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Chapter 1 

INTRODUCTION. 

'The term "modulated structure" can be used to describe any periodic, or 
partially periodic perturbation of a crystal structure with a repetition 
distance appreciably greater than the basic unit cell dimensions.' Cowley 
et al. (1978) used this definition in defining the limits of the subject 
matter for one of the two international symposia entirely devoted to 
modulated structures. (The proceedings of the other one were edited by 
Tsakalakos, 1984.) The periodic perturbation is ment to be static. So a 
phonon, for instance, is not included in this definition. 

The perturbation mentioned in the definition is found to apply to different 
physical quantities, for instance the direction of magnetic dipole moments 
(magnetic modulation), the probability that in certain disordered 
structures a crystal 1ographic site is occupied by a given kind of atom 
(occupational modulation) or the atomic positions (displacive modulation, 
discussed in section 1.1). 
Examples are abundant. They are found in organic crystals and in inorganic 
ones, in minerals and in synthetic crystals, in magnetic crystals and in 
non-magnetic ones, in insulators, in semiconductors and in conducting 
sol ids. 

Structures with a partially periodic perturbation will not be considered 
here. The discussion will be restricted to structures with long range order 
perturbations. 
Though there are structures of which the perturbation must be described by 
a superposition of waves with different modulation wave vectors, in the 
present study only so-called 1-dimensional1y modulated structures occur. 
A further restriction is made in that only structures with a displacive 
modulation will be considered. 

Examples of structures with a displacive modulation are found in the 
structures of RbaZnBra and related compounds. These modulated structures on 
one hand show a variety of symmetries and modulation wavelengths, on the 
other hand their diffraction patterns - in particular those of different 
phases of the same compound - are strikingly similar. So one can assume 
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that the modulation in all these phases has a common origin. 

Indeed the purpose o-f the present work is to verify and substantiate that 
assumption. The approach chosen to achieve this is to study the modulated 
crystal structures in detail. 

The scheme of this thesis is as -follows. Chapter 2 describes the principles 
of a computer program by which details of the modulation in incommensurate 
as well as in commensurate crystals can be determined -from di-f-fract ion 
data. Chapter 3 describes the determination o-f the modulated structures o-f 
three phases in Rb;ZnBr4. In chapter 4 these modulated structures are 
compared with the structures o-f related compounds, o-f which the structure 
determinations have been published, mostly in the last few years. Chapter 5 
presents a model concerning the origin of the modulation in crystals of 
RbzZnBr-i and related compounds. 

The rest of chapter 1 provides an introduction on several items. Section 
1.1 introduces the concept of displacive modulation, whereas section 1.2 
deals with the comparison of incommensurate!y versus commensurate!y 
modulated structures. Section 1.3 discusses the symmetry of incommensurate 
structures. Section 1.4 deals with the £-K2SCU type structure. The 
modulated structures discussed in this thesis are modifications of this 
structures type. 

1.1. Displacive modulation. 

The crystal structures discussed in this thesis are modulated by a 
displacement wave. Figure 1.1.1 shows a simple structure with a displacive 
modulation, together with a non-modulated one. In the normal structure 
(figure 1.1.1a) a and c_ are two of the three unit cell vectors of 
the crystal structure. The position of the atom in unit cell n is given by 

x_fl = n + x_Q (1.1.1) 

where n_ is the position vector of unit cell n, and x_o is the vector 
that gives the position of the atom within the unit cell. 
In the modulated structure the position of the atom in the unit cell is not 
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equal for all unit cells. The displacive modulation wave causes the 
position of the atom in cell n to become 

xr,' = n + xo + d((n + x_o>.g) . (1.1.2) 

Uector d_(t), the modulation displacement, has three components d;(t) 
(i=l,2,3) with respect to a, b and c_, which are called the 
modulation functions of the atom. These modulation functions a.re periodic 
with period 1, and have zero mean value. 

The cell spanned by a, b (not shown in figure 1.1.1) and c. is 
called subcelI of the modulated structure. If more atoms are present in the 
subcel1, then each of these atoms has its own modulation functions. In 
equation 1.1.2 q is the modulation wave vector, which can be written as 

ci = «a* + £b* + ■»£* . (1.1.3) 

a.*, b* and c_* are the vectors rec ip roca l to the set subcel 1 

vec to rs j _ , b and c. The wavelength of the modulation wave i s 

equal to 

%. = I / I 3 I . ( 1 . 1 . 4 ) 

The modulat ion discussed here is a so -ca l l ed 1-dimensional modula t ion: j u s t 
one modulat ion wave vector i s needed to descr ibe the modula t ion. This i s 
the most f r equen t l y occur r ing type of modulated s t r u c t u r e , and i t i s the 
only type occur r ing in the group of compounds to be s tud ied . 

