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A B S T R A C T

Current state-of-the-art airline planning models face computational limitations, restricting the operational
applicability to problems of representative sizes. This is particularly the case when considering the uncertainty
necessarily associated with the long-term plan of an aircraft fleet. Considering the growing interest in the appli-
cation of machine learning techniques to operations research problems, this article investigates the applicability
of these techniques for airline planning. Specifically, an Advantage Actor–Critic (A2C) reinforcement learning
algorithm is developed for the airline fleet planning problem. The increased computational efficiency of using
an A2C agent allows us to consider real-world-sized problems and account for highly-volatile uncertainty in
demand and fuel price. The result is a multi-stage probabilistic fleet plan describing the evolution of the fleet
according to a large set of future scenarios. The A2C algorithm is found to outperform a deterministic model
and a deep Q-network algorithm. The relative performance of the A2C increases as more complexity is added
to the problem. Further, the A2C algorithm can compute a multi-stage fleet planning solution within a few
seconds.
. Introduction

Fleet planning concerns the long-term fleet composition decisions of
ransportation companies. A company seeks to develop its fleet in order
o optimally supply a demand network with the forecast amount of
ransportation units while respecting operational constraints. The fleet
lanning process generally consists of two questions: (1) what units are
eeded, and (2) when to acquire them (Sa et al., 2019).

The deregulation of the airline industry had a major influence
n the economic model of airlines. The resulting economic incentive
as spiked the interest in optimisation approaches to optimise airline
rocesses. The airline planning process is a sequential one, with each
ecision imposing constraints on the next. The first step of the airline
lanning process is fleet planning. This has a major influence on the
inancial position of an airline, as it defines the bounds for sequential
ecisions (Belobaba et al., 2009).

In order to optimise this fleet planning process, various modelling
echniques have been established, ranging in complexity as well as the
omputational effort required. Early modelling of airline fleet planning
tarted with the use of deterministic models to optimise long-term
leet planning (Dantzig and Fulkerson, 1954; Wyatt, 1961; Gould,
969; Shube and Stroup, 1975; Schick and Stroup, 1981). In contrast

∗ Corresponding author.
E-mail addresses: izaak.geursen@ortec.com (I.L. Geursen), b.f.santos@tudelft.nl (B.F. Santos), n.yorke-smith@tudelft.nl (N. Yorke-Smith).

to the single-stage approach followed in previous works (Shube and
Stroup, 1975) were the first study to create a multi-stage fleet plan,
capturing the acquisition and retirement of vehicles over a period of 10
years. These deterministic models assume a perfectly predictable future
without the use of stochastics. This assumption is an over-simplification
of reality, necessarily resulting in a sub-optimal solution and limiting
the models’ applicability. Despite this, some modern deterministic fleet
planning models have been developed, often to test new methods or
to find a basis for further research and analysis (e.g., Sayarshad and
Ghoseiri, 2009; Bazargan and Hartman, 2012).

The various uncertainties encountered in airline planning have
caused the development of stochastic models to solve the fleet planning
problem. The importance of incorporating uncertainty in passenger
demand into airline planning models has been highlighted in the lit-
erature, with several studies proposing stochastic models to address
the problem (e.g., Listes and Dekker, 2005; Khoo and Teoh, 2014; Sa
et al., 2019). A popular implementation of stochastic models is the two-
stage model, with implementations to solve the airline fleet planning
in, e.g., Oum et al. (2000), List et al. (2003), Listes and Dekker (2005)
and Carreira et al. (2017). Naturally, several authors have extended
the two-stage approaches to multi-period models, capturing multiple
vailable online 20 March 2023
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decision periods in the definition of the airline fleet plan (e.g., Schick
and Stroup, 1981; Hsu et al., 2011; Repko and Santos, 2017; Sa et al.,
2019).

The complexity of the problem increases when considering the in-
trinsic uncertainties associated with long-term planning. Several sources
of uncertainty need to be considered when modelling uncertainty
associated with long-term planning. However, previous studies only
addressed uncertainties associated with passenger demand. No other
sources of uncertainties were considered. In particular, fuel prices
are among the highest costs of an airline, reaching values of up to
60% of an airline’s direct operating cost (Clarke and Smith, 2004;
Belobaba et al., 2009). They are also critical for assessing the value of
renewing a fleet of aircraft. The major influence of fuel price, combined
with the extreme volatility in fuel prices (U.S. Energy Information
Administration, 2020), compromises the capability to accurately as-
sess the profitability of a fleet plan if fuel price uncertainty is not
considered (Naumann and Suhl, 2013).

When attempting to extend the fleet planning problem to consider
multiple sources of uncertainty, the challenge is to address the compu-
tational limitations associated with the traditional stochastic modelling
techniques. Including additional factors of uncertainty into a fleet
planning model will, therefore, either reduce the size of the problem
to which a solution can be found or limit the operational applicability
of this solution due to the sub-optimality of the implemented method.

In this article, we propose an Approximate Dynamic Programming
or Reinforcement Learning (RL) approach to address the airline fleet
planning problem under multiple sources of uncertainty. Dynamic pro-
gramming (DP) approaches were already proposed in the past to solve
large-scale planning problems (Lam et al., 2007; Cristobal et al., 2009;
Novoa and Storer, 2009), including some applications in the airline in-
dustry (Hsu et al., 2011; Khoo and Teoh, 2014). DP allows a sequential
decision problem to be subdivided into sub-problems which are solved
recursively (Bertsekas, 2005; Shapiro et al., 2014). However, solving
these large problems backward results in computational difficulties
when solving large use cases, as is seen in the literature (Pantuso et al.,
2015, 2016). This again requires the models to either be limited in size
or complexity to be solvable: the curse of dimensionality (Powell, 2011).
Reinforcement learning (RL) brings another angle to cope with the
computational difficulties associated with large DP problems (Sutton
and Barto, 2018). Following this technique, the problem is solved
by determining the optimal decision at every time step, and learning
the expected value by analysing previous interactions with the envi-
ronment. RL algorithms are a popular research topic and have been
implemented in many application fields (Lam et al., 2007; Novoa and
Storer, 2009; Simão et al., 2010; Powell et al., 2014; Mnih et al., 2015;
Tong et al., 2020; Chen et al., 2020). Practical applications of RL tech-
niques in aviation problems can be found in Balakrishna et al. (2010),
Shihab and Wei (2021) and Andrade et al. (2021). However, it must be
noted that cases of RL models in the strategic airline literature are very
limited. To the authors’ best knowledge, the only exceptions are the
academic works from Requeno García (2017) and de Koning (2020).
The most recent work, de Koning (2020), described the application of
a Deep Q-Network to a fleet planning model under demand uncertainty,
where an optimisation algorithm evaluates and learns optimal fleet
decisions. The algorithm was applied to an illustrative use case, and
it was shown that the method could improve its prediction values over
the learning period and produce near-optimal fleet solutions showing
comparable results to its deterministic equivalent. However, de Koning
(2020) concluded that the calculation of the reward function was
very computationally extensive. To calculate the reward, the solution
computed in each episode had to be compared to the optimal solu-
tion, which was computed using a MILP model, suffering from the
same computational issues as other approaches developed to solve
the fleet planning problem under uncertainty. This limits the size and
2

operational applicability of the method proposed.
In fact, despite the many application examples in the literature,
classical RL techniques, such as Q-learning, commonly suffer from
complications when applied to real-world problems because of two
reasons: (1) problems possess complex data samples, where even simple
implementations might require enormous amounts of data, and (2)
tuning parameters such as learning rates and exploration constants are
difficult to optimise and unstable (Haarnoja et al., 2018). These factors
cause slow convergence and expensive implementation procedures. A
possible method to reduce computational issues is using actor–critic
(AC) methods (Grondman et al., 2012). AC methods can achieve a
more rapid convergence than classical RL techniques, using simulta-
neous value and policy iteration to converge and train an agent more
efficiently. Arguably the most popular AC algorithm is the Advantage
Actor–Critic method (A2C) (Wang et al., 2017), which we adopt in this
article.

For this reason, in this paper, we propose the actor–critic (AC)
method to solve our stochastic multi-stage problem. In particular, we
propose to use the Advantage Actor–Critic algorithm (A2C) (Clemente
et al., 2017), adapted from the asynchronous variant of Mnih et al.
(2016). This has proven to be a promising algorithm in other fields
of research, such as robotics (Grondman et al., 2012). Additionally, the
major advantage of this method, compared to classical RL approaches
as Deep Q-Networks (DQN) (Arulkumaran et al., 2017), is that an
implementation of a less complicated reward function is possible.

In summarising, the contributions of this article to the state-of-the-
art are:

1. The first approach includes multiple sources of uncertainty in
the airline fleet planning optimisation process, and the first
implementation of fuel price as a stochastic variable.

2. A novel application of state-of-the-art reinforcement learning
technique to optimise this multi-stage stochastic problem.

3. The first application of an actor–critic method within the airline
planning domain providing a practical application example of
this algorithmic approach for supporting decision-makers.

The result of the proposed approach is a multi-stage probabilistic
fleet plan. That is, it is a plan over time representing the probability
of different compositions being the best fleet when considering future
demand and fuel price evolution scenarios. We believe that our ap-
proach, including two sources of uncertainty for the first time and
capable of considering a large set of scenarios when producing the fleet
plans, is relevant for airlines to support their strategic fleet decisions.
The probabilistic assessment of how the fleet should evolve will help
decision-makers to:

- know which action to take now to respond to short-term demand
and market opportunities and without compromising future de-
cisions’ scope.

