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Chapter 1

INTRODUCTION.

‘The term “modulated structure” can be used to describe any periodic, or
partially periodic perturbation of a crystal structure with a repetition
distance appreciably greater than the basic unit cell dimensions.’ Cowley
et al. (1978) used this definition in defining the limits of the subject
matter for one of the two international symposia entirely devoted to
modulated structures. (The proceedings of the other one were edited by
Tsakalakos, 1984.) The periodic perturbation is ment to be static. So a

phonon, for instance, is not included in this definition.

The perturbation mentioned in the definition is found to appiy to different
physical quantities, for instance the direction of magnetic dipole moments
{magnetic modulation), the probability that in certain disordered
structures a crystallographic site is occupied by a given kind of atom
(occupational modulation) or the atomic positions (displacive modulation,
discussed in section 1.1).

Examples are abundant. They are found in organic crystals and in inorganic
ones, in minerals and in synthetic crystals, in magnetic crystals and in
non-magnetic ones, in insulators, in semiconductors and in conducting

solids.

Structures with a partially periodic perturbation will not be considered
here. The discussion will be restricted to structures with Tong range order
perturbations.

Though there are structures of which the perturbation must be described by
a superposition of waves with different modulation wave vectors, in the
present study only so-called i-dimensionally modulated structures occur.

A further restriction is made in that only structures with a displacive

modulation will be considered.

Examples of structures with a displacive modulation are found in the
structures of Rb;ZnBra and related compounds. These modulated structures on
one hand show a variety of symmetries and modulation wavelengths, on the
other hand their diffraction patterns - in particular those of different

phases of the same compound - are strikingly similar. So one can assume



that the modulation in all these phases has a common origin.

Indeed the purpose of the present work is to verify and substantiate that
assumption. The approach chosen to achieve this is to study the modulated
crystal structures in detail.

The scheme of this thesis is as follows. Chapter 2 describes the principles
of a computer program by which details of the modulation in incommensurate
as well as in commensurate crystals can be determined from diffraction
data. Chapter 3 describes the determination of the modulated structures of
three phases in Rb2ZnBrg. In chapter 4 these modulated structures are
compared with the structures of related compounds, of which the structure
determinations have been published, mostly in the last few years. Chapter 5

presents a model concerning the origin of the modulation in crystals of
Rb2ZnBra and related compounds.

The rest of chapter 1 provides an introduction on several items. Section

1.1 introduces the concept of displacive modulation, whereas section 1.2
deals with the comparison of incommensurately versus commensurately

modulated structures. Section 1.3 discusses the symmetry of incommensurate

structures. Section 1.4 deals with the 8-K2504 type structure. The
modulated structures discussed in this thesis are modifications of this
structures type.

1.1. Displacive modulation.

The crystal structures discussed in this thesis are modulated by a
displacement wave. Figure 1.1.1 shows 2 simple structure with a displacive
modulation, together with a non-modulated one. In the normal structure
(figure 1.1.1a) a and € are two of the three unit cell vectors of

the crystal structure. The position of the atom in unit cell n is given by

Xn =0 + Xo Clicd 1)
where n is the position vector of unit cell n, and xo is the vector
that gives the position of the atom within the unit cell.

In the modulated structure the position of the atom in the unit cell is not

10

equal for all unit cells. The displacive modulation wave causes the
a

position of the atom in cell n to become
) 2
xn’ =0+ Xo + d((nt%0).Q) . 112

Uector d(t), the modulation displacement, has three components di Gty
(i=1,2,3) with respect to a, b and ¢, which are called the ]
modulation functions of the atom. These modulation functions are periodic

with period 1, and have zero mean value.

The cell spanned by a, b (not shown in figure 1.1.1) and ¢ is :
called subcell of the modulated structure. If more atoms are present in the
subcell, then each of these atoms has its own modulation functions. In

5 e

equation 1.1.2 g is the modulation wave vector, which can be written as
1.3
g = xa* + gb* + ¥ck . (L]

a*, b* and c* are the vectors reciprocal to the set subcell
:ectors a, b and ¢. The wavelength of the modulation wave is
equal to
(1.1.9
a= 1/lal .
The modulation discussed here is a so-called 1-dimensional modulation: just
one modulation wave vector is needed to describe the modulation. This is

the most frequently occurring type of modulated structure, and it is the

only type occurring in the group of compounds to be studied.

The extra periodicity in the structure is the origin of extra reflections
in the diffraction pattern. The extra reflections are called satellite
reflections. In contrast, the normal ones are called main reflections.
Figures 1.1.1c and 1.1.1d show the diffraction patterns of the structures
of figures 1.1.1a and 1.1.1b respectively. The reflections of the modulated
structure are indexed using four integer indices h, k, 1 and m, instead of
the usual three for non-modulated structures. The diffraction vectors are

given by
(1.1.9
H=h+mg ,

1.1.8)
with h = ha* + kb* + 1¢*. ¢
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If for a reflection m=8, this reflection is a main reflection. If Im|=n#0

then it is a n-th order satellite.

For a given structure the modulation wave vector g is not unique. It

can be replaced by gt+h, h being any reciprocal lattice vector

(1.1.6). Of course, thereby both the functions d(t) and the satellite
indices are changed, but 1.1.2 remains valid. For more information about
the subject of equivalent wave vectors the reader is referred to De MWolff

et al. (1984) and to subsection 4.2.1. of this thesis.

From a modulated structure two hypothetical normal structures can be
derived. The first one is the so-called basic structure. This structure
corresponds to the case d(t)=8 in equation 1.1.2. For the modulated
structure of figure 1.1.1b the basic structure is the one of figure 1.1.la.
The szecond hypothetical structure is the so0-called average structure, which
has the same Bravais lattice as the basic structure. The contents of the
unit cell of this structure can be obtained by averageing the contents of
all subcells of the modulated structure. If a Fourier synthesis is

performed, using only the main reflections, then one finds the average

structure.

The atomic positions in the modulated structure are completely defined by
equation 1.1.2 if the following data are Known:

- the lengths of the unit cell vectors a, b and ¢ of the basic
structure and the angles between them,

- the atomic positions xo of the atoms in the basic structure,

~ the modulation wave vector components «, # and ¥ (see equation 1.2.4) and
- the modulation functions d;(t) (i=1,2,3) for all atoms in the basic

structure unit cell, for instance in terms of Fourier coefficients.

1.2. Incommensurate versus commensurate modulation.

In order to simplify the discussion, « and g in equation 1.1.3 will be

assumed to be zero. The modulation wave vector is then parallel to c*:

G120
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This is the situation in the crystal structures discussed in this thesis.
In the previous section nothing is mentioned about the properties of . Now
an important distinction is introduced. We shall - at least formally -
distinguish between cases where % is rational and those in which % is
irrational.

If % 15 rational, it can be written as

HE R 1zro)

with u and v mutually prime positive integers and ud{v. Then u modulation
wavelengths f1t exactly in v subcell periods. The modulation is
commensurate with the basic structure in this case. This is illustrated in
figure 1.2.1a for +=2/7. A v-fold supercell can be chosen as unit cell of
the structure, and this superstructure can be treated as a normal
structure, without using the modulation concept. Hence for this
superstructure the reflections can be indexed either by three indices based
on the large unit cell, or with four indices, based on the description as a
modulated structure. This is illustrated in figure 1.2.1b for the example
with %=2/7.

I+, however, % is irrational, the modulation is incommensurate with the

basic structure, and the modulated structure is called incommensurate.

Crystals with modulated structures very often show the following behaviour
as a function of temperature. Above a certain temperature T; the crysta
structure is normal (non-modulated). Below T; the structure is modulated.
Down to a certain temperature T¢ this modulation is incommensurate and
below Tc it is commensurate. The modulation wave vectors of the
incommensurate structure and the superstructure usually do not differ much.
In the incommensurate phase the modulation wave vector usually changes
continuously; at Tc it jumps to the commensurate value. Temperature T¢ is
called the lock-in phase transition temperature, and the superstructure
phase the lock-in phase.

Diffraction experiments can be used to examine whether a modulated
structure is incommensurate or commensurate. If such an experiment shows
that ¥, in equation {.2.1, for a certain crystal phase varies continuously
as a function of temperature (or as a function of pressure or another
physical condition), then is is almost certain that the structure of that
phase is incommensurate. The possibility exist, however, that this

conclusion is wrong, because such a behaviour of the modulation wave vector

can be found also if the crystal has a few successive superstructure.phases
(with nearly the same modulation wave vector), while the phase transitions
between these phases do not occur at the same moment for each part of the
crystal. This can be caused by impurities or defects in the structure or by
temperature gradients in the crystal. The measured modulation wave vector
is the weighted average of the modulation wave vectors of the
superstructure phases, the weight for each commensurate modulation wave
wvector being the volume fraction of te crystal occupied by the
corresponding phase. For instance, Gesi and lizumi (1978) first assumed a
continuous behaviour for the modulation wave vector of Rb2ZnBra just above
Tc. Later, however, they observed that % changes stepwise (lizumi and Gesi,
1983) .

1f % does not change in a certain temperature region, and v is equal to a
simple rational value (e.g. 174, 2/7 or 3/18) within experimental error,
then the structure is very probably a superstucture. But there is always
the possibility that the measurements are not accurate enough to reveal
that ¥ deviates from this rational value.

If % is constant at a value that is not a simple fraction, then % is either
equal to a rational value with a large denominator (e.g. 23 or 29) or is
irrational. In the last case the modulation wavelength may be pinned at a
certain incommensurate value (e.g. the equilibrium value at the conditions
under which the crystal has been grown or annealed) by defects in the
crystal. More accurate measurements of s or measurements on crystals that

are prepared in another way may give more information.

In the definition mentioned at the beginning of chapter 1, it is not
defined exactly how large the repetition distance in a crystal structure
must be in order to consider it as a modulated structure. Often, a
superstructure with a 3-fold or larger supercell is called a modulated
structure. It will be shown in chapter 4 that it can be convenient to

consider structures with smaller repetition distances also as modulated.

1.3. Symmetry in incommensurate crystal structures.

Because of the extra periodicity of the modulation, which destroys the
periodicity in at least one dimension, the symmetry of an incommensurate

crystal structure cannot be described by a normal 3-dimensional space

15



group. 4-dimensional space groups can be used to give full account of the
symmetry of incommensurate i-dimensionally modulated structures. Only
certain 4-dimensional space groups represent symmetries of such structures.
These 4-dimensional space groups are called superspace groups by Janner and
Janssen (1979). In this thesis the term "superspace group" will not be used
further, because it can easely be confused with "superstructure space
group" (the 2-dimensional space group of a superstructure), which will be
used often. Instead, a 4-dimensional space group that represents the
symmetry of an incommensurate structure will merely be called the 4-

dimensional space group of that structure.

The reader is referred to De Wolff et al. (1921) for a full treatment on
the symmetry of incommensurate l-dimensionally modulated crystal structures
and for a complete list of the 4-dimensional space groups of such
structures. This section only provides a short introduction. It is only

concerned with those items which are relevant for this thesis.
Consider an atom A with basic structure position xo and modulation
functions d(t) and atom A’ with basic structure position xo’ and

modulation functions d‘(t). A symmetry operation relating atom A’ to A
has the form

[5°"J=[R0.J[5°.J+[§]. (1.3.1)
t 4 9 ¢ t e
The first part of this operation,
Xo” = Rxo + 5 , (1.3.2)
transforms the basic structure position of atom A into that of A‘. It is a

normal 3-dimensional symmetry operation. The 3x3 matrix R is the point

group operation and s is the additional shift.

The second part,
ta =ttt v (1.3.3)
tells us how the modulation functions are related, namely as

d’(t) = Rd(e(t-1)) . (1.3.4

16

¢ can be 1 or -1 only. =1 if R transforms the modulation wave vector g
into itself, and e=-1 if g is transformed into -g:

R (1.3.9)
g = €9 -

according to 1.3.4 the modulation functions of atom A’ can be found from
those of atom A by shifting the modulation functions of A over Tx (% is the
modulation wavelength) . Moreover, 1f ¢=-1 one has to change the sign of the
argument of the modulation functions, so that those of A and A‘ run in
opposite directions. In both cases (e=1 and e=-1>, the direction of the

displacement vector is transformed by R.

Two operations will be illustrated: c(s) and n(7).
Figure 1.3.1a illustrates the operation c(s), which for a particular choice

of axes and origin can be written as

199
c(s): (Rys,e,m) = ¢ | @ 18 Il el S Y s (1.3.8
88 1

@

The ¢ in the symbol c(s) indicates that the basic structure part of the
symmetry operation is a c-glide plane. The 5 in the zymbol means that =1
and that the modulation functions have to be shifted over 8.5n. In figure
1.3.1a it can be seen that the modulation functions of atom A’ are shifted
over 8.5x with respect to those of atom A. Because Ryi=-1, moreover the
sign of di(t) is reversed.

In figure 1.3.1b the operation

100 8.5

b

e e = | O 5 0] = s e AT
a0 -1 1

iz shown. The basic structure part of this operation is a n-glide plane.
The T in symbol n(7) means e=-1. In that case the value of T cannot be
derived frﬁm the symbol n(7), but it follows from the choice of the phase
of the modulation wave with respect to the origin or, seeing it from
another point of view, from the choice of origin in the modulated
structure. Note that s3 in this example and sy in the previous one are also
origin-dependent. Figure 1.3.1b shows that the modulation functions of atom

A’ are derived from those of atom A by changing the sign of the argument of

17/



a.

FIGURE 1.3.1. Two examples of symmetry operations
in a structure with displacement modulation. In each
example the symmetry operation transforms atom A,
with modulation functions dy(t) and d3(t), into atom
A’, with modulation functions dy’/(t) and d3’(t).

a. symmetry operation

(-1 0 0] 1

| 8 @il 0 8l 1 08 )
L /] 1J LG.SJ

shown are: the undistorted structure, the
modulation functions and the modulated structure;

c(s): (R,s,e,7) = (

18

di(t) T
m'(t)T

d3 () T

dae Gt T

Figure 1.3.1 b. Symmetry operation

n(i) s (Rys,8,0 = (

The dotted functions show
the shift *x is applied.

¢

s
©O®

=%

~

u
l
J

(7(t) and d3’(t) before

)
18 =1 50550
a-1



these functions and shifting the functions over 8.5x. The sign of d3’(t)
has been changed with respect to the sign of dsz(t) because R33=-1. Note
that there are different mirror planes for the modulation functions and faor

the basic structure positions.

The symbols of the 4-dimensional space groups used in this thesis differ
from those in De Wolff et al. (1981) for typographical reasons. The
notation and the properties of 4-dimensional space groups will be explained
with the aid of an example: The most important space group in this thesis
is

21 24 24

P — — — (80% (1.3.8a)
4 m n
or in short:
Pcmn(@8%) (5570 . (1.3.8b)

The first part, Pcmn, of the 4-dimensional space group symbol is the
¢standard) 3-dimensional space group symbol (International Tables Uolume @A)
of the space group of the basic structure. The second part in 1.3.8, (88%,
gives the components of the modulation wave vector (as defined in 1.1.3).
In space group 1.3.8 the modulation wave vector has an irrational component
parallel to c*, and no components alaong the other two directions. The

third and last part of the symbol tells us how modulation functions are
transformed. The symbol of an individual space group operation is formed by
a symbol of the first part, together with the symbol at the corresponding
position in the third part. Hence the symbols of the three 4-dimensional
space group operations in space group symbol 1.3.8b are c(s), m(s) and
n{f). The symbols in the third part of the 4-dimensional space group symbol
(and in the second part of the symbols of the 4-dimensional space group
operations) are related to the values of ¢ and T of the corresponding
operations. If e¢=+1 and ¥ is equal to @, then the second part of the symbol
of the 4-dimensional space group is (1) (example: 2¢(1) in 1.3.8a). If e=+1
and t=08.5 then the second part of the symbol is (s) (examples: c(s) and
m¢s) in 1.3.8a and 1.3.8b). If e=-1, the second part of the symbol of the

4-dimensional space group operation is always (7).

Rules for systematically absent reflections for incommensurate crystal

struclures also involve the satellite reflections (De Wolff et al., 1981).

20

1.4. The p~K,504 type structure.

The crystal structures discussed in this thesis are modifications of the g-
K2504 type structure. (The structure determination of B-K250a4 has been done
by McGinnety ,1972.) The B~K2504 type structure occurs in many compounds of
chemical formula A2BXs (see e.g. Muller and Roy, 174> . In this formula B
and X represent single atoms while A can represent also NHa or NC(CH3) 4
(Tetra Methyl Ammonium, TMA) . The g-K:5Da type structure consists of
negatively charged BXa groups and positive A atoms (NHa and N(CH3)4 wil
also be designated as "A atoms"). The BXa groups are in qood approximation
regular tetrahedra. The X atoms of such a group are located at the four
corners of the tetrahedron, while the B atom is located at the barycentre

of it.

In figure 1.4.1 three projections of a p-Ka504 type structure are shown.
This figure shows the contents of the orthorhombic unit cell: four BXa
groups and eight A atoms. Of each BXa group the B atom and two X atoms (X
and Xz in figure 1.4.1> are located on a mirror plane. The other two X
atoms (X3 and Xa) are related to each other by te mirror plane operation.

The & atoms are all located on mirror planes.

The space group of the §-K»80s type structure is Pcmn. Figure 1.4.1d shows
the symmetry operations of this space group. The symbol Pcmn corresponds to
the choice of axes a, b and ¢ as shown in figure 1.4.1. If the

axes would have been labelled in another way, as is often done in other
publications, then another space group symbol should have been used. In
this thesis the axes will be labelled throughout in the manner followed by
De Pater (1973) and Rasing (1982) shown in figure 1.4.1d.

The symmetry-independent atoms are Ai, Az, B, Xy, X2 and Xs. If A
represents NHa or N(CH3)a, then the position of this group is defined to be

the position of the nitrogen atom.

More information about the §-K2504 type structure can be found in Muller
and Ray (1974) and Eysel (1971).

i



FIGURE 1.4.1. Three projections of a g-K,504 type crysta
structure (a, b and c) and its space group operations (d).
The structure shawn is that of (NHg) 2ZnCls at 418K (Matsunaga,

Chapter 2

DETERMINATION OF MODULATED STRUCTURES.

2.1. Introduction.

Whereas many computer programs are available for normal crystal structures,
at the beginning of the work described in this thesis, none was available
for incommensurate structures . Therefore a computer program has been
written for the most frequently occurring type of incommensurate crysta
structures (1-dimensional modulation).

In 1983 a computer program for modulated structures written by Yamamoto
became available, This program has a larger scope than the program
discussed in this chapter. For instance, it is not limited to the case of
i-dimensicnal modulation. For the structure determinations of this thesis

(chapter 3), the program discussed in this chapter has been used.

Additional features are needed in a computer program for modulated crystal
structures because

- extra parameters are necessary for modulated structures in order to
describe the modulation,

- the symmetry 1s more extended for modulated structures: it also involves
the modulation functions,

- the structure factor calculation is more complex for modulated
structures,

- moreover, the number of reflection indices is different: 4 for structures

with a 1-dimensional modulation and 3 for normal structures.

The computer program discussed in this chapter can handle structures with a
displacive modulation (discussed in section 1.1) as well as structures with
a so-called occupational modulation, or structures with a combination of
the two types of modulations. The discussion in this chapter will be
limited to the first type of modulation.

Two refinement methods are incorporated in the computer program: the least

squares procedure and the simplex method (Nelder and Mead, 1765; not used
for this thesis). Both methods minimize the sum of weighted squared

23



differences between calculated and observed structure amplitudes:
E wr(For—|Fer 02 s G2
P

where For is the observed structure amplitude, |Fcr| is the calculated
structure amplitude, w; is the weight and the summation is over all
measured X-ray or neutron reflections.

The simplex method has the advantage that the starting values of the
parameters need not be close to the values of the solution, but the
disadvantage that it needs wvery much more computation time than the least
squares procedure.

In section 2.2 a new derivation of the structure factor formula for
modulated structures is given. Section 2.3 will show how the symmetry of
modulated structures is treated in the program. Section 2.4 will explain

how superstructures can also be handled with the computer program.

2.2. The structure factor.

In this section the unit cell vectors a, b and ¢ of the basic

structure are denoted as a; with i=1,2,3 respectively, for convenience.
Also, the reflection indices h, k and 1 are denoted as hy, h, and h3, and
the components «, B and % of the modulation wave vector (defined in
equation 1.1.3) as qi, g2 and q3.

For a modulated structure, the structure factor F(H) can be written as
F(H) = E faCIHD .Ta(H) .Ga(H) . 2:21)
a
The summation is over all atoms in the unit cell of the basic structure.

The atomic scattering factor fa(|H|) of atom a is as for normal

structures (including the dispersion correction). H is given by
equation 1.1.5.

The expression for the temperature factor Tq(H) is identical to the one

for normal structures:

Ta(H) = exp(-2nzUq [H|2) (2.2.2)

24

for the isotropic temperature factor, whereas for the anisotropic
temperature factor:

3 3 o
TalH) = exp(-2mz £ E Uaix Hi ai* Hk ax®) . (2.2:3)
H : 2

=1 K
Us and Uaiw (i,k=1,2,3) are the izotropic temperature parameter and the
anisotropic temperature parameters respectively and Hi=hi+mq; (i=1,2,3) are
the components of the diffraction vector H.

It is not possible to modulate the temperature factor in the computer
program discussed here. This means that the thermal motion of an atom is
taken to be the same as that of the equivalent atom in any other subcell.
The geometrical part of the structure factor Ga(H) for modulated

structures differs from the geometrical part of the stucture factor for
normal structures. De Wolff (1974) derived in a very elegant manner an
expression for Ga(H), using a crystal description in four dimensions.

In this section thiz expression will be derived via the expression for the
geometrical part of the structure factor for superstructures. This has the
advantage that the relation between both expressions becomes clear. The
results will be used in section 2.4 to show how to calculate the structure
factor for superstructures exactly, using the formula for incommensurate

structures.

The geometrical part of the structure factor of reflection h of a

normal (non-modulated) crystal structure is
= .
Ga(h) = exp(2ntih.xca) (2.2.4

in which xo0a is the position of atom a:

3 1 ;
Xoa = 'El Xoaidi (2.2.5
i=

and h is the diffraction vector:

h;a;* , h; integer . (2.2.8)
1

b
1]
W Mo

Though it is not conventional, the same (normal) structure can be described
as a v-fold superstructure with supercell axes viai, V2az and
vias (vi,v2,vs: integer, v=vivevi) . The diffraction vectors h’ of

the superstructure are
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FIGURE 2.2.1.

a. Superstructure with six equal subcells. Ay and A:
are the superstructure unit cell vectors.

b. The corresponding reciprocal latice. The full
circles are reflections with non-zero and zero intensity

respectively.

FIGURE 2.2.2.

and open

a. The superstructure after modification by a displacive
modulation with wave vector g.
b. The corresponding reciprocal lattice. All indicated
reflections have non-zero intensity.

c. As b, but with new indices. Three indices are needed for 2

2~dimensional

crystal

in the new notation.

he = g JrCEi*AvI I (2207
- i=1

Here j; can be any integer, but intensities are observed only if j; is a

multiple of vi for i=1,2,3. The other positions in reciprocal space have

zero intensities because all the subcells in this unusual superstructure

are equal. The geometrical part of the structure factor of diffraction

vector h’ is

v
Goth) = — E exp(21tih’ .[xoatexl) , (2.2.8)
K=

u

in which ey are the v “centering fransiations” in the superceil (to

which @ 1s added), numbered by K i1n an arbitrary sequence:
3
ey = E ewxia; , eu: integer with B8ew;ilv;: . (2.2.9)
i=1
The factor 1/v in equation 2.2.8 makes G(h’)=G(h) (equations 2.2.8
and 2.2.4) .

Figure 2.2.1 gives a 2-dimensional example of such a superstructure.

Now consider the positions of the atoms to be displaced in a specia

manner, so that the artificial superstructure becomes a real one:

Xoateu becomes xoatewtdal@ua) (2.2.18)

with @ka = (xo0at2k) .q (2.2.11)
3 uj

and g = El — a;* , uiuvit positive integers . (2.2.12)
= Vi

dal@ka) is the displacement of atom a in subcell K according to a

static displacement wave with wave vector g. The functions da(t)

are periodic with period 1 (da(t)=da(t+1)). The wave vector g

is commensurate with the original lattice according to equation 2.2.12. u;
and v; are mutually prime integers with u;<v, for each i. It can be
verified that the unit cell vectors cof the superstructure, v;a;, are
translation vectors in the new structure. For the example of figure 2.2.1
the situation after displacing the atoms corresponding to a displacive

modulation wave with g=a;*/2+a»*/3 is given in figure 2.2.2.

The geometrical part of the structure factor is now
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1 v
Ga(h?) = — E exp(2nh’ .[doatertdalera? ) . (2.2.13
v =
where 1n aeneral all reflections, including those with one or more non-
integer indicez with respect to ai*, a»* and as*, will have

non-zero structure factors.

As shown in section 1.1, the diffraction vectors can be written in another

way (equation 1.15):
H= htmg , m integer , (2.2.14)

where h is given by equation 2.2.4., Reflections with m=8 are main
reflections, those with m#8 are satellites. m is the order of the
satellite. For a 3-dimensional crystal four indices are needed to denote a
reflection in this notation: hy, h2, h3 and m. If vy, vz and v3 are
pairwise mutually prime, so that their smallest common multiple w is equa
to v=vivavs, then 2.2.14 qives all diffraction vectors of 2.2.7. If w(v,
the new notation cannot cover ali the reflections which are given by 2.2.7.
In that case, apart from 8, also one or more of the other ey are
translations of the modulated structure. These centering translations give
rise to systematically absent reflections, which are exactly those
superstructure reflections which are not covered by 2.2.14. In appendix A
this will be proved.

Figure 2.2.2b and 2.2.2c show the diffraction pattern for the example of
figure 2.2.2a with the fractional indices of the old notation and with the
new indices respectively.

In terms of the new notation, the geometrical part of the structure factor
becomes

1 v
Ga(htmg) = — y£1 exp(2ni(h+mg) .[Xoateutdal@ua) 1) . 2220 5)
v k=

This can be rewritten to give
Ga(h+tmg = exp(2nih.xo0a)
1 v

ey VLI exp(2nil(h+m@) .da(@ka) tmorath.erl) . (2.2.16)
v k=

Betwezn the square brackets the last term is an integer, so it can be left
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out. In appendix A it will be proved that

ex.g =r/w (mod 1 (r =8, 1, 2, ... w1 , (2.2.17)
and that each value of r occurs g times if K runs from 1 to v if

g =vw . (2.2.18)

(1f the smallest common multiple w of vi, v2 and v3 is v, then g=1 and
every value of r occurs once.)

Hence equation 2.2.1é4 can be written as (see equations 2.2.11 and 2.2.17)
Ga(htmg) = exp(2mih.xoaq)

1 w 2 -
., — E exp(2nti[¢h+mg) .daltra) tmteqld (2.2.19)
w r=1

with tra = Xoa.gQ + P/W . (2.2.28)

In order to approximate an incommensurate structure (in which g has
non-rational components), a superstructure with a large supercell can be
chosen. In the limit of an infinitely large supercell, the summation can be
replaced by an integral, and the formula of De Wol+f (1974) is obtained:

2

1
GaCh+mg) = exp(2mih.xoa) [ exp(2mil(h+m@) .da(t)+mtDdt .  (2.2.2D
i 9
In this equation the boundaries of the integral are shifted with respect to
those in the summation. This is allowed because the integrand is periodic
with period 1.

Putting do(t)=8 for all atoms again gives the geometrical part of

the structure factor for a normal crystal structure.

The periodic function da(t) can be written as a sum of fourier
components (harmonics). In order to investigate the influence of the
individual harmonics on the satellite reflections, the integral of 2Rl
is written as

t
[ exp(2mith+mg) .da(t)) exp(2mimt) dt . (2.2.22)
]

For small da(t) the approximation exp(ix)=1+ix can be used for the
first factor in the integrand, and 2.2.22 becomes
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1
[ 21 (h+mg) .da (1)) exp(2nimt) dt . (2.2.23)

In this expression the n-th harmonic of da(t) has a non-zero
contribution only if m=n. Hence, the m-th harmonic of da(t) contributes
only to m-th order satellites. If da(t) is larger, then the
approximation is not valid. Usually, however, da(t) is small enough to
state that the m-th harmonic of da(t) mainly contributes to m-th order
satellites.

In the computer program the integral of 2.2.21 is approximated by a
summation:

1

n 1=1

[V

exp(2Zmil(h+mg) .da(tia) tmt;al) (2.2.249)
with tia = Xoa.Q *+ i/n . (2.2.25)

The value for n has to be chosen large enough to get a good approximation.
For the room temperature structure of Rbz2ZnBrg (chapter 3 of this thesis)
n=7 is found to be large enough.

In section 2.4 it will be discussed how 2.2.24 can be used for

superstructures.

