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A B S T R A C T   

Study region: Upper region of the Greater Chao Phraya River (GCPR) basin in Thailand. 
Study focus: This study presents a (~1 km resolution) distributed hydrological model, wflow_sbm, 
with global spatial data and parameterization for estimating daily streamflow in the upper GCPR 
basin, with the aim to overcome in situ data scarcity often occurring in Southeast Asia. We forced 
the model with the MSWEP V2 precipitation and eartH2Observe potential evapotranspiration 
datasets. Seamless distributed parameter maps based on pedotransfer functions (PTFs) and 
literature review were applied to bypass calibration. Only the KsatHorFrac parameter determining 
the lateral subsurface flow was calibrated. A target storage-and-release-based reservoir operation 
module (ROM) was implemented to simulate reservoir releases. We compared the simulated daily 
streamflows obtained from different PTFs and evaluated the model performance in the period 
1989–2014. 
New hydrological insights for the region: The global-data-driven wflow_sbm model can reconstruct 
daily streamflow in the upper GCPR basin, especially for natural catchments (KGE = 0.78). The 
ROM can capture the seasonal variability of reservoir releases, but not very accurately at the daily 
timescale (KGE = 0.43) since the actual reservoir operations are too complex. Different PTFs and 
KsatHorFrac values only introduce little uncertainty in the streamflow results. Therefore, the 
proposed model provides an opportunity for streamflow estimation in other ungauged or data- 
scarce basins in Southeast Asia. Nonetheless, the difficulty in the reservoir system modeling re
flects the necessity of better understanding of human intervention on daily streamflow.   

1. Introduction 

Floods and droughts have caused profound damage at the global scale, amplified by climate change and land use change (Chang 
and Franczyk, 2008; Dai, 2011; Ward et al., 2013; Bagley et al., 2014). These hydrological hazards have dramatically increased in 
many regions and are expected to become more frequent and severe in the future (Trenberth et al., 2014; Winsemius et al., 2016). 
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Southeast Asia (SEA) is a region that is exceptionally prone to both floods (Hirabayashi et al., 2013; Ceola et al., 2014; Arnell and 
Gosling, 2016) and droughts (Cook et al., 2010; Dai, 2013; Trenberth et al., 2014). The vulnerability of SEA is partially due to the 
changes in monsoon dynamics and partially due to socio-economic development, such as urbanization, deforestation and cultivation, 
in the developing countries. Mitigating these hydrological hazards in SEA requires rational water resource planning and management 
at the basin scale. 

The Greater Chao Phraya River (GCPR) basin in Thailand is representative of the vulnerable and highly regulated river basins in 
SEA, considering its agriculture and water resource managements. Despite the water regulation by several multipurpose reservoirs, the 
basin has still experienced hydrological hazards almost annually. The most catastrophic floods occurred in 1995, 2006 and 2011, 
followed by serious droughts in 2013–2016 (Takeda et al., 2016; Kinouchi et al., 2018). The 2011 GCPR flood was one of the most 
devastating hazards recorded in SEA, with an inundated area of over 30,000 km2, 13 million people affected and more than 800 fa
talities (Komori et al., 2012). This calls for the development of comprehensive hydrological models for the basin, particularly at the 
(sub)daily timescale, to assist early warning and mitigation of floods and droughts. Similar extreme events have occurred in neigh
boring countries, such as Vietnam and Myanmar (Luu et al., 2018; Myo Lin et al., 2018). Thereupon, knowledge obtained from hy
drological modeling in the GCPR basin can also contribute to water resource management in other SEA basins. 

Several hydrological models have been developed over the past decades for better understanding of rainfall-runoff processes and 
have become important tools for scenario simulations, predictions and decision making for river basin management (e.g., Mysiak et al., 
2005; Ajami et al., 2008; Cloke and Pappenberger, 2009). Hydrological models can be classified as lumped or distributed according to 
the spatial representation (Singh and Woolhiser, 2002). Lumped models mathematically simplify the rainfall-runoff processes in a 
basin with spatially averaged parameters. Lumped model parameters have to be calibrated as they cannot be obtained from direct 
measurements, thus limiting model applications to gauged basins (Crawford, 1966). With improvements in computer technologies, 
distributed models have been developed (Singh and Woolhiser, 2002), which allow mathematically describing the rainfall-runoff 
processes in a spatially distributed way. This model type uses parameters directly related to physical characteristics of the basin (e. 
g., topography, soil, land cover and river network) and takes into account spatial heterogeneity in both physical characteristics and 
meteorological inputs. Therefore, distributed models potentially provide additional and more correct description of hydrological 
processes in the basin compared to lumped models (Refsgaard and Knudsen, 1996; Wicks and Bathurst, 1996). Since distributed 
models can fulfill various needs in spatial modeling, such as flood and drought extents, they have been widely used in water resource 
planning and management. 

Despite their benefits, distributed models are much more complex and difficult to apply than lumped models. Firstly introduced in 
the 1970s, the distributed models were expected to be used without prior calibration by directly determining model parameters from 
field data (Abbott et al., 1986). This means the model results significantly depend on the accuracy of geospatial and spatial meteo
rological input data (Gourley and Vieux, 2006). In practice, however, these in situ data are not always available, especially for 
ungauged or sparsely gauged basins in developing countries, including in SEA (Grayson and Blöschl, 2001). Therefore, like lumped 
models, some distributed parameters are still subject to calibration (Refsgaard, 1997). Calibrating a distributed model generally sets 
different parameter values to different grid cells, which poses a high risk of overparameterization, requires enormous computational 
demands at fine resolutions and obstructs model applications in large basins (Beven, 2006). 

Fortunately, the advancement in remote sensing and geographic information system (GIS) data, including soils, land cover and 
climate, in recent decades can potentially complement some absences of field data and provide new means of spatial calibration and 
validation. Many remote sensing and GIS data are available in global public domains, with relatively high spatial and temporal res
olutions (Fortin et al., 2001; Skidmore, 2017). With the availability of global high-resolution soil data (e.g., Hengl et al., 2017), the 
recent attention has also been focused on pedotransfer functions (PTFs) for soil-related parameterization. Traditionally used in soil 
science, PTFs characterize soil hydraulic properties using predictive functions and structural soil data (Van Looy et al., 2017). 
Therefore, they have great potential to facilitate soil-related parameters, such as the water retention characteristic and hydraulic 
conductivity, in distributed models (Zhao et al., 2016a; Imhoff et al., 2020). Together with powerful computer resources, we can 
attempt to maximize the use of remote sensing, GIS and PTFs data in order to minimize the number of calibrated parameters in 
distributed models. This offers an opportunity to develop more feasible and reliable distributed models for basins with data scarcity 
like in SEA. 

In basins that are highly regulated by dammed reservoirs, hydrological models also need explicit reservoir operation components. 
This is yet another motivation to use distributed hydrological models in this context. Failure to represent reservoir operations limits the 
model performances and their applicability in scenario analyses, with climate, land use and operation changes (Yassin et al., 2019). 
The existing reservoir operation schemes in hydrological models are categorized into four types: natural lake, inflow- and 
demand-based, data-driven and target storage-and-release-based (Yassin et al., 2019). The natural lake method is limited to uncon
trolled reservoirs (without dams). The inflow- and demand-based methods determine reservoir releases as a function of inflows and 
downstream water demands, but cannot account for reservoir operations in detail. The data-driven methods can simulate reservoir 
releases more accurately, but cannot provide insight into the reservoir operation mechanisms due to their black box characteristics. 
The target storage-and-release-based methods consider reservoir storage zoning and adjust reservoir releases as a function of dynamic 
target storage, so-called operating rule curves. The main challenge for this type of methods is the large amount of required data, such as 
the storage zone setting and actual rule curves of each reservoir, that are not always documented or easy to obtain. However, 
considering the growing availability of global data, the target storage-and-release-based methods seems to be the most promising for 
the simulation of multipurpose reservoirs at the daily timescale (e.g., Zhao et al., 2016b; Zajac et al., 2017; Yassin et al., 2019). 

