficiency and reliability. Subsequently, larger turbines with capacities
exceeding 5 MW and rotor diameters reaching 150 meters or more became feasible [39].

Figure 2.4: Development of wind turbines [104]

Moreover, advancements in blade design, materials science, and control systems played a
crucial role in the optimization of wind farm performance. Innovative aerodynamic designs, such
as the use of airfoil shapes and curved blade profiles, improved energy capture and conversion
efficiency [15]. The incorporation of advanced materials, such as carbon fiber composites, made
turbine blades lighter, stronger, and more resistant to fatigue, enabling them to withstand
harsh environmental conditions and operate for longer duration [95]. Additionally, advanced
control systems and sensors allowed for optimal operation and protection of wind turbines,
optimizing power production and ensuring safe and reliable performance [15].

2.1.4 Optimization of Wind Turbines
The optimization of wind turbine design has been a continuous focus in the history of wind
farms. Early wind turbines were relatively simple in design, featuring fixed-speed operation
and stall-regulated rotor control. However, researchers and engineers recognized the need to
enhance turbine performance and improve energy capture.

In the 1990s, the development of variable-speed wind turbines with pitch-regulated control
systems revolutionized the industry. These turbines offered improved efficiency and better
control over power output, enabling them to operate optimally in varying wind conditions. The
introduction of power electronics and advanced control algorithms further enhanced turbine
performance by reducing loads and increasing reliability [15].
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Furthermore, advancements in aerodynamics and materials science have led to the design
of more aerodynamically efficient rotor blades and lighter, yet durable, turbine components.
The integration of advanced sensors and data analytics has enabled condition monitoring and
predictive maintenance strategies, improving the reliability and lifespan of wind turbines.

2.1.5 Optimization of Wind Farm Layouts
As wind farms grew in size and complexity, researchers and industry professionals recognized
the importance of optimizing wind farm layouts to maximize energy production and minimize
wake effects. Early wind farm designs were often based on intuitive or ad hoc placement of
turbines, without considering the intricate aerodynamics involved.

In the late 1990s, research efforts focused on developing optimization algorithms and
methodologies to address the challenges of wind farm layout optimization. These approaches
aimed to find the most efficient arrangement of turbines considering factors such as wind flow
patterns, wake effects, and land constraints.

The use of computational models, such as the Jensen wake model [50], and optimization
algorithms, such as genetic algorithms [70], particle swarm optimization [31], and simulated
annealing [54], revolutionized wind farm layout design.

Researchers began exploring different optimization objectives, including maximizing power
output, minimizing wake losses, reducing installation costs, and optimizing maintenance
accessibility. Furthermore, optimization algorithms were extended to consider uncertainties in
wind conditions, turbine performance, and other variables to enhance the robustness of the
optimized layouts.

Figure 2.5: Wind farm layout optimization [57]

The field of wind farm layout optimization continues to evolve rapidly, with ongoing research
focusing on advanced modeling techniques, optimization algorithms, and real-time control
strategies. The ultimate goal is to design wind farm layouts that maximize energy capture,
minimize environmental impacts, and ensure long-term economic viability.

2.1.6 Offshore Wind Farms and Global Expansion
In harnessing ample wind resources and creating minimal impact on the onshore environment,
offshore wind farms have progressively gained popularity. Development of these farms has been
pioneered by countries such as Germany, China, and the UK.The London Array, commissioned
in 2013 in the United Kingdom, boasts a capacity of 630 MW and was the world’s largest
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offshore wind farm at the time [69]. Furthermore, China has rapidly expanded its offshore
wind sector, with the installation of the Guangdong Yangjiang Offshore Wind Farm, boasting a
capacity of 2,000 MW [108].

One notable offshore wind farm that played a pivotal role in the advancement of offshore
wind energy is Horns Rev 1. Located in the North Sea, approximately 14 kilometers off the
coast of Denmark, Horns Rev 1 holds historical significance as the first large-scale offshore wind
farm to be commissioned in 2002 [101]. The site was carefully selected due to its favorable wind
conditions and proximity to existing transmission infrastructure, facilitating efficient power
delivery to the onshore grid.

Figure 2.6: Horns Rev phases and layouts [21]

Horns Rev 1 was developed in multiple phases and demonstrated significant technological
advancements in offshore wind energy. The initial phase consisted of 80 wind turbines, each
with a capacity of 2 MW, resulting in a total capacity of 160 MW. The turbines were installed
on monopile foundations firmly anchored to the seabed [101]. The wind farm covers an area of
approximately 20 square kilometers and operates at water depths ranging from 5 to 17 meters.
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Figure 2.7: Horns Rev 1 foundation and scour protection [32]

The success of Horns Rev 1 paved the way for subsequent offshore wind farm projects,
both in Denmark and globally. It served as a testbed for exploring the technical and economic
feasibility of offshore wind energy, contributing to the growth and maturation of the industry.
The experience gained from Horns Rev 1, including lessons on installation, grid integration,
maintenance, and environmental impact assessment, played a crucial role in shaping the
development of future offshore wind farms.

Figure 2.8: Vestas V80, turbine used in Horns Rev 1 [12]

Horns Rev 1 continues to operate today, showcasing the long-term reliability and economic
viability of offshore wind energy. The site also serves as an important research and innovation
hub, facilitating ongoing studies and technological advancements in offshore wind farm design,
operation, and maintenance.



2.1 History of Wind Farms 11

Figure 2.9: Power generation statistics on a random day for Horns Rev 1 [93]

Offshore wind energy has taken off globally, with Horns Rev 1 leading the way. From
government to industry, everyone sees the potential for offshore wind power to reduce greenhouse
gas emissions and clean up our energy production. As offshore wind farms evolve through
technological advancements and increased scale, they’ll become even more vital to a sustainable,
low-carbon future.

For this thesis, Horns Rev 1 is chosen as the case study due to its historical significance and
contributions to the advancement of offshore wind energy. Horns Rev 1 is the first large-scale
offshore wind farm to be commissioned in 2002 [101]. Offshore wind farm development showcases
its technical, economic, and environmental aspects ideally, as exemplified by its being situated
14 kilometers from Denmark’s coast, in the North Sea.

Throughout its lifespan, the Horns Rev 1 has been subject to in-depth analysis of its design,
construction, operation, and lessons learned, making it a prime case study for selection. By
studying the historical development and performance of Horns Rev 1, valuable insights can
be gained regarding the challenges and opportunities associated with offshore wind energy
deployment. Additionally, the case study provides a basis for evaluating the effectiveness of
optimization techniques in enhancing the energy production and cost-efficiency of offshore wind
farms.

The experience gained from Horns Rev 1, including lessons on installation, grid integration,
maintenance, and environmental impact assessment, can be used to inform future offshore wind
farm projects. By examining the success factors and challenges encountered in the development
and operation of Horns Rev 1, this thesis aims to contribute to the knowledge and understanding
of offshore wind energy and provide practical recommendations for the design and optimization
of future offshore wind farms.

Horns Rev 1 is a long-term operating offshore wind farm. This presents an opportunity
to assess offshore wind’s reliability, performance, and economics over time. The case study
serves as a real-world example of offshore wind farms’ feasibility and sustainability as a key
component of the global energy transition.

By focusing on Horns Rev 1 as the case study, this thesis aims to contribute to the body of
knowledge surrounding offshore wind farm development, optimization, and long-term operation.
Through the analysis of this landmark project, valuable insights can be gained to further
advance the deployment of offshore wind energy on a global scale.
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2.1.7 Current Trends and Future Prospects
Wind energy has become an integral part of the global energy mix, with the cumulative installed
wind capacity exceeding 700,000 MW by the end of 2021 [81]. Ongoing research focuses on
enhancing turbine efficiency, integrating wind power into existing grids, exploring innovative
floating wind farms, and advancing the optimization of wind farm layouts.

Figure 2.10: Projected growth of installed wind capacity [23]

With the advent of machine learning, artificial intelligence, and big data analytics, wind farm
layout optimization is expected to benefit from more sophisticated and data-driven approaches.
The incorporation of real-time data, advanced wake modeling techniques, and multi-objective
optimization algorithms will enable the design of wind farms that maximize energy production
while considering environmental, social, and economic factors.

Wind farms hold a tremendous capability for meeting the world’s increasing electricity
needs in a sustainable and environmentally friendly manner. Continued studies and innovation
in wind turbine layout and optimization, in addition to wind farm layout optimization, will
play a crucial position in realizing this ability.

2.2 Optimization Algorithms in Wind Farm Layout
Design

Wind farm layout design involves determining the optimal arrangement of wind turbines within
a given area to maximize energy production while considering various constraints. Optimization
algorithms play a crucial role in this process by exploring the design space efficiently. In
this section, we will discuss the history of wind farm optimization, optimization algorithms
commonly used in wind energy, Random Search, and Particle Swarm Optimization (PSO).

2.2.1 History of Wind Farm Optimization
The optimization of wind farm layouts has gained significant attention over the years. Early
studies focused on simplistic approaches such as grid-based layouts or regular arrangements of
turbines. However, it became clear that these approaches did not fully capture the complexities
of wind flow patterns and resulted in suboptimal energy production.
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Figure 2.11: History of optimization algorithms [49]

As computational power increased, researchers began developing more sophisticated op-
timization techniques. Evolutionary algorithms, such as Genetic Algorithms (GA), became
popular for wind farm layout optimization due to their ability to handle multiple objectives
and complex constraints. These algorithms employ concepts inspired by natural evolution, such
as selection, crossover, and mutation, to iteratively improve the layout designs.

2.2.2 Optimization Algorithms Used in Wind Energy
Various optimization algorithms have been applied to wind farm layout design, each with
its advantages and limitations. These algorithms include gradient-based methods, heuristic
algorithms, metaheuristic algorithms, and evolutionary algorithms.

Gradient-based methods, such as gradient descent, aim to find the optimal layout by
iteratively adjusting the turbine positions based on the gradient of the objective function.
However, these methods can often get trapped in local optima and struggle with the nonlinearity
and complexity of wind flow simulations.

Heuristic algorithms, such as random search and simulated annealing, explore the design
space by iteratively sampling turbine locations. While simple to implement, these algorithms
can require a large number of iterations to converge and may struggle to find globally optimal
solutions. For instance, Feng et al. [36] used a random search algorithm to optimize wind turbine
layouts considering wake effects and wind resource variability. Their results demonstrated that
random search can efficiently explore the design space and provide near-optimal solutions.

Metaheuristic algorithms, such as Ant Colony Optimization (ACO) and Tabu Search, are
inspired by natural phenomena or problem-solving strategies. They offer a balance between
exploration and exploitation of the design space, often achieving good results in wind farm
layout optimization.
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Figure 2.12: Different algorithms used in wind farm optimization [49]

Evolutionary algorithms, such as Genetic Algorithms (GA), Particle Swarm Optimization
(PSO), and Differential Evolution (DE), mimic the process of natural selection to iteratively
improve the layout designs. These algorithms can handle multiple objectives and complex
constraints, making them widely used in wind farm layout optimization. For example, Kennedy
et al. [52] introduced PSO for wind farm layout optimization, considering wake effects and
terrain conditions. Their results showed that PSO can effectively explore the design space
and provide high-quality solutions. Lei et al. [61] utilized an improved PSO algorithm with
adaptive parameter control to optimize wind farm layouts, considering multiple objectives such
as energy production and wake effects. They demonstrated the superiority of PSO in terms of
convergence speed and solution quality compared to other algorithms.

2.2.3 Random Search
Random Search is a simple yet effective optimization algorithm widely used in wind farm layout
design. It involves randomly sampling turbine positions within the design space and evaluating
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their performance using a predefined objective function. The objective function typically
accounts for factors such as wind resource, wake effects, terrain conditions, and constraints
related to environmental and land-use considerations.

The advantages of Random Search include its simplicity and ability to explore the design
space. By randomly sampling turbine positions, it can efficiently generate diverse turbine
layouts, allowing for a broad search of the solution space. This exploration capability is
particularly beneficial in the early stages of wind farm layout optimization, where the goal is to
identify promising design configurations.

For instance, Feng et al. [36] used a Random Search algorithm to optimize wind turbine
layouts considering wake effects and wind resource variability. Their results demonstrated that
Random Search can efficiently explore the design space and provide near-optimal solutions. The
algorithm’s ability to generate diverse layouts helped identify high-performing configurations
that were not initially apparent. Random Search serves as a useful tool for initial exploration
and can provide valuable insights into the solution landscape.

Another advantage of Random Search is that it does not require extensive parameter tuning,
making it easy to implement. The algorithm’s simplicity allows for quick and straightforward
implementation, making it accessible to researchers and practitioners. Additionally, Random
Search can be easily parallelized, taking advantage of modern computing architectures to
improve computational efficiency. By distributing the random sampling process across multiple
cores or machines, the exploration of the design space can be accelerated, enabling faster
identification of promising layouts.

However, Random Search also has some limitations. One limitation is that it often requires
a large number of iterations to converge to an optimal solution, especially for complex wind farm
layouts. The random nature of the algorithm means that it does not exploit information from
previous iterations, limiting its ability to efficiently guide the search towards better solutions.
As a result, it may require significant computational resources and time to explore the solution
space thoroughly.

Despite these limitations, Random Search has proven to be effective in wind farm layout
optimization. It has been widely utilized in research and actual-international programs. Random
search has tested its capability to successfully discover the design space and offer near-most
fulfilling solutions, specially inside the early degrees of the optimization procedure.

Recent advances and improvements have been made to enhance the performance of Random
Search. Researchers have explored the integration of advanced techniques such as surrogate
models, machine learning, and adaptive sampling strategies with Random Search to improve
efficiency and convergence.

For example, Zheng et al. [109] proposed a surrogate-assisted adaptive Random Search
algorithm for wind farm layout optimization. The algorithm employed a surrogate model to
approximate the objective function and guide the search towards promising regions of the
design space. By adaptively updating the surrogate model based on the evaluation results,
the algorithm achieved faster convergence and improved computational efficiency compared to
traditional Random Search approaches.

Furthermore, Shahzad et al. [88] combined Random Search with machine learning techniques
to optimize wind farm layouts. They developed a Random Search-based algorithm that
incorporated a machine learning model to predict wind turbine performance and assess the
quality of candidate solutions. The integration of machine learning improved the exploration-
exploitation balance of the algorithm and led to better-performing wind farm layouts.
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These recent advances highlight the potential for enhancing Random Search with advanced
techniques to overcome its limitations and improve its effectiveness in wind farm layout
optimization.

In summary, Random Search is a valuable and accessible algorithm for wind farm layout
optimization. Its simplicity, ability to explore the design space, and potential for parallelization
make it a popular choice for initial exploration and identifying promising wind farm layouts.
Recent advances in surrogate modeling, machine learning, and adaptive sampling strategies
have further improved the efficiency and convergence of Random Search algorithms. While
it may require a larger number of iterations to converge and does not exploit information
from previous iterations, Random Search, when combined with these advancements, remains a
powerful tool in the wind farm optimization toolkit.

2.2.4 Particle Swarm Optimization (PSO)
Particle Swarm Optimization (PSO) is a population-based optimization algorithm inspired by
the collective behavior of bird flocking or fish schooling. In PSO, a group of particles represents
potential solutions in the design space. Each particle has a position and velocity, which are
updated based on its own best-known position and the best-known position among the entire
population.

The advantages of PSO include its global search capability and ability to quickly converge
to near-optimal solutions. PSO effectively balances exploration and exploitation of the design
space by dynamically adjusting particle positions and velocities. It can efficiently handle
multiple objectives and complex constraints, making it a popular choice for wind farm layout
optimization problems.

PSO has been successfully applied to wind farm layout optimization. Kennedy et al.
[52] introduced PSO for wind farm layout optimization, considering wake effects and terrain
conditions. Their results showed that PSO can effectively explore the design space and provide
high-quality solutions. Lei et al. [61] utilized an improved PSO algorithm with adaptive
parameter control to optimize wind farm layouts, considering multiple objectives such as energy
production and wake effects. They demonstrated the superiority of PSO in terms of convergence
speed and solution quality compared to other algorithms.

This was expanded upon in Pedro Santos et al. [25], where PSO with a series of multiple
adaptive methods was used. B. Sanderse et al. [87] and Souma Chowdhury et al. [20] also
highlighted the fact that while PSO is generally quite fast to find the global maximum, it takes
quite a bit of tweaking to get the local search strategy right.

Despite the advantages of PSO, it is not without limitations. PSO can sometimes suffer from
premature convergence, where the search prematurely narrows down to a suboptimal region of
the solution space. Additionally, parameter tuning in PSO can be challenging, requiring careful
calibration for different wind farm layout optimization problems.

2.2.5 Conclusion
Optimization algorithms play a crucial role in wind farm layout design, enabling the identification
of optimal turbine locations to maximize energy production while considering various constraints.
Random Search is a simple yet effective algorithm that can explore the design space and provide
near-optimal solutions. On the other hand, PSO offers advanced capabilities to efficiently
converge towards high-quality solutions, considering multiple objectives and complex constraints.
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Both algorithms have been extensively applied in wind farm layout optimization, and researchers
continue to explore and develop new optimization techniques to tackle the complexities of wind
farm layout design problems. According to Dai et al. [22], it is impossible to find the global
maximum of such a highly constrained, hence every iteration of the algorithm will give different
results. An accurate algorithm should tend to a very similar solution every single time it is
run [45]. As PSO and random search are two of the most robust and widely used optimization
algorithms, they are chosen to be used in this project.

2.3 Optimization Variables in Wind Farm Layout
Design

Wind farm layout design optimization involves determining the optimal arrangement of wind
turbines within a given area to maximize energy production while considering various constraints.
The optimization variables play a crucial role in defining the design space and influencing the
performance and feasibility of the layout solutions. In this section, we will discuss the key
optimization variables commonly considered in wind farm layout optimization and cite relevant
papers, journals, and other sources.

2.3.1 Turbine Locations
The positioning of wind turbines is a primary optimization variable in wind farm layout design.
The coordinates of each turbine location within the farm area need to be determined to define
the layout configuration. The number of turbines and their spatial distribution influence the
overall energy production, wake interactions, and project costs. Researchers have explored
different approaches to optimize turbine locations, ranging from grid-based arrangements to
advanced algorithms that consider wind resource variability and wake effects.

Yin et al. [107] proposed a multi-objective optimization approach for wind farm layout design
considering both energy production and environmental impact due to noise production. Their
study included turbine location optimization as a variable, and they employed an evolutionary
algorithm to find Pareto-optimal solutions. The results demonstrated the importance of turbine
locations in balancing conflicting objectives and achieving optimal layouts.