For incommensurate structures the first term on the right hand side of
2.2.25 can be left out.

2.3. Symmetry.

I symmetry is taken into account, equation 2.2.1 can be written as

F(H) = E foCIHD E Tas(H) .Gas(H) . 231
a S

Pa
This equation contains two summations. The summation over a extends over
all atoms which are symmetry non-equivalent in the basic structure. The
summation over s is over all symmetry operations necessary to generate the
contents of one subcell (including the unity operation). pa is the so-
called multiplicity of an atom. This is the number of times the atom is
transformed into itself by the symmetry operations of the basic structure.
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The geometrical part Gas(H) of the structure factor for atom a and
symmetry operation s can be written as (using equations 1.3.2, 1.3.4 and
22,2 1)

GosC(htmg) = exp(2nih.(RsXoa*5:))
1 X
. | exp(2mil¢h+mg) .Rsdales(t-15)) 1) dt (253:2)
(]
for symmetry operation (RsySsy€5,Ts) .
The anisotropic temperature parameters Uaik in the temperature factor (see
2.2.3) are transformed as normally in order to get Tas(H) .

Isotropic temperature factors are equal for symmetry-equivalent atoms.

In order to save computation time, two Kinds of symmetry operations are not

treated in the way shown above. The first is the inversion operation:

-1 8 0o 0
(Ri Sis€iTi) =& 9 -1 @ o [’} S 1) (2.5.3)
Uil il 7}

As for normal crystal structures expression 2.3.1 can be written more
economically by combining pairs of terms in the summation over s. [f one of
the symmetry operations is an inversion operation, then the symmetry
operations can be divided into two sets with an equal number of operations.
The first set contains the unity operation. The operations in the second
set can be derived by combining each operation of the first set with the

inversion operation:

(Rz, S2, €25 T2) = (-Ri, =51, —€1, ~T1) . (2.3.9

Indices 1 and 2 denote operations of the first set and the second set
respectively. If the origin in the basic structure and the phase of the
modulation wave are chosen such that s;=8 and ©;=8, as is assumed

in 2.3.3, then the structure factor can be written as

F(H) = E fa(I|HD 2 Rel E’ Tas(H) .Gas(H) 1, (2.3.9)
a S

Pa

where the summation £/ is only over the first set of symmetry operations.
Hence the calculation of Tas(H) and Gas(H) for the symmetry
operations of the second set is not necessary. Equation 2.3.5 can be
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deduced by substitution, using the fact that Tas(H) 1s real.

The zecond type of symmetry operations which is treated separately is the

centering translation:

18 @ sct |
(ReyScs€cyTe) = ¢ 3 1 ’ Sc2 b s oF B 05)
a 8 1 Sc3
where sc1, Sc2, Sc3 and Tc are not all zero.

If nc centering translations (excluding 8) are present in the

structure, then the symmetry operations can be divided into two sets. The
operations 1o the second zet can be derived by combining each operation aof
the first set ‘which includes the unity operation) with each of the
centering tranzlations. Hence the number of aoperations in the second set is
a factor nc larger than in the first set.

For a structure with centering translations the structure factor can be

written as

FCH) = [ 1 + 2 exp(2nilh.sc1) 1]
c

. E faClhD EE T ) Bos CH) L o (Faat?)
a s

Pa
in which the summation E' is over the symmetry operations of the first set
only, and the summation over c is ower all centering translations
(excluding @) . The summation over a is over all symmetry non-equivalent

atoms.
If an atom 15 transformed into itself by a symmetry operation (not the

upity operation), then therz will be restrictions on some of the parameters

of that atom. Consider for example the symmetry operation

misy (RS e,mi=" [ha 1 a |l 8.5 1, 8.5) . (2.3.8)

©
3
=
o

An atom a at position (X%oat, ©.25, %o0a3) in the basic structure is situated
on this mirror plane. As for normal crystal structures with this situation,
Xoa2 has to be 8.25, and the anisotropic temperature parameters Uaz3 and

Ua:2 have to vanish, as can be found in the tables of Peterse and Palm
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(1944) . But there are also restrictions on the modulation functions. The
modulation functions of the atom on the mirror plane must be equal to those

of the reflected atom. Thus, according to 1.3.é8:

da(t) = RdaleCt-T)) . (2.3.9)

Hence, substituting 2.3.8:

dat () = day(t-8.5) ,
daz(t) = —da2(t-0.5 (2.3.10)
and do3(t) = dq3(t-8.5)

From this it follows that daz(t) can have odd harmonics only, and das(t)
and da3(t) can have even harmonics only.

Yan Aalst et al. (1974) give more examples of this kind of restrictions.
When treating a structure with such symmetry operations with the computer
program, one has to indicate which parameterz are restricted and which ones

are allowed to vary.

2.4. Superstructures as modulated structures.

It is often advantageous to describe a superstructure as a modulated
structure rather than as a normal one. There can be several reasons for
doing so:

- If satellite reflections of only low orders occur, then the structure can
be described using modulation functions with only a few harmonics. This
description needs fewer parameters than the normal description, and in the
structure determination process, the reflections of the orders with zero
intensities need not be used.

The 17-fold superstructure of RbzZnBrg provides a good illustration
(chapter 3). The szateliite reflections of second and higher order have
negligible intensities; only the first harmonics of the modulation
functions are needed in the structure description.

~ It may be possible to describe the superstructure by a 4-dimensiona
space group which gives an excellent description of it, whereas it needs
fewer parameters than a description by a 3-dimensional space group. The

room temperature structure of RbzZnBra, for instance, can be very wel
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described by space group Pcmn(B88%) (ss7). As wil]l be shown in section 4.2,
the operators of this space group cannot exist all in one 3-dimensional
space group.

- In the process of structure determination one may more easily get
convergence to the correct parameters (avoiding false minima) in the
structure model if in the refinement procedure fourier coefficients of
modulation functions and basic structure positions are used as parameters
instead of superstructure positions. (Yamamoto, 1981).

- It is nearly impossible to interrelate different superstructures and/or
incommensurate structures (chapter 4) without using the modulation

description.

The description of a superstructure as a modulated structure may give rise
to two ambiguities. The first one concerns the choice of the modulation
wave vector. Apart from the question whether to choose g or one of its
equivalents g+h (treated for incommensurate structures in section

1.1 and subsecticn 4.2.1), there remains the question which satellite
reflections should be chosen as first order satellites. For incommensurate
structures this problem does not exist because there is only one modulation
wave vector (apart from its equivalents) for which equation 1.1.5 covers
all satellite reflections. For 5-fold or larger superstructures, however,
more choices are possible: In equation 1.2.2 every value of u with udv/2
which has no divisor common with v gives a possible modulation wave vector.
For example, for a superstructure with a 7-fold c-axis, three non-
equivalent modulation wave vectors are possible: %=1/7, %=2/7 and %=3/7.
Often a compound with such a superstructure, in another temperature region
has an incommensurate structure with a diffaction pattern very similar to
that of the superstructure. Then the obvious choice of the modulation wave
vector in the superstructure is the one for which corresponding satellite
reflections in both diffraction patterns have the same set of four indices.
In other cases it is elegant to choose the modulation wave vector such that
the strongest group of satellite reflections are of first order.

The second ambiguity concerns the indices of the satellite reflections for
a given modulation wave vector. For example, in a 7-fold superstructure in
which the modulation wave vector has been chosen to be (2/7)c*,

reflection 8003 can also be indexed as 892-4. In general, for a structure
with modulation vector (u/v)g, a reflection with indices hklm can also

be indexed with indices h,k,l+nu,m-nv, in which n may be any integer. A
simple convention avoids this ambiguity: the absolute value of the fourth
index m should be as small as possible, and if two choices result with the
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zame abszolute value, then the positive one should be preferred.

The 4-dimensional space group used in the modulation description of the
superstructure can be derived from the 3-dimensional space group of the
superstructure and that of the average structure.

The 3-dimensional part of the 4-dimensional space group (see section 1.3)
is identical with the space group of the average structure. The second part
of the symbol of each 4-dimensional space group can be obtained as follows.
If R of the 3-dimensional part of the operation transforms g into

-q, then the second part is (7). If R transforms g into itself,

then the second part of the symbol is determined by the selection rules of

the reflections for the chosen modulation wave vector.

Because for a superstructure the phase of the modulation wave cannot be
chosen freely (in contrast to incommensurate structures), the value of 7 in
the symmetry operations with e=-1 must be chosen properly:

Take for example a n-glide plane normal to ¢ in a structure with

g=%c* and %=u/v. The z coordinates of the atoms in the

superstructure are inverted with respect to the z coordinate zn of this
plane. In the description as a modulated structure this means that the z
coordinates of the atoms in the basic structure and the "running direction”
of the modulation functions are both inverted with respect to this zj.
Hence 7 has to fulfil the condition

s3¢ = ¥x (mod 1) or « = ¥83 . (2.4.1)

Such a condition does not exist for incommensurate structures, as can be

seen in the second example in section 1.3.

Now the calculation of the structure factor. Consider a structure with a
modulation wave vector given by 2.2.12. From the comparison of equations
2.2.19 and 2.2.24 it can be concluded that the structure factor of
reflections of this superstructure can be calculated by using the same
formula as for incommensurate structures. In the case of the
superstructure, n in equation 2.2.24 has to be chosen equal to w if w is
given by 2.2.18.

The fact that the same formula can be used for incommensurately and
commensurately modulated structures is due to the term Xoa.q in

equation 2.2.25. This term is not necessary for incommensurate structures,

but is essential for commensurately modulated structures (compare 2.2.25
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with 2.2.208) .
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Chapter 3

3, STRUCTURE DETERMINATION OF THREE MODULATED PHASES IN Rb2ZnBra.

3.1. Introduction.

In Rb2ZnBra five phase transformations are observed at atmospheric
pressure, at temperatures T,=374, T.=198, T3=112, T4=77 and Ts=50K (see
2.g. Yamaguchi et al., 1982 and Nomoto et al., 1983). The values found in
literature for these temperatures scatter around the above mentioned
values. RbzZnBrg melts at 753K according to Sawade et al. (1977). The six
solid phases are denoted as N (normal}, I (incommensurate), F
(ferroelectric), IV, V and VI from high to low temperatures. Tc¢ has a
hysteresis of about 18K. This value strongly depends on the sample: De
Pater (1973) observed that part of a crystal remained in phase [ even at
4K, and De Boer (19384) observed that a crystal remained in phase I at
temperatures below 188K. No hysteresis has been observed for the other

phase transitions.

In phase N (above T;) RbzZnBrg has the B-K:504 type structure with unit
cell dimensions a=13.384(3), b=7.477(2) and ¢=?.753(2) at 373K (De Pater,
1979) .

In phase I (between T; and Tc) the crystal structure is modulated by a
displacive modulation wave with the modulation wave vector parallel to

c*: g=%c*. The value of ¥ iz constanf at 5/17=9.274 within

experimental error in the large temperature interval between T; and T +18K
(see De Pater et al., 1979 and lizumi and Gesi, 1783). 50 here the
structure of the so-called incommensurate phase is commensurate (section
4.8 .

Below the so-called lock-in phase transition temperature T. the value of %
is 1/3, and hence phase F has a 3-fold superstructure. It is not yet clear
what happens between T +18K and Tc. Until recently is has been assumed that
on lowering the temperature from Tc+18K, % increases monotonously from
8.294 to about 8.31 at Tc, where it jumps to 1/3. Recent measurements of
Iizumi and Gesi (1983), however, indicate a more complex behaviour. These
measurements suggest that several extra phase transitions exist in that

small temperature region, % Jumping at each transition temperature to a new
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value.

The symmetry of the 3-fold superstructure in phase F (between Tc and T3) 1s
Pc2in according to De Pater (197%) and Ueda et al. (1982). Only little is
known about the structures of phases IV, V and VI. According to Ueda et a
(1982) these structures have the same 3-fold unit cell as phase F. They
observed in phase IV the same rules for systematically absent X-ray
reflections as in phase F, corresponding to a c—glide plane normal to a
and a n-glide plane normal to c. In phases V and VI they only observed

the n-glide plane. Yamaguchi et al. (1982) observed that the
ferroelectricity along b, which appears on cooling at T. (therefore,

this temperature is often called Curie temperature), is present in al
phases below this temperature. Only in phase IV they also observed a double
D-E hysteresis loop along the a axis. This indicates that this phase is
antiferroelectric along a.

Magnetic resonance measurements on Rb2ZnBra of Belobrova at al. (1981) show
3 31Br NQR frequencies in phase N, 12 in phase F and 32 in phase IV. In
phase N the intensity of one of the 3 frequencies is twice as large as that
of the other two. For phase N and phase F these results correspond nicely
to the symmetry information mentioned above. The number of lines in phase
IV, however, does not correspond to a 3-fold superstructure with symmetry
Pc2¢n. The fregquency peaks of phase IV do not have a normal shape.
Belobrova at al. suggest that either several of the observed peaks are
close doublets or the structure is incommensurate.

De Pater (1979) determined the structure of Rb2ZnBrs in phase N at 373 K
from a neutron diffraction powder diagram. He used the same technique to
determine the average structure at 300K (phase 1) and at 4K (phase VI). In
all cases he fitted the measurements to a structure model with the unit
cell size and symmetry of phase N. He used split atoms to account for the
thermal motion at 373K and for the modulation displacements in the other
cases.

De Jager (1986) determined the structure of Rb2Z2nBrs at 308K in a 3-fold
superstructure approximation, using 738 X-ray reflections, of which 78 are
satellites. His structure model has the same unit cell size and symmetry as
the structure of phase F: a 3-fold supercell and space group Pc2¢n.

Several other compounds exist of which the crystals have the phase sequence
normal - incommensurate - 3-fold superstructure. The phase transition
temperatures T; and Tc are 553K and 483K for K22nClg (Gesi and Tizumi,
1979a) , 303K and 194K for Rb2ZnCla (Quilichini and Pannetier, 1983) and

38

129K and 24K for K;Selq (lizumi et al., 1977).
Many other A2BXa-compounds show incommensurately and commensurately
modulated structures related to the modulated structure of Rb2ZnBrg

(chapter 4).

In this chapter structure determinations of Rb2ZnBrg at room temperature,
140K and 95K will be presented. At these temperatures Rb2ZnBra is in phase
I, phase F, and phase IV. The structures at room temperature and 148K have
baen determined from single crystal X-ray measurements. For the structure
at 95K single crystal neutron diffraction data have been used. The
structures have been refined using the computer program described in

chapter 2.

3.2. Experimental.

Transparent single crystals of Rby2nBra have been grown from agueous
solution containing RbBr and ZnBrz in the molar ratio 2:1 (RbBr: 99.9%,
Alpha Products; ZnBrz: 99.8%, Ventron GmbH) . At room temperature, from a
fresh solution first another compound crystallizes. The molar ratio of the
two components in the solution changes then. Finally, clear Rb2ZnBra
crystals appear. At 38°C only Rb2ZnBras crystals grow from a fresh solution.
Attempts to make small spheres (diameter < 8.3mm) of RbzZnBras failed.
Therefore the X-ray measurements have been performed on small ellipsoid-
shaped crystals. Because of the strong absorption of X-rays in RbzZnBra
(the linear absorption coefficient of Mo Kx radiation in Rb2ZnBrg is
L=28208m-1), special care is necessary for the absorption correction
(section 3.4).

Experimental details about the diffraction measurements at the three
temperatures are given in table 3.2.1. The X-ray measurements have been
performed with an Enraf Nonius CAD4 four circle diffractometer. During the
measurements at 140K the crystal has been cooled by a controlled flow of Nz
vapour. The neutron diffraction measurements have been carried out by means
of the four circle diffractometer at the HFR reactor in Petten. The crystal
was mounted in a He-flow cryostat (Herbert and Campbell, 1977).

At the three temperatures the main reflections and the first order
satellites have been measured in one octant. No higher order satellites
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TABLE 3.2.1. Data on

the structure determinations of Rb2ZnBra.

temperature [K] 293(2) 148¢(3) 25010
stability [K] Az +3 +0.2
radiation Mo Kix 8.71874 Mo K 8.71074 neutrons 1.3844
monochromator graphite graphite double Cu (228)
cfystal shape ellipsoid ellipsoid rough sphere
diameter [mml (B0 = (ks 8.23 - 5.28 g
max. meas. time [s] 400 138 1800
max. B 38° 302 38.3°
space group Pcmn(@0%) (s51)  Pc2¢n Pc2in
a [al 13.330(3) # 13.193(5) % 13.184(4)
b [é] 7.656(2) # 7.594(4) % 7 <577.07)
ol el 2.787(2) # 3x 9.614(3) ¢ 3x 9.623(5)
5 (g=wck) 9.293 & 1/3 1/3
number of refl.

main 1512 1424 582

satellite 2654 3002 930

total 4166 4424 1432
removed reflections:

extinction 9280, B409, 1030 =

1830, 4060

»/2 contamination 2008, 1100 2088, 1180 =
weighting scheme 1/92 (Fg) 1/(a2(Fo) +(.05F5) 2) 1/02(Fp)
number of parameters

basic str. position 13 20 20

mod. four. coeff. 16 42 42

temperature param. 26 42 42

scale factor 1 1 1

total 54 185 165
largest parameter shift
in last refinem. cycle 9.8124 0.17a 8.21a
Ry of all reflections 9.030 6.119 9.050
Ry, of main reflections 0.043 9.08388 9.040
Ry, of sat. reflections 0.147 9.134 8.073
D [A) % 9.037 9.047 8.025

# taken from De Pater (1%79).

% these lattice parameters have a larger error than the e.s.d.
indicate, because of the strong absorption.

taken from lizumi and Gesi (1983).

D is defined in equation 3.4.2.

xR
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have been measured because they are not visible on precession photo’s. Each
reflection was measured until the desired accuracy (o(1) «8.821) or the
maximum measuring time was reached. In the neutron diffraction measurements
the measurement of a reflection has been stopped after 9883 in case the
intensity was very low (I<z(I)). For nenative measured intensities I has
been put to zero. All these weak reflections, however, take full part in
the data set. The Lorentz-~Polarization correction of the X-ray measurements
have been applied according to Azaroff (1955). No extinction correction has

been used.

During the refinements of the structures at room temperature and 149K, a
few reflections have been removed from the data set (cee table 3.2.1). The
reflections suspected of extinction have small §, a very high intensity and
a calculated structure factor which is much higher than the observed one.
The reflections with »/2 contamination have a laow intensity, a calculated
structure factor which is much lower than the observed one and a very
strong reflection at the position with double indices. It has been checked
that the »/2 contamination is indeed of the proper magnitude to explain the

discrepancy.

The atomic scattering factors and the dispersion corrections of Rb(+),
Zn(2+) and Br(-) for Mo K« radiation are taken from International Tables IV
(1974) . The neutron diffraction scattering amplitudes of Rb, 2n and Br,
9.783, ©.5630 and 0.479 respectively, are taken from Koester and Yelon

(1982) .

3.3. Symmetry.

Although the room-temperature phase of Rb2ZnBra is a commensurate
superstructure (% = 5/17, cf. section 4.4), it shows systematic extinctions
which strongly suggest a (3+1)-dimensional space group as the best
description of its symmetry. The reflection conditions which we observed on
X-ray precession photographs are shown in table 3.3.1.

In our diffractometer results, these rules are obeyed as well. Since the
three symmetry operations listed in table 3.3.1 generate the complete group
Pcmn(@0%) (ssT), it can be expected that this pseudo-"prototype symmetry*
(cf. section 4.2.2) will lead to a satisfactory description of the
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TABLE 3.3.1.

(i) 8KIm : 1+m = even 3 c(s)
(iid h@im : m = even > m(3)
(iii) hk@B® : htk = even = n(1)

structure. It has indeed turned out to be the best basis for refinement.
The true symmetry of the superstructure has not been solved, in spite of
considerable effort. For %=5/17, only the elements c(s) and n(7) in the
above symbol correspond to 3-dimensional elements, viz. c and n, in the
required unit cell with c;=17c. The element m(s) iz lost. This can be seen
e.g. from the reflection condition (ii) which for the multiple cel
(L=171+5m) does not lead to a parity condition on L in h@L.

accordingly, the true space group would become Pc2in in the multiple cell.
This is in flagrant contradiction with two observations:

- Crystals grown from aqueous solution at about 38 °C have a very
pronounced 222 symmetry (De Pater, 1973; De Wolff, 198@). The same point
group was also seen in experiments by Dam and Janner (1983) . With a true
symmetry Pc2in, however, the point group would be m2m; and m2m is not even
a subgroup of 222.

- Neutron diffraction experiments of lizumi and Gesi (1983) show that
reflections @218, 8281 and 8227, at 25 °C, have intensities differing
significantly from zero. These reflections are not allowed by condition
(i), so they exclude the presence of a c-glide plane in the actua
superstructure. It should be remarked, however, that their intensities are
very small indeed. Therefore, it must be concluded that the structure
almost has symmetry Pcmn(88%) (ss7). (The choice of a- and b axes was not
stated by Iizumi and Gesi. Judging from other reflection intensities we
concluded that their a (b) is our b (a), so in the indices mentioned above
h and Kk have been interchanged with respect to those given in their paper.)
The two observations together suggest that the actual space group is
P212121(00%) (TT1) .

Certain physical properties have been checked by other authors, mainly with
a view to test a possible departure from centrosymmetry. All results,
however, have been negative, so that no definite conclusion can be drawn:

- Smid (1984): no optical second harmonic generation (detection limit: 18-4
times the second harmonic generation level of quartz);

- Yamaguchi et el. (1982): no ferroelectricity or pyroelectricity.

A definite answer to the question what the space group of Rb2ZnBra in the
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room temperature phase is, cannot be given. Structure refinements have been
done in three space groups (section 3.4). Pcmn(086%) (557) gives the best
results. Hence, the room temperature structure of Rb2ZnBra can at least in

qood approximation be described by this space group.

The room temperature structure will be treated as incommensurate in the
structure refinements, notwithstanding its rational modulation wavevector.
Table 3.3.2 gives the symmetry operations of space group Pcmn(08873) (557) «
The atoms on the mirror plane (m(s)) are at special positions. As explained
in section 2.3, the modulation functions di(t) and d3(t) of such atoms,
describing the displacement components in the a and ¢ directions,

cannot contain odd harmonics. The modulation functions d2(t) of these atoms
cannot contain even harmonics. These symmetry restrictions exist together
with the usual ones on the basic structure positions and the temperature

parameters.

No inconsistencies exist concerning the space group of phase F: Pc2¢n.
RbsZnBrg is ferroelectric along b in this phase (Yamaguchi et al.,

1982) and generates second harmonic light at a level of about B.1 times
that of quartz (Smid, 1984). The systematic absences for the c- and n-glide
planes are clearly present (Ueda et al., 1982). A few apparent violations
of these systematic absences in our measurements were shown to be caused by

/2 contamination.

The space group of phase IV is still a puzzle. Despite the fact that the
observations of Yamaguchi et al. (1982) and Belobrova et al. (1981
indicate that the structure of this phase is different from that of phase
F, we could not find differences in the diffraction symmetry: the
systematic absences of the c- and n-glide planes are still present (as has
also been found by Ueda et al.,1982): no extra reflections could be found
on the a*-, b*- or c* axesj no tripling of a or b could

be found; it has been checked that the modulation wavevector is c*/3,

and not e.g. 3c*/8 as suggested by the results of the magnetic

resonance measurements of Belobrova et al. (1981) . Moreover, just like in
phase F, in this phase RbzZnBra is ferroelectric along b (Yamaguchi et
al., 1982) and generates second harmonic light (Smid, 1984) . Therefore it
is concluded that the structure of this phase can be described as a 3-fold
superstructure with space group Pc2in, like phase F. This symmetry has been

used for the structure determination.
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TABLE 2.3.2. Space group operations of Pocmn(88%) (ss7) . For each
operation, R, 5, € and T are given.

3

-1 2 @ 172 1 98 a] [12
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TABLE 3.3.3. The 4-dimensional symmetry operations used to describe a
3~fold superstructure with space group Pc2in.

SRR i -1

i ) .

ctsi: a1 e, e, 1, 12 2,(T) s R 7o e (e
8 8 1 1/2 8 0 -1 TR
o o SN0 0}

seme g s adtlall, s = 1Ty (B NS B g S P
o G = 1/2 8 a8 1 3

TABLE 3.4.1. Comparizon of refinements using reflections corrected for
absorption with (A) and without (B) the anisotropic pact.

N is the number of used reflections, wy is the weighting scheme, Ry is
the residual and D is the average of the differences between the maximum
and minimum of the distance types Zn-Br; (i=1,2,3,4).

temp used A B
nr [K]l reflections N Wy Rus DLAl Ruy DLAJ
1 293 1218e(D) 528% 1/02(Fo) .8448 .951 .848% .0851
2 293 hZ+KZ+412<108 1478% 1/0%2(F5) .8771 .838 .8783 .837
3 293 all 4144 1/9%(Fo) .B884 .p37 = =
4 148 [>19a(D) 390% 1/92(Fg) L8657 .047 .0738 .067
S 140 all 4498% 1/9% (Fo) .8771 .852  .8794 .857
4 149 an 4494 1/0%2(Fp) .B735 .0358 = =
% 148 all 4498% 1/(aZ(Fy) +(.A5F5)2) .1206 .847 . 1242 .45
3 148 all 4496 1/(a2(F5)+(.B5F5)2) .1188 .047 e =

* including two reflections which are strongly contaminated by »/2.
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The 3-fold superstructures of Rb2ZnBra at 148K and ?5K have been refined
using space group Pc24n(88%) (3773, of which the symmetry operations are
given in table 3.3.3. Tondition 2.4.1 iz fulfilled for operations n(7) and
2¢(7), as can be checked in this table. fAs explained in section 2.4 this
condition must be fulfilled for a proper description of a superstructure

using 4-dimensional symmetry.

3.4. Absorption correction and refinement.

The refinements are carried out with the computer program described 1n
chapter 2. The value of n in equation 2.2.24 has been 5 or 7 in the
refinements of the room temperature structure. Only in the final stage of
these refinements n=7 has been used. There is not much difference between
using n=5 or n=7. n=7 gives a slightly lower residual, but needs more
computation time. Because second and higher order satellite reflections are
very much weaker than the first order anes (they were not seen by K-ray
diffraction), only the first harmonics of the modulation functions are
considered in the refinements.

The 3-fold superstructures have also been refined using the above mentioned
computer program. In these cases, n=3 has peen usaed, together with the
symmetry operations mentioned in table 3.3.3.

All refinements are based on structure factors. The residual (Rw) is
calculated using

§ Wy (For=[Fee D2
epotibeler L B (3.4.1)
Y E WrFor? ’
8
in which the summations are over all used reflections, we is the weight of
reflection r, Fcr is the calculated structure factor and For is the

observed structure amplitude.

The linear absorption coefficient (W of Mo K radiation in RbzZnBra is
28200m-1, that of neutrons (A=1.3844) 1s g.2m-1. For the neutron
diffraction data no absorption correction is needed, but for the X-ray
measurements a large correction is necessary. Because the absorption is
very strong and because the crystals used for these measurements are not

spheres, the usual isotropic correction (International Tables II, 1959 is
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not sufficient. Therefore, the reflection intensities have been corrected
with the computer program CAMEL JOCKEY of Flack (1974, 1975).

The absorption correction is derived by this program from a separate set of
measurements, consisting of 17 non-equivalent reflections and their
symmetry equivalents, each measured for #=nx20° Gn==45-3,=2.=1,0851,2 3,4 8
15 the rotation angle around the reflection vector), as far as the geometry
of the diffractometer allowed. In total, 1227 of these measurements were
done at room temperature (some of them are double) and 1148 at 140K. If the
crystal would have been a sphere, then for each of the 17 non-equivalent
reflections all the measurements should give the same intensity within
experimental error. The program calculates the average for each of the 17
groups of intensitiez, and calculates the correction necessary to make the
eight measurements at ¥=8° in each group equal to this average. This
correction, which is a function of the diffractometer angles, is applied to
the intensities in the main data set, together with the usual isotropic
correction.

Because the crystals are not spheres, the choice of the radiuz (R) for the
isotropic part of the absorption correction is ambiguous, as pointed out by
Flack (1%74). For both crystals used for X-ray measurements, uR=3.5 has
been chosen. For the room temperature measurements, also UR=3.8 has been
tried, in order to investigate the effect of a different choice of radius.
Using 1678 reflections (those with h2+k2z+12{1088), after the refinement the
residuals were R,=0.07713 and R,=0.8771% for MR=3.5 and uR=3.8
respectively. In the case of UR=3.8, the diagonal temperature parameters
were about 8.882 larger than in he case of MR=3.5, while the other
parameters did not show noticable differences. Therefore it can be
concluded that the only effect of choosing a different radius is that the
refinements result in slightly different temperature parameters.

For the crystal used for the room temperature measurements, the program
used 4 nonzero coefficients (including a scale factor) in the function that
describes the transmission factor. For the crystal of the 140K
measurements, ? nonzero coefficients have been used.