- foresee how the fleet plan should evolve in the long term con-
sidering possible future scenarios, helping to prepare the fleet
evolution. For this, the decision-makers do not need to know ex-
actly what the fleet composition should be in, e.g., ten years but
would benefit from knowing the scale of the future investments
needed.

The remainder of the article is structured as follows. Section 2
specifies the problem addressed and develops a mathematical model.
Section 3 explains the RL approach, and Section 4 the model train-
ing. Results from computational experiments are given in Section 5.
Section 6 summarises future directions.

2. Problem formulation

The airline fleet planning problem is a multi-period optimisation
problem that concerns the fleet sizing decisions over a planning hori-
zon. This is a strategic problem that consists of defining the number

of aircraft of different types to acquire or retire at multiple decision
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periods. The goal is to maximise the estimated profit, given the esti-
mated demand, fuel prices, fleet composition, and allocation of aircraft
to potential routes in the network. In this sequential decision process,
the profitability of the fleet in future periods will be influenced by the
planning decisions in the initial periods.

In this section, we provide the formulation that we will follow to
address this problem using a reinforcement learning algorithm. The
formulation is presented as a Mixed Integer Linear Programming (MILP)
model, considering uncertainty related to demand and fuel prices. It
is assumed that these stochastic input factors have different values in
each decision period and that they follow a trend observed in historical
data. Decisions are made in discrete time steps 𝑡 = 0, 1,… , 𝑇 , with each
time step representing one or multiple years between decision periods.
Further, it is assumed that the profitability of the fleet per period can
be estimated by allocating the fleet to the airline network and using
the estimated demand for a standard week of the decision period. No
seasonality effects are considered.

The following sets are considered in the formulation of the problem:

 A set of discrete time steps corresponding to the
planning horizon 𝑇 = [0,… .𝑇 ]

 The set of available aircraft types (size 𝐾)
 The set of airports included in the network (size 𝑁)

.1. State variables

The state variables for this fleet planning problem capture the
omposition of the fleet and the estimated value of the stochastic
ariables. The state variable can then be described using the following:

𝑡 = {𝑎𝑐𝑘,𝑡, 𝑞𝑡𝑖𝑗 , 𝜙
𝑡} ∈ 

here,

𝑡 The current time step
𝑎𝑐𝑘,𝑡 The array of the number of aircraft in the fleet for each

type 𝑘, for the current time step t
𝑞𝑡𝑖𝑗 The array of the passenger demand for the route

between airports 𝑖 and 𝑗, for the current time step t
𝜙𝑡 The fuel price, for the current time step t
 Is the state space.

.2. Decision variables

The decision variables can be divided into two sets, the fleet evo-
ution decisions, representing the decisions regarding the evolution of
he fleet, and the fleet allocation decisions per time period 𝑡, defining
he optimal allocation of the fleet to routes in order to maximise the ex-
ected profit. The fleet evolution decisions modify the fleet composition
etween decision periods either by acquiring new aircraft or disposing
nits of the fleet. These decision variables can be formulated as follows:

𝑎𝑐𝑘,𝑡𝑎𝑐𝑞 The amount of acquired aircraft of type k, in time step t

𝑎𝑐𝑘,𝑡𝑑𝑖𝑠 The amount of disposed aircraft of type k, in time step t

in which,

𝑐𝑘,𝑡𝑎𝑐𝑞 ∈ Z+, 𝑎𝑐𝑘,𝑡𝑑𝑖𝑠 ∈ Z+.

Regarding the fleet allocation decisions, they reflect the frequency
efined and the flow of passengers in each route. The frequency is
efined by considering the fleet available and the demand estimate for
ach time period. The flow of passengers is divided into direct and
ndirect flows, the latter referring to passengers connecting at a hub
irport, in the case of a network carrier.
3

w

𝑧𝑘,𝑡𝑖𝑗 Weekly flight frequency from airport i to airport j
operated by aircraft type k, in time step t

𝑥𝑡𝑖𝑗 Transported passengers from airport i to airport j, in
time step t

𝑤𝑡
𝑖𝑗 Transported passengers from airport i to airport j

through the hub, in time step t

in which,

𝑡
𝑖𝑗 ∈ R+, 𝑤𝑡

𝑖𝑗 ∈ R+, 𝑧𝑘,𝑡𝑖𝑗 ∈ Z+.

or simplicity, and given the strategic scope of the problem, the two
assenger flow decision variables are assumed to be continuous.

We can then define the decision variables of our problem as the
uple of all the previous variables,

𝑡 = {𝑎𝑐𝑘,𝑡𝑎𝑐𝑞 , 𝑎𝑐
𝑘,𝑡
𝑑𝑖𝑠, 𝑥

𝑡
𝑖𝑗 , 𝑤

𝑡
𝑖𝑗 , 𝑧

𝑘,𝑡
𝑖𝑗 } ∈ 

here  is the action space. We let 𝑋𝜋 (𝑠𝑡) be the policy that maps a
tate 𝑠𝑡 to an optimal value of these decision variables.

.3. Exogenous information

The exogenous information is revealed in each decision period 𝑡
nd arises from a stochastic process. This information describes the
emand per origin–destination pair considered in the network and the
uel price. We model these stochastic variables using the following:

𝑞𝑡𝑖𝑗 Demand between airport 𝑖 and 𝑗 in time step 𝑡 [pax]

�̂�𝑡 The fuel price in time step 𝑡 [$/gallon]

We then write our exogenous information 𝑊𝑡+1 as

𝑡+1 = {𝑞𝑡+1𝑖𝑗 , �̂�𝑡+1}.

It is useful to think that this information is revealed to the decision-
aker in the time between the decision period 𝑡 and 𝑡 + 1, just before
decision is made. This information can be estimated using stochastic
odels developed based on historical data.

.4. Transition function

The transition function captures the evolution of the fleet over the
ecision periods, according to the fleet evolution decisions in each
eriod. We represent these transitions using the two sets of equations
elow.

𝑐𝑘,𝑡 + 𝑎𝑐𝑘,𝑡𝑑𝑖𝑠 − 𝑎𝑐𝑘,𝑡𝑎𝑐𝑞 = 𝑎𝑐𝑘,𝑡−1 ∀𝑡 ∈ (1,… , 𝑇 ), 𝑘 ∈  (1)

𝑎𝑐𝑘,0 + 𝑎𝑐𝑘,0𝑑𝑖𝑠 − 𝑎𝑐𝑘,0𝑎𝑐𝑞 = 𝐹 𝑘 ∀𝑘 ∈  (2)

where 𝐹 𝑘 is the initial fleet of aircraft of type 𝑘. The two functions
can be combined, together with the forecasts from the exogenous
information, into what we call the transition function that we write as

𝑆𝑡+1 = 𝑆𝑀 (𝑠𝑡, 𝑋𝜋 (𝑠𝑡),𝑊𝑡+1).

.5. Objective function

The objective of the fleet planning model is to maximise the profit
enerated from the allocation to the network of the fleet owned at the
ultiple time stages of the problem. To formulate the objective function

e use the following:
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𝑓𝑎𝑟𝑒𝑖𝑗 The average fare per passenger transport in a route
between airport 𝑖 and 𝑗 [$/passenger]

𝑐𝑘𝐷𝑂𝐶 Operating cost of an aircraft of type 𝑘 [$/mile/seat]

𝑐𝑘𝑜𝑤𝑛 Cost of owning an aircraft of type 𝑘 [$]

𝑐𝑘𝑑𝑖𝑠 Cost of disposing of an aircraft of type 𝑘 [$]

𝑐𝑘𝐷𝑂𝐶′ The fraction of the direct operating costs of the aircraft
type 𝑘 excluding fuel costs [$/mile/seat]

𝑑𝑖𝑗 Distance between airport 𝑖 and 𝑗 [miles]

𝜂𝑘 The fuel efficiency of an aircraft of type 𝑘
[gallon/mile/seat]

𝑛𝑤𝑒𝑒𝑘 Number of operating weeks in a year

𝑛𝑦𝑒𝑎𝑟 Number of years in an interval, i.e. the interval length

𝑠𝑒𝑎𝑡𝑘 Number of seats in an aircraft of type 𝑘

𝑞𝑡𝑖𝑗 Demand between airport 𝑖 and 𝑗 in period 𝑡 [pax]

The profit of the airline can be divided into three components,
eing the revenue generated from transporting passengers, the direct
perating costs associated with these flights, and the cost associated
ith having a fleet of aircraft. The revenues are computed by estimating

he number of direct and indirect passengers transported between each
air of airports, while the operating costs are computed based on
he weekly frequency to be offered in each route of the network.
ased on Repko and Santos (2017), we assume that there are no costs
ssociated with acquiring an aircraft. The fleet costs are captured by
onsidering ownership costs and disposal costs. The first represents the
osts associated with the depreciation of the aircraft value, eventual
ircraft financing costs, insurance, and maintenance costs. The latter
isposal costs may refer to the charge that will be applied when a leased
ircraft is returned before the end of the leasing contract, or to the value
ost in the case the airline sells an aircraft owned by the airline at a
ower value than its ‘book’ value. This way, the total profit over the
lanning horizon (𝑡 = 0,… , 𝑇 ) is then given by the following function:

