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Abstract

Epilepsy is a common neurological disorder, but its diagnosis
remains difficult when screening EEGs lack interictal epileptiform
discharges (IEDs). Intermittent photic stimulation (IPS) can reveal
abnormal responses associated with epilepsy; however, its clinical
interpretation is often subjective, inconsistent, and sometimes
inconclusive. This thesis explores the automatic classification of
EEG responses to IPS using machine learning to improve diagnostic
accuracy and reliability.

Two datasets are analysed: the Temple University Hospital
(TUH) Epilepsy Corpus and clinical recordings from Erasmus MC.
A structured pipeline is developed, comprising preprocessing, fea-
ture extraction across temporal, spectral, wavelet, and connectivity
domains, and classification with interpretable models such as XG-
Boost and ensemble approaches. To ensure robust generalization,
leave-one-subject-out cross-validation is employed.

This work demonstrates that IPS EEG segments contain in-
formative features capable of distinguishing epileptic from non-
epileptic patients, even in the absence of IEDs, thereby aiding early
diagnosis and reducing the risk of misdiagnosis. Furthermore, the
use of explainability tools highlights candidate electrophysiological
markers, providing valuable insights and suggesting new hypotheses
for future investigation.
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Abstract

Epilepsy is a common neurological disorder, but its diagnosis remains difficult
when screening EEGs lack interictal epileptiform discharges (IEDs). Intermittent
photic stimulation (IPS) can reveal abnormal responses associated with epilepsy;
however, its clinical interpretation is often subjective, inconsistent, and sometimes
inconclusive. This thesis explores the automatic classification of EEG responses to
IPS using machine learning to improve diagnostic accuracy and reliability.

Two datasets are analysed: the Temple University Hospital (TUH) Epilepsy
Corpus and clinical recordings from Erasmus MC. A structured pipeline is developed,
comprising preprocessing, feature extraction across temporal, spectral, wavelet, and
connectivity domains, and classification with interpretable models such as XGBoost
and ensemble approaches. To ensure robust generalization, leave-one-subject-out
cross-validation is employed.

This work demonstrates that IPS EEG segments contain informative features
capable of distinguishing epileptic from non-epileptic patients, even in the absence
of IEDs, thereby aiding early diagnosis and reducing the risk of misdiagnosis.
Furthermore, the use of explainability tools highlights candidate electrophysiological
markers, providing valuable insights and suggesting new hypotheses for future
investigation.
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Introduction

1.1 Problem Statement

Epilepsy is a chronic neurological disorder characterized by recurrent, unprovoked
seizures due to abnormal brain activity. It affects approximately 50 million people
worldwide and significantly reduces their quality of life, as routine activities such
as driving can often become unfeasible due to the constant risk of seizures [1]. The
International League Against Epilepsy (ILAE) defines epilepsy as either having
experienced two unprovoked seizures more than 24 hours apart or having a greater
than 60% risk of seizure recurrence after a single unprovoked seizure [2]. While
the first criterion is relatively straightforward, assessing recurrence risk introduces
considerable complexity, especially in patients who have experienced only one
seizure.

A key diagnostic tool is the electroencephalogram (EEG), which measures ag-
gregate neuronal activity via electrodes placed on the scalp. EEGs are used to
detect seizures and Interictal Epileptiform Discharges (IEDs) i.e. abnormal brain
wave patterns that may indicate epileptogenic regions of the brain [3]. When such
markers are observed, a diagnosis of epilepsy may be made, particularly under the
second criterion of the ILAE definition. However, IEDs are not consistently present
in all epileptic patients, and their interpretation can be difficult [4]. Consequently,
many patients who are later confirmed to have epilepsy through clinical follow-up
cannot initially be diagnosed on the basis of EEG findings alone.

Intermittent photic stimulation (IPS) is another non-invasive activation pro-
cedure routinely added to EEG recordings. During IPS the patient is exposed to
stroboscopic flashes whose frequency is gradually swept, while brain responses are
monitored in real time. Detecting epileptic responses (absent during baseline EEG)
increases the likelihood of photosensitivity, thus refines the recurrence estimates
after a first seizure.

To further enhance diagnostic yield, some patients undergo sleep deprivation
before a second EEG, as this state can reduce inhibitory brain activity and increase
the likelihood of detecting IEDs or inducing seizure events [5]. While this approach
can improve detection rates, a significant portion of epilepsy cases remains undia-
gnosed after both standard and sleep-deprived EEGs. As a result, many patients are
placed under a wait-and-see policy, contributing to prolonged diagnostic uncertainty
and delayed treatment initiation [6]. This uncertainty is exacerbated by studies



reporting that up to 50% of individuals who have experienced a first seizure will
have a recurrence within a few years [7].

In the Netherlands and other countries, the standard diagnostic process often
combines EEG with magnetic resonance imaging (MRI) to assess seizure risk and
guide treatment decisions [8]. However, current methods are not always sufficient.
Therefore, expanding diagnostic capabilities, particularly by integrating advanced
computational approaches, could allow more patients to receive accurate and timely
diagnoses.

In response to this need, recent research has increasingly applied machine learn-
ing (ML) and deep learning techniques to EEG analysis, with the goal of identifying
epileptic patterns and improving diagnostic precision. This study contributes to
this growing field by presenting a data-processing pipeline for automated epilepsy
detection. Building upon methodologies from prior works [9-11|, the pipeline
includes four key stages: data acquisition, pre-processing, feature extraction, and
classification. Raw EEG signals are obtained from clinical sources, cleaned through
various signal processing techniques, analyzed for significant features, and ultimately
classified to distinguish between epileptic and non-epileptic patients.

By leveraging such structured and automated approaches, this research aims
to reduce diagnostic latency, improve treatment outcomes, and contribute to the
broader objective of advancing epilepsy care and neurological research.

1.2 Previous Works

This research extends upon the findings of Thangavel et al. [9], who indicated the
potential diagnostic value of EEG signals without interictal epileptiform discharges
(IEDs) in epilepsy detection. Building on this foundation, Y. Mirwani’s MSc thesis
validated these findings by replicating the study using a dataset from Erasmus
Medical Centre (EMC), Rotterdam [10]. Mirwani’s research involved identifying
optimal hyperparameters specific to each EEG feature set. His methodology in-
cluded segmenting EEG montages into epochs, computing features individually for
each epoch, and subsequently combining these epoch-level results using aggregation
methods such as mean, median, and standard deviation. The best-performing
EEG feature sets, based on Area Under the Curve (AUC) metrics derived from
Leave-One-Subject-Out (LOSO) cross-validation, serve as the starting point for
this current investigation.

The central aim of the current study is to evaluate whether analyzing data
from IPS trials can enhance the diagnostic capability of existing ML models in
distinguishing epilepsy from EEG signals without IEDs. Furthermore, the research
explores the optimal interpretation of ML model predictions to ensure practical



applicability within clinical settings.

1.3 Research Questions

This thesis investigates diverse strategies for feature extraction, ML based classifica-
tion, as well as rigorous evaluation methods within EEG signal analysis. Specifically,
this research addresses the following questions:

e RQ1: Is it possible to diagnose epilepsy by analyzing EEG segments recorded
during IPS?

e RQ2: How do proposed classification methods compare across different EEG
datasets, namely TUH versus EMC?

e RQ3: What are candidate electro-physiological markers for epilepsy?

These research questions guide the thesis, aiming to enhance the accuracy and
reliability of EEG classification through sophisticated feature extraction, advanced
machine learning approaches, and comprehensive evaluation methodologies.

1.4 Outline

The remainder of this thesis is structured as follows. Chapter 2 reviews the
background on epilepsy diagnosis with machine learning, introduces intermittent
photic stimulation, and highlights research gaps while also describing EEG montages,
features, and evaluation methods. Chapter 3 presents the datasets and feature sets
used in the study, while Chapter 4 details the methodological pipeline including
preprocessing, cross-validation, model training, and ensemble strategies. Chapter
5 reports statistical analyses of the extracted features, followed by Chapters 6
and 7 which present the experimental results on the TUH and EMC datasets
respectively. Chapter 8 discusses the findings in relation to existing literature and
clinical practice, and Chapter 9 concludes the thesis by summarizing contributions,
limitations, and directions for future work. Supplementary analyses and extended
results are provided in the appendices.



Background

This chapter presents an up-to-date overview of the various techniques and method-
ologies utilized in this thesis. It begins by outlining the current state of knowledge
regarding machine learning approaches to epilepsy diagnosis, allowing to highlight
the knowledge gaps that reinforce the motivation for this research. The relevance of
intermittent photic stimulation (IPS) is then introduced, followed by a discussion of
EEG processing methods such as reference montages. The chapter continues with
an explanation of feature extraction techniques, then details the machine learning
algorithms employed and the corresponding evaluation metrics. Finally, the chapter
introduces the statistical tests used in the analysis.

2.1 Epilepsy Diagnosis and Machine Learning

Current machine-learning (ML) research in EEG-based epilepsy largely focuses
on detecting specific events, notably seizures or interictal epileptiform discharges,
rather than making a definitive epilepsy diagnosis. Numerous studies have proposed
pipelines to automatically detect seizures [12, 13| or to detect IEDs [14]. In practice,
EEG analysis is indeed essential for the diagnostic workup of epilepsy, but diagnosing
the disorder involves more than finding EEG abnormalities. A single routine EEG
often fails to capture any seizures or epileptiform activity: in fact, up to 50%
of people with proven epilepsy show a normal EEG between seizures [15]. EEG
waveforms can sometimes appear deceptively normal or be obscured by artifacts,
and even pathological patterns can overlap with benign variants.

Because of this, epilepsy diagnosis relies on a combination of clinical history and
other tests (e.g. video-EEG monitoring or MRI), rather than EEG alone [16]. This
explains why most ML studies tackle the subproblems of seizure or IED detection
(which can support a diagnosis [17]) instead of attempting a standalone “epilepsy
yes/no” classification from EEG. Detecting hallmark events in EEG is a more
tractable and data-driven task, whereas a direct ML-based diagnosis of epilepsy
is far more complex due to the intermittent nature of seizures and the need for
clinical context beyond the EEG signals.

A critical concern in applying advanced ML to epilepsy is the interpretability of
the models. Many high-performing models are deep neural networks that act as
‘black boxes’, making decisions that are not easily explainable to clinicians. This lack
of transparency is problematic in a clinical setting where doctors must understand
and trust the basis of a diagnosis. While deep learning (e.g. Convolutional Neural
Networks or Recurrent Neural Networks, CNNs and RNNs, respectively) has



achieved outstanding accuracy in seizure detection tasks [18, 19|, these models offer
little insight into what EEG features drive their predictions.

In contrast, classical ML approaches using hand-crafted features (e.g. spectral
power, entropy) with algorithms like Random Forests or SVMs can be more
interpretable: one can examine feature importance or decision rules, which align
better with clinical reasoning. For example, a recent review noted that traditional
ML allows development of interpretable clinical features and models, an aspect still
highly valued in practice [18].

The trade-off is that simpler or constrained models may sacrifice some accuracy
in exchange for transparency. There is active research into bridging this gap, such
as designing deep models with built-in explanations or hybrid systems. Some works
add attention mechanisms or annotate EEG channels to highlight why a deep model
flags a seizure, incurring only a minor performance cost |20, 21].

Overall, improving explainability of EEG ML models is crucial: not only should
an algorithm detect abnormalities, but it should also explain the patterns it finds, so
clinicians can corroborate them. Only with clear interpretability will these models
gain acceptance as decision support tools in epilepsy diagnosis.

An accurate evaluation of any ML system for epilepsy diagnosis hinges on two
final considerations: the quality of the training data and, as discussed in the next
section, the rigour of the validation protocol. A persistent pitfall is reliance on
small, highly simplified datasets: most notably the single-channel Bonn University
corpus, which contains recordings from just ten subjects and contrasts clear ictal
segments with normal background rhythms [22]. Because the classes are so easily
separable, models routinely score near-perfect accuracies, as highlighted in the
systematic survey by Zendehbad et al. [23] and the earlier work of Acharya et
al. [24]. Yet such results provide little insight into how well these models would
perform on multi-channel, clinically realistic EEG.

Although Wong’s recent review catalogues a broader suite of EEG datasets
and their clinical characteristics [25], most of those collections are geared toward
seizure detection rather than the more challenging goal of classifying seizure-free,
inter-ictal recordings, the very scenario targeted in this project.

Even when researchers train on large, clinically realistic EEG corpora e.g. those
used by Myers et al., [26], Reddy N. et al., [27] and Cao et al., 28], reported
performance can still be misleading if the validation strategy is not designed to
prevent data leakage. Conventional train—test splits, unless performed strictly
at the subject level, allow recordings from the same patient to appear in both
the training and test sets. The model then recognises patient-specific patterns
rather than learning disease-relevant features, inflating accuracy and other metrics.
Kunjan [29] and Tougui [30] provide empirical evidence of this effect: they show that
even seemingly robust k-fold cross-validation remains overly optimistic for EEG
because folds are typically drawn at the recording level, not the patient level. Both
authors argue that, for neuroscience applications where inter-subject variability is
high, leave-one-subject-out (LOSO) cross-validation or an external hold-out cohort



is essential. These stricter protocols yield lower but far more realistic estimates
of generalisation performance and are therefore the recommended standard for
ML-based epilepsy diagnosis.

Table 2.1: Prior work in EEG-based epilepsy ML: datasets, validation (LOSO/LOIO /k-
fold), and headline metrics.