The effect of the absorption correction can be evaluated by comparing
results of refinements using reflections which are corrected as described,
with the results of refinements using the same reflections corrected only
by the isotropic part of the absorption correction. These results are shown
in table 3.4.1. It can be concluded from the residuals in this table, that
the absorption correction according to Flack is significantly better than
the mere isotropic correction. The correction has more effect on the

stronger reflections because the corrections are larger for stronger
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;z:lz::lzg;'reildual, another quantity is used to obtain information about
the quality of the model. This quantity (D) is calculated from thé Zn-Br
distances within the rather rigid ZnBrg tetrahedra. The use of th%s
quantity is based on the fact that all Zn-Br distances of a certain type
(e.q. Zn-Br¢) will be equal in good approximation. This is tree becauze the
tetrahedra in different subcells have about the same surroundings 51née the
éeviatlon of the structure from the symmetry of the normal phase (N) is

small. D is defined by

[N B

[ (Zn-Br;) (7N =B (3.4.2)
max min

S

1

The structures at room temperature and at 95K indeed have quite small
values of D: 9.8374 and 8.8254 respectively. However, the resulting
structure at 140K (using weighting scheme w.=1/0%2(Fo)) has a quite large
value: D=0.8544. Assuming that perhaps the absorption correction for the
measurements at this temperature is not as good as desirable, weighting
scheme wr=1/(o2(F5)+(8.85F)2) has been used. This weighting scheme gives a
lower weight to stronger reflections. If something is wrong with the
absorption correction, then those reflections will be more affected than
weaker ones. The result is shown in table 3.4.1: the value of D is smaller
for the new weighting scheme. Therefore, the structure of this refinement
iz considered to be the better approximation of the real crystal structure

of RbzZnBrg at 148K.

Many attempts have been made to refine the room temperature structure with
space group Pc2yn(88% (s71), using 1678 reflections (hZ+kZ+12{108@) or 1359
reflections (the 557 main reflections with hz+k2z+12<{180 and the 3882
satellites with h2z+Kkz+12¢88) . These refinements have not been done with
more reflections because that would not change the results much (compare D
of refinements 2 and 3 in table 3.4.1), and it would require much more
computation time. The number of parameters in these refinements is 188: 20
position parameters, 42 modulation parameters, 37 temperature parameters
(isotropic temperature factor for 2n) and 1 scale factor. Several sets of
starting parameters have been tried, several refinement strategies have
been used and also soft constraints on the Zn-Br distances by using a
penalty function (Yamamoto, 1983) in the first stage of refinements have
been used. The residuals resulting from these refinements are about 8.843.

According to Hamilton (1945) these values are significantly lower than the
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TABLE 3.5.1.

The atomic fractional

coordinates of the basic structure

(%184) and the fourier coefficients of the modulation functions (x184).
293K 148K 95K
at, 1 Xoi dic dis ¥oi dic dis Xoi dic dis
Rby 1 3234(1) ] (] 3229(1) 233 243 3223(1) U5 154
2 2500 -11(5)  -147(4 2476(8)  149(3)  162(3) 2487(18) 174(4)  284(4
3 5193(1) ] ) 5127(1) a4 -14(5 5120(2) 23(6) -3(¢
Rby 5948(1) 8 ] 5978(2) 20(5) 53(9) 5978(2) 27(8) 98(4
2 2500 118(5) 91(5) 2530(9) -195(4)  -34(4) 2519(12) -223(5)  -28(5
3 8730(1) ) 8 8759(2) 16(5)  -28(5) 8745(2) &7 -25(6;
n 1 5777(1) 8 ] 5785(1) -6(3) 16(4) 5789(1) -7(8) -8(é:
72 2568 -38¢4) 93(4) 2491 -17(3) -137(3) 2497 -16(9) -132(4)
3 2746(1) ] [} 2766(1) 15 -11(% 2772(2) D -18G6
Bri | 5831(H (] 8 5803(1)  -27(3)  -44(3) 5792(1)  -27(5)  -52(5
2 2560 -60(8)  349(5) 2479(8) -169(5) -588(4) 2497(18) -172(4) -548(5,
3 5184(1) ] 8 5224(1) 48(4) 7(4) 5234(2) 2805  -16(6,
Bry 1 4126(1) ] ) 4146(1) -1(3) 13(3) 4157(1) -3(5) 64
2 2500 -516(5) 59(7) 2683(8)  545(5) -438(S) 2819(9)  593(6) -498(7
3 1802(1) 8 () 1756(2) 49  -23(4) 1740(2) -2(8)  -33(4
Bry 1 4593(1)  -252(2) 1(3) 6687(2)  291(3) -178(3) 6784(3)  316€4) -218(4
7 Se12(1)  183(3) 62(4) 4966(4) -243(5) 62(4) 4941(8) -243(7) 1076
3 1839(1) -118(3)  -92(3) 1918(3)  248(4) 58(4) 1922(3)  283(4) 4604
Bra 1 6569(2) -297(3)  182(3) 6580(3) -315(4)  286(4
2 -47(6) -278(5) 85(5) -64(8) -276(6)  185(4.
3 1858(3) -184(4)  -9(3) 1888(3) -263(4)  -44(4
TABLE 3.5.2. The anisotropic temperature parameters [18-44%1],
corresponding to temperature factor exp(-2mZE; . U;uhihpa;*ay*) .
293K 148K 95K
atom Uy Uzz Uss Uiy Uz2 Us; U Uz2 Us3
Uz3 Uss Uiz Uz3 Uss Uiz Uz3 Uiz Uiz
Rby 354(8)  593(D  367(8) 254(8)  369(8)  172(4) 118(9) 232011  128(9
] 29(5) 8 S22 (13) R 9 (R =1 (13) 22(27) 2 Q)RR 27(21
Rba 1178C149)  696(11) 369(8) 654(12)  450(11)  176(7) 444(13)  396(13) 112(18
] -55(8) [} -8(19)  -6(D) 90(21) 60(28) (187} -8(32
2n 296 279(D)  292(7) 217(6)  218(7)  148(8) 90(11) 184C11)  48(18
8 -4(9) 9 4(18) 8(5) -2(16) 23(27) 19 ==27(33
Bry 402(9)  1152(18) 248(4) 376(8)  548(13) 119(8) 178(12)  345(17)  45(9
] -74(8) ) -23(15) -36(6) -81(18) 8(24) -23(9) -79(25
Bre 338(7) 1165(22) 414(8) 258(7)  581(12) 260(7) 137018)  441(17)  126(11)
(] -121(8) ] -18(17) -54¢6) 53(15) 30(23) -40(9) 6924
Bry 982(11) 378(7)  631(8) 404(16) 237(13) 291(13) 340(18) 146€21) 184(17
-46(6)  250(9) -316(8) -25(12)  133(13) -165(12) -37(17)  78(17) -126(18
Bra 549(15) 266(14) 386(14) 382(19)  73(20) 195(19;
18012 71(13)  96(12) -8(19) 118(17)  54(17.
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value of 9.9771 for space group Pcmn(@8%) (s557), but the corresponding
structures have values of D above 8.894 (mostly about 8.12&). Moreover,
parameters which are zero because of symmetry in space group

Pcmn(80%) (557), and in principle unequal to zero in Pc2yn(88% (577), have
strongly varying values: the xs2 parameters of the atoms on the pseudo-m(s)
plane vary more than 8.81 and the modulation parameters more than €.885.
This could be caused by systematic errors in the observed structure
factors, which remained after the absorption correction. The above
mentioned parameters are adapted to these errors, thus lowering Ry. They
get values deviating strongly from Pcmn(8@%) (s57) symmetry, because they
can compensate each others Ry-increasing effects, due to the very strong
correlations between these parameters in the least squares procedure. The
same is observed during refinements in space group P24242¢(88% (TT1).
Because the initial stages of refinements in this space group resulted in
much smaller drops of Ry than in space group Pc2yn(@8%) (s71), this space
group has not been investigated further.

Therefore, the room temperature structure of RbzZnBra is supposed to be
approximated best by the structure resulting from the refinement in space

group Pcmn(@88%) (557) .

3.3. Results.

In the table 3.5.1 to 3.5.4 the results of the structure refinements are
presented. The fractional coordinates of the basic structure and the
fourier coefficients of the modulation functions are given in table 3.5.1
for the three structures. The actual position x of an atom in a given
subcell of the modulated structure (incommensurate or commensurate) can be
represented by

X =n + X5+ dilntxo).q) . L3515 1)
in which n 1s the position of the subcell, xo is the basic
structure position of the atom, g is the modulation wavevector and
d(t) is the displacement vector function, defined by its components
di(t), which are the modulation functions.

For the three structures described in this chapter, the modulation

functions are given by
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TABLE 3.5.3. The amplitudes (A;, x184) and phases (¢;) of the modulation
functions. 5/12 has been added to the phases of the modulation functions
in the room temperature structure to make them comparable to the phases
of the two other structures.

293K 140K ?5K
at o Aj @ A @i Ai @i
Rby 1 9 33(3  .87(D 15¢4)  .78(5)
2 147(4) .155(4 223(3) .134(2) 268(4) .138(3
3 2} 14¢5)  .75(5) 23(6) .98(4)
Rbz 1 %) 56(4)  .19(1) 57¢6)  .17¢(2)
2 143(5) .527(95) 198(4) .527(3) 225(5) .528(3)
3 0 32(5) .84(2) 26(8) .79(4)
Zn 1 %) 12¢4) .33(D 1108)  .83(9)
2 ?8(4) .716(8) 138(3) .730(4 133¢4)  .731(5)
3 7} 11(5) .76(7) 41(7)  .923(3)
Bry o @ 53(3)  .67(1D) D7(5 L6l
2 354(5) .894(2) 535(4) .499(D) 585(5) .702(1)
3 (/] 41¢(4) .83(1) 26(5) .892(3)
Br: 1 '] 13(3)  .27(4) 7¢4) . .31
2 528(5) .8992(2) 499(5)  .892(1) 769(7) .890(1)
3 ) 23¢4) .77(3) 33¢(8) .74(3)
Brz 1 252(2) .914CD 341(3) .913(D 383(4) .904(2)
2 193(3)  .448(2) 251(5)  .460(3) 265(7) .434(4)
3 150¢3) .022(3 247(4) .838(2) 286(4) .026(2)
Brat ¥l 348(3) .413(D 373(4) .416(2)
2 291(35) .453(3) 29508 .442(3)
3 184(4) .508(3) 208(4) .535(3

Note that in chapter 5 subscript i of A; and ¢; has a different meaning.

TABLE 3.5.4. The equivalent isotropic temperature parameters
UCeqy=(Uy1+Uz2+U33) /3 [18-442].

atom 293K 148K 95K
Rby 438(4) 265(4) 157(&)
Rb2 745(6) 427(6) 317¢(7)
Zn 289(4) 189(4) 85(4)
Bry 665(7) 345(¢6) 196(7)
Br2 439(8) 344(5) 235(8)
Brs 664(35) 377(8) 217¢1D
Bra 374(8) 2171
50

d;(t) = d;ccos2nt + dissin2nt . (3.5.2)

In table 3.5.2 the anisotropic temperature parameters are given for the
three structures. The parameters in tables 3.5.1 and 3.5.2 are the direct
results of the refinements. The only exceptions are the xo2 parameters in
the 148K and 95K structures, because the origin in these stuctures has been
shifted in the b direction in order to get the baricentre of the unit

cell contents in the middle of the unit cell. In the room temperature
structure the baricentre is automatically at this position because of the
m(s) mirror plane.

The modulation functions can also be written as

d;(t) = Ajcos2Zm(t-v;) (3.5.3)

with A; and @; being respectively their amplitude and phase. The values of
@; and @; of the three structures are given in table 3.5.3. To the phases
at room temperature we added 5/12 in order to make them comparable with the
phases of the other structures.

Table 3.5.4 lists the equivalent isotropic temperature parameters.

For the two 3-fold superstructures the fractional coordinates of the
asymmetric set of atoms are given with respect to the supercell axes in
table 2.5.5. These coordinates are calculated from the parameters of table
3.5.1 using equations 3.5.1 and 3.5.2.

Table 3.5.¢6 gives the distances in the ZnBra tetrahedra. These distances
are not corrected for thermal motion.

In the tables, the numbers between brackets are the estimated standard

deviations.

The residuals for the three structures are listed in table 3.2.1. The
residuals for only the main reflections and only the satellites are also
given. The residuals for only the satellites are larger than those for only
main reflections because the satellites are much weaker, on the average,
than the main reflections. This results in a smaller denominator in

equation 3.4.1, and hence a larger Ry.



TABLE 3.5.5. The atomic fractional coordinates (x1@4) with respect to
the supercell axes a, b and c:=3c.

140K ?5K

atom K X5z Xs3 X5 Xs2 Xsg3

Rby 3219(2) 2693(8) 1785(2) 3211(5) 2751011 1789(2)
Rby 2 3207(3) 2323(8) 5043(2) 3221(5) 2310(11) 50832(2)
Rby 3 3281(3) 2412(8) 8380(2) 3237(5) 2405(11) 8378(2)
Rbz4 8016(5) 2548(18) 2909(2) 4011(6) 2551(13) 2913(2)
Rbz2 5718(5) 2671C18) 8256(2) 592148 2696(13) 62608(2)
Rbz23s 5974(5) 2358(18) 95924(2) 5983(7) 2311¢13)  9593(2)
Zny 5785(4) 2481(3) 920(2) 5779(8) 2411(4) 931(2)
Zn2 5724(4) 2445(3) 4253(2) 5792(4) 2452(4) 4244(2)
Znz 5774(4) 2827(3 7592(2) 5794(4) 2628(4) 7598(2)
Briy 5758(4) 1950(?) 1758C 1) 5733(5) 1921¢11)  1743(2)
Bri2 5832(2) 2871(9) 5881C1H 5821(5) 2697(11)  50872(2)
Bris 5827(4) 2815(9) 8413(1) 5821(5) 2874(11) 8419(2)
Brzq 4149(3) 2755(9) 384(2) 4154(5) 2998C11) 573(2)
Brz2 4155(3) 1904(2) 3%213(2) 4163(5) 1842(12) 3%9087(2)
Brzs 4134(2) 2951(9) 72572(1) 4151(5) 3007(12) 7258(2)
Brz¢ 46884(4) 4764(8) 718(2) 46909 (3) 4768(10) 733(2)
Brz2 6347(4) 5197(8) 3%18(2) 4321(5) 5208(18) 3988(2)
Brss 6828(4) 4934(8) 7274(2) 4881(5) 4864(18) 7281(2)
Bray 6383(4) -272(3) 381(2) 6367(9) -278(18) 551(2)
Bra» 6215(4) 224(8) 3%92(2) 6952(5) 220(18) 4087(2)
Braz $428(4) -24(8) 7297(2) $422(3) -132(1@) 7328(2)

TABLE 3.5.6. The interatomic distances in the ZnBra tetrahedra [18-3&].
The estimated standard deviations are 0.8044, 0.0084 and 0.814 for the
distances at 293K, 140K and 95K respectively. av is the average of the
distances of a type and md is the maximum difference between two
distances of a type.

distance 293K 148K 99K
type distances v md distances av md distances av  nd

2n-Bry 2340 .. 2370 2365 10 2417 2337 2373 2376 8 2374 2397 2380 2384 23
In-Bry 2378 .. 2409 2394 31 2404 2411 2381 2399 30 2414 2402 2398 2485 16
Zn-Br3 2361 .. 2414 2388 54 2382 2416 2418 2485 35 2394 2405 2402 2481 11
Zn-Brg 2361 .. 2414 2388 54 2403 2366 2396 2386 43 2433 2383 2393 2403 49

Zn-Br 2360 .. 2414 2384 4 2337 .. 2418 2392 81 2374 .. 2433 2398 59
Br-Br, 3982 .. 4819 4000 38 4843 4026 4010 4028 34 4043 4062 4013 4039 49
Bry-Bry 3876 .. 3937 3967 41 3959 3876 3889 3768 84 3944 3916 3880 3913 44
Brq-Bra 3874 .. 3937 3967 61 3984 3838 3984 3915 126 3896 3908 3991 3927 161
Bro-Br3 3795 .. 3874 3827 79 3885 3824 3842 3857 41 3895 3818 3847 3840 76

Bro-Bra 3795 .. 3874 3827 79 3814 3848 3812 3831 56 3833 3898 3833 3852 57
Bra-Bra 3838 .. 3960 339 41 3914 3857 3855 3875 59 3926 3885 3847 3884 79

tir-Br 3795 .. 4819 3890 224 3812 .. 4843 3982 231 3818 .. 4862 3913 244
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3.4. Discussion.

By comparing the three structures in table 3.5.3, one can see that the
modulation in these structures is very similar. The modulation amplitudes
are larger for lower temperatures, but the same patterns of large and smal
amplitudes exist in all structures, and the phases are equal in very good
approximation. This is the case despite the fact that the structure at 293K
iz incommensurate (or a 17-fold superstructure) and both others are 3-fold
superstructures. In all three structures the largest amplitudes are Az of
Bry and Bra.

In the room temperature structure Brg is exactly the m(s) image of Bra. In
both other stuctures, this symmetry operation does not exist. However, in
the 148K and 95K structures, Brg is in good approximation the m(s) image of
Bri, as can be seen from the modulation amplitudes and phases in table
3.5.3: di(t) and ds(t) of Bra are in antiphase with those of Brz and dz2(1)
is in phase with d2(t) of Brs.

Table 3.5.4 shows that ZnBrs tetrahedra are rather rigid. All Zn-Br
distances are about equal. Also, all Br;-Bry distances are about egqual for
cach set of i,Kk. But the Bry-Bra distances are systematically larger than
the other ones, and the Bry-Bri and Bri-Bras distances are systematically
larger than Br2-Bri, Brz-Brg and Br3-Bra. These systematic differences also
exist in the normal phase (De Pater, 1979), and also in RbzZnCla
(Quilichini and Pannetier, 1983), K2ZnCla (Mikhail and Peters, 1979),
K2CoCla (Vermin et al., 1974), (NHa)22ZnCls (Matsunaga, 1982), Cs2CdBra and
Cs2HgBrg (Altermatt et al., 1984).

Becausze apart from these systematic differences the variations in the
distances in ZnBra tetrahedra are much smaller than the modulation
amplitudes of the Br atoms and because the Zn atoms have small modulation
amplitudes, it can be concluded that the modulation consists mainly of
rotations of the tetrahedra.

As will be shown in chapter 4 of this thesis, the modulation of the three
structures of Rb2ZnBrg discussed here are wvery similar to modulated

structures in other A2BXs compounds.

For each structure the equivalent isotropic thermal parameters (table
3.5.4) of the Br atoms are about equal. The thermal motion of these atoms
(table 3.5.2) turns out to be strongly anisotropic, with the larger axes in
directions normal to the Zn-Br bonds, while the thermal motion of Zn is

much smaller than that of the Br atoms. From this it can be concluded that
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the thermal motion ,too, consists mainly of rotational movements of the
tetrahedra.

In each of the three Rb2ZnBrg structures the thermal motion of Rbz is much
larger than that of Rbi. This corresponds to the fact that the cage of Br
atoms around Rbz is considerably larger than the one around Rby. Rbz has

more space to move in.

A few questions remain: what is the actual space group of the room
temperature phase of Rb2ZnBrag; and what is the essential difference between
phase F and phase IV? The results of the three structure determinations

described in this chapter do not give a clue to answers.
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Chapter 4

COMPARISON OF DISTORTED g-K2504 TYPE STRUCTURES.

4.1. Introduction.

In this chapter the "distorted g-K:50s type structures" will be compared
with 2ach other. Distorted B-K2504 type structures are incommensurate
structures or superstructures in which the atoms have coordinations
analogous to the coordinations of the atoms in g-K2504. For the reasons
given below, the term superstructure is understood to include "1-fold
superstructures”: structures with the same unit cell as g-~KS504, but with
lower symmetry. The space group of the basic structure of an
incommensurately distorted B-K2504 type structure is Pcmn (the space group
of B-Kz504) or a subgroup of it. The space group of a distorted g-K,504
type superstructure is a proper subgroup of Pcmn. The B-K2S804 type itself
is not included in the group of distorted B-K;50s type structures. It
occurs, however, often as a high temperature phase of compounds that have a
phase with a distorted g-K:504 type structure.

In practice there 15 no problem in deciding whether a structure is of the
distorted B-K2504 type or not. This statement can be illustrated by the
following examples of structures that have some similarities with g-K2504,
but very ciearly do not belong to the B-K250s type or the distorted g-K250a
type structures. In olivine type structures (Eysel, 1971) the coordinations
of part of the atoms are very different from those in g-K2504. The
incommensurate phases of KiMoGa, K2WOa and RbaWOs (Tuinstra and Van den
Berg, 1983) have a basic structure of wich the space group (Ccmm) is not
Pecmn or a subgroup of 1t.

The modulated structures in Rb22nBras and related compounds, however,

clearly are distorted g-K,S0s type structures.

In this chapter, modulation wave vectors will be assigned also to i-fold
and 2-fold superstructures. Though these structures are not modulated
structures according to the definition given in chapter 1, they will be
regarded here as such. As will be shown in section 4.4, these structures
have the same kind of local distortions as the other distorted g-K,S04 type
structures. Some of the 1-fold and 2-fold superstructures actually are
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structures of lock-in phases of compounds having an incommensurate
structure.

In this thesis only distorted g-K2504 type structures with an
incommensurate or commensurate modulation wave vector parallel to c are
studied. Most distorted g-K:504 type structures obey this condition. Only a
few exceptions are Known, In these exceptional structures other axes are
doubled or the modulation wave vector has another direction, as indicated
behind the compound name:
- CsaMnla: 2a, 2b, 2c, below 185K (Zandbergen, 1931)
- CsaMgla: 22, 2b, 2c, below 85K (Zandbergen, 1931
- Cs2HgBra: 2b, below 85K (Plesko, 1931
(TMA) 2CuBra: g=%a*, 0.38(%(0.43, between 242K and 272K,

2a, between 237K and 242K (Hasebe et al., 1982)

- Ca8i04 with part of Ca replaced by Ba or Sr or part of Si by B:

2a, 2b (Suzuki and Yamaguchi, 1948)
~ 6Ca25i04.1Ca3(P04) 2: g=0.267b* (Saalfeld and Klaska, 1981)
In (TMA) ;CuBra the CuBra groups are distorted considerably from a regular
tetrahedron by the Jahn-Teller effect. This can be the cause of the
exceptional behaviour of this compound in comparison with the other THMA
compounds (see section 4.2). The last two examples strictly do not belong
to the distorted §-Kz50s type structures, because the compounds cannot be
represented by the general chemical formula AzBXa.

The seven exceptions will not be considered further.

In section 4.2 the symmetry of the distorted g-K2504 type structures will
be discussed. The structures reported in literature that will be compared
are introduced in section 4.3. In section 4.4 the interatomic distances in
these structures are compared. Section 4.5 compares the modulation
functions of incommensurate structures and 3- and 4-fold superstructures.
In section 4.6 the existence of large superstructures, in phases which have
been supposed to be incommensurate until recently, will be discussed. Parts

of this chapter have been published before (Hogervorst and De Wol+ff, 1982;
Hogervorst, 1934) .,
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4,2, Symmetry.

Many compounds, for instance RbzZnBra and Rb2ZnCla, show phase transitions
from an incommensurate structure to a superstructure. The diffraction
patterns of both phazes are almost identical. The incommensurate structures
and the superstructures therefore cannot differ much, so their symmetries
must be closely related. In this section, for the distorted g-K250a type
structures the relation between 4-dimensional space groups of
incommensurate structures and 3-dimensional space groups of superstructures
will be discussed.

Al though the basic symmetry Pcmn allows two different 4-dimensional space
groups with the modulation wave vector parallel to c, it turns out that

the symmetries of all observed distorted g-K2504 type structures are
related to just one of them.

It also will be shown that symmetry can help to choose the correct
modulation wave vectors in incommensurate structures and superstructures in
order to obtain comparable modulation functions. This information will be
used in section 4.5.

In section 4.4 the results of this section will be used in connection with

large superstructures having a special Kind of modulation wave vector.

4.2.1. 4-dimensional space groups.

A 4-dimensional space group can have different symbols, depending on the
choice of the modulation wave vector.

As an illustration, figure 4.2.1 shows the same structure described as a
modulated structure with wave vector g, and as one with modulation wave
vector g’=c*-g. In the description with g the two rows of

atoms are related by symmetry operation c(s): the modulation functions have
a phase difference of 8.5. In the other description (with g7, dashed
modulation functions) the two rows of atoms are related by c(1): the
modulation functions do not have a phase difference.

Figure 4.2.1b shows the reciprocal lattice. The reflection conditions are
different. If g is chosen, the reflection condition for the héim
reflections is: |+m=even, whereas the condition is I=even if g7 is
chosen.

Choosing another wave vector in a modulated structure is analogous to

choosing one of the crystallographic axes in another way in a normal
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FIGURE 4.2.1. Two descriptions for the same
modulated structure.

a. The atomic positions of the structure can be
described by modulation functions corresponding to
modulation wave vector g (full lines) or to

q’=c*-g (the dashed ones).

Note that these curves have the same shape, in spite
of different wavelengths and an inversion in z.

The symbol for the c-glide plane normal to a is

c(s) in the first case and c(1) in the second case.
b. The corresponding reciprocal lattice. The rule for
systematic absences (open circles) is different in

both cases for the h@Im reflections: 1+m=odd and
I=0dd respectively.

structure. For example: if a space group has symbol Pinl with respect to
axes a, b and ¢, then it has symbol Plcl with respect to axes

b and a+c. The reflection conditions change accordingly.

4-dimensional space groups are non-equivalent if their symbols cannot be
transformed into a single symbol by a change of axes and/or a change of
a.

Just two non-equivalent 4-dimensional space groups exist for an
incommensurate structure with Pcmn as basic structure space group and a
modulation wave vector g parallel to ¢ (De Wolff et al., 1981). The

first of these is

N

N

Gl 2L EL ) o ) <‘; '—%) , or in short: Pcmn(@@¥ (ss57). (4.2.1
n 8

[
=

1f the equivalent modulation wave vector g’=c*-g is chosen,

then the symbol of the same space group is

2

ZiRCT 98 v ( %) or Pcmn(@@3°) (1s1), %/=1-%. (4.2.2)
c m n [

i
s

O]

The second possible 4-dimenszional space group is

24 2¢ 24

i 1
Pi== — (B8 0 ® (l =
m n 1

) or Pcmn(88% (117) . (4.2.3)
=

g
1
Choosing g’ as modulation wave vector, the space group symbol is

20
[

B %l (@ 9 5 (é ) or Pcmn(0@837) (s17), ®'=1-%. (4.2.4)

3 |p

15
181
In this thesis the symbols 4.2.1 and 4.2.3 are chosen to represent the
first and the second possible 4-dimensional space groups respectively.

It should be noted that this choice implies that the modulation wave vector
is not limited to the first Brillouin zone (see subsection 4.2.3).

4.2.2. Superstructure space groups.

Now we will investigate how superstructure space groups can be deduced from
4-dimensional space group 4.2.1 or 4.1.3.

In order to find the relation between the symmetry of an incommensurate
structure and that of a superstructure, let us examine what happens with

individual 4-dimensional symmetry operations if the modulation wave vector
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FIGURE 4.2.2. Modulation in superstructures with % = odd/odd =
1/3; even/odd = 2/3; odd/even = 1/4 in the presence of a

mmetry 2lements a. the symmetey element is m(Dj b. m(s);
Qi (aly =S

o=
A o
(o} s
G
o
o
o=
o
D cenan

FIGURE 4.2.3.

a. Symmetry element n(1) does not appear in a superstructure if
the phase af the modulation wave is chosen arbitrarily.

b. I+ the phase is chosen properly, symmetry element n(i)
appears in the superstructure as a n~glide plana for any given
rational value of %.

Only two of the n-glide planes are drawn in each
superstructure. The first superstructure is obtained from the
structure in part a of this figure by shifting the complete
modulation wave with respect to the basic structure.

becomes commensurate (something similar has been done independently by
Yamamoto, 1982 and Janssen, 1785):

q=%c*¥ with ¥ =u/v (u, v integer). (4.2.5)

Suppose the symmetry of the basic structure and the symmetry relations
between the modulation functions do not change during this imaginary lock-
in process. Then many of these relations will condense into 3-dimensional
symmetry elements, but not necessarilly all refations will do so. It will
now be shown that some 4-dimensional symmetry elements can exist as a 3-
dimensional Euclidian symmetry element in the superstructure only for
certain parity combinations of u and v: for the relevant 4-dimensional
symmetry operations, figure 4.2.2 shows the 3-dimensional symmetry
operations which can result. Each drawing in this figure shows two rows of
atoms, mutually related by the 3-dimensional part of the 4-dimensional
symmetry operation. The modulation is represented by horizontal bars
repeating with the modulation period c/%, starting with a bar through the
top left atom A. The type of modulation (e.g. magnetic, occupational or
displacive) is not relevant in this discussion. For a rational value of %,
bars crossing an atom will occur again at the superstructure repeat
distance cs=vc. If the 4-dimensional symmetry operation involves a phase
difference in the modulation functions, the bars in the second raw are
shifted accordingly. The symmetry operations of the superstructure, if any,
are those which map the atom A on any other atom A‘ crossed by a bar.
Figure 4.2.2a shows that a simple mirror operation m(1) is conserved
independently of the values of u and v. If the reflection is combined with
a shift 1/2 in the phase of the modulation (operation m(s)) the bars
alternate as shown in figure 4.2.2b. Coincidences of bars with atoms in the
second row now occur only if u=odd and v=even. In that case the m(s)
operation appears in the superstructure as a c-glide piane relating, for
instance, the atoms A and A‘. For the other parity combinations, the 4-
dimensional operation m(s) is completely lost.