𝑎𝑥𝑃 𝑟𝑜𝑓𝑖𝑡 =
∑

𝑡∈

∑

𝑖∈

∑

𝑗∈

[

𝑓𝑎𝑟𝑒𝑖𝑗 ⋅
(

𝑥𝑡𝑖𝑗 +𝑤𝑡
𝑖𝑗
)

]

−
∑

𝑡∈

∑

𝑖∈

∑

𝑗∈

∑

𝑘∈

[

(

𝑐𝑘𝐷𝑂𝐶′ + 𝜙𝑡 × 𝜂𝑘
)

⋅ 𝑑𝑖𝑗 ⋅ 𝑠𝑒𝑎𝑡
𝑘 ⋅ 𝑧𝑘,𝑡𝑖𝑗

]

−
∑

𝑡∈

∑

𝑘∈

[

𝑐𝑘𝑜𝑤𝑛 ⋅ 𝑎𝑐
𝑘,𝑡
𝑜𝑤𝑛 + 𝑐𝑘𝑑𝑖𝑠 ⋅ 𝑎𝑐

𝑘,𝑡
𝑑𝑖𝑠

]

(3)

where the three terms in the profit are respectively the revenue, the
operating costs, and the ownership costs. In order to incorporate the
influence of fuel prices in the direct operating costs, we have separated
the costs associated with fuel costs from other operating costs. We
considered the fuel efficiency of each aircraft type 𝜂𝑘, expressed by the
average amount of fuel consumed per each seat-mile travelled, which
is assumed to be computed at the maximum occupancy and ‘maximum
range at maximum payload’ of each aircraft type.

2.6. Constraints at time t

The optimal frequencies per route and flows of passengers in the
network at each time step 𝑡 must respect a set of constraints. These
constraints should reflect the relation between passengers demand
and network flows, the availability of aircraft to offer the capacity
needed to transport those passengers, the continuity of the aircraft and
passenger flow in the network and the range limitations of each aircraft
type. We use the following additional nomenclature to formulate these
4

constraints: (
𝐵𝑇 𝑘 Maximum amount of utilisation hours or ‘block time’ of
an aircraft of type 𝑘 [h/week]

𝑇𝐴𝑇 𝑘 Turnaround time for an aircraft of type 𝑘 [h]

𝑣𝑘 The average speed of an aircraft of type 𝑘 [miles/hour]

𝑅𝑘 Range of an aircraft of type 𝑘 [miles]

𝐿𝐹 The Load Factor, the percentage of which the aircraft
seats are filled

𝑔𝑖 Binary variable, 𝑔 = 0 if airport 𝑖 is the hub airport, else
𝑔 = 1.

The constraints to this problem can be formulated as follows:

𝑥𝑡𝑖𝑗 +𝑤𝑡
𝑖𝑗 ≤ 𝑞𝑡𝑖𝑗 ∀𝑖, 𝑗 ∈  (4)

𝑤𝑡
𝑖𝑗 ≤ 𝑞𝑡𝑖𝑗 ⋅ 𝑔𝑖 ⋅ 𝑔𝑗 ∀𝑖, 𝑗 ∈  (5)

𝑥𝑡𝑖𝑗 +
∑

𝑚∈ 𝑤𝑡
𝑖𝑚 ⋅ (1 − 𝑔𝑗 )

+
∑

𝑚∈ 𝑤𝑡
𝑚𝑗 ⋅ (1 − 𝑔𝑖)

≤
∑

𝑘∈ 𝑧𝑘,𝑡𝑖𝑗 ⋅ 𝑠𝑒𝑎𝑡𝑘 ⋅ 𝐿𝐹
∀𝑖, 𝑗 ∈  (6)

∑

𝑗∈
𝑧𝑘,𝑡𝑖𝑗 =

∑

𝑗∈
𝑧𝑘,𝑡𝑗𝑖 ∀𝑖 ∈  , 𝑘 ∈ 

(7)
∑

𝑖∈

∑

𝑗∈

(𝑑𝑖𝑗
𝑣𝑘

+ 𝑇𝐴𝑇 𝑘
)

⋅ 𝑧𝑡,𝑘𝑖𝑗 ≤ 𝐵𝑇 𝑘 ⋅ 𝑎𝑐𝑘,𝑡 ∀𝑘 ∈  (8)

𝑘,𝑡
𝑖𝑗 ≤ 𝑎𝑢𝑥𝑘𝑖𝑗 with: 𝑎𝑢𝑥𝑘𝑖𝑗 =

{

10, 000 𝑖𝑓 𝑑𝑖𝑗 ≤ 𝑅𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
∀𝑖, 𝑗 ∈  , 𝑘 ∈ 

(9)

here constraints (4) limit the number of direct and indirect passengers
ransported between any pair of airports to the demand estimated
etween these two airports. Constraints (5) consider the existence of
assengers connecting at a hub airport. In the formulation of our
roblem, we considered airlines with either one single hub airport or
urely point-to-point operations. In the case of a single hub airport,
onstraints (5) force that there are no indirect passengers between
irport 𝑖 and 𝑗, connecting at the hub airport if either of the airports
and 𝑗 are the hub airport. In the case of a point-to-point airline,

hese constraints cancel the possibility of using the matrix of indirect
assengers between any pair of airports 𝑖 and 𝑗. Constraints (6) guar-
ntee that the transported passengers on any route cannot exceed the
umber of available seats offered. To compute the number of seats
ffered in this strategic problem, we considered an average load factor
o capture the fact that most aircraft will not fly completely full.
onstraints (7) enforce that there is a balance between the number of
ircraft arriving at and departing from an airport in the considered time
tep. Constraints (8) limit the utilisation of the aircraft to a fraction
f the time of the fleet of aircraft of each type. That is, it is assumed
hat aircraft do not fly 24 h per day. Due to the turn-around times at
ach airport and the moments aircraft spend time on the ground for
aintenance, the aircraft availability is limited to an average number

f block hours per week. Finally, constraints (9) guarantee that aircraft
f a given type can only be allocated to routes within their range.

The network optimisation model resulting from constraints (4)–(9)
nd objective function (3) simulates an airline network operating a
ub-and-spoke network with a single hub. However, it also considers
he existence of flights between spokes, i.e., between 𝑖 and 𝑗 that are
ot the hub. Given this, the model can be used to also model purely
ub-and-spoke operations by eliminating routes between spokes or
oint-to-point networks by removing decision variables 𝑤𝑡

𝑖𝑗 , constraints
5) and adapting constraints (6).
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3. Approach

In this section, we elaborate on the reinforcement learning algo-
rithm developed to solve the multi-period fleet planning problem with
demand and fuel price uncertainty. We start by introducing the actor–
critic method adopted, followed by the methodology considered to
model the stochastic process associated with the demand and fuel price
estimations. The components of the environment model are discussed
in Section 3.3, followed by the elaboration of the reward computation.
We conclude this section with an overview of the training setup used
to train the A2C agent.

3.1. Actor–critic reinforcement learning

An RL approach supposes the existence of an agent that interacts
with an environment. The agent aims to find optimal actions following
a Markov Decision Process (MDP). When the agent takes actions in the
environment, a reward is generated. This process is repeated and the
agent is trained to find the optimal decisions (Sutton and Barto, 2018).

We recall the standard terminology of RL. At each time step t the
agent receives the corresponding state, 𝑠𝑡 ∈ , the set of possible states
with size 𝑆, of the environment. Based on this state the agent executes
an action, 𝑎𝑡, which is one of the possible actions in the action space,
𝑎𝑡 ∈ . Which action to take is determined by the MDP policy, 𝜋.
The policy is the transfer of the input state to an action, 𝜋(𝑎|𝑠). After
the action the environment transitions to the new state, 𝑠𝑡+1, and the
agent receives a reward, 𝑟𝑡+1. This reward corresponds to the action and
modification of the environment resulting in a new state. This loop is
an episode, 𝑒. This process is continued until the terminal state or the
amount of episodes are completed. The agent pursues a maximisation of
accumulated rewards by discovering the optimal policy. The objective
of the agent is to maximise the expected accumulated future reward, 𝐺𝑡.
These expected future rewards of an action are taken into consideration
when determining the policy.

We design the RL agent to use a function estimation method to learn
the optimal policy. Specifically, we use a neural network (NN) (Good-
fellow et al., 2016).

When the NN model is trained, the weights of the functions are
modified in order to minimise an error loss. The setup of a neural net-
work, being the different amount of layers and neurons, will hereafter
be referenced to as the model configuration.

As the RL training algorithm, we adopt a actor–critic method. This
method finds the optimal policy by simultaneously executing value
and policy iteration. The executed policy is denoted by the actor, and
the critic refers to the approximated value function (Grondman et al.,
2012). The actor executes an action, which the critic then evaluates.

As mentioned in the introduction, the Advantage Actor–Critic (A2C)
algorithm proposed in Mnih et al. (2016) has proven successful in other
domains. In this A2C algorithm, the value estimation metric is called
the Advantage, 𝐴(𝑠𝑡, 𝑎𝑡). This metric describes the expected reward of an
action given the state, compared to the prediction of future values when
in this state (Sutton and Barto, 2018, Section 13.4). A visualisation of
the A2C architecture is given in Fig. 1.