Previous studies have investigated the performance of various distributed models on the monthly and daily streamflow simulations 
in the GCPR basin and other highly regulated basins in SEA (e.g., Kite, 2000; Kure and Tebakari, 2012; Sayama et al., 2015). Many of 
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them have utilized global geospatial data (e.g., Thanapakpawin et al., 2007; Vo and Gourbesville, 2016; Bhagabati and Kawasaki, 
2017; Livneh et al., 2017). Some studies have further implemented daily meteorological data from global databases to force the models 
instead of using gauged data, and they have shown promising performances. (e.g., Wang et al., 2016; Liu et al., 2017; Li et al., 2019; 
Yuan et al., 2019). Few studies have implemented the target storage-and-release-based methods (e.g., Kite, 2001; Mateo et al., 2014). 
However, all mentioned studies still needed to calibrate a few to several distributed parameters that are related to soil, land cover or 
reservoir operation. To date, no study has applied distributed models with global parameterization to simulate daily streamflow in the 
GCPR and other SEA basins. 

This study aims to develop a (~1 km resolution) distributed hydrological model with global spatial data and parameterization for 
estimating daily streamflow in the upper region of the GCPR basin, to overcome in situ data scarcity often occurring in SEA and to 
minimize the model calibration. We used the wflow_sbm model (Schellekens et al., 2019), which has shown good performance in 
basins across a large range of elevations and drainage areas (e.g., López López et al., 2016; Hassaballah et al., 2017; Giardino et al., 
2018; López López, 2018; Gebremicael et al., 2019; Imhoff et al., 2020). The utilized global remote sensing and GIS data included (i) 
static geospatial data from global databases; (ii) meteorological forcing data from the global reanalysis; (iii) seamless distributed maps 
for soil-related parameters obtained with PTFs and (iv) seamless distributed maps for land cover-related parameters obtained from 
literature review and global databases. Model results from different PTFs were investigated. A reservoir operation module (ROM) with 
a target storage-and-release-based method was implemented with a minimum number of parameters and accessible operating rule 
curve data without calibration. The performance of the global-data-driven wflow_sbm model with the ROM were evaluated in both 
natural and regulated catchments. 

The paper is organized as follows. In Section 2, we introduce the study area. In Section 3, we summarize the selected global 
datasets. The methodology, including the wflow_sbm model, parameterization, reservoir operation module and model evaluation, are 
presented in Section 4. Next, the results on model performance are shown in Section 5. The results are then discussed in Section 6, 
followed by the conclusion and outlook in Section 7. 

2. Study area 

The Greater Chao Phraya River basin (GCPR) is Thailand’s largest and most important basin with respect to land and water resource 
development. The entire basin covers an area of approximately 158,600 km2, accounting for 30% of the country’s surface area (Fig. 1). 

Fig. 1. Overview of the study area. The top left panel shows the location of Thailand in Southeast Asia, the bottom left panel shows the location of 
the GCPR basin in Thailand, and the right panel shows the upper GCPR basin with the spatial distribution of reservoirs and study catchments. 
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The basin can be divided geographically into the upper region (66%) and lower region (34%). This study focused on the upper region 
where the main reservoirs are located. This region consists of four sub-basins, namely the Ping River (34,500 km2), Wang River 
(10,800 km2), Yom River (24,000 km2), and Nan River (34,700 km2). The elevation of the upper region ranges from 22 to 2534 m 
above sea level. The four rivers merge at Nakhon Sawan and form the origin of the Chao Phraya River. The river then drains through 
the lower region, with intensive rice cultivation and densely populated areas, before emptying into the Gulf of Thailand. 

The climate of the upper GCPR basin is characterized by tropical monsoons and cyclones, contributing to the high seasonal 
variability of precipitation. The wet (rainy) season is when the southwest monsoons from the Indian Ocean, together with tropical 
cyclones from the Pacific Ocean and South China Sea, bring very humid air towards the basin, causing heavy rainfall from May to 
October. Therefrom, the northeast monsoons bring cool and dry air from the Siberian anticyclone, causing the dry season from 
November to April (Bachelet et al., 1992; Kripalani et al., 1995). Considering the seasonality, the Thai water-year is set as a period from 
April 1st of any given year to March 31st of the following year. From this point onward, we refer to water-year and water-yearly as year 
and yearly/annual (i.e., the year 2011 is from April 1st, 2011 to March 31st, 2012). The long-term yearly average of precipitation from 
1989 to 2013 is 1060 mm. The highest yearly precipitation was recorded in 2011 (1449 mm) and the lowest in 1993 (841 mm). Most 
precipitation (86%) occurs in the rainy season. Accordingly, annual maximum daily flows often occur in September and October, while 
annual minimum daily flows mostly occur in January. The highest daily streamflow ever recorded at Nakhon Sawan was 5450 m3 s− 1 

(October 2006) and the lowest was 52 m3 s− 1 (April 1994). 
For the purposes of irrigation, hydropower generation and flood control, seven large dammed reservoirs have been constructed and 

operated in the upper GCPR basin over the past 55 years. The Bhumibol and Sirikit reservoirs (locations shown in Fig. 1) are the two 
largest ones in terms of storage capacity. They are currently managed by the Royal Irrigation Department of Thailand (RID) and the 
Electricity Generating Authority of Thailand (EGAT). Principle characteristics of the two reservoirs obtained from RID are presented in 
Table 1. Together, they account for 93% of the total reservoir capacity (24.7 billion m3) in the upper region. Therefore, we focus on 
modeling the Bhumibol and Sirikit reservoirs in this study, with the assumption that the influences of the other five reservoirs on 
streamflow are insignificant at the basin scale. 

To investigate the model performance, we selected two natural and two regulated catchments in the upper GCPR basin (catchment 
locations shown in Fig. 1). The natural catchments from the Nan and Yom headwaters were selected based on available data and will be 
called the Nan_natural (3546 km2) and Yom_natural (2018 km2). The regulated catchments represent the drainage areas from the 
headwater until the dam location and will be called the Sirikit catchment (13,155 km2) and Bhumibol catchment (25,988 km2). 

3. Data 

This study required geospatial data, meteorological data and hydrological data for the model setup and validation. The geospatial 
data were used to represent the physical characteristics of the basin in the wflow_sbm model. The meteorological data were used as 
model driving forces. The hydrological data were used in the parameter optimization and result analyses. Most data were obtained 
from global databases as we attempted to overcome data scarcity in the study area, which is a common challenge in SEA. 