Figure 4.2.2c depicts the situation for a c(1) element. Conservation of the
point group eiement now requires u=even and v=odd. Then a c-glide plane
results in the superstructure. Such a c-glide plane also appears for the
element c(s): in fiqure 4.2.2d the alternating bars correspond to the phase
shift of 1/2 of that element. But the condition now is: u and v both odd.
The 4-dimensional symmetry operations 2y¢1) and 2;(s) (not shown in the
figure) impose the same parity conditions as c(1) and c(s) respectively.

The resulting symmetry operation in the superstructure is a 2j-screw axis

61



in both cases.

Thus far only 4-dimensional symmetry elements with £=1 are considered (e
and R3: are defined in section 1.3). Symmetry elements with t¢=-1 do not
give rise to parity conditions. The phase of the modulation wave can always
be chozen such that the symmetry operation exists in the superstructure. 4-
dimensional

symmetry element n(7) becomes a n-glide plane then and 2:(7) a

2y-screw axis. Figure 4.2.3 shows the case of a n(7) operation, In part a
of this figure 1t iz shown that if the phase of the modulation wave is
arbitrary the n(7) operation does not appear 1in the superstructure. In part
b it can be seen that for a praper choice of the phase of the modulation
the n(7)

wave, operation appears as a n-glide plane in the superstructure

for all parity combinations of u and v.

Now, after the above discussion of individual symmetry operations, the
relation between 4~dimensional space groups and superstructure space groups
will be discussed. First we define a new concept, "rational subgroup”. If
each symmetry element of a superstructure space group can be deduced from
an element of a certain 4-dimensional space group by the imaginary lock-in
procedure described above, then this superstructure space group is a
rational subgroup of that 4-dimensional space group. This 4-dimensiona
space group will then be called a prototype symmetry of that superstructure
space group. In general, more than one prototype symmetry exists for one
superstructure space group. A 4-dimensional space group will also be called
a prototype symmetry of itself and of each of its proper subgroups.

With the information supplied above, for each space group of a
superstructure with a multiple-c axis we will investigate whether it is

a rational subgroup of the two 4-dimensional space groups mentioned in the
previous subsection. In order to do this it is sufficient to consider the
superstructure space group elements with Rz3=1. If all these elements can
originate from 4-dimensional symmetry elements of one of the two 4-
dimensional space groups, then the superstructure space group is a rationa
subgroup of this 4-dimensional space group.

(It is always possible to choose the phase of the modulation wave such that
one of the symmetry elements with R33=-1 can be deduced from a 4-
dimensional space group element. Then this is also true for all other
elements with R33=-1, since each of them is a product of the one just

mentioned and an element with R3s=+1.)

The parity conditions for u and v, necessary for the relevant 4-dimensiona
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symmetry operations to be present in a rational subgroup of the two
possible prototype symmetries (4.2.1 and 4.2.3) are given in table 4.2.1.
From thic table it can be seen that for instance a rational subgroup of
prototype symmetry 4.2.1 cannot contain both a c-glide plane normal to

a and a 2y-screw axis parallel to ¢ because the parity conditions

;re different. It can also be seen that a rational subgroup of this
prototype symmetry cannot contain a mirror plane normal to b. Rationa
subgroups of the second prototype symmetry cannot contain a c-glide plane
perpendicular to b. Hence certain space groups can be a rational

subgroup of only one of the prototype symmetries.

In table 4.2.2 ane can find for each space group of a superstructure with a
multiple-c axis wether it is a rational subgroup of Pcmn(88%) (ss7), or

of Pcmn(B8%) (117), or of both.

Now we shall investigate whether there is a 4-dimensional space group that
is a prototype symmetry of all known distorted g-K250s type structures. All
the commensurate distorted §-K;S0a type structures published so far (see
table 4.2.4) have a structure with a space group of row 1 or 2 of table
4.2.2 (underlined).

Pcmn(@8%) (557) . The observed space groups for the incommensurate structures

Hence all these space groups are rational subroups of
are either Pcmn(@8%) (ss7) or one of its subgroups.

Hence Pcmn(98%) (ss7) is the only common prototype symmetry of all observed
distorted g-K2S04 type structures with the modulation wave vector paralle

to c*.

4.2.3. Standardization of the modulation wave vectors.

The standardization discussed in this subsection is based on a remarkable
common feature of distorted g-K2504 type structures. They already share
Pcmn (88%) (ss7) as a common prototype symmetry (see abave), which means that
at least some of the symmetry conditions for modulation functions imposed
by Pcmn(@8%) (ss7) are conserved as exact 3-dimensional symmetry relations.
The new feature, to be called "pseudo prototype symmetry" manifests itself
in the fact that those conditions which are not thus exactly fulfilled, are
still satisfied in a very good approximation as non-crystallographic
symmetries of the superstructure. Foremost among these pseudo-

Pcmn(@8%) (ss7) properties is the fact that (the first harmonics of)
displacements of atoms lying in the mirror plane perpendicular to b in
8~K2S04 (which are also the dominant displacements in all structures) are
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TABLE 4.2.1. Parity conditions for occurrence of symmetry elements in a
rational subgroup.

%x/=1 the symmetry element can/cannot result from the indicated 4-
dimensional space group for the indicated type of modulation wave vector
g=(u/vc¥ (o=odd, e=esven).

symmetry Pocmn(@8% (s57) = (4.2.1) Pemn(B9% (117) = (4.2.3)
2lement
u/v= /0 e/0 o/e u/v= o/0 e/n o/e
i bl % £ = = * =
ict = = * = = =
1124 = % = = % -
im1 % 5 - ® ® %

TABLE 4.2.2. The poszible space groups for distorted g-Kz504 type
superstructures.

%/-1 the superstructure space groups are / are not rational subgroups of
the indicated prototype symmetry. The space groups that are actually
found (see table 4.2.4) are underlined.

row superstructure space groups prototype symmetry

Pcmn(88%) (ss7)  FPocmn(88%) (1177

1 PZscn, Pl2{/cly Elcd % =
2 PcZyn, P24/c1i, Pcif,

P112,/n, P212,2¢, P112y,

Piln, P2¢11, P12¢1, PT, P1 % %

3 Pcmn, P2ymn, Pcm2y, P12;/ml, Piml = X

TABLE 4.2.3. Possible combinations (x) of rational subgroups of
Pemn(88%) (ss7) and modulation wave vectors g=(u/vic* giving
modulation functions that correspond to those of incommensurate
structures with space group symbol Pcmn(BB%) (ss7).

rational subgroups u/v=odd/odd even/odd odd/even
Re2in P2yl =Pl ] % = =
P1121/n, P2y242y. P1124 i 23 7
R2Jcn SR12(/c 3Pl & X
BaAnLEPAT SR I2 11 NP1 P b3 e x
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parallel to b in good approximation, even in the many cases where there
is no symmetry constraint for their direction. (In structures with the
other space group, Pcmn(88%) (117), the displacements of atoms in the mirror

plane cannot have components parallel to b!’)

Figure 4.2.1 already demonstrated that the relations between modulation
functions of symmetry-equivalent atoms depend on the choice of the
modulation wave vector. For modulation wave vector g’=c*-q

other modulation functions are needed than for g. This is the case for
superstructures as well as for incommensurate structures. (The only
exception is the 2-fold superstructure. In that case g’=g.)

Therefore, for comparison of modulation functions of different
incommensurate structures and superstructures, it is important that the
choices of the modulation wave vectors in different structures correspond
to each other. The symmetry can guide us to the correct choice. As stated
at the end of subsection 4.2.1, for incommensurate structures with the
prototype symmetry, g 15 chosen such that the space group symbol is
(4.2.1) rather then (4.2.2). This choice has also been made by Rasing
(1982, and it corresponds to the choice of the modulation wave vector for
Rb2ZnBra, Rb2ZnClas and K22nCla made by De Pater (1979) and Gesi and Iizumi
(1978, 197%9a).

More generally the modulation wave vector in an incommensurate structure
will be chosen here such that the symbol of the c-glide plane normal to

a is c(s) and the symbol of the 2y-screw axis parallel to c is

21(1) . These are the symmetry elements of which the symbols change if the
other modulation wave vector is chosen. Of course this recipe can only be
used if at least one of these symmetry elements is present in the space
qroup.

If both elements are absent, then a more detailed investigation is
necessary. In that case the c{s)-glide plane is not present, so the 8kim
reflections do not show the corresponding systematic absences.
Nevertheless, because of the pseudo-prototype symmetry, the reflections
which correspond to those systematically absent for the pratotype symmetry
will be much weaker than the other reflections. This information can be

used to find the modulation wave vector corresponding to symbol (4.2.1).

In superstructures, the results of subsection 4.2.2 can be used for the
standardization of the modulation wave vectors. The relation between
superstructure symmetry and prototype symmetry (4.2.1) can be found in
table 4.2.1. From this table it can be concluded that if a c-glide plane
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normal to a is present, then the modulation wave vector must be
g=(u/v)c* with u and v both odd. If a 2j-screw axis parallel to

c is present, u must be even. The resulting modulation functions, found
by fourier-analysis of the atomic coordinates of the superstructure, can be
compared directly with those of the incommensurate structures discussed
before. For all rational subgroups of Pcmn(8@%) (ss7) the modulation wave
vectors for which they can occur are listed in table 4.2.3.

If both the c-qlide plane normal to a and the 2y-screw axis parallel to
c are absent, again that choice should be made for which the @kim
reflections with 1+m=odd are weak.

(This is not possible in the case of a 1-fold or a 2-fold superstructure.
For a 1-fold superstructure the satellite reflections are also main
reflections: e.qg. reflection 1231 is reflection 1240 for g=c* or

1236 for g=8. For a 2-fold superstructure the reflections with

1+m=odd are the same as those with I+m=even: e.g. reflection 08231 1s
reflection 8247 for g=(1/2)c*. On the other hand: for a 1-fold
superstructure the modulation functions are constants and for a 2-~fold
superstructure there is only one possible choice for g because

a‘=g. Therefore, in either case the choice does not matter anyhow.)

A consequence of the above described standardization of modulation wave
vectors is that for some structures the standardized modulation wave vector
is outside the first Brillouin zone. Now, solid state physicists prefer to
choose wave vectors within this zone. The following example will show why
it is convenient to neglect this preference here.

Consider an A2BXa compound with a 2-fold superstructure phase between two
incommensurate phases. On lowering the temperature, the modulation wave
vector changes continuousiy from @.44c* to @.49c* in the high

temperature phase. Then it jumps to ¢*/2 at the lock-in phase

transition. On lowering the temperature further, a second phase transition
occurs and the structure becomes incommensurate again. In this second
incommensurate phase the modulation wave vector changes from 8.52c* to
0.57c*. Using these modulation wave vectors, the two incommensrate

phases have the same 4-dimensional space group {e.g. Pcmn(88% (ss7)), the
reflections with the same indices in both phases have about equal
intensities, and the rules for systematic extinctions are equal. In fact,
the two incommensurate phases can be interpreted as one incommensurate
phase, interrupted by the 2-fold superstructure phase.

If in the second incommensurate phase the modulation wave vector would have
been chosen within the first Brillouin zone, the space group symbol and the
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rules for systematic extinctions would have been completely different for
both incommensurate phases. The relationship between these two phases would
be hard to recognize in this situation.

It should be noted that the above comment, although illustrated for
incommensurate structures, applies to superstructures as well, even

including the 1-fold superstructures.

4.2.4. Application to observed structures.

In table 4.2.4 all distorted g-K;504 type structures which are mentioned in
the literature are given, together with the standardized modulation wave
vectors (expressed as % in g=%c*) .

The 4~fold superstructures in this table do not contain a c-glide plane
normal to a or a 2y-screw ax1s parallel to c. As discussed above,

in this case we have to rely on systematically weak intensities. The
diffraction pattern of (NHa):2nCla at room temperature (space group Plcl)
shows very clearly that g=(1/4)c* should be chosen, and not

g=(3/4)c*: for g=(1/4)c* the BKIm reflections with 1+m=odd

are very weak, and for the other choice they are strong. In section 4.4 it
will be shown that the resulting modulation functions of the Picl- and the
P2¢cn structure of (NHq)22nClg are indeed very similar to the modulation
functions of the other structures. According to Zandbergen (1931) CsoMnla
has space group P2(cn and is probably isomorphous with (NHa) 2ZnCla.

Table 4.2.4 includes 3-fold and 7~fold superstructures with space group
P242¢2y or P1121/n. The standardized modu)ation wave vectors, based on the
presence of the 2y-screw axis parallel to c (originating from the 24(1)
operation of the prototype symmetry), have %=2/3 or %=4/7. For these
modulation wave vectors, the @KIm reflections with 1+k=odd are very much
weaker than those with l+m=even. Hence, they show pseudo-c(s) symmetry. The
combination of this pseudo-c(s) operation and the 24(1) operation excludes
Pcmn(@8%) (117) from being the prototype symmetry of these structures, and
again confirms the pseudo-prototype symmetry.

The space group of the structure of (NHa) 2ZnCla with %=2/7 is not given in
the literature. This value of ¥ has been determined on the basis of pseudo-
c(s) absences. Assuming that Pcmn(80%) (ss7) is the prototype symmetry of
this superstructure, it can be concluded from this value of % that the
space group of this structure is P112y/n, P21212y or a subgroup of one of
them (see table 4.2.3). Sato et al. (1984) observed that this structure is
weakly ferroelectric along the b axis. This means that the space group
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. continued.
TABLE 4.2.4. Distorted B-K2504 type structures. TABLE 4.2.4. continued

% gives the length of the modulation wave vector: g = % c*,

sp.gr. 5 compound references
Sp.Qr. ¥ compound referencas
P2i/ctl  1/3 (TMA) 20uCla  Gesi (1932
inc.1 9.31 K2ZnCla Gesi and Tizumi (19792 et gy
* .31 Rb2ZnCla Gesi and lizumi (19792 P212:2y  2/3 (THA) 22nCle  Basi (1782)
8.294  Rb2ZnBra this thesis (chapter 3) (THA) :CoCla  Besi (1782)
8.31 K25e04 Tizumi et al. (1977 sl . 5
9.334 CssFels Zandbergen (1981, 1984)) P1124/n 2/3 (TMA) 2MnCla Mashiyama and Tanisaki (1931)
% 2.48 (NHa) 2BeFq Tzt and Gasititomm) (TMA) 2FeClq Mashiyama and Tanisaki (1782)
% 8.255  (NHa)22nClg  Sato et al. (1934 pllbad Ll LB e o
% 8.255  (NHa),ZnBra  Sato et al. (1983) Ul BRI Bl AR
* 8.517 (TMA) 2MnCls  Mashiyama and Tanisaki (1981 m = = Stei (19713
% 0.326  (TMA).CuCla Gesi (1982), Sugiyama et al. (1989 P2ien 172 Sttt pizaial '?-?”"”‘" LTl
¥ % 8.5, 8.58 (TMA)oFeCls Mashiyama and Tanisaki (1982) Shets S e S etk
% 9.55 (TM@) sNiCls  Mashiyama and Tanisaki (1582) = MlSERIATIR Y BRSNS Sl A
% 9.58 (TMA) 2ZnCl 4 Gesi (1982), Tanisaki and Mashiyama
(1988) P124/c1 1/2 CzoFels Zandbergen (1981)
X8/ .59, B8.461 (TMA) 2CoCla Gesi (1782), Marion (1281 (TMA) 2MnCl1a Mashiyama and Tanisaki (1731
inc.2 .13 Cs2CdBra Maeda et al. (1983), Altermatt et al. Pe2en 11 (NHa 2504 Schiemper and Hamilton (1766
(1984
9.15 Cs2HgBra Plesko (19810, Altermatt et al. (1984 F2y/c1l 11 CTMA 2CuBra  Hasebe et al, fL17820
(TMA) 2Fell g Mashiyama and Tanisaki (1982)
Poy2 2l a7 (TMA) 2FeCls  Mashiyama and Tanisaki (1982), Hasebe et (TMA) 22nClq  Besi (1982)
al. (1984) (TMA) 2CoCl 4 Gesi (1732)
D-(TMA) 22nCla Mari et al. (1981) (TMA) 22nBrg Hasebe et al. (1984)
A i aa = (TM@&) 2CoBrg  Hasebe et al. (1934
? 247 (NHa) 22nCla  Sato et al. (1984)
$4EeN e gRs 0 & T 8/1 Cs2HgBrg Plesko (1981), Altermatt et al. (1984)
Pc2in /5 (TMA) ;FeCla  Mashiyama and Tanisaki (1982) Cs2CdBra IS (bl CUREIRG B allo SHethh
(TMA) 22nCls  Gesi (1982), Marion (1981
(Tmmzc:.m: Ges; e M:1g: S P112¢/n  98/1 Cs,CdBra Plesko (1981, Altermatt et al. (1984)
: Cs2HgBra Plesko (1981), Altermatt et al. (1984)
P2icn 1/4 CsaMnla Zandbergen (1981 C‘”S?g“ ]'j“t EtBa]' (}9;;)3)
4 CszMgla Zandbergen (1981) ) e e
(NHq) 22nCls  Matsunaga (1982) ;”j‘ 2 Za'c'“‘j S B
4 (NHg) 22nBrs  Sato et al. (1983) E“L”é“ afTei Sib ety
c u25i04 \ (
4 il eleeieile ErodaRtlan NazBefq Muller and Roy (1974)
s e NS
Pict 1/4 (NHa) 2ZnCla  Van Koningsveld (1983) (lcspalnier - Gesh Gk
Pc2in 1/3 K22ZnClg MiKhail and Peters (1979)
Rb2ZnClq Quilichini and Pannetier (1983 e [ (9079 (557
Rb2ZnBra this thesis (chapter 3) Sl L Tl e
K25e04 Tizumi et al. (1977 inc.2: P112¢/n(80% C111/7)
K2CoCla VA i T, % symmetry not determined, but assumed by the author of this thesis.
Rb2MgBra Seifert and I;lase]—Nielen 1977 # symmetry assigned on basis of similarities with the preceding compound
BasTiO4 Chr i el % (NHa) 2BeFs has the came symmetry as the other two compounds in this
(NHa) 22nCl s Mat;unaga et al. (1982 group, but the structure is different (see section 4.3).
4 (NHa) 2ZnBra Sato et al. (1983) % two phases with such a structure exist.
# (NHa) 2CoCla  Broda (1984) ? space group unknown.
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TABLE 4.2.5. Phase sequence of AzBXq compounds with phases having
distorted g~K,S04 type structures. For each compound alternately
structures and phase transition temperatures are given. Each structure is
represented by its space group and the standardised modulation wave
vector component ¥ (between brackets).

compound

phase sequence (temperatures in K

references

K22nCl 4
Rb2ZnCla
Rb2ZnBra
Cs2CdBrg
Cs2HgBra

CzzFalg
Cs2Mnla

KzSeflq
5r25i0a
BazTilg
Caz5i04
(NHa) 2504
(NHq4) 2BeFa
(NHa) 22nClg4
(NHa) 2CoClg
(NHa) 22nBrg

(TMA) 2FeClq

(TMA) 2MnCl4
(TMA) 2Cullg
(TMA) 2NiClg

(TMAY 22nCl 4

(TMAY 2CaCl4

(TMA) 2ZnBrg
(TMA) 2CoBrga

Pcmn 553 inc(@.31

403 Pc2yn(1/3)

213 2(?) 145 ?2(?)

Pcmn 383 inc(@.31)
73 ?2¢1/3)
Pcmn 347 inc(8.2794)

194 Pc21n(1/3)

198 Pc21n(1/3)

112 Pc2yn(1/3) 77 Pcli(1/3)?

Pcmn 252 inc(9.13)
158 P7(@)
Pcmn 245 inc(@.15)

147 P7(8) 85 PT(

Pcmn 152 inc(9.389)
Pcmn 248 P2ycn(1/49)
185 F1 or Fi(2a,

237 P1124/n(®)

232 P1121/n(8)
2b)

123 P124/c1¢1/2)
211 p112¢/n(@)
2b,20)

Pé3/mmc 734 Pcmn 129 inc(@.31) 94

Pc2yn(1/3) 56 2(

Pcmn 358 P1124/n(8)

2

Pc24n(1/3) ? P112¢/n(®
Pé3/mmc 1720 Pcmn 1430 2(1/3) 943
P112¢/n(@) 780 olivine

Pcmn 223 Pe2ynt( 1)
Pcmn 183 inc(8.48)

Pcmn 484 inc(@.255)

177 P24cn(1/2)

365 P21cn(1/4)

319 Plci(1/4) 274 2(2/7) 269

Pc21n(1/3)

Pcmn 323 P2ycn(1/4)
Pcmn 432 inc(9.255)
217 Pc2yn(1/3)
Pcmn 232 inc(@.56)

? 1582 Pc2yn(1/3)
395 P24cn(1/4)

271 P242124C4/7)

247 inc(8.58) 244 P1124/n(2/3)

249 P2y/c11CD)

Pcmn 292 inc(8.517)
267 P1124/n(2/3)

Pcmn 299 inc(@.324)
2464 P112(/n(@)

Pcmn 285 inc(2.5%5)
?(8 or 1)

Pcmn 297 inc(@.58)
275 P1124/n(2/3)
155 P212121(2/3)

Pcmn 294 inc(8.5%9)

291 P124/c1€1/2)
175 2¢?)

291 P24/cii(i/3
275 ?(1/2) 223

288 Pc2yn(3/5)
168 P2y/c11C(D)

281 Pc21n(3/5

279 inc(8.61) 277 P1124/n(2/3)
192 P21/c11(1) 122 P2¢212,(2/3)

Pcmn 288 P2y/c11(1)
Pcmn 288 P2¢/c11(1)

Gesi and lizumi (177%a),
Shuvalov et al.(1983)
Quilichini and
Pannetier (1983)
this thesis (chapter 3)

Altermatt et al. (1984),
Plesko (1981)
Altermatt et al. (1984),
Pleska (1931)
Zandbergen (1931)
Zandbergen (1981)

Tizumi et al. (1977),
Lopez Echarri et al.
(1980)

Catti et al. (1983

Gunter and Jameson (1934)

Saalfeld (1975

Schlemper and
Hamil ton (1946)

Onodera and ShiozaKi
1979

Matsunaga (1982), Sato
et al. (1984

Broda (1984)
Sato et al. (1983)

Mashiyama and
Tanisaki (1982)

Mashiyama and
Tanisaki (1981
Gesi (1982

Mashiyama and

Tanisaki (1982)
Gesi (1982)

Gesi (1982)

Hasebe et al. (1984)
Hasebe et al. (1984)
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is either Plln , P12¢1 or PI1.

The value of % for the structures of Cs2CdBra and CszHgBra with space group
P7 is assigned on the basis of the similarity of these structures with the
structures with space group P112y/n of the same compounds.

In table 4.2.5 the phase sequence is given for most of the compounds
mentioned in table 4.2.4.

Conclusion: It is shown that the space groups of all reported distorted g-
K2504 type structures are closely related to the 4-dimensional space group
Pcmn(80%) (537) . A recipe is given for choosing the modulation wave vectors

in these structures such that the modulation functions are comparable.

4,3. Reported structure determinations.

Several structure determinations of distorted g-K2504 type structures have
been published (mainly in the last few years). The results are used in this
chapter to compare these structures. In the comparison, also some

undistorted g-K,504 type structures are included.

Table 4.3.1a contains all determinations of distorted 8-K.S0a type
structures reported in literature. For each of these structures the
standardized modulation wave vector is given. The cell parameters of the
structures listed in table 4.3.1a are given in table 4.3.1b.

- For the room temperature structure of (NHa)2ZnCla two structure
determinations have been reported independently. The results of the two
are not in good agreement with each other. The positions of the N atoms
differ by up to 8.264 and those of the Cl atoms by up to 8.154. The
structure found by Van Koningsveld (1983) is based on twice as many
reflections, and the standard deviations of the atomic coordinates are
much smaller in this structure. Moreover Van Koningsveld has taken into
account that the crystals of (NHa)2ZnCla at room temperature are
twinned. Therefore his data are used in this thesis.

- For the 2-fold superstructure phase of (NHa) 2BeFs also two structure
determinations have been reported independently: one at 133K and the
other at 153K. The differences in the atomic positions (after
transformation to the average unit cell) are small (up to ©.8543) . The
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TABLE 4.3.1a. Reported structure determinations of distorted g-K2504 type
structures. T is the temperature at which the structure analysis has been
performed (r.t.= room temperature). s gives the standardized modulation

wave vector: g=vck.

no. compound space gr. T T reference
[K1
1 (NHg) 2Z2nCla P2icn 1/4 355 Matsunaga (1982)
2 (NHa) 22nClgq Plci 174 ra.t Van Koningsveld (1983)
3 (NHa)2ZnCla Plci 174 r.t. Matsunaga (1982)
4  (NHa) 22nCla Pc2yn 1/3 223 Matsunaga et al. (1982)
5 Kz2ZnCla Pc2¢n 1/3 r.t. Mikhail and Peters (1279
é Kz2CoClg Pc2in 1/3 r.t.X Vermin et al. (197é)
7 Rb2ZnClg Pc2¢n 1/3 120 Quilichini and Pannetier (1%983)
8 Rb2ZnCla $ Pc2in 1/3 408 Quilichini and Pannetier (1983)
? Rbz2ZnBrg Pc2¢n 1/3 140 this thesis (chapter 3)
18 Rb2ZnBra Pc2¢n 1/3 23 this thesis (chapter 3)
11 BazTiOg4 Pc2in 1/3 r.t.%¥ Gunter and Jameson (1984)
12 (NHg) 2BeFg P24cn 1/2 153 Misyul et al. (1988
13 (NHa) 2BeFgq P2icn 172 133 Onodera and Shiozaki (179)
14 Ba25nSa P21¢cn 1/2 r.t. Suza and Steinfink (1971)
15 Sr2Cr0a P24cn 172 r.t. Wilhelmi (1946)
16 CszFels P124/cn 172 100 Zandbergen (1981
17  (NHg) 2504 Pc2¢n 1 180 Schiemper and Hamilton (1946
18 Ba:TiOg P112¢/n 0 r.t. Wu and Brown (1973)
19 Ca2S5i0a P112¢/n [’} r.t. Jost et al. (1977
20 Sr2Si0q P1124/n 8 r.t. Catti et al. (1983
21 Cs2CdBrg P112¢/n [} 195 Altermatt et al. (1984)
22 Cs2HgBrag P112¢/n (] 200 Altermatt et al. (1984)
23 Cs2CdBrg B [’} 120 Altermatt et al. (1984)
24 Rb2ZnBra Pcmn(0@% (ss7) 8.294 r.t. this thesis (chapter 3)
25 KzSe0a Pcmn(88%) (ss7) 8.31 113 Yamada and Ikeda (1983)
26 CsaFels # Pcmn(@80%) (ss7) 8.384 133 Zandbergen (1981)
undistorted 8-K2504 type structures:
27 K28eDg Pcmn = r.t. Kalman et al. (1970
28 (NHa) 2ZnCla  Pcmn = 418 Matsunaga (1982)

¥ The reported structure is metastable at this temperature.

% The symmetry is not correct (see text).