The actor and the critic are implemented as two separate neural
networks. The value function used to calculate the advantage and the
policy gradient are approximated using two different neural networks
and have different function parameters. The parameters of the policy
(actor) network are denoted by 𝜃 and the parameters of the value
function (critic) by 𝜃𝑣. In order to evaluate the decisions and update
the parameters, AC algorithms use losses, 𝐿, defined separately for the
actor and the critic. The actor loss, 𝐿𝜋 , is defined as the sum of expected
advantages. The output of the NN is a probability distribution of the
different actions. Multiplication with the corresponding advantages
for these actions yields the actor loss. The critic loss 𝐿𝑣 is defined
as the mean squared error between the reward as returned by the
environment and the expected reward. The actor loss 𝐿 and the critic
5

𝜋

Fig. 1.
The A2C Architec-
ture. .

Source: Adapted from Sutton
and Barto (2018).

Algorithm 1: Advantage Actor–Critic
Initialise agent
for each episode do

start episode
initialise environment
get initial state 𝑠𝑡
while not done do

perform action 𝑎𝑡 according to policy, 𝜋𝜃(𝑎𝑡|𝑠𝑡)
calculate action–value, 𝑄(𝑠𝑡, 𝑎𝑡)
transition to state, 𝑠𝑡+1
receive reward, 𝑟𝑡+1
calculate advantage, 𝐴(𝑠𝑡, 𝑎𝑡)

end
calculate actor loss, 𝐿𝜋
calculate critic loss, 𝐿𝑣
update actor network with the policy parameters, 𝜃
update critic network with the value parameters, 𝜃𝑣

end

loss 𝐿𝑣 are combined into the Total Loss 𝐿. An entropy term 𝐻(𝜋)
is included for the total loss, which encourages the agent to explore
different states. The entropy term penalises visiting known states. As
the advantage is included in the actor loss, the two neural networks are
intertwined and simultaneously trained at each iteration. Pseudocode
for the A2C training algorithm is presented in Algorithm 1.

3.2. Modelling uncertainty

Section 2 identified two key elements on uncertainty in the problem:
uncertainty in the demand and in the fuel prices. In this subsec-
tion we present the methodology followed to model both sources of
uncertainty.

3.2.1. Demand generation model
The airline market is influenced by yearly growth and variations,

and in addition, uncertain events have a high impact on demand and
other elements of the airline planning process. To capture this stochas-
tic and volatile nature of forecasting uncertainties in airline planning,
the mean-reverting Ornstein–Uhlenbeck (OU) process was used (Uhlen-
beck and Ornstein, 1930). The OU process is based on a Brownian
Motion, based on the underlying principle that after a disruptive event,
a process will eventually return to its mean function (Ibe, 2013). The
process describes the particle following a tendency and a shocking
term, and it is characterised by the trend to drift towards the mean
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tendency (i.e., mean-reverting). The attraction to the average tendency
is as larger as the particle trajectory moves further away from the
average trajectory. The magnitude of the shock term is dependent on
the volatility of historical data of the process being modelled. OU is a
popular forecasting method within the fields of financial forecasting,
economics and econometrics because of the stochastic nature of those
processes (Barndorff-Nielsen and Shepard, 2001).

For the demand forecasting technique used in modelling the fleet
planning process, the method used in Sa et al. (2019) is applied. The
authors justified the applicability of OU to forecast air travel demand
and its use in airline planning because of the strong correlation between
air travel demand and GDP. The mean-reverting process is a stochastic
differential equation of the growth of the air-travel demand 𝑞𝑡, which
can be discretised to estimate the next air travel demand growth 𝑞𝑡+1:

𝑞𝑡+1 = 𝑞𝑡 + 𝜆(𝜇 − 𝑞𝑡) + 𝜎 × 𝑑𝑊 𝑡 (10)

The term 𝜆
(

𝜇 − 𝑞𝑡
)

describes the mean reversion process often
called the drift term. 𝜆 is ‘the speed of the mean reversion’ describing
how fast deviation reverts back to the mean. The 𝜇 parameter, the
‘long term mean growth rate’, can be interpreted as the mean air-
travel demand growth which the model will approach in the long term.
Finally, the process becomes stochastic by including 𝑑𝑊 𝑡 = 𝑊 𝑡+1 −
𝑊 𝑡 which is assumed to follow the Normal(0, 1) distribution, and is
eferred to as the ‘shock term’. The term 𝜎 influences the impact of
he disruptions and can be interpreted as the volatility of the change in
he growth of demand.

The 𝜇, 𝜆, 𝜎 parameters are referred to OU parameters and are de-
ucted from historic data by approximation of the linear relationship
etween growth in demand 𝑥𝑡 and the change of the growth in demand
𝑡 with linear regression fitting. The linear regression of the historic
ata 𝑥𝑡, 𝑦𝑡 reveals the regression coefficients for the slope 𝑏 and the
ntercept 𝑎 of the fitted data to calculate 𝜆, 𝜇, and 𝜎 (Chaiyapo and

Phewchean, 2017).
In the research of Sa et al. (2019), the air travel demand trajecto-

ries for multiple routes are sampled independently from each other.
Those authors used historical data from each route in the network
to compute the OU parameters for each individual route. However,
we consider that this is an unrealistic representation of reality. The
demand growth is usually shared by most or several routes, since
this growth is commonly influenced by economic growth, fuel prices,
aviation market trends, or social factors. Therefore, in this article, we
propose an adapted OU demand forecast model in which we consider an
inter-dependency between the demand of each single route, referred to
ij, and the demand of all routes together or a set of routes that compose
a market, referred to m. More specifically, we first compute the network
parameters, 𝜆𝑚, 𝜇𝑚, and 𝜎𝑚, using the Least Squares Regression for
he cumulative demand from all routes, and we computed the OU
arameter per route, 𝜆𝑖𝑗 , 𝜇𝑖𝑗 , and 𝜎𝑖𝑗 , using the same method but

considering the historic demand per each route. To sample the demand,
firstly, the market growth, 𝛿𝑡+1𝑚 is sampled according to:

𝑡+1
𝑚 = 𝛿𝑡𝑚 + 𝜆𝑚(𝜇′

𝑚 − 𝛿𝑡𝑚) + 𝜎𝑚 × 𝑑𝑊 𝑡
𝑛 (11)

ith 𝜇′
𝑚 being the mean market growth, sampled according to 𝜇′

𝑚 ∼
(𝜇𝑚, 𝜎2𝑚). The market growth is used to compute the route growth,

𝑡+1
𝑖𝑗 , which is assumed to be an average of both the market and the
ndividual route growth:

𝑡+1
𝑖𝑗 = 1

2
(𝛿𝑡+1𝑚 + 𝛿𝑡𝑖𝑗 + 𝜆𝑖𝑗

(

𝜇′
𝑖𝑗 − 𝛿𝑡𝑖𝑗

)

+ 𝜎𝑖𝑗𝑑𝑊
𝑡
𝑖𝑗 ) (12)

The mean growth of a specific route is again sampled according to
𝜇′
𝑖𝑗 ∼  (𝜇𝑖𝑗 , 𝜎2𝑖𝑗 ) defined for each different routes. For both the market

and the route growth sampling, the Wiener process included with the
shock term is sampled according to 𝑑𝑊 𝑡

𝑖𝑗 ∼  (0, 1). With the growth
omputed for every market, for each time step, the estimated demand
or the next period, 𝑞𝑡+1𝑖𝑗 is:

𝑡+1 = 𝑞𝑡 × (1 + 𝛿𝑡+1) (13)
6

𝑖𝑗 𝑖𝑗 𝑖𝑗 T
Fig. 2 presents an example for the results from 50 different samples
computed with this approach for one of the routes of our case study,
the SFO–ORD (San Francisco–Chicago).

3.2.2. Fuel price generation model
Unforeseen events have a significant influence on fuel prices. This

extreme volatility is expected to be difficult to capture accurately
in a forecasting technique. However, OU has previously been used
to model both gas prices (Frikha and Lemaire, 2018) and crude oil
spot prices (Ogbogbo, 2018). Aucott and Hall (2014) conclude, based
on U.S. data between 1950 and 2013, that fuel prices and GDP are
interdependent as well, similar to the relation explored (Sa et al., 2019)
to estimate the demand forecast. For these reasons, we also used the OU
process to forecast fuel prices.

The OU parameters, 𝜆𝑓 , 𝜇𝑓 , and 𝜎𝑓 , now with a subscript 𝑓 to
represent fuel, can be computed using the Least Squares Regression
and historical fuel price values. The input for the OU process is the
average yearly values of the fuel prices, which in our study is assumed
to be constant over the year. For the fuel price forecast, the price 𝜙𝑡 is
generated directly by the OU process following:

𝜙𝑡+1 = 𝜙𝑡 + 𝜆𝑓 (𝜇𝑓 − 𝜙𝑡) + 𝜎𝑓𝑑𝑊𝑡

= 𝜙𝑡 + 𝜆𝑓 (𝜇𝑓 − 𝜙𝑡) + 𝜎𝑓 ⋅𝑁(0, 1)
(14)

An example of 100 fuel prices generated with this approach is
depicted in Fig. 3. The high volatility encountered in historic fuel prices
influences the shock term 𝜎𝑓 , resulting in a wide range of fuel forecasts.

3.3. Environment model

The environment model is captured using the state variables, the
decision variables, the exogenous information and transition function,
as described in Section 2. In this section, we further elaborate on the
formulation of the state space and action space. These are defined in a
way that it became efficient for the agent to learn an optimal policy to
solve the multi-stage fleet planning problem.