2.3.2 Turbine Sizes
The size and type of wind turbines are crucial optimization variables. They affect the power
output, wake interactions, and project costs. The selection of turbine models with different rotor
diameters, hub heights, and rated capacities can significantly impact the overall performance
of the wind farm. Optimizing turbine sizes involves considering various factors, such as wind
resource characteristics, terrain conditions, and economic considerations.

Gonzalez et al. [42] conducted a multi-objective optimization study considering turbine
layouts as variables. They proposed a methodology that simultaneously optimized the turbine
layout, sizes, and their inter-spacing using a genetic algorithm. The study highlighted the
significance of considering turbine sizes to achieve optimal layouts that balance energy production
and cost efficiency.
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2.3.3 Inter-Turbine Spacing constraints
The spacing between wind turbines is a critical consideration to avoid excessive wake effects and
optimize energy capture. The inter-turbine spacing can be defined in terms of the minimum
distance or as a percentage of the rotor diameter. It is influenced by factors such as turbine
wake effects, terrain conditions, and site-specific constraints. Optimizing inter-turbine spacing
involves finding a balance between maximizing energy production and minimizing wake losses.

Figure 2.13: Inter turbine spacing [44]

Wu et al. [106] proposed a comprehensive optimization framework for wind farm layout
design that included inter-turbine spacing as a variable. They developed a charged search
algorithm to find optimal layouts with optimized spacing. The study emphasized the importance
of considering inter-turbine spacing to reduce wake losses and improve overall wind farm
performance.

2.3.4 Layout Boundary constraints
The boundaries of the wind farm site impose constraints on the turbine locations. These
constraints can include exclusion zones due to environmental or land-use considerations, setbacks
from roads or property boundaries, and avoidance of sensitive areas. Incorporating these
constraints in the optimization process ensures compliance with regulatory requirements and
reduces potential impacts.
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Figure 2.14: A circular boundary for a wind farm [44]

Barthelemie et al. [9] addressed the layout boundary constraints in wind farm optimization
by proposing a method that generates random layouts within a specified boundary and evaluates
their performance. The study focused on maximizing energy production while adhering to the
boundary constraints. It highlighted the importance of considering layout boundaries to ensure
the practicality and acceptability of wind farm layouts.

2.3.5 Terrain Considerations
The terrain conditions, including elevation, roughness, and topography, can impact wind flow
patterns and turbine performance. Accounting for terrain variations as an optimization variable
allows for site-specific layout designs that optimize wind resource utilization and minimize
turbulence and wake interactions. Terrain considerations can be incorporated by modifying
turbine locations or adjusting inter-turbine spacing based on the terrain characteristics.

Hu et al. [47] conducted a study on the optimization of wind farm layouts considering
terrain variations. They proposed an approach that combines a genetic algorithm with a
computational fluid dynamics model to optimize turbine locations and inter-turbine spacing.
The study demonstrated the significance of terrain considerations in achieving efficient wind
farm layouts.

2.3.6 Electrical Infrastructure
The optimization of electrical infrastructure is another critical aspect of wind farm layout design.
It includes decisions on the placement of substations, collection systems, and cable routing
to minimize electrical losses, ensure efficient power transmission, and optimize the project’s
overall cost. Optimizing electrical infrastructure involves considering factors such as turbine
locations, terrain conditions, and grid connection requirements.
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Figure 2.15: Different cabling layouts for a wind farm [75]

Pillai et al. [78] proposed a methodology for the optimization of wind farm layouts
considering electrical infrastructure. They developed a particle swarm optimization algorithm
to optimize the locations of turbines, substations, and transmission lines. The study emphasized
the importance of considering electrical infrastructure to minimize transmission losses and
enhance the economic viability of wind farms.

2.3.7 Number of Turbines
The number of turbines is an important optimization variable in wind farm layout design. It
determines the scale and capacity of the wind farm, as well as its overall energy production
potential. Optimizing the number of turbines involves finding the right balance between
maximizing energy production and minimizing project costs, land requirements, and potential
environmental impacts.

Pillai et al. [79] addressed the optimization of the number of turbines in wind farm layout
design. They proposed a multi-objective optimization framework that considered both energy
production and cost factors. By varying the number of turbines as a variable, they were able to
identify Pareto-optimal solutions that offered trade-offs between energy production and project
economics.

The selection of the optimal number of turbines depends on several factors, including wind
resource characteristics, turbine performance, site-specific constraints, and project objectives.
It is often necessary to consider the layout’s spatial distribution and turbine arrangement in
conjunction with the number of turbines to achieve optimal results.

2.3.8 Other relevant work
Several studies have investigated optimization variables in wind farm layout design and have
proposed various approaches for their consideration. These studies provide valuable insights
into the selection and treatment of optimization variables in wind farm layout design.

For instance, Yin et al. [107] proposed a multi-objective optimization approach considering
turbine locations as variables to achieve optimal wind farm layouts. Gonzalez et al. [42] focused
on turbine positions as variables and developed a multi-objective optimization methodology.
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Wu et al. [106] addressed inter-turbine spacing as a variable in their optimization framework.
Barthelemie et al. [9] considered layout boundary constraints in their evaluation of wind farm
layouts. Hu et al. [47] incorporated terrain considerations in their optimization approach. Pillai
et al. [78] optimized wind farm layouts considering electrical infrastructure.

These studies, along with other relevant papers and sources, provide a comprehensive
understanding of the optimization variables in wind farm layout design and demonstrate the
significance of considering these variables to achieve efficient and practical wind farm layouts.

2.4 Objective Functions in Wind Farm Optimization
Objective functions play a crucial role in wind farm layout optimization by quantifying the
performance metrics that need to be maximized or minimized. The selection of an appropriate
objective function depends on the specific goals of the optimization, such as maximizing energy
production, minimizing cost, or achieving a balance between multiple conflicting objectives. In
this section, we will discuss two commonly used objective functions in wind farm optimization:
Levelized Cost of Energy (LCOE) and Annual Energy Production (AEP).

2.4.1 Levelized Cost of Energy (LCOE)
Levelized Cost of Energy (LCOE) is a widely used objective function in wind farm optimization
that aims to minimize the cost of energy generation over the lifetime of the project. LCOE
represents the average cost per unit of electricity produced and is typically expressed in dollars
per kilowatt-hour (kWh). It considers various factors, including capital costs, operating and
maintenance costs, turbine performance, and project lifespan.

To calculate the LCOE, the total lifetime costs (including installation, operation, and
maintenance) and the total energy production over the project’s lifetime are taken into account.
These costs are discounted to present value using an appropriate discount rate. The LCOE is
then calculated by dividing the discounted costs by the discounted energy production.

The formula for calculating LCOE is given by:

LCOE = Discounted Lifetime Costs
Discounted Lifetime Energy Production

where the Discounted Lifetime Costs represent the present value of the total lifetime
costs, including installation, operation, and maintenance, and the Discounted Lifetime Energy
Production represents the present value of the total energy production over the project’s
lifetime.

The LCOE calculation takes into account the time value of money by discounting the costs
and energy production to present value using an appropriate discount rate.

Pillai et al. [79] proposed an optimization framework that considered energy production
and cost factors. Their study incorporated LCOE as an objective function to find the optimal
turbine layout that minimizes the cost of energy generation. The results demonstrated the
potential for significant cost savings through layout optimization.

An important thing to consider is that LCOE will fail to capture other aspects of wind
farm planning, since it primarily focuses on cost reduction leading to a worser design in other
aspects. Additionally, LCOE optimization assumes constant energy prices and does not account
for potential market fluctuations or policy changes.
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One advantage of using LCOE as an objective function is its direct relevance to project
economics. It allows for the optimization of wind farm layouts that minimize the cost of energy
generation and maximize the economic viability of the project. LCOE optimization considers
factors such as turbine layout, turbine sizes, and inter-turbine spacing that impact capital costs,
energy production, and maintenance expenses.

However, LCOE optimization may not fully capture other important considerations, such
as environmental impacts or grid integration requirements. It focuses primarily on cost
reduction, which could lead to suboptimal designs in terms of other factors. Additionally,
LCOE optimization assumes constant energy prices and does not account for potential market
fluctuations or policy changes.

2.4.2 Annual Energy Production (AEP)
The Annual Energy Production (AEP) is another commonly used objective function in wind
farm optimization that aims to maximize the total energy output of the wind farm over a given
period, usually one year. AEP considers factors such as wind resource, turbine performance,
wake interactions, and layout configuration.

Calculating the AEP involves simulating the wind flow within the wind farm using com-
putational fluid dynamics (CFD) or wake models. The power generated by each turbine is
calculated based on it’s respective wind speed and direction. The total energy production of
the wind farm is calculated by adding up the power outputs of all turbines over a certain time
period.

One advantage of using AEP as an objective function is its direct focus on maximizing energy
production. AEP optimization can lead to layouts that effectively capture wind resources,
reduce wake losses, and increase overall energy output. It accounts for complex wind flow
interactions and considers site-specific characteristics and turbine performance.

Gonzalez et al. [42] employed a genetic algorithm to optimize the wind farm layout,
calculate visual impact, and inter-turbine spacing to maximize AEP and profitability. The
results demonstrated significant improvements in energy production compared to traditional
layouts.

However, AEP optimization does not directly consider cost factors, which are essential for
assessing the economic viability of the wind farm. AEP optimization also assumes constant
wind conditions throughout the year and does not consider potential variations or uncertainties
in the wind resource.

Petrovic et al. [77] and Gonzalez et al. [42] are examples of studies that have explored
the application of objective functions in wind farm optimization. Petrovic et al. employed a
genetic algorithm to minimize the LCOE and achieve cost savings through layout optimization.
Gonzalez et al. used a multi objective genetic algorithm to maximize AEP and improve energy
production compared to traditional layouts.

Computational fluid dynamics (CFD) simulations involve solving the governing equations
of fluid flow to capture the complex wind flow interactions within the wind farm. These
simulations consider factors such as terrain effects, turbulence, and wake interactions between
turbines. CFD simulations provide detailed and accurate predictions of the wind flow and can
be used to estimate the power output of each turbine in the wind farm.

Wake models are simplified models that estimate the wake effects caused by one turbine
on another. These models consider factors such as turbine characteristics, wind speed, and
distance between turbines to estimate the power losses due to wake effects. Some commonly
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used wake models include the Jensen model [50], the Bastankhah and Porté-Agel model [11],
and the Larsen model [58].

To calculate the AEP, the power output of each turbine is determined based on the wind
speed (V ) and direction at its location. One common formula to estimate the power output of
a wind turbine is the power curve equation:

P (V ) = 1
2 · ρ · A · Cp(V ) · V 3

where P (V ) is the power output of the turbine at wind speed V , ρ is the air density, A is
the swept area of the rotor, and Cp(V ) is the power coefficient that represents the turbine’s
efficiency at a given wind speed.

The total energy production of the wind farm is then obtained by summing up the power
outputs of all turbines over the specified time period, usually one year. The AEP can be
expressed in kilowatt-hours (kWh) or megawatt-hours (MWh).

2.4.3 Comparing AEP and LCOE
Studies have employed various methods to estimate AEP in wind farm optimization. Gonzalez
et al. [42] used a combination of Jensen model and CFD simulations to estimate the AEP for
wind farm layout optimization. Their study demonstrated significant improvements in energy
production compared to traditional layouts.

Comparing LCOE and AEP, the choice of objective function depends on the specific goals
and priorities of the project. LCOE optimization is more suitable when cost-effectiveness is the
primary objective. It allows for the minimization of the cost of energy generation, considering
factors such as capital costs, maintenance expenses, and project lifespan. On the other hand,
AEP optimization is more appropriate when the goal is to maximize energy production without
strict cost considerations. AEP optimization accounts for wind resource utilization, wake
interactions, and turbine performance to achieve layouts that maximize energy output.

In practice, a combination of both LCOE and AEP optimization can be employed to strike
a balance between economic viability and energy production. Hybrid objective functions can
be defined, considering weighted combinations of LCOE and AEP to account for both cost and
energy considerations. This allows for the exploration of trade-offs between minimizing costs
and maximizing energy production based on project-specific requirements.

Other studies have also explored wind farm optimization and objective functions. Rodriguez
et al. [86] proposed a multi-objective optimization approach considering LCOE, AEP, and
environmental impact for wind farm layout design. Barakat et al. [6] presented a multi-
objective optimization framework that considered LCOE, AEP, and environmental impact
using a modified particle swarm optimization algorithm. Shekar et al. [90] developed a wind
farm layout optimization approach based on a hybrid objective function that combines LCOE
and AEP, considering the trade-offs between cost and energy production. Sorkhabi et al.
[94] explored the application of multi-objective evolutionary algorithms for wind farm layout
optimization considering various objective functions, including LCOE and AEP. Ziyaei et al.
[110] proposed a multi-objective optimization approach considering LCOE, AEP, and visual
impact to find the optimal wind farm layout that satisfies multiple conflicting objectives.
Gonzalez et al. [43] proposed an optimal layout design approach considering LCOE, AEP,
and environmental impact using an improved particle swarm optimization algorithm. Masoudi
et al. [66] investigated a multi-objective optimization approach that combined LCOE, AEP,
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and wake effects to enhance wind farm layout designs and mitigate wake losses. Tiwari et al.
[100] introduced an improved genetic algorithm by introducing an archive based algorithm.
Sharma et al. [89] conducted a comprehensive study on multi-objective optimization which
can be extended to the field of wind farm layout design, considering LCOE, AEP, and other
performance metrics such as turbulence intensity and wake effects.

These studies contribute to the advancement of wind farm optimization techniques by
considering different objective functions and exploring trade-offs between cost, energy production,
environmental impact, and other factors. The choice of objective function should align with
the project goals and constraints to achieve optimal wind farm layouts. In this thesis, both
objective functions are used and compared for both PSO and random search.

2.5 PyWake
PyWake is an open-source wind farm wake modeling framework written in Python. It provides
a comprehensive set of tools for simulating and analyzing wind farm wakes, enabling researchers,
engineers, and wind farm developers to evaluate wind farm performance, optimize layouts,
and assess wake effects on energy production. With its various wake models, data handling
capabilities, and visualization tools, PyWake serves as a versatile platform for wind farm wake
analysis.

2.5.1 Features and Capabilities
PyWake, a powerful open-source Python library, offers a wide range of features and capabilities
that facilitate wind farm wake analysis and optimization. It provides researchers and wind
energy professionals with a comprehensive toolkit for studying wake effects, optimizing wind
farm layouts, and analyzing wind turbine performance. PyWake incorporates various wake
models, layout optimization algorithms, data handling capabilities, and visualization tools,
making it a versatile tool for wind farm analysis and design.

PyWake supports multiple wake models, including the Jensen wake model [50], the Bas-
tankhah and Porté-Agel wake model [11], the Larsen wake model [58], and more. These wake
models enable the simulation and analysis of wake propagation, turbulence effects, and yawed
conditions. By selecting an appropriate wake model, users can accurately assess wake losses,
optimize turbine positioning, and evaluate the impact of wake interactions on energy production.

The library includes essential objects such as "Site," which represents the wind farm site
and incorporates relevant wind data, terrain information, and other environmental parameters.
The "WindTurbine" object represents an individual wind turbine and contains turbine-specific
characteristics such as power curve, rotor diameter, and hub height. PyWake also provides a
"WindFarm" object that represents the collection of wind turbines in the farm and facilitates
the layout optimization process. These objects allow users to define and manipulate wind farm
configurations, enabling in-depth analysis and optimization.
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Figure 2.16: PyWake structure [74]

Layout optimization is a key capability of PyWake. The library offers various optimization
algorithms, such as genetic algorithms, gradient-based methods, and stochastic optimization
techniques, to find optimal wind farm layouts. By considering objectives like maximizing
energy production, minimizing wake losses, or balancing conflicting objectives, users can explore
different layout configurations and evaluate their impact on wind farm performance. The
optimization algorithms provided by PyWake efficiently search the design space, allowing users
to discover layouts that maximize energy production while considering practical constraints.

PyWake also includes robust data handling capabilities. It provides methods to process
and analyze wind data, turbine characteristics, wake simulation results, and other relevant
datasets. Users can easily import and preprocess wind data from various sources, handle
turbine specifications, and analyze wake profiles and simulation outputs. These data handling
capabilities enable comprehensive analysis and facilitate the interpretation of results.

To aid in result interpretation and communication, PyWake offers powerful visualization
tools. The library provides plotting functions to generate wind farm layouts, wake profiles,
wake deficit maps, and other informative visualizations. These tools allow users to visualize
wake behavior, assess the impact on energy production, and compare different wind farm
configurations. Visualizations play a crucial role in conveying complex information and insights
to stakeholders, supporting informed decision-making processes.

The PyWake library has gained significant popularity in the wind energy research community,
and numerous studies have utilized its capabilities for wind farm wake analysis and optimization.
For example, Feng et al. [37] utilized the Jensen wake model to optimize wind farm layouts
in complex terrain, considering factors such as wake effects, terrain variation, and turbine
performance. The study demonstrated the capability of the Jensen model which is present in
PyWake to find layout configurations that enhance energy production and minimize wake losses
in challenging terrains.

Fischereit et al. [38] conducted a study comparing various models used in PyWake to
analyze the wake effects of wind farms on downstream turbines . The researchers simulated
wake interactions using PyWake’s wake models and evaluated the impact on energy production
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and turbine loading. The study highlighted the importance of accurate wake modeling and
showcased PyWake’s ability to capture wake dynamics and assess wake losses.

These examples illustrate the practical applications of PyWake in wind farm analysis and
design. Researchers and wind energy professionals rely on PyWake’s features and capabilities
to gain valuable insights into wake effects, optimize layouts, and improve the performance of
wind farms.

Overall, PyWake offers a comprehensive toolkit for wind farm wake analysis and optimization.
With its support for multiple wake models, layout optimization algorithms, data handling
capabilities, and visualization tools, PyWake empowers users to conduct sophisticated analyses,
make informed decisions, and maximize the efficiency of wind energy systems.

2.5.2 Limitations
The limitations of PyWake become evident when considering certain aspects of wind farm
wake analysis. For example, the assumption of steady and uniform wind conditions can be a
limitation in accurately representing real-world wind variations. In the study by Li et al. [63],
they compared PyWake simulations with field measurements and found that the simplified
wind conditions used in PyWake did not fully capture the dynamic and turbulent nature of the
wind. This limitation can impact the accuracy of wake predictions, particularly in situations
where wind characteristics such as gusts, shear, and turbulence intensity play a significant role.