The geospatial data comprised the Digital Elevation Model (DEM), land cover types, soil types and river network. The DEM was 
obtained from the Shuttle Radar Topography Mission (SRTM; Jarvis et al., 2008), the land cover from GLOBCOVER (Bontemps et al., 
2011), the soil from SoilGrids (Hengl et al., 2017) and the river network from the Royal Irrigation Department (RID). The DEM and 
river network data were employed to create the distributed maps of basin boundary, local drainage direction, Strahler stream orders 
and river length per grid cell in the wflow_sbm model. These maps indicate the flow directions and control hydrological processes in a 
distributed way. In this study, the land cover and soil data were not directly used as model inputs, but were used in the estimation of 
global parameters (see Section 4.2). 

The meteorological data for forcing the wflow_sbm model were precipitation (P) and potential evapotranspiration (PET). P data 
were obtained from the Multi-Source Weighted-Ensemble Precipitation Version 2 (MSWEP V2; Beck et al., 2019). The dataset was 
constructed using gauges, satellites and reanalyses, with corrections for distributional biases and systematic terrestrial P biases. It is 
available at high spatial (~10 km) and temporal (3-hourly) resolutions for the 1979–2017 period. PET data were obtained from the 
eartH2Observe database (Schellekens et al., 2017) as the successor of the WATCH-Forcing-Data-ERA-Interim (WFDEI) data (Weedon 
et al., 2014). They are offered with many calculation methods, of which we selected the FAO Penman-Monteith PET dataset (Allen 

Table 1 
Characteristics of the Bhumibol and Sirikit reservoirs.  

Characteristic Bhumibol Sirikit 

River Ping Nan 
Dam type Gravity arch Earthfill 
Operation since 1964 1977 
Dam height (m) 154 134 
Mean daily inflow (m3 s− 1) 178 184 
Mean daily outflow (m3 s− 1) 170 179 
Minimum daily outflow recorded (m3 s− 1) 0 0 
Maximum daily outflow recorded (ResMaxQ) (m3 s− 1) 746 809 
Reservoir capacity (ResMaxVol) (billion m3) 13.46 9.51 
Reservoir surface area (ResArea) (km2) 297 315  
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et al., 1998). It is also available at the high spatial (~10 km) and temporal (daily) resolutions for the 1979–2014 period (Sperna 
Weiland et al., 2015). Both the MSWEP V2 P and the eartH2Observe PET datasets have shown to produce promising model results in 
many hydrological and meteorological studies (e.g., Tarnavsky et al., 2018; Liu et al., 2019; Xu et al., 2019; Beck et al., 2017; Beck 
et al., 2020) and therefore were chosen to force the wflow_sbm model for the upper GCPR basin. Since we did not have to compute the 
PET nor account for snow processes within the model, other forcing data, such as temperature and solar radiation, were unnecessary. 

The required hydrological data included observed daily streamflow at the outlets of the study catchments and reservoirs of interest, 
observed daily storage of each reservoir and dynamic operating rule curves of each reservoir. The data were provided by the Royal 
Irrigation Department of Thailand (RID) and the Electricity Generating Authority of Thailand (EGAT). The observed daily streamflow 
is the average of the observed hourly streamflow from 6.00 p.m. of the previous day to 6.00 p.m. of the defined day. Their availability 
varies among gauges (see Table 2). The reservoir operating rule curves consist of the long-term monthly target storage of each reservoir 
derived from the RID report and the long-term monthly target water demand that we manually extracted from the observed daily 
streamflow data of each reservoir (more detail in Section 4.3). In reality, these reservoir operating rule curves serve as guidelines for 
dam-operators. 

4. Methodology 

4.1. Wflow_sbm model 

The wflow simple bucket model, so-called wflow_sbm, is a conceptual rainfall-runoff model in the spatially distributed wflow 
modeling platform, which is PCRaster and python based (Schellekens et al., 2019). The soil water processes of wflow_sbm are based on 
the Topog_SBM model (Vertessy and Elsenbeer, 1999). The flow processes for subsurface, overland and river flows are based on the 
kinematic wave approach that are comparable to the TOPKAPI (Todini and Ciarapica, 2002) and G2G (Bell et al., 2007) models. While 
topog_sbm is suitable for small areas, wflow_sbm is more widely applicable (Vertessy and Elsenbeer, 1999; Schellekens et al., 2019). In 
contrast to many conceptual models, wflow_sbm calculates the lateral subsurface flow explicitly and uses parameters that represent 
simplified physical characteristics of a basin (Vertessy and Elsenbeer, 1999). It has shown good performance in a broad range of 
applications (e.g., López López et al., 2016; Hassaballah et al., 2017; Giardino et al., 2018; López López, 2018; Gebremicael et al., 
2019; Imhoff et al., 2020). 

The scheme of wflow_sbm is illustrated in Fig. 2. The one-dimensional model is constructed on a grid cell network of eight flow 
directions (D8) for surface and subsurface flow routing, with the presence of both vertical and lateral flows. It has four main routines: 
(i) a precipitation-snow routine based on the HBV model (Lindström et al., 1997), (ii) a rainfall interception routine based on the 
modified Rutter model (Rutter et al., 1971, 1975) or Gash model (Gash, 1979), (iii) a soil water routine based on topog_sbm, and (iv) a 
flow generation routine with the kinematic wave function. Water enters each grid cell through the precipitation-snow routine and is 
transferred to the rainfall interception routine. Throughfall and streamflow infiltrate into the soil and flows between the stacked 
unsaturated zone and saturated zone. The soil column can also be divided into different layers to allow for transfer of water within the 
unsaturated zone (Brooks and Corey, 1964). Part of the water evaporates depending on soil water content and vegetation cover. The 
soil water routine assumes an exponential decay of the saturated hydraulic conductivity with soil depth (Beven and Kirkby, 1979). In 
the flow generation routine, the subsurface, overland and river flows are then routed according to the D8 direction. 

Table 2 
Annual sums of water fluxes for catchments and years of interest. The fluxes comprise the MSWEP V2 Precipitation (P), eartH2Observe potential 
evapotranspiration (PET) and observed streamflow (Q). Nan_natural and Yom_natural are headwater catchments, whereas Sirikit and Bhumibol are 
midstream catchments. Therefore, the latter also receive inflows from upstream, which is not shown here. Note that the P, PET, and Q data were 
obtained from independent measurements or calculations.  

Catchment Component (mm year− 1) Wet (2006) Dry (2013) Long-term average (1989–2013) 

Nan_natural P 1225 1116 1230  
PET 1069 1079 1032  
Q 856 572 766 (1994–2013) 

Yom_natural P 1121 1048 1099  
PET 1123 1132 1086  
Q 513 261 386 (1996–2013) 

Sirikit P 1377 1030 1111  
PET 1223 1216 1181  
Q 3160 1905 2814 (1989–1997, 2003–2013) 

Bhumibol P 1179 858 942  
PET 1099 1107 1092  
Q 1075 569 780 

Upper Chao Phraya (entire upstream area of Nakhon Sawan) P 1248 1044 1060  
PET 1220 1221 1189  
Q 373 146 211  
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4.2. Wflow_sbm parameterization 

Aiming to tackle the issues on data scarcity and overparameterization for the upper GCPR basin, we set up the wflow_sbm model 
with global parameterization. Recently, seamless distributed parameter maps at the global scale have been available for wflow_sbm 
(Schellekens et al., 2019; Imhoff et al., 2020). The main parameters and their sources for global parameterization used in this study are 
indicated in Table 3. 