Author Model Dataset CV Performance Note

LOIO:
AUC=0.839,
TUH, LOSO, BAC=79.5%
Others LOIO LOSO:
AUC=0.856
BAC 78.1%

TUH with IEDs:
AUC=0.790
TUH, LOSO, BAC=71.7% Uses IED
Others LOIO TUH w/o IEDs: features
AUC=0.630
BAC=57.3%
Logistic AUC=0.940

Regression Others 10-Fold Accuracy=90.4%

TUH
AUC—0.76

Mirwani [10] XGBoost, C(NN TUH, EMC LOSO g&%:n% N/A
AUC—0.7

BAC=67%

Thangavel et al. [31] 1/2D CNN IED Based

Thangavel et al. [9]  XGBoost

Myers et al. [26]

Incorrect

Van der Kleij [11] XGBoost EMC LOSO  AUC=0.87 :
Ensembling

2.2 Baseline EEG and Intermittent Photic Stimulation

Intermittent photic stimulation (IPS) enhances standard EEG by delivering a
sequence of stroboscopic light flashes, typically ranging from 1 to 60 Hz, with
the patient assessed under both eyes-open and eyes-closed conditions. In healthy
individuals, IPS generally has no effect or produces a photic driving response (i.e.
synchronization of the posterior alpha rhythm and its harmonics with the flashing
light) without generating epileptiform activity. However, in certain susceptible
people, IPS can trigger a photo-paroxysmal response (PPR), which is characterized
by distinctive interictal epileptiform discharges (IEDs).



The presence of a PPR is especially significant, as it is strongly associated with
epilepsy [32]. Its detection increases diagnostic confidence even when spontaneous
IEDs are absent on the baseline EEG, and assists in clinical decision-making by
identifying individuals at risk of visually-induced seizures. Not only is the PPR a
frequent finding in such cases, but it is also highly diagnostically informative: its
presence substantially raises the likelihood of epilepsy, even if no spontaneous IEDs
are recorded during the baseline EEG.

In practice, the diagnostic yield of IPS depends on the specific stimulation
protocol. To reduce false negatives and standardize results across centers, a
European protocol was developed [33]. This protocol details the required light
intensity, duration of stimuli, and an ascending-descending frequency sweep (using
the following sequence: 1-2-6-8-9-10-13-15-18-20-23-25-30-40-50-60 Hz. If a
generalized response is seen at any frequency, skip the remaining frequencies and
proceed to 60 Hz, then sweep downward: 60, 50, 40, 30, 25 Hz, etc. until a PPR is
obtained again). It also mandates recording under three eye conditions: eyes open,
eyes closed, and during partial eye closure.

In summary, IPS provides a quick, standardized, and low-burden way to evaluate
epileptiform networks. A normal response can reassure clinicians when the baseline
EEG is inconclusive, while detection of a PPR strongly supports a diagnosis of
epilepsy. Because IPS can yield critical diagnostic information in just a couple
of minutes, it is now considered an essential part of first-line EEG evaluation for
suspected seizure disorders in most European centers.

2.3 Research Gaps

Existing studies in EEG-based epilepsy diagnosis face several key limitations:

1. A scarcity of methods for classifying epilepsy from interictal EEG segments
that lack obvious interictal epileptiform discharges (IEDs), making realistic
but subtle cases difficult and often overlooked.

2. Insufficient use of rigorous cross-subject validation (e.g., leave-one-subject-
out), with many works relying on k-fold evaluation that mixes data from the
same patients and thus inflates performance on seen subjects.

3. An over-reliance on overly simplified or non-representative datasets (e.g., the
Bonn corpus of isolated single-channel EEG segments) which do not capture
the heterogeneity of routine clinical EEG and can yield over-optimistic results.

4. Poor model interpretability, especially in deep learning approaches that often
function as black-boxes and thereby weaken clinicians’ trust.

The present study addresses these gaps by targeting epilepsy detection in IED-free
interictal EEG, leveraging a large multi-center clinical EEG dataset, rigorously



evaluating generalizability with a leave-one-subject-out validation scheme, and fa-
voring interpretable hand-crafted EEG features combined with transparent machine
learning models.

2.4 Montage, References, Segment Lengths and Statistical
Combiners

In order extract information from the EEG recordings, several features are extracted
from the signals using sliding windows of varying lengths, ranging from 1 to 60!
seconds. For each window, features are computed and then statistically summarized
using several combiners: mean, median, standard deviation, skewness, and kurtosis.
This statistical aggregation serves two purposes: it reduces the dimensionality of
the resulting data and allows the analysis to capture both short-term and long-term
temporal dynamics present in the data.

Montages refer to the way EEG electrodes are arranged on the scalp. Among
the standard placement schemes we can find the International 10-20 system [34].
Beyond this spatial layout, one can choose different scalp sites as voltage references;
configurations that specify such reference points are called referential montages.
Because all data in this study were recorded with the 10-20 system, from now on,
the term montage will denote a referential montage.
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Figure 2.1: Electrode montage for the international 10-20 system [34] with key regions
(frontal, temporal, central, parietal, occipital) indicated; used for all recordings in this
thesis.

1Segment lengths of 20 and 60 seconds s are only used for whole-trial recordings.



Table 2.2 summarizes the montages, segment lengths, and statistical combiners
used in the analysis. Specifically, four types of montages are examined: Common
Average Reference (CAR), Cz Referential, Longitudinal Bipolar (also known as
“Double Banana”) [35], and Laplacian [36]. Feature extraction is performed over
window lengths of 1, 2, 5, 10, 20* and 60! seconds, ensuring both fine-grained
and more global patterns are considered. The use of multiple statistical combin-
ers (mean, median, standard deviation, skewness, and kurtosis) further enriches
the characterization of the data by summarizing different aspects of the feature
distributions within each segment.

Table 2.2: Analysis design: referential montages, segment lengths (1-10 s; 20/60 s for
whole trials), and five statistical combiners used to summarize windowed features.

Montages Segment lengths [s] Statistical combiners

1

Mean
CCA . g Median
Laplazcian 10 Standard Deviation
BipolarDB 20! Skewne'ss
60! Kurtosis

2.4.1 CAR

The CAR montage is a reference-free method that avoids complications related
to using a physical reference [37]. In this technique, each electrode’s potential is
measured relative to the average of all electrodes, calculated as:

1 n
‘rCAR ‘IER, E ‘IER,

j=1

where V;*! is the potential between the i*" electrode and the reference, and n is
the number of electrodes in the montage [37].

24.2 Cz

In the Cz referential montage, the Cz electrode serves as a common reference for
all channels. It is particularly useful for detecting widespread brain abnormalities,
and differences between the hemispheres, though it is less effective for localizing
focal activity [38]. The Cz-referenced potential is given by:

‘/iCZ — ‘/iER o VCZ' (22)



2.4.3 Bipolar DB

The Longitudinal Bipolar montage consists of a series of electrodes connected to
their neighbouring electrodes in a chain-like pattern. It is favoured for its versatility
and is commonly arranged from anterior to posterior across para-sagittal and
temporal regions [35].

Table 2.3: Longitudinal bipolar electrode pairs mapped to approximate brain regions used
in feature computation.

Electrode Pair Brain Region

FP1-F7 Frontal - Temporal
F7-T3 Temporal

T3 -Tb5 Temporal - Parietal
T5- 01 Parietal - Occipital
FP1 - F3 Frontal

F3-C3 Frontal - Central
C3-P3 Central - Parietal
P3-01 Parietal - Occipital
FP2 - F8 Frontal - Temporal
F8-T4 Temporal

T4 - T6 Temporal - Parietal
T6 - O2 Parietal - Occipital
FZ - CZ Frontal - Central
CZ - PZ Central - Parietal
FP2 - F4 Frontal

F4-C4 Frontal - Central
C4 - P4 Central - Parietal
P4 - 02 Parietal - Occipital

2.4.4 Laplacian

The Laplacian montage addresses the issue of referential contamination—where
an outlier electrode skews the average—by using only the nearest surrounding
electrodes as the reference. This technique is particularly effective for identifying
focal brain abnormalities. According to Syam et al., Laplacian outperformed CAR
in their brain abnormality classification study [36]. The Laplacian potential is
calculated as:

1
‘/’iLap — ‘/;ER o ; Z ‘/jER7 (23)

JES;

where S; represents the set of surrounding electrodes for the it" electrode and j is
a member of S;.
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Table 2.4: Laplacian montage neighbourhoods: reference sets per electrode and associated

brain regions.

Reference . .
Electrode (Average of Neighbours) Brain Region
FP1 F7, FP2, F3 Frontal
F3 FP1, F7, FZ, C3 Frontal
C3 F3, T3, CZ, P3 Central
P3 C3, Th, PZ, O1 Parietal
F7 FP1, F3, T3 Frontal-Temporal
T3 C3, F7,Th Temporal
T5 T3, P3, O1 Temporal-Parietal
o1 T5, P3, O2 Occipital
FZ F3, FP2, C3, F4, CZ Frontal
CZ C3, FZ, PZ, C4 Central
PZ 02, P3, P4, O1, CZ Parietal
FP2 FP1, F8, F4 Frontal
F4 FP2, F8, FZ, C4 Frontal
C4 F4, T4, CZ, P4 Central
P4 C4, T6, PZ, O2 Parietal
F8 FP2, F4, T4 Frontal-Temporal
T4 T6, C4, F8 Temporal
T6 02, P4, T4 Temporal-Parietal
02 P4, T6, O1 Occipital

2.5 Feature Extraction

Feature extraction involves converting raw data into numerical representations
that retain the essential information from the original dataset. This process is
fundamental to the success of machine learning (ML) applications, including those
involving bio-signals for various neurological disorders. Choosing the right features
is a critical step, as well-selected features can significantly enhance the accuracy of
disease classification and prediction.

A feature typically captures a unique attribute, a measurable characteristic,
or a functional aspect derived from a specific data segment. The goal of feature
extraction is to preserve important embedded information in the signal while
minimizing loss. Moreover, it facilitates dimensionality reduction, which helps
decrease the need for extensive computational resources when processing large
datasets.

2.5.1 Univariate Temporal measures

Univariate Temporal Measures (UTMs) are fundamental for analyzing the time-
domain properties of EEG signals. These features provide valuable insights into
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the statistical characteristics of the signals, which play a crucial role in identifying
patterns linked to epilepsy. This section outlines the specific UTMs utilized in our
analysis pipeline and highlights their relevance to epilepsy diagnosis.

Let x(t) represent the EEG signal for a given channel. The following UTMs are
computed:

e Mean: The average value of the EEG signal over a specified time window,
providing a baseline level [39].

p= ol (2.4)

where N is the number of samples in the window.

e Median: The median separates the higher half from the lower half of signal
values. It is more robust to outliers than the mean, making it particularly
useful for skewed distributions.

e Standard Deviation (std): Measures the variability or dispersion of the
signal around the mean.

7=\ % (i) — pp (25)

i=1
A larger standard deviation indicates greater variability.

e Kurtosis: Assesses the ‘tailedness’ or presence of outliers in the signal

distribution.
1 & z(i) — p\*
Kurtosis = — — ] =3 2.6
urtosis = ;:1 ( . ) (2.6)

where o is the standard deviation. Higher kurtosis values indicate more
frequent occurrence of sharp peaks.

e Skewness: Evaluates the asymmetry of the signal distribution.

Skewness = %i (a@%ﬂ)s (2.7)

Non-zero skewness reflects deviations from symmetry.

e Peak-to-Peak Amplitude (V},): The difference between the maximum and
minimum signal values.

Vpp = max(z) — min(z) (2.8)
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e Number of Zero Crossings: The count of times the signal crosses the zero
voltage line.

e Number of Peaks: The number of local maxima, which may indicate spikes
or artifacts, especially relevant in epileptic EEG patterns.

e Non-linear Energy Operators (NLEO):
— Envelope Derivative (ED): Measures non-linearity in the signal envelope,
ED(z) = [«/()* + [H[2'(1)]]* (2.9)
where H denotes the Hilbert transform [40].
— Teager-Kaiser (TK): Estimates instantaneous energy,

TK(z) = [2/(1)]* — 2"(¢)] (2.10)

Non-linear energy operators are valuable for capturing transient energy changes
in EEG data [40].

e Signal Energy:

— Time Domain Energy (E;): Total energy in the time domain,

E, = log (%Zm)?) (2.11)

=1

— Frequency Domain Energy (Ey): Total energy in the frequency domain,
calculated via the Discrete Fourier Transform (DFT),

Ef =log <Z \X(k)|2> (2.12)

k=1
where X (k) is the DFT of x(t) [41].

e Shannon Entropy (H(z)): Quantifies the uncertainty or randomness of the
signal,
N

H(z) = =) pla(i)) log p(x(i)) (2.13)

i=1

where p(x(i)) is the probability of each signal value [42].
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2.5.2 Spectral Features

Spectral features are assessed using the relative power (RP;) calculated from five
standard EEG frequency bands: delta (J, 1-4 Hz), theta (6, 4-8 Hz), alpha (a,
8-13 Hz), beta (3, 13-30 Hz), and gamma (-, above 30 Hz) [9]. The relative power
for each band is defined as:

Py
Ptotal 7

RP; = (2.14)

where
Piotal = Ps + Py + Py, + P + P, (2.15)

and f denotes the respective frequency band (f € {9, 0, «, 8,~v}). Thus, five relative
power features are computed for each EEG channel segment.

2.5.3 Wavelet Features

Wavelet transforms provide a powerful approach for time-frequency analysis of
EEG signals, enabling the extraction of features that capture both temporal and
spectral information [43]. In this study, wavelet features are extracted using the
Continuous Wavelet Transform and Discrete Wavelet Transform.