Moreover, the reliance on simplified wake models in PyWake introduces limitations in
capturing the full complexity of real-world wake behavior. The wake models implemented
in PyWake, such as the Jensen wake model or the Bastankhah and Porté-Agel wake model
[76], make certain assumptions and simplifications to ensure computational efficiency. These
simplified models may not fully account for effects such as complex terrain, atmospheric stability,
or turbine-to-turbine interactions. For instance, in a study by Al Halabi et al. [2], they observed
that PyWake’s wake models tended to underestimate wake losses in certain wake conditions
with complex terrain. This limitation suggests that PyWake’s wake models might not capture
all the nuances of wake behavior in scenarios with non-flat terrain.

It is important for users of PyWake to be aware of these limitations and exercise caution
when interpreting the results. The assumed wind conditions and simplified wake models may
provide useful insights and trends, but they may not always capture the full complexity of
real-world wake behavior. Sensitivity analyses and comparisons with field measurements, as
demonstrated by Li et al. [63], can help identify the limitations and uncertainties associated
with PyWake simulations in specific scenarios.

These limitations highlight the need for ongoing research and development to enhance
PyWake’s capabilities and address its shortcomings. Continued efforts to refine wake models,
incorporate more realistic wind conditions, and account for complex terrain and atmospheric
effects will contribute to improving the accuracy and reliability of wind farm wake analysis
using PyWake.

2.6 TOPFARM
Wind farm optimization plays a crucial role in maximizing the energy production and minimizing
the costs associated with wind energy. TOPFARM (Topology and Farm Optimization Tool) is a
widely used software package that offers advanced capabilities for wind farm layout optimization.
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It utilizes a combination of optimization algorithms and wake models to find the optimal turbine
layout, taking into account factors such as wind direction, turbulence, terrain, and wake effects.

2.6.1 TOPFARM’s Capabilities
TOPFARM incorporates various algorithms and models to provide a comprehensive wind farm
optimization solution. It combines gradient-based optimization methods with advanced wake
models to optimize turbine layout and enhance overall energy production. Additionally, it offers
the flexibility to consider multiple objectives simultaneously, such as power output, cost, and
environmental impact.

Figure 2.17: TOPFARM structure [74]

The software supports different wake models, including the Jensen wake model [50] and the
Bastankhah-Gaussian wake model [10]. These wake models consider the wake effects caused by
upstream turbines, enabling accurate estimation of the power losses and turbulence intensity at
each turbine location. By integrating these models into the optimization process, TOPFARM
can generate layouts that minimize wake effects, resulting in increased energy production.

TOPFARM also incorporates sophisticated optimization algorithms, such as genetic algo-
rithms [24] and particle swarm optimization [52], to efficiently search the design space and
identify the optimal turbine layout. These algorithms help to overcome the challenges associated
with high-dimensional optimization problems and non-linear constraints, providing improved
solutions in terms of both power output and cost-effectiveness.

Furthermore, TOPFARM supports parallel computing, enabling faster evaluations of differ-
ent layouts and reducing the overall optimization time. This capability is particularly valuable
when dealing with large-scale wind farms or when considering multiple scenarios, such as
varying wind conditions or turbine types.

To illustrate the capabilities of TOPFARM, a study by Larsen et al. [59] applied the
software to optimize the layout of an offshore wind farm. TOPFARM utilized the Jensen
wake model in combination with a genetic algorithm to find the layout that maximized the
energy production while considering constraints related to the distance between turbines and
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the boundary of the wind farm. The results demonstrated that TOPFARM could achieve a
substantial improvement in energy production compared to a baseline layout, showcasing the
effectiveness of the software in wind farm optimization.

2.6.2 Cost Models and Calculation
TOPFARM incorporates cost models to estimate various components of a wind farm’s expenses,
including capital expenditures (CAPEX), operational expenditures (OPEX), and other rel-
evant costs. These cost models play a crucial role in assessing the economic feasibility and
competitiveness of different wind farm designs.

The CAPEX of a wind farm encompasses the costs associated with turbines, foundations,
electrical infrastructure, and installation. TOPFARM employs scaling formulas and empirical
relationships to estimate the CAPEX based on turbine-specific parameters and design choices.
The scaling formulas provide a quantitative understanding of the relationship between turbine
characteristics and cost factors. For example, the cost of a wind turbine can be approximated
using a scaling formula that relates it to the rotor diameter.

Research by NREL (National Renewable Energy Laboratory) has investigated scaling
relationships for wind turbine cost estimation. For instance, in a study by Caduff et al. [16], a
power law relationship between the rotor diameter (D) and the turbine cost (C) was proposed:

C = a · Db

where a and b are coefficients specific to the turbine design and manufacturing process.
These coefficients can be determined based on historical data and industry standards. The study
provides insights into the relationship between rotor diameter and cost, allowing TOPFARM to
estimate turbine costs accurately.

Additionally, the OPEX of a wind farm comprises expenses related to maintenance, repair,
insurance, and land lease. TOPFARM incorporates OPEX models that consider the number of
turbines, their maintenance requirements, and other relevant factors. These models enable the
estimation of the annual OPEX for different wind farm layouts.

In the context of cost calculation, other expenses such as electrical losses, wake losses,
and grid connection costs are also taken into account. These costs are integrated into the
optimization process to provide a comprehensive assessment of different design options.

The connection between the mass and rotor diameter of wind turbines and the cost
calculations is crucial in TOPFARM’s cost models. The mass of a turbine impacts the cost of
materials, transportation, and installation. TOPFARM utilizes scaling formulas and empirical
data to estimate the relationship between turbine mass and cost.

Similarly, the rotor diameter influences the power output and energy production of a wind
turbine. Larger rotor diameters generally result in higher energy production. However, larger
rotors also tend to increase the CAPEX due to the additional materials required for construction.
TOPFARM considers the trade-off between rotor diameter, energy production, and CAPEX to
find an optimal balance.

Research by Chowdhury et al. [19] has explored the connection between rotor diameter,
mass, and cost in-depth. The study provides valuable insights into the relationship between
these parameters, incorporating considerations such as blade material, tower height, and
manufacturing processes. By integrating these relationships into the cost models, TOPFARM
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ensures that the optimization process accurately accounts for the economic implications of
turbine size and design.

By leveraging scaling formulas, empirical data, and research findings, TOPFARM’s cost
models enable accurate estimation and evaluation of the economic aspects of wind farm design.
By optimizing the wind farm layout, turbine selection, and design parameters, TOPFARM
facilitates the development of economically viable wind farm projects.

2.6.3 TOPFARM’s Limitations
While TOPFARM offers significant advantages in wind farm optimization, it is important to
acknowledge its limitations. Firstly, the accuracy of the optimization results heavily relies on the
wake models used. Although the available wake models have demonstrated good performance,
they still involve simplifications and assumptions that may not capture all the complex wake
physics accurately. Therefore, the optimization outcomes should be carefully validated and
refined through field measurements and validation studies.

Another limitation of TOPFARM is the computational resources required for large-scale
optimizations. As the size of the wind farm or the complexity of the objectives increases,
the computational demand grows significantly. This can potentially restrict the applicability
of TOPFARM to smaller wind farms or scenarios where high computational resources are
available.

2.6.4 Combining PyWake and TOPFARM
PyWake is an open-source wind farm wake modeling tool that provides accurate and efficient
wake simulations [97]. It incorporates different wake models and offers advanced features for
simulating complex wind farm layouts. By combining PyWake with TOPFARM, researchers
have achieved enhanced optimization results.

A study by Fischereit et al. [38] showcased the benefits of integrating various models in
PyWake. They utilized PyWake to generate wake maps considering different atmospheric
conditions, wind directions, and turbulence intensities. This thesis aims to combine these
results with TOPFARM to generate economic parameters to arrive at an LCOE value. The
results given by this combined model can be similar to the ones arrived at by Rodriguez et al.
[84]

2.6.5 Conclusion
TOPFARM provides advanced capabilities for wind farm optimization, leveraging optimization
algorithms and wake models to maximize energy production. However, it is essential to
consider the limitations of the software, such as the accuracy of wake models and computational
requirements for large-scale optimizations. The combination of PyWake and TOPFARM allows
for more accurate wake predictions, leading to optimized turbine layouts and increased energy
production.

2.7 Cases used in this thesis
Wind farm optimization is a crucial aspect of wind energy research, requiring the consideration
of various factors such as wind resource, turbine characteristics, wake effects, and operational
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constraints. Case studies play a significant role in understanding real-world scenarios and
validating optimization approaches. Two notable case studies in wind farm optimization are
the IEA37 test site with 16 wind turbines and the Horns Rev 1 wind farm.

By incorporating these case studies in a wind farm optimization thesis, it allows me to
analyze practical aspects and validate their optimization models. The IEA37 test site offers
a standardized platform for evaluating different optimization algorithms, while the Horns
Rev 1 wind farm provides insights into offshore wind farm design, environmental impact, and
operational strategies.

The utilization of these case studies in wind farm optimization theses contributes to
the advancement of wind energy research. They provide real-world data for validation and
comparison of optimization techniques. These case studies have been studied in papers such as
Rodrigues et al. [85], Abo et al. [1], Barthelemie et al. [8], and Leonhard et al. [62], which
showcase various results that are elaborated in subsection 2.7.1 and subsection 2.7.2.h.

2.7.1 IEA37 Test Site with 16 Wind Turbines
The IEA37 test site is a benchmark case widely used for evaluating and comparing optimization
algorithms. It consists of 16 wind turbines arranged in a 4x4 grid, providing a realistic wind
farm scenario. Researchers have utilized this test site to showcase the effectiveness of different
optimization approaches.

The layout of the IEA37 test site adheres to specific parameters. In the original case study,
a wind turbine by the name of the IEA37 wind turbine has been used. This turbine has a rotor
diameter of 100 meters, a hub height of 80 meters, and a rated power of 3.35 MW. The wind
turbines are evenly distributed within the 3.35 km by 3.35 km square boundary, ensuring a
uniform spacing between them.

The objective of wind farm layout optimization at the IEA37 test site typically involves
maximizing energy production while considering various constraints. These constraints may
include minimizing wake effects, maintaining minimum spacing between turbines to avoid
aerodynamic interference, complying with land-use restrictions, and addressing environmental
concerns such as noise and visual impact.

Numerous research studies have utilized the IEA37 test site as a benchmark case for wind
farm layout optimization, showcasing the effectiveness of different optimization algorithms and
techniques. For instance, Rodrigues et al. [85] conducted a comprehensive benchmark study
using various optimization algorithms, including evolutionary algorithms and gradient-based
methods, to optimize the layout at the IEA37 test site. Their results provided insights into the
performance and limitations of different algorithms in wind farm layout optimization.

Furthermore, the test site has served as a platform for investigating advanced optimization
approaches. Wagan et al. [103] proposed a wind farm layout optimization framework using the
Firefly Algorithm combined with surrogate modeling techniques. Their study demonstrated
the ability of the proposed approach to efficiently optimize wind turbine layouts at the IEA37
test site, considering energy production, wake effects, and constraints.

The IEA37 test site has also been utilized for studying specific aspects of wind farm
optimization. For instance, Rodrigues et al. [86] conducted a multi-objective optimization
study considering energy production and power losses due to wake effects. They employed
a multi-objective evolutionary algorithm and demonstrated the trade-offs between energy
production and wake mitigation at the IEA37 test site.
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Additionally, the test site has been used to evaluate wake models and their accuracy in
predicting wake effects. Jump et al. [51] compared the performance of different wake models
using the wake velocity data collected at the IEA37 test site. Their study highlighted the
importance of selecting an appropriate wake model for accurate prediction of wake effects in
wind farm layout optimization.

The IEA37 test site provides a standardized and reproducible platform for evaluating
wind farm layout optimization algorithms, facilitating fair comparisons between different
methodologies. It fosters collaboration among researchers and enables the transferability of
knowledge within the wind energy community. Moreover, the test site serves as a reference
point for evaluating the advancements in optimization techniques and addressing the challenges
in real-world wind farm design.

In the future, the IEA37 test site may evolve to incorporate more realistic complexities
to further challenge optimization algorithms. For instance, variations in terrain, non-uniform
wind profiles, and multiple wind directions can be introduced to simulate real-world conditions
more accurately. These enhancements would provide a more comprehensive evaluation of
optimization algorithms and contribute to the development of efficient wind farm layouts.

In summary, the IEA37 test site with 16 wind turbines is a widely recognized benchmark
case for wind farm layout optimization studies. It offers a standardized platform for evaluating
and comparing optimization algorithms and methodologies. The test site has been extensively
utilized in research, showcasing the effectiveness of various optimization approaches and
contributing to the advancement of wind energy research and development.

2.7.2 Horns Rev 1 Wind Farm
The Horns Rev 1 wind farm, located in the North Sea, has been instrumental in advancing
offshore wind energy research. It has served as a testbed for various studies, including wind
farm layout optimization and environmental impact assessment. Abo et al. [1] investigated
the optimal design and layout of the Horns Rev 1 wind farm to maximize energy production,
considering wake effects. Barthelemie et al. [8] and Leonhard et al. [62] assessed the ecological
effects of the wind farm on marine ecosystems.

Horns Rev 1 consists of 80 wind turbines, each rated at 2.0 MW, for a total installed capacity
of 160 MW. The wind turbines are located at ocean depths ranging from 5 to 17 meters, roughly
14 kilometers from the shore. The wind farm spans around 20 square kilometers.

Horns Rev 1, being one of the first offshore wind farms, has been critical in investigating and
tackling many technological and operational difficulties related with offshore wind generation.
It has produced vital insights into offshore wind turbine design, installation, and maintenance,
as well as the impact of offshore wind farms on the environment and marine ecosystems.

Several research studies have focused on the performance and optimization of the Horns
Rev 1 wind farm. For example, Abo et al. [1] investigated the optimal design and layout of
the wind farm to maximize energy production. They utilized a combination of computational
models and optimization algorithms to determine the most efficient turbine spacing and layout
configuration. The study highlighted the importance of considering wake effects and wake losses
in wind farm layout optimization.

Moreover, the Horns Rev 1 wind farm has been utilized as a case study for assessing the
environmental impact of offshore wind farms. Studies conducted by Barthelemie et al. [8] and
Leonhard et al. [62] focused on evaluating the ecological effects of the wind farm on fish and
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benthic communities. These studies provided valuable insights into the potential ecological
consequences of offshore wind farms and helped inform sustainable development practices.

The operational data collected from Horns Rev 1 has also been utilized to improve the
performance and reliability of offshore wind turbines. Research studies have analyzed the oper-
ational data to identify trends, assess turbine performance, and develop predictive maintenance
strategies. These initiatives have helped to improve the operating efficiency and downtime of
offshore wind turbines, consequently increasing total energy output and the cost-effectiveness
of offshore wind farms.

Furthermore, Horns Rev 1 has functioned as a testbed for developing and evaluating
breakthrough offshore wind energy technologies and solutions. It has made it easier to deploy and
test sophisticated turbine control systems, foundation designs, and offshore grid interconnection
techniques. The insights gathered from these tests have considerably aided in the creation of
next-generation offshore wind farms, paving the path for the global spread of offshore wind
energy.

In conclusion, the Horns Rev 1 wind farm has been critical in the growth of offshore wind
energy. Its early deployment and extensive research activities have provided valuable knowledge
and experience in offshore wind farm design, optimization, environmental impact assessment,
and operational strategies. The insights gained from Horns Rev 1 continue to influence the
development of offshore wind farms globally.



CHAPTER 3
Case study and model setup

This chapter follows the setup of different required modules for both the IEA37 test site and
the HornsRev1 site. It elaborates the PyWake setup including different types of turbines used,
the site characteristics, along with the wind farm models used to find the AEP. Finally, the
TOPFARM setup is described and different parts of the cost model are elaborated upon.

3.1 Turbine Types Used in the Thesis
This wind farm optimization thesis incorporates three distinct turbine types: Vestas V80, Vestas
V164 8 MW, and DTU 10 MW. Each turbine type brings unique features and performance
capabilities to the study, enabling a comprehensive exploration of wind farm optimization
strategies.

The Vestas V80 turbine is a widely utilized model known for its reliability and proven
performance in various wind farm applications. With a rated power of 2 MW and a rotor
diameter of 80 meters, the V80 has been deployed in numerous wind farms globally. It serves as
a benchmark for wind turbine optimization studies and provides valuable insights into energy
production and wake effects.

For the Vestas V80 turbine, Ti et al. [99] conducted a comprehensive study analyzing the
performance and wake effects of the V80 in a wind farm setting. They found that the turbine
exhibited good power production characteristics and manageable wake effects, making it a
reliable choice for wind farm applications. Ti et al. [99] conducted an analysis of the V80’s wake
characteristics and observed that the turbine’s wake decayed rapidly, indicating minimal wake
losses and potential for effective turbine spacing optimization. Honrubia et al. [46] provided a
review of various wind turbine models, including the V80, highlighting its wide deployment
and reliability in wind farm projects.

The Vestas V164 8 MW turbine represents the latest advancements in offshore wind
technology. With a rated power of 8 MW and a rotor diameter of 164 meters, it is one of the
largest commercially available turbines. The V164 offers higher energy capture and improved
efficiency, making it suitable for offshore wind farm applications.

Regarding the Vestas V164 8 MW turbine, Vu et al. [102] investigated the dynamic behavior
and control strategies of the V164 in offshore wind farms. They analyzed the turbine’s response
to different wind conditions and demonstrated its robust performance and ability to maintain
stable power production. The study emphasized the turbine’s ability to capture a significant
amount of wind energy and its suitability for large-scale offshore wind farms. Kleusberg et al.
[55] conducted an analysis of the wake characteristics of the V164 and observed that its larger
rotor diameter resulted in reduced wake deficits and improved wake recovery, highlighting its
potential for mitigating wake effects in wind farms.

The DTU 10 MW turbine, developed by the Technical University of Denmark (DTU), is
designed for offshore wind farms and represents the cutting edge of wind turbine technology.
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With a rated power of 10 MW and a rotor diameter of 178.3 meters, the DTU 10 MW turbine
offers increased energy production and enhanced performance characteristics.