# The reported structure is a 5-fold superstructure approximation. See
the text for further remarks.
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TABLE 4.3.1b. Cell parameters of the structures of table 4.3.1a.
For incommensurate structures the cell parameters are those of the basic

structure.
no. compound cell parameters
a [a] b [&] cs [l o [ ja 45 &l TR
1 (NHa) 22nCla 12.461 7.236 37.116
2 (NHa) 2ZnClg4 12.420 7.211 37.698 20.00
2 (NHa) 2ZnCl 4 12.429 7.213  37.118 89.992
4 (NHa) 2ZnCl4 12.548 7.184 27.838
5 KzZnCla 12.402 7.256 26.778
6  Kz2CoCla 12.404 7.262 26.838
7 Rb2ZnClga 12.427 Z2.2472 272505
8 Rb2ZnClg 12.542 7.261 27.439
92  Rbz2ZnBrg 13.198 7.549 28.842
10 Rb2ZnBra 13.184 7.599 28.867
11 BazTiOa 18.540 4.187  22.952
12 (NHa) 2BeFa 10.495 5.915 15.123
13 (NHq) 2BeFgq 18.482 5.718 15.185
14 Ba25nSa 12.413 7.359 17.823
15 Sr2Cr0a 10.100 5.788 14,182
16 CsaFelas 14.318 8.287 21.459 %0.14
17 (NHa) 2504 10.61 5.967 7.837
18 BaTiOa 18.545 6.096 7.681 929
19 Ca28i04 9.297 5.502 4.745 74,59
20 Sr28i0a 9.767 5.643 7.884 92.67
21 Cs2CdBrg 13.949 7.856 16.201 96.0
22  CszHgBra 13.796 7.813 10.152 98.0
23 Cs2CdBrg 13.898 7.788 10.200 90.0 96.8 98.9
24 Rb2ZnBra 13.330 7.656 ?.707
25 K2S5e0q not reported
26 CsaFela 14.343 8.288 10.74
undistorted g-K2504 type structures:
27  K2Se04 19.444 46.003 7.661
28 (NHa) 2ZnCla 12.745 7.275 2.295
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153K structure (reported by Misyul et al, 1988) is used in the
comparison because it is based on more than twice as many reflections,
resulting in smaller standard deviations of the atomic coordinates.

The reported structure of KsCoCls is almost equal to the reported
structure of K2ZnClg (maximal differences in atomic positions: 0.6324).
The differences between these two structures are much smaller than the
differences between one of these structures and each of the other 3-fold
superstructures of table 4.3.1a. Therefore, all conclusions made in this
thesis for the room temperature structure aof K;2nClg are also valid for
the structure of Kz:CoClg.

The structure of CspHgBra at 200K is also not considered explicitely,
because of its very strong resemblence with the structure of Cs.CdBra at
199K (maximal differences in atomic positions: 8.8784) .

The reported structure of the incommensurate phase of CseFelq (at 133K)
is a S5-fold superstructure approximation with symmetry P112;/n. The
actual symmetry of the incommensurate phase is Pcmn(80%) (ssT)
(Zandbergen, 1984) . In the reported structure the second harmonics in
the modulation functions are larger than the first harmonics. This is
hardly possible, because Zandbergen (1981) reports that no second order
satellite reflections could be observed. It is also not in accord with
the ather determined incommensurate structures (RbzZnBra, K25e0a), in
which only first harmonics are found in the modulation functions, and
with the reported 4-fold superstructures, in which the second harmonics
are much smaller than the first harmonics. The strong second harmonics
found by Zandbergen are probably caused by the fact that in the last
stage of the structure refinement no second order satellites were
included (Zandbergen, 1981, 1984). The amplitudes of the second
harmonics of the modulation functions are then only very weakly fixed,
since they depend chiefly on the second order satellites. Hence they can
easily assume unrealistic values. Therefore the reported structure of
Cs2Felq at 133K is considered not to be correct and will be ignored.
Because the symmetry of Rb2ZnCls4 at 42K is not Known, Quilichini and
Pannetier (1983) used the symmetry of the compound at higher
temperatures (Pc2yn). The actual symmetry is lower because some of the
reflections that should be systematically absent for space group Pc2in
are found to have non-zero intensity. Nevertheless, the agreement
between observed and calculated intensities is very good. The reported
48K structure aof Rb,2nCls has a strong resemblence with the reported
structure of the same compound at 180K (maximal difference in atomic
positions: 8.8624) . Therefore the structure of Rb2ZnClg at 48K is not

considered explicitely further.

— As will be discussed in section 4.4, the structure of Rb2ZnBrg at room

temperature is probably a 17-fold superstructure. Because this supercel
is much larger than that of any other superstructure in table 4.3.1, the
structure is treated as incommensurate in this and the next two

sections.

To compare structures, they must be described with respect to the same set
of axes, with the origin in corresponding positions. Also, the nomenclature
of the atoms must be the same. These conditions are not satisfied by the
data reported in the original publications. Therefore a computer program
has been made that automatically puts the origin of the set of
crystallographic axis at the proper position, generates the positions of
all atoms in the unit cell and normalizes the (code) numbers of the atoms.
For polar structures the position of the origin is chosen such that the
centre of gravity of the unit cell contents is at position (8.5, 8.5, 8.5 .

The incommensurate structures are treated separately.

4.4. Local structural details.

4.4.1. Interatomic distances.

The first neighbour interatomic distances have been calculated from the
atomic coordinates and the cell parameters (see table 4.3.1b) without
applying corrections for the effect of thermal vibrations (see Cruickshank,
1954) . These caorrections would be very small in comparison with the
differences in distances which will be considered here.

For the incommensurate structure of K,5e0s the cell parameters have not
been reported. The room temperature cell parameters are used instead. They
are sufficiently precise.

For incommensurate structures the distances are found by approximating the
structure by a large superstructure: a 23-fold superstructure is used for
K28e04 and a 17-fold one for Rb2ZnBra.

The interatomic distances in the BXs tetrahedra are not discussed here,
because their variations are much smaller than the variations in other
distances. They deviate only a few percent from those corresponding to
regular and identical BXs tetrahedra.
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FIGURE 4.4.1. Nomenclature of the types of distances. The
capitals denote A-X distances, whereas the lower-case letters
denote X-X distances. Distance g is between two X atoms of two
tetrahedra which coincide in the given projection.

The nomenclature of the distances is given in figure 4.4.1, shawing a
projection of a §-K:S0a type structure. The A-X distances are denoted by a
capital (A, ... F for A1-X, and G, ... M for A2-X) and the X-X distances by
a lower case letter. The same letter is used for interatomic distances that
are equivalent (related by symmetry) if the distortion with respect to the
£-K2504 type structure is disregarded: each letter denotes a "type" of
distance. Because in the g-K;S0s type structure the A atoms are located on
a mirror plane (perpendicular to b), most of the A-X distances around

an A-atom occur in pairs of the same type, and hence with the same letter.
The distances which do not occur in pairs are those of type A, B, E, G, H,

J, g and h.

The interatomic distances for the crystal structures which are compared are
given in fiqure 4.4.2.

Figure 4.4.2 also shows the A-X and X-X contact distances for each
compound. These contact distances are calculated as the sum of the
effective ionic radii, taken from Shannon (197é). The radii are those for
atoms with a sixfold coordination. For the halogen ions, this is the
largest coordination number for which radii are given. If for the A ions
eight would have been chosen as coordination number, then each A-X contact
distance would have been about 8.14 larger.

The Ay atoms are surrounded by nine X atoms. According to figure 4.4.2 only
Ay-X distances of type C, corresponding to two distances per Ay atom, have
values covering a large range. The A);-X distances of the other types have
almost the same value within each structure. The values for these non-
varying distance types are approximately equal to the minimum value of
distance type C, and correspond to the contact distance of the atoms
represented by A and X.

The A2 atoms are surrounded by thirteen X atoms. As can be seen from figure
4.4.2, the Az-X distances are in general larger then the Ai-X distances.
Distances of only two types (G and H) always have about the same valuej for
G this value is close to the contact distance. The distances of the other
types diverge considerably. It can be concluded that the Az atoms have more
space than the Ay atoms.

4.4,2. Displacements of individual ataoms.

In the following the positions of the atoms in the distorted §-K2S0a4 type

structure will be considered with respect to the "related Pcmn structure”.
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For incommensurate structures with the prototype symmetry this 1s the basic
structure. For superstructures, the related Pcmn structure is found in the
following way. First the Pcmn symmetry operations of B-K;504 are made to
act on the atomic coordinates of the superstructure, letting the
corresponding symmetry elements coincide. These Pcmn operations are at
least present in the superstructure as pseudo symmetry cperations, zo they
yield clusters of atoms. The related Pcmn structure results from averageing
the atomic coordinates of atoms in each cluster. For incommensurate
structures of which the 4-dimensional space group is a proper subgroup of
the prototype symmetry, the related Pcmn structure iz found by applying the
same recipe to 1ts basic structure.

The digplacements (in &) of the atoms with respect to the positions 1n the
related Pcmn structure are given in absolute value in figure 4.4.3. The
nomenclature of the atoms is as given 1n chapter 1 (figure 1.4.1). For all
structures shown 1n figure 4.4.3, the same pattern 13 found. The
displacements of the atoms are mainly in the b direction for the Ayj-,

Az-, B-, X¢- and X; atoms. Only the X3 atoms have important compaonents alsao
in the a- and ¢ directions.

The largest deviations are those of the X atoms. They mainly reprecent
rotations of the tetrahedra, because the tetrahedra are rigid in good
approximation and because the displacements of the B atoms are zmall.
Because the dizplacements of the Xy- and Xz atoms are mainly parallel to

b, the rotation component around an ax1s parallel to b is zero in

good approximation. The other two rotation components can be characterized
by the displacements of the X{- and Xz atoms 1n the b direction. These

displacements will be investigated in more detail.

For the superstructures, the displacements of the individual X(- and X
atoms parallel to b are given in more detail in figure 4.4.4, These
superstructures can be thought to consist of layers of BXa tetrahedra
normal to c. The B atoms of both tetrahedra in such a layer have
approximately the same z coordinates. Two such layers exist per ¢

period. The A, atoms are located in these layers between the tetrahedra.
Each Ay atom 1s located between two layers.

For most layers the displacements of the two X2 atoms are equal 1n good
approximation. Therefore i1n figure 4.4.4 the corresponding triangles often
form a single rhomb. The most important exceptions are found in the 2-fold
superstructures of (NHa) 2BeFa, Baz5nSas and SrzCr04. In half of the layers
in these structures the displacements aof the two different X, atoms are
opposite.
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Figure 4.4.3 continued

The structure of (NHa) 2BeFgq strikingly differs from the structures of
Baz5nS4 and Sr2Cr0a, despite the fact that these three structures have the
same symmetry. Xy atoms with approximately equal z coordinates have
displacements with opposite sign in (NHa) 2BeFa, and of the same sign in
both other compounds. In (NHa) :BeFa the displacements of four of the eight
Xz atoms are opposite to the displacements of the corresponding X2 atoms in

the other two structures.

The difference between the two 4-fold superstructures of (NHa) 2Z2nCla is
also wvisible in figure 4.4.4. In the 333K structure of this compound there
are two layers in the supercell in which the two different X: atoms are
related by a 2y axis parallel to a. Because of this relation the
displacements of these two Xz atoms must be opposite; actually they almost
vanish here. In the room temperature structure of (NHg)2ZnCla this 2y axis
is not present. Here all X; atoms have displacements of approximately the

same absolute value in the room temperature structure.

The displacements af the X2 atoms (see fiqure 4.4.3) are mainly caused by
rotations of the tetrahedra around an axis parallel to c. If the
displacements of the two X, atoms in a layer have the same sign, then the
corresponding rotations of the tetrahedra are in the same direction. Figure
4.4.5 shows a layer of tetrahedra (drawn with full lines as triangles)
which are all rotated clock-wise over the same angle; this is the most
frequently occurring situation. The rotation angle in the figure (18°) is
representative for the actual rotations in the distorted g-K2504 type
structures. In the figure neighbouring X atoms of different tetrahedra are
connected by dashed lines representing distances of type d and g, and
forming triangles. If the tetrahedra are rotated clockwise, then the dashed
triangles are rotated anti clock-wise. Because in the related Pcmn
structure mirror planes normal to b exist, the distances of type d and

g9 are hardly influenced by the cooperative rotations of the tetrahedra;
this is confirmed by figure 4.4.2.

In the plane of figure 4.4.5, the A2 atoms in the layer are surrounded by
six X atoms belonging to three different tetrahedra. Three of the six Az-X
distances around each A, atom are considerably shortened by the rotations
of the tetrahedra, the other three are lengthened. In most of the layers
shown in figure 4.4.4 the rotation angle of the tetrahedra is such that the
shorter A,-X distances are equal to the sum of the atomic radii. (These

In such

distances are the smaller K-, L- and M distances in figure 4.4.2.)

a layer the rotation has reached the limit imposed by steric hindrance.
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FIGURE 4.4.5. Layer of tetrahedra normal to c. Of each
tetrahedron, three X atoms are shown, which are connected to
each other by solid lines to form a triangle. All A- and X
atoms shown in this figure have about equal z coordinates.

.Y

FIGURE 4.4.4. Two neighbouring Xi1-A{ chains parallel to b.
The atoms shown have about equal z coordinates.

All Xy atoms are displaced in the positive b direction, the
A1 atoms in the negative b direction. As a corollary, the

distances of type C in a chain are alternately longer and
shorter.

The Xy atoms with approximately the same z coordinates also have in most
cases the zame displacements, as can be seen in figure 4.4.4. Together with
Ay atoms having approximately the same x- and z coordinates, they form
chains parallel to b consisting of alternate Xy- and Ay atoms. Now the
displacements of the Ay atoms parallel to b are always opposite to the
displacements of the Xy atoms in the same chain. As a result the Aj-X
distances (of type C, see figures 4.4.1 and 4.4.2) in an A;-Xy chain are
alternately large and small, see figure 4.4.4. In a g-K:504 type structure
the distances in the chains are equal. Because the X atoms carry a negative
and the A atoms a positive charge, the opposite displacements of both types
of atoms will result in large local dipoles.

In figure 4.4.4 the most frequently occuring situation is shown: the
displacements of the Xy atoms in the two neighbouring chains are equal and
in the same direction. This has as a result that the X{-Xi distances (shown
in figure 4.4.4 as dashed lines) are hardly influenced by the
displacements. This corresponds to figure 4.4.2, in which it can be seen

that these distances (of type a) are almost equal within each structure.

It has been shown in this section that the superstructures have the same
local distortions with respect to g-K2504 as the incommensurate structures.
Hence these structures (including the 1-fold superstructures) can also
provide information about the origin of the modulation. The local
distortions consist mainly of rotations of the BXs tetrahedra, and can be
characterized by the displacements of the Xy- and X2 atoms parallel to

b.

4.5. Modulation functions.

In this section the modulation functions of the incommensurate structures
and the 3- and 4-fold superstructures will be compared. The modulation
functions of superstructures have been obtained from the atomic coordinates
by fourier analysis, using the standardized modulation wave vectors.

In that analysis, for a v-fold superstructure only the harmonics of orders
8 ... {(v-12/2 far v odd, or 8 ... V2 for v even (with the minimum
amplitude of the vw/2-th harmonic) were not assumed to vanish. So the
highest order allowed for a 3-fold superstructure is the first, and for a

4-fold one it is the second harmonic.
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Only the first harmonics will be discussed. The reported incommensurate
structures do not contain higher harmonics. (The only exception is CszFelqs
at 133K, but the determination is probably not correct, as explained in
section 4.3)., In the reported 4-fold superstructures the second harmonics
are smaller than 204 of the largest first-harmonic amplitude. Therefore, in
the following the second and higher harmonics will be neglected. S0 for a

given atom the modulation functions can be written as
di(t) = A; cos(2n(t-¢;)) (A8 . (4.5.1)

In this equation A; is the amplitude of the displacement modulation
function in direction i (i=1, 2 and 3 correspond to directions %, y and z
respectively) and @; is the phase of this function. (Note that subscript i
of A; and ¢; has another meaning in chapter 5.) Figure 4.5.1 shows how
these functions will be represented graphically. The modulation function in
this figure can be represented by either one of two line segments of length
Ai, which we shall call sy and sz. The position of the line segment sy,
drawn above that axis at t=e;, gives the value of t at which d;(t) is
maximal; sz is at the position t=¢;*8.5 of the minimum and is drawn below
the base line. Using for each modulation function one of these symbols, it
is passible to represent many modulation functions in one drawing. Having
two symbols available one can display more clearly the symmetry by choosing
for each modulation function the most appropriate one.

In figure 4.5.2 the first harmonics of modulation functions in K22nCls are
given, together with two projections of a g-K2504 type structure. For each
modulation function the corresponding atom can be found in the projections
by extending the horizontal line to which the symbol is connected into the
projection and looking there for the same square, circle or triangle on
that line. In the upper part of figure 4.5.2b the modulation functions
d2(t) are given. In the lower part di(t) and d3(t) are given for the X3-
and Xg atoms. For the other atoms dj(t) and d3(t) are not shown because
they have amplitudes smaller than 164 of the largest amplitude in the same
structure. In the incommensurate structures with the prototype symmetry and
in the superstructures with a c-glide plane normal to b the first

harmonics of these modulation functions have zero amplitude because of
symmetry, cf. section 2.3.

The functions d3(t) are longitudinal modulation functions. Therefore the
line segments representing these functions are drawn horizontally. Figure
4.5.2c shows the nomenclature of the atoms used in the following
discussion. In figure 4.5.3 the modulation functions of the other

20

.

FIGURE 4.5.1. Function d;(t) = A;cos(2n(t-9;)) can be
represented by line cegments sy or S2.
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structures are given.

The first conclusion is that the drawings for the different structures are
very much alike, in spite of the fact that some of the structures are
incommensurate, whereas others are 3-foid or 4-fold superstructures. This
is most easily seen when looking at the dominant modulation functions for
the Xy- and X, atoms, but it is true for the amplitudes and phases of the
other atoms as well. The major differences between structures are found in
the phases of the dz functions of X3- and Xgq atoms.

The deviation from prototype symmetry is small in all structures. As an
example of the minor character of the deviations which still exist, one may
look at the dz functions of X3— and Xa atoms for (NHa)2ZnCls at room
temperature. For the prototype symmetry, each pair (two d2 functions
connected by a horizontal bar) has a phase difference of 1/2. This can be
verified in the figure for RbzZnBra because the corresponding symbols are
pairwise mirror images with respect to the horizontal base line. A (very
small) shift occurs in the fiqure for (NHa4)22nCla at 333K, because this
structure lacks the c-glide plane normal to a. The room temperature
structure shows a somewhat larger shift (phase difference 6.39 instead of
8.5 which is related to the disappearence of the 2y axis along a
discussed before (section 4.4.2). Still, such a deviation is small enough
to allow the statement that the c(s) element is approximately present even
in this 4-fold superstructure.

With regard to the m(s) element of the prototype symmetry, the following
observations can be made.

The modulation functions di(t) and dsz(t) of the X3 atoms are exactly in
antiphase with those of the Xa atoms of the same BXsa group for the
incommensurate structures and the 4-fold superstructures, because of the
m(s) symmetry operation and the c-glide plane normal to b respectively.

For the same reason, the functions dz(t) are in phase. For the modulation
functions in the 3-fold superstructures this is almost true. Combining this
with the observation mentioned earlier, viz. that the amplitudes of the
first harmonics of the functions dy(t) and dz(t) of the atoms on the mirror
plane in the related Pcmn structure are small, it can be concluded that the
m(s) operation is present in good approximation.

The fact that the symmetry operations of the prototype symmetry are obeyed
in good approximation in the 4- and 3-fold superstructures again confirms

that these superstructures have pseudo-prototype symmetry.

The translations of the BXs tetrahedra can be found from the modulation
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functions of the B atoms. Because the latter’s amplitudes are =mall, it can
be concluded that these translations are small as well.

For the structures of which the modulation functions are given in figures
4.5.3 and 4.5.2 the function dz2(t) of atom Ajy is approximately in
antiphase with dz(t) of Xia. These two atoms have approximately the same x-—
and z coordinates and form a chain parallel to b. The same situation
occurs for the atom pairs Ar3-Xi2, A12-X13 and Aya-Xy1. The fact that the
modulation functions da(t) of the two atoms in one chain are in antiphase
means that if the Ay atoms are displaced in the positive b direction,

then the Xy atoms in the same chain are displaced in the negative b
direction. These chains have already been discussed in section 4.4.

Other observations made in section 4.4 which can be confirmed here are the
cooperative displacements of the X2 atoms of tetrahedra in the same layer
of tetrahedra normal to c and the cooperative displacements of X; atoms
with approximately the same z coordinates. Two Xz atoms of tetrahedra in
the same layer are for example Xzy and Xz3 (see figure 4.5.2). Indeed 1t
can be seen from figures 4.5.3 and 4.5.2 that the modulation functions
d2(t) of these atoms have the same phase in good approximation.

Two Xy atoms with approximately the same z coordinates are for example Xii
and X1a. These atoms also have modulation functions d2(t) with

approximately the same phase, as expected.

4.6. Large superstructures.

In this section those structures will be discussed in which the measured
value of % as a function of temperature has one or more plateau’s not
corresponding to simple superstructures. As mentioned in chapter 1, this
leaves some doubt as to whether the structure - within the range of such a

plateau - is incommensurate or is a complex superstructure.

The temperature dependence of s of Rb2ZnBra has been measured by De Pater
et al. (1979) and by Gesi and Iizumi (1978), see figure 4.4.1. Both
measurements reveal that from T; down to about 218K the value of ¥ remains
constant at 8.293(1). This value equals 5/17=0.2941 within the experimental
error. lizumi and Gesi (1983) verified this by more precise measurements.
Gesi and Iizumi (1978) also found a clear anomaly in the intensities of

satellite reflections at the temperature where % leaves the constant region
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(at about 218K). They suggested that there is a phase transition at this
temperature. By means of dielectric measurements, Van Kleef et al (1981)
actually did find in some of there samples two successive phase
transitions, 18 to 20K apart (depending on the sample) instead of one at
Te.

The temperature dependence of % for Rb2ZnClg has been measured by Mashiyama
et al. (1981) and by Gesi and Iizumi (197%a), whose results are reproduced
in figure 4.6.1. The curve in that figure is smooth but the measured points
allow the assumption of two intervals in which % is constant. The first
lies between 240K and 308K, the second between 200K and 220K. Gesi and
lizumi (1979a) also measured the intensity of a satellite reflection as a
function of temperature. This curve has a shoulder around 210K, which seems
to confirm the second plateau of %(T). The values which % takes in the
regions mentioned are 0.385 above 240K and 8.311 around 210K. The simplest
fractions which equal these numbers within experimental error (estimated
from the spreading of the data to be 8.801) are 7/23=8.3843 and
9/29=0.3103.

The measurements of Mashiyama et al. (1981) also show that % has the value
0.385 between 268K and 300K. The other plateau is not found in their
measurements. A narrow but well-established shoulder in their curve of %(T)
suggest that % also is constant with value 0.317 (13/41=0.3171) in a smal
temperature interval just above Tc.

Zandbergen (1981) reports that in Csz2Fels % has the value 8.384(5) in the
entire temperature region (123K-152K) of the so-called incommensurate
phase. This value is equal to 5/13=8.3846 within the experimental error.

The rational values of % mentioned above (5/13, 5/17, 7/23, 9/29, 13/41)
all obey the same parity condition: u and v both odd. The same condition
holds for the 3-fold superstructures found at lower temperatures in
Rb2ZnBrg and Rb2ZnClg: %=1/3.

As can be seen in figure 4.6.2, the values 1/3, 5/17, 7/23 and 9/29 are -
among the fractions which obey this parity condition - the ones which give
the smallest supercells in the region 8.29¢(%{8.34. Several fractions which
do not obey this condition and correspond to smaller supercells (e.g. 3/10,
4/13. 5/16), are not observed. Therefore it can be concluded that Rb2ZnBrga
and Rb2ZnCla have a preference for commensurate modulation wave vectors
with u and v both odd.

From figure 4.2.2 it can be seen that only under this condition the c(s)
operation of the prototype symmetry can be present as a c-glide plane
normal to a in a rational subgroup of this symmetry. Hence the observed
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parity condition suggests that it is energetically favorable to Keep this

symmetry element in the structure.

The above-mentioned compounds are not the only ones with a preference for
modulation wave vectors obeying such a parity condition. In thiourea a
similar situation exists. This compound has an orthorhombic modulated phase
with the modulation vector parallel to c. A careful neutron diffraction
analysis of the p-T phase diagram of fully deuterated thiourea by Denoyer
et al. (1981) has shown that there are stable superstructures for %=1/9,
1/7 and 1/3, the latter two occuring at higher pressures only. In the p-T
phase diagram, the stability regions for these superstructures border on,
or are surrounded by a large area in which % appears to change
continuously. An earlier paper by Shiozaki (1%71) deals with such an
incommensurate phase. The conditions for reflections observed by X-ray
diffraction are:

(i) 8KIm present only for K=even,

(ii> h@Im present only for h+l+m=even.

Condition (ii) corresponds to an n(s)-glide plane normal to b.

Projected along a, this element yields exactly the same configuration

as c(s) in figure 4.4.4d, and therefore yields the same condition, viz. u
and v both odd. Hence also in thiourea the rational values for % which are
observed are just those for which a certain symmetry element can be present
in a rational subgroup of a prototype symmetry.

Moudden et al. (1982) observed that in the presence of an electric field
parallel to b, and hence normal to the n(s)-glide plane, also a
superstructure with *=1/8 exists in a certain temperature region. This
electric field apparently destroys the n(s)-glide plane.

An attempt has been made to find more evidence for the 7/23 and 9/29
plateaus in Rbz2ZnClg by neutron diffraction. % has been determined from the
position of the reflections 9208, 0821-1, 0211 and 0220 at several
temperatures between T; and Tc.

The result is given in figure 4.6.3. Near Tc, which has been found to be
196K in this experiment, also higher order satellites can be observed.
Figure 4.4.4 shows a complete scan parallel to ¢ between reflections
0200 and 0220 of Rb2ZnClga at 198K. For this temperature % also has been
calculated from the positions of the higher order satellite reflections.
This value is in good agreement with the value calculated from the
positions of the first order satellites, as can be seen in figure 4.6.3,

where both values are given.
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FIGURE 4.6.3.

temperature.

% in Rb2ZnCla as a function of

B : from first order satellites
X : from higher order satellites

In figure 4.6.3 it can be seen that our measurements do not give evidence
for a plateau at %=9%/29. The plateau of the high temperature side of the
incommensurate phase is at %=0.3854(2). This value deviates significantly
from 7/23=0.3043. The measured value is too large.

The reflections observed at 198 K in Rb2ZnClg on the line between
reflections 0200 and 0220 are (see figure 4.5.4): 921-3, 8201, 02-15,
921-1, 023-7, 0210, 02-17, 8211, 822-2, 023-5 and 0#22-1. Note that the
higher order satellite reflections are very weak with respect to the first
order satellites 821-1 and 8211. Three of the observed reflections (8201,
8210 and 822-1) do not obey the rule for systematic absences of the c(s)-
glide plane normal to a: @KIm reflections are absent if 1+m=odd. The
observation of these three reflections is not due to half-wavelength
contamination of the neutron beam.

The same "forbidden" reflections are present more pronouncedly in a similar
scan made by Iizumi and Gesi (1983) for Rb2ZnBrg at room temperature.
Therefore it must be concluded that this c(s) symmetry element is not
present in the incommensurate phase of Rb22Z2nCla and in the 17-fold
superstructure phase of Rb2ZnBrg. This contradicts the above hypothesis

that this element is conserved - no explanation has yet been found.

Though the existence of superstructure phases in Rb2ZnCla is questionable,
this is not the case for Rb2ZnBra. Iizumi and Gesi (1983, see also chapter
3) confirmed that the room temperature phase of this compound has a 17-fold
superstructure. Together with the value %=0.384(5)=5/13, found for a large
temperature region in CszFels, this seems to show that these compounds in
their large superstructures prefer %=odd/odd above other Kinds of
fractions.

Acknowledgement. The measurements on Rb2ZnCla described in this section,

have been performed in cooperation with dr. C. van Dijk of ECN (Netherlands
Energy Research Foundation) in Petten.
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Chapter 5

THE ORIGIN OF THE MODULATION.

S.1. Introduction.

The origin of the modulation in distorted g-K250a type crystal structures
is still unclear, despite appreciable efforts of several authors.
Phenomenologic theories, of the Landau type, have been put forward for the
crystal structures of interest here. Though satisfactory explanations can
be given for some of the phenomena, no insight is provided in the
microscopic interactions causing the modulation of these structures (De
Pater et al., 1979; lizumi et al., 1977).

In relation to our detailed comparison of the crystal structures, we are
especially interested in microscopic theories. An Ising model constructed
by Yamada and Hamaya (1983a, 1983b) gives some hints towards the origin of
the phase transitions. The interactions, however, bear no direct relation
to the actual structural interactions. Janssen (1985 brings the model of
Janssen and Tjon (1981, 1982, 1983) in connection with some of the crystal
structures discussed in this thesis. The interactions which he assumes to
exist are in our opinion not argumented adequately.

Haque and Hardy (198@) performed a theoretical lattice dynamical study of
the normal to incommensurate phase transition of KeSeQa. All possible
Coulomb interactions as well as 32 independent short range interactions
were taken into account. The calculations showed the presence of a
softening low frequency optical mode with a wave vector close to the
observed modulation wavevector. The treatment regards the dynamics of the
normal phase. Because of the complexity of the model it is very difficult

to get insight in the mechanism which causes the modulation.

The purpose in the present chapter will be to calculate explicitly the
static stability of the modulated phases, using the structural knowledge to
sort out those interactions which are expected to play a dominant role in
the stability. The word "interaction” will be used to indicate a simple

interatomic force as well as the result of a combination of such forces.