Continuous Wavelet Transform

The Continuous Wavelet Transform (CWT) of a signal x(t) is defined as follows [44]:

W(a,b) — \/LIFI /Z (1) ¥ (t . b) dt (2.16)

where a is the scale parameter, b is the translation parameter, 1(t) is the mother
wavelet, and ¢*(t) denotes its complex conjugate.

For this analysis, the Morlet (‘morl’) wavelet is used as the mother wavelet, due
to its effective balance between time and frequency localization, which is widely
favored in EEG research [45]. Applying the CWT to a discrete signal x[n] produces
a matrix of coefficients:

W(al, bl) W(al, bz) tee W(al, bN)
Wias, b Wias, b <o Wias,b

CWTmatrix = ( 2 1) ( 2 2) . ( 2 N) (217)
W(CLM, bl) W(CLM, bQ) e W(CLM, bN)

To standardize feature extraction, the resulting CWT matrix is truncated to
include the first 13 scales.
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Discrete Wavelet Transform (DWT)

Unlike the CWT, which provides a continuous time-scale representation through
the inner product of the signal with continuously scaled and translated wavelets,
the DWT is specifically adapted for discrete signals [46, 47]. For a given discrete
signal, the DWT involves iterative filtering through high-pass and low-pass filters,
each followed by downsampling by a factor of two.

At each decomposition level ¢, the input signal or previous approximation
coefficients are filtered to produce approximation coefficients, representing the low-
frequency signal features, and detail coefficients, capturing high-frequency localized
details. Formally, these coefficients are calculated as:

Depi(k) = g(2k — n)Ay(n) = Dy (2.18)
Agr(k) =Y h(2k — n)Ay(n) = Ay (2.19)

The raw discrete-wavelet output for one channel is a collection of vectors
containing coefficients at a given level:

DWT = {AL} U {Dg ERM | je [L]},
N (2.20)

with A, € RE2, D, e RE¢ K, = L?J
where N is the input signal length in samples and L is the number of levels.

In this study, the Daubechies 4 (db4) wavelet is utilized, employing a 6-level
decomposition [48], aligning with practical limits commonly observed due to signal
length constraints. The resulting wavelet-based features enable comprehensive
characterization of EEG signals, effectively capturing both temporal and spectral
properties essential for robust epilepsy pattern detection.

Extracted DWT Features

Let ¢, be the wavelet coefficient obtained from level (or scale) ¢ € {1,...,L}. For
every level (or scale) we compress the entire set of coefficients into two energy
statistics:

1 <&
MSA, = z ; lco)?, (2.21)
1 2
SSA = \| 7 ;(m,m - MSA4> . (2.22)
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Here MSA, (Mean-Square Amplitude) represents the average energy contained
in the sub-band of level (or scale) ¢, while SSA, (Square-Amplitude Standard
Deviation) quantifies the temporal dispersion of that energy.

Because these four scalar features compress the time—frequency information into
simple measures of energy and its spread, they offer a computationally efficient yet
informative description of the EEG.

2.5.4 Stockwell (S-Transform) Features

The Stockwell transform (ST) augments the short-time Fourier transform with a
frequency-dependent Gaussian window, thereby preserving absolute phase while
achieving multi resolution time—frequency localisation [49]|. For a discrete signal
x[n] the ST is
S(T f) Nz_lx[n] |f| 6—7(”_72)2/[2 e—j27rfn/N
Y \/ﬂ 7

where 7 is the time index and f the Fourier index. Two time-frequency descriptors
obtained from the Stockwell Transform are particularly useful for EEG analysis:

n=0

e Mean Square Root of the Standard Deviations (mST) — This metric takes the
average of the square-rooted standard deviations calculated over every element
of the Stockwell-transform matrix. It summarises how much the signal varies
across all time—frequency bins [50].

mST = mean( std(ST)) (2.23)

e Skewness of the Sum of Powers (sST) — This statistic calculates the skewness
of the cumulative power of the Stockwell coefficients, exposing any asymmetry
in the distribution of spectral power [51].

Fs/2
sST = skewness Z| ST | (2.24)
F=0

Before computing the Stockwell Transform, each EEG epoch is edge-trimmed and
converted to its analytic form via the Hilbert transform to minimise boundary effects.
In practice, mST describes overall variability, while sST highlights imbalances in
power; together they help distinguish normal from abnormal brain activity [52].

2.5.5 Phase Locking Value

The phase locking value (PLV) measures the consistency of the phase difference
between two signals over time. It quantifies the degree of phase synchronization
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and is commonly used to assess functional connectivity between brain regions. The
PLV is computed as follows [53]:

PLV — % S exp (i (n) — 0y (n)]), (2.25)

where 1, (n) and 1, (n) are the instantaneous phase values of z,, and y, at time n,
obtained via the Hilbert transform.

The value of PLV ranges from 0 to 1, with 1 indicating perfect phase syn-
chronization and 0 representing no phase relationship. PLV is especially useful for
investigating functional connectivity in EEG data, helping to reveal the dynamic
interactions between different brain regions. Visualization of connectivity matrices
using PLV can illustrate differences between healthy and epileptic patients.

2.5.6 Cross-Correlation

The maximum normalized cross-correlation (C-C) quantifies the similarity between
two input signals, x, and y,, as a function of the time lag between them. This
metric evaluates how well the two signals are aligned at various time lags and
provides insight into their relationship. The computation is defined as follows [54]:

A 1 .
Ry max(m) = Ry, (m), (2.26)

Ry (0) Ry, (0)

where the cross-correlation function R,,(m) is given by

Ryy(m) = Yo TwtmYh, form 20, (2.27)
o Ry .(=m), for m <0, '

with IV representing the signal length and * denoting complex conjugation, RM(O)
and Ryy(O) represent the autocorrelations of x,, and vy, at lag zero, respectively.
This normalization ensures the cross-correlation is bounded and comparable across
different signals. The maximum normalized cross-correlation is particularly useful
for assessing the strength and temporal alignment of relationships between two
EEG signals across different time lags [54].

2.5.7 Graph-based Features

Based on the connectivity metrics calculated in Sections 2.5.5 and 2.5.6, two graph
representations of the channels are generated: GCC and GPLV [55]. From these
graphs, we extract a range of features, including nodal features, edge features, and
a single aggregate feature [56]. table 2.5 presents an summary of these network
based features.
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Table 2.5: Graph features derived from CC/PLV networks: node, edge, and aggregate
measures (adapted from BCT) [56, 57].

Feature Name

Description

Nodal Features

Degree
Strength

Assortativity

Characteristic
Path Length

Local Efficiency

Eccentricity
Betweenness Centrality

Eigenvector Centrality

Clustering Coeflicient
Node Coreness

Participation Coeflicient

Diversity Coeflicient

The number of connections a node has.

The sum of weights of connections a node has.
The tendency of nodes to connect to others that
are similar.

The average shortest path length between nodes.

Efficiency of information transfer within a node’s
neighbourhood.

Maximum distance between a node and any other node.
Count of shortest paths passing through a node.
Strength of a node based on the importance of its
neighbours.

The degree to which nodes cluster together.

The level of connectivity of a node within the network core.
Extent of a node’s connections across

different communities.

Diversity of a node’s connections across communities.

Edge Features

Assortativity Coeflicient
Global Efficiency
Radius

Diameter

Transitivity

Edge Neighbourhood
Overlap

Node Pair Degree

Correlation between the degrees of connected nodes.
Efficiency of information transfer across the entire network.
Minimum eccentricity among all nodes.

Maximum eccentricity among all nodes.

Ratio of triangles to triplets in the network.

Overlap in Neighbours of connected node pairs.

Product of degrees of connected nodes.

Aggregate feature

Matching Index

Amount of overlap in the connection patterns.

2.6 Machine Learning

Machine learning is a branch of artificial intelligence that focuses on developing
models capable of learning from data to make predictions or decisions. These meth-
ods are generally divided into supervised and unsupervised learning. In supervised
learning, the model is trained on labelled data, where each example is paired with
its correct output, to predict the labels of previously unseen data. In contrast,
unsupervised learning aims to discover patterns or structure in data without access
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to predefined labels or groupings. In this thesis, a supervised learning approach
is adopted. Each training instance is associated with a discrete label indicating
its class, more specifically whether the instance corresponds to a healthy or an
epileptic condition.

The internal parameters 6, of these models are usually trained by minimizing a
cost function J(#). Given that the task is a binary classification problem, this cost
function is defined as the cross-entropy loss. Formally, each model can be expressed
as a hypothesis function hy(x), which maps an input feature vector x € R™ from
the feature space to the binary output space y € {0,1}. The training procedure
involves finding the parameter set # that minimizes the cross-entropy cost:

m

min J () = —% @D log(he(x)) + (1 — y D) log(1 — he(xD))],  (2.28)

where m represents the total number of training examples, y® is the ground-truth
binary label for the i-th example, and ha(X(l)) is the model’s predicted probability
for that instance.

2.6.1 XGBoost

Extreme Gradient Boosting (XGBoost) [58] is an efficient and scalable implementa-
tion of gradient boosting machines. It constructs an ensemble of shallow decision
trees sequentially, where each new tree aims to correct the errors of the previous
ones. The prediction for the i-th instance is defined as the additive contribution of
K trees:

K
gi=>_ fux), fE€F. (2.29)
K1

where F denotes the space of trees with limited depth.
Model training is guided by a regularized objective function that balances
predictive accuracy and complexity:

£= 3 Uy i) + 32 0%, (2.30)

where [(y;, y;) is a differentiable loss (e.g., binary cross-entropy, Eq. (2.28)), and
Q(fx) penalizes overly complex trees:

Qfi) = 7Te + A _wy ;. (2.31)

J
Here, v controls the minimum loss reduction required to split a node, while A
penalizes large leaf weights. XGBoost also incorporates advanced techniques such as

shrinkage (learning rate), column subsampling (feature subsampling), and sparsity-
aware splitting, making it particularly well-suited for modeling high-dimensional
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EEG data. Its capacity to model complex, non-linear relationships between features,
combined with its interpretability facilitated by the tree structure, makes XGBoost
a robust method for producing accurate and clinically interpretable predictions.

2.6.2 Shapley Additive Values

Model interpretability is a key requirement for clinical adoption. To quantify how
each feature contributes to the final epilepsy prediction, we employ Shapley Additive
ezPlanations (SHAP) [59]. Given a feature vector x=(z1,...,2), let f(x) denote
the model’s predictive score (posterior probability of epilepsy). For every feature
i€{l,..., M} the Shapley value ¢; is defined as the average

b = Z|wwww4ﬂ

|
SCF\{i} 7

[fSu{i} (xsugy) — fs (Xs)], (2.32)

where F is the full set of features and fg is the model evaluated with only the
subset S present, the remaining features being integrated out with respect to their
empirical background distribution.

A positive ¢; pushes the prediction towards the epileptic class, while a negative
one favours the non-epileptic hypothesis. Because SHAP is additive, summing all
¢; plus the expected model output (i.e. bias) recovers f(x) exactly:

ﬂ@zﬂwﬂ+2% (2.33)

2.6.3 Accumulated Local Effects

Accumulated Local Effects (ALE) [60] describe how a feature influences the model
on average. ALE plots show how the prediction changes as we gradually increase
a feature, while carefully avoiding unrealistic value combinations. This makes
ALE more reliable than the commonly used Partial Dependence (PD) plots when
features are correlated, as is typical in EEG data. ALE look only at small intervals
where data actually exist. For a feature X partitioned into bins Zj, = (zj_1, 2],
ALE measures the average local change

Aj(zi-1,2e) = E[f (X, 20) = f(Xoj,z0-1) | X €Li], (2.34)

and then accumulates these increments across bins. The curve is centred so its
mean is zero: 3
Aj() = D Aj(zer, ) — E[A4;(X;)]. (2.35)
<k
This ensures ALE shows only relative changes, not absolute offsets.

A flat ALE curve means the feature has little effect. A rising curve means higher
values push the model more towards predicting positive label, while a falling curve
means the opposite. Nonlinear shapes (e.g. thresholds or plateaus) reveal complex
effects.
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2.6.4 Evaluation Metrics

To quantitatively evaluate the performance of machine learning models, appropriate
metrics are essential. In binary classification problems, model predictions can
fall into one of four categories: True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN). These outcomes are typically presented in
a confusion matrix for easy interpretation.

Confusion Matrix

The confusion matrix illustrates the number of correct and incorrect predictions
made by the model for each class. Its structure is presented in Table 2.6.

Table 2.6: Binary classification confusion matrix used to derive ACC, Sens, Spec, F1,

BAC, AUC, and AUPRC.

Predicted Positive | Predicted Negative
Actual Positive | True Positive (TP) False Negative (FN)
Actual Negative | False Positive (FP) True Negative (TN)

Each component of the matrix serves a specific role in evaluating classification
performance:

e True Positive (TP): The model correctly predicts a positive case.
e True Negative (TIN): The model correctly predicts a negative case.

e False Positive (FP): The model incorrectly classifies a negative case as
positive.

e False Negative (FN): The model incorrectly classifies a positive case as
negative.

Understanding these outcomes is critical. TP and TN reflect correct model behavior,
while FP and FN highlight potential pitfalls. An FP occurs when a healthy
individual is incorrectly flagged as having the condition, potentially leading to
unnecessary treatment. Conversely, FN results when the model fails to detect the
condition in an affected individual, which could result in missed diagnoses and
delayed care.

Sensitivity (Recall)

The sensitivity (or true positive rate (TPR), recall in ML) indicates the probability
of a positive outcome conditioned on the individual being positive. It is calculated
as:

TP

1l = = 2.36
Recall = Sens TP FN (2.36)
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Specificity

Specificity (alternatively true negative rate, TNR), indicates the probability of an
healthy subject to be predicted negative, conditioned on the subject being healthy.
It is computed as:

TN

== 2.37
TN+ FP ( )

Spec =

Precision

Precision, also Positive Predictive Value (PPV), allows to establish the percentage
of true positives among all positive predictions.