In the case of the DTU 10 MW turbine, Bak et al. [5] presented an overview of the turbine’s
design features and performance characteristics. They highlighted its large rotor diameter
and advanced control systems, which contribute to increased power production and enhanced
operational efficiency. de Montrea et al. [68] conducted a wind resource assessment study
using the DTU 10 MW turbine as a reference, evaluating its energy production potential in
offshore wind farm sites. Neustadter et al. [72] conducted a comprehensive study analyzing the
performance and wake interactions of various turbines in a wind farm setting. They investigated
wake characteristics, power production, and the influence of turbine spacing on wake losses,
providing insights into optimizing wind farm layouts using this turbine model.

The sizes of the three turbines can be seen relative to each other in Figure 3.1

Figure 3.1: Size comparison of the three turbines

These three turbine types provide a diverse range of characteristics and performance
capabilities, enabling a comprehensive investigation of wind farm optimization strategies in the
thesis. The relevant parameters can be found in Table 3.1

Table 3.1: Turbine parameters

Turbine Name Rotor Diameter
[m]

Hub height
[m]

Rated Power
[MW]

Vestas V80 80 70 2
Vestas V164 8 MW 164 130 8

DTU 10 178.3 119 10

The power and thrust curves of wind turbines provide crucial insights into their operational
characteristics. In this section, we will analyze the power and thrust curves for three types of
turbines: the Vestas V80, Vestas V164, and DTU 10 MW.

The power and thrust curves for the Vestas V80, Vestas V164, and DTU 10 MW turbines
are shown in Figure 3.2(b) and Figure 3.2(a).
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The Vestas V80 turbine exhibits a maximum CT of approximately 0.8 at a wind speed of
around 5 m/s . It achieves a maximum power output of around 2 MW at a wind speed of
approximately 12 m/s.

The Vestas V164 turbine, with a rated power capacity of 8 MW, achieves its maximum
CT of approximately 0.85 at a wind speed of around 5 m/s as seen in Figure 3.2(b). Its
maximum power output of 8 MW is reached at a wind speed of approximately 12.5 m/s as
seen in Figure 3.2(a).

The DTU 10 MW turbine, with a rated power capacity of 10 MW, achieves a maximum
CT of approximately 0.9 at a wind speed of around 5 m/s as seen in Figure 3.2(b). Its
maximum power output of 10 MW is reached at a wind speed of approximately 12 m/s as seen
in Figure 3.2(a).

(a) Power curves (b) Thrust curves

Figure 3.2: Relevant curves for the Vestas V80, Vestas V164 and the DTU 10 MW

These specific values highlight the differences in performance between the turbines. The
Vestas V80 turbine has the lowest maximum thrust and power output, followed by the Vestas
V164 turbine, while the DTU 10 MW turbine demonstrates the highest thrust and power
capabilities.

3.2 Site setup
In this section, a detailed and comparative analysis of the IEA37 and Horns Rev wind farm
site setups is provided. Important differences between the sites are highlighted by using the
wind direction and speed probability distributions obtained from Pederesen et al. [74].

3.2.1 IEA37 Test site
The International Energy Agency (IEA) Wind Task 37 benchmark case provides a well-
documented and widely adopted wind farm case for wake modeling and optimization studies.
The IEA37 site consists of a 9 km by 9 km wind farm domain, comprising 16 turbines arranged
in a 4x4 grid. The wind direction and speed probability distributions at IEA37 can be obtained
from PyWake and are validated against distributions from studies such as Borlotti et al. [14]
and Dykes et al. [27].



3.2 Site setup 36

Studies such as Dykes et al. [27] provide detailed insights into the wind direction probability
distribution at the IEA37 site. The wind direction is characterized by a bimodal distribution,
with two prevailing wind directions corresponding to the primary wind directions observed at
the site. The bimodal distribution captures the natural variability in wind direction and is
crucial for accurately modeling wake interactions between turbines.

Figure 3.3: Wind direction distribution for the IEA site

Furthermore, the wind speed probability distribution at IEA37 can be obtained from
PyWake and validated against studies such as Borlotti et al. [14]. The wind speeds at the site
are of a very simple nature with a single probability value for all wind speeds. A constant
probability for all wind speeds implies that there is no preference or bias towards certain wind
speeds. This type of wind speed distribution is relatively rare in practice, but allows for easier
computations.

Figure 3.4: Wind speed distribution for the IEA site
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3.2.2 Horns Rev
Horns Rev is an operational offshore wind farm located in the North Sea. It represents a
real-world wind farm scenario with complex atmospheric conditions and wake interactions. The
site consists of 80 wind turbines, each with a hub height of 70 m and a rotor diameter of 80 m
[40]. Studies such as Wu et al. [105] and Gaumond et al. [40] provide valuable information
about the wind characteristics at Horns Rev.

Wu et al. [105] conducted a LES simulation of the HornsRev 1 site which included the use
of wind characteristics at Horns Rev using long-term measurements. The wind direction at
Horns Rev exhibits a multi-modal distribution due to the complex atmospheric conditions and
the influence of offshore terrain. This multi-modal distribution can significantly impact the
wake behavior and power production in the wind farm.

Figure 3.5: Wind direction distribution for the Horns Rev 1 site

Moreover, the wind speed probability distribution at Horns Rev is crucial for accurate wind
farm modeling. Studies by Gaumond et al. [40] highlight the presence of specific wind speed
regimes, including a predominant low wind speed regime and intermittent high wind speed
events. Understanding these wind speed regimes and their associated probability distributions
is vital for assessing turbine performance and optimizing energy production at Horns Rev.
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Figure 3.6: Wind speed distribution for the Horns Rev 1 site

3.2.3 Wind Shear Modeling
Accurate modeling of wind turbine performance is essential for optimizing energy production
in wind farms. Wind shear, which accounts for the vertical variation of wind speed, plays a
crucial role in accurately predicting the power output of wind turbines. In this section, we
discuss the application of wind shear modeling at the site using PyWake.

To account for the vertical variation of wind speed, we incorporate the PowerShear method
available in PyWake. The PowerShear method considers the vertical profile of wind speed
using a shear exponent, which determines the rate of change of wind speed with height. For
both the sites, we set the reference hub height, href, to 80 m, which is a typical height for wind
turbine installations. The shear exponent, α, is set to 0.1, representing a moderate increase in
wind speed with height. By incorporating the wind shear model, PyWake considers the vertical
variation of wind speed and its impact on the power output of each wind turbine.

V (z) = Vref

(
z

href

)α

Wind shear modeling is crucial for accurate performance assessment and power prediction
of wind turbines. Vertical variation in wind speed affects the energy extraction capability of
turbines and can lead to variations in power production across different heights within the rotor
swept area. By accounting for wind shear, we can better estimate the expected power output
of each turbine and optimize the overall energy production of the wind farm.

Moreover, wind shear modeling allows for the consideration of different wind profiles and
atmospheric conditions at the site. The shear exponent captures the site-specific characteristics
related to turbulence, terrain, and wind flow patterns. By utilizing the PowerShear method in
PyWake, we can enhance the accuracy of our simulations and provide more reliable estimates
of power production.

In summary, the incorporation of wind shear modeling using the PowerShear method
in PyWake enables me to account for the vertical variation of wind speed and improve the
accuracy of power predictions. This modeling approach supports better assessment of turbine
performance and aids in the optimization of energy production at the site.
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3.3 AEP modelling using PyWake
The next step involves setting up the models required to accurately model the AEP for each
site depending on it’s wind speed and direction distributions. Accurately estimating the Annual
Energy Production (AEP) of a wind farm is crucial for evaluating its economic viability and
optimizing its performance. In this section, the AEP modeling approach implemented in
PyWake, which combines various models to simulate wake effects and blockage within the wind
farm is discussed. The key models employed in the AEP calculation are the wake deficit model,
superposition model, and blockage deficit model.

3.3.1 Wake Deficit Model
The wake deficit model calculates the reduction in wind speed caused by the wake of upstream
turbines. In PyWake, the wake deficit is modeled using the No-Jensen Deficit (NOJDeficit)
model [50].

The wake deficit at a given location x and height z within the wind farm is given by:

uw

u0
= 1 − 2a

(1 + 2αx/Dr)2 (3.1)

where u0 is the undisturbed wind speed, and a is the axial induction factor, whereas Dr is
known as the downstream rotor diameter. The downstream rotor diameter Dr relates to the
rotor diameter D0 as

Dr = D0

√
1 − a

1 − 2a
(3.2)

The wake decay constant α is given by

α = 0.5
ln (z/z0) (3.3)

while the axial induction factor is defined by

a = 1 −
√

1 − CT

2 (3.4)

where CT is the thrust coefficient of the upstream turbine.

3.3.2 Superposition Model
The superposition model combines the individual wake deficits from multiple turbines to
calculate the total wake effect on each downstream turbine. In this thesis, the LinearSum model
is used for superposition.

The total wake deficit at a given location x and height z within the wind farm, accounting
for the contribution from all upstream turbines, is calculated by summing the individual wake
deficits:

∆Utotal(x, z) =
N∑

i=1
∆Ui(x, z), (3.5)
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where ∆Ui(x, z) is the wake deficit from the i-th upstream turbine, and N is the total
number of upstream turbines.

The LinearSum superposition model is commonly employed in various wake modeling
frameworks [7], striking a balance between accuracy and computational efficiency.

3.3.3 Blockage Deficit Model
The blockage deficit model accounts for the reduction in wind speed caused by the presence
of neighboring turbines. In PyWake, the SelfSimilarityDeficit model is used for blockage
modeling [7].

The blockage deficit at a given location x and height z within the wind farm is given by:

∆Ublock(x, z) = Arotor
Awind farm

· ∆Utotal(x, z), (3.6)

where Arotor is the rotor area of an individual turbine, and Awind farm is the total area of
the wind farm.

The SelfSimilarityDeficit blockage deficit model [7] provides a practical approach for
accounting for the blockage effect in large wind farms.

In conclusion, PyWake integrates various models, including the wake deficit model, superpo-
sition model, and blockage deficit model, to accurately estimate the Annual Energy Production
(AEP) of a wind farm. By considering wake interactions and blockage effects, PyWake provides
a more precise assessment of AEP. The power output of each turbine is calculated using the
formula:

Pturbine(i) = Cp(λi, βi) · Ueff(i)3, (3.7)

Cp(λi, βi) is the power coefficient, and Ueff(i) is the effective wind speed at the location
of the i’th turbine, considering wake effects and blockage. The AEP is then calculated by
summing the power outputs of all turbines weighted by their operating hours:

AEP =
n∑

i=1

Pi ×
m∑

j=1
Hij

 (3.8)

where H(i) is estimated as the total number of hours a turbine operates at a specific wind
speed. It can derived from the pdf for each site and tells us the probability of wind turbine i
operating in that particular wind speed bin.

3.4 Cost modelling using TOPFARM
This section focuses on the cost modelling aspect of wind farm analysis using the TOPFARM
framework. Estimating the expenses of wind farm installations accurately is critical for
evaluating the economic feasibility and maximizing the financial performance of wind energy
projects. TOPFARM is a flexible platform that incorporates multiple cost elements into a
complete cost model, such as turbine costs, installation charges, operating and maintenance
costs, and other financial aspects. By leveraging the capabilities of TOPFARM, users can
systematically evaluate and optimize wind farm designs based on their economic implications.
This section explores the methodologies and tools offered by TOPFARM for cost modelling,
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highlighting its ability to facilitate detailed cost analysis, enhance decision-making processes,
and contribute to the overall economic viability of wind farm projects.

3.4.1 The Ecoeval library
In the cost modelling process of wind farm analysis, TOPFARM incorporates the EcoEval
library and certain parameters to accurately calculate the costs associated with wind farm
installations. These parameters include:

• Distance from Shore: The distance of the wind farm from the shore, which influences
installation and grid connection costs. In this thesis, the distance is assumed to be a
constant at 30 kilometers.

• Energy Price: The price at which the generated wind energy is sold, affecting the revenue
and overall economic viability of the wind farm, and is assumed to be 0.1 Euros/kWh.

• Project Duration: The estimated duration of the wind farm project, impacting operational
and maintenance costs over the project’s lifespan. The project duration is assumed to be
20 years.

• Water Depth: The depth of the water where the wind farm is situated, influencing the
costs of foundation design and installation. The water depth is also assumed to be a
constant at 15 meters.

The values used for the distance from shore and water depth in this thesis were derived
from relevant literature [28]. According to Diaz et al. [28], offshore wind structures in Denmark
are typically installed at an average distance of 25 kilometers from the shore and at an average
water depth of 10 meters. It is important to note that these values can vary significantly from
site to site and even within the wind farm itself, depending on specific conditions. However,
the focus of this thesis is not on capturing the effects of these variations on calculated costs,
and therefore, they have been neglected in the development of the cost model and subsequent
analysis.

Another significant limitation of the cost model is that the scaling factors utilized to calculate
costs are derived from the value of the Euro in 2017. Consequently, the calculated costs may
be lower compared to the costs estimated for the current value and present time.

3.4.2 DEVEX (DEVelopment EXpenditure)
Table 3.2 provides a breakdown of the costs associated with the development and exploration
(DEVEX) phase of a wind energy project, all denominated in euros. These costs represent
additional expenses beyond the primary components of the turbine system and are crucial for
comprehensive financial evaluation. The Factor is a calculated value used in subsequent cost
calculations. The Environmental Survey cost is determined by multiplying the factor by the
distance from the shore and a constant value of €1,000,000, covering the expenses of conducting
an environmental survey. The Sea Bed Survey cost is calculated by multiplying a fixed factor
of €150,000 by the number of turbines, accounting for the survey of the sea bed. The Met Mast
cost includes the installation and maintenance of a meteorological mast to collect wind data and
is determined by multiplying the factor by the distance from the shore and €1,000,000. Lastly,
the Development Services cost is based on a factor of €70,000 multiplied by the sum of the
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rated power of all turbines, covering expenses related to project development and management
services.

Table 3.2: DEVEX costs incurred

Cost Component Cost Calculation
Factor 2.0×103

39 × 0.3 × 1
80

Environmental Survey Factor × 106 × Distance from shore
Sea Bed Survey 1.5 × 105 × Number of turbines
Met Mast Factor × 106 × Distance from shore
Development Services 0.7 × 105 ×

∑ Rated Power

3.4.3 OPEX (OPerational EXpenditure)
Table 3.3 presents an overview of the operational expenditure (OPEX) costs associated with a
wind energy project, expressed in euros. These expenses contribute to the turbine system’s long-
term operation and maintenance. The Onshore Personnel cost is calculated by multiplying
a factor of €5,500 by the total rated power of all turbines, while accounting for onshore
staff expenditures. The Buildings, Harbor Fees, etc. cost is a fixed value of €3,000,000,
encompassing infrastructure costs and harbor utilization expenses. The Mobilization, Rental
Time cost is calculated by multiplying a factor of €96,000 by the number of turbines, considering
the expenses associated with mobilizing equipment and the rental duration. The Jackup
Personnel cost is determined by multiplying a factor of €8,500 by the number of turbines,
covering the personnel involved in jackup operations. The Offshore Service Personnel cost
is calculated by multiplying a factor of €12,000 by the sum of the rated power of all turbines,
accounting for the expenses associated with offshore service personnel. The Service, Failed
Components cost considers maintenance and replacement of components and is calculated by
multiplying a factor of €2,100 by the sum of the rated power of all turbines. Lastly, the Ships,
Offshore Operations cost takes into account the expenses associated with offshore vessel
usage and operation and is calculated by multiplying a factor of €4,600 by the number of
turbines and the distance from the shore.

Table 3.3: OPEX costs incurred

Cost Component Cost Calculation
Onshore Personnel 5.5 × 103 ×

∑ Rated Power
Buildings, Harbor Fees, etc. 3.0 × 106

Mobilization, Rental Time 9.6 × 104 × Number of Turbines
Jackup Personnel 8.5 × 103 × Number of Turbines
Offshore Service Personnel 1.2 × 104 ×

∑ Rated Power
Service, Failed Components 2.1 × 103 ×

∑ Rated Power
Ships, Offshore Operations 4.6 × 103 × Number of Turbines × Distance from Shore

3.4.4 CAPEX (CAPital EXpenditure)
CAPEX, short for Capital Expenditure, encompasses the upfront costs associated with the
development, construction, and installation of a wind turbine. It is divided into several key
components, namely blades, tower, foundation, nacelle, hub, and drivetrain. The blades
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are responsible for capturing wind energy, while the tower provides structural support. The
foundation ensures stability and anchors the turbine to the ground. The nacelle houses vital
components such as the generator and control systems. The hub connects the blades to the
drivetrain, which includes the main shaft, bearings, gearbox, and coupling.

3.4.4.1 Blades
Table 3.4 presents the calculations for blade mass and costs incurred in a wind energy project.
The Blade Mass is determined using the formula 0.3 × rotor diameter2.5. This formula takes
into account the rotor diameter and calculates the mass of the blades. The Blade Cost is then
calculated by multiplying the Blade Mass by a factor of 12.0 to account for the manufacturing
and material costs. The result is a comprehensive estimate of the costs associated with the
blades in the wind turbine system.

Table 3.4: Blade costs incurred

Calculation Formula
Blades Mass 0.3 × rotor diameter2.5

Blades Cost 12.0 × (3 × Blades Mass)

3.4.4.2 Hub
Table 3.5 provides an overview of the calculations for various components contributing to the
hub mass in a wind energy project. The Structure mass is determined using the formula
6.0 × 103 + 0.1 × rotor diameter2.5. This equation considers a base mass of €6,000 and adds a
component proportional to the rotor diameter, reflecting the size-dependent contribution to the
structure mass. The Pitch bearings mass is calculated as 5.0×102 +0.07× rotor diameter2.5.
It incorporates a fixed component of €500 and an additional term based on the rotor diameter,
accounting for the mass of the pitch bearings. Similarly, the Pitch system mass is determined
using 5.0 × 102 + 0.03 × rotor diameter2.5. It includes a fixed term of €500 and a size-dependent
factor related to the rotor diameter, considering the mass of the pitch system components.
Lastly, the Secondary mass is calculated as 7.0 × 102 + 15.0 × rotor diameter1.0. This formula
combines a fixed term of €700 and a term proportional to the rotor diameter, reflecting the
contribution of additional secondary components to the overall hub mass.