The ex t ra p e r i o d i c i t y in the s t r u c t u r e i s the o r i g i n of ex t ra r e f l e c t i o n s 
in the d i f f r a c t i o n p a t t e r n . The ex t ra r e f l e c t i o n s are c a l l e d s a t e l l i t e 
r e f l e c t i o n s . In c o n t r a s t , the normal ones are c a l l e d main r e f l e c t i o n s . 
Figures 1.1.1c and 1.1. Id show the d i f f r a c t i o n pa t te rns of the s t r uc tu res 
of -f igures 1.1.1a and 1.1.1b r e s p e c t i v e l y . The r e f l e c t i o n s of the modulated 
s t r u c t u r e are indexed using four integer ind ices h, k, 1 and m, instead of 
the usual three fo r non-modulated s t r u c t u r e s . The d i f f r a c t i o n vec to rs are 
given by 

H = h + mg , (1 .1 .5) 

w i th h_ = ha* + Kb* + l c j * . (1 .1 .6) 
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FIGURE 1.1.1. A non-modulated crystal structure (a), a 
structure with a displacive modulation (b> , and the diffraction 
patterns of both structures Cc and d respectively). 
In part d the large, medium size and small dots are main 
re - f l ec t ions , - f i r s t order s a t e l l i t e re- f lec t ions and second 
order s a t e l l i t e s r espec t i ve l y . 3 i s the modulation wave 
vector. 

FIGURE 1.2.1. The basic 
structure and a modulation 
■function of a modulated 
structure with a rational 
modulation wave vector 
(Cj=2c*/7) (a) and its 
diffraction pattern fb) . 
The reflections can be indexed 
either with respect to j.*, b*, 
cj* and g (hklm), or with 
respect to the supercel 1 
vectors a*, b* and C* CHKL). 

hklm 
0011 • 
0023 • 
0010 • 
0003 
001T i 
0002 | 
0012 I 

HKL 
009 
008 
i 007 
006 
005 
004 
003 

0001 A q 002 
0013 1 £* 001 
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I-f -for 3 re-flection m=0 , this re-flection is a main reflection. I-f |m t=n?£0 
then it is a n-th order satellite. 

For a given structure the modulation wave vector 3 is not unique. It 
can be replaced by s+h, h. being any reciprocal lattice vector 
( 1.1.6). Of course, thereby both the functions d(t) and the satellite 
indices are changed, but 1.1.2 remains valid. For more information about 
the subject of equivalent wave vectors the reader is referred to De Nalff 
et al . (1984) and to subsection 4.2.1. of this thesis. 

From a modulated structure two hypothetical normal structures can be 
derived. The first one is the so-called basic structure. This structure 
corresponds to the case d(t)=0_ in equation 1.1.2. For the modulated 
structure of figure 1.1.1b the basic structure is the one of figure 1.1.1a. 
The second hypothetical structure is the so-called average structure, which 
has the same Bravais lattice as the basic structure. The contents of the 
unit cell of this structure can be obtained by averageing the contents of 
all subcells of the modulated structure. If a Fourier synthesis is 
performed, using only the main reflections, then one finds the average 
structure. 

The atomic positions in the modulated structure are completely defined by 
equation 1.1.2 if the following data are known: 
- the lengths of the unit cell vectors a, b and c_ of the basic 
structure and the angles between them, 
- the atomic positions x,0 of the atoms in the basic structure, 
- the modulation wave vector components «, £ and 1r (see equation 1.2.4) and 
- the modulation functions d;(t) (i=l,2,3) for all atoms in the basic 
structure unit cell, for instance in terms of Fourier coefficients. 

1.2. Incommensurate versus commensurate modulation. 

In order to simplify the discussion, a and ê in equation 1.1.3 will be 
assumed to be zero. The modulation wave vector is then parallel to c_*: 

H = te* . Cl.2. 1) 
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This is the situation in the crystal structures discussed in this thesis. 
In the previous section nothing is mentioned about the properties of '5. Now 
an important distinction is introduced. Ne shall - at least -formally -
distinguish between cases where * is rational and those in which ï is 
irrational. 
If Tj is rational, it can be written as 

U = u/v , (1.2.2) 

with u and v mutually prime positive integers and u<v, Then u modulation 
wavelengths fit exactly in v subcel1 periods. The modulation is 
commensurate with the basic structure in this case. This is illustrated in 
figure 1.2.1a for *=2/7. A v-fold supercel 1 can be chosen as unit cell of 
the structure, and this superstructure can be treated as a normal 
structure, without using the modulation concept. Hence for this 
superstructure the reflections can be indexed either by three indices based 
on the large unit cell, or with four indices, based on the description as a 
modulated structure. This is illustrated in figure 1.2.1b for the example 
with -.5=2/7. 
If, however, -'■:■ is irrational, the modulation is incommensurate with the 
basic structure, and the modulated structure is called incommensurate. 