3.3.1. State space
As introduced in Section 2.1, the state variables can be capture using

the tuple:

𝑠𝑡 = {𝑎𝑐𝑡, 𝑞𝑡𝑖𝑗 , 𝜙
𝑡} ∈ 

However, for the definition of the state space for the A2C algorithm,
we decided to consider the demand variation, with respect to the
demand in the previous time step, 𝑞𝑡−𝑞𝑡−1, instead of the demand at the
beginning of the interval. This allows the A2C agent to optimally utilise
the difference in demand when making fleet decisions, increasing the
learning capabilities of the agent. Consequently, the resulting state
vector is given by Eq. (15).

𝑠𝑡 =
⎡

⎢

⎢

⎣

𝑎𝑐𝑡

𝑞𝑡𝑖𝑗 − 𝑞𝑡−1𝑖𝑗
𝜙𝑡

⎤

⎥

⎥

⎦

(15)

The size of the state space is defined by the number of aircraft types
used as well as the number of airports in the network. For each city pair,
one market is considered for the demand. The size of the state space
can be calculated following Eq. (16).

|| = 𝑛𝑎𝑐 + 𝑛𝑚𝑎𝑟𝑘𝑒𝑡𝑠 + 1

with: 𝑛𝑚𝑎𝑟𝑘𝑒𝑡𝑠 =
1
2
⋅ 𝑛𝑎𝑖𝑟𝑝𝑜𝑟𝑡𝑠 ⋅ (𝑛𝑎𝑖𝑟𝑝𝑜𝑟𝑡𝑠 − 1)

(16)

It can be inferred that with an increase in the number of airports
sed in the problem, the state space increases exponentially. Extending
he problem in size is therefore expected to have a significant influ-
nce on problem metrics such as the training time. Nevertheless, it is
ssumed that this computation complexity will not grow as much as
t would for an equivalent multi-period linear programming approach.
his hypothesis is examined in Section 5.
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Fig. 2. 50 samples of the demand on route SFO–ORD, using both the network and market parameters.
Fig. 3. An example of 100 different fuel price forecasts.
3.3.2. Action space
The action space for the A2C algorithm is defined using the decision

variables introduced in Section 2.2. As explained there, the variables
can be divided into fleet evolution and fleet allocation decisions. In the
formulation of the environment, it is assumed that the agent controls
the fleet evolution variables and that the fleet allocation decisions are
part of the reward calculation. That is, the weekly flight frequency and
the flow of direct and indirect passengers are estimated as a result of the
actions decided by the agent with regard to the acquisition and disposal
of aircraft. Therefore, only the fleet evolution decision variables were
considered in the action space for the agent.

Assuming that an airline can buy and sell any number of aircraft
at any decision moment of our problem raises dimensionality issues in
the formulation of the action space of our problem. For this reason,
we considered that the airline will only execute fleet modifications of
one aircraft type, and will not mix acquisitions and disposals in each
decision stage. Further, it is also assumed that the airline will only
consider a maximum number of aircraft to acquire or dispose at any
stage of the problem (i.e., 𝑓𝑚𝑎𝑥). This number can be defined as a
function of the problem size. For a problem with a smaller network, the
range in optimal fleet planning decisions will be of a smaller magnitude
than for a larger network.

Following these assumptions, the action space of our problem can
be reformulated as follows.

 =

[

[

𝐹 𝑘]
𝑘∈ , 0

]

with 𝐹 𝑘 = [−𝑓𝑚𝑎𝑥,… , 𝑓𝑚𝑎𝑥] 0 ∉ 𝐹 𝑘

(17)

where 𝐹 𝑘 denotes the collection of possible modifications for an aircraft
type 𝑘 ∈ , which is bounded by the maximum modifications allowed,
𝑓 ;  is the collection of available aircraft types with size 𝐾. The
7

𝑚𝑎𝑥
corresponding size is given in Eq. (18).

|| = (𝑓𝑚𝑎𝑥 ⋅ 2) ⋅𝐾 + 1 (18)

An example of the action space, for a simulation with 𝐾 = 2 aircraft
types and a maximum number of modifications of 𝑓𝑚𝑎𝑥 = 3 is given
in Eq. (19). It can be observed that the agent can make modifications
to one type in the fleet, or do nothing.

 =

⎡

⎢

⎢

⎢

⎣

−3,−2,−1,+1,+2,+3
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Type 1

,−3,−2,−1,+1,+2,+3
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Type 2

, 0

⎤

⎥

⎥

⎥

⎦

, with 𝐴 = 13

(19)

3.4. Reward calculation

Along with the state and action spaces, an appropriate design of the
reward function is essential to achieve proper learning and convergence
properties (Sutton and Barto, 2018). The reward function is responsible
for distinguishing between a good and bad action, giving a reward to
the A2C agent for taking good actions and punishing the agent when
taking poor actions. The agent’s goal is to maximise the total reward
it receives. The reward, 𝑟𝑡+1, is computed using the reward function
𝑅(𝑎𝑡, 𝑠𝑡, 𝑠𝑡+1) ∈ , with  being the set of possible rewards.

For our multi-stage fleet planning problem, the maximum reward
the agent can receive during an episode should be given by selecting
the actions that maximise the objective function described in Eq. (20),
respecting constraints (4)–(9). For each time step t, this could be
approximated by computing an optimal solution for the equivalent
single-stage fleet planning problem. In this case, the contribution value
resulting from an action 𝑎 at time step 𝑡 could be computed as follows:
𝑡
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Fig. 4. Visualisation of the interaction between the A2C agent and the environment during training. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
𝐶 𝑡+1(𝑠𝑡+1 ∣ 𝑎𝑡, 𝑠𝑡) =
∑

𝑖∈

∑

𝑗∈

[

𝑓𝑎𝑟𝑒𝑖𝑗 ⋅
(

𝑥𝑡𝑖𝑗 +𝑤𝑡
𝑖𝑗
)

]

−
∑

𝑖∈

∑

𝑗∈

∑

𝑘∈

[

(

𝐶𝑘
𝐷𝑂𝐶′ + 𝜙𝑡 × 𝜂𝑘

)

⋅ 𝑑𝑖𝑗 ⋅ 𝑠
𝑘 ⋅ 𝑧𝑘,𝑡𝑖𝑗

]

−
∑

𝑘∈

[

𝐶𝑘
𝑜𝑤𝑛 ⋅ 𝑎𝑐

𝑘,𝑡
𝑜𝑤𝑛 + 𝐶𝑘

𝑑𝑖𝑠 ⋅ 𝑎𝑐
𝑘,𝑡
𝑑𝑖𝑠

]

(20)

However, using this contribution value as a reward to train the
reinforcement learning agent will result in contribution values that
depend on the realisation of uncertainty. In contrast, high demand and
low fuel prices allow for more profit to be generated regardless of the
actions taken. To solve this problem, we propose a reward function
that scales the contribution value with the value associated with a
’doing nothing‘ action. That is, we cancel the exogeneity effects of
uncertainty realisation by considering a baseline solution as a scaling
element. The idea is that the A2C agent should be rewarded when it
performs better than the baseline solution and it should be penalised
when its action results in a lower contribution than ‘doing nothing’.
The proposed reward function is given by Eq. (21), in which 𝐶 𝑡+1

0 is the
contribution value of the baseline solution computed with the single-
stage version of the fleet planning model and 𝐶 𝑡+1

𝑏 is the contribution
value of the action taken by the agent.

𝑟𝑡+1 =
𝐶 𝑡+1
𝑏 − 𝐶 𝑡+1

0

𝐶 𝑡+1
0

(21)

With this expression, the agent’s actions directly influence the re-
ward, which is fed back to the agent to evaluate the action and learn the
best policy. The challenge is to compute the contribution value of the
actor’s action. Executing the single-stage fleet planning problem can be
computationally expensive. Given that a reward has to be computed for
thousands of training episodes, having the necessity to run it at every
episode has therefore a significant influence on the convergence time.

The A2C algorithm addresses this challenge. In fact, what we pro-
pose with this algorithm is to replace the computation of the optimisa-
tion problem with an estimation of the contribution value by using a
NN model. This can be trained to approximate the computation of the
8

reward in a matter of seconds. The overall approach can be summarised
in Fig. 4. There we can see three loops. The first loop, represented
by the blue arrows, is the computation of a single episode, over the
discrete-time steps of the planning horizon. In this cycle, the actor
defines the actions for multiple periods, according to the approximation
of the rewards for each action and the best policy. The second loop,
represented in purple, is used to represent the critic and estimates the
reward, or the so-called advantage. This loop is only run for part of the
episodes from the training set, enough to train the critic NN model. We
use the multi-stage fleet planning model to compute the contribution
value for the optimal decisions at each time stage. The third loop,
represented by the red arrows, is the training cycle. This cycle is used
to calculate the losses associated with both the decisions taken in the
first loop (actor loss) and the approximations made in the second loop
(critic loss).

4. Case study and model training

Having defined the A2C algorithm, this section reports how the
agent was trained to solve the multi-stage fleet planning problem. We
use a proof-of-concept problem representing the fleet planning process
of an airline operating on an airport network in the United States
(U.S.). The case study used to represent the problem is introduced
in the following sub-section, followed by the discussion of the model
configuration and the analysis of the model convergence behaviour.