TP
Prec = PPV = ———— 2.
rec Vv TP+ FP (2.38)

F1 Score

The F1 score is the harmonic mean of precision and recall, providing a single metric
that balances both. It is especially useful when the class distribution is imbalanced,
as it takes into account both false positives and false negatives.

Pl — 2 x Prec x Sens
~ Prec + Sens

(2.39)

Accuracy

This is the ratio between the correctly predicted outcomes and total number of
predictions. It is computed as follows:

TP+ TN
ACC = 24
cC TP+TN+ FP+ FN (2.40)

Geometric Mean Score

The Geometric Mean Score is defined as the geometric mean of Precision and
Recall [61]:
GMean = vPPV - TPR (2.41)

Balanced Accuracy

Traditional can be misleading when dealing with unbalanced datasets (e.g. high
values can be achieved by predicting the majority class, however the model would
exhibit low sensitivity or specificity.

Sens + Spec

BAC =
¢ 2

(2.42)
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It can be formulated for arbitrary values, by finding matching thresholds one
can fix the sensitivity or specificity at a given value and compute the other, as
described in Algorithm 1.

Algorithm 1 Balanced Accuracy with Sensitivity Constraint

Require: Labels y € {0,1}", prediction scores s € [0, 1]", sensitivity threshold 7
Ensure: Balanced Accuracy BAC at specified Sens=r1

1. (FPR,TPR,T) + ROC_CuURVE(y,s) > Sweep all operating points
2: k + min{i | TPRJ[i] > 7} > First index that meets the sensitivity target
3: 0 < TIk] > Chosen score threshold
4y < I{s > 6} > Hard predictions
5. ('N,FP,FN,TP) < CONFUSIONMATRIX(y,¥)
e TP

6: Sensitivity < TPIFN

. Specificity < _IN
7. Specificity TN+ FP

s BAC Sensitivity + Specificity

9: return BAC

Receiver Operating Characteristic (ROC)

The ROC curve plots the true-positive rate TPR = TPZ% against the false-positive

rate FPR = % as the discrimination threshold sweeps the unit interval. Its area
under the curve (AUC) summarises performance in a single, threshold-independent
scalar: an AUC of 0.5 equals random guessing, whereas 1 denotes perfect separation.
Because TPR and FPR are both insensitive to class prevalence, ROC analysis
remains informative even when the epileptic and control cohorts are imbalanced,
although it may obscure poor precision when controls dominate.

Clinically Relevant ROC Evaluation

Referring once more to the ILAE definition of epilepsy [62], the second diagnostic
criterion requires a recurrence risk of 60% or greater to establish a diagnosis of
epilepsy. Building on this, Van der Kleij [11] applied Bayesian inference to express
the posterior probability of epilepsy as a function of model performance in ROC
space:

sens - P(A)
sens - P(A) + (1 —spec) - (1 — P(A))

P(A|B) = (2.43)
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P(A| B): Posterior probability that a subject has epilepsy (A) given a positive
model prediction (B)
P(A): Prior probability that a subject has epilepsy
sens:  Sensitivity (TPR or recall) of the model
spec:  Specificity (TNR) of the model

P(A) is estimated from the cohort of interest, representing the distribution skewness
in the available data. P(A | B) is fixed at 0.6 by ILAE definition, we can rearrange
the terms so that we produce a line in ROC space:

P(posterior) - P(healthy)

TPR =
P(epileptic) - (1 — P(posterior))

. FPR (2.44)

Precision—Recall (PR) Curve

The PR curve depicts precision (PPV) versus recall (TPR). Unlike the ROC,
precision directly incorporates the proportion of false alarms and is therefore more
sensitive to class imbalance. We report the area under the PR curve (AUPRC)
offering a complementary view that prioritises high-confidence predictions in low-
prevalence settings such as routine EEG screening.

2.7 Mann-Whitney U-Test

After extracting features from both epileptic and healthy patients, the Mann—
Whitney U-test is employed to compare the distributions of these features across the
two groups. This non-parametric test is particularly useful for identifying differences
between two independent samples without the assumption of an underlying normal
distribution [63].

Its underlying assumptions instead are: observations must be independent both
within and between groups; each feature should be measured on at least an ordinal
scale, as the test operates on ranks rather than raw values; for the test to be inter-
preted strictly as a comparison of locations (medians), the two distributions should
have similar shapes (i.e. variances and skewness) if this assumption is violated, the
test may detect general distributional differences rather than pure shifts in central
tendency; and finally, while the exact distribution of the test statistic assumes there
are no tied values, in practice the presence of ties is addressed by the algorithms
used to compute the values.

The test statistic U is computed using Eq. (3.4):
U= ning + - Rl, (34)
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where n; and no represent the sample sizes of the two groups, and R; is the sum of
the ranks for the first group. For every feature the test evaluates

Hy: Fi(z) = Fy(z) Vo (the two distributions are identical)

Hi: P(Xi1<X,) # 1 (the two distributions differ in location)

where F) and F;, denote the cumulative distribution functions of the epileptic and
healthy groups, respectively, and X;, X5 are random draws from those groups. A
two-tailed alternative is used because either group could exhibit larger (or smaller)
feature values.

Under the null hypothesis of identical distributions, the exact sampling distri-
bution of U can be enumerated for small samples; the p-value is the proportion of
all possible rank permutations whose U is at least as extreme as the observed one.

For moderate or large samples exact enumeration is impractical, so U is trans-
formed to a normal variate:

U—nuy ning \/nmz(m +ny+1)
Z = ) HU = ) oy = )
ou 2 12

and the two-tailed p-value is obtained from the standard normal cumulative
distribution function.

Because this test is repeated across m extracted features, the family-wise Type I
error rate would inflate if we relied on the raw p-values. We therefore apply the
Bonferroni correction, which in its equivalent “p-value adjustment” form multiplies
each raw p-value by the number of tests:

Dadj = M X Draw, capped at 1. (2.45)

A feature is deemed significant if p,q; < o, where « is the conventional threshold
(in this study o = 0.05). This conservative procedure ensures that the probability
of making even a single false discovery across all m features does not exceed «.

Since p-values alone do not convey the magnitude of an effect, we calculate
the effect size for each significant feature to better quantify its relationship with
the categorical variable [64]. In this study, we use the rank-biserial correlation
coefficient, defined as:

2U

ning

r=1-—

(2.46)

This coefficient estimates both the strength and direction of the association between
two independent groups and the outcome variable. Its values range from -1 to 1,
where -1 indicates a perfect negative relationship, 0 indicates no relationship, and 1
represents a perfect positive relationship.
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Datasets

The analyses in this thesis draw on two complementary electroencephalography
(EEG) resources: the publicly released Temple University Hospital (TUH) Epilepsy
Corpus and a clinically curated cohort from Erasmus MC (EMC). Together they
provide a broad spectrum of interictal photic-stimulation (IPS) recordings that
span different acquisition settings, demographics, and prevalence of epilepsy (Table
3.1). Leveraging both datasets allows us to (i) benchmark our methods on a
widely used public corpus and (ii) assess their generalisability on an independent,
real-world clinical cohort. The remainder of this chapter details the composition,
selection criteria, and IPS protocols of each dataset, highlighting key similarities
and differences that inform the experimental design in later chapters.

Table 3.1: Dataset composition: counts of IPS-segment samples and subjects (epileptic
vs. non-epileptic) for TUH and EMC.

Dataset TUH EMC

Epileptic 145 (13) 1302 (40)
Non-Epileptic 316 (18) 3243 (101)
Total 461 (31) 4545 (141)

3.1 TUH Epilepsy Corpus

The Temple University Hospital EEG Data Corpus (TUEG) [65] is the largest
publicly available collection of clinical EEG data. It contains 16,986 routine EEG
recordings from 10,874 unique subjects, with data collection beginning in 2000. A
subset of this dataset, the Temple University Epilepsy Corpus (TUEP), includes
diagnostic labels indicating whether a subject has epilepsy. Within TUEP, there
are 316 recordings from 100 healthy individuals and 1,389 recordings from 100
individuals diagnosed with epilepsy. From this subset, recordings that include
photic stimulation annotations were identified. This yielded 40 recordings from 31
distinct subjects: 13 with epilepsy and 18 healthy. The ages of these subjects range
from 12 to 88 years, with 12 females and 19 males. These particular recordings
were collected between 2003 and 2011.

The photic stimulation protocol was determined by examining the ‘Photic PH’
channel, characterized by bursts of peaks corresponding to the photostimulation
frequency, which was identified by computing the spectrogram of the ‘Photic PH’
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Figure 3.1: Example TUH IPS trial. Top: ‘Photic PH’ trigger channel; bottom: spec-

trogram showing stimulus frequency sweep and harmonics during intermittent photic
stimulation.

channel. The protocol employed by TUH differs from that of EMC, described
in section 2.2, and consists of 10-second periods of photostimulation followed by
10-second rest intervals. Frequencies were applied incrementally in 2 Hz steps,
starting at 1 Hz and progressing up to 21 Hz, with occasional extension to 23 Hz
for certain patients.

Among the 31 subjects, three have three recordings each, two have two recordings
each, and the remaining subjects have one recording each. Notably, 26 of these 40
recordings correspond to the subject’s first recording in the full TUEG dataset.

3.2 Erasmus MC

A total of 141 adult subjects were retrospectively included in this study, of whom
101 were classified as ‘healthy’ and 40 as ‘epileptic’, based on the occurrence
of a recurrent seizure. All participants were seen in the emergency room (ER)
following a first seizure. In accordance with standard protocol, an initial EEG
was conducted by the Department of Clinical Neurophysiology to assess the risk
of seizure recurrence. When the first EEG proved inconclusive, a second EEG
after sleep deprivation had been performed to increase the likelihood of detecting
epileptiform activity.

In this study, both the initial and follow-up (sleep-deprived) EEGs were incon-
clusive for all included subjects. Subject classification was based on a minimum of
one year of clinical follow-up. Patients who experienced a recurrent seizure during
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this period were labelled ‘Epileptic’, whereas those who remained seizure-free were
classified as ‘Healthy’.

If a subject initially labelled as healthy was later found to have had a recurrent
seizure upon re-evaluation of their medical record for clarification purposes, their
label was updated to ‘Epileptic’.

Only the first EEG, not the sleep-deprived follow-up EEG, was used in this
study. These recordings were retrieved from the EEG archive of the Department of
Clinical Neurophysiology at Erasmus Medical Center, Rotterdam.

In comparison with the datasets reported in the MSc theses by Mirwani and van
der Kleij [10, 11], some subjects were excluded from this study due to annotation
inconsistencies related to the IPS trials, after review and approval by Dr. Van
den Berg. This study was reviewed and approved by the Medical Ethics Review
Committee (Medisch Ethische Toetsings Commissie, METC) as non-WMO research,
under case number MEC-2021-0145. All data were pseudonymized and accessed
securely through the ‘my Digital Research Environment’ (anDREa B.V. 2021) [66].

3.3 Feature Sets

For each of the feature types described in Section 2.5, a feature vector is constructed
for each data point (either a whole IPS trial EEG recording or a 10s epoch derived
from it). Since the dimensionality of these feature vectors may vary depending on
the montage of choice, a summary is provided in Table 3.2 to help to understand
these sizes and the content of the each feature set.
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Table 3.2: Feature-set sizes by montage: dimensionality per set as the number of channels

N, varies.
. Feature Vector
Feature Type Feature details Shape
Spectral Relative power in 9,0, «, 5 and 7 frequency 1 x (Ngyx 5)

bands

Mean, Median, Std, Kurtosis, Skewness,
peak-to-peak amplitude, zero crossings,

UTM number of peaks, NLEO-ED, NLEO-TK, L (Nepx 13)
Signal Energy, Shannon Entropy
DWT MSA and SSA of DWT coefficients at 6 levels 1 X (Nep X 6 x 2% 2)
CWT MSA and SSA of CWT coefficients at 13 scales 1 X (Nep x 13 x 2)
CC Cross-Correlation between channels 1 x <Nch X %)
ST Skewness of sum of powers in 6,0, «, 8 and ~ 1% (Nyy x 6)

bands, plus one for the whole spectrum

Mean square root of the standard deviation of
mST powers in 9,0, «, 5 and v bands, plus one 1 X (Nep X 6)
for the whole spectrum

Phase Lock Value for each channel’s 4,6, a, 5 and

Nep—1
PLV ~ bands, plus one for the whole signal. L% <NCh T X 6>
GCC & Nodal and Edge features from CC and PLV 1 % 20 each
GPLV networks
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Methods

This chapter details the end-to-end methodology adopted in this study. Beginning
with the acquisition of raw EEG recordings, we walk through each stage of the
pipeline: from signal preprocessing and feature extraction to model training, cross-
validation, and performance evaluation, providing all information necessary to
reproduce our results.

4.1 Pre-Processing

Pre-processing of raw EEG data is a critical step to enhance signal quality and
ensure reliable feature extraction and classification. The pipeline used in this study
comprises the following stages:

1.

Channels not included in the 10-20 system are discarded. Signals are converted
to microvolts to maintain unit consistency across all recordings.

A notch filter (4'" order Butterworth) is applied at 50 Hz for EMC data and
60 Hz for TUH data to eliminate power line interference.

. A high-pass filter at 1 Hz (4" order Butterworth) to remove DC offset and

low-frequency drifts. All filters are applied using zero-phase filtering to avoid
phase distortion.