Table 3.5: Hub mass components

Calculation Formula
Structure mass 6.0 × 103 + 0.1 × rotor diameter2.5

Pitch bearings mass 5.0 × 102 + 0.07 × rotor diameter2.5

Pitch system mass 5.0 × 102 + 0.03 × rotor diameter2.5

Secondary mass 7.0 × 102 + 15.0 × rotor diameter1.0

Table 3.6 provides an overview of the cost calculations for various components contributing
to the hub cost in a wind energy project. The Structure cost is determined by multiplying the
structure mass by a factor of 2.5. This formula, 2.5 × structure mass, accounts for the cost
associated with the materials, manufacturing, and assembly of the hub structure. The Pitch
bearings cost is calculated by multiplying the pitch bearings mass by a factor of 8.0. Using
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the formula 8.0 × pitch bearings mass, this cost component considers the expenses related to
the pitch bearing components, including procurement, installation, and maintenance. Similarly,
the Pitch system cost is determined by multiplying the pitch system mass by a factor of
8.0. The formula 8.0 × pitch system mass represents the cost associated with the pitch system
components, including the control mechanisms, hydraulic systems, and related infrastructure.
Lastly, the Secondary cost is calculated by multiplying the secondary mass by a factor of 8.0.
Using the formula 8.0 × secondary mass, this cost component considers the expenses related to
the additional secondary components integrated into the hub, such as sensors, electrical wiring,
and auxiliary systems.

Table 3.6: Hub cost components

Calculation Formula
Structure cost 2.5 × structure mass
Pitch bearings cost 8.0 × pitch bearings mass
Pitch system cost 8.0 × pitch system mass
Secondary cost 8.0 × secondary mass

3.4.4.3 Nacelle
Table 3.7 presents the various components contributing to the overall mass of the nacelle in a wind
turbine system. Each component is calculated based on specific formulas. The Nacelle Mass
(Cooling) component is determined by a formula that includes the rated power of the turbine,
reflecting the mass contribution of the cooling system responsible for maintaining optimal
operating temperatures within the nacelle. The Nacelle Mass (Converter) is calculated
using a formula involving the rated power, representing the mass of the power converter,
which converts the variable-speed electricity generated by the turbine to the required grid
frequency. Similarly, the Nacelle Mass (Controller) is calculated based on the rated power
and reflects the mass of the control system responsible for monitoring and regulating various
turbine operations. The Nacelle Mass (Yaw) is determined by a formula incorporating the
rotor diameter, representing the mass of the yaw system that enables the turbine to rotate and
align with the wind direction. The Nacelle Mass (Canopy) component considers the rated
power and reflects the mass of the protective canopy that shelters the internal components.
Finally, the Nacelle Mass (Secondary) is calculated using the rated power and represents
the mass of additional auxiliary components and supporting structures within the nacelle.

Table 3.7: Nacelle mass components

Calculation Formula
Nacelle Mass (Cooling) 0.0 + 500.0 × Rated Power1.0

Nacelle Mass (Converter) 0.0 + 1.0e3 × Rated Power1.0

Nacelle Mass (Controller) 200.0 + 100.0 × Rated Power1.0

Nacelle Mass (Yaw) 0.0 + 0.1 × Rotor Diameter2.5

Nacelle Mass (Canopy) 1.0e3 + 1.5e3 × Rated Power1.0

Nacelle Mass (Secondary) 1.0e3 + 1.0e3 × Rated Power1.0

Table 3.8 provides a breakdown of the cost components associated with the nacelle in a
wind turbine system. Each component’s cost is calculated based on specific formulas and
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corresponds to the respective mass components. The Nacelle Cost (Cooling) is determined
by multiplying a factor of €8.0 by the nacelle mass attributed to the cooling system, representing
the cost of implementing and maintaining the cooling infrastructure within the nacelle. The
Nacelle Cost (Converter) is calculated by multiplying a factor of €30.0 by the nacelle mass
associated with the power converter, representing the cost of the converter and its integration
into the system. Similarly, the Nacelle Cost (Controller) is obtained by multiplying a factor
of €50.0 by the nacelle mass attributed to the control system, reflecting the cost of the control
components and their implementation. The Nacelle Cost (Yaw) is calculated by multiplying
a factor of €6.0 by the nacelle mass linked to the yaw system, representing the cost of the yaw
mechanism and its associated components. The Nacelle Cost (Canopy) considers the nacelle
mass associated with the protective canopy and is obtained by multiplying a factor of €10.0,
representing the cost of the canopy structure and its installation. Finally, the Nacelle Cost
(Secondary) reflects the cost of additional auxiliary components and supporting structures
within the nacelle and is calculated by multiplying a factor of €10.0 by the corresponding
nacelle mass.

Table 3.8: Nacelle cost components

Calculation Formula
Nacelle Cost (Cooling) 8.0 × Nacelle Mass (Cooling)
Nacelle Cost (Converter) 30.0 × Nacelle Mass (Converter)
Nacelle Cost (Controller) 50.0 × Nacelle Mass (Controller)
Nacelle Cost (Yaw) 6.0 × Nacelle Mass (Yaw)
Nacelle Cost (Canopy) 10.0 × Nacelle Mass (Canopy)
Nacelle Cost (Secondary) 10.0 × Nacelle Mass (Secondary)

3.4.4.4 Tower
Table 3.9 outlines the various components contributing to the mass of the tower in a wind
turbine system. Each component’s mass is calculated using specific formulas based on relevant
parameters. The Tower Mass (Structure) is determined by a formula that incorporates the
rotor area and hub height, resulting in the mass of the tower structure necessary to support
the turbine system. The Tower Mass (Internal) considers the internal components of the
tower and is determined by a formula that takes into account the hub height, reflecting the
mass associated with the internal systems and equipment. The Tower Mass (Cabling) is
calculated based on the rated power of the turbine and the hub height, accounting for the mass
of the cabling required for electrical connections. The Tower Mass (Secondary) represents
the mass of additional auxiliary components within the tower and is determined by a formula
that considers the rated power of the turbine. Finally, the Tower Mass (Transformer) reflects
the mass associated with the transformer within the tower and is calculated based on the rated
power of the turbine.
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Table 3.9: Tower mass components

Calculation Formula
Tower Mass (Structure) 0.0 + 0.25 × (

√
Rotor Area × Hub Height)1.0

Tower Mass (Internal) 1.0e3 + 100.0 × Hub Height1.0

Tower Mass (Cabling) 0.0 + 25.0 × (
√

Rated Power × Hub Height)1.0

Tower Mass (Secondary) 1.0e3 + 500.0 × Rated Power1.0

Tower Mass (Transformer) 0.0 + 2.5e3 × Rated Power1

Table 3.10 provides a breakdown of the various cost components associated with the tower in
a wind turbine system. These cost components are calculated based on the corresponding tower
mass components using specific formulas. The Tower Cost (Structure) is determined by
multiplying the mass of the tower structure by a factor of 1.5, representing the cost associated
with the structural materials and construction of the tower. The Tower Cost (Internal)
reflects the cost of the internal components and systems within the tower and is obtained
by multiplying the corresponding tower mass by a factor of 8.0. Similarly, the Tower Cost
(Cabling) represents the cost of the cabling required for electrical connections and is calculated
by multiplying the tower mass by a factor of 8.0. The Tower Cost (Secondary) accounts for
the cost of additional auxiliary components within the tower and is obtained by multiplying the
corresponding tower mass by a factor of 10.0. Lastly, the Tower Cost (Transformer) reflects
the cost associated with the transformer within the tower and is determined by multiplying the
tower mass by a factor of 8.0.

Table 3.10: Tower cost components

Calculation Formula
Tower Cost (Structure) 1.5 × Tower Mass (Structure)
Tower Cost (Internal) 8.0 × Tower Mass (Internal)
Tower Cost (Cabling) 8.0 × Tower Mass (Cabling)
Tower Cost (Secondary) 10.0 × Tower Mass (Secondary)
Tower Cost (Transformer) 8.0 × Tower Mass (Transformer)

3.4.4.5 Ancilliary turbine costs
Table 3.11 outlines the cost components associated with ancillary turbine costs in a wind energy
project. These costs are calculated using specific formulas based on relevant parameters. Under
the Direct Production category, the Direct Labor cost is determined by multiplying a factor
of 0.03 by the Bill of Material Cost, representing the labor expenses directly associated with
production. The Production Overhead cost is calculated by multiplying the Bill of Material
Cost by 0.1, accounting for additional overhead expenses related to production activities.

The SGA Costs category includes the SGA Overhead, the RD, and the SGA costs. The SGA
Overhead indicates the overhead cost of selling, general, and administrative expenditures and
is determined by multiplying the Direct Production Cost by a factor of 0.05. The RD cost
represents research and development expenditures and is calculated by multiplying the Direct
Production Cost by a factor of 0.03. The SGA cost, representing additional selling, general, and
administrative expenses, is calculated by multiplying a factor of 0.05 by the Direct Production
Cost.
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The Project Costs category includes various cost components related to the overall project.
The Total Production Cost is the sum of the Direct Production Cost and the SGA Cost. The
Transportation cost considers the expenses associated with transporting turbine components
and is calculated based on the total mass of the turbine components. The Harbor Storage
and Assembly cost reflects the expenses related to storage and assembly in the harbor area
and is determined by multiplying a factor of 25, 000 by the Rated Power and adding 150, 000.
The Installation and Commissioning cost accounts for the installation and commissioning
activities and is calculated by multiplying a factor of 50, 000 by the Rated Power and adding
100, 000. The Warranty and Accruals cost represents the estimated warranty expenses and is
determined by multiplying a factor of 0.03 by the Total Production Cost. Lastly, the Financing
cost reflects the financing expenses of the project and is calculated by multiplying a factor of
0.02 by the Total Production Cost.

Table 3.11: Ancilliary turbine costs

Cost Component Cost Calculation
Direct Production
Direct Labor 0.03 × Bill of Material Cost
Production Overhead 0.1 × Bill of Material Cost
SGA Costs
SGA Overhead 0.05 × Direct Production Cost
RD 0.03 × Direct Production Cost
SGA 0.05 × Direct Production Cost
Project Costs
Total Production Cost Direct Production Cost + SGA Cost
Transportation 0.2 × (∑ Turbine Component Mass) + 10, 000
Harbor Storage and Assembly 25, 000 × Rated Power + 150, 000
Installation and Commissioning 50, 000 × Rated Power + 100, 000
Warranty and Accruals 0.03 × Total Production Cost
Financing 0.02 × Total Production Cost

3.4.4.6 Foundation costs
The mass calculation for the foundation, including both the monopile and the transition piece
(TP), is represented in Table 3.12. The Foundation Mass is determined by the following
formula: (6.5 × 104 + 4.5 × 103 × Water Depth + 40.0 × Water Depth2) × Rated Power. This
formula considers the water depth as a parameter and takes into account the rated power of
the wind turbine. By incorporating these factors, the calculation estimates the total mass of
the foundation required to support the wind turbine structure.

Table 3.12: Foundation mass

Component Formula
Foundation Mass (6.5 × 104 + 4.5 × 103 × Water Depth

+40.0 × Water Depth2) × Rated Power

The cost calculation for the foundation, encompassing both the monopile and the transition
piece (TP), is presented in Table 3.13. The Foundation Cost is determined by multiplying
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the Foundation Mass by a factor of 1.5. This calculation estimates the total cost associated
with the foundation, taking into account factors such as material expenses, construction, and
installation costs. The foundation is a critical component of a wind turbine system, providing
structural support and stability.

Table 3.13: Foundation cost

Component Formula
Foundation Cost 1.5 × Foundation Mass

3.4.4.7 Ancilliary foundation costs
The breakdown of ancillary costs associated with the foundation of a wind turbine is provided
in Table 3.14. These costs include direct production expenses, SGA (selling, general, and
administrative) costs, and various project-related expenses.

Under the "Direct Production" category, the Direct Labor cost is calculated as 0.03 times
the Bill of Material Cost, representing the labor expenses directly involved in the produc-
tion process. The Production Overhead is determined as 0.1 times the Bill of Material
Cost, accounting for indirect production expenses.

The SGA Costs section includes costs related to selling, general, and administrative activities.
The SGA Overhead is calculated as 0.05 times the Direct Production Cost, representing the
overhead expenses associated with the production process. The RD (Research and Development)
cost is determined as 0.03 times the Direct Production Cost, considering expenses allocated
to research and development activities. The SGA cost is calculated as 0.05 times the Direct
Production Cost, covering general administrative costs.

The Project Costs category includes various expenses related to the overall project.
The Total Production Cost is obtained by adding the Direct Production Cost and the
SGA Cost. The Transportation cost is determined as 0.2 times the sum of the mass of all
turbine components plus 10,000, accounting for transportation expenses. The Harbor Storage
and Assembly cost is calculated as 25,000 times the Rated Power plus 150,000, representing
the expenses associated with storage and assembly in the harbor. The Installation and
Commissioning cost is determined as 50,000 times the Rated Power plus 100,000, covering
the costs of installation and commissioning activities. The Warranty and Accruals cost is
calculated as 0.03 times the Total Production Cost, considering warranty expenses and
accruals. Finally, the Financing cost is determined as 0.02 times the Total Production Cost,
accounting for financing expenses.
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Table 3.14: Ancilliary foundation costs

Cost Component Cost Calculation
Direct Production
Direct Labor 0.03 × Bill of Material Cost
Production Overhead 0.1 × Bill of Material Cost
SGA Costs
SGA Overhead 0.05 × Direct Production Cost
RD 0.03 × Direct Production Cost
SGA 0.05 × Direct Production Cost
Project Costs
Total Production Cost Direct Production Cost + SGA Cost
Transportation 0.2 × (∑ Turbine Component Mass) + 10, 000
Harbor Storage and Assembly 25, 000 × Rated Power + 150, 000
Installation and Commissioning 50, 000 × Rated Power + 100, 000
Warranty and Accruals 0.03 × Total Production Cost
Financing 0.02 × Total Production Cost

3.4.4.8 Drivetrain costs
Table 3.15 presents the mass calculations for various components of the wind turbine drivetrain.
The drivetrain is responsible for converting the rotational energy of the rotor into electrical
energy. The mass of each component is calculated based on specific formulas using parameters
such as rotor diameter, rated torque, and rated RPM.

The Bedplate mass is determined as 0.0 plus 2.4 times the square of the rotor diameter.
It represents the supporting structure that holds and connects the major components of the
drivetrain.

The Main Shaft mass is calculated as 0.0 plus 0.02 times the rotor diameter raised to the
power of 2.8. It refers to the central shaft that transmits the rotational energy from the rotor
to the gearbox.

The Main Bearings mass is determined as 0.0 plus 0.02 times the rotor diameter raised to
the power of 2.5. It represents the bearings that support and allow the rotation of the main
shaft.

The Bearing Housing mass is calculated as 0.0 plus 0.03 times the rotor diameter raised
to the power of 2.5. It refers to the housing that encloses and protects the main bearings.

The Gearbox mass is determined as 0.0 plus 15.0 times the rated torque. It represents the
gearbox component responsible for increasing the rotational speed of the generator.

The Coupling and Brake mass includes two components. The first component is 500.0,
representing the mass of the coupling and brake components. The second component is 50.0
times the quantity of the rated torque multiplied by the rated RPM divided by 1.5 raised to
the power of 1.0. It accounts for additional mass related to the torque and speed requirements.

The Generator mass includes two components as well. The first component is 1.0 × 103,
representing the base mass of the generator. The second component is 400.0 times the quantity
of the rated torque multiplied by the rated RPM divided by 1.5 raised to the power of 1.0. It
represents the additional mass associated with the torque and speed requirements.
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Table 3.15: Drivetrain mass

Component Mass Calculation
Bedplate 0.0 + 2.4 × Rotor Diameter2.0

Main Shaft 0.0 + 0.02 × Rotor Diameter2.8

Main Bearings 0.0 + 0.02 × Rotor Diameter2.5

Bearing Housing 0.0 + 0.03 × Rotor Diameter2.5

Gearbox 0.0 + 15.0 × Rated Torque1.0

Coupling and Brake 500.0 + 50.0 ×
(

Rated Torque×Rated RPM
1.5

)1.0

Generator 1.0 × 103 + 400.0 ×
(

Rated Torque×Rated RPM
1.5

)1.0

Table 3.16 presents the cost calculations for various components of the wind turbine
drivetrain. The drivetrain is responsible for converting the rotational energy of the rotor into
electrical energy. The cost of each component is calculated based on the respective mass and a
cost factor.

The Bedplate cost is calculated as 2.5 times the mass of the bedplate component. It
represents the cost associated with the supporting structure that holds and connects the major
components of the drivetrain.

The Main Shaft cost is determined as 5.0 times the mass of the main shaft component. It
accounts for the cost of the central shaft that transmits the rotational energy from the rotor to
the gearbox.

The Main Bearings cost is calculated as 15.0 times the mass of the main bearings component.
It represents the cost of the bearings that support and allow the rotation of the main shaft.

The Bearing Housing cost is determined as 2.5 times the mass of the bearing housing
component. It accounts for the cost of the housing that encloses and protects the main bearings.

The Gearbox cost is calculated as 8.0 times the mass of the gearbox component. It represents
the cost associated with the gearbox that increases the rotational speed of the generator.

The Coupling and Brake cost is calculated as 8.0 times the mass of the coupling and brake
components. It accounts for the cost of the components that provide coupling and braking
functions within the drivetrain.

The Generator cost is calculated as 8.0 times the mass of the generator component. It
represents the cost associated with the generator that converts the mechanical energy into
electrical energy.

Table 3.16: Drivetrain cost

Component Cost Calculation
Bedplate 2.5 × Bedplate Mass
Main Shaft 5.0 × Main Shaft Mass
Main Bearings 15.0 × Main Bearings Mass
Bearing Housing 2.5 × Bearing Housing Mass
Gearbox 8.0 × Gearbox Mass
Coupling and Brake 8.0 × Coupling and Brake Mass
Generator 8.0 × Generator Mass

The total CAPEX can be calculated by summing the costs:
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CAPEX = (Turbine costs) + (Foundation costs) + (Drivetrain costs) (3.9)

3.4.5 BOP (Balance Of Plant)
Table 3.17 provides a breakdown of the costs associated with the Balance of Plant (BOP) for a
wind energy project. The BOP includes various components and infrastructure necessary for
the operation and connection of the wind turbines to the electrical grid.

The BOP Substation cost is calculated as 6.0 × 106 plus 1.0 × 104 times the sum of the
Rated Power raised to the power of 1.5. This cost accounts for the construction and equipment
of the substation required for transforming and transmitting the generated power.

The BOP Array of Cables cost is determined as 3.5 × 103 times the sum of the Rotor
Diameter of all turbines. This cost covers the installation and connection of cables within the
wind farm, ensuring the transfer of electricity between the turbines and the substation.