Crystals with modulated structures •■jery often show the following behaviour 
as a function of temperature. Above a certain temperature T; the crystal 
structure is normal (non-modulated). Below T; the structure is modulated. 
Down to a certain temperature Tc this modulation is incommensurate and 
below Tc it is commensurate. The modulation wave vectors of the 
incommensurate structure and the superstructure usually do not differ much. 
In the incommensurate phase the modulation wave vector usually changes 
continuously; at Tc it jumps to the commensurate value. Temperature Tc is 
called the lock-in phase transition temperature, and the superstructure 
phase the lock-in phase. 

Diffraction experiments can be used to examine whether a modulated 
structure is incommensurate or commensurate. If such an experiment shows 
that ï, in equation 1.2.1, for a certain crystal phase varies continuously 
as a function of temperature (or as a function of pressure or another 
physical condition), then is is almost certain that the structure of that 
phase is incommensurate. The possibility exist, however, that this 
conclusion is wrong, because such a behaviour of the modulation wave vector 
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can be found also if the crystal has a few successive superstructure phases 
(with nearly the same modulation wave vector), while the phase transitions 
between these phases do not occur at the same moment for each part of the 
crystal. This can be caused by impurities or defects in the structure or by 
temperature gradients in the crystal. The measured modulation wave vector 
is the weighted average of the modulation wave vectors of the 
superstructure phases, the weight far each commensurate modulation wave 
vector being the volume fraction of te crystal occupied by the 
corresponding phase. For instance, Gesi and Iizumi (1978) first assumed a 
continuous behaviour for the modulation wave vector of RbïZnBr4 just above 
Tc- Later, however, they observed that 'a changes stepwise (Iizumi and Gesi, 
1983) . 
If '5 does not change in a certain temperature region, and Is is equal to a 
simple rational value (e.g. 1/4, 2/7 or 3/18) within experimental error, 
then the structure is very probably a superstucture. But there is always 
the possibility that the measurements are not accurate enough to reveal 
that 's deviates from this rational value. 
If '15 is constant at a value that is not a simple fraction, then -* is either 
equal to a rational value with a large denominator (e.g. 23 or 29) or is 
irrational. In the last case the modulation wavelength may be pinned at a 
certain incommensurate value (e.g. the equilibrium value at the conditions 
under which the crystal has been grown or annealed) by defects in the 
crystal. More accurate measurements of '<s or measurements on crystals that 
are prepared in another way may give more information. 

In the definition mentioned at the beginning of chapter 1, it is not 
defined exactly how large the repetition distance in a crystal structure 
must be in order to consider it as a modulated structure. Often, a 
superstructure with a 3-fold or larger supercel 1 is called a modulated 
structure. It will be shown in chapter 4 that it can be convenient to 
consider structures with smaller repetition distances also as modulated. 

1-3. Symmetry in incommensurate crystal structures. 

Because of the extra periodicity of the modulation, which destroys the 
periodicity in at least one dimension, the symmetry of an incommensurate 
crystal structure cannot be described by a normal 3-dimensional space 
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group. 4-dimensional space groups can be used to give -full account of the 
symmetry of incommensurate 1-dimensionalIy modulated structures. Only 
certain 4-dimensional space groups represent symmetries of such structures. 
These 4-dimensional space groups are called superspace groups by Janner and 
■Janssen (1979). In this thesis the term "superspace group" will not be used 
■further, because it can easely be confused with "superstructure space 
group" (the 3-dimensional space group of a superstructure), which will be 
used often. Instead, a 4-dimensional space group that represents the 
symmetry of an i ncommensurate structure will mere!y be called the 4-
dimensional space group of that structure. 

The reader is referred to De Wolff et al. (1981) for a full treatment on 
the symmetry of incommensurate 1-dimensional1y modulated crystal structures 
and for a complete list of the 4-dimensional space groups of such 
structures. This section only provides a short introduction. It is only 
concerned with those items which are relevant for this thesis. 