The model will be presented in section 5.2, whereas in section 5.3 the
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FIGURE 5.2.1. The numbering of
the tetrahedra in a subcell,

as used in this chapter.

The dotted line indicates the
plane containing the atoms shown
in figure 5.3.3.

tal

Ja

FIGURE 5.2.2. The interactions between the X, atoms in the
model crystal structure. 4;¢ is the displacement parallel to
b of the X, atom of tetrahedraon i in subcell K,

Egch solid line indicates an interaction favouring equal
leplacements, whereas each dashed line indicates an
interaction favouring opposite displacements.

relation of this model to the g-K250s type crystal structure will be
discussed. In section 5.4 it will be shown which structures are stable as a
function of the interactiaon parameters in the model. In section 5.5 it will
be assessed which of the observations can be explained by the model and
which of them cannot. In the last section (5.4) the results will be

discussed.

5.2. The model.

The mode! consists of an energy expression (5.2.1) derived from an assembly
of interactions between first neighbours in an idealized structure.
although not exhaustive, this assembly is thought to be representative
because the consequences of each interaction, taken separately, are
reflected in systematic features present in the actual structures.

In the model it is assumed that a and b are true symmetry

translation vectors. Hence, the modulation wave vector is parallel to

cy, and it is sufficient to consider only a single row of subcells

parallel to c. It is further assumed that a structure is completely
determined by the displacements parallel to b of the Xz atoms from the
mirror planes in Pcmn. Hence, the model contains four parameters for the k-
th subcell: the displacements 4ix of the X atoms, i=1,2,3,4 denoting the
tetrahedron number as indicated in figure 5.2.1.

The potential energy per subcell in the model is given by
Tim 1 N 4
= I RN Akt 0a <) €1 ( (A1 k—d3k) 2+ (dak—daid %) +
N2 2N+1 k=-N i=1
+ g2y y=da i) 2+ (dok—dzk+1)2) +

+ €3((43u+d'zu)2+(ﬁqk+d|k+1)27] . (S.2a1)
In the following we shall refer to F as “the energy". The coefficients o,
€1, €2 and €3 are positive.

The term

(4; k¥-0d; k2) (5. 2+2)
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in equation 5.2.1 represents a double-well potential for 4;x. It is the
only type of term in that equation which can have a negative value. The
double well potential 5.2.2 has its minima at 4;y=+/(a/2).

Each term of the form

(4ik—dmn) 2 (5.2.3)

describes an interaction between the X, atoms of tetrahedra i and m of
subcell K and n respectively. If acting alone it would make 4;y=dmn. In
equation 5.2.1 the terms with coefficients ey and £, are of this type. The
interactions represented by these terms are called e1- and ¢, interactions
respectively.

The terms of the form
(diutdmn) 2 (5.2.4)

describe another kind of interaction, tending to make 4;y=-duwn. They all
have coefficient €3 and are called €3 interactions.

In figure 5.2.2 all interactions in the model are represented graphically.
Interactions of type 5.2.3 are shown as full lines, those of type 5.2.4 as
dashed lines.

The model shows the feature of frustration: the interactions have
counteracting tendencies. For instance, in figure 5.2.2 42, is coupled to
430 by €1- and €2 interactions via 440 and 4i5. The corresponding terms in
the energy are smallest if

420 = 440 = 410 = 430 . (5.2.95)

However, 420 is also coupled directly to 430 by a €3 interaction. This
interaction has the tendency to make

420 = —430 . (5.2.8)

The crystal structure, represented by the model, must find a compromise for
this conflict, assuming that o in equation 5.2.1 is large enough (and hence
the wells of the double well potential deep enough) to prevent vanishing of
all displacements 4.

Such a competition of interactions is typical for the models that show

incommensurate structures. An example is the model of Janssen an Tjon
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(1981, 1982, 1983).

The coefficient o in equation 5.2.1 can be associated with the temperature:
for a larger value of ¢ the wells of the potential are narrower and deeper.
This can be interpreted as a decrease of the smoothing effect of thermal
motion. Hence, a larger value of o corresponds to a lower temperature. For
low values of o the energy (5.2.1) has its minimum at 4;4=8 for each 1 and
K, while for large values of o the minimum will have nonzero displacements.
0f course, the other coefficients in the model (ey, €2 and £€3) may be

temperature dependent as well, but presumably much less than o.

5.3. Relation between model and crystal structure.

5.3.1. Introduction.

Four types of local atomic arrangements in distorted £-K2S0a type crystal
structures will be discussed in this section. The interatomic forces
involved will lead to the energy expression 5.2.1. Before discussing the
structural details, let us discuss the interatomic forces between two
individual atoms. The interaction between two negative X atoms can be
described by the usual potential energy expression

£

E(r) = 17
r £

c
_% (cy, c2 positive; n»1, e.q. n=12) , (5.3.1)

in which r is the distance between the centres of both atoms. The first
term is the Coulomb energy. The second one is an extra repulsive term,
which is dominant for small values of r. Here the exact value of n is not

relevant.
The first derivative of E with respect to r is negative, the second
derivative is positive.

For the interaction of a negative X atom and a positive A-atom we write:

= c "
E‘(r) = 2 . "% (c3, ca positive) . (5.3.2)
[ r
Often a Taylor series will be used, writing e.g. for E(r):
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FIGURE 5.3.1. A layer normal to c of X2, X3, X4 and A,
atoms. The X atoms are located at the corners
a. undistorted;

b. :fter rotation of the tetrahedra around an axis parallel
ofc,

of the triangles.
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B dz
E(r) = E(rg) + (E—) ar + (-E) /2 + ... (5.3.2
dr ro drz ro

with r =ro + 40 , (5.3.4)

where ro is a distance 1n an undistorted B8-K;504 type structure.

In chapter 4 it has been shown that the distortions of the structures with
respect to Pcmn symmetry are mainly rotations of the tetrahedra, which can
be characterized by displacements of the Xy- and X2 atoms parallel to

b. In this section this observation will be used as a starting point

for the discussion: it will be assumed that the B atoms are not displaced,
that the tetrahedra are regular and rigid and that the rotation of each
tetrahedron has just two components, the component around an axis parallel
to b being zero (this component is very small in the actual structures,

as discussed in section 4.4). We consider first a rotation around the line
B-Xi, corresponding to a displacement of the X; atom parallel to b (in
first approximation). The second component, also about ap axis Jying in the

a,c plane, will be considered later.

5.83.2, Layer of tetrahedra normzl to c.

The first one of the local atomic arrangements to be studied is the layer
of tetrahadra normal to c already discussed in section 4.4. Because

a and b are translation vectors, only two non-equivalent tetrahedra

exist in such a layer.

In figure 5.3.1a an undistorted layer is shown, whereas in figure 5.3.1b
the tetrahedra are rotated. The atoms shown all have about equal z
coordinates. Therefore the other rotation component (involving displacement
of the X; atoms) does not have much influence on the distances between the
atoms in the figure. The Az atoms are supposed to be fixed at the centra of
the hexagons. In order to make equations simpler, it is further assumed
that a=by3 (hexagonal lattice), that the z coordinates of all atoms in
figure 5.3.1 are equal and that the length of the tetrahedra edges is equal
to b/2, so that

do = go = Ko = Lo = Mo = b/2 . (5.3.9
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These simplifications do not affect the conclusions which will be made
later.

Only interactions between atoms which are connected by first neighbour

distances (types d, g, K, L and M) are considered here.

For small rotation anglez we find, developing orthogonal components of each

distance

up to 4;k2:

o sS4t 2 3 241kt Ad3u% 2
dize= —Ch SNk (b~ il P b
1 e T e R (5.3.4)
b 341z 2
gii=aes b“ )4 Bagpz (5.3.7)
b
K== S T (5.3.8)

From these equations and their analogues for d; etc one finds,

order of approximation:

in the same

> _b 4w | 43k 9 5 3
di = dg = T + on + ZE(A|u2+A3k‘) + égdikABM ¢ (5.3.9)
- _b 4k 43 2 3
dz = d; = 3 + Sonla —= it ZE(A|k2+A3k2) + spdtkdsk (5.3.18)
D B
gaE 5 & Ed|k‘ s (5.3.11)
=B
92 = 3+ tad (5.3.12)
b
Ki = La = M3 = 7 +yd3k (5.3.13)
b
Kz = L3 = Mg = 5 " 43k, (5.3.14)
b
K3 =Lz =My = 3 + Ak (5.3.15)
b
Ka = Ly = M2 = = 41k . (5.3.16)

Using 5.3.3 and the analogous equation for E’(r), and neglecting third and
higher order terms in 4yy and 43k, the energy contribution of the
interactions of these distances can be written as (leaving out the terms
not depending on 41k or 43x):

Fi = —o2(41u2+436%) + €1/ (h1yu=d3002 (5.3.12)
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-18 dE d2E’
==y - 3(—) -3.
with o2 55 b2 57 b2 (5.3.18)
i T I b 2E, (5.3.19)
BT Ha b2 T Carz b2 s

Now in the structures with space group Pcmn the distances of type K, L and
M are larger than the A-X contact distance whereas in the other structures
at least the average of the distances of each of these types is larger than
that contact distance (as can be seen in figure 4.4.2). Therefore it can be
assumed that the first term of 5.3.3 is dominant for small values of 41y
and 4zk. Hence

dzE’

) (5.3.20)
b2 s

<e .

The first derivative of E(r) (equation 5.3.1) is always negative, and its
second derivative always positive. From this it follows that o2 and 17 are
both positive.

So far it has been assumed that the rotation angles are small. For larger
rotation angles the contact distance will be approached by some of the
distances K, L or M. Then the repulsive second term in equation 5.3.2

becomes dominant, raising the energy. Therefore, in the model the terms

gadikd + dad3zkd (og positive) (5.3.21)
are included.
The energy of the layer then becomes

Fi/ = g4d1k® - g2diu? + gadzu® —o2d3u? + €17 (diu—d3x)? (5.3.22)
This energy has its minimum at

Ak = d3p = 1\/2;; (5.3.23)

The term with €1’ in equation 5.3.22 accounts for the observation in
section 4.4 that the X, displacements within a layer are very often almost

equal and in the same sense.

Combining the energy of all layers in a structure gives
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FIGURE 5.3.2. Chain of Xy atoms parallel to b. The two non-

equivalent Xy atoms are of tetrahedra 1 and 4 respectively (in

figure 5.2.1 the numbering of the tetrahedra is shown).

a. undistorted;

b. distorted: 4y; and 4ys are the two non-equivalent X
displacements in the chain.

FIGURE 5.3.3. A tetrahedron with
three surrounding X atoms, lying
in good approximation in one plane
(indicated in figure 5.2.1).

The forces between atoms connected
by the indicated distances result
in an effective interaction
between atoms Xy and X;.

FIGURE 5.3.4. The interaction
chain between two Xz atoms via
the Xy atoms of the same
tetrahedra. This chain can be
replaced by a single interaction
between the two X; atoms.

(gadind-azd;k2) + £17 ((Ayu—d31) 2+ (4ay=4a1) %) ], (5.3.24)
1

Il

Fi" =21
Kl
being the first part of the model energy expression, apart from the factor

T4 .

5.3.3. Interaction between layers involving Xy atoms.
a. Xy chains parallel to b.

In figure 5.3.2a an undistorted chain of Xy atoms parallel to b is

shown (in subcell K). The atoms in the figure all have approximately equal
z coordinates. In figure 5.2.2b a situation 1s shown in which tetrahedra 1
and 4 are rotated such that the X; atoms are displaced in the positive

b direction. Because b 1s a translation vector, only two non-

equivalent Xy atoms exist in the chain.

The distances ay; and az can be written as

b 202-b2/4
ay = ag - ;;—(Ay|k~4y4k) + 3353—;-—(Ay1u—dyau)2 y 5. 3725)
£Ldo o
b 2-bz/4
and a2z = a0 + s—(dyiu=dyai) * %B—(dwu-dyak)i : (5.3.28)
Ldo o

with 4y(x and 4yax being the displacements of the X; atoms of tetrahedra 1
and 4 respectively, and a, the length of the distances in the undistorted
zituation (figure 5.3.2a). Here and in all subsequent calculations we
neglect third and higher powers of 4yix, and we omit constant terms in the
energy.

The contribution to the energy of the interactions between the atoms
connected by distances a; and a2 can be obtained by substituting 5.3.25 and

5.3.24 1into 5.3.3. The sum of the results is

F2 = €2"(dyu—dyan)? (G327

ith c,¢ o 3027bE/4 dE | bi/4 d2E
i z ag* dr ao a0Z drZ ao’

(5.3.28)
The coefficient €2" is positive, as can be checked by substituting in
5.3.28 the first and second derivatives, which can be calculated from

5.3.1, and using

ap2-bz/4 < b2/4 . (5.3.29)

113



The energy F2 has a minimum (F2=8) for
dyiu = dyak . (5.3.30)

This corresponds to the observation (figure 4.4.4) that in most Xy chains
in distorted g-K2504 type structures the X; displacements within a Xy chain

parallel to b are almost equal.
b. Effective interaction between X; and X: of the same tetrahedron.

Via this interaction the interaction between the X; atoms in the chain
discussed above is transmitted to the X, atoms of the corresponding
tetrahedra. Then, effectively, there is an interaction between the two X2

atoms of the tetrahedra to which the X{ atoms in the chain belong.

Figure 5.3.3 shows schematically part of the surrounding atoms of a
tetrahedron. In real structures, the atoms shown in figure 5.3.3, except Xi
and X2, lie in one plane in good approximation (see the dashed line in
figure 5.2.1). Atoms X; and X2 are approximately mirror images of each
other with respect to this plane. Xi, X1a4 and Xi4’ are atoms of the same
chain parallel to b.

For simplicity, the following assumptions are made: the atoms Xija, Xi14° and
X12 are fixed at their positions in the high temperature phase; the
tetrahedron edges and the undistorted distances of type b and f have length
b/2 (b being the length of translation vector b); the atoms B, X3, Xa,

X1a, X147 and Xy2 lie in one plane.

In figure 5.3.3, two rotation components of the tetrahedron are indicated.
Rotation component g corresponds to equal but opposite displacements of
atoms Xy and X2, whereas component « corresponds to equal displacements of
these atoms in the same direction. Together, these rotations take also into
account the second non-zero component of the total rotation, mentioned in
subsection 5.3.1.

The distances by, bz, f1 and f2 as a furction of the X;- and X
displacements 4y and 4 (suppressing the indices giving the tetrahedron

number and subcell number) can be written as

b Vé+1 6/3-13 1
by == = = = 2 =y —4) 2
1 5 3 Cdy+4) Tn (dy+z + Sp<4y—2) S (5.3.3D
b Vé+i 6/3-13 1
Daf ==t o + S il e 2 sl —-4) 2
2 3 2 (4y+4) 26 (dy+)2 + 2b(Ay 4) ’ (5.3.32)
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b e+t 2/6-3 , )
-b : (5.3.33)
fi 5 + 2 (A)’+A) 1D (Ay+A) 3
b /&t 2/6-3 :
= - - — + - (dy+a2z . (5.3.34
Vel o e S e e

The contribution to the energy of the interactions between the atoms
connected by the distances of type b and f shown in figure 5.3.3 can be
obtained by substituting 5.3.231, 5.3.32, 5.3.33 and 5.3.34 into 5.3.3

respectively. The sum of the results is

Fo = eaCdyt)? - X(4yZ+42) (5.3.35)
—(J&+6) dE 2/6+7 diE
i £ mhvonol 8 Gl (5.3.36)
uichBea 8 drb/2 T T 4 drZ b/2 sl
-2 dE
=L : (5.3.37)
and X b(dr)b/2

Both £4 and X are positive because the first derivative of E is negative
and the second derivative is positive.

The first term of equation 5.3.35 gives the effective interaction between
the displacements of the Xi- and Xz atoms of the same tetrahedron.

c. Resulting effective interaction.

Between the X2 atoms of tetrahedrons 1 and 4 of subcell 8 there is a chain
of three interactions, as shown in figure 5.3.4. This chain can be replaced
by a single interaction between the two X atoms, as will be shown in the
following.

The relevant terms of the energy are:

Fc = £2"(dy10-4yao)? + £4((dy1o+d10)2+(dysotdac)2) ~

- X(4y102tdyaottdiottdact) . (5.3.38)

The term with €2" is taken from equation 5.3.27. The terms with €4 and X
are from 5.3.35.

Because the X; displacements 4y;x are not involved in other interactions,
they can be eleminated in the energy expression by substituting the values
of 4yjo and 4dyso for which the energy is minimal:

IFc
d4yio

= 2[(e2"+£a=X) dy1oteadio—t2"dysol = 8 (5.3.39)
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IF ¢
d4yao

= 2[Ce2"+€4-X) dyaoteadao—€2"dy10] = 0 . (5.3.40)

The solution of 5.3.3% and 5.3.48 (two linear equations, two unknowns: dyio

and 4yao) gives a minimum of Fe¢ 1f

IZF ¢

e L (5.3.41

I2F ¢

52;;:; (5.3.42)

SRt S e Fe 2. 54a
94y102 94yao? 94y 1094yao ) Sl

Now from 5.3.38

HEe . S 1w, -
04ya0?  9Ay1oZ  © £d (5.3.449)

92F ¢

————— = (2g2"+€4-X) (g4-%) L
Y409Y10 e J (5.3.45)

Since £2">8, conditions 5.3.41, 5.3.42 and 5.3.43 are fulfilled if
€4l =i AR 0N (5.3.44)

This condition is fulfilled for our simplified structure (figure 5.3.3, as
can be checked by substituting 5.3.1 into 5.3.34 and 5.3.37, and 5.3.34 and
5.3.37 into 5.3.44.

From equations 5.3.39 and 5.3.40 it follows that

€4(€2"+e4-X) d1o + £4€2"4dao

dyio = = e (5.3.47)
and  4yao = ““::;“:X)(:Zﬁ,(;i;:fu'“ - (5.3.48)
Substitution of 5.3.47 and 5.3.48 into 5.3.38 gives

Fc = €27CA10-440)% = X' (d102+4a02) (5.3.49
with e/ = ﬁﬁ? (5.3.58)
and X’ =X(i—i;x) z (5.3.51)

Because of 5.3.44 and because ¢2", t4 and X are positive, €27 and X’ are

also positive.
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’

Combining the energy contributions of all Xy chains parallel to b and

all intra-tetrahedron interactions one gets from 5.3.4%:
Fe’ =2 [ €2/ C(A1u—daw) 2+(dau—d3k+1)2) + ZE X'4iu2 1 (S 3552)
[

in which the summation over K iz over all subcells.

5.3.4. Interaction between layers not i1nvolving Xy atoms.

Figure 5.3.5 shows in a projection on the a,b plane the relevant

atoms in subcell K. Part a of this figure shows the undistorted situation,
whereas in part b the tetrahedra are rotated around an axis parallel to

c. The other rotation component, involving displacements of the X,

atoms, 15 not considered here, since that would make the calculation much

more complicated.

As 1n subsection 5.3.1 we assume that a=b/3 (hexagonal lattice) and that
the edges of the rigid and regular tetrahedra have length b/2. Further, 1t
is assumed that for each tetrahedron the three X atoms shown in figure
5.3.5 have equal z coordinates.

The distances ey, ez, e3 and es are

b 1 1
= = Sl + F il 3z 3,93
ey ea > z(dau d21) a5 day+day) : {5,3.9
BB o - i(d +d21) + : (d3ptdai) 2 (5.3.59)
2 3 = 5 - pldautdak apl A3tk s Sl

The undistorted distance eo has been put equal to b/2 in these equations.
The energy of the interactions of these distances can be obtained by

substituting the distances i1n 5.3.3 respectively and summing the rezults:

F3 = €37 (43utd20)2 (5.3.59)
1 dE 1 d2E
th €3/ = (=) (= - .3.58)
B o St

€3’ is positive. This can be seen by substituting the derivatives
calculated from equation 5.3.1.

For the other pair of tetrahedra in the subcell, a similar energy
expression can be derived.

The energy F3 is smallest if 43y=-d2x. There indeed 1s such a tendency in
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2/l

3/,

FIGURE 5.3.5. Projection of the Xz, X3 and Xq atoms of

tetrahedra 2 and 3 on the a,b plane.

a. undistorted;

b. after rotation of the tetrahedra around an axis parallel
to c. dz2¢ and 43y are positive if the displacements are
in the positive b direction.
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the actual structures, cf. figure 4.4.4.

The sum of the energies of all interactions of this type is given by
F3’ = E €37 ((A3utdon) 2+ dautdr )20 . (54307

The summation is over all subcells.

5.3.5. Assembly.

Summing the energy contributions derived in the previous three subsections
(F1", Fc’ and F3’ in equations 5.3.24, 5.3.52 and 5.3.57 respectively) and

averageing over the subcells gives

Yim 1 N 4
—— E [ E (gadiud-(o2+X’) 4;2) +
K= 2N+1 k=-N i=1

7he

+ o6 (CAyp—431) 2+ (J2u—daw) 2) + €2/ ((d1u—daw) 2+(d2k—d3k+122) +

+ €3/ ((d3y+d2k) 2+ (dautdik+122) 1 . (5.3.58)

Division by os gives the model energy given in section 5.2 (equation
5.2.1, with

o = (g2¥X’)/aa (5.3.59
€ = €17 /0a (5.3.60)
€2 = €27 /04 (5.3.41
€3 = €3°/0a . (5.2.462)

The interatomic interactions included in the discussion above to derive the
model are not the only nearest neighbour ones in the A2BXs compounds.
However, they are considered to be the most important ones. As will be
shown in section 5.5, the resulting model indeed can explain most of the

observations. Therefore, no extra interactions have been included.
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5.4. Model calculations.

Using energy expression 5.2.1, one can calculate for which X; displacements
4;k the model structure is stable for certain values of o, €1, €2 and €3.

These calculations and their results will be discussed in this section.

For reasons of convenience it is assumed that the modulation functions do

not contain second or higher harmonics:
Aig = Bi + Aicos2n((z;otK) B-0;) . (5.4.1)

[t should be noted that for 1-, 2-, or 3-fold superstructures only the
first harmonic is relevant anyhow. In 4-fold superstructures only the
second harmonic is excluded by our assumption.

A; and ¢; are the amplitude and the phase of the first harmonic of the
modulation function for the X; displacements of tetrahedra i (the numbering
of the tetrahedra is as shown in figure 5.2.1; in chapter 3 and 4 subscript
i in A; and ¢; has another meaning). B; is the average X displacement for
these tetrahedra. 4;x is the Xz displacement of tetrahedron i in subcell K.
Zio is the z coordinate of the X; atom of subcell 8. For i=1,2,3 and 4 this
coordinate is @, 8.3, @ and 8.5 respectively.

The term modulation function has a slightly different meaning in this
chapter: contrary to the definition in section 1.1, a modulation function
can have a non-zero average (B;) here. In this chapter the modulation
functions give the displacements with respect to Pcmn symmetry, rather than
with respect to the basic structure.

For an incommensurate structure and a 4-fold or 3-fold superstructure, the
Xz displacements are as given by 5.4.1 with %=irrational, %=1/4 and %=1/3
respectively. For a 2-fold or a I-fold superstructure, however, the
expression can be simplified because the modulation function is determined

by less than three points per modulation period, leading to

diu

Bi + Ajcosmk (5.4.2)
and 4;x = B; . (5.4.3)
Because no higher harmonics are allowed in the modulation functions and the

highest power of 4;k in equation 5.2.1 is 4, 5-fold and larger
superstructures are not stable in the model.
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The energy as a function of the parameters A;, w; and B; for a v-fold
superstructure can be found by substituting equation 5.4.1, 5.4.2 (for a 2-
fold superstructure) or 5.4.3 (1-fold superstructure) into 5.2.1, and by

replacing the summation

il —l—— g L ] (5.4.4
N—w 2N+1 K=-N

by HREL S O (5.4.5)
v k=8

For an incommensurate structure the energy as a function of Ai, @; , Bi and

% can be obtained by substituting 5.4.1 into S5.2.1, but a more convenient

expression can be found by substitution of
4iu = B + A;cos2n((z;0+K) T—@;+¥) (5.4.4)

instead of 5.4.1 into 5.2.1, and replacing the summation (5.4.4) by an

integral:

} ol e ] - (5.4.7)
] k=0
The extra term ¥ in the argument of the cocine in equation 5.4.4 is an
overall phase shift of the modulation wave. This does not change the
incommensurate crystal structure. The replacement of the summation by the
integral is allowed, because shifting an incommensurate modulation wave
over one modulation wavelength and integrating over all subsequent
situations in one unit cell has the same result as summing over alil unit

cells for one phase (¥=8) of the modulation wave.

For each set of values for o, €1, €2 and €3 we can determine which
structure is stable. This has been done for each structure (incommensurate,
4-fold, 3-fold, 2-fold and 1-fold superstructure) by calculating the values
of the parameters A;, @i, B; and % (for the incommensurate structure only)
for which the energy is minimal. If all A; and B; are found to be zero,
then the stable stucture is the normal (undistorted) structure.

The energy functions to be minimized have 4, 8 or 12 arguments for the 1-
fold, the 2-fold and the other structures respectively. For the
incommensurate structure this number is not 13 since a phase shift in this
case is irrelevant. In order to find the minimum, a steepest descent method
(Scheid, 1968) has been used.



The structures which are compared do not have an imposed symmetry. However,
it turns out that the parameters A;, @; and B; of the stable structures are
such that they always describe a structure of which the pointgroup has
order 4 (for the superstructures) or 8 (for the undistorted and
incommensurate structures). These are the largest point group orders which
are possible in each case.

Using the symmetry relations between the modulation functions, the number
of parameters in the energy expressions can be reduced. The final number of
parameters is 1, 2, 3, 4 and 3 respectively for 1-fold, 2-fold, 3-fold 4-
fold and incommensurate structures.

The full set of structures which are stable in the model are represented
schematically in table 5.4.1, together with the energy expressions. Apart
from the normal structure the stable structure types include one type of
incommensurate structure, four types of 4-fold superstructures, four types
of 3-fold superstructures, two types of 2-fold superstructures and two
types of 1-fold superstructures. The simplified energy expression for the
incommensurate structure type is derived in appendix B. For the other types
it can be found by substituting the Xz displacements mentioned in table
5.4.1 into equation 5.2.1 (after replacing the summation by the one given
in 5.4.59).

For the incommensurate structure type and the two 1-fold superstructure
types the values of the parameters for which the energy has its minimum can
be derived analytically without difficulties. In appendix B these
calculations are perfomed for the incommensurate structure. The result of
these calculations is that under condition

€1(g3-€2)

-1 { — 1 .4.8)
T < (5.4

and condition

55 v (5.4.9)
. +e2) Ve 2+
Wt W e reri e , we U gopocatn) ueitideaes (5.4.10)

2Veqe3

the incommensurate structure is stable, provided that its energy is smaller

than the minima for the superstructures. The energy then has its minimum

F = -2(g-a0)2/3 . (5.4.10
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£ c Gi are supercell size,
TABLE S5.4.1. The stable structures in the model. Given are :upw_ ! z
space group, modulation wave vector length (%, standardized according to
subsection 4.2.3), Xz displacements (4i) and energy F).

incommensurate structure
Pcmn (80w (s51)

A1 = ACOSZN(KT-®)

dzy= ACos2m((B.5+K) 5-9+8.3)
Azp= ACOS2T(KT+E)

day= ACOS2T( (D .5+K) T+e+B.3)

F = 1.548 + 2Rl +egtes—o —£(COSATR +520052M(2043/2) —e3c082M(2¢-4/2) ]

2Rt iog et a-fold
superstructure
- - = - - = e P2¢cn
—420 ~41o -4t 6__—J = 1/8 or 34
1
: ]
A x= Arcos2ulkr-ey) A2u= AzC052T((B.5+K) 5-92)

F = Ay4(3+c038m0) /4 + A29(3-cosBrw,) /4 + 201420 £2c052T(w +02+5%/2) +

2
+ gicos2n(ei+@,-5/2)1 + E Aitlegtestes—o - gycosdne; ]
i=1

421 420 —420 421 42y —d20 420 421 | 4-fold
R e == superstructure
PlA¢/cl
p ™G i 2o ity 5= 1/4 or 3/4
410 —d411 41y —d1o “—dio 41 =41
1/4
A1 k= Arcos2n(ky-evy) Azk= A20052m((@,5+K) B-w2)

F = A14(3+c0sB@y) /4 + A28(3-cosB@z) /4 + 2A1Aze cos2iles+@2+5%/2) +

7
+ E Aj2leq+eotez—o + €2c052M(20;-% + g3cosdne;]
i=1

123



Table 5.4.1. continued.