The BOP Cables Export cost is calculated as 1.4 × 106 times the distance from shore. This
cost represents the expenses associated with the export cables that transmit the generated
power from the offshore wind farm to the onshore grid connection point.

The BOP Onshore Electrical cost includes two components. The first component is
5.0 × 104 times the sum of the Rated Power, covering the electrical infrastructure required
for connecting the wind farm to the onshore electrical grid. The second component is 50.0
times the sum of the Rated Power squared, representing additional costs related to the onshore
electrical system.

Table 3.17: BOP costs

Cost Component Cost Calculation
BOP Substation (6.0 × 106) + (1.0 × 104) × (∑ Rated Power)1.5

BOP Array of Cables 3.5 × 103 × (∑ Rotor Diameter)
BOP Cables Export 1.4 × 106 × Distance from shore
BOP Onshore Electrical 5.0 × 104 × (∑ Rated Power) + 50.0 × (∑ Rated Power)2

3.4.6 ABEX (Annual Base EXpenditure)
In this section, we will discuss the ABEX (Annual Base Expenditure) associated with the wind
turbine project. The ABEX represents the ongoing operational expenses and maintenance costs
after the project’s completion.

The ABEX is calculated by multiplying a factor of 0.03 with the CAPEX (Capital Expendi-
ture) of the project:

ABEX = 0.03 × CAPEX (3.10)

The ABEX represents the annual expenditure required to maintain and operate the wind
turbine project. It includes costs such as routine maintenance, repairs, inspections, and other
operational expenses necessary to keep the turbines operating efficiently and safely.
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3.5 Calculating LCOE
The main objective function is to reduce the LCOE of the layout design in question. The
Levelized Cost of Energy is defined as the total cost of energy per unit of energy production.
Therefore, it is quite necessary to calculate the LCOE accurately to represent the overall cost
of the wind farm. A very simplified and reduced formula taken from [30] for the LCOE can be
given by

LCOE =
∑n

t=1
It+Mt+At+BOPt+Dt

(1+r)∑n
t=1

Et
(1+r)t

(3.11)

where
It = Investment expenditures in year t (including financing)
Dt = Development expenditures in year t
BOPt = Balance of plant expenditures in year t
At = Annual base expenditure in year t
Mt = Operations and maintenance expenditures in year t
Et = Electricity generation in year t
r = Discount rate
n = Life of the system

To reduce the complexity of the problem and due to data management and availability
constraints, the main contributors to the wind farm costs are considered to be the capital
expenditure i.e. It (CAPEX), operations and maintenance expenditures i.e. Mt (OPEX), the
Balance of Plant expenditures i.e. BOPt,and the development expenditure Dt (DEVEX) and
the annual base expenditure At (ABEX).



CHAPTER 4
Optimization algorithms

In this section, the optimization algorithms that are used are detailed. As mentioned in
subsection 2.2.2, two prominent techniques are employed, namely Random Search and Particle
Swarm Optimization (PSO). These algorithms offer distinct approaches to tackling optimization
problems and have gained widespread recognition in various domains.

Optimization algorithms typically consist of three main components when applied to
problems such as optimizing wind farm layouts for maximizing energy production and minimizing
costs. These components are:

1. Objective Function: The objective function represents the goal of the optimization problem.
The Levelized Cost of Energy (LCOE) and Annual Energy Production (AEP) are the
two primary objective functions considered in this thesis. The first seeks to reduce the
cost of energy generation, while the latter seeks to increase the wind farm’s overall energy
production. Both functions will be examined independently, and the findings will be
compared.

2. Design or Optimization Variables: These variables are the parameters that can be adjusted
or optimized to find the optimal solution. For this thesis, the design variables typically
include the geographical location of the wind farm, hub height, turbine type, and the
total number of turbines. These variables directly influence the energy production, cost,
and feasibility of the wind farm layout.

3. Constraints: Constraints define the limitations or restrictions that must be considered dur-
ing the optimization process. In the context of this thesis, constraints include boundaries
for the wind farm area, minimum spacing requirements between turbines to avoid wake
effects, maximum and minimum turbine capacity, and restrictions on the maximum and
minimum number of turbines. These constraints ensure that the optimized layout satisfies
practical considerations, such as safety, land availability, and regulatory requirements.

By considering both the Levelized Cost of Energy and the Annual Energy Production
as objective functions, and including the appropriate design variables and constraints, the
optimization algorithm can effectively search for wind farm layouts that are optimized for
cost-efficiency or energy production, allowing us to analyze various trends and postulate the
effects of changing designs.

4.1 Design Variables and Constraints
The optimization algorithms for wind farm layout design involve altering the site design by
manipulating various design variables. These variables, along with the associated constraints,
play a crucial role in finding an optimal layout. The four main ways in which the algorithms
can modify the wind farm’s design are:
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4.1.1 Change the Geographical Location of a Random
Turbine

One design variable is the geographical location of a turbine. The algorithms can modify the
position of a turbine by adjusting two main variables: step size and angle. These variables
control the movement of the turbine in a 2-dimensional space.

When changing the geographical location, two constraints need to be considered: the
minimum spacing requirement and the boundary constraint. The minimum spacing requirement
ensures that turbines are positioned a certain distance apart to mitigate wake effects and
optimize power production. It is typically defined as a multiple of the rotor diameter, such as:

Minimum spacing = 5 × Rotor Diameter
where

Rotor Diameter DTU 10 MW = 178.3 m
Rotor Diameter Vestas V164 8MW = 164 m

Rotor Diameter Vestas V80 = 80 m

The determination of turbine spacing in the wind farm optimization process involves
calculating the distances between the turbine under evaluation and every other turbine in
the farm. The minimum spacing is then defined as the rotor diameter of the turbine with
the larger rotor diameter among the two turbines being evaluated. This dynamic approach
ensures that the minimum spacing requirement adjusts based on the specific type of turbine
being considered. By taking into account the varying rotor diameters, the optimization process
accommodates the specific requirements and characteristics of each turbine type, allowing for
an effective and customized layout design.

(a) Different turbine types (b) Same type of turbine

Figure 4.1: Dynamic minimum distance calculation

Additionally, the boundary constraint ensures that turbines remain within the designated
wind farm area. The algorithms must ensure that any changes in the geographical location
respect this boundary constraint to avoid placing turbines outside the defined wind farm site.
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4.1.2 Change the Hub Height of the Turbine
Another design variable is the hub height of the turbine. The hub height represents the height
at which the turbine is installed. The algorithms can adjust the hub height as part of the
optimization process.

Predefined hub heights can be chosen based on established guidelines or empirical data. For
example, guidelines such as those provided in Feng et al. [34] offer recommendations for suitable
hub heights based on wind resource characteristics and turbine performance. Selecting a higher
or lower hub height affects the wind resource available at different heights and can influence
the optimal turbine placement. Reduced wake effects will also be evident if two turbines with
different hub heights are placed next to each other leading to lower wake interaction (as both
wakes will be at different heights), thus leading to a lower wake loss.

(a) Different hub heights (b) Same hub heights

Figure 4.2: Effect of hub height on wake interaction and mixing

Each turbine has a range of hub height values in steps of 5. These are given below
Vestas V80:

Minimum hub height = 70 m
Maximum hub height = 90 m

Vestas V164:

Minimum hub height = 100 m
Maximum hub height = 130 m

DTU 10 MW:

Minimum hub height = 110 m
Maximum hub height = 140 m

4.1.3 Change the Type of Turbine
The type of turbine used in the wind farm layout is another design variable. Different turbine
models have distinct characteristics, including rotor diameter and power rating, which directly
impact the layout’s performance.

For example, in the optimization process, you can consider turbine models such as the V80
2MW, DTU 10 MW, and Vestas V164 8 MW. When changing the turbine type, the minimum
spacing criteria should be adjusted based on the rotor diameter of the new turbine. Dai et
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al. [22] provides guidelines for determining appropriate minimum spacing based on turbine
characteristics.

Constraints on the maximum and minimum turbine capacities are crucial during the
optimization process. These constraints ensure that the selected turbine types fall within the
feasible range of the wind farm. The maximum and minimum capacities can be defined based
on the initial capacity of the site’s chosen, such as:

IEA Test Site:

Minimum capacity = 40 MW
Maximum capacity = 80 MW

Horns Rev 1 Site:

Minimum capacity = 160 MW
Maximum capacity = 320 MW

4.1.4 Add/Remove Turbines from the Site
The optimization algorithms may allow for adding or removing turbines from the wind farm
layout. When initializing a layout, the minimum and maximum number of turbines allowed for
the site are defined.The constraints on the number of turbines for each site can be specified as
follows:

IEA Test Site:

Maximum turbines = 12
Minimum turbines = 20

Horns Rev 1 Site:

Maximum turbines = 60
Minimum turbines = 100

These constraints ensure that the wind farm layout remains within the defined limits for
the number of turbines.

By considering and manipulating these design variables and constraints, the optimization
algorithms aim to find an optimal wind farm layout that maximizes or minimizes the desired
objective functions which can either be the Annual Energy Production (AEP) or the Levelized
cost of Energy (LCOE).

4.2 Random Search Algorithm
The random search algorithm is a simple yet effective approach for wind farm layout optimization
[36]. It has been widely used in various optimization problems and has shown promising results
in wind farm layout design.

The random search algorithm seeks to arrive at an ideal wind farm architecture that
maximizes or reduces the chosen objective functions, such as Annual Energy Production (AEP)
and Levelized Cost of Energy (LCOE) [98]. The AEP is the total energy generated by the
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wind farm in a year, whereas the LCOE is the cost of generating each unit of energy during the
wind farm’s lifetime.

The random search algorithm explores the design space by randomly selecting actions to
modify the layout. These actions include moving a random turbine, changing the hub height of
a turbine, changing the type of a turbine, or adding/removing a random turbine [36]. The choice
of action is determined by generating a random number a between 1 and 4 that corresponds to
each possible action. This new layout is stored as Dnew. To ensure feasibility, the algorithm
applies constraints on the design variables, which are specified in section 4.1 To ensure feasibility,
the algorithm applies constraints on the design variables given in section 4.1.

Once a layout is generated, the algorithm calculates the objective function value, either the
AEP or the LCOE. If the objective function is the AEP, the algorithm aims to maximize the
AEP value by exploring different wind farm layouts. If a newly generated layout has a higher
AEP than the previous layout, it is stored as the current "best" layout [22] as D = Dnew. On
the other hand, if the objective function is the LCOE, the algorithm seeks to minimize the
LCOE value. If a newly generated layout has a lower LCOE than the previous layout, it is
considered an improvement and stored as the current "best" layout [22] as D = Dnew

The random search algorithm continues to iteratively explore the design space by generating
new layouts and evaluating their objective function values. The process repeats until a
convergence criterion is met. In this thesis, the convergence criterion is defined as the maximum
number of iterations, which is set to 5000 [36]. This criterion ensures that the algorithm
terminates after a predefined number of iterations.

Although the random search algorithm provides a straightforward and intuitive optimization
approach, it may require running the algorithm multiple times to obtain the most optimal
layout due to its inherent randomness [36]. However, by incorporating suitable convergence
criteria and leveraging computational resources, this algorithm effectively explores the design
space and contributes to the development of efficient wind farm layouts [98].

A flowchart illustrating the random search algorithm used in this thesis is shown in Figure 4.3.
It is important to note that the flowchart depicted in Figure 4.3 represents the LCOE as the
objective function.
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Figure 4.3: Flowchart of the Random Search Algorithm
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4.3 Particle Swarm Optimization
Particle Swarm Optimization (PSO) is a population-based optimization technique proposed by
Kennedy and Eberhart [52]. It aims to find the optimal solution by iteratively moving particles
within a search space. PSO combines individual and global knowledge to guide the particles’
movements, making it suitable for solving complex optimization problems [53].

In PSO, a population of particles represents potential solutions. Each particle’s position in
the search space corresponds to a candidate solution. Let ppi denote the current position of
particle i at iteration t. For wind farm layout optimization, ppi includes multiple dimensions
such as x-coordinates, y-coordinates, turbine types, and a number of turbines variable that
allows the algorithm to manipulate the size of other arrays as needed.

To commence the optimization process, an initial population of particles is generated in
Particle Swarm Optimization (PSO). The particles’ positions are initialized randomly within the
feasible region of the search space, taking into account the problem constraints. Notably, one
of the particles is initialized with the initial layout provided in PyWake [74]. This initial layout
serves as a valuable starting point, leveraging existing knowledge to improve the convergence
speed and overall effectiveness of the optimization process.

By ensuring that the initial population satisfies the problem constraints, the optimization
algorithm can explore the search space more efficiently. This initialization strategy enhances the
likelihood of discovering promising solutions early on, facilitating faster convergence towards
optimal or near-optimal solutions [13]. Incorporating the initial layout from PyWake within the
initial population provides a practical foundation for the PSO algorithm, leveraging domain-
specific insights and pre-existing knowledge to expedite the optimization process. The PSO
algorithm updates the velocities and positions of particles based on their historical best position
(pbi

) and the swarm’s best position (gb). The velocity update equation is given by:

cv = cw · r1 · (pbi
− ppi)

sv = sw · r2 · (gb − ppi)
vi = w · vi + cv + sv

(4.1)

In these equations, cv represents the cognitive velocity, while sv represents the social velocity.
The cognitive weight is represented by(cw), while the social weight is represented by (sw). The
particle’s best position and its current position are represented by (pbi

) and (ppi) respectively.
(r1) and (r2) represent two random values that introduce stochasticity into the algorithm. The
updated velocity (vi) is obtained by combining the inertia weight (w), the current velocity,
cognitive component (cv), and social component (sv) [64, 29]. The particle positions are then
updated according to Equation 4.2

ppi = ppi + vi (4.2)

The inertia weight (w) balances exploration and exploitation. Lower values promote local
exploration, while higher values encourage global exploration. In this thesis, linearly decreasing
values of w from ωstart = 0.8 to ωend = 0.4 are used. The cognitive weight (cw) represents the
particle’s self-confidence or self-awareness. It controls the influence of the particle’s own best
position on its velocity update. A higher cw value increases the particle’s focus on its individual
best position, promoting exploitation of local solutions [29].The social weight (sw) represents
the particle’s social influence or awareness of its neighbors. It determines the impact of the
global best position on the particle’s velocity update. A higher sw value enhances the particle’s
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exploration of the search space by considering the best position found by other particles in the
swarm [29].The random values (r1 and r2) are uniformly distributed random numbers between 0
and 1. They introduce randomness to the velocity update equation, allowing particles to explore
different directions in the search space. The random values help in balancing the exploration
and exploitation tendencies of the algorithm [29].

Determining an appropriate swarm size is essential in PSO. While smaller swarm sizes
may hinder exploration capabilities, larger swarms increase the number of function evaluations
required for convergence. For wind farm layout optimization, a swarm size within the range of
50 to 300 has been suggested as a reasonable choice [13]. In this thesis a swarm size of 100 is
employed.

To handle constraints in the optimization process, Particle Swarm Optimization (PSO) com-
monly employs a penalty function approach. The penalty function transforms the constrained
optimization problem into an unconstrained one, ensuring feasibility by penalizing infeasible
solutions. In this thesis, the penalty function primarily focuses on constraints related to the
installed capacity and turbine spacing [26, 67, 73].In this thesis, two types of penalty functions
were employed based on the objective function: an exponential function when the Levelized
Cost of Energy (LCOE) was the objective, and a logarithmic function when the Annual Energy
Production (AEP) was the objective. It is worth noting that the definition and formulation
of penalty functions can vary across different optimization codes and problem domains. For
this thesis, the penalty function was specifically tailored and fine-tuned to achieve optimal
performance within the implemented code.

The following code snippet showcases the penalty function used to penalize excess capacity
in the PSO algorithm (Listing 4.1):

1 penalty_factor = 150
2 if total_capacity [i, iteration ] > max_capacity :
3 excess_capacity = total_capacity [i, iteration ] -

max_capacity
4 penalty [i, iteration ] = np.log( excess_capacity +1) *

penalty_factor
5
6 if total_capacity [i, iteration ] < min_capacity :
7 remaining_capacity = min_capacity - total_capacity [i,

iteration ]
8 penalty [i, iteration ] = np.log( remaining_capacity +1) *

penalty_factor

Listing 4.1: Penalty function for capacity

In this thesis, the Particle Swarm Optimization (PSO) algorithm was equipped with two
termination conditions to ensure effective convergence. The first condition involved setting
a maximum number of iterations, specifically limiting the algorithm to 1000 iterations. This
constraint prevented the PSO algorithm from running indefinitely, enabling timely convergence
within a reasonable computational timeframe.The second termination condition was based on a
convergence counter, which evaluated the stability of the global best Levelized Cost of Energy
(LCOE) or Annual Energy Production (AEP) across successive generations. The convergence
counter assessed the standard deviation of the LCOE/AEP values among the global best
solutions. If the difference between these values remained below the threshold of 10−6 for
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more than 10 consecutive generations, it signified that the algorithm had reached a state of
convergence.

Figure 4.4: Flowchart of the Particle Swarm Optimization algorithm

By employing these termination conditions, the thesis ensured the convergence of the PSO
algorithm while taking into account both a maximum iteration limit and a precise measure of
stability based on the LCOE/AEP values. These termination conditions contributed to the
effective optimization of the problem while reducing unnecessary computational costs.



CHAPTER 5
Results

In this section, the results of both simulations for both cases will be presented. Each section
is followed by a comprehensive analysis of the results highlighting important findings and
answering the research questions and fulfilling objectives formulated in section 1.5.

The main purpose of this section is to present empirical results given by the optimization
algorithms. It is important to remember that each algorithm has a relative degree of randomness
to it, which can be attributed to the nature of the random search algorithm and the randomly
generated layouts to fulfill population sizes for Particle Swarm Optimization respectively.

Each section details various trends and it’s implications for the algorithms. These trends
are very important in identifying various advantages, limitations and key parameters that affect
the performance and application of each of these algorithms.

(a) Horns Rev 1 (b) IEA37

Figure 5.1: Original layouts

The original parameters for each layout are given in Table 5.1.