. Segments containing extreme values, indicating of measurement artifacts such

as electrode pop, are removed.

. Data is downsampled to 200 Hz for EMC and 250 Hz for TUH to reduce data

size and standardize temporal resolution for further processing.

. The EEG signals are then segmented into 1-second windows using a sliding

buffer. Artifact rejection is implemented as in [67], where each segment’s root
mean square (RMS) is computed. Segments exceeding a noise-based threshold
are flagged and discarded.

. The photostimulation segments are extracted, using annotation files for EMC

data, and for TUH data by inspecting the ‘Photic PH’ channel, as previously
illustrated in Section 3.1.

A summary of the preprocessing pipeline is shown in Figure 4.1.
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Figure 4.1: End-to-end preprocessing: channel selection, unit conversion, notch (50/60 Hz),
1 Hz high-pass, artifact removal, resampling (EMC 200 Hz; TUH 250 Hz), segmentation
(1 s) with RMS-based rejection, and IPS segment extraction.

4.2 Cross-Validation: Leave one subject out

Cross-validation (CV) is a fundamental technique in machine learning as it robustly
assesses a model’s performance on unseen data, offering a realistic indication of
how the model might generalize in practical applications [30]. Among various
cross-validation methods, leave-one-subject-out cross-validation (LOSO CV) closely
resembles real-world deployment scenarios. Specifically, LOSO CV involves iterat-
ively removing one subject out of N subjects from the dataset, training the model(s)
on the remaining N-1 subjects, and predicting the outcome for the excluded subject.
The predicted outcome is stored, and this process repeats sequentially until each
subject has served once as a test case. Finally, the aggregated stored predictions
across all subjects provide performance metrics reflective of true generalization
capabilities.

1 Train Test
3+ 2 Train Test | Train
[
jel
=]
© . .
5 3 Train Test Train
=
N | Test Train

Figure 4.2: Leave-One-Subject-Out (LOSO) cross-validation: train on N-1 subjects and
test on the held-out subject; repeat until every subject is tested once.
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4.3 XGBoost Parameters

In our experiments we used the XGBClassifier implementation from the xgboost
library. The main hyper-parameters were set as shown in Table 4.1

Table 4.1: XGBoost hyperparameters: roles and selected values for gradient-boosted trees
used across experiments.

Parameter Description

n_estimators=100  Number of boosting trees (iterations).

Maximum depth of each decision tree;

controls model complexity.

subsample=0.9 Fraction of samples used for training each tree.

Balances positive/negative classes for imbalanced data.
Dynamically computed for each fold

gamma=0.1 Minimum loss reduction required to split a node.
learning_rate=0.1 Shrinks contribution of each tree; lower values need more trees.

max_depth=6

scale_pos_weight

4.4 Feature Set Selection

As an initial step, LOSO-CV is applied to each individual feature set in order to
identify for each feature type the best-performing combination of montage, segment
length, and statistical combiner. As shown in Table 2.2, we evaluate four montages
and six segment lengths, using five different statistical combiners. This results in
K =4 x (6 x 5) = 120 unique combinations, and therefore 120 LOSO CV results
per feature set. For features extracted from 10-second epochs, only four segment
lengths are considered, leading to K =4 x (4 x 5) = 80 combinations for each set.
For every combination, training is repeated five times and the results are averaged.
Each of the ten feature types is then ranked based on the highest average LOSO
CV AUC achieved among the 120 (or 80) tested combinations. We retain the
information about the optimal montage, segment length, and statistical combiner
for each of the ten feature types, so that they can be used in the next stage, when
combining multiple features for the ensemble method.

4.5 Ensembling

In the ensembling phase, LOSO CV is repeated by combining different feature
sets. In this multi-feature scenario LOSO is performed as follows: A number of
feature sets from 2 to 10 is chosen. For each selected feature combination, the data
is split as train, validation, and test set. If there are N subjects in the dataset,
the N-th subject is left for testing. From the remaining N-1 subjects, 70% of the
subjects are used for training and 30% for finding the best combination of weights
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Figure 4.3: LOSO evaluation flow for individual feature sets: select montage/segment
length /combiner per set, train XGBoost, retain the best model.

for each feature-specific classifier. Using the validation data, we also determine
the optimal threshold that maximizes the Geometric Mean score ((2.41)). Finally,
the models are re-trained, on the union of training and validation data, and the
optimal threshold and weights are used to predict the test subject. This step is
repeated N times to evaluate all the subjects. Then, metrics are computed.

Given the large number of possible combinations, considering different mont-
ages, features, segment lengths, and statistical measures, a guided approach is
taken. Based on the feature rankings established in the initial selection stage, we
systematically evaluate ensembles containing two, three, four, and more feature sets.
For each feature set, we utilize the montage, EEG segment length, and statistical
measure that best performed on that feature during the previous stage of feature
set selection.
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4.6 Stacking Classifier

To determine the best combination of weights coming from each individual classifier,
a logistic regression (LR) model is used. The LR model is trained on the log-odds
predictions of the validation data, and the optimized weights will then be applied
to the left-out subject. This configuration is known as a stacking meta-classifier.
For interpretability we impose two constraints on the weight vector: every weight
must be non-negative and all weights must sum to one. The learning task therefore
becomes the following constrained optimisation problem:

N
1
mln N ; yilogo(z) + (1 —y;)logo(l — z;)] — ozzkzlog(wk)
— (4.1)

K
Zwkzl, wkZO Vk’,

where
K
2 = E Wk Pik,
k=1

is the weighted log-odd score, N is the number of validation samples, K the number
of base classifiers and p;; the log-odds from classifier k on sample i, o(-) is the
logistic function, and ), log (wk) is a penalty term to promote uniformity in the
weights. All results will be reported at o = 0.05, unless otherwise specified.

N Subjects

¥ Run N

. Times
N A SRyee Left Out Subject
I
¥
Train Validation
Subjects Subjects
. . Train Meta-Classifier Use optimal weights from
oy TrinClassifiers v ..._._onveldationsetprediction .y .. validation'set .
{ | |Feature Set; lassifier F'S; i | Feature Set; —>Classifier FS; i |Feature Set; lassifier F'S;
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i | |Feature Set,, lassifier FS,| | | Feature Set, —>Classifier F'S, i |Feature Set,, lassifier F'S,,

Figure 4.4: Ensemble LOSO scheme: base learners trained on selected feature sets; meta-
classifier stacks base predictions to yield per-subject scores.

34



4.7 Subject Prediction

Since the ultimate goal of this thesis is to investigate machine learning’s potential
for epilepsy diagnosis, specifically aiming for predictions at the patient level rather
than merely individual data segments, the methods utilizing data split into 10-
second epochs or in the case a patient has more than one recording, we obtain
predictions for each epoch/recording. These predictions are then averaged to
determine whether the patient is ultimately epileptic or not. Additionally, the same
metrics presented in Section 2.6.4 will be computed for the subject-level results,
ensuring comparability between outcomes obtained from the 10-second epochs and
those derived from entire subject recordings.

4.8 Feature Attribution with LOSO

Because leave-one-subject-out (LOSO) validation produces as many models as
subjects, feature attribution methods must be adapted to this pipeline. This allows
us to examine not only which features are important within a fold, but also how
consistently decision rules generalise across different subjects.

To avoid data leakage, SHAP values for each left-out subject are computed
using the explainer fitted to the model trained on the N—1 subjects of that fold.
The resulting attributions are then aggregated across folds in the same way as the
predictions. For visualisation, we employ beeswarm plots, which compactly display
both the distribution and direction of SHAP values. To maintain interpretability,
we restrict the analysis to the five features with the largest mean absolute SHAP
values.

Accumulated Local Effects (ALE) are computed analogously within each LOSO
fold. Feature bins are defined using only the training subjects, fold-specific ALE
curves are centred, and then interpolated onto a common grid before averaging
across folds. This produces a mean ALE curve with variability bands, offering both
interpretability and robustness. Given the clinical origin of the EMC dataset, ALE
analysis is reported specifically for this cohort, as the TUH data reflects a more
heterogeneous patient population with less certain diagnostic context.
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Statistical Analysis

This chapter presents the statistical analysis on the extracted feature sets for
both TUH and EMC datasets. The Mann-Whitney U-test is performed on each
individual feature, to check for significant differences between the two groups. For
each dataset and feature set, the montage, segment length, statistical combiner and
feature index with the lowest normalized p-value are reported. Only the features
extracted over the whole IPS trials are analysed, to not violate sample independence
assumptions.

5.1 TUH Dataset

Table 5.1 lists, for every feature set, the montage, segment length, combiner, and
feature index associated with the lowest p-value. In total, 33 features in the TUH
dataset proved significant after adjustment; none of the gPLV, PLV, or MST
features met this threshold.

Full details including effect sizes appear in Table A.1, from which two patterns
stand out:

e CC features: Feature 37 shows a consistently significant p-value across nearly
all segment lengths when the bipolar montage is used.

e CWT features: Feature 194 becomes significant for longer segment lengths
when either of the asymmetry combiners (skew or kurtosis) is applied.

Box-plots in Figures A.1 and A.2 illustrate the distribution of these significant
features. It can be noted how, despite having significant p-values and comparatively
large effect sizes, the feature distributions between the two groups tend to overlap,
pointing to the absence of a simple linear separation.

5.2 EMC Dataset

Similarly, table 5.2, summarizes for each feature set, the montage, segment length,
combiner, and feature index associated with the lowest p-value. In total, 16 features
from the EMC dataset were below the significance threshold after probability
adjustment; none of the GPLV features met this criterion.

Full details including effect sizes are reported in Table A.2,

The box-plots in Figure A.3 illustrates the distribution of these significant
features. Once again, it can be noted how, despite having significant p-values and
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Table 5.1: TUH feature significance: Mann—Whitney U results for features with between-
group differences.

Feature Type Montage Lseilg;cl}?né] Combiner Index P-value
cc BipolarDB 2 mean 37 0.02663
cwt CAR 5 skew 194  0.03506
dwt Cz 20 skew 76 0.02409
gce CAR 1 std 19 0.03633
gplv N/A N/A N/A N/A N/A
plv N/A N/A N/A N/A N/A
mst N/A N/A N/A N/A N/A
sst Laplacian 20 skew 106 0.02794
spectral CAR 60 std 37 0.02445
utm Cz 1 mean 205 0.01476

Table 5.2: EMC feature significance: Mann—Whitney U results.

Feature Type Montage Lseenggl?ﬁn[z] Combiner Index  P-value
cc CAR 20 skew 59  0.01959
cwt BipolarDB 20 skew 326 0.01750
dwt Laplacian 2 kurt 6 0.002747
gce CAR 20 kurt 6  0.01697
gplv N/A N/A N/A N/A N/A
plv BipolarDB 1 skew 335  0.02298
mst BipolarDB 1 skew 54 0.04513
sst CAR 5 std 1 0.04602
spectral Laplacian 1 std 18 0.03337
utm Cz 20 kurt 63  0.02531

comparatively large effect sizes, the feature distributions between the two groups
tend to overlap, pointing to the absence of a simple linear separation. If compared
to the distribution of the TUH data this overlap is even greater, as in general the
effect sizes are smaller for p-values of comparable magnitude.

Interestingly, no significant features arises from measures of central tendency such
as the mean or median; instead, every significant feature emerges from dispersion
combiners, namely standard deviation, skewness, and kurtosis.
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Results - TUH Dataset

This chapter presents the experimental results on the TUH dataset in two versions:
one including all patients and one excluding patients with IEDs. First, the individual
feature sets are compared, followed by ensembles of varying lengths built from the
best-performing sets identified in the previous stage. Additionally, for each of the
top individual feature sets, an explanation of the predictive value of their features
is provided.

6.1 Individual Feature Sets

6.1.1 With and Without IEDs

The optimal montage, segment length, and statistical combiner for each feature
type are determined using the method described in Section 4.4. A summary of the
results is provided in Table 6.1.

Table 6.1: TUH best individual feature sets (with & without IEDs): montage, segment
length, combiner, and performance (% mean £+ SD). Best performance in bold.

Feature Montage SEE:;?; Combiner AUC BACyg

Spectral CAR 1 skew 81.10 4 0.87 73.88 £+ 3.29
CWT BipolarDB 60 std 81.76 4+ 9.43 81.81 4+ 2.10
DWT Cz 10 skew 76.35 + 0.99 82.43 + 2.18
MST BipolarDB 10 skew 74.73 + 2.10 73.79 + 4.89
SST Laplacian 20 skew 80.24 4+ 1.28 77.49 £+ 6.41
CC Cz 10 skew 79.10 + 0.82 83.19 + 3.84
PLV Laplacian 2 std 79.10 4+ 1.43 81.29 4+ 1.92
GCC CAR 1 std 70.56 + 0.87 69.47 £ 7.01
GPLV BipolarDB 1 mean 52.70 £ 34.47 64.62 £ 19.99
UTM Laplacian 60 mean 87.46 + 0.75 81.91 + 2.22

UTM achieves the highest AUC, surpassing all other feature sets by a clear
margin: the next best, Spectral and CWT, score about 6% lower on average.
Notably, CWT exhibits a higher AUC standard deviation, suggesting less consistent
performance. Interestingly, both very short (1s) and long (60s) segment lengths
are associated with top AUC results. The skewness combiner performs well across
multiple feature sets, reinforcing the idea that robust statistics can outperform
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variance-based measures. Performance variability is evident, with CWT and GPLV
showing particularly high standard deviations, whereas UTM remains highly stable.
In terms of balanced accuracy (BAC), however, UTM ranks third with an average
BAC of 81.91%, behind DWT at 82.43% and CWT at 83.19%.