4.1. Case study setup

The case study used to train and later assess the A2C agent com-
prises ten major U.S. airports in a network, including all 90 possible
routes between these nodes. This can be considered a small-size net-
work, equivalent in size to the one operated by Hawaiian Airlines (US)
and Lineas Aereas Azteca (Mexico). Two aircraft types are considered
in the case study, a medium-sized aircraft (AC Type 1) and a large-
sized aircraft (AC Type 2). The aircraft parameters needed for the
simulation were obtained from two narrow-bodies aircraft commonly
used by airlines. The parameters of the aircraft types are presented
in Table 1. We considered an initial fleet of 20 units of AC Type 1
and 10 of AC Type 2. The average fares per route and the historical
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Table 1
Parameters of the aircraft types used in the simulation.

Type 𝑠𝑘 𝑣𝑘 𝑅𝑘 𝐵𝑇 𝑘 𝑇𝐴𝑇 𝑘 𝐶𝑘
𝐷𝑂𝐶 𝐶𝑘

𝐷𝑂𝐶 ′ 𝜂𝑘 𝐶𝑘
𝑜𝑤𝑛 𝐶𝑘

𝑑𝑖𝑠
[-] [km/hour] [miles] [h/week] [h] [$/mile/seat] [$/mile/seat] [gallon/mile] [$/year] [$]

AC Type 1 162 543 3582 77 1 0.13 0.65 0.03932 3.05e6 3.05e6
AC Type 2 243 530 3377 80 1.5 0.135 0.0675 0.03878 2.4e6 2.4e6
t
t

4

b
c
t
a
a
E
o
f

𝐸

w

Table 2
Environment parameters for the initial problem.

Parameter Abbreviation Value

Number of Airports 𝑁 10
Number of Routes (𝑖, 𝑗) ∈  90
Aircraft Types  AC Type 1, AC Type 2
Maximum Load Factor 𝐿𝐹 0.85
Planning Period [years] – 10
Interval Length [years] – 2
Episode Length (time steps) – 5
Start Year – 2015
Maximum Fleet Choice 𝑓𝑚𝑎𝑥 5
Size of the Action Space |𝐴| 21
Size of the State Space |𝑆| 47

demand data are extracted from the Bureau of Transportation Statistics
public data set. In particular, the T-100 Domestic Market (U.S. Carriers)
database is used to obtain the historical monthly market data of all
U.S. airlines. This dataset contains information on all domestic flights
starting from 1990. The information includes specifics about the ori-
gin/destination, the operating airline, passenger numbers and distance
of a flight. The total amount of passengers between the different origin–
destination pairs is used to generate demand realisations for the future.
In addition, the fuel price forecast is done using data from the U.S.
Energy Information Administration (2020), containing kerosene prices
from 1990 onward. As explained previously, the Ornstein–Uhlenbeck
process is applied to the historical data to generate the demand/fuel
price scenarios for both the training and the testing of the model.
This is done to expose the model to the different realisations of uncer-
tainties and evaluate the performance for different situations. The ten
airports used in the case study are a selection of some of the busiest
airports in the U.S., being: San Francisco, Atalanta, Chicago-O‘Hare, Las

egas-McCarran, Phoenix, JFK, Boston-Logan, Dallas/Fort Worth, Seattle,
and Denver. For the extended case study discussed later, five more
airports are added, being: Los Angeles, Baltimore–Washington, Orlando,

inneapolis–Saint Paul, and Miami.
A planning horizon of 10 years was assumed with a fleet decision

every 2 year, resulting in 5 time periods for the A2C loop. To consider
the fact that aircraft will not always fly full, it is assumed that all flights
have a maximum load factor of 𝐿𝐹 = 85%. Table 2 summarises the
parameters used in the case study.

4.2. Model configuration and tuning

Model configuration refers to the setup of the NN used to represent
the actor and the critic in our algorithm: the NN architecture in terms of
layers and amount of neurons, as well as the specific hyper-parameters
that realise an optimal convergence and testing performance. When
tuning a RL agent, the goal is to achieve a rapid and good learning per-
formance, while mitigating the risk of over-fitting. During this research,
limited literature was found that described how to do so optimally.
Therefore we devised a strategy to tune the agent, including a grid-
search approach for the parameterisation of the agent model and an
empirical analysis for the agent configuration and training process.

The best configuration of the neural networks was obtained follow-
ing a grid-search approach. For different parameters combinations, the
agent was trained and tested for different sets of episodes to avoid
over-fitting. The resulting hyper-parameters are shown in Table 3. The
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amount of hidden layers 𝑛ℎ is 2, with 100 neurons for each layer. These
Table 3
Parameters used in the ‘optimal’ configuration.

Parameter Abbreviation Value

Learning rate 𝛼 0.0001
Discount factor 𝛾 0.95
Number of hidden layers 𝑛ℎ 2
Number of neurons 𝑛𝑛 100
Number of training episodes 𝐸 15 000

hidden layers are combined with the input of state 𝑠𝑡, and when passed
hrough the different neural networks, result in the policy 𝜋𝜃(𝑎|𝑠) for
he actor and value estimation 𝑉 (𝑠) for the critic.

.3. Model convergence

The A2C agent must be evaluated separately from the training,
ecause of the stochastic exploration. The training progress of the agent
an be observed by observing the Exponential Moving Average (EMA) of
he rewards 𝑟𝑡 during training. This gives an indication of whether the
gent is converging towards a desirable reward, and at which point the
gent is showing conversion. Closely monitoring the evolution of the
MA over time is also important for evaluating whether the model is
ver-fitting and whether to adjust the number of training episodes. The
ormulation of the EMA calculation is given in Eq. (22).

𝑀𝐴𝑡 = (𝑌𝑡 − 𝐸𝑀𝐴𝑡−1) ⋅ 𝑘 + 𝐸𝑀𝐴𝑡−1 (22)

ith 𝑌𝑡 = 𝑟𝑡

𝑘 = 2
1 + 𝑛

𝑛 = 50
The corresponding EMA evolution for the original problem over

time during training is plotted in Fig. 5. Because of the stochastic
exploration used by the A2C algorithm, the values of the EMA are quite
irregular. To be able to observe the trend a smoothed line is plotted.
A smoothing plot of the EMA shows an increase of the EMA over time,
indicating proper learning. The number of episodes, 𝐸, used for training
in order to achieve optimal convergence and testing properties, was
found to be 15 000.

5. A2C algorithm performance analysis

The performance of the A2C algorithm was analysed by consid-
ering a set of scenarios, with different sizes and complexity, and by
benchmarking it with two other modelling approaches. In the section,
we start by discussing the setup of the scenario, followed by the
benchmark techniques with which we compared the A2C algorithm.
In Section 5.3 we present the evaluation metrics used to compare the
multiple techniques. The performance of the techniques is assessed
in Section 5.4, followed by a sensitivity of the results to analyse the
correlation between some problem variables and the performance of
the techniques.

5.1. Scenarios

The performance of the A2C algorithm was tested in four different
scenarios (Table 4). The scenarios are the multiple combinations of two
problem sizes and the inclusion or not of the Fuel Price Uncertainty
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Fig. 5. EMA of the rewards during training for the original problem.
Table 4
Different scenarios used in the model validation.

Scenario 1 2 3 4

N 10 15 10 15
FPU No No Yes Yes

(FPU). The original problem size consists of 10 airports, and to test
the impact of increasing the problem size, five additional airports are
added in two of these scenarios, resulting in a total network of 210
possible routes. This is equivalent to a medium-sized network, with an
equivalent number of routes to the ones operated by, e.g., Thai AirAsia
(Thailand) and Jetstar Airways (Australia). We also increased the initial
fleet size — for this medium-size network, we considered the initial
fleet to have 40 units of AC Type 1 and 30 of AC Type 2.. To test the
impact of adding another source of uncertainty, both network sizes are
also evaluated with and without fuel price uncertainty.

The case study described in Section 4.1 was used to create the
environment for these scenarios.

5.2. Techniques to compare

The performance of the proposed A2C algorithm was compared with
two reference modelling techniques: namely, a deterministic multi-
stage fleet plan model and an alternative state-of-the-art RL algorithm.

The first of these was the Deterministic Dynamic (DD) model, in
which we considered the single-stage fleet planning model formulated
by the objective function (20), constraints (4)–(9), and by the following
additional set of constraints:
∑

𝑘∈

(

min
(

𝑎𝑐𝑘,𝑡𝑎𝑐𝑞 , 1
)

+ min
(

𝑎𝑐𝑘,𝑡𝑑𝑖𝑠, 1
)

)

≤ 1 ∀𝑡 ∈  (23)

∑

𝑘∈

(

𝑎𝑐𝑘,𝑡𝑎𝑐𝑞 + 𝑎𝑐𝑘,𝑡𝑑𝑖𝑠

)

≤ 𝑓𝑚𝑎𝑥 ∀𝑡 ∈  (24)

𝑎𝑐𝑘,0 + 𝑎𝑐𝑘,0𝑑𝑖𝑠 − 𝑎𝑐𝑘,0𝑎𝑐𝑞 = 𝐹 𝑘 ∀𝑘 ∈  (25)

𝑎𝑐𝑘,𝑡 + 𝑎𝑐𝑘,𝑡𝑑𝑖𝑠 − 𝑎𝑐𝑘,𝑡𝑎𝑐𝑞 = 𝑎𝑐𝑘,𝑡−1 ∀𝑡 ∈ (1,… , 𝑇 ), 𝑘 ∈ 

(26)

Constraints (23) and (24) limit the fleet decision to the action space
defined for the A2C algorithm. The first set of constraints guarantees
that only the fleet of one type can be changed per time period, while the
second set limits the amount of aircraft that can be added to or removed
from the fleet in a single time period. The last two sets of constraints
concern the fleet continuity over the planning horizon, given the de-
cisions made in a specific time period. Constraints (25) set the initial
time period, in which 𝐹 𝑘 is the initial fleet for aircraft of type 𝑘, while
constraints (26) repeat the transition for the subsequent time periods.
This model was solved at every time step for the remaining time steps
within the time horizon (i.e., [𝑡; 𝑡 + 1; ...; 𝑇 ]) and a modification of the
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fleet was computed accordingly. Future demand and fuel uncertainty
were estimated based on a simple linear regression forecast of the
expected future values. At every time step 𝑡 the stochastic inputs for that
time step were revealed, and a simple linear regression forecast is used
to estimate future values. The optimal solution is computed using the
commercial solver Gurobi. This model allowed us to assess the impact
of not considering uncertainty in the planning process and compare the
computation effort associated with both methods.