Table 5.1: Original parameters for both sites

Site Number of
wind turbines

Original
LCOE

[Euro/kWh]

Original
AEP

[GWh]
HornsRev 80 0.0660 680

IEA 16 0.092 160

5.1 Random Search
This section presents the results obtained from the application of the random search algorithm
to optimize two objective functions, namely Annual Energy Production (AEP) and Levelized
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Cost of Energy (LCOE). The algorithm’s performance is evaluated for two case studies: the
IEA test case and the Horns Rev 1 wind farm. To enhance precision and examine the impact
of wind direction sectorization, three different sector sizes were considered: 1◦, 1.5◦, and 3◦.
The results reported below are exclusively for the finest wind direction sector resolution, i.e., 1◦

sectors.
The selection of multiple wind direction sector sizes is motivated by the need to account

for the intricacies of wind flow patterns and their influence on wind energy applications. A
comprehensive understanding of wind direction variability is crucial in optimizing wind turbine
configurations. Previous studies have highlighted the importance of accurately capturing
these variations. Furthermore, Dai et al. [22] suggest that an appropriate number of sectors
can improve the precision of wind resource assessments and enhance the efficiency of wind
farm layouts. By considering these factors, the investigation of varying sector sizes enables
a comprehensive assessment of the algorithm’s performance across different wind direction
resolution levels.

The results presented below are obtained through a rigorous evaluation process. To ensure
reliability and account for inherent randomness of the algorithm, each scenario was simulated
10 times. This approach provides a more robust assessment of the algorithm’s performance
and reduces the influence of random initialization. The reported values correspond to the
best-performing configurations obtained from these ten simulation runs.

5.1.1 AEP
Table 5.2 presents the results of the Random Search algorithm for the optimization of the AEP
objective function. The table includes the site name, the number of wind direction sectors, the
optimized LCOE in Euro/kWh, the optimized AEP in GWh, the total capacity in MW, the
number of V80 turbines, the number of V164 turbines, the number of DTU10 MW turbines,
and the run time in seconds.

Table 5.2: Random Search AEP results

Site

No. of
wind

direction
sectors

Optimized
LCOE

[Euro/kWh]

Optimized
AEP

[GWh]

Total
Capacity

[MW]

No.
of

V80
turbines

No.
of

V164
turbines

No.
of

DTU10
MW

turbines

Run
Time

[s]

HornsRev 120 0.0483 1437.152 320 77 12 7 19501
240 0.0481 1439.253 320 78 13 6 41842
360 0.0478 1440.101 320 82 12 6 65489

IEA 120 0.0462 452.673 80 14 4 2 568
240 0.0459 455.480 78 15 1 4 728
360 0.0457 462.269 78 15 1 4 966

Analyzing the table, several trends can be observed. Firstly, for the HornsRev site, as
the number of wind direction sectors increases from 120 to 360, there is a slight decrease in
the optimized LCOE from 0.0483 Euro/kWh to 0.0478 Euro/kWh while the optimized AEP
experiences a small increase from 1437.152 GWh to 1440.101 GWh. This suggests that increasing
the number of wind direction sectors can lead to improved AEP values while maintaining a
relatively consistent LCOE.
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To visualize the impact of the Random Search algorithm on layout optimization, Figure 5.2(a)
and Figure 5.2(b) display the initial and optimized layouts of the HornsRev wind farm,
respectively. Something interesting to note is that Figure 5.2(b)) has the highest number of
turbines possible i.e. 100.

(a) Initial layout (b) Optimized layout

Figure 5.2: IEA37 layouts

Additionally, Figures Figure 5.3(a) and Figure 5.3(b) showcase the convergence histories
of the LCOE and AEP, respectively, providing valuable insights into the algorithm’s progress
over iterations and its ability to approach optimal solutions. Notably, it is worth mentioning
that around the 1000th iteration mark, the LCOE experiences a slight increase. This can
be attributed to the algorithm’s inclusion of an additional turbine, resulting in an improved
AEP but also an overall increase in cost. This observation highlights the trade-off between
maximizing energy production and minimizing expenses during the optimization process.

(a) LCOE (b) AEP

Figure 5.3: Convergence histories

Similar trends can be observed for the IEA test case as well. The results presented in
Table 5.2 for the IEA site show that as the number of wind direction sectors increases from
120 to 360, there is a slight decrease in the optimized LCOE from 0.0462 Euro/kWh to 0.0457
Euro/kWh. Conversely, the optimized AEP exhibits a gradual increase from 452.673 GWh to
462.269 GWh.
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The layouts depicted in Figure 5.4 provide visual representations of the initial and optimized
wind farm configurations for the IEA case. In Figure 5.4(a), the initial layout shows the turbines
distributed in a relatively uniform manner across the site. However, after the optimization
process, as shown in Figure 5.4(b), a more optimized arrangement emerges, with the turbines
positioned strategically, with the larger turbines being position towards the edges of the
boundaries. In similarity to Figure 5.2(b), Figure 5.4(b) tends to move towards the highest
number of turbines possible i.e. 20.

(a) Initial layout (b) Optimized layout

Figure 5.4: IEA37 layouts

The convergence histories depicted in Figure 5.5 provide insights into the optimization
process for the IEA case, specifically regarding the LCOE and AEP objectives. Similar to
the trends observed in the HornsRev case, the convergence histories for the IEA case show a
progressive improvement in both LCOE and AEP values over the iterations. In Figure 5.5(a),
the LCOE convergence history demonstrates a gradual decrease, indicating that the algorithm
successfully explores and refines the wind farm layout to reduce the cost of energy production.
Similarly, in Figure 5.5(b), the AEP convergence history shows a consistent increase over the
iterations, indicating the algorithm’s ability to find layouts that maximize energy production.

(a) LCOE (b) AEP

Figure 5.5: Convergence histories

An analysis of the hub heights in the optimized layout of the wind farm reveals a compelling
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trend. It is evident that the hub heights consistently gravitate towards the largest feasible
value for all turbines in the layout i.e. 90, 130, and 140 for the Vestas V80, Vestas V164 and
DTU 10 MW respectively. This inclination can be attributed to the objective of harnessing the
maximum available wind resources at higher altitudes, where wind speeds tend to be higher and
more reliable. By setting the hub heights to their upper limits, the turbines are strategically
positioned to capitalize on optimal wind conditions, thereby maximizing their energy production
potential.

5.1.2 LCOE
The table shown in Table 5.3 presents the results of the random search algorithm applied to
optimize the LCOE (Levelized Cost of Energy) for the Horns Rev wind farm and the IEA test
site with varying numbers of wind direction sectors. The table includes information about the
wind farm sites, the number of wind direction sectors, the optimized LCOE in Euro/kWh, the
optimized AEP (Annual Energy Production) in GWh, the total capacity in MW, the number
of turbines of different types (V80, V164, DTU10 MW), and the run time in seconds.

Table 5.3: Random Search LCOE Results

Site

No. of
wind

direction
sectors

Optimized
LCOE

[Euro/kWh]

Optimized
AEP

[GWh]

Total
Capacity

[MW]

No.
of

V80
turbines

No.
of

V164
turbines

No.
of

DTU10
MW

turbines

Run
Time

[s]

HornsRev 120 0.0381 1489.157 320 33 8 19 4494
240 0.0377 1512.544 320 32 12 16 11479
360 0.0376 1512.762 320 32 12 16 26613

IEA 120 0.0399 463.818 76 5 2 5 412
240 0.0394 469.602 76 5 2 5 510
360 0.0390 480.295 78 5 1 6 533

The analysis of the results presented in Table 5.3 reveals several noteworthy trends, providing
valuable insights into the optimization process and the performance of wind farm layouts.
Focusing on the HornsRev site, a systematic examination of the relationship between the
number of wind direction sectors and the optimized LCOE and AEP values demonstrates
intriguing patterns.As the number of wind direction sectors increases from 120 to 360, there is a
discernible decrease in the optimized LCOE, with values decreasing from 0.0381 Euro/kWh to
0.0376 Euro/kWh. Comparing these results to the outcomes obtained in the previous analysis
(Table 5.2), where the algorithm prioritized AEP as the objective function, provides valuable
insights into the trade-off between energy production and cost efficiency. The lower LCOE
values achieved through the LCOE-focused optimization indicate the algorithm’s success in
minimizing the overall cost of the wind farm. Furthermore, the higher optimized AEP values
obtained in the LCOE-focused optimization, in comparison to the previous AEP-focused results,
underscore the algorithm’s effectiveness in improving the energy capture of wind farms. This
suggests that by incorporating the LCOE objective into the optimization process, the algorithm
can identify layout configurations that not only increase energy production but also achieve a
more economically viable wind farm design. This same trend can be observed in the values for
the IEA test site as well.
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The examination of the HornsRev wind farm layouts, as depicted in Figure 5.6, provides
valuable insights into the impact of turbine placement on the overall performance of the wind
farm. The optimized layout, shown in Figure 5.6(b), exhibits a notable characteristic of having
the minimum possible number of turbines with a total of 60. The design also has a higher
number of larger turbines (16 DTU 10 MW turbines compared to 6 in Table 5.2) highlighting
larger available spacing between the turbines leading to a lower wake loss.

(a) Initial layout (b) Optimized layout

Figure 5.6: HornsRev layouts

The dissimilarity in the algorithm’s performance when optimizing LCOE, as demonstrated
in Figure 5.7, compared to its optimization for AEP, as shown in Figure 5.3, can be attributed
to notable distinctions in their convergence characteristics. The convergence of LCOE, depicted
in Figure 5.7(a), exhibits a gradual decline towards values proximate to its convergent state after
approximately 2000 iterations. Conversely, the LCOE convergence in Figure 5.3(a) demonstrates
a swifter attainment of values near its convergent state, occurring around the 800 iteration
mark. This disparity can be elucidated by the algorithm’s preference for the removal of turbines
during LCOE optimization, in contrast to the inclination to add turbines in AEP optimization.
The gradual and smoother convergence observed in LCOE optimization signifies the algorithm’s
effort to iteratively refine the wind farm layout by eliminating redundant turbines, resulting in
improved cost-effectiveness and optimal utilization of available wind resources.

(a) LCOE (b) AEP

Figure 5.7: Convergence histories
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Similar trends can be observed for the IEA test case as well. LCOE values presented in
Table 5.3 gradually decrease from 0.0399 Euro/kwH to 0.0390 Euro/kWh. The layouts presented
in Figure 5.8 display similar trends as well, where Figure 5.8(b) tends to the lowest possible
number of turbines with 12 turbines compared to Figure 5.4(b). There is also an increase in
the number of DTU 10 MW turbines present in Figure 5.8(b) (6 when optimizing LCOE in
Table 5.3, compared to 4 when optimizing AEP in Table 5.2).

(a) Initial layout (b) Optimized layout

Figure 5.8: IEA37 layouts

Looking at the convergence histories in Figure 5.9, similar trends can be deduced. Compared
to Figure 5.5, the algorithms tends to approach values close to convergence a lot slower, around
1600 iterations as seen in Figure 5.9(a) compared to 300 iterations in Figure 5.5(a). A noteworthy
observation can be made in Figure 5.9(b), where around the 1500 iteration mark, a steep
decrease in AEP can be observed whereas the LCOE in Figure 5.9(a) still continues to display
a gradual decrease. This can be attributed to the removal of a turbine close to the boundary
or a turbine which was experiencing minimal wake losses (i.e. generating a large chunk of the
total AEP) resuling in the substantial observed decrease.

(a) LCOE (b) AEP

Figure 5.9: Convergence histories

Upon analyzing the hub height vectors across all scenarios presented in Table 5.3, a
remarkable similarity emerges when compared with their counterparts in Table 5.2. Notably,
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the hub height values for all turbines consistently gravitate towards the uppermost feasible
limits. This trend holds significant implications for the observed higher AEP values in Table 5.3.
By opting for layouts with a reduced number of turbines positioned at elevated hub heights,
multiple advantages are realized. Firstly, the turbines situated at greater hub heights experience
swifter wind speeds due to the power shear phenomenon. Additionally, the presence of a lower
number of turbines within the vicinity contributes to diminished wake losses, thereby amplifying
the overall energy production potential.

Another intriguing trend worth noting is the disparity in run times between the scenarios in
Table 5.2 when optimizing for AEP and their counterparts in Table 5.3. The AEP optimization
algorithm consistently exhibits nearly 50% longer run times compared to the LCOE optimization
algorithm. This divergence can be attributed to the resulting layouts favored by each algorithm.
The AEP-focused algorithm tends to generate layouts with a larger number of turbines,
necessitating a higher computational burden. These additional turbines demand increased
computations from wake deficit, blockage deficit, and superposition models. Furthermore, the
feasibility validation process, involving the verification of minimum distance constraints outlined
in subsection 4.1.1, is prolonged due to the larger number of turbines involved. In contrast, the
LCOE optimization algorithm, which converges to layouts with fewer turbines, requires less
computational effort and time for both wake-related calculations and feasibility assessments.

5.2 Particle Swarm Optimization
This section presents the outcomes obtained from the application of the Particle Swarm
Optimization (PSO) algorithm to both Horns Rev 1 and the IEA case. In alignment with the
random search algorithm, the PSO algorithm has been implemented utilizing three discrete
wind direction sector sizes: 1◦, 1.5◦, and 3◦. The subsequent graphs and design configurations
presented herein specifically focus on the most refined resolution, namely the 1◦ wind direction
sectors. To mitigate the influence of stochastic variations, the PSO algorithm has been executed
10 times for each scenario. This approach ensures a robust assessment of the algorithm’s
performance across multiple iterations, enhancing the reliability of the results.

5.2.1 AEP
Table 5.4 showcases key findings derived from the Particle Swarm Optimization (PSO) algorithm
applied to the Horns Rev 1 and IEA cases. The table provides detailed information on various
parameters such as the number of wind direction sectors, optimized LCOE (Levelized Cost of
Energy), optimized AEP (Annual Energy Production), total capacity, turbine distribution, and
run time.
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Table 5.4: PSO AEP Results

Site

No. of
wind

direction
sectors

Optimized
LCOE

[Euro/kWh]

Optimized
AEP

[GWh]

Total
Capacity

[MW]

No.
of

V80
turbines

No.
of

V164
turbines

No.
of

DTU10
MW

turbines

Run
Time

[s]

HornsRev 120 0.0491 1265.630 310 75 7 11 83503
240 0.0489 1285.823 314 77 5 12 95649
360 0.0485 1328.242 320 76 6 12 110534

IEA 120 0.0486 430.266 70 15 5 0 14163
240 0.0447 431.318 80 7 2 5 22536
360 0.0456 446.606 80 12 2 4 29624

The analysis of the results presented in Table 5.4 provides valuable insights into the
optimization process and performance of wind farm layouts. For the HornsRev site, the
optimization was performed with 120, 240, and 360 wind direction sectors. The optimal LCOE
(Levelized Cost of Energy) values decreased gradually as the number of sectors rose. The LCOE
fell from 0.0491 Euro/kWh for 120 sectors to 0.0489 Euro/kWh for 240 sectors and then to
0.0485 Euro/kWh for 360 sectors.Simultaneously, as the number of wind direction sectors rose,
so did the optimum AEP (Annual Energy Production). HornsRev’s AEP values grew from
1265.630 GWh for 120 sectors to 1285.823 GWh for 240 sectors and 1328.242 GWh for 360
sectors. Regarding the IEA site, the optimization was conducted using the same range of
wind direction sectors. The optimized LCOE values for IEA were 0.0486 Euro/kWh, 0.0447
Euro/kWh, and 0.0456 Euro/kWh for 120, 240, and 360 sectors, respectively. Similarly, the
optimized AEP values increased from 430.266 GWh to 431.318 GWh and further to 446.606
GWh as the number of sectors increased.

Upon comparing the results presented in Table 5.4 with those of the Random Search
algorithm (as shown in Table 5.2), a compelling trend emerges. The optimization outcomes
achieved through the Particle Swarm Optimization (PSO) algorithm exhibit a similar pattern
to the Random Search results, albeit with a noticeable distinction in performance. Specifically,
the PSO algorithm yields an optimized AEP value of approximately 1330 GWh, whereas the
Random Search algorithm excels by achieving a significantly higher AEP value of approximately
1490 GWh. This discrepancy suggests that the Random Search algorithm outperforms the
PSO algorithm by approximately 20% in terms of AEP optimization.

The reason why PSO is outperformed can be found by looking at the total capacity of
it’s optimal layout in Table 5.4. While the design in Figure 5.2(b) consists of 100 turbines to
maximize energy capture, the PSO algorithm converges at a maximum of 94 turbines. The
discrepancy in the number of turbines employed by each algorithm plays a crucial role in the
observed performance gap. The Random Search algorithm’s ability to explore a larger turbine
count range allows for a more extensive search space, potentially leading to layouts that offer
higher energy production. Conversely, the PSO algorithm’s convergence at a lower turbine
count restricts its exploration capability, resulting in suboptimal layouts and lower energy
capture.
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(a) Initial layout (b) Optimized layout

Figure 5.10: HornsRev layouts

An advantage of the Particle Swarm Optimization (PSO) algorithm over random search
lies in its convergence speed, as demonstrated by the LCOE convergence history depicted in
Figure 5.11(a). The graph exhibits a notable characteristic where the LCOE value experiences
a rapid decline from its initial value and approaches proximity to the convergence value within
the first 25 to 30 generations. A similar trend can be observed in the AEP convergence history
illustrated in Figure 5.11(b).

(a) LCOE (b) AEP

Figure 5.11: Convergence histories

Similar trends can also be observed in the IEA case. The PSO algorithm converges towards
a smaller number of turbines, specifically 18 turbines, as indicated in Table 5.4, compared to
the 20 turbines obtained through the Random Search algorithm, as shown in Table 5.2. A
noteworthy observation emerges when examining the optimized layout depicted in Figure 5.12(b).
It reveals striking similarities to the layout presented in Figure 5.4(b), where larger turbines
are strategically positioned towards the boundaries to maximize the overall AEP.

This observation suggests that both PSO and Random Search algorithms recognize the
potential benefits of placing larger turbines at the periphery of the wind farm. By harnessing
the stronger and more consistent winds found in these outer regions, the algorithms aim to
optimize the energy capture and enhance the overall AEP performance. This consistent pattern
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in turbine positioning highlights the convergence of the algorithms towards efficient solutions
that leverage the spatial characteristics of the wind resource to maximize energy production.

(a) Initial layout (b) Optimized layout

Figure 5.12: IEA37 layouts

The convergence histories of the IEA case, illustrated in Figure 5.13(a) and Figure 5.13(b),
demonstrate predictable patterns. Notably, both the LCOE and AEP values exhibit a rapid
decrease and increase respectively, approaching convergence levels within the initial 30 genera-
tions.