The seamless distributed maps of soil-related parameters for wflow_sbm were estimated with pedotransfer functions (PTFs) based 
on soil types from the SoilGrids database (Imhoff et al., 2020). They were initially applied to the Rhine basin and then regionalized to 
the global scale at the highest resolution of 250 m using the multi-parameter regionalization technique (MPR; Samaniego et al., 2010). 
Among five soil-related parameters (Table 3), users can choose different PTFs, such as Brakensiek (Brakensiek et al., 1984) and Cosby 
(Cosby et al., 1984) functions, to estimate two highly sensitive parameters, KsatVer (vertical saturated conductivity) and M (decay rate 
of KsatVer). We ran the wflow_sbm model simulations with the Brakensiek (PTF-B) and Cosby (PTF-C) parameter sets to investigate the 
effect of different PTFs on the model performance. The spatial comparison of both parameter sets for the upper GCPR basin is shown in 
Fig. 3. 

The seamless distributed maps of land cover-related parameters for wflow_sbm were either estimated from literature review or 
taken directly from global databases, as indicated in Table 3. The parameter maps from literature review were collected as look-up 
tables and assigned to the land cover types of the GLOBCOVER database at its original resolution of 300 m. The parameter maps 
from global databases had different resolutions depending on their sources. This application assumed that the uncertainty in land cover 
changes over the study period is negligible at the basin scale. Examples of the spatial distribution of parameters associated with the 
land cover types for the upper GCPR basin are shown in Fig. 4. 

Other insensitive parameters of wflow_sbm were set as default values (Schellekens et al., 2019), leaving only one soil-related 
parameter, KsatHorFrac [–], to be calibrated. KsatHorFrac is the multiplication factor applied to KsatVer (vertical saturated conduc
tivity) to calculate horizontal saturated conductivity for computing the lateral subsurface flow. This parameter compensates for 
anisotropy, small-scale (soil core) saturated hydraulic conductivity measurements that do not represent larger-scale hydraulic con
ductivity and smaller flow length scales (hillslope) in reality, which cannot be represented with the model resolution. The ratio of 
horizontal saturated conductivity to vertical saturated conductivity has been reported for catchments in temperate climates with 
typical values of 20–100 (Calver and Cammeraat, 1993; Refsgaard, 1997; Brooks et al., 2004; Weiler and McDonnell, 2007; Gauthier 
et al., 2009). 

Fig. 2. Schematic structure of water processes and fluxes in the wflow_sbm model. The model includes four routines: precipitation-snow routine 
(blue), rainfall interception routine (green), soil water routine (orange) and runoff generation routine (purple) (adapted from Schellekens 
et al., 2019). 
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4.3. Reservoir operation module 

We modeled the regulated outflows of the Sirikit and Bhumibol reservoirs by including a reservoir operation module (ROM) within 
the kinematic wave routing of wflow_sbm. To do so, grid cells of the dam locations and reservoir surface areas were indicated. The 
ROM is a reservoir water balance algorithm with a target storage-and-release-based operation method. The reservoir storage in the 
ROM is divided into four zones: inactive storage, conservation storage, flood control storage, and surcharge storage as illustrated in 
Fig. 5(A). The operating rule curve parameters include the target downstream water demand, target maximum storage and target 
minimum storage. As part of the distributed model, the ROM also requires parameters representing physical characteristics of each 
reservoir. As defined in Table 4, both operational and physical parameters are simplified and can be obtained directly from local data 
sources (RID and EGAT) or calculated from observed streamflow data without calibration. This allows for exploring the competence of 
available data. The values of the operating rule curve parameters for the Sirikit and Bhumibol reservoirs are shown in Fig. 5(B) and (C). 
The physical parameter values for each reservoir are indicated as the last three components in Table 1. 

Although the ROM was developed as part of wflow_sbm (Schellekens et al., 2019), its complete description has not been published 
before. Therefore, we explain step-wise calculations of the ROM in brief here. Overall, at a given time step, the ROM updates the water 
storage state and computes a volume of water to be released with algorithms to meet a required demand, while also maintaining the 
storage at an optimal level, considering the target maximum and minimum storage. To calculate the change in the reservoir storage, 
the storage at the previous time step, upstream inflow, and precipitation and evaporation over the reservoir surface at the current time 
step are taken into account: 

ResVolt = ResVolt− 1 + (ResInflowt + ResPt − ResETt) × Δt, (1)  

where ResVol is reservoir storage [m3], ResInflow is upstream inflow [m3 time step− 1], ResP is precipitation over the reservoir surface 
[m3 time step− 1], ResET is evaporation over the reservoir surface [m3 time step− 1], Δt is the computing time step (e.g., daily), t is the 
current time step and t-1 is the previous time step. Then, the current ResVol as a fraction of the reservoir maximum storage is 
computed: 

Table 3 
Main wflow_sbm parameters and their sources for global parameterization (Imhoff et al., 2020). The full list of wflow_sbm parameters can be found in 
Schellekens et al. (2019).  

Model parameter Parameter interpretation Source of value determination 

Soil-related parameters (pedotransfer functions; PTFs) 
c (at different depths) Power coefficient based on the pore size distribution index used for computing 

vertical unsaturated flow (–) 
Rawls and Brakensiek (1989) 

KsatVer Vertical saturated conductivity (mm day− 1) Brakensiek et al. (1984), Cosby et al. 
(1984) 

M Decay rate of KsatVer with depth (mm) Fitting exponential function between 
KsatVer and depths of SoilGrids soil layers 

thetaR Residual water content (–) Tóth et al. (2015) 
thetaS Saturated water content (–) Tóth et al. (2015) 

Land cover-related parameters (literature review) 
Kext Extinction coefficient in the canopy gap fraction equation (–) Assigned value per land cover type from  

Van Dijk and Bruijnzeel (2001) 
LAI Long-term monthly average leaf-area index (–) Derived directly from Myneni et al. (2015), 

known as MOD15A2H MODIS data 
N Manning’s roughness coefficient for the kinematic wave function for overland 

flow (m− 1/3 s) 
Assigned value per land cover type from  
Engman (1986), Kilgore (1997) 

N_river Manning’s roughness coefficient for the kinematic wave function for river flow 
(m− 1/3 s) 

Assigned value per Strahler order from Liu 
et al. (2005) 

RootingDepth Maximum length of vegetation roots Assigned value per land cover type from  
Zeng (2001) 

Sl Specific leaf storage for the interception module (mm) Assigned value per land cover type from  
Pitman (1989), Liu (1998) 

SoilThickness Depth of the upper aquifer (mm) Derived directly from Hengl et al. (2017) 
Swood Fraction of wood in the vegetation (–) Assigned value per land cover type from  

Pitman (1989), Liu (1998) 
WaterFrac Fraction of surface water area per gridded cell (–) Extracted from Bontemps et al. (2011) 

Parameter subject to calibration 
KsatHorFrac Multiplication factor applied to KsatVer for the horizontal saturated conductivity 

used for computing the lateral subsurface flow (–). This parameter compensates 
for anisotropy, small-scale KsatVer measurements (small soilcore) that do not 
represent larger-scale hydraulic conductivity, and model resolution (in reality 
smaller (hillslope) flow length scales). 