The ROC curves for all feature sets are shown in Fig. 6.1.
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Figure 6.1: TUH (with & without IEDs): ROC curves for each feature set computed over
whole IPS trials.

In addition to the cumulative statistics, average Shap values across the runs are
computed for each of the optimal setting for each feature set. Fig. 6.2 shows the
average SHAP value for the top 5 features in the UTM set.

6.1.2 Without IEDS

As before, the optimal set of parameters: montage, segment length, and statistical
combiner, is identified for each feature set, this time considering only patients who
do not exhibit IEDs in the recordings. The results for each feature set are presented
in Table 6.2.
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SHAP Summary Plot for utm - montage: Laplacian, segment_length: 60, combiner: mean
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Figure 6.2: UTM set global feature attribution: top 5 mean absolute SHAP values for
temporal features on TUH data.

In terms of AUC, the best-performing feature set is Spectral, achieving a
consistent score of 84.18% with zero deviation across runs, followed closely by sST
at 84.04% and PLV at 83.34%. When considering BAC, the Spectral feature set
again ranks first, with a score of 84.68%, followed by sST at 82.27% and CC at
80.08%.

The ROC curves for all feature sets are shown in Fig. 6.3.

Similarly to before, we compute the average SHAP values across the runs for
each of the optimal feature sets. Fig. 6.4 shows the average SHAP values for the
top b features in the Spectral set.

Table 6.2: TUH best individual feature sets (IED-free): montage, segment length, combiner,
and performance (% mean £+ SD). Best performance in bold.

Feature Montage Ssg:;iﬁt Combiner AUC BACy

Spectral CAR 20 std 84.18 + 0.00 84.68 + 0.01
CWT BipolarDB 60 std 76.32 + 0.03 69.87 + 0.02
DWT Laplacian 20 std 75.31 4+ 0.04 73.91 £ 0.01
MST BipolarDB 10 skew 69.02 + 0.03 69.92 + 0.05
SST CAR 20 mean 84.06 + 0.03 82.27 £+ 0.06
CC Cz 60 median 82.72 + 0.00 80.08 + 0.02
PLV BipolarDB 5 median 83.34 £+ 0.02 77.95 £ 0.05
GCC Laplacian 5 mean 72.16 £+ 0.02 74.87 £ 0.01
GPLV BipolarDB 10 median 63.30 + 0.03 71.46 + 0.01
UTM CAR 1 median 82.38 + 0.01 77.95 + 0.02
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ROC Curves for Best Feature Sets (Whole Data without IEDs)
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Figure 6.3: TUH (IED-free only): ROC curves per feature set on IPS trials with subjects
containing IEDs removed.

6.2 Ensembles - With and Without IEDs

After assessing the performance of each individual feature set, we retain the
configurations of the best-performing ones. Next, we construct ensembles of varying
sizes using this selected set. Predictions are weighted using the stacking classifier
described in Section 4.5.

The size 6 ensemble cc+plv+mst+utm+gec+gplv achieves the highest AUC of
93.80%, edging out other combinations by about 0.2-0.4%. The simpler ensemble
cc+plv+sst+utm attains the top BAC (90.20%), highlighting that smaller, more
focused ensembles can outperform larger ones in balanced accuracy. Standard
deviations vary, with some ensembles (e.g., cc+utm-+gec) showing higher variability,
whereas the best-performing ensembles (e.g., cc+plv+sst-+utm) remain relatively
stable. Notably, all ensembles except the two-feature one, include the UTM set,
highlighting its robustness as a core feature set for this dataset. The ROC curves
of each ensemble model presented above are shown in Fig. 6.5.
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SHAP Summary Plot for spectral - montage: CAR, segment_length: 20, combiner: std
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Figure 6.4: Spectral set global feature attribution: top 5 mean absolute SHAP values for
band-power features on TUH.

Table 6.3: TUH ensembles (all data): performance metrics (mean + SD over LOSO
subjects) for stacking and baselines. Best performance in bold.

Combination AUC BACg,

mst—+gcc 85.00 + 3.60 76.80 + 7.50
cc+utm-+gee 90.20 + 4.20 83.50 + 6.90
cc+plv+sst4+utm 93.60 £+ 3.60 90.20 + 5.10
cwt+plv+sst-+utm+gplv 92.30 + 3.30 86.90 + 4.10
cc+plv+mst+utm-+gec+gplv 93.80 £+ 2.20 80.10 + 6.80
cc+cwt+dwt+mst-+sst+utm-+gec 92.40 £+ 3.10 69.30 £ 4.50
cc+plv+mst+sst+spectral+utm-+gec+gplv 93.40 + 2.00 70.10 + 3.60
cc+dwt+plv+mst+sst+spectral +utm+gec+gplv 90.70 +£1.20  71.60 £+ 10.10

cct+cewt+dwt—+plv+mst+sst+spectral +utm-+geec+gplv - 88.90 £ 6.60 69.60 + 8.80

6.3 Ensembles - IED-free data

Similar to the single-set experiments described in Section 6.1.2, we retrain the
ensemble models on the TUH dataset, this time excluding patients with IEDs. A
summary of the results is presented in Table 6.4.
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ROC Curves of Ensemble Models
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Figure 6.5: TUH ensembles (all data): ROC curves comparing stacking/other ensembles
built from best individual sets.

Table 6.4: TUH ensembles (IED-free): performance metrics (mean + SD) after removing
subjects with IEDs. Best performance in bold.

Combination AUC BACg,

plv+sst 88.50 + 1.50 83.10 + 5.10
mst+sst+spectral 89.70 £+ 4.80 84.00 £+ 5.40
plv+sst+spectral+utm 90.10 + 5.60 84.00 + 6.00
cwt+plv+sst+spectral+utm 92.90 + 4.10 87.20 &+ 5.70
plv+sst+spectral+utm-+gec+gplv 91.40 + 2.50 83.80 4+ 8.00
cc+cewt+plv+mst+sst+spectral+utm 94.10 + 3.10 86.80 + 2.40
cc+cwt+plv+mst+sst+spectral4+gec+gplv 92.50 + 2.20 89.70 + 3.50
cectcewt+dwt+plv+sst+spectral--utm+gee+gplv 91.60 &+ 3.40 89.40 4+ 2.90

cctcewt+dwt+plv+mst+sst+spectral +utm-+gee+gplv - 89.80 £+ 3.70 85.10 £+ 4.40

The ensemble cc+plv-+mst-+sst-+spectral+utm achieves the highest AUC (94.10%),
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standing out as the most effective combination under IED-free conditions. Mean-
while, the smaller ensemble plv+-sst delivers the top BAC (83.60%), again suggesting
that compact configurations can offer superior performance. Ensembles that include
Spectral features are consistently strong across both metrics, aligning with findings
in the IED-inclusive setting. Performance variability is relatively low overall, with
standard deviations around 2-6%, indicating stable results even in the absence of
[ED-related activity. The ROC curves of each ensemble model presented above are
shown in Fig. 6.6.

ROC Curves of Ensemble Models
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Figure 6.6: TUH ensembles (IED-free): ROC curves for ensemble models trained and
evaluated after removing subjects with IEDs.
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Results - EMC Dataset

This chapter presents the experimental results on the EMC dataset. Similarly to
the TUH dataset, the individual feature sets are compared, followed by ensembles
of varying lengths built from the best-performing sets identified in the previous
stage. Additionally, the best performing individual feature set, an illustration of
the predictive value of its features is provided.

7.1 Individual Feature Sets

Using the method describe in Section 4.4 the optimal montage, segment length and
statistical combiner are determined for each feature set. A summary of the best
performing hyper-parameters is provided in Table 7.1.

Table 7.1: EMC—individual feature sets on whole IPS trials: montage/segment/combiner
with performance (mean £ SD).

Segment

Feature Montage Length Combiner AUC BACyg

Spectral  Cz 10 std 67.08 + 1.95 61.49 + 3.02
CWT BipolarDB 2 median 66.94 + 1.41 67.38 + 2.30
DWT Laplacian 10 median 69.80 £+ 1.26 63.17 £+ 1.58
MST BipolarDB 60 median 63.19 4+ 1.59 65.15 + 1.76
SST CAR 10 median 70.43 + 22.58  65.70 + 1.98
CC CAR 1 std 72.09 + 1.46 63.27 + 1.44
PLV Laplacian 60 kurt 75.01 + 2.59 70.50 + 3.53
GCC CAR 60 median 67.07 £+ 0.61 64.66 + 2.17
GPLV Laplacian 2 std 70.18 £ 1.01 61.78 £+ 2.10
UTM BipolarDB 20 std 68.26 + 2.94 63.47 + 3.99

PLV achieves the highest AUC, surpassing all other feature sets by a clear margin:
the next best, CC and DWT, score about 3% lower on average. Notably, SST
exhibits a very high AUC standard deviation, suggesting inconsistent performance
across trials. Interestingly, both very short (1s, CC) and moderate (10s, DWT)
segment lengths are associated with relatively strong AUC results. The kurtosis
combiner used with PLV appears especially effective, reinforcing the idea that higher-
order statistics can outperform variance-based measures. Performance variability is
evident, with SST and UTM showing particularly high standard deviations, while
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PLV remains highly stable. In terms of BAC, PLV also ranks first with an average
BAC of 70.5%, further confirming its robustness over competing feature sets.
ROC curves for all feature sets are shown in Fig. 7.1.
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Figure 7.1: EMC: ROC curves for individual feature sets computed over whole IPS trials.

In the SHAP analysis, higher PLV values between O2 and P3 channels in the
0-band, are associated with negative SHAP values, indicating a strong contribution
towards the healthy class. Conversely, higher values PLV between O1 and T5
B-band , are linked to positive SHAP values, favoring the epilepsy class. Similarly,
higher values of d-band PLV between FP2 and T5, §-band PLV between PZ and
FZ, and a-band PLV between F4 and FZ, also tend to push predictions towards
epilepsy. However, for feature 6-band PLV between PZ and FZ, substantial overlap
is observed in the medium-to-low feature range between the two classes, and for
a-band PLV between F4 and FZ, in the medium-to-high range, suggesting that the
separation between healthy and epilepsy is less clear-cut for these features.

To provide an additional perspective on feature attribution, we computed ALE
values for the PLV features with the lowest p-values (Fig. 7.3). From these plots,
several considerations emerge. First, the )-band PLV between FP2-T5 and between
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SHAP Summary Plot for plv - montage: Laplacian, segment_length: 60, combiner: kurt
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Figure 7.2: PLV set global feature attribution: SHAP values highlighting channel-pair
phase-locking features most associated with epilepsy on EMC.

02-P3 also appear in the SHAP analysis, which is partially consistent with their
p-values. Second, the behaviour of these two features is equivalent across both
attribution methods, reinforcing the hypothesis that they may be relevant to the
classification task, even though their p-values fall below conventional significance
thresholds.

7.2 Ensembles

Similarly to the TUH dataset, we construct ensembles of variable size using the
best sets identified in the previous section. A summary of the results is shown
inTable 7.2.

Table 7.2: EMC ensembles: performance metrics (mean + SD) for the top stacked models.

Combination AUC BACg,

cc+dwt 75.00 &+ 3.50 66.30 + 5.90
cc+mst+gplv 79.40 + 5.90 73.90 £+ 6.80
dwt+plv+gec+gplv 77.80 £ 5.50  70.00 £+ 11.60
cc+plv+utm+-gee+gplv 76.90 £+ 4.00 69.70 £+ 6.60
cc+dwtplvtsst-+geetgplv 78.90 &+ 5.00 71.60 = 3.70
cc+cwt+plv+sst-+spectral+gee+gplv 77.10 £ 5.10 71.50 &+ 7.50
cct+cewt+dwt—+plv+sst+spectral+gec+gplv 76.00 £ 3.00 69.80 4+ 4.30
cctcwt-+dwt+plv+mst+sst-+spectral +utm+gplv 75.40 + 2.40 67.20 + 5.70
cctcewt+dwt+plv+mst+sst+spectral +utm-+gec+gplv - 72.10 £ 6.60 67.20 £+ 6.60

After evaluating the ensemble configurations, we observe that performance
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ALE Analysis for Top 5 Mann-Whitney U Selected plv Features
Montage: Laplacian, Length: 60s, Combiner: kurt
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Figure 7.3: PLV set global feature attribution: ALE values for the features with the
lowest p-values. Rug plot below the curve indicates the feature value distribution.

varies depending on the combination and size of the feature sets. The three-
feature ensemble cc+mst+gplv achieves the highest AUC (79.40%), while the
five-feature ensemble cc+plv+utm+gee+gplv follows closely with an AUC of
76.90%. In terms of balanced accuracy at 80% specificity, the best-performing
configuration is the same three-feature ensemble (cc+mst+gplv, 73.90%), slightly
outperforming larger ensembles. Interestingly, increasing the number of feature
sets does not consistently improve performance, as larger ensembles such as cc
+ewt+dwt+plv+mst-+sst+spectral +utm+gec+gplv yield lower AUC (72.10%) and
BAC (67.20%). Standard deviations remain moderate across ensembles, indicating
stable performance with some variability for mid-sized combinations.despite being
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the strongest individual feature set, the PLV set is absent from the best ensemble
configuration.

Overall, these results suggest that compact ensembles, particularly those in-
cluding connectivity-based features such as cc and gplv, can provide more robust
discrimination than more complex configurations. The ROC curves for the models
discussed above are presented in Fig. 7.4.

ROC Curves of Ensemble Models
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Figure 7.4: EMC ensembles: ROC curves for top-performing stacked models built from
selected feature sets.