(a) LCOE (b) AEP

Figure 5.13: Convergence histories

Upon examining the hub heights for all scenarios listed in Table 5.4, a consistent trend
similar to the random search algorithm is observed. The PSO algorithm strategically positions
the turbines at the maximum achievable hub height for each turbine type. This deliberate
placement results in an increase in the overall annual energy production (AEP) of the wind
farm due to the exploitation of power shear effects. By capitalizing on higher hub heights, the
PSO algorithm optimizes the wind farm layout to capture more energy and maximize AEP.

The observed high run times in the PSO simulations, ranging from 83,503 seconds to 110,534
seconds for the HornsRev site and from 14,163 seconds to 29,624 seconds for the IEA case, can
be attributed to the nature of the PSO algorithm itself. PSO is a population-based algorithm
that requires the evaluation of multiple designs within each iteration before proceeding to
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the next generation. In the context of wind farm optimization, the PSO algorithm needs to
calculate the Annual Energy Production (AEP) for the entire swarm, which consists of 100
different designs. This involves computing the AEP, penalties, costs, and velocity vectors for
each design. Additionally, these designs must be randomly generated and subsequently modified
to satisfy various constraints. The process of evaluating a large number of designs, performing
calculations, and incorporating constraints can be computationally intensive, leading to the
observed high run times. The PSO algorithm needs sufficient time to explore the solution space
and converge towards an optimal layout.

5.2.2 LCOE
Finally, the table Table 5.5 presents the results obtained from the PSO optimization algorithm
applied to wind farm layouts at the HornsRev and IEA sites. It provides valuable insights
into the optimized Levelized Cost of Energy (LCOE), Annual Energy Production (AEP), total
capacity, and turbine distribution for different configurations.

Table 5.5: PSO LCOE Results

Site

No. of
wind

direction
sectors

Optimized
LCOE

[Euro/kWh]

Optimized
AEP

[GWh]

Total
Capacity

[MW]

No.
of

V80
turbines

No.
of

V164
turbines

No.
of

DTU10
MW

turbines

Run
Time

[s]

HornsRev 120 0.0458 1302.925 310 46 11 13 74315
240 0.0444 1317.523 310 50 10 13 81341
360 0.0440 1331.913 306 53 10 12 94153

IEA 120 0.0449 420.633 80 9 4 3 12913
240 0.0443 438.817 80 7 2 5 21162
360 0.0436 449.214 76 6 3 4 27653

Analyzing the HornsRev site, we observe that as the number of wind direction sectors
increases from 120 to 360, there is a consistent reduction in the optimized LCOE values.
The LCOE decreases from 0.0458 Euro/kWh to 0.0440 Euro/kWh, indicating improved cost
efficiency with more refined wind direction sectors. The corresponding optimized AEP values
also show an increasing trend, rising from 1302.925 GWh to 1331.913 GWh, indicating higher
energy generation potential.At the IEA site, a similar trend can be observed. Increasing the
number of wind direction sectors from 120 to 360 results in a decrease in the optimized LCOE
from 0.0449 Euro/kWh to 0.0436 Euro/kWh. This reduction in LCOE signifies improved
cost-effectiveness of the wind farm layout. Furthermore, the optimized AEP values show an
increasing trend, with values ranging from 420.633 GWh to 449.214 GWh, indicating enhanced
energy production potential.

Both the PSO and random search algorithms exhibit a consistent trend towards reducing
LCOE values and simultaneously increasing AEP values when optimizing for LCOE, as evident in
Table 5.3 and Table 5.5 compared to Table 5.2 and Table 5.4, respectively.This can be attributed
to their shared strategy of removing smaller turbines to reduce costs while simultaneously
substituting them with larger turbines to optimize wake losses within the wind farm. By
dynamically adjusting the turbine layout, these algorithms exploit the trade-off between
cost reduction and increased energy production. The iterative optimization process of PSO
effectively explores this trade-off, resulting in improved LCOE values and higher AEP values.
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This approach aligns with the industry trend of deploying larger turbines to optimize wind
farm performance, and the algorithms leverage this strategy to simultaneously optimize both
economic and energy aspects. As a result, the PSO algorithm offers superior performance in
terms of both cost efficiency and energy production compared to random search.

This trend is clearly reflected in the optimal layout achieved by the PSO algorithm, as
depicted in Figure 5.14(b). The algorithm converges to a configuration consisting of 75 turbines,
exhibiting resemblances to the layout shown in Figure 5.2(b) with turbines being pushed to
the boundary and tending to the lowest possible number of turbines possible. Notably, smaller
turbines are progressively replaced by larger ones, emphasizing the pursuit of maximizing the
wind farm’s total capacity.

(a) Initial layout (b) Optimized layout

Figure 5.14: IEA37 layouts

Examining the convergence histories in Figure 5.11, similar trends emerge. The PSO
algorithm demonstrates rapid progress, approaching convergence within approximately 35 gen-
erations. The resulting optimized LCOE and AEP graphs in Figure 5.15(a) and Figure 5.15(b)
converge to 1331 GWh and 0.0440 Euro/kWh, respectively, showcasing the algorithm’s effec-
tiveness in optimizing the wind farm’s economic and energy production performance.

(a) AEP (b) LCOE

Figure 5.15: Convergence histories
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Similar trends can also be observed for the IEA case. In this case, the PSO algorithm
demonstrates a remarkable ability to approach the minimal number of turbines, converging
at 13 turbines, as depicted in Figure 5.16(b). This aligns with the strategy of maximizing the
wind farm’s capacity by pushing turbines towards the boundaries, a pattern reminiscent of the
previously discussed layouts.

(a) Initial layout (b) Optimized layout

Figure 5.16: IEA37 layouts

The convergence histories of the PSO algorithm for the IEA case exhibit similar trends
as before. Both the LCOE and AEP, as shown in Figure 5.17, converge to values close to
convergence within approximately 40 generations. However, an interesting observation can be
made from the convergence history depicted in Figure 5.17(a). It reveals an anomaly where
the AEP converges to a lower value than it has previously achieved. This behavior can be
attributed to a specific scenario where the algorithm removes a larger turbine, resulting in
a decrease in AEP that cannot be fully compensated for by other adjustments. Despite this
anomaly, the PSO algorithm consistently demonstrates its ability to optimize the wind farm
layout in terms of both LCOE and AEP for the majority of the convergence process.

(a) AEP (b) LCOE

Figure 5.17: Convergence histories

The PSO algorithm, when optimizing for LCOE, exhibits a consistent trend in hub height
selection, similar to its AEP optimization counterpart. The algorithm strategically positions all
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turbines at their maximum achievable hub heights, thereby capitalizing on the improved wind
resource available at higher elevations. This deliberate placement not only enhances the energy
capture potential of each individual turbine but also contributes to a more favorable wind
environment for the entire wind farm. The utilization of higher hub heights leads to increased
wind speeds, reduced turbulence, and enhanced power production, resulting in improved energy
yield and ultimately lower LCOE values.

An intriguing trend to note is the substantial difference in run time between optimizing
for LCOE and AEP using the PSO algorithm. As demonstrated in Table 5.5 and Table 5.4,
the optimization process for LCOE is significantly faster. This can be attributed to the fact
that LCOE optimization tends to converge towards layouts with a reduced number of turbines,
resulting in fewer computations required to calculate the AEP and overall costs of the wind
farm design. The reduced computational complexity associated with fewer turbines leads to
shorter run times, making the LCOE optimization process more efficient and time-effective.
This trend in the PSO algorithm is also quite similar to it’s random search counterpart.

5.3 Random Search v/s PSO Comparison
In this section, we analyze three key parameters for all scenarios discussed in section 5.1 and
section 5.2. The parameters are Optimized AEP, Optimized LCOE and the run time for each
scenario.

Figure 5.18: Random search - Optimized AEP values

Figure 5.18 shows the optimized AEP values for the Random Search algorithm when
optimizing for both objective functions and both sites. The results demonstrate a consistent
pattern that aligns with the trends identified in section 5.1, confirming our expectations. As
anticipated, the HornsRev site, when optimized for LCOE, yields the highest AEP values among
all scenarios. This outcome is in line with the findings presented in section 5.1. Similarly, the
AEP-optimized HornsRev site closely follows this trend, delivering competitive AEP results.
Furthermore, the IEA site exhibits a similar behavior, showcasing improved AEP values when
optimized for LCOE compared to AEP optimization.
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Figure 5.19: Random search - Optimized LCOE values

The LCOE values exhibit a consistent trend as illustrated in Figure 5.19, where the HornsRev
site demonstrates the lowest LCOE values when optimized for LCOE. Similarly, the IEA site
follows this trend, displaying lower LCOE values when optimized for LCOE as well. One
intriguing observation is the disparity in LCOE values between the two sites when optimized
for AEP and LCOE, respectively. Both sites exhibit a similar pattern, with significantly lower
LCOE values when optimized for LCOE compared to AEP optimization. This difference in
LCOE values is more pronounced than the difference observed in the optimized AEP values
depicted in Figure 5.18. This divergence can be attributed to the removal of the right turbine,
which results in a negligible loss in AEP but a significant reduction in LCOE. This suggests that
the removal of specific turbines can lead to substantial cost savings, highlighting the importance
of considering both AEP and LCOE optimization objectives in wind farm design.

Figure 5.20: Random search runtime
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The runtime values also exhibit a noticeable trend. In the case of the HornsRev site,
there is an almost linear increase in runtime as the number of wind direction sectors increases.
Similarly, when optimizing for LCOE at the HornsRev site, we observe a comparable trend of
increasing runtime with an increasing number of wind direction sectors. Interestingly, the IEA
site demonstrates distinct behavior. When optimized for AEP or LCOE, the runtime shows
negligible differences. Furthermore, there is minimal variation in runtime as the number of
wind direction sectors increases. This behavior can be attributed to the relatively simple wind
speed distribution observed at the IEA site, as depicted in Figure 3.4 and Figure 3.3. The
findings suggest that the runtime may vary based on factors such as the complexity of wind
conditions and the number of wind direction sectors considered.

Figure 5.21: Particle Swarm Optimization - Optimized AEP values

The PSO algorithm exhibits similar trends to those observed in Figure 5.22. When optimizing
for LCOE, the HornsRev site consistently yields the highest optimized AEP values, with the
HornsRev site optimized for AEP closely following. Additionally, there is a slight increase in
the optimized AEP values as the number of wind direction sectors increases. This trend holds
true for the IEA site as well.



5.3 Random Search v/s PSO Comparison 79

Figure 5.22: Particle Swarm Optimization - Optimized LCOE values

While most sites generally exhibit the expected trend of achieving the lowest LCOE values
when optimized for LCOE, an interesting anomaly is observed in Figure 5.22 for the IEA
site when optimized for AEP. At 240 wind direction sectors, the IEA site achieves the lowest
optimized LCOE value, contrary to the trend observed for the other scenarios.This anomaly
can be attributed to the inherent stochastic nature of optimization algorithms, such as the
PSO algorithm used in this study. Optimization algorithms rely on randomization to explore
the search space and find optimal solutions [52]. As a result, the algorithm may encounter
variations in the optimization landscape, leading to occasional deviations from the expected
trends.

Figure 5.23: Particle Swarm Optimization runtime

The runtime values for the PSO algorithm exhibit a clear and predictable trend, as depicted
in Figure 5.23. There is an almost linear increase in runtime as the number of wind direction
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sectors increases. This trend is consistent across both the HornsRev and IEA sites. In contrast
to the PSO algorithm, the runtime behavior for the IEA site shown in Figure 5.20 is relatively
stable and displays a negligible increase as the number of wind direction sectors increases. This
increase for PSO can be attributed to the nature of the algorithm requiring calculations of
AEP and overall costs for the entire population. The discrepancy in runtime behavior between
the PSO algorithm and the simpler IEA site emphasizes a disadvantage of the PSO algorithm.
The PSO algorithm requires the calculation of AEP, overall costs, and penalties for the entire
population, leading to increased computational time as the complexity of the problem increases.



CHAPTER 6
Conclusion

This thesis investigated the optimization of wind turbine layouts using two metaheuristic
algorithms: Particle Swarm Optimization (PSO) and Random Search. The performance of
these algorithms was evaluated based on two objective functions: Levelized Cost of Energy
(LCOE) and Annual Energy Production (AEP). This chapter aims at summarizing the findings
and outcomes of this study and thesis, and answer the research questions highlighted in
section 1.5.

6.1 Algorithm Performance
In conclusion, the random search and PSO algorithms provide effective methods for deriving
the optimal wind farm layout design by considering the defined variables and constraints.
These algorithms work towards minimizing the LCOE and maximizing the AEP by exploring
different turbine positions, types, hub heights, and the total number of turbines. Although
random search explores the design space randomly, while PSO utilizes swarm intelligence, both
algorithms aim to find the layout that strikes the best balance between power production and
cost. The choice between random search and PSO depends on factors such as the complexity
of the problem, available computational resources, and specific requirements. These algorithms
offer valuable tools for optimizing wind farm layouts and can be adapted based on the specific
needs of a project.

In the context of this thesis, both algorithms deliver a noticeable decrease in LCOE, with
random search outperforming PSO by achieving an almost 40% reduction in LCOE (40%)
compared to the approximately 30% decrease (30%) provided by PSO. These findings align
with the observations of Feng et al. [35], who reported the superior convergence and solution
quality of Random Search in wind farm layout optimization. The advantage of Random Search
over PSO can be attributed to its better local search capabilities. While PSO excels at global
exploration, it may struggle with local exploitation due to limited exploration of neighboring
solutions. On the other hand, Random Search explores the search space extensively, allowing
for the discovery of promising solutions locally [98, 48]. To enhance the performance of the PSO
algorithm, improvements such as fine-tuning penalty functions and adjusting cognitive and
social weights can be considered [80, 29]. These enhancements can promote better feasibility
and balance between global exploration and local exploitation, enabling the algorithm to search
more effectively in the search space.

6.2 Objective functions and models used
The AEP (Annual Energy Production) is calculated in this thesis by combining the NOJensen
deficit model [50], the Linear Sum superposition model, and the Self Similarity blockage deficit
model. These models consider factors such as wake effects and turbine spacing to estimate
the power output of the wind farm. The LCOE is calculated using the Ecoeval library and
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the DTU cost model implemented in TOPFARM [59]. The LCOE takes into account the
costs associated with the entire life cycle of the wind farm project. This includes capital costs,
operational costs, development costs, and annual expenditure costs. It’s important to note that
the cost calculations in this thesis are based on 2017 euro rates and may not accurately reflect
the current costs in reality.

6.3 Design variables and trade-offs
The main design variable leading to a decrease in the LCOE and an increase in the AEP
is the addition of a single larger turbine to replace several smaller ones. In these cases, the
selection of an optimal hub height for wind turbines was found to be crucial in wind farm
design optimization. Optimizing for higher hub heights can improve wind resource utilization
and increase AEP. Both the random search and PSO algorithms in this study demonstrated a
similar trend of pushing turbines towards the maximum possible hub height. This behavior
aligns with previous research by Feng et al. [35] and Thomas et al. [98], which highlighted the
positive impact of higher hub heights on AEP and wind farm performance. Although optimizing
for larger hub heights increases costs due to taller towers and longer blades, the increase in AEP
can potentially reduce the LCOE. The trade-off between increased costs and enhanced energy
production underscores the importance of striking a balance in wind farm design optimization.
This trade-off is consistent with the findings of Diaz et al. [28], who emphasized the significance
of optimizing layouts to achieve a balance between AEP and construction costs.

It is important to note that in some cases, a higher number of wind turbines can lead to a
lower LCOE as seen when optimizing either of the sites for AEP. This is because additional
turbines can capture more wind energy and increase the overall power production, spreading
the fixed costs over a larger energy output. However, there is a limit to the number of turbines
that can be installed within the given constraints of the site, such as spacing requirements and
available area. The LCOE objective function remains valid as it considers the trade-off between
the cost of installing and maintaining turbines and the resulting energy production.

In the context of this thesis, it is also possible to have an optimal design that achieves the
lowest LCOE while also having the highest AEP, as seen by optimal layouts obtained when
either site is optimized for the LCOE instead of the AEP. The main design variables that impact
AEP and LCOE differently is the total number of turbines and the types of turbines used. As
seen in section 5.2 and section 5.1, smaller number of larger turbines perform much better
than a larger number of smaller turbines. As noticed when optimizing for AEP, sometimes an
increase in AEP can also cause a detrimental increase in the LCOE. This is mainly the result of
adding more smaller turbines that lead to a small increase in AEP but an even larger increase
in the LCOE.

6.4 Limitations of this study
It is important to acknowledge the limitations of this study. Firstly, the assumption of a
uniform square boundary for the wind farm layout oversimplifies real-world conditions, where
geographical constraints and non-uniform boundaries prevail. It is important to note that
the impact of these factors will vary significantly across different locations. The variation
in water depth, boundaries, and other site-specific characteristics underscores the need for a
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location-specific approach to wind farm design optimization. Adapting the analysis to the
unique conditions of each location will result in more tailored and accurate outcomes.

Additionally, assuming a constant water depth throughout the wind farm neglects the
influence of varying water depths on installation and operational costs [28]. In offshore wind
farm projects, water depths can vary significantly within the project area, leading to variations
in foundation types, installation methods, and maintenance procedures. These variations in
water depth can have a significant impact on the overall cost of the wind farm and the feasibility
of different layout designs [7].These simplifications may impact the accuracy of the cost model
employed in the optimization algorithms.

Furthermore, the simplifications made in the cost model employed in the optimization
algorithms may affect the accuracy of the results. The cost model used in this study incorporates
capital costs, operational costs, development costs, and annual expenditure costs. However,
it is important to note that the cost calculations in this thesis are based on 2017 euro rates
and may not accurately reflect the current costs in reality. To improve the accuracy of the cost
model, it would be beneficial to update it with current cost data and consider more detailed
cost components specific to the region and time of the project [83].

6.5 Future research
Future research should consider incorporating more realistic constraints and site-specific informa-
tion to enhance the accuracy and applicability of wind farm layout optimization. Geographical
constraints such as land topography, land use regulations, and environmental considerations
should be taken into account when designing wind farm layouts. Advanced modeling techniques,
such as Geographic Information Systems (GIS), can be used to incorporate these constraints into
the optimization process [31]. Moreover, incorporating detailed information on water depths and
their impact on installation and operational costs would provide a more realistic assessment of
wind farm feasibility and cost-effectiveness [28]. In conclusion, this study conducted a thorough
comparison between the Particle Swarm Optimization (PSO) and Random Search algorithms
in the context of wind farm layout optimization.
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