Manual calibration  

C. Wannasin et al.                                                                                                                                                                                                     



Journal of Hydrology: Regional Studies 34 (2021) 100794

8

ResVolFract =
(ResVolt + ResVolt− 1)

2 × ResMaxVol
, (2)  

where ResVolFrac is the storage fraction [–], ResMaxVol is the reservoir maximum storage known as the flood control storage level 
[m3]. The environmental outflow of a given reservoir, here called the demand release, is determined using a sigmoid curve to scale for 
the target storage and downstream water demand of the reservoir: 

ResQdemandt = min(SFt × (DDt × Δt),ResVolt), (3)  

where ResQdemand is the demand release [m3], SF is the sigmoid curve factor [–] and DD is the downstream water demand [m3 time 
step− 1], which is associated with the seasonality and often set on a long-term monthly basis (see Fig. 5(B)). SF influences the extent to 

Fig. 3. Spatial distribution of soil-related parameters, KsatVer (upper panels) and M (lower panels), for the upper GCPR basin in comparison be
tween the PTF-B (right) and PTF-C (left) methods at the ~1 km resolution. For parameter definitions, see Table 3. Boundaries of the four selected 
catchments are indicated in black color. 
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Fig. 4. Spatial distribution of land cover and its related parameters, RootingDepth, SI and N, for the upper GCPR basin at the ~1 km resolution. For parameter definitions, see Table 3. Boundaries of the 
four selected catchments are indicated in black color. 
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which ResQdemand increases or decreases, and is calculated by: 

SFt =
1

1 + exp( − c × (ResVolFract − ResMinFrac))
, (4)  

where c is steepness of the sigmoid curve [–] and ResMinFrac is the target fraction of minimum storage, known as the inactive storage 
level [–] (see Fig. 5(C)). When the current ResVolFrac equals ResMinFrac, the argument of the exponential function is zero and the 
denominator becomes two. This implies that when the reservoir storage reaches the inactive storage level, which can occur in dry 
seasons, the reservoir only releases a ResQdemand equal to half of DD. ResQdemand decreases further as ResVolFrac drops below 
ResMinFrac. ResVol is updated after taking out ResQdemand. Subsequently, ResVolFrac is re-determined with Eq. (2). 

The target fraction of maximum storage, known as the conservation storage level, is used as a guideline to not only maintain the 
active storage but also prevent the flood storage. It is conditional on water supply and demand throughout the year and often set on a 
long-term monthly basis (see Fig. 5(C)). The amount of water to be released from the reservoir to let ResVol continuously meet the 
conservation storage level is computed as: 

ResQtargett = max(0,ResVolt − (ResMaxVol × ResMaxFract)), (5)  

where ResMaxFrac is the target fraction of maximum storage [–] and ResQtarget [m3] is the target amount of water to be released to 

Fig. 5. Conceptual representation of the reservoir operation module (ROM), including reservoir storage zones (A) and operating rule curves for the 
Bhumibol and Sirikit reservoirs (B and C). Figure (B) represents the target downstream water demand of each reservoir, which is defined by the long- 
term monthly averages of reservoir outflow observations. Figure (C) represents the target storage as a fraction with respect to the maximum storage 
(flood control storage level). Colored lines indicate the fraction of long-term monthly target maximum storage (conservation storage level; 
ResMaxFrac) from the RID guideline. The dashed line indicates the fraction of target minimum storage (inactive storage level; ResMinFrac), which 
was set as 0.3 for both reservoirs. 

Table 4 
Reservoir parameters and their sources for parameterization (Schellekens et al., 2019). The values of the operating rule curve parameters for the 
Bhumilbol and Sirikit reservoirs are illustrated in Fig. 5. The values of the physical parameters are presented in Table 1.  

Reservoir 
parameter 

Parameter interpretation Source of value determination 

Operational (rule curve) parameters 
DD Target of downstream water demand (m3 time step− 1) Long-term monthly average streamflow at a dam location (RID) 
ResMaxFrac Target of maximum storage (conservation storage level) as a fraction of 

ResMaxVol, ranging between 0 and 1 (–) 
Long-term monthly target maximum storage (RID) 

ResMinFrac Target of minimum storage (inactive storage level) as a fraction of 
ResMaxVol, ranging between 0 and 1 (–) 

Default setting 

Physical parameters 
ResArea Reservoir surface area used for estimating precipitation and evaporation 

(m2) 
RID 

ResMaxQ Maximum release capacity of a reservoir (m3 time step− 1) As the actual value is unknown, it was set as the maximum 
outflow in the historical record (RID) 

ResMaxVol Reservoir maximum storage (flood control storage level) (m3) RID  
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meet ResMaxFrac. If ResVol is higher than ResMaxVol, the surcharge storage, ResQspill [m3], is spilled to prevent dam failure: 

ResQspillt = max(0,ResVolt − ResMaxVol) (6) 

Eqs. (5) and (6) indicate that the reservoir release does not exceed DD unless ResVol is projected to surpass ResMaxFrac or 
ResMaxVol. In case of water excess, the amount of water to be released apart from the demand release is: 

ResQextrat = min(ResQtargett,ResQspillt, (ResMaxQ × Δt) − ResQdemandt), (7)  

where ResQextra [m3] is the extra amount of water to be released and ResMaxQ [m3 time step− 1] is the maximum release capacity of a 
reservoir (see Table 1). Since the environmental outflow (ResQdemand) is already calculated before updating ResVol (Eq. (3)), it is 
subtracted from the ResMaxQ amount in this step. Finally, the total release, ResQtotal [m3 time step− 1], of the current time step is 
calculated according to: 

ResQtotalt =
ResQdemandt + ResQextrat

Δt
(8)  

4.4. Model application and evaluation 

We applied the wflow_sbm model to the entire upper GCPR basin at a spatial resolution of approximately 1 km and temporal 
resolution of 3 h. The ~1 km grid cells could account for the areas of the two major reservoirs. The meteorological maps and seamless 
distributed parameter maps were upscaled or downscaled to the target resolution with parameter-specific upscaling procedures 
(Imhoff et al., 2020). Although our study focused on the daily timescale, we ran the model at the 3-hourly time step to be able to 
calculate the model results at the daily timescale using the same aggregation period as applied in the daily observations (6.00 p. 
m.–6.00 p.m.). The daily PET data were divided into 3-hourly data using hourly fractions. 

We manually calibrated KsatHorFrac for the years 2010–2011, which contain extremely wet and dry periods. The parameter was 
calibrated separately for the PTF-B and PTF-C soil-related parameter sets, with the parameter values ranging from 100 to 800. We then 
validated the optimized KsatHorFrac values for the period of 1989–2013, excluding 2010–2011. We used 2006 and 2013 as the 
representative years for wet and dry conditions in the upper GCPR basin. The hydro-meteorological details of the extreme years and the 
entire study period for the selected four catchments in the upper GCPR basin are shown in Table 2. 

The Kling Gupta efficiency (KGE; Gupta et al., 2009) was used as the objective function to optimize the KsatHorFrac parameter and 
to evaluate the accuracy of the wflow_sbm model and the ROM at the daily timescale. The KGE is the combination of three criteria that 
assess different hydrological dynamics (correlation, variability error and bias error), given by 

KGE = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(r − 1)2
+ (α − 1)2

+ (β − 1)2
√

, (9)  

where r is the Pearson correlation coefficient between simulated streamflow and observed streamflow (giving the error in the dy
namics), α is the ratio of the standard deviation of simulated streamflow over the standard deviation of observed streamflow (giving 
the error in the variability), and β is the ratio between the mean simulated streamflow and the mean observed streamflow (giving the 
bias). The KGE ranges from − ∞ to 1, with an ideal value at unity when all three components are equal to 1 (Gupta, 2009). 