For the second comparison model, we used the Deep Q-Network
(DQN) algorithm proposed in de Koning (2020) to solve this multi-stage
fleet planning problem under demand uncertainty. This is a recurrent
RL technique used to solve large control and optimisation problems.
Comparing our A2C algorithm with the DQN algorithm gave us an idea
of the value of using the actor–critic concept, both in terms of solution
quality and computational times.

Furthermore, all these modelling techniques, the A2C algorithm,
the DD model, and the DQN algorithm, were also compared with the
optimal solution of the problem computed executing the multi-stage
fleet planning model together with constraints (23)–(26). The solution
was computed in a post-processing step, considering the realisations
of the uncertainties in the multiple periods. This optimal solution was
denoted as 𝐶𝐹𝑃𝑀 .

5.3. Evaluation metrics

To compare all these modelling techniques, in terms of resulting
profit (i.e., effectiveness) and computational time (i.e., efficiency), we
computed four metrics. Two metrics were related to the performance
and two other to assess the efficiency of the techniques.

The first effectiveness metric was the Testing Score, 𝑇𝑆. The Testing
Score assesses how close the solution from a modelling technique was
from the profit generated by the optimal solution. Being a comparison
with the optimal solution, this method allowed for an equal comparison
of the three techniques. Given that the profit by the entire fleet can be
a large value and the difference between the profit obtained by the
different techniques is relatively close to the optimal solution value,
we decided to escalate this score by only considering the interval
between the optimal solution value at a given time step (𝐶 𝑡

𝐹𝑃𝑀 ) and
a percentage of this optimal solution value, computed by considering a
lower bound coefficient, 𝑙𝑏 (Fig. 6). That is, if a technique 𝑋 generates
a profit value lower than 𝑙𝑏 ∗ 𝐶 𝑡

𝐹𝑃𝑀 the resulting Testing Score 𝑇𝑆𝑡
𝑋

is assumed to be 0. A maximum score of 1 was given in the case the
technique solution profit matches the optimal solution value and value
between 0 and 1 if the profit was between 𝑙𝑏 ∗ 𝐶 𝑡

𝐹𝑃𝑀 and 𝐶 𝑡
𝐹𝑃𝑀 (red

diagonal line). The TS for a technique 𝑋 was computed according to
expression (27).

𝑇𝑆𝑡
𝑋 =

⎧

⎪

⎨

⎪

𝐶𝑋 − 𝑙𝑏 ⋅ 𝐶 𝑡
𝐹𝑃𝑀

(1 − 𝑙𝑏) ⋅ 𝐶 𝑡
𝐹𝑃𝑀

𝑖𝑓 𝐶𝑋 > 𝑙𝑏 ⋅ 𝐶 𝑡
𝐹𝑃𝑀 (27)
⎩

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Fig. 6. Visualisation of the Testing Score applied to the A2C algorithm.
The second effectiveness metric was the Relative Score, 𝑅𝑆𝑋 , which
compares both RL algorithms with the DD model. The mathematical
expression for this score is:

𝑅𝑆𝑋 =
𝑇𝑆𝑋
𝑇𝑆𝐷𝐷

(28)

Finally, we used the conversion time, 𝛥𝑡, and the computational
time, 𝛿𝑡, to assess the algorithms efficiency. The conversion time de-
notes the total time needed to complete running all training episodes,
𝐸. This metric was only relevant for the RL algorithms. It refers to the
time needed to properly train the agents. The second metric was used
to compare the time it took the three techniques to compute the fleet
solution for a single episode.

5.4. Performance analysis

The analysis of the performance of the three modelling techniques
was divided into two parts. In the first sub-section, we compared the
three techniques for Scenario 1 (Table 4), given that the DQN algorithm
proposed by de Koning (2020) has a long training time and was
not adapted to consider other sources of uncertainty besides demand
uncertainty. In the second sub-section, we compared the performance
of the DD model and of the A2C algorithm for the four scenarios.

All metrics presented in this analysis were computed based on a
validation batch with a sample size of 𝑛 = 1000 episodes.

5.4.1. Scenario 1
An overview of the different Testing Scores, their corresponding

variance and Relative Scores for the different techniques is given in
Table 5. The results indicate that the A2C algorithm outperforms the
DD model and the DQN algorithm, both in terms of effectiveness and
efficiency. Although the A2C only provided a solution with a profit
value 0.4 per cent better than the solution from the DD model, the
DQN algorithm could not do better than the DD. This is in line with the
results reported by de Koning (2020). In terms of computational time,
𝛿𝑡, the A2C takes, on average, 3.28 s to compute the solution for a single
episode. This is 21 and 24 per cent of the time taken by the DD model
and by the DQN algorithm, respectively. It is important to recall that
the DQN presented de Koning (2020) has the necessity of continuously
calculating an equivalent DD solution in order to compute the reward.
This caused the agent to have an inefficient computational time, lim-
iting the model’s applicability. A major advantage of the proposed
A2C algorithm is the efficient reward function, removing the necessity
of calculating the FPM at every time step. The agent requires less
computational effort to complete an episode but needs more training
episodes (E). In total, the A2C agent needed 15 000 training episodes
to converge, against 5 000 for the DQN agent. However, because of the
reduced time needed to complete a training episode, the total training
time was significantly less. Completing all training times took 871 min
for the A2C agent, and 1130 min for the DQN agent.
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Table 5
Techniques performance and efficiency for Scenario 1.

A2C DQN DD

𝑇𝑆𝑋 85.90 83.88 85.56
𝑉 𝑎𝑟𝑇𝑆,𝑋 1.950 0.691 1.710
𝑅𝑆𝑋 [%] 100.40 98.04 –
𝛥𝑡𝑋 [min] 870.54 1130.32 –
𝐸 15 000 5 000 –
𝛿𝑡𝑋 [s] 3.28 13.56 15.29

5.4.2. Multiple scenarios
After concluding that the A2C agent is learning satisfactorily and

outperforms the DQN agent, the analysis is expanded in this subsection
to consider the four scenarios introduced in Section 5.1. We restrict our
attention now to the DD model and the A2C algorithm.

The metrics from both techniques are given in Table 6. The A2C
algorithm was able to outperform the DD method in the other three
scenarios too, both in terms of effectiveness and efficiency. The Related
Score increased when the problem size increased and when the fuel
price uncertainty (FPU) was considered. In fact, the A2C algorithm is
32.5% better than the DD model in the most complex case, with 15
airports and FPU included. For the two scenarios, including FPU, the
effectiveness of both the DD and the A2C techniques deteriorates when
compared with the optimal profit value, with Testing Scores of 50.4
and 60.1, respectively. However, the A2C seemed to cope better with
the increase of complexity. Further, the A2C obtained better Testing
Scores for the scenarios with FPU compared with the homologous sce-
narios without FPU, suggesting the technique’s suitability to deal with
multiple sources of uncertainty. When considering the 95% intervals in
Table 6, it can be concluded with a statistical significance that the A2C
consistently outperforms the DD model for scenarios 2 and 4.

As expected, the average computation time per episode, 𝛿𝑡, in-
creased with the increase of the size of the problem and the additional
source of uncertainty. The results suggest that the relative time increase
of the A2C agent is higher than for the DD equivalent. The computation
times for the DD model increased around 50 to 60 per cent when
considering five additional airports and do not change when including
FPU, given that the model is computed after the revelation of the
stochastic value and it is computed as a deterministic problem. On the
other hand, the A2C seemed to be more sensitive to the increase in
the problem size. The computation time increased by about 60 to 100
per cent when increasing the network size and slightly increases when
introducing the FPU. Still, this computational time of the A2C does not
compromise the practicability of the proposed technique. Even for the
case with 210 possible routes and including both demand and fuel price
uncertainty, the trained A2C algorithm can produce a solution to this
multi-stage stochastic problem in a matter of seconds.
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Table 6
DD and A2C techniques performance for the four scenarios. On the right-hand side, the 95% confidence intervals for the Relative Scores.