7.2.1 Unconstrained Ensemble Composition

We ran the ensemble pipeline with the meta-learner’s regularization parameter set
to a = 0, meaning no uniformity constraint was imposed on the ensemble weights.
This allowed the weights to potentially collapse onto one or a few dominant models.
The training was repeated five times, and we recorded each classifier’s weight in
the ensemble for every run. We then report the average weights across the five
repetitions, along with their respective standard deviations (Fig. 7.5).

On average, the ensemble assigns the greatest weight to the DWT feature set,
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Feature Weights Averaged Across 5 Runs
cc+cwt+dwt+plv+mst+sst+spectral+utm+gcc+gplv

+0.101

Features

Figure 7.5: EMC ensembles: mean base-learner weights across five training repetitions
(a = 0); error bars show standard deviation.

followed by GPLV, PLV, SST, and CC. The remaining sets receive comparatively
lower weights than expected under a uniform distribution, with notable deviations
such as CWT and MST, which frequently receive a weight of zero. Interestingly,
the GPLV set is consistently assigned a relatively high weight in the ensemble,
despite lacking individually significant features.
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Discussion

This chapter reflects on the implications of the results outlined in the previous
chapter. Rather than focusing only raw numerical comparisons, the discussion
later shifts toward clinical considerations. It begins with an evaluation of epoched
data versus whole trials, providing justification for the exclusion of the former
from the main results. Next, it examines the impact of excluding subjects who
exhibit IEDs from the dataset. Finally, the chapter explores clinical perspectives on
interpretability techniques and how they aid in understanding the models’ decision-
making processes, as well as potential integration of these techniques from clinical
data.

8.1 Use of Epoched data

Using the features computed over 10 second epochs did not yield any significant
performance increase when performing the search for the best individual set, as
shown in Section 4.4. A comparison of the mean AUC and BAC, for both dataset
is illustrated in Figs. 8.1 and 8.2. After observing this outcome, the use of features
computed from 10s segments was not extended to the ensemble method, as it
appeared to be an unviable direction. This decision was motivated not only by the
lack of performance improvements but also by the substantial increase in sample
number, which in turn increased training time more than twofold. Given that
the ensemble models already required considerable computation under LOSO-CV,
further extension was deemed impractical.

8.2 Data with IEDs vs IED-free

Since the EMC dataset is free of IEDs by design, it is instructive to compare
performance on the TUH dataset with and without such discharges. As shown in
Table 8.1, some notable differences emerge. It is important to clarify, however, that
the IED-free condition was obtained by excluding only two subjects, both of whom
were labeled as epileptic.

Overall, while most feature sets show a moderate positive shift in AUC after
IED removal, the differences in BACg are considerably larger. This suggests that,
under hypothetical class-balanced conditions, classification may in fact become
more challenging when working with IED-free data, depending on the chosen
feature representation. A particular case is the GPLV feature set, which shows a
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Figure 8.2: EMC: performance comparison between epoched IPS segments and whole-trial
analysis.

large apparent improvement; however, this is primarily a consequence of its near
chance-level performance in the mixed-data condition (Table 6.1).

Having compared individual feature sets, we now turn to ensembles of multiple
feature representations. Tables 6.3 and 6.4 summarize the results for TUH data
with and without IEDs, respectively. A direct comparison is provided in Table 8.2.

Beyond the numerical results, it is also important to acknowledge dataset limit-
ations. Although TUH is the largest publicly available EEG repository, the present
work employs only a small subset consisting of recordings with IPS procedures.
As a result, a minor difference in the predictions has a greater impact on the
metrics, therefore conclusions drawn from this comparison should be interpreted
with caution.

8.3 TUH vs EMC

When looking at the difference in performance using the same methods for both
datasets, a few consideration It is worth noting that TUH data presents much
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Table 8.2: Change in ensemble performance when removing IEDs (Without — With).
Positive values indicate improvement.

Ensemble  \ 50 (pts) A BAC (pts)
Size

9 13.50 16.30
3 1470 17.20
4 -3.50 -2.90
5 10.60 10.30
6 -1.00 40.40
7 +1.70 £17.50
8 -0.90 419.60
9 10.90 £17.80
10 10.90 15.50

more separable features, as highlighted in the statistical analysis Chapter 5 and
in the corresponding box plots in Appendix A. This difference can be explained
by several factors. The EMC dataset was hand-picked and contains recordings
from patients who, at the time of acquisition, were deemed not epileptic (these
EEGs were obtained after ER access following a first seizure). These patients were
only subsequently diagnosed with epilepsy after a second unprovoked seizure, in
accordance with ILAE guidelines [62]. Therefore, even specialized neurologists were
unable to detect clear abnormalities in the EEGs we analyzed.

The same cannot be said for TUH, which aggregates recordings of diverse origins.
For instance, it is unknown whether some patients had previously undergone EEG
screenings at other hospitals or had already been diagnosed with epilepsy prior to
the recording.

Finally, despite the fact that up to 30% of people affected by psychogenic
non-epileptic seizures (PNES) [68| also present comorbidity with epilepsy, a portion
of the false positives for epilepsy may instead belong to the remaining 70% of
this population. This hypothesis originated while reviewing the work by Faiman
et al. [69], who, using ML on EEG features extracted from IED-free intracranial
recordings (similar to the case of EMC), concluded that it was not possible to
reliably distinguish between the two conditions.

Consequently, correctly classifying the EMC dataset was, by design, a substan-
tially harder task than classifying TUH.

8.4 The Value of IPS

The works summarized in Table 2.1 primarily focus on background EEG analysis,
recorded during resting state without external stimulation. In particular, the
studies of Thangavel et al. [9], Mirwani [10], and Van der Kleij [11] serve as natural
benchmarks: not only do they employ the same datasets, but their pipelines also
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share a high degree of methodological similarity. This allows us to directly quantify
the additional diagnostic value that the IPS procedure can provide when analysed
using machine learning techniques.

Regarding the TUH dataset, for data including IEDs, Mirwani’s best feature set
(spectral features with age and vigilance encoded as additional categorical variables)
achieved an AUC of 0.871 and a BAC of 79.1%. In comparison, the best feature
set in this work achieved an AUC of 0.875 and a BAC of 81.91%.

For IED-free data, Mirwani reports an AUC of 0.770 and a BAC of 71.6%, while
the proposed method achieves an AUC of 0.842 and a BAC of 84.68%.
Thangavel did not report results for individual feature sets on the TUH data.

Looking at the ensemble methods, Thangavel et al. report an AUC of 0.790
and a BAC of 71.7% for recordings including IEDs. By comparison, the proposed
method in this work achieves an AUC of 0.936 and a BAC of 90.2% (with the
second-best ensemble in terms of AUC, only slightly lower than the best, but
achieving the highest BAC). For IED-free data, Thangavel reports an AUC of 0.630
and a BAC of 57.3%, while Mirwani achieves an AUC of 0.760 and a BAC of 72.0%.
In contrast, the proposed method reaches a best AUC of 0.941 with a BAC of
86.8%, and, for the model optimized for balanced accuracy, an AUC of 0.925 with
a BAC of 89.7%.

It is important to note that in the version of the TUH dataset used in their work,
the epileptic class constitutes the majority. In contrast, in the subset of record-
ings containing the IPS procedure, the epileptic class is a minority, as illustrated
in Table 3.1. This class imbalance has a direct impact on performance metrics and
makes comparisons across studies less straightforward, as classifiers may behave
differently depending on whether the target class is under- or over-represented.

Regarding the EMC dataset, the best single feature set reported by Mirwani
achieved an AUC of 0.720, while Van der Kleij reported an AUC of 0.714. Neither
of these works reported BAC. In comparison, the proposed method achieves an
AUC of 0.750 and a BAC of 70.5%.

For the EMC data, Mirwani reports an AUC of 0.760 and a BAC of 72%,
while Van der Kleij reports an AUC of 0.870 (BAC not reported). However, the
ensembling method used in the latter suffered from data leakage, as predictions
from the best-performing single sets during LOSO CV (equivalent to stage one
of this work, described in Section 4.4) were combined by post-hoc averaging . In
comparison, the proposed approach achieves an AUC of 0.794 and a BAC of 73.9%.

From these comparisons, several conclusions can be drawn. First, the proposed
method consistently outperforms previous approaches on both the TUH and EMC
datasets, across single feature sets as well as ensemble methods. This performance
gap is particularly pronounced for IED-free data, where the classification task is in-
herently more challenging: here, the proposed method achieves substantially higher
AUC and BAC values compared to both Mirwani and Thangavel, demonstrating
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the added diagnostic value of incorporating IPS responses into machine learning
pipelines.

Second, while single feature sets already show moderate improvements over prior
work, the largest performance gains arise from ensemble approaches, highlighting
the benefit of combining diverse feature domains in a flexible way. The proposed
ensembles not only surpass prior benchmarks but also maintain robustness under
leave-one-subject-out validation, ensuring that improvements are not limited to
isolated feature sets.

Taken together, these findings provide strong evidence that IPS responses, when
analysed with robust methods, can substantially enhance the diagnostic accuracy
of EEG classification, particularly in difficult cases such as IED-free recordings.

8.5 Clinical Considerations on ROC Analysis and Feature
Attribution

It is important to recall that for each fold of the LOSO cross-validation, the decision
threshold was selected to maximize the G-mean score. As a consequence, the recalls
and sensitivities achievable with ROC analysis and a posteriori threshold tuning
differ from those obtained with “hard” predictions, such as the results reported in
the appendices. This distinction should be kept in mind when interpreting the
following analyses.

According to ROC analysis, it is possible to produce a classifier with a desired
sensitivity—specificity trade-off by adjusting the decision threshold at which pre-
dicted probability scores are converted into class labels. In this way, the ROC curve
effectively defines the set of achievable operating points for a given model.

Starting with the TUH dataset (Figs. 6.1 and 6.3), we observe that all individual
feature models, as well as the ensemble models shown in Figs. 6.5 and 6.6, reach
the “clinically relevant” region of ROC space, in which the probability of epilepsy
conditioned on a positive prediction is greater than 60%.

Regarding the EMC dataset, we observe that for the single feature sets (Fig. 7.1),
only the MST set does not reach the clinically relevant region of the ROC space.
By contrast, all ensemble models (Fig. 7.4) fall within this meaningful region,
demonstrating their added diagnostic value.

However, some models only enter this region near the lower left corner (i.e., at
higher thresholds), indicating limited discriminative power in practice. By contrast,
models whose curves start at FPR = 0 and TPR > 0 are preferable, as they
guarantee full specificity while still achieving clinically meaningful recall.

From a clinical perspective, this flexibility is particularly valuable: depending
on the context, thresholds can be chosen to prioritize minimizing false positives
(e.g., avoiding unnecessary treatments or follow-up examinations) or maximizing
sensitivity (e.g., ensuring early detection of epilepsy even at the cost of some false
alarms). Which criterion should be prioritized ultimately depends on the policies
and practices of individual clinical centres. A false positive diagnosis may lead
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to the unnecessary initiation of anti-seizure medication, which is associated with
potential adverse effects, while a missed case can severely impact a patient’s quality
of life if further seizures occur in daily life. The decision on where to place this
balance lies beyond the scope of this work and should remain a matter of careful
debate within clinical environments.

Feature attribution methods such as SHAP and ALE can indeed provide useful
insights into how different input features influence the model’s predictions. However,
it is essential to emphasize that these methods capture associations between feature
values and predicted probabilities at the data-point level: they describe how the
model behaves given certain inputs, but they do not establish a causal relationship
between features and the predicted outcome.

A further challenge arises when features are correlated. In such cases, attribution
methods may distribute “importance” across correlated variables in ways that can
be misleading, obscuring the actual mechanisms driving the model’s behaviour.
SHAP, in particular, may attribute importance to feature combinations that were
never present in the training data. ALE mitigates this by dividing the data into
quantiles and relying on the observed marginal distributions of feature values.

Approaches such as removing correlated features or projecting them onto an
uncorrelated basis, for example using principal component analysis, can reduce this
issue and yield clearer patterns of attribution. Nevertheless, these transformations
come at the cost of interpretability, and they still do not overcome the fundamental
limitation that such methods cannot explain causality.

Another important limitation is that the insights obtained from attribution
methods are tied to the data distribution used for training and analysis. If new data
points fall outside this distribution, the previously drawn conclusions may no longer
hold, and interpretations based on feature importance can easily be proven wrong.
This is particularly problematic in clinical applications, where patient heterogeneity
and variability across cohorts are to be expected.

These considerations are especially relevant in the present setting, where the
features are handcrafted, statistically aggregated descriptors rather than direct
physiological measurements. Their clinical meaning is therefore not straightforward,
and any discovery-oriented interpretation must be approached with caution. For
instance, within the PLV feature set, the kurtosis-based combiner yielded the best
predictive performance. However, it would be an overstatement to claim that
kurtosis itself, as a statistical measure of Gaussianity, constitutes a biomarker
for epilepsy. At most, these results suggest that the model exploits differences in
synchronization patterns between specific brain regions. For example, changes in
PLV in the ¢ band between O2 and P3 (Fig. 7.2) may be informative: lower kurtosis
values, indicating greater variability or presence of outliers, appear more charac-
teristic of epilepsy, while higher kurtosis values, reflecting stable synchronization
around the mean, seem more prominent in healthy subjects.

Thus, the findings should not be interpreted as direct clinical markers but
rather as model-driven signals that suggest potentially relevant neurophysiological
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mechanisms/hypotheses that require independent validation.
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Conclusion

This chapter discusses limitations and directions for future work and summarizes the
main findings of the thesis in relation to the initial research questions, highlighting
their scientific and clinical implications.