Fig. 6. Simulated and observed daily streamflows for the Nan_natural catchment in 2011, which is part of the calibration period. The simulated 
streamflows obtained with different KsatHorFrac values from 100 to 800 for the PTF-B parameter set (panel (A)) and PTF-C parameter set (panel (B)) 
are presented as ranges in light colored bands. The simulated streamflows obtained with the optimized KsatHorFrac values are shown in solid 
colored lines, compared to the observations (obs) in dashed black lines. 
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5. Results 

5.1. Parameter optimization and uncertainty 

During the calibration of the KsatHorFrac parameter, we found that higher KsatHorFrac values generally attenuate the magnitude of 
streamflow, especially for peak flows, and flatten their recession limbs. With the same KsatHorFrac value, the PTF-B parameter set 
produces daily streamflow with steeper peaks and more rapid recessions than the PTF-C parameter set. This is because PTF-B presents 
more varying KsatVer values, with lower M values, over the study area (Fig. 3), resulting in less daily baseflow contribution. The 
optimized KsatHorFrac value for the upper GCPR basin is 550 for PTF-B and 120 for PTF-C. The range of the simulated daily 
streamflows with the KsatHorFrac values between 100 and 800 is more narrow for PTF-B than for PTF-C (light colored bands in Fig. 6), 
indicating that PTF-B introduces a smaller uncertainty in the streamflow results compared to PTF-C. 

With their optimized KsatHorFrac values, PTF-B and PTF-C deliver similar estimates of daily streamflow for both natural and 
regulated catchments, as demonstrated by the colored lines in Fig. 6 and the goodness-of-fit indicators in Table 5. PTF-B outperforms 
PTF-C in the natural catchments, while PTF-C performs better in the regulated catchments. PTF-B tends to result in higher α, but 
smaller β compared to PTF-C, indicating a lower error in the variability (less overestimating or underestimating the variability in daily 
streamflow), but a larger bias (more overestimating or underestimating the mean streamflow). This is because PTF-B captures the daily 
streamflow fluctuation and magnitudes of daily peak flows more accurately whereas PTF-C is better at simulating daily baseflow, as 
also visible in Fig. 6. 

5.2. Model performance in natural catchments 

Overall, the wflow_sbm model with the global data and seamless distributed parameter maps can reconstruct the observed daily 
streamflow for the natural catchments. The daily hydrographs of the Nan_natural catchment (Fig. 7(A) and (B)) and Yom_natural 
catchment (Fig. 7(C) and (D)) show good fits in the peak timing and seasonal variability between the observed and simulated 
streamflows in both wet year (2006) and dry year (2013). Table 5 indicates satisfactory model performance, with the KGE value in the 
validation period ranging between 0.63 and 0.65 for the Nan_natural catchment and 0.78 for the Yom_natural catchment. Apart from 
the spatial uncertainty in model parameters, the varying model performances between the two catchments can be attributed to the 
difference in the catchment characteristics, particularly the elevation and land cover. A large part of the Nan_natural catchment is 
mountainous with forest areas, as shown in Figs. 1 and 4. Therefore, its hydrological processes are more difficult to simulate compared 
to the Yom_natural catchment that is less steep with more grasslands. The difficulty is caused by the higher amount and variability in 
precipitation, which result in the higher and more fluctuating streamflow, as also evident in Table 2. As a result, the peak flow 
magnitude in the Nan_natural catchment was five times higher than in the Yom_natural catchment in the wet year (Fig. 7(A) and (C)) 
and nine times higher in the dry year (Fig. 7(B) and (D)). For both catchments, the model tends to underestimate peak flows in the rainy 
season, especially at the beginning of the monsoon period, and miss peak flows generated by local storm events in the dry season. 

5.3. Model performance in regulated catchments 

The wflow_sbm model with the ROM shows varying performances when simulating the regulated streamflow for the Sirikit and 
Bhumibol catchments (Table 5). On the one hand, the daily streamflow estimate for the Sirikit catchment is passable, with the highest 
KGE of 0.43 (PTF-C) in the validation period. On the other hand, the model failed to estimate the daily streamflow for the Bhumibol 
catchment, resulting in negative KGE values in both calibration and validation periods. The major sources of error for both catchments 
are the inflexibility of the daily reservoir releases and the prompt releases of surcharge water by the ROM in the very wet periods, as 
evidenced in Fig. 7(E), (G) and (H). Therefore, the resulting accuracy for both reservoirs tends to be higher in the dry season than in the 

Table 5 
Wflow_sbm performance in simulating daily streamflow for the four study catchments and daily storage for the two reservoirs, with the PTF-B and 
PTF-C parameter sets. KGE and its components were obtained during the calibration (first row) and validation (second row) against observations. The 
model was calibrated for the years 2010–2011 and validated for the years 1989–2013, excluding 2010–2011.    

Period 
PTF-B PTF-C   
KGE r α β KGE r α β 

Catchment (streamflow) 

Nan_natural Cal 0.68 0.89 0.85 0.73 0.66 0.89 0.80 0.74 
Val 0.65 0.85 0.88 0.70 0.63 0.83 0.83 0.71 

Yom_natural 
Cal 0.67 0.80 0.78 0.86 0.65 0.79 0.75 0.87 
Val 0.78 0.79 1.07 0.97 0.78 0.78 0.96 0.97 

Sirikit 
Cal 0.24 0.42 1.36 1.34 0.25 0.43 1.35 1.35 
Val 0.41 0.42 0.87 0.94 0.43 0.45 0.84 0.96 

Bhumibol 
Cal -0.68 0.04 2.06 1.88 -0.63 0.03 1.96 1.89 
Val -0.26 0.04 1.73 1.37 -0.21 0.06 1.65 1.38 

Reservoir (storage) 
Sirikit Cal 0.45 0.77 0.54 1.20 0.41 0.79 0.49 1.22 

Val 0.80 0.87 1.03 0.85 0.81 0.86 1.05 0.88 

Bhumibol 
Cal 0.13 0.69 0.35 1.50 0.12 0.71 0.33 1.50 
Val 0.59 0.69 1.09 1.24 0.59 0.71 1.04 1.28  
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rainy season, and higher in dry years than in wet years. 
To elaborate the ROM performance, the daily water storage computed by the ROM for the Sirikit and Bhumibol reservoirs are 

compared to observations in Fig. 8. Overall, the simulated reservoir storage reasonably captures the inter- and intra-annual variability, 
although the magnitude is not accurate. The storage tends to be underestimated for the Sirikit reservoir and overestimated for the 
Bhumibol reservoir. In very wet periods, the storage is overestimated and exceeds the monthly target maximum (top of gray band in 
Fig. 8). This occurred more often for the Bhumibol reservoir than for the Sirikit reservoir, especially after the year 2003. As a result, the 
goodness-of-fit of the simulated storage (Table 5) is significantly better for the Sirikit reservoir (highest KGE = 0.81 with PTF-C) than 

Fig. 7. Simulated and observed daily streamflows in the wet year (2006; left panels) and the dry year (2013; right panels) for the Nan_natural (first 
row), Yom_natural (second row), Sirikit (third row), and Bhumibol (bottom row) catchments. The simulated streamflow with the optimized PTF-B 
parameter set is shown in solid red lines, the simulated streamflow with the optimized PTF-C parameter set in dashed orange lines, and the ob
servations (obs) in solid black lines. 