0 =i § 2 3-261’:1 SRR G Jﬁ!o —da0 ~—4dia 445 2-fold superstructure
T g Pe2in T S P2icn , T = 1/2
ol § ) B Bestls 410= Ay y dao= Ag
L d:-: diz2 d1z e 41y= B + Acos2n(k/3-v) =i PEE | F= 2(A19+Aa%) + 2(A12+A32) (£o+e3-0) +
i i | 1 + dAg2ey — 4A1Ag(E2tE3)
1 1 1 1
i J i \I 1/4
F = 1.54% + 4B3 + 12A4%2B%Z + 4A*Bcosémw + 4B2(2:3-o) +
+ ZAt[-zycosdne + eooos2N( 20+ 1/4) + £30oSEM(20+1/3) + gitegtez—o)
-420 {Ma i 2-fold superstructure
- - - o ) e
—_ P12¢/c1 5= 1/2
412 —die dyr Ay 3-fold superstructure A10= Ay y d20= Az
- - -0 - - - 0= X i 9
P1121/n LT F = 2(A13+A29) + 2(A12+A22) (eq=a) +
% BR=N273 + d4Az2(ezte3) — dA1A2E
o - S
4TS Ao A1 2 =41 41u= B + Acos2m(2K/3-w) 1/4
1 1/4

F = 1.5A4% + 4B4 + 124%2BZ + 443Broséme + 4BZ(2es-o) + = b 1-fold superstructure

+ 2At[-g1cosdme + £20082M(2¢+1/3) + £30082M(20+1/8) + gytegtez—ol Pc2in 5= 1

410= B
F =484 + 4Bz(2g3-0)

410 =414 * Aqq B . 3-fold superstructure
P2y/ct1
%= 1/3
o s S P B
—dio Afiogs=dio 41x= B + Acos2w(k/3-¢)

—d10 1-fold superstructure

J 4140 o
e P112y/n , % =0
—
F = 1.5A% + 4B9 + 12A2BZ + 4ABroséme + 4BZ(2e(+2¢g-0) + 410= B

+ 2AZ0e1cosdme + £2c082M(20-1/6) + £3c0s2M(20+2/3) + €qtegtez—al

—|-t—o—I- 0|~ Cir
+ 2A2[£1Co8dmM@ + €20052M(20+42/3) + £3C082M(20-1/4) + ei+eate3—ol 410 —4yo F = 4B4 + 4B2(2:2-a)
! ! 1/4
i i
i i
R B
Sdlol mdil v a2t SdAvo. | mdygl =Aqy 3-fold superstructure
3 3 P24242 1
= = et undistorted structure
i e s I = 9 174
410 A1 7 Ay Mo M2’ Az . 41k= B + Acos2n(2K/3-¢) -—6t— Pemn
Ep e —_ F=29
\l J 174
o
F = 1.5A% + 4B4 + 12A2B2 + 4A3Bcoséme + 4B2(2e(+2e3-0) + Zh T ==
i
i
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¥ = 1 arccos(ilifi:le) 5 (5.4.12)
L dez¢e3

1 V1bea2g32-£g12(g3-€2)2
= — tan(
@ pre arctan D oo (5.4.13)
A =VY2(g-00)/3 . (5.4.14)

If conditions 5.4.8 and 5.4.% are not fulfilled, then the incommensurate

structure is not stable.

The minimum of the energy for the 1-fold superstructure with space group
Pc2yn (see table 5.4.1) is at

B =Vo/2-¢3 (5.4.15)
under condition

238 g CRa T (5.4.16)
The value of the energy at this minimum is

F = -(2e3-02 , (5.4.17)
If condition 5.4.16 is not fulfilled, this 1-fold superstructure is not

stable.

The energy of the i~fold superstructure with space group P112¢/n has its
minimum at

B =Vo/2-¢, (5.4.18)
if condition

282 =g ¢ 0 (5.4.19
is fulfilled. In this minimum the energy is

E = =(2e2-0)2 . (5.4.20)

Figure 5.4.1 shows the €2,£3,0 phase diagram for the model with gy=1. Part
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a of this figure is a projection of lines at which regions of three phases
meet each other. Part b and c are cross-sections through the €2,¢3,0 phase

diagram. These cross-sections are the planes

g2 + €3 = 0.8 (5.4.21

and g2 + g3 = 1.2 (5.4.22)

respectively.

In figure 5.4.1a the regions with €2,¢3 values for which the incommensurate
structure cannot be stable are hatched. The region in which the
incommensurate structure can be stable (for suitable values of o) is
determined by condition 5.4.8. (with e4=1).

Depending on €2 and ¢z the modulation wave vector can have each value
between @ and c*, as indicated in figure 5.4.1b and 5.4.1c.

The boundary between the normal phase and the incommensurate one is
determined by condition 5.4.9. The boundary between the 1-fold Pc2yn phase
and the normal phase is determined by condition 5.4.16, and the boundary
between the 1-fold P112y/n phase and the normal one is given by condition
5.4.19.

The boundary between the phases of both 2-fold superstructure types is
given by

€2 + €3 = €1 . (5.4.23)

This can be checked by comparing the energy expressions of these two
structures (given in table 5.4.1). These equations are equal if condition
5.4.23 is fulfilled. Hence the epergy of the minimum for such a set of
€2,€3,61 will be equal for both structure types. If condition 5.4.23 is not
fulfilled, then the expressions are different, and will result in different
minima.

The numerical calculations strongly suggest that each boundary between two
3-fold or between two 4-fold superstructure phases is also given by 5.4.23
exactly.

In figure 5.4.1 it can be seen that the €2,t£3,0 phase diagram has mirror
symmetry. The mirror plane e3=e2 exists if one only considers the
boundaries between the different phases, the supercell size and the energy
of the stable structures., If an arbitrary point P in the phase diagram

corresponds to a structure with modulation wave vector component %
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FIGURE 5.4.1. The €2,€3,0 phase diagram of the model (e1=1).

a. projection on the £2,£3 plane of lines at which three phases
meet.
full lines: between two superstructure phases and the
incommensurate phase.
dashed lines: between a superstructure phase, the
incommensurate phase and the normal phase.
dotted lines: locations of the cross-sections shown in parts
b and ¢ of this figure.
In the hatched €2,¢3 regions the incommensurate structure
cannot be stable.

b. cross-section €3=0.8-¢2. % gives the modulation wave vector
length (g=%»c*) in the incommensurate regions;

c. cross-section £3=1.2-€2.
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Table 5.5.2. Comparison of observed phase sequences (in table 4.2.5
phase transition temperatures and references are given) with phase
sequences possible in the model (m).

RIS SO o S U
3 n - N N % n < B — - N —_ - L\)
che e [0 S RS - So DTS S
S =3 L5208
B o~ AR N AN A A A AA A A A A A~
5w _a N = = D D o= N = N e
NG
39 $33seSSVvgze s
A BCDETFG GHTIUJKLMNGOGPA QR
K22nCla
Rb2ZnCla AR |
Rb2ZnBrg M~—M; —m
K25e0a4
Cs2HgBra A—pH )
Cs2CdBra m
CssFels A—B =]
Cs2Mnla ‘L,‘I 2 K
Sr28i0a A K
Ba,TiOs [ K
2
Ca2$i0s a [k
A R
(NHg) 2504 iy n
M
(NHa) 2BeFq a—p =i
(NH4) 22nCl4 e PO
(NHa) 2CoCla o 2 1
(NHa) 2ZnBra S e Kl |
(TMA) 2FeCla A—B—C E 0—p
(TMA) 2MnC1 4 A—B =il
CTMA) 2CuCla a=p J—K
? ?
(TMA) 2NiCla =y =N P?
(TMA) 2ZnCla A—B D U=F=1
(TMA) 2CoCl 4 aA—B D—E 0—P—Q
(TMA) 22nBra a P
(TMA) 2CoBra m

% The symmetry of the incommensurate structures is Pcmn(008% (ss7),
except in one case.

# The symmetry of the observed structures is P112¢/n(88% (111/7).

? For this phases only the supercell size has been reported.

% This structure differs from the model structure P2icn(1/2).
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higher o corresponds to a lower temperature. Therefore, compounds are
expected to follow trajectories approximately parallel to the o axis in the
model phase diagram if their temperature is varied.

In table 5.5.2, for each compound mentioned in table 4.2.5 the observed
phase sequence is given together with the most appropriate possible phase

sequence in the model.

I+ the phases with structure types which cannot be stable in the model are
disregarded, then the observed phase sequences for 19 of the 24 compounds
can be explained by the model. In the remaining five compounds, phase
transitions occur between structure types which border on each other at a
line in the model phase diagram. Such a transition (indicated by a dashed
line in table 5.5.2) corresponds to a trajectory in the model phase diagram
(figure 5.4.1) going through this line of contact. It would be a
coincidence if a compound would follow such a trajectory.

The unexplained phase transitions (indicated by dashed lines in table
5.5.2) are of two types. The first type is the phase transition between
phases with structure types P2icn(1/4) and Pc2in(1/3) respectively. This
transition type occurs in (NHa) 2CoCla, (NHa4)2ZnBra and (NHa) 2ZnClg. It
might be that in these compounds an intermediate phase exists which has
been overlooked, but no other indications exist for this assumption.

The second type is between the high temperature phase with space group Pcmn
and a 4-fold or 3-fold superstructure. Such a phase transition is observed
in Cs2Mnla, Ca25i04 and in (NHa4) 2CoClg. It might very well be that in these
compounds an incommensurate phase has been overiooked. The observed phase
sequences would match the model if an incommensurate phase would be added
between the normal phase and the superstructure phase. In other words: the
model predicts an incommensurate phase in these compounds. This conclusion
is supported by the fact that in other models with competing interactions
(e.g. Janssen and Tjon, 1981, 1982, 1983) the normal high temperature
structure and a 4-fold or 3-fold superstructure are also separated by an
incommensurate phase.

The model phase diagram suggests the existence of other phases and phase
transitions, which have not been observed until now. Ba2TiO4 might show
phase transitions from the 3-fold superstructure to an incommensurate
structure and from the incommensurate structure to a normal structure on
heating, Jjust like e.g. K2ZnCla.

For Baz5nSa and Sr2Cr0s only the room temperature structure has been
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Figure 5.5.1. Examples of X2 displacements (4) in
the model for:

a. £1=1, £,=0.25, €3=0.95, 0=0.56;

b. €1=1, £2=0.14, €3=0.2, ¢=0.35;

c. £1=1, €2=0.14, €3=0.2, 0=0.3;

d. £€1=1, €2=0.6, £3=0.6, 0=08.64;

e-h. actual displacements, from figure 4.4.4.

reported (table 4.2.4). According to the model these compounds might show
phase transitions from the room temperature phase to an incommensurate

phase and from this phase to a normal phase.

5.5.3. X2 displacements.

The X2 displacements calculated in the model for several values of o, €2
and €3 (g4=1) will be compared with the observed X2 displacements, as
discussed in section 4.4.

For incommensurate structures with space group Pcmn(8@% (ss7) the values of
%, @ and A of the model can be compared with those of actual crystal
structures. For a certain value of % and ¢, A can always be adapted in the
model to match the observed amplitude of the modulation function of the X2
atoms in a real crystal structure. This can be achieved in two manners. The
first one is multiplying the coefficients o, €y, €2 and €3 by a suitable
factor. The other manner is changing ¢ only, as can be seen in equation
5.4.14.

For a certain value of ¥, @ can have each value between @ and %/4 for
suitable choices of €1, €2 and €3. This can be derived from equations
5.4.12 and 5.4.13 in the following way. From equation 5.4.12 it follows
that

e el (5.5.1
€1+4€3coSMy

Substitution of this in 5.4.13 gives

1 2sinms
S (———) . 2D
b an anciss €1/€3+2cosny ok

From this equation it follows that for each % between @ and 8.5, @ can get
each value between @ and %/4 by choosing a suitable ratio €y/€3.

For the room temperature structure of Rb2ZnBra and the structure of K25e0a
at 113K the observed values of ¢ are 0.018 and -8.0807 respectively, while
%<8.3 for both structures. For Rb2ZnBra, the value of ¢ can be realized in
the model for suitable choices of €1, €2 and €3. But for K2S8e04 this is not
possible. The model value of @ can only be quite close to the negative
value of this compound by choosing the ratio €y/g3 large. Then @ gets a

positive value close to zero.

The X2 displacements of observed 1-fold superstructures with symmetry Pc2in
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or P112y/n can always be found in the model by choosing the parameters €2,
€3 and o properly, as can be seen in equations 5.4.15 and 5.4.18

respectively.

Because for 2-fold, 3-fold and 4-fold superstructures no analytical
expressions are available for the amplitudes and phases of the modulation
functions, numerical results will be compared with the observations. In
figure 5.5.1 for some sets of values of €2, €3 and o (e3=1), the X2
displacements of the stable structure in the model are shown. These sets of
values are chaosen such that the X displacements resemble the observed anes
(figure 4.4.4). 0f course, the values of the model X2 displacements can be
scaled to the observed ones by multiplication of the coefficients €y, €2,
€3 and o by a suitable factor.

As can be seen by comparing figure 5.5.1a-d with figure 4.4.4 (part of
which has been reproduced in figure 5.5.1e-f), the resemblence is quite
good.

5.6. Discussion.

From the results of the previous sections of this chapter, it can be

concluded that

1. the model can explain most of the observations. No other model is
Known which explains as much as this one;

2. the interactions in the model are clearly present in the real crystal
structures. Except for the complicated lattice dynamical model of
Haque and Hardy (1988, no model has such realistic interactions as
this one;

w

the model is a very simple one: the subcell containes only 4 atoms,
which can displace only parallel to b; only three types of
interactions exist. The number of atoms cannot be smaller, because in
that case the model crystal could not adopt all important space
groups. Also the number of interactions cannot be smaller. If one of
the interactions would be taken out of the model, the frustration
would be gonej

With regard to point 1 the following can be remarked. As mentioned in

section 5.5, only two deficiencies of the model are not readily explained:
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first the incapability to explain the existence of the i-fold P2i/cil
structure, (which appears in part of the TMA compounds) and the 2-fold
superstructure of (NHa)2BeFa; second, the incapability to explain the phase
transition between the structure types Pc2:n(1/3) and P24cn(1/4), occurring
in part of the NHs compounds.

In connection with these deficiencies, two comments can be made. In the
first place the A ions are not single atoms in these compounds, but NHs or
N(CH3)a groups. These ions cannot always be regarded as spheres, and will
have preferential contact regions for the X atoms because of the charge
distribution on the positive ions and because of the shape of the groups.
The interatomic interactions will be different in both cases. This could be
the cause of both types of deficiencies.

Secondly the approximation, made in section 5.3, viz. that the X-X
distances in the tetrahedra as well as the shortest X-X distances between
tetrahedra (e.g. distance type g) are equal to b/2, is not valid for

(NHa) 2BeFa and the TMA-compounds. In table $5.é.1 it can be seen that the
inter-tetrahedra X-X distances are much larger than the intra-tetahedron
ones for these compounds and for (NHa) 2S04, while the two types of X-X
distances are about equal for the other compounds. This shows that the
former structures differ from the latter ones in this aspect. The
interatomic 1nteractions in the first group of compounds can be expected to
differ from those in the other group. This could be the reason why the

existence of the two structure types cannot be explained by the model.

Apart from the slight deficiencies, the model explains all observations for
the structures discussed in this thesis. On the basis of the results of the
model calculations, it can be concluded that the modulation in distorted g-
K2504 type crystal structures is probably caused by the competing
interactions discussed in section 5.3. As is shown in that section, all the
interactions of the model are present in real crystal structures, whereas
the correlations between X2 displacements of neighbouring tetrahedra, as
discussed in section 4.4 and in section 5.3, indicate that these

interactions are important ones.

The model explains many things with regard to the distorted g-K2S0s type

crystal structures:

- the existence of incommensurate structures with modulation wave
vectors from @ to c*;

- the normal-to-incommensurate phase transition;

- the existence of many different superstructure types: four different
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Table 5.4.1. Comparison of X-X distances intra BXa with X-X distance g
(between tetrahedra).

av is the average X-X distance intra BXs. g is the average of the
distances of type g (as given in figure 4.4.2).

compound temp. av 9 g/av references
[K] [al [a]

KzZnCla rate 3.48 3.82 1.84 Mikhail and Peters (1979)
Rb2ZnCla 190 3.69 3.72 1.01 Quilichini and Pannetier (1983)
Rb2ZnBra Eat. 2.88 3.84 8.99 this thesis

Cs2CdBra 195 4.17 3.86 0.93 Altermatt et al. (1984
CszHgBrg 208 4.1% 3.8l 8.21 Altermatt et al. (1984

CsaFelq 160 4,28 4.87 9.95 Zandbergen (1981)

K25e0a 113 2.69 3.34 1.24 Yamada and IKeda (198)

Sr25i0q Dt 2,67 3.05 1.14  Catti et al. (1983)

BazTiOq F.t. 2.92 8.24 1.11  Wu and Brown (1973)

Caz5i04 Gath 2.66 2,99 1.12  Jost et al. (1977

(NHa) 2504 180 2.41 B8.65 1.51 Schlemper and Hamilton (1964)
(NHa) 2BeFg4 153 2.93 3.39 1.34 Misyul et al. (1988

(NHa) 2Z2nClg r.t. 3.48 3.72 1.01 Van Koningsveld (1983)

(TMA) 2FeClg r.t. 3.74 5.25 1.460 Lauher and Ibers (1975

(TMA) 2NiClgq r.t. 3.65 5.28 1.45 Wiesner et al. (1947)

(TMA) 2Z2nClg r.t. 3.67 5.32 1.45 Wiesner et al. (1947)

(TMA) 2CaClg r.t. 3.67 15.28 1.44 MWiesner et al. (1967)

(TMA) 2ZnBrq r.t. 3.91 5.31 1.86 Trouelan et al. (1984

4-fold-, four different 3-fold-, two different 2-fold- and two
different 1-fold superstructure types.

I the shape of the double well potential would have been chosen in
another way (e.g. 48-04% instead of 4%~04%) and/or higher harmonics
were allowed in the modulation functions, then also larger super-
structures would probably exist in the model.

- lock-in phase transitions to each of these superstructures;

phase transitions between different superstructure types;

- phase transitions from the normal structure to each of the 1-fold
superstructures directly, without an intermediate incommensurate
phase;

re-entering incommensurate phases. E.g. phase sequence normal -

incommensurate (w¢1/4) - P2ycn(1/4) - incommensurate (%>1/4>. This

phase sequence has not been observed, but two incommensurate phases
with a 7-fold or a 5-fold superstructure phase in between have been

observed in (TMA) 2FeCla and (TMA) 2CoClg respectively (table 4.2.5).

The two 1-fold superstructure types mentioned in the sixth point above are

two extremes. As can be seen in section 5.4, Pc2in(1) is stable for e2Me3

and P112;/n(®) is stable for £2{e3. The Xz displacements of half of the

tetrahedra in the latter structure type are opposite to those of the

former. In Pc2¢n(1) the interactions with €y and €2 clearly have won the

competition, while in the other structure type the interactions with €¢ and
€3 have won. The fact that the two different structures can both appear as

a low temperature phase of the same high temperature stucture type, is thus

explained by the presence of competing interactions.

Turning this argument around leads us to the following conjecture: if for a

certain structure type two or more quite different low temperature

structures have been observed (e.g. in different compounds) with the same
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kind of local distortions (e.g. rotation of a group of atoms around a
certain axis), then competing interactions are present in structures of
that type. This set of competing interactions can also cause incommensurate
structures (e.g. in another compound) to occur for a suitable balance of

the interactions.
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Appendix A

CENTERING TRANSLATIONS IN SUPERSTRUCTURES.

In this appendix, which belongs to section 2.2, the largest common divisor
of integers iy, i2, ... ip will be denoted as LCD(i{,iz, ... in) and the
smallest common multiple of these integers as 5CM(iy,i2, ... in). The
symbols ui, Vi, €xi, vV, W and g denote integers as defined in section 2.2.
In this appendix the index a (to denote the atom to which a quantity
belongs) is omitted.

The following theorems, which are used in section 2.2, will be proved in
this appendix. They refer to the superstructure described above equation

2.2.15.

Theorem 1: The dot-product of a subcell translation vector ex and

the modulation wave vector g can be written as

ex.g = r/w (mod 1} (r=@,1,2, ... w-1}) , A. D

with w = SCM(vy,ve,v3) , (A.2)

and every value of r in A.1 occurs exactly g times, with

g =vw (A.3)

if K runs from 1 to v (then ey runs through all subcell translations in
the supercell).

Theorem 2: Among the reflections given by equation 2.2.7, those which
cannot be written as in 2.2.14, are systematically absent.
Before the proof of the above mentioned theorems will be started, the

following theorem will be proved.

Theorem 3: For each set of integers Iy, I2, ... In, N (n»2) there is a

set of integers iy, i2, ... in fulfilling
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iglytizlat oo +iplp =N (A.4)
if LCDCIy,I2y wee Ip) =1 . (A.5)
Proof of theorem 3:
For n=2 theorem 3 is an elementary theorem of the theory of numbers (see
e.g. Deas, 194@). For n>2 theorem 3 can be derived from theorem 3 for n-1:
If we put

J = LODCIg4I2y oun In-4) 4 (A.8)

then, according to A.5

LCD(J4In) = LCDCLCD(Iq 412, +vu In-12,In) =

= LCDC(Iq,12, ees In) =1 . (A.7)

According to theorem 3 for n=2, there is always a set of integers j,in

fulfilling

JJ + ila =N . (A.8)

According to theorem 3 for n-1, there is always a set of integers ij,iz,iz,
wee in-1 fulfilling

4 I =1 . In-
J= 11—5l * 123E t a0 ¥ in-3 f= (A.9)
because (see A.é)
I 12 In-1
—_— = e — ) = -
LCD( =T s 3 1 (A.10)

Substituting A.9 into A.8 gives A.4.
Hence there is always a set of integers iy,iz2, ... in fulfilling A.4 under
condition A.S.

Proof of theorem 1:

According to equations 2.2.9 and 2.2.12 the dot-product in A.1 can be
written as
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ek.q = [igleu;g;] . [igl_é% g;*} = igl E“;?i = p/w (A1
with w given by A.2 and p integer.
Because always

p/w = r/w (mod 1) (r=0,1,2, ... w-1) , (A.12)

ekx.g can be written as in A.1.
1f Kk runs from 1 to v, then the set ewi,ex2,exs runs through all possible

combinations with (see 2.2.9)

8 L exi Lvi-l (i=1,2,3 . (A 13)

From A.1 it follows that

weg.g + ws = r (s integer) , (A.14)

or, written out:

ujpvav uzviv uswviVz
eyt lid 0P eu? 26 ek3 AT e (A.15)
9 9 9

with g given by A.3.
If
uivavs Uuzvivs usviva

LCD( s ) v = A.16)
9 9 9

it can be concluded, using theorem 3 with n=4, that for each r there is a
set of integers ewi,ex2,ex3,s which fulfils A.15. If the set xy,x2,x3,s’ is
a solution of A.15, then suitable integers p; (i=1,2,3) can be found such
that

ex1 = X1tp1vy
ez = X2tp2va (A.17)
€x3 = X3+p3vs

s = s’-pjui—pa2uz-p3us (p;: arbitrary integers) ,

satisfies both A.15 and A.13, as can be checked by substitution of A.17 in
A.15.
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From this it follows that for each r there is at least one vector ex The same is true for uz and us. Hence in A.22 the factors uy, uz and uz can
that fulfils A.1. be omitted giving

All vectors ey for which r=8 are translation vectors (including @)

in the superstructure because, if we call these vectors ec, g = LCD(vava,vivs,vive,vivavs) = LOD(vavs,vivs,vive) . (A.25)

ec.g =8 (mod 1) (A.18) Using only elementary rules for LCD and SCM, one gets

and hence for two position vectors xy and x2 with

g = LCD(LCD(wv2v3,vivs) ,wivz) = LCDC(v3LCD(vz,vy) ,vive) =
X2 = X1+ ec (A.19) = LED(vz,v1) .LCD(v3 ,wiva/LED(vy ,v)) =
. - v2/LED(C )
the arguments of the modulation functions are equal: = LCD(v2,vy) SCH\()\B/\;‘,:TVZ/LC\[/)‘(:/\:z,Vz.)) =
: ViVaVs Vivavs
x2.9 = (x1%ec).q = x1.9 + Q= X1.9 (A.20) = = “ (A.28)
Kol = AR ol S e del e Dol = el SEM(v3,SCH(vr,v2))  SCM(vy,vz,vs)
Suppose there are g’ different vectors ec. Then each value of r occurs According to A.2 and A.3 this is true, and hence A.1é is proved.
g’ times, because if it occurs for ey, then
The proof of theorem 2:
ek = e1 + ec (A.21) This proof consists of three parts. First it will be proved that the
centering translations do not cause one of the reflections given by 2.2.14
gives the same value of r in A.1. Because the number of basic structure to be systematically absent. Next it will be proved that the number of
translation vectors ey in the supercell is v, and w different values of satellite reflections given by 2.2.14 per main reflection is w-1. At the
r exist, we have g’=w/v=g: each value of r occurs exactly g times. This end it will be proved that the number of systematically present reflections
proves theorem i except for one point: A.1é must be proved. is exactly the number of main reflections plus the number of satellite
reflections given by 2.2.14. The rest of the reflections must be
A.16 is equivalent to systematically absent then.
LCDCU1V2V3,UzViVa,u3vive,Vivavs) = g . (A.22) The first part:

Equation 2.2.15 can be written as

According to the definition of u; and v; (see the text under equation

1 v
2.2.12): G(H) = exp(2WiH.xo) — Pziexp(ﬁ(i(ﬂ.[gwg((zrﬁgu).g)]') ,  (A.2D)
v k=
LCDCu;,vi) = 1 (i=1,2,3 . (A.23) with H given by 2.2.14.
Each of the subcell translation vectors ex (K=1,2, ... V) can be
From this it follows that written as
LCDCuyvavs ,Vivevs) = vavs . (A.249) ex = ec + er (c=1,2, ... g and r=1,2, ... W) , (A.28)
Hence the divisors of u; are not relevant in A.24. Because the left hand where ec is a centering translation and er is a basic structure
side of A.22 is a divisor of LCD(uivavs,vivevs), uy can be left out of it. translation vector with
144
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er.g = r/w (mod 1) . (A.29)
Using A.28, the summation in A.27 can be written as

w 9

r‘El(exp(Zﬂiﬂ.[_e_,+g((5°+g,).g)]).‘:E‘exp(Zﬂiﬂ.g()) (A.30)
because (see A.18)

d{(xotertec) .@ = dl(xoter) Q) . (A.31)

The second summation in A.30@ gives the influence of the centering
translations on the structure factor, and can be written as (using 2.2.14)

9
21(exp(2ﬂig.g¢).exp(zwimg.gc)} 4 (A.32)
c=

Because h.ec and mg.ec are integer (see 1.1.6 , 2.2.% and
A.18), the result of this summation is g. Hence the centering translations

do not cause systematic absences among the reflections given by 2.2.14.

The second part:

Because g is commensurate with the basic structure, there are values of

m with m#@ for which equation 2.2.1 represents main reflections. It can be
verified, using 2.2.14, that each m given by m=nv (n integer) is such a

value. In a superstructure with g>1, more such values for m exist. The

number of satellite reflections of a main reflection is equal to mi~1 if my

is the smallest value of m for which 2.2.14 represents a main reflection.

my represents a main reflection if the components of mig are multiples

of ai*, ax* and as*.

mig can be written as (using 2.2.12)

uiq uz us
mig=my ( — a3* + — azk + — azk ) , (A.33)
Vi V2 vz

In order to get integer multiples of the reciprocal basic structure vectors
in A.33, my must have divisors vy, v2 and vi. Because of A.23 the smallest

value of m for which 2.2.14 represents a main reflection is

my = SCM(vy,v2,v3) = w . (A.34)

Hence the number of satellite reflections per main reflection is w-1.
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The third part:
The volume Vs of the supercell is

Vs = W (A.35)

if UV is the volume of the subcell.

The volume Vs’ of the primitive unit cell in the superstructure is
Vs’ = VUg/g = Uu/g=w , (A.36)

since g centering translations (including @) exist in the v—fold
supercell.

The volume Vs#’ of the cell spanned by the reciprocals of the primitive
unit cell vectors is

Usk? = 1/Vs” = 1/wV = Uk/y (A.37)

if V¥ is the volume of the cell spanned by the reciprocals of the basic
structure unit cell vectors.

Hence w reflections exist per main reflection. These must be the main
reflection itself plus the w-1 satellites given by 2.2.14. The reflections
not given by 2.2.14 are systematically absent because of the g centering
translations. Theorem 2 has now been proved.
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Appendix B

INCOMMENSURATE STRUCTURE WITH SYMMETRY Pcmn(88% (ss7) IN THE MODEL.

This appendix belongs to section 5.4.

B.1. Enerqy expression.

For an incommensurate structure with symmetry Pcmn(@8%) (ss1), the Xz-
displacements 4;k in the model can be written as

41k = A cos2n(Kd—wt¥d) , CHL )
A2k = A cos2n((B.5+K) 3—¢+08.5+¥) (operation c(s) on 4yx), (B.1.2)
43k = A cos2n(krte+d) (operation n(1) on 4ix), (B.1.3)

dax = A cos2m((0.5+K) 3+¢+0.5+¥) (operation 24(7) on 41k), (B.1.4)

in which A is the amplitude of the modulation functions, ¥ is the overal
phase of the modulation wave, @ is the phase of the first modulation
function, % is the modulation wavevector component (g=%c*) and K is

the subcell number. In 4;x i is the number of the tetrahedron in the
subcell, as indicated in figure 5.2.1.