9.1 Limitations of this study and future directions

Several limitations should be acknowledged, which in turn suggest concrete dir-
ections for improvement. First, the study cohorts provide only a restricted view
of the broader epilepsy population. Although we used two datasets with different
acquisition protocols (TUH and EMC), the analysis remains limited in size and
variety. We did not implement leave-one-institution-out validation, and certain
subgroups are likely under-represented, for example, patients with different epilepsy
types, those under heavy medication, or those with noisy recordings. As a result,
the reported performance may overestimate what is achievable in broader clinical
practice. Access to data from multiple centres and a broader variety of epilepsy
cases would likely improve the generalizability of performance.

Second, there are intrinsically difficult cases in which IPS responses are weak,
ambiguous, or strongly contaminated by artifacts such as eye blinks or muscle
activity. More sophisticated preprocessing could help by improving the clarity
of the EEG signal and better isolating underlying brain activity. However, these
approaches are not only computationally costly but also labour-intensive, since
they typically require careful tuning and manual supervision, and they carry the
risk of discarding meaningful physiological information along with noise.

Another limitation lies in the balance between model capacity and explainability.
The use of tree ensembles and linear stacking allowed us to apply attribution
methods such as SHAP and ALE, making the models more interpretable. However,
these methods trade off raw capacity to capture complex temporal dynamics and
high-order interactions in EEG. More powerful models, such as deep temporal
networks, could potentially extract richer structure but at the cost of transparency
and a higher risk of overfitting given the limited data.

A related limitation concerns the interpretation of feature attributions. Meth-
ods such as SHAP and ALE provide associational explanations tied to the fitted
model and the observed data distribution, but they do not imply causality. For
this reason, biological interpretations based on attribution tools should be re-
garded as hypothesis-generating rather than conclusive evidence. They are highly
sensitive to feature correlations and may yield misleading importance rankings
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under distribution shifts, meaning that results may not generalize well to other
populations.

Multicollinearity remains an unresolved challenge: many features (i.e. adjacent
frequency bands or related graph metrics) are strongly correlated. This issue could
be addressed with dimensionality reduction techniques; for instance, principal
component analysis produces uncorrelated orthogonal components, though this
comes at the expense of interpretability since the composite features no longer map
directly to physiological constructs.

Model development can also be refined. Fine-tuning hyperparameters sys-
tematically could reduce variance and squeeze more performance from simpler
models.

Finally, there is a need to test attribution-derived hypotheses in a more causality-
aware framework. This may involve the hand-picking of individual feature from
each feature family to create a heterogeneous set of candidate,possibly uncorrelated,
markers and the use of more reliable causal xAl/feature attribution methods.

In short, while this thesis shows that EEG, in particular IPS segments, can
be used effectively for epilepsy classification, progress will depend on specific
preprocessing, more careful handling of feature redundancy, and rigorous multi-site
validation. Attribution tools remain useful but should be treated as hypothesis
generators until supported by causal evidence.

9.2 Summary

This thesis demonstrates that EEG recorded during intermittent photic stimulation
(IPS) contains relevant information for diagnosing epilepsy, even in the absence
of IEDs. Using subject-level pipelines across two independent cohorts (TUH and
EMC), the analysis showed that spectral features, measures of synchronization
(i.e. phase-locking value), and simple temporal statistics consistently differentiated
between epileptic and non-epileptic subjects. On TUH, compact ensemble models
achieved strong discrimination (AUC = 0.94; BAC = 90%), while on EMC the
same framework reached AUC = 0.79 and BAC = 74%, outperforming prior work
under comparable validation strategies.

These results confirm that IPS-driven responses generalize across datasets,
though with expected differences in performance due to cohort characteristics.
Feature attribution further suggested candidate electrophysiological markers, such
as altered synchronization in posterior brain networks and band-specific spectral
modulations, though these should be interpreted as model-driven hypotheses rather
than established biomarkers. Overall, the work advances interpretable approaches
to automated diagnosis, supporting its potential to enrich routine diagnostic work-
flows, while emphasizing the importance of external validation and careful clinical
translation.
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Statistical Analysis -

Supplementary Tables and

Figures

Table A.1: TUH statistical details: feature-wise effect sizes and p-values.

Feature Montage Segment Combiner Index P-value Effect Size
Length
cc BipolarDB 2 mean 37 0.0266 -0.74
cc BipolarDB 5 mean 37 0.0375 -0.73
cc BipolarDB 10 mean 37 0.0375 -0.73
cc BipolarDB 20 mean 37 0.0338 -0.73
cc BipolarDB 60 mean 37 0.0375 -0.73
cwt CAR 5 skew 194 0.0305 0.79
cwt CAR 5 kurt 194 0.0390 0.78
cwt CAR 20 skew 194 0.0481 0.78
cwt BipolarDB 5 skew 298 0.0453 0.77
cwt BipolarDB 20 kurt 350 0.0453 0.77
cwt Cz 20 kurt 246 0.0478 0.77
cwt Laplacian 5 median 481 0.0376 0.78
dwt Cz 10 skew 76 0.0442 0.77
dwt Cz 20 skew 76 0.0204 0.80
dwt Cz 60 skew 77 0.0392 0.80
gce CAR 1 std 4 0.0363 0.62
sst Cz 10 std 86 0.0436 0.70
sst Cz 10 std 100 0.0436 0.70
sst Cz 10 std 100 0.0436 0.70
sst Laplacian 1 kurt 4 0.0313 -0.72
sst Laplacian 5 skew 105 0.0487 0.70
sst Laplacian 10 std 47 0.0391 0.79
sst Laplacian 20 skew 23 0.0436 0.70
spectral CAR 10 std 37 0.0245 -0.72
spectral  CAR 60 std 12 0.0452 -0.69
spectral  Laplacian 5 mean 40 0.0391 -0.69
spectral  Laplacian 10 mean 37 0.0245 -0.72
spectral  Laplacian 60 skew 70 0.0364 -0.70
utm BipolarDB 1 median 140 0.0342 -0.75
utm BipolarDB 20 std 95 0.0456 -0.74
utm Cz 1 mean 40 0.0148 -0.79
utm Cz 1 median 205 0.0182 -0.78
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Table A.2: EMC statistical details: feature-wise effect sizes and p-values

Feature Montage Segment Combiner Index P-value Effect Size
Length
cc CAR 20 skew 59  0.01956 0.42
cc BipolarDB 10 std 36 0.04670 0.39
cwt BipolarDB 20 skew 326 0.01746 0.45
cwt Cz 20 skew 222 0.01746 0.45
dwt Laplacian 2 skew 6 0.006158 0.47
dwt Laplacian 2 skew 7 0.02294 0.43
dwt Laplacian 2 kurt 6 0.002747 0.49
gee CAR 20 kurt 6 0.01698 -0.36
plv BipolarDB 1 skew 335  0.02298 0.46
plv Cz 60 std 330 0.02275 -0.45
mst BipolarDB 1 skew 54 0.04513 0.38
sst CAR 5 std 1 0.04602 -0.34
spectral  Cz 5 kurt 24 0.03508 0.34
spectral  Laplacian 1 std 18 0.03337 -0.39
utm CAR 60 skew 63  0.04907 -0.40
utm Cxz 20 kurt 63  0.02531 0.42
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Figure A.1: TUH statistical analysis: box-plots for the first 24 significant features (effect
sizes & p-values in Table A.1).
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Figure A.2: TUH statistical analysis: box-plots for the remaining 9 significant features.
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Figure A.3: EMC statistical analysis: box-plots for all significant features (see Table A.2).
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Table B.1: TUH (all data) extended ensemble metrics: BAC80, F1, Precision, Recall, AUC, AUPRC for combinations of feature

sets.

Combination

BACS80 F1-score Precision Recall AUC AUPRC

mst+gce

cctutm-+tgee

cc+plv-+sst+utm

cwt-+plv+sst+utm+gply
cc+plv+mst+utm-+gee+gplv
cctcewt+dwt+mst-+sst+utm-+gee
cc+plv+mst+sst+spectral-+utm+gee+gplv
cc+dwt+plv+mst+sst-+spectral+-utm+gee+gplv

76.80 £ 7.50 68.30 £ 5.30 69.60 + 8.60 67.70 £ 6.40 85.00 £ 3.60 79.70 + 4.50
83.50 £ 6.90 74.60 &£ 7.60 70.40 £ 12.00 80.00 + 4.20 90.20 £+ 4.20 79.70 £ 10.30
90.20 £ 5.10 69.40 &£ 15.00 87.20 £ 8.60 60.00 £ 19.90 93.60 £ 3.60 84.60 £ 10.80
86.90 £ 4.10 72.20 £ 13.40 89.80 £ 13.70 63.10 = 18.40 92.30 = 3.30 84.00 £ 8.50
87.50 £ 5.30 73.80 £ 10.00 81.30 £ 9.80 67.70 &+ 10.00 93.80 + 2.20 87.30 £+ 7.60
89.10 £ 4.00 55.60 + 8.60 93.30 £+ 9.10 40.00 £ 8.40 92.40 + 3.10 87.00 £ 4.40
88.70 £ 3.00 57.50 &£ 7.20 83.50 £ 15.10 46.20 + 12.20 93.40 + 2.00 84.80 £ 5.90
84.60 £ 2.40 58.80 £ 17.30 92.70 £ 10.10 44.60 = 19.20 90.70 &= 1.20 79.40 £ 7.40

cctcwt-+dwt+plv+mst+sst+spectral +utm+gec+gplv 82.70 & 8.40 54.80 £ 18.00 96.70 £ 7.50 40.00 £ 17.50 88.90 £ 6.60 80.60 + 11.90

Table B.2: TUH (IED-free) extended ensemble metrics: same metrics as Table B.1 on the IED-free cohort.

Combination

BACS80 F1-score Precision Recall AUC AUPRC

plv+sst

mst+sst+spectral

plv+sst+spectral+utm
cwt-+plv+sst+spectral +utm

plv+sst+spectral +utm-+gcc-+gplv
cctcewt+plv-+mst+sst-+spectral +utm
cc+cwt+plv+mst+sst+spectral+gee+gplv
cctcwt+dwt+plv+sst+spectral+utm+gee+gplv

83.10 £ 5.10 73.70 £ 8.20 69.30 £ 12.00 80.00 £+ 7.60 88.50 £ 1.50 78.50 + 5.90
84.00 £ 5.40 70.00 £ 9.10 84.90 £ 10.50 60.00 £+ 10.40 89.70 £ 4.80 79.50 + 8.10
84.00 £ 6.00 73.40 &£ 5.80 81.80 £ 12.60 69.10 &+ 13.80 90.10 £ 5.60 82.10 &+ 7.50
87.20 £ 5.70 80.80 £ 9.40 96.00 £ 8.90 70.90 &+ 13.50 92.90 &+ 4.10 86.60 + 6.40
83.80 £ 8.00 76.40 £ 5.50 92.80 £ 6.60 65.50 £ 7.60 91.40 £ 2.50 82.90 £ 4.40
86.80 £ 2.40 70.00 £ 11.00 82.00 £ 14.60 61.80 &+ 11.90 94.10 + 3.10 87.60 £+ 6.60
89.70 £ 3.50 72.30 £ 6.80 90.50 + 14.70 61.80 £ 10.00 92.50 £ 2.20 86.00 £+ 1.40
89.40 £ 2.90 60.40 £ 13.20 85.80 £ 9.10 47.30 £ 13.50 91.60 £+ 3.40 80.70 %+ 8.50

cetewt+dwt+plv-mst+sst-+spectral +utm-+gee+gplv 85.10 + 4.40 63.80 £ 15.20 96.70 + 7.50 49.10 £ 16.50 89.80 & 3.70 79.70 = 7.20
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Table C.1: EMC extended ensemble metrics

: BACB80, F1, Precision, Recall, AUC, AUPRC across feature-set combinations.

Combination BACS80 F1l-score Precision Recall AUC AUPRC
cc+dwt 66.30 £ 5.90 55.20 + 4.50 50.80 + 11.10 62.50 & 4.30 75.00 £ 3.50 59.10 £ 7.10
cctmst-+gplv 73.90 £ 6.80 63.20 & 5.50 58.90 & 11.30 70.50 £ 7.40 79.40 + 5.90 65.60 + 11.80
dwt+plv+gec+gplv 70.00 4+ 11.60 64.50 + 5.30 61.10 + 7.60 69.00 + 5.50 77.80 & 5.50 58.00 &+ 5.70
cc+plvtutm-+gec+gplv 69.70 + 6.60 57.50 & 3.20 53.50 4+ 4.90 63.00 & 6.90 76.90 &+ 4.00 59.90 £ 8.10
cct+dwt+plvtsst+gec+gplv 71.60 & 3.70 58.70 &+ 6.60 53.20 & 5.80 65.50 £ 8.00 78.90 £ 5.00 61.70 &+ 8.60
cc+cwt+plv+sst+spectral+-gec+gplv 71.50 + 7.50 56.60 + 7.90 52.80 £+ 4.30 62.50 + 14.90 77.10 £ 5.10 61.00 4+ 9.20
cctcwt+dwt+plv+sst+spectral+gec+gply 69.80 £+ 4.30 54.20 + 5.80 49.70 4+ 4.80 60.50 + 10.10 76.00 £ 3.00 59.90 £ 6.80
cctcewt+dwt+plv+mst+sst+spectral+utm-+gplv 67.20 £ 5.70 58.90 + 5.00 57.20 & 5.20 61.00 = 7.20 75.40 £ 2.40 56.00 £ 4.40
cct+ewt+dwt+plv+mst+sst+spectral+utm-+gec+gplv 67.20 £ 6.60 55.30 £ 7.20 52.70 + 7.70 59.00 + 9.80 72.10 &+ 6.60 49.20 + 10.70
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