Fig. 8. Simulated and observed daily storages of the Sirikit reservoir (A) and the Bhumibol reservoir (B) during the years 1989–2013. The gray 
bands represent the ranges between the monthly target maximum storage and the target minimum storage, which was fixed as 30 percent of the 
reservoir capacity. The simulated storage with the optimized PTF-B parameter set is shown in solid red lines, the simulated storage with the 
optimized PTF-C parameter set in dashed orange lines, and the observations (obs) in solid black lines. 
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the Bhumibol reservoir (KGE = 0.59 for both PTF-B and for PTF-C). Due to the storage overestimation, the ROM released surcharge 
storage promptly (according to Eq. (7)), producing the unrealistic streamflow, as appeared in 2006 (Fig. 7(E) and (G)). Although the 
observed daily storage of both reservoirs also exceeded the monthly target maximum in some wet years, e.g., 1995, 2006 and 2011 
(Fig. 8), most of observed surcharged water was allowed to stay in the reservoirs instead of being spilled at once. Therefore, the 
observed peak outflow due to surcharge storage was not as huge as the outflow simulated by the ROM (Fig. 7(E)–(H)). Due to the 
limited flexibility of the ROM, it cannot capture the dynamics of the observed reservoir releases at the daily timescale. However, it does 
show satisfactory performance at the monthly timescale (see the supplementary document). 

6. Discussion 

6.1. wflow_sbm with global data and parameterization 

To our knowledge, this is the first study that applied the wflow_sbm model to simulate the daily streamflow in the upper GCPR 
basin. By setting up the model with global geospatial datasets (e.g., SRTM elevation), forcing the model with global meteorological 
datasets (MSWEP V2 P and eartH2Observe PET), and applying the seamless parameter maps based on SoilGrids, GLOBCOVER, and 
other global databases (e.g., MODIS LAI), we are able to circumvent the poor availability of in situ data often occurring in SEA. The 
seamless distributed parameter maps were applied to all but one sensitive soil-related parameter, KsatHorFrac, for which PTFs were 
unavailable (Imhoff et al., 2020). Although a full calibration procedure may improve the model performance, calibrating only one 
parameter prevented overparameterization and equifinality as well as reduced the computational time when simulating such a large 
basin at high spatial and temporal resolutions. 

The model sensitivity to the soil-related parameter maps with different pedotransfer functions, PTF-B and PTF-C, became apparent 
due to the difference in the optimized KsatHorFrac values (550 for PTF-B and 120 for PTF-C). KsatHorFrac controls horizontal saturated 
conductivity, which influences the magnitude of the lateral subsurface flow and thus streamflow dynamics and recession after a peak 
(Fig. 6). The parameter is, therefore, sensitive to the other soil-related parameters, particularly KsatVer (vertical saturated conduc
tivity) and M (decay rate of KsatVer) (see full description in Table 3). PTF-B and PTF-C produced very different spatial values of KsatVer 
and M, as visible in Fig. 3. Therefore, we suggest calibrating KsatHorFrac with respect to the selected PTF parameter set and study area. 
Furthermore, calibrating the KsatHorFrac based on soil types or elevation instead of calibrating it as a constant value may improve the 
model performance, which can benefit the model application for the real-time forecasting purpose, although more computational 
efforts are demanded. Nevertheless, the range of streamflows simulated with the KsatHorFrac values of 100–800 is not very large, 
especially for PTF-B (Fig. 6). Therefore, running the model without any calibration only introduces a little uncertainty, which makes it 
possible to apply it in ungauged basins. 

Other sources of model uncertainty, such as the meteorological, geospatial, and hydrological input data, were not investigated in 
this study but could play a role in the model errors. Firstly, the synthetic meteorological data from global databases are subject to their 
own spatial (~10 km) and temporal (3 hourly–daily) resolutions, which were coarser than the target resolutions of the model (~1 km 
and 3 hourly). As a result, the P data failed to present local storm events, leading to the absence of local peak flows in dry seasons and in 
the beginning of rainy seasons for natural catchments (Fig. 7(A)–(D)). In a similar manner, the quality of the PET data directly affects 
the actual evapotranspiration (AET) estimates, but their accuracy was difficult to evaluate. Secondly, the seamless distributed maps for 
the land cover-related parameters were created based on the land cover database from the year 2009 (Fig. 4). In fact, the land cover in 
the upper GCPR basin has gradually changed over time, with decreasing forest areas and increasing agricultural areas (Jamrussri and 
Toda, 2017). Therefore, assigning the land cover-related parameters based on yearly land cover maps may improve the model results. 
Lastly, quality of the observed streamflow data was unverified and could also affect the model performance evaluation to some extent. 

Considering the study purpose, we conclude that the wflow_sbm model with global data and parameterization is capable of 
simulating the daily streamflow for natural catchments (Fig. 7(A)–(D) and Table 5), but less effective for the regulated catchments due 
to limitations in the ROM (see Section 6.2 for more detail). In most study catchments, the goodness-of-fit results were higher during the 
validation than during the calibration potentially because the short calibration period (years 2010–2011) was both extremely wet and 
dry, while the validation period (years 1989–2013, excluding 2010–2011) also contained more regular hydrological conditions. 
Nonetheless, the wflow_sbm model outperforms the SWAT model that was run with observed daily meteorological data and fully 
calibrated for the same study area (Jamrussri and Toda, 2017). Therefore, it has potential to serve as a tool for the upper GCPR basin 
and other ungauged or data-scarce catchments in SEA. 

6.2. Reservoir operation module 

Reservoir operation modules with the target storage-and-release-based methods usually require a large amount of data for an 
individual reservoir that may be undocumented or difficult to obtain, particularly for data-scarce areas like SEA. Yassin et al. (2019) 
found that even when the required data are available, they usually contain considerable uncertainties so that optimizing operational 
parameters is still insufficient to represent the absolute storage-release relationship for many reservoirs, especially the multipurpose 
ones. Considering limited data available for the upper GCPR basin, the ROM was, therefore, designed to minimize the number of 
operational parameters and utilize accessible data without calibration (Fig. 5 and Table 4), which also allowed for investigating the 
data competence. 

The main error in the ROM results was the daily storage that exceeded the monthly target maximum in the rainy seasons (Fig. 8). In 
response, the surcharge water was promptly released by the ROM, causing unrealistic flood peaks (Fig. 7(E), (G) and (H)), especially 

C. Wannasin et al.                                                                                                                                                                                                     



Journal of Hydrology: Regional Studies 34 (2021) 100794

15

for the Bhumibol reservoir. Meanwhile, the observations showed that the daily storage also exceeded the monthly target maximum in 
some wet years. However, the surcharge was not released at once, but was held and gradually released to prevent downstream floods. 
In some occasions, the daily releases were paused for a few days to control downstream floods. This indicates the high flexibility of the 
actual reservoir operations on a day-to-day basis, which could not be captured by the ROM that is based on the monthly operating rule 
curves and piece-wise linear regression algorithm. This flexibility reflects real-time decision making by dam operators to meet oc
casional targets, such as mitigating floods, satisfying downstream irrigation demands and increasing the hydropower generation 
(Yassin et al., 2019). Therefore, the ROM simulations in this study can be seen as the baseline operation scenario, which reflects the 
generalized operations without further impacts of human intervention. This baseline simulation is useful for analyzing effects of 
reservoir operations on downstream flows, which is presented in a companion paper (Wannasin et al., 2021). Although the real-time 
decision making is beyond the capability of the ROM and other mathematical operation modules, we suggest that the ROM perfor
mance can still be upgraded in the future with (i) a more accurate storage calculation and (ii) a more complex release algorithm. 