Scenario 1 2 3 4

𝑁 10 15 10 15

FPU No No Yes Yes
𝑇𝑆𝐴2𝐶 85.90 87.29 50.40 60.13
𝑉 𝑎𝑟𝐴2𝐶 1.95 1.69 5.95 7.74
𝑇𝑆𝐷𝐷 85.59 84.65 48.39 45.39
𝑉 𝑎𝑟𝐷𝐷 1.71 1.85 6.64 6.72
𝑅𝑆𝐴2𝐶 [%] 100.04 103.12 104.15 132.47
𝛿𝑡𝐴2𝐶 [s] 3.284 7.278 4.772 7.939
𝛿𝑡𝐷𝐷 [s] 15.29 24.68 15.75 24.78

𝑁 FPU 𝑙𝑏𝑅𝑆 𝑅𝑆𝐴2𝐶 𝑢𝑏𝑅𝑆

10 No 98.45 100.04 102.37

15 No 101.16 103.12 104.99
10 Yes 97.55 104.15 111.26
15 Yes 124.28 132.47 141.27
Table 7
Probabilistic fleet plan — A2C solution for the AC Type 2 fleet for Scenario 4.
Time step 1 Time step 2 Time step 3 Time step 4 Time step 5

Fleet size % Fleet size % Fleet size % Fleet size % Fleet size %

30 6,1 [30, 38[ 9,7 [30, 38[ 3,2 [30, 44[ 11,4 [30, 46[ 6,8
34 93,9 38 68,9 [38, 42[ 10,3 [44, 46[ 5,5 [46, 48[ 5,5

39 21,3 42 48,6 46 32,4 [48, 50[ 6,1
43 22,8 47 19,4 50 23,8
44 15 48 18,3 51 13,4

49 13 52 15,9
53 16,5
54 12
5.5. Analysis and discussion

In this section, we focus on Scenario 4. First we will analyse the
resulting probabilistic fleet plan obtained and discuss it can be used in
practice. Then we analyse the influence of the fuel prices generated and
the number of fleet modifications on the performance of the DD model
and A2C algorithm.

5.5.1. Fleet planning analysis
The fleet plan obtained by the A2C agent for Scenario 4 suggests

that the number of aircraft of AC Type 1 should be kept constant and
equal to 40 aircraft. The demand growth expected for most of the
markets should be captured by increasing the size of the AC Type 2 fleet.
The fleet for this fleet is summarised in Table 7. The probabilities were
computed by considering the fleet sizes suggested by the A2C agent for
the 1000 episodes of future demand and fuel price values considered.

This probabilistic fleet plan can help the decision-maker to under-
stand that, for instance:

- most likely, four new AC Type 2 aircraft need to be acquired in
the first time step (this was the best solution for 93.9 per cent
of the episodes considered);

- for the following time step, there are 68.9 per cent of chances
that the ideal fleet will be composed of 38 AC Type 2 aircraft,
and for 21,3 per cent of the episodes, the fleet should have 39
aircraft of that type;

- in the long term, there is an 81.6 per cent probability that in the
coming 10 years the fleet has to increase from the current 30
aircraft to a fleet of 50 to 54 aircraft.

5.5.2. Fuel price relation
The relationship between the fuel price and the Testing Score of

episodes solved by the algorithms is analysed using density maps. In
Fig. 7, the Testing Scores of the DD model (Fig. 7(a)) and of the
A2C algorithm (Fig. 7(b)) are plotted against the Cumulative Fuel
Price (CFP) generated in the 𝑛 = 1000 testing episodes. For reference,
the average score obtained by the two techniques is represented with
the horizontal line, while the vertical line indicates the average CFP
generated. The intensity of the colour indicates the number of episodes
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observed in a specific area of the map, with a darker colour indicating
a higher number of observations. The density plot of the fuel price
values is shown in Fig. 8(a). The observations approximately followed
a normal curve with an average value slightly lower than 1.6 units per
time step in each episode.

The DD model performed well, i.e., it obtained higher Testing
Scores, for these episodes with an average CFP. More specifically, we
observed that the best performance of the DD model was for cases in
which the generated CFP was slightly higher than the mean. As ex-
pected, the DD model lacks the flexibility to adapt and under-performed
for episodes the CFP deviated from the average. On the other hand, the
A2C algorithm performed very well for all episodes in which the CFP
value was lower or equal to the average value, and performed worst
for higher CFP. This suggests that the A2C agent was more adaptable
given that it was able to discover an optimal policy for a higher range
of CFP values and, in particular, for the cases with high expectancy.

The direct comparison between the two methods is presented in
Fig. 7(c). A2C algorithm outperformed the DD model when we have
a positive value (upper half of the map), and DD outperformed A2C
when we have a negative value. The figure shows that the deterministic
model was unable to manage the added uncertainty properly. It used
a deterministic forecast of the fuel prices, which resulted in poor
performance due to the high volatility. By contrast, the A2C agent
was able to utilise the available information and knowledge about the
fuel prices evolution better, showing high performances for situations
with a high frequency. This resulted in more satisfactory performance,
suggesting that the A2C agent was capable of properly adapting to the
volatile situation and learning the actions that maximise the expected
profit.

5.5.3. Fleet modifications
The relationship between the Testing Score and the corresponding

optimal amount of Optimal Fleet Modifications (OFM) was also investi-
gated (Figs. 7(d)–7(f)). Positive modifications indicate acquisitions and
negative modifications indicate the disposal of aircraft. The cases where
the OFM diverge from the average are of particular interest, as these
may indicate the robustness of the technique’s solutions. The density
plot of the optimal number of OFM is visualised in Fig. 8(b). It can be
observed that the OFM per episode was more volatile than the CFP, and
that there was an accumulation around a high positive amount of fleet
modifications.
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Fig. 7. Density maps of the Testing Scores against the Cumulative Fuel Prices (CFP) and the Optimal Fleet Modifications (OFM) for Scenario 4. Vertical and horizontal lines
represented the average values.
Fig. 8. Density plots of the average Cumulative Fuel Prices (CFP) per time step and the Optimal Fleet Modifications (OFM) for the 15 airport network.
From Fig. 7(d) it can be observed that the DD model performed
well for moderate OFM and showed a deteriorating performance when-
ever the optimal decisions deviated from the average value. This is
particularly the case for cases in which the optimal number of fleet
modifications was higher than 15. For these frequent cases, the DD
model had a poor performance. For the A2C algorithm (Fig. 7(e)), there
was almost a linear relationship between the OFM and the performance
of the algorithm. Once again, the agent was capable of finding a policy
to deal with the most frequent cases, without deteriorating too much
the performance for less frequent cases. It performed particularly well
for the cases with a high number of fleet acquisitions (with modifica-
tions above 15), and it was not much worst than the DD model for a
few cases for which the OFM should involve the disposal of aircraft.
This shows that the A2C agent was able to adapt properly to the
frequent occurrence of a high amount of OFM, and act accordingly.
The DD model, because of the limited forecasting capabilities, returned
sub-optimal solutions for most of the cases.
13
6. Conclusion

This article presented the first application of an Advantage Actor–
Critic (A2C) reinforcement learning agent within the airline planning
domain. Further, for the first time, we considered more than one
source of uncertainty when solving the multi-stage fleet planning prob-
lem. Besides the traditional demand uncertainty, we implemented the
highly-volatile fuel price uncertainty also as a stochastic variable.

For a case study with ten airports and only demand uncertainty,
the A2C approach outperformed a deterministic (DD) model and a
Deep Q-Network (DQN) RL approach. A2C provided a solution with a
profit value better than DQN and slightly better than DD in a baseline
scenario. Moreover, A2C required less than 25% of the computation
time of DQN, although the use of MILP in the reward function of DQN
gave the latter some advantages inconsistently, but not in a statistically
significant way.

The advantages of using the A2C when compared to the DD model
are even more evident from the results for problems we extended the
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size of the network and introduced fuel price uncertainty. A2C was
consistently capable of finding better solutions and has shown high
adaptability to the unpredictability of the fleet planning process. With
respect to computational efficiency, the A2C agent requires a significant
amount of time to be trained for bigger and more complex models.
This increase in conversion time is relatively higher than the change in
solving time for the DD model but it is not comparable with the time of
solving the stochastic multi-stage fleet planning problem. Furthermore,
after training, the A2C agent generates solutions nearly instantly.

This article has shown the potential of the A2C algorithm to solve
the multi-stage fleet planning problem under uncertainty. In particular,
we have shown how the resulting multi-stage probabilistic fleet plan
can be used to support the strategic fleet decisions of an airline.
We believe that this probabilistic assessment is the best way to help
the decision-maker to take short-term decisions while foreseeing the
general long-term evolution of the fleet considering a large set of future
scenarios. The potential of our approach can be further explored in
future research. For example, the A2C was proven to be suitable to
handle more than one source of uncertainty. Given its adaptability and
computation efficiency, this approach may be used to consider other
sources of uncertainty, such as the presence of competition and its
effect on demand. Another aspect to consider is the correlation between
these sources of uncertainty, including the impact of fuel prices on
demand.

To reduce the size of the action space, we assumed that at each
time step the airline only considers modifications for one aircraft
type. While being a common situation in reality, it limits the solution
options to solve the problem. The RL approach proposed should be
further extended to consider larger action spaces without compromising
the training time and algorithm effectiveness. Nevertheless, it should
be noted that the adaptivity of the agent to more extreme optimal
fleet modifications was higher than that of the deterministic model.
Considering that the frequency of these extremes increases when the
action space grows, the relatively good performance of the agent could
increase accordingly.

An increased action space would require additional exploration by
the agent and a more demanding training process. Therefore, some
effort should also be put into optimising the convergence of the RL
agent by studying the causes of over-fitting (Section 4.3). Identifying
these causes in an early stage can have a significant influence on
the efficiency of hyper-parameter tuning. Further, employing hyper-
parameter search methods (e.g., as discussed in Bergstra et al., 2013) to
A2C applications such as that addressed in this article can be studied.
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