For an incommensurate structure the summation over all subcells in equation

5.2.1 can be replaced by an integration over ¥ between @ and 1 for one

subcell:
Tim iy 1
— RSN o] > é d¥l ... ] . (B. 1.5)
N—» 2N+1 K=-N k=8

This is possible because in a single subcell all possible subcell contents
will be generated during the shifting of the modulation wave over one
wavelength. The energy expression for the incommensurate structure is then:

1 4
F = é d¥ [AEI(A;°°-GA;02) + €1((410-430) 2+ (420-430)2) +
i=

+ €2((410-4a0) 2+(420-431)2) + £3((d30+420)2+(daotd11)2)] . (B.1.6)
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In the following the different Kinds of terms in the integrand will be

worked out successively.
After substitution of B.1.1 a term with « in equation B.1.6 becomes
1
é gdio? d¥ = oA2/2 (i=1,2,3,4) . (B.1.2

The second type of term to be worked out is the fourth order term. Using
equation B.1.1 one gets by simple goniometry

1
é 4iod d¥ = 3A8/8  (i=1,2,3,4) . (B.1.8)

In order to treat the other terms of equation B.1.4 together as one type of
term, equations B.1.1 -~ B.1.4 are written as

dix = Acos(x; kW) (i=1,2,3,4) . (B.1.9
The third type of term can be written as

i

é (diytsdnn)2 d¥ (B.1.18)
in which s is +1 if it concerns a term with coefficient €3 and -1 if it
concerns a term with coefficient €y or €2.

Substituting B.1.9 into B.1.18 gives

Az [cos2n(a; k+¥) +scos2n(axnm+¥®) 12 d¥ =

O

1
= [ Azlcos22n(x; k+¥) +25c0s2M(&; k+¥) COS2M(Kpu+¥) +c0s22M(qnun+¥ 1 d¥ =

©

i
= é AZ [cosdn{; k+¥) +1+25cos2M(«; k+ Xnm+2%) +
+25c082M( ;i k—%nm) +COSAM(Knm+¥) +11/2 d¥ =

= A2[ 1+5C082M(&Xi k—%nn) ] - (B.1.11)
Using this result one can write out the terms in B.1.6 with coefficient €1:

1
é €10(410-430)2-(d20-440)2]1 =

= £1AZ[2-co821( X1 0~ %30) ~COS(X20~®a0) 1 . (B.1.12)
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Substitution of the proper values of «ix reduces the right hand side to

£1AZ[2-cos(-4ne) -cas(-4me) 1 = 2g1AZ2(1-cosdne) . (B.1.13)

Analogously the terms in B.1.4 with coefficients €2 and €3 can be written

respectively as

€20(d10-4a0)24(d20-431)2]1 = 222AZ[ 1+cos2n(2+5/2) 1 (B.1.14

and

O ®—

€30(430+420) 24 (da0t411)2] = 2e3A201-cos2n(20-5/2)1 . (B.1.15)

Substitution of B.1.7, B.1.8, B.1.13, B.1.14 and B.1.15 into B.1.6 gives

F

3A4/2 - 20A% + 2g1A2(1-cosdme) +

+ 2£2A2[ 1+cos2n(2¢+%5/2) ] + 2e3AZ[1-cos2n(2¢-5/2)] =

3A4/2 + 2A%2[gy + €2 + €3 -0 — £1COSAT® + £2C052NM(20+%¥/2) —

- £3C082M(2¢-%/2)1 . (B.1.14)

This is the energy expresssion of the incommensurate structure with

symmetry Pcmn(@0% (ss7) in the model, as mentioned in table 5.4.1.

B.2. Calculation of the minimum.

In this section the values of the parameters A, @ and ¥ for which the
energy of the incommensurate structure in the model has its minimum will be
calculated. First, the energy expression B.1.14 is rewritten to give
F=3A3/2 + 202[gq + €2 + €3 — o — £1COS4T¢ —
- (e3-€2) cosdme cosy — (e3tez) sindqe sinmsl . (B.2.1)
As discussed in section 5.3, the coefficients €1, €2, €3 and o are all

positive. In the minimum the first derivatives of F with respect to A, ¢

and ¥ have to be zero. For ¢ this gives
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OF :
e = 8mAZleysindme + (e3-€2) sindme cosmy -
e

- (g3+€£2) cosdme sinms] = 0 . (B.2.2)
For nonzero A and for 8{%<{1 this gives

cosdmn £1+(£3-€2) COSTY
o e T (B.2.3)
sindme (eate) sinmy

Putting the first derivative of F with respect to % equal to zero gives
IF s
e = 21mA%2[(e3-22) cosdme sinms - (e3+e2) sindme cosm¥]l = 8 . (B.2.4)

For nonzero A and 8<%{1 (excluding the commensurate values @ and 1) this is

equivalent to

COSME (e£3-£2) cosdme

sinms  (eatep)sindme (B.2.5)

Substitution of B.2.3 into B.2.5 gives, after reworking:

Gt
COSTT = HEsCe . (B.2.6)
4e3€2
This equation only has a solution if (taken into account the exclusion of
the commensurate values @ and 1 for %, see equation B.2.5)

€1(€3~€2)

-1 { ———— .
Aeats <1 (B.2.7)

If as a solution

1 g9(E3-€2)
% = — arcco —_—
= arccos ( T (B.2.8)

is chosen, then % covers the range 6<{%{1 for suitable choices of €1, €2 and
£€3. All other solutions of B.2.6 (excluding @ and 1) give modulation wave
vectors g=%c* which are equivalent (differing an integer multiple

of c* in length) to those given by B.2.8.

In equation B.2.8 % can be eliminated by substituting B.2.4 in it. After
reworking one gets

¥16e32¢22-€12(g3-€2)2

tandme =
i e1(eaten)

. (B.2.9)

The square root is real if condition B.2.7 is fulfilled. From equation
B.2.9 it follows that
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1 V1be32egZ~g12(g3-€2)2 n . !
= — Foa 2% .2.18)
@ a arctan ( ) ) 3 n integer) (B

In order to Know for which values of n @ gives a minimum of F, the second

order derivative has to be investigated:

o0ZF
c)_toi = 32m2A2[¢1cosdme + (z3-g£2) cosdme cosn¥ +

+ (e3tez) sindme sinmsl . (B.2.11)

Substitution of B.2.6 gives

92F g1(e3-€2)2
— s SONZ AR (e ke e 41 +
= 2AZ[ gy e ) cosdie
(eate)V14e32e22-812(e3-€2)2

indmel . (B.2.12)
de3€z

Because according to equation B.2.9 and B.2.7 tandme is larger than 8,
cos4ne and sindme are both positive or both negative. In the first case the
second derivative (B.2.12) is positive, because the coefficients of cosdme
and sindme in B.2.12 are positive (because €1, €2 and €3 are positive). In
the second case the second derivative is negative. Only the first case is
compatible with a minimum. Hence n in equation B.2.18 has to be even.

For n=8 in equation B.2.18, the value of ¢ is between @ and 1/8. For n=2 it
is between 1/2 and 5/8. It can be checked in equations B.1.1 ~ B.1.4 that
the resulting crystal structure is the same as for n=8 (differing only 8.5
in overall phase). Hence, the solution of B.2.9 can be limited to B.2.18
with n=0.

It can be checked that

o2F
5729 (B.2.13)

for % and @ given by B.2.8 and B.2.10 (with n=0) respectively, as should be

in a minimum.

The first derivative of F with respect to A is equal to

7y = 6A3 + 4Alegq + €2 + €3 — o - £1cosdne - (g3-£2)CcOS4MY COSNB —

- (eg3tez) sindme sinny] . (B.2.14)

Putting this first derivative equal to zero and substitution of ¥ and @
from B.2.8 and B.2.18 (with n=8) gives
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AL6AZ+4(go-a)] = B (B.2.19)

+e) Ve 244
i o G 6 = S R (B.2.18)
2/ eze3

The solutions of B.2.15 are
A e (B.2.17)

and Az = 2(0-00)/3 . (B.2.18

The second order derivative 02F/0A% is equal to

22F
oAz

= 1847 - 4(g-o5) . (B.2.19)

Accordingly, solution B.2.17 gives a minimum if o-oo<@. The other solution

(B.2.18) gives a minimum if o-00o>8. Hence if
g=do > 0 (B.2.29)

then the amplitude of the modulation is nonzero, and if this condition is
not fulfilled, the amplitude is zero. In the first case the amplitude A is
equal to

A = H2(0-00)/3 . (B.2.21)

The two signs give crystal structures that are mirror images of each other
with respect to the a,c plane. Hence, only the plus sign needs to

be considered.

Concluding: we have found that the energy expression B.2.1 has a minimum

for %, © and A given by B.2.8, B.2.18 (with n=0) and B.2.21 if conditions
B.2.7 and B.2.20 are fulfilled (it has been checked numerically that for

these values of %, @ and A F has a minimum, and not e.g. a saddle point).
The energy at the minimum is equal to

F = -2(0-90)2 , (B.2.22)
as can be verified by substituting B.2.8, B.2.10 and B.2.21 into B.2.1.
Outside the region in €1,e2,¢3,0 space determined by conditions B.2.7 and

B.2.28 the incommensurate structure cannot be the stable crystal structure
in the model.
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SUMMARY

This thesis concerns about 48 distorted g-K2504 type crystal structures.
These structures are mainly incommensurately or commensurately modulated
with a g-K2304 type basic structure. They occur in RbzZnBrs and in many
other compounds with the general chemical formula A2BXs.

After transformation to equivalent bases all Known structures of the
mentioned type are compared in detail. The comparison reveals a remarkable
equivalence of the modulation wave functions among all structures reported
in literature.

Detailed structural information from literature, supplemented with original
structure determinations of Rb2ZnBra phases, leads to an ionic interaction
model. This model explains and predicts the stability and phase sequence of
the different distorted g-K,S04 type structures fairly well.

In chapter 2 a new computer program, which has been used for the structure
determinations, is described. It can handle superstructures as well as

incommensurate structures.

Chapter 3 describes structure determinations of three different phases of
Rb2ZnBrg. Two determinations are based on single crystal X-ray diffraction,
the third one uses single crystal neutron diffraction. The phase at room
temperature is the so-called incommensurate phase, the other two are 3-fold
superstructures.

The results show that the modulations in the three phases are strikingly
similar. For the room temperature phase the fact that the modulation wave
vector is a constant fraction of c* in a large temperature range

suggests a superstructure. However the four dimensional space group

Pcmn(@8%) (ss7) gives the best agreement.

In chapter 4 the symmetry, the interatomic distances, the atomic
displacements with respect to Pcmn symmetry and the normalized modulation
functions of the distorted g-K2504 type structures are compared. It turns
out that these structures have symmetry or pseudo-symmetry properties al
corresponding to those of the same "prototype"” symmetry: Pcmn(88% (ssi).
It also turns out that all structures considered have the same local
distortions with respect to the B-K2504 type structure. The main component

of these distortions is a rotation of the BXs tetrahedra around an axis
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parallel to the pseudo-hexagonal ¢ axis.

In chapter 5 a microscopic model is developed, which reveals the origin of
the modulation. In the model the distortions of a structure are expressed
in terms of displacements of certain X atoms out of the mirror plane; this
displacement is a direct consequence of the above-mentioned rotation. The
model takes into account the interactions between different pairs of
nearest neighbours. One of the four parameters of the model can be
interpreted as x measure of the temperature. The choice of these
interactions iz based on common features of the crystal structures. By
minimizing the ensuing expression for the potential energy, most of the
observations can be explained, such as the occurrence of the various types
of distorted g-K:504 type structures, including incommensurate structures
and superstructures, and the phase transitions between the different types
of structure.

According to the model the origin of the modulation in Rb2ZnBra and related
compounds resides in the fact that the BXs tertrahedra cannot rotate
independently. Their rotations are interrelated in more than one way. These
interrelations have counteracting tendencies (there is "frustration"), and
the actual structure is the result of a compromise between the
counteracting tendencies. This compromise may be an incommensurately
modulated structure, a superstructure, or a structure with the same unit
cell as the g-K2504 type structure, depending on the temperature and the

relative strengths of the interactions.

SAMENVATTING.

Dit proefschrift betreft ongeveer 68 vervormde B-K2S0s4-type kristal-
strukturen. Deze strukturen zijn veelal incommensurabel of commensurabel
gemoduleerd met een B-K2504-type basisstruktuur. Ze Komen voor in RbzZnBrg
en in veel andere verbindingen met de algemene chemische formule A2BXs.

Na transformatie naar equivalente bases worden alle bekende strukturen van
het genoemde type in detail vergeleken. De vergelijking laat een
opmerkelijke overeenkomst zien tussen de modulatiegolf-functies van alle in
de literatuur gerapporteerde strukturen.

Uit gedetailleerde gegevens van strukturen uit de literatuur, aangevuld met
nieuwe struktuurbepalingen van Rb2ZnBrg-fasen, wordt een interactiemodel
afgeleid. Dit model verklaart en voorspelt de stabiliteit en fase-volgorde

van de verschillende g-K2504-type strukturen goed.

Hoofdstuk 2 beschrijft een nieuw computerprogramma, dat gebruikt is voor de
struktuurbepalingen. Het Kan zowel superstrukturen als incommensurabele

strukturen behandelen.

In hoofdstuk 3 worden de struktuurbepalingen van drie verschillende fasen
van Rb2ZnBrg beschreven. Twee bepalingen zijn gebaseerd op eenkristal
rontgendiffraktie-metingen, de derde op eenkristal neutronendiffraktie-
metingen. De fase bij Kamertemperatuur is de zogenaamde incommensurabele
fase, de beide andere zijn 3-voudige superstrukturen.

De resultaten laten zien dat de modulaties in de drie fasen opvallend
gelijkvormig zijn. Het feit dat de modulatiegolfvektor een constante
fractie van c* is in een groot temperatuurgebied, suggereert dat de
struktuur van de Kamertemperatuurfase een superstruktuur is. Toch geeft de
vierdimensionale ruimtegroep Pcmn(@88%) (ss7) de beste overeenstemming met de
metingen.

In hoofdstuK 4 worden de symmetrie, de interatomaire afstanden, de
atoomverplaatsingen ten opzichte van Pcmn-symmetrie en de genormaliseerde
modulatiefuncties van de vervormde g-K:S0a-type strukturen vergeleken. Het
blijkt dat deze strukturen symmetrie- of pseudo-symmetrie eigenschappen
hebben, die corresponderen met dezelfde "prototype"-symmetrie:

Pemn(80%) (ssT) .

Het blijkt ook dat alle bekeken strukturen dezelfde lokale vervormingen ten
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opzichte van de B-K,S0a-type struktuur hebben. De voornaamste component van
deze vervormingen is een rotatie van de BXs-tetraeders rond een as

evenwi jdig aan de pseudo-hexagonale c-as.

In hoofdstuk 5 wordt een microscopisch model ontwikkeld, dat de oorzaak van
de modulatie aangeeft. In het model worden de vervormingen van de struktuur
uitgedrukt in termen van verplaatsingen van bepaalde X-atomen uit het
spiegelviak. Deze verplaatsing is een direct gevalg van de bovengenoemde
rotatie. Het model houdt rekening met interacties tussen verschillende
paren van naaste buren. Een van de vier parameters van het model Kan
opgevat worden als een maat voor de temperatuur. De Keuze van de
interacties is gebaseerd op gemeenschappelijke Kenmerken van de
kristalstrukturen. Door de uitdrukking van potentiele energie die uit het
model volgt te minimaliseren, Kunnen de meeste waarnemingen verklaard
worden, zoals het voorkomen van de diverse soorten vervormde g-K2S04-type
strukturen, inclusief incommensurabele strukturen en superstrukturen, en de
fase-overgangen tussen de diverse struktuurtypen.

Uolgens het model berust de oorsprong van de modulatie in Rb2ZnBra en
verwante verbindingen op het feit dat de BXsa-tetraeders niet onafhankelijk
kunnen roteren. Hun rotaties zijn gekoppeld op meer dan een manier. Deze
koppelingen werken elkaar tegen (er is "frustratie"), en de werkelijke
struktuur is het resultaat van een compromis tussen de elkaar tegenwerkende
koppelingen. Dit compromis Kan een incommensurabele struktuur zijn, een
superstruktuur, of een struktuur met dezelfde eenheidscel als de $-K250a-
type struktuur, afhankelijk van de temperatuur en de relatieve sterkte van

de interakties.
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LIST OF SYMBOLS

The units of the quantities represented by the symbols are given between
square brackets. The position in the text where a symbol is defined or has
been used for the first time, is given between braces. If a symbol is used

only in part ot the thesis, this part is indicated between triangular

brackets.

a, b, c [A] the lengths of a, b and c

a, b, ¢ unit cell vectors of a g-K250a type
structure or of the basic structure of a distorted
8-K2804 type structure

a¥, b¥, c* the reciprocals of a, b and ¢

a1, 32, a3z equal to a, b and ¢ respectively

ar*, a¥, as¥ equal to a*, b* and c* respectively

Sellein i oar types of X-X distances (fig. 4.4.1)

ai, bi, dx, ex, fi, gi (i=0,1,2; k=0,1,2,3,4
values of distances of respectively types a, b, etc.,
used for calculating interactions <{ch. 5>

A atom type in chemical formula A2;BXa

A (i=1,2) atom of type A at position i in a p-K2504 type
structure {fig. 1.4.13

Aik (i=1,2; k=1,2,3,4
atom of type A at position ik in a distorted B-K2S504
type structure (fig. 4.5.2}

A (i=1,2,3) amplitude of modulation function d;(t) (eq.3.5.32
{ch. 3 and 4 >

A; or A (i=1,2,3,4) amplitude of modulation function dz{t) of atom Xa;
{eq. 5.4.1} <ch. T

By ByoientM types of A-X distances (fig. 4.4.1}
B atom type in the chemical formula A2BXa
Bk atom of type B at position K in a distorted 8-K2504

type structure (fig. 4.5.2)

Bi or B (i=1,2,3,4) constant part of modulation dz2(t) of atom X2;
(eq. 5.4.1) <ch. 5

Ciy C2 positive coefficients in the expression for E(r)
faqes 53313 chinsy.
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cs or C

positive coefficients in the expression for E’(r)
(eq. 5.3.2) {ch. 5> |
length of c:

supercell vector: cs = C = vc

di(t) or dq;(t) (i=1,2,3)

dic, dis (i=1,2,3

d(t) or dalt)
D [Al
ewi (i=1,2,3)

Edr)

E“(r)

faCIHD

Fo or For

Ft"
FCH

modulation functions; components of d(t) or

da(t) with respect to a; (i=1,2,3)

first harmonic fourier coefficients of modulation
function d; (1) {eq. 3.5.2}

modulation displacement (of atom a) feq. 1.1.2}

defined in equation 3.4.2 <{ch. 3> \
components of ey with respect to a; (i=1,2,3)

{ch. 2>

subcell translation vector in a supercell (kK is an
identification number) {eq. 2.2.9} <ch. 2>

potential energy of the interaction between two X atoms
as a function of the interatomic distance r {eq. 5.3.1>
{ch. 5>

potential energy of the interaction between an A atom

and a X atom as a function of the interatomic distance

r feg. 5.3.23 <{ch. 5>

atomic scattering factor of atom a for the

reflection with diffraction vector H (eq.2.2.13}

Schan?y

potential energy of the model structure {eq. 5.2.1}
{ch. 5

observed structure amplitude (of reflection r)

calculated structure factor of reflection r
calculated structure factor of the reflection with
diffraction vector H (eq.2.2.1}

720 Fan oty Fi%s Fan Fog ffea (7 Fog

9
Ga(H) or Gas(H)

h, kK, 1, m

hi (i=1,2,3)

160

potential energies of (idealized) parts of a crystal

structure <ch. 5>
v/u {eq. 2.2.18) <ch. 2> |
geometrical part of the structure factor of the

reflection with diffraction vector H for atom a (or

as) {eq. 2.2.1) <ch. 2>

reflection indices of a reflection with respect to

a*, b¥, c* and g (eq. 1.1.5, 1.1.62

equal to h, K and 1 respectively <{ch. 2>

;(i=1,2,3)

(==

I

diffraction vector of a main refiection (eq. 1.1.4}
defined in equation 2.2.7 <{ch. 2>

components of H with respect to a;* (i=1,2,3);

Hi = hi + mg;
diffraction vector; H=h + mg
{eg. 1.1.5%

measured diffraction intensity <{ch. 3>

Kiy Ly Mi (i=8,1,2,3,4

m
n
Pa
Qi (i=1,2,3

ro
R [ml
Ru

R or Rs

Rix (i,k=1,2,3)

s; (i=1,2,3)
S or 55

t

Ti (K1

Te [KI

T3, Tay Ts [KI

TalH) or Tas(H)

™A

values of distances of respectively types K, L and M,
used for calculating interactions <{ch. 5>

satellite order (1.1.5%

position vector of unit cell n {eq. 1.1.12
multiplicity of atom a (eq. 2.3.1) <ch. 2>
components of g with respect to a;* (i=1,2,3)

<ch. 2>

modulation wave vector (eq. 1.1.32

distance between two atoms <ch. 5>

interatomic distance in an undistorted £-K;S0s type
structure <{ch. 5S>

effective radius of a crystal {ch. 3>

residual (eq. 3.4.1)

3x3 rotation matrix of a 3- or 4-dimensional symmetry
operation (operation s) {eq. 1.3.1}

element of rotation matrix R

component of s with respect to a; (i=1,2,3)

shift of the 3-dimensional (part of a) symmetry
operation (operation s) {eq. 1.3.1}

argument of a modulation functionj;

t = (n + xo0).q (eq. 1.1.22

normal-to-incommensurate phase transition temperature;
for Rbz2ZnBra: T; = 374K
incommensurate-to-commensurate phase transition
temperature; for RbyZnBra: T. = 198K

phase transition temperatures of Rb;ZnBrg at
respectively 112K, 77K and 56K

temperature facter of the reflection with
diffraction vector H for atom a (or as) {eq. 2.2.12
{ch. 2>

tetramethylammonium, N(CH3) 4

numerator and denominator of a rational value of %:
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ui, vi (i=1,2,3

Ua

T = U/
numerator and denominator of a rational value of q;:
Qi = u;/v; {eq. 2.2,12} {ch. 2>

isotropic temperature parameter of atom a {eq. 2.2.2)

Uik or Uaik Ci,k=1,2,3)

Xy ¥y 2

x5i (i=1,2,3)

anisotropic temperature parameters (of atom a)

{eq. 2.2.3}

vivavs <{ch, 2>

the smallest common multiple of vy, v2 and vi <ch. 2>
weight of reflection r in a structure refinement

{eq. 2.1.12

fractional coordinates of an atom with respect to

a, b and ¢

fractional coordinates of an atom with respect to

a, b and ¢s <{table 3.5.5

Xoi OF Xoia (i=1,2,3)

Xo OF Xoa

b
X; (i=1,2,3,4)

Xiw Ci,k=1,2,3,4

2ol (1=132,3,48)

o, By %

oy Ry ¥l 2]

4ix or 4 (i=1,2,3,4)

dyix or 4y (i=1,2,3,
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components of Xo or Xoa With respect to a;

(i=1,2,3

the position vector of an atom (atom a) in the

basic structure {eq. 1.1.1}

atom type in chemical formula A2BXa

atom of type X at position i in a R-K2S0s type
structure (fig. 1.4.1}

atom of type X at position ik in a distorted g-K2504
type structure (fig. 4.5.2)

z coordinates of the X, atoms in subcell @ in the
model: 8, 0.5, @ and 0.5 respectively for i=1,2,3 and 4
{eq. 5.4.1) <ch. 5

components of g with respect to a*, b* and

c*; equal to respectively qi, qz2 and q3z (eq. 1.1.32
angles between, b and ¢, a and ¢ and

2 and b respectively <(table 4.3.1b>

1/3 - % <{fig. 4.6.1>

as3* component of a position in reciprocal space
{fig. 4.6.4>

displacement of the X2 atom of tetrahedron i in subcel
k {eq. 5.2.1) {ch. 5>
4)

displacement of the Xy atom of tetrahedron i in subcel

£ Or £:2

€1y 2G5 E2%y B3l
p Im-13

o

4

o(Fo)

o)

o

g2y 94

T or Ts

@; (i=1,2,3)

©; or ¢ (i=1,2,3,4)

Kk {eq. 5.3.25} {ch. 5>

factor in the 4-th dimension of a symmetry operation
(operation s) {eq. 1.3.1}

coefficients in the model potential energy expression
{eq. 5.2.1} {ch. 5>

€4

coefficients in potential energy expressions {ch. 35>
linear absorption coefficient of X-rays or neutrons in
Rb2ZnBra <ch. 3>

calculated standard deviation of a model parameter
{ch. 3>

coefficient in the model potential energy expression
{eq. 5.2.13 {ch. 5>

standard deviation of Fo <ch. 3>

standard deviation of I <{ch. 3>

defined in equation 5.4.16¢ <{ch. 5>

coefficients in potential energy expressions <{ch. 5>
shift of the modulation wave in a 4-dimensional
symmetry operation (operation s) (eq. 1.3.1}

phase of modulation function d;(t) {eq. 3.5.32 {ch. 3
and 4>

phase of modulation function d2(t) of atom Xa;

{eq. 5.4.1) <{ch. 5>

(Xox + e2x).q; argument of the modulation

function (eq. 2.2.11) {ch. 2>

coefficients in potential energy expressions {ch. 5>
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NAWOORD

Graag wil 1% op deze plaats iedereen bedanken die bijgedragen heeft aan het

1in dit proefschrift beschreven werk.
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STELLINGEN

behorend bij het proefschrift wan
A.C.R. Hogervorst

13 mei 17846

S1s

Effekten bij een lock-in faseovergang, zoals het breder worden wan
satellietreflekties, Kunnen ook verklaard worden, als men aanneemt dat in
het kristal makrozkopische i1ncommensurabele en commensurabele domeinen

naast elkaar bestaan (R. Blinc, B. Lozar, F. Milia, R. Kind: J. Phys. C 17

(1934) 241; H. Mashiyama, 5. Tanisaki, K. Hamano: J. Phys. Soc. Jap. 58
CIPR 1S 213905

2.

Een superztruktuur beschreven met een 4-dimensionale ruimtegroep die woor
dit geval niet als een 3-dimensionale symmetrie opgevat Kan worden, Kan
hooguit een goede benadering wan de echte struktuur zijn (A. Yamamoto: Acta
B 38 (1

schrift) .

232) 1444; K.D. Bronsema: proefschriff, Groningen, 1%35; dit

De door Hasebe et 31, als funkiie van de temperatuur gemeten

modulatiegol fvectorlengte in {N(CH3)432CuBrg wiist sterk op de aanwezigheid
van superstruktuurfasen in het temperatuurgebied waarin volgens Hasebe et
al. de KristalstruKtuur incommensurabel is. Plateau’s in deze funktie zijn
verenigbaar met een S-voudige en een 21-voudige superstruktuur (K. Hasebe,

H. Mashiyama, S. Tanisaki, K. Gesi: J. Phys. Soc. Jap. 51 (1?732) 1845 .

4.
Incommensurabele strukturen Kunnen verklaard worden met een model voor een
ruimtelijke struktuur, zelfs wanneer er alleen interacties ftussen naaste

buren aanwezig zi.n.

9.
Resul taten verkregen uit wverfijningen die tot nevenminima leiden, bevatten

informatie over de juiste struKtuur.



4.

Het feit, dat er nog voor weinig Kristallen met verplaatsingsmodulatie een
mikroskopische verklaring is gevonden voor de modulatie, Komt woort uit het
feit, dat er nog maar weinig struktuurbepalingen van dergelijke strukturen
ziJn uitgevoerd.

T

Van polaire materialen Kunnen kristallen met een gemoduleerde struktuur
gemaakt worden door ze te laten Kristalliseren in een geschikt periodiek

wizsselend elektrisch veld,

te bevelen om de onderzoeKzinspanning op het gebied wan

tatische Kontaktoplading, die in de Kunststoffenindustrie vee

problemen weroorzaakt, te wvergroten,

Gy
Menzen Kunnen wvoor iedere verstandelijke taak computer(programma’)s maken,

die deze taak befter Kunnen uitwvoeren dan zijzelf.

1a.
De berichtgeving over akKties wvoor salarisverhoging zou objektiever ziln,

als ook het huidige salaris van de aktievoerders vermeld werd.

T
Uit het fei1t, dat hondenbezitters hun honden biina nooit voor sigen
voordeur of in eigen tuintie hun behoefte laten doen, blijkt, dat ook ziJ

ultwerpselen wan honden vies vinden.