The storage calculation may be improved with the higher accuracy of daily reservoir inflows and direct AET losses computed by the 
wflow_sbm model. In this study, the upstream inflows of the Sirikit and Bhumibol reservoirs were simulated as naturalized flows and 
indirectly validated with upstream flows since reliable reservoir inflow data are unavailable. However, there are four reservoirs 
located upstream of the Bhumibol reservoir, which have been operated since 2003. Therefore, the simulated inflows could be inac
curate, although this was impossible to evaluate without reliable observed data. This explains the storage overestimation for the 
Bhumibol reservoir after 2003 (Fig. 8(B)). Meanwhile, the inaccuracy of the daily AET could be partly due to simplification of the ROM 
itself. Since the water surface area of each reservoir was set as a fixed value (Table 1), despite the daily storage change, the amount of 
daily evaporating water could be under- or overestimated. Therefore, the reservoir area-elevation-storage relationship (e.g., Zhao 
et al., 2016b) may increase the accuracy of the daily AET losses and thus the daily storage estimated by the ROM. 

The main factor determining the release algorithm in the ROM is the monthly target downstream water demand (DD). Without 
existing data, the DD of each reservoir was estimated as the long-term-monthly average of the reservoir outflow (Fig. 5), which could 
be a source of significant uncertainty for the daily outflow simulation. Another limitation of this algorithm is that it intends to meet the 
target DD without considering the daily inflows (e.g., thresholds for flooding, normal, and low inflows) or maximum acceptable 
streamflow at downstream control points (e.g., at Nakhon Sawan). Adding these factors into the outflow determination process (e.g., 
Zhao et al., 2016b; Yassin et al., 2019) may rectify the unrealistic surcharge releases. In addition, a release coefficient (e.g., annual 
coefficients as a function of mean total annual inflow) could introduce the inter-annual release variability into the module (Hanasaki 
et al., 2006). However, more parameters also mean more uncertainty sources and thus their competence should be carefully assessed. 

6.3. Human impacts on hydrological modeling and streamflow 

Our findings are in substantial agreement with previous studies, concluding that simulating the outflows of the Sirikit and Bhu
mibol reservoirs is challenging due to the complex patterns of real-time decision making by dam operators. Neither target storage-and- 
release-based methods nor inflow-and-demand-based methods applied in the past could satisfactorily reconstruct the actual operations 
of these two reservoirs at the daily timescale (e.g., Hanasaki et al., 2006; Mateo et al., 2014; Yassin et al., 2019). The recent study of 
Yassin et al. (2019) suggested that it was mainly due to the high ratio of the maximum reservoir storage and the mean total annual 
inflow of both reservoirs (>0.5), indicating more radical regulations compared to many other reservoirs worldwide. Moreover, since 
the outflows of the Sirikit and Bhimibol reservoirs conjugate at Nakhon Sawan, it is likely that both reservoirs are jointly operated in 
real time to manage floods and droughts in the downstream floodplain, as also reported during the 2011 GCPR flooding (Komori et al., 
2012). 

Recently, Yang et al. (2019) found that the data-driven method, artificial neural networks (ANNs), could learn the complex pattern 
of the observed reservoir outflow records and reproduce the daily outflow more accurately for both Sirikit (NSE = 0.93) and Bhumibol 
reservoirs (NSE = 0.86). Therefore, they can be useful tools for real-time reservoir outflow simulation and forecasting. However, since 
ANNs are black boxes, they cannot reveal the insights of real-time decision making in the actual operations of the reservoirs, which 
remain imperative for better and more sustainable reservoir water management in the future. 

Above all, the unsatisfactory simulations of the reservoir outflows by the ROM reflect the strong and prompt human intervention on 
daily streamflow. In the areas that are at risks of floods and droughts like the upper GCPR basin and other basins in SEA, understanding 
of quantitative impacts of reservoir operations, especially with real-time decision making, on downstream flows is essential. Therefore, 
we further applied the developed model and results from this study to assess the effects of reservoir operations on the daily streamflow 
in the upper GCPR basin in a companion paper (Wannasin et al., 2021). With deeper knowledge on both reservoir system modeling and 
reservoir effects, we expect to be more capable of improving hydrological modeling and water resource management simultaneously. 

7. Conclusion and outlook 

This study concerned the development of a (~1 km resolution) distributed hydrological model, wflow_sbm, with global spatial data 
and parameterization and the exploration of its performance in estimating daily streamflow in the upper Greater Chao Phraya River 
basin. The main findings are as follows:  

1. The global-data-driven wflow_sbm model can satisfactorily estimate daily streamflow in the natural catchments (highest 
KGE = 0.78 in the validation period). 
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2. The wflow_sbm model was not able to estimate daily streamflow in regulated catchments very well due to the simplified algorithm 
of the reservoir operation module (ROM) (highest KGE = 0.43 in the validation period).  

3. The ROM with the (monthly) operation rules can capture the seasonal variability of the reservoir storage and releases, but cannot 
take into account real-time decision making by dam operators. The ROM results, therefore, reflect the baseline operations without 
further impacts of human intervention. 

4. The difference between daily reservoir outflows from the baseline operation (simulations) and from the real-time operation (ob
servations) highlights the strong effect and importance of real-time decision making to optimize the reservoir releases promptly, 
especially during extreme events. At the same time, it also addresses the source of difficulties in modeling large-scale multipurpose 
reservoirs. A more complex module with optimized parameters may improve the results, but uncertainties remain high.  

5. With rooms for improvements, the proposed model can reasonably serve as a tool for analyzing catchment-scale hydrological 
variations in the GCPR basin and provide an opportunity for streamflow estimation in other ungauged or data-scarce basins in 
Southeast Asia. 

Based on the findings, more studies on the use of seamless parameter maps based on global data for distributed hydrological 
modeling in other data-scarce basins are encouraged. Effects of using different global meteorological datasets on the model perfor
mance should also be explored. Future challenges in the reservoir system modeling include gaining a better understanding of the 
complexity of the real-time operations and improving the model performance for multipurpose reservoirs. A companion paper 
(Wannasin et al., 2021) describes the application of the global-data-driven wflow_sbm model with the ROM on investigating the 
reservoir operations and their effects on the daily flow regime in the same basin. 
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Grayson, R., Blöschl, G., 2001. Spatial Modelling of Catchment Dynamics. Cambridge University Press, Cambridge, UK.  
Gupta, H.V., Kling, H., Yilmaz, K.K., Martinez, G.F., 2009. Decomposition of the mean squared error and NSE performance criteria: implications for improving 

hydrological modelling. J. Hydrol. 377, 80–91. https://doi.org/10.1016/j.jhydrol.2009.08.003. 
Hanasaki, N., Kanae, S., Oki, T., 2006. A reservoir operation scheme for global river routing models. J. Hydrol. 327, 22–41. https://doi.org/10.1016/j. 

jhydrol.2005.11.011. 
Hassaballah, K., Mohamed, Y., Uhlenbrook, S., Biro, K., 2017. Analysis of streamflow response to land use and land cover changes using satellite data and hydrological 

modelling: case study of Dinder and Rahad tributaries of the Blue Nile (Ethiopia-Sudan). Hydrol. Earth Syst. Sci. 21, 5217. https://doi.org/10.5194/hess-21- 
5217-2017. 
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