Consider an atom A with basic structure position x_0 and modulation 
functions d(t) and atom A' with basic structure position x.0' and 
modulation functions d'(t). A symmetry operation relating atom A' to A 
has the form 

:](?) 
The first part of this operation, 

xo' = Rxo + s , (1.3.2) 

transforms the basic structure position of atom A into that of A'■ It is a 
normal 3-dimensional symmetry operation. The 3x3 matrix R is the point 
group operation and s is the additional shift. 
The second part, 

t' - €t + * , (1.3.3) 

tells us how the modulation functions are related, namely as 

d'<t) = Rd(£(t-0) . (1.3.4) 
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E can be 1 or -1 only. £=1 if R transforms the modulation wave vector Q 

into itself, and £=-1 if 3 is transformed into -g: 

Rg £3 

According to 1.3.4 the modjlation functions of atom A' can be found from 
those of atom A by shifting the modulation functions of A over ifX (.% is the 
modulation wavelength). Moreover, if E=-1 one has to change the sign of the 
argument of the modulation functions, so that those of A and A'' run in 
opposite directions. In both cases CE=1 and e=-l), the direction of the 
displacement vector is transformed by R. 

Two operations will be illustrated: c(s) and n(T). 
Figure 1.3.1a illustrates the operation c(s), which for a particular choice 
of axes and origin can be written as 

c(s) : (R.s, E,0 = ( 
-10 6 
0 1 e 
0 0 1 

0 
0.5 

The c in the symbol c(s) indicates that the basic structure part of the 
symmetry operation is a c-glide plane. The s in the symbol means that E=Ï 
and that the modulation functions have to be shifted over 0.5x, In figure 
1.3.1a it can be seen that the modulation functions of atom A' are shifted 
over 0.5>, with respect to those of atom A. Because RIJ=-1, moreover the 
sign of dj(t) is reversed. 
In figure 1.3.1b the operation 

(R,s,e,t) 
10 0 0.5 
9 10 , 0.5 
0 9-1 1 

is shown. The basic structure part of this operation is a n-glide plane. 
The T in symbol n(T) means t—1. In that case the value of t cannot be 
derived from the symbol n(T> , but it follows from the choice of the phase 
of the modulation wave with respect to the origin or, seeing it from 
another point of view, from the choice of origin in the modulated 
structure. Note that s3 in this example and s, in the previous one are also 
origin-dependent. Figure 1.3.1b shows that the modulation functions of atom 
A' are derived from those of atom A by changing the sign of the argument of 
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n u 
*—% < — i 

ai \ 

* S3 

n i ^ 
' ; a. 

FIGURE 1.3.1. Two examples o-f symmetry operations 
in a structure with displacement modulation. In each 
example the symmetry operation trans-forms atom A, 
with modulation -functions di(t) and d3(t), into atom 
A', with modulation -functions di'(t) and da'(t). 
a. symmetry operation 

c(s): (R,s,E,f) f-1 0 
I 0 1 

1 
J .1 

shown are: the undistorted structure, the 
modulation -functions and the modulated structure; 
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Figure 1.3.1 b. Symmetry operation 
fl 8 8*1 |0.51 

The dot ted func t ions show d i ' ( t ) and d 3 ' ( t > be-fore 
the shi-f t ■<% i s appl i e d . 
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these functions and shifting the functions over 0.5A. The sign of da'Ct) 
has been changed with respect to the sign of ds(t) because R33=-1. Note 
that there are different mirror planes for the modulation functions and for 
the basic structure positions. 

The symbols of the 4-dimensiona! space groups used in this thesis differ 
from those in De Wolff et al. (1931) for typographical reasons. The 
notation and the properties of 4-dimensional space groups will be explained 
with the aid of an example: The most important space group in this thesis 
is 

P — — ~ (00'Ï) (1 - -> (1.3.3a) 
c m n s s 1 

or in short: 

Pcmn(00'"5) (ssT) . ( l.3.3b) 

The first part, Pcmn, of the 4-dimensional space group symbol is the 
(standard) 3-dimensional space group symbol (International Tables Molume A) 
of the space group of the basic structure. The second part in 1.3.8, (90?r) , 
gives the components of the modu1 at ion wave vector (as defined in 1.1.3). 
In space group 1.3.8 the modulation wave vector has an irrational component 
parallel to c,*, and no components along the other two directions. The 
third and last part of the symbol tells us how modulation functions are 
transformed. The symbol of an individual space group operation is formed by 
a symbol of the first part, together with the symbol at the corresponding 
position in the third pant. Hence the symbols of the three 4-dimensional 
space group operations in space group symbol 1.3.3b are c(s), m(s) and 
n(T), The symbols in the third part of the 4-dimensional space group symbol 
(and in the second part of the symbols of the 4-dimensional space group 
operations) are related to the values of e and t of the corresponding 
operations. If £=+1 and x is equal to 0, then the second part of the symbol 
of the 4-dimensional space group is (1) (example: 2i(1) in 1.3.8a). If £=+1 
and t=0.5 then the second part of the symbol is (s) (examples: c(s) and 
m(s) in 1.3.3a and 1.3.8b). If E=-1, the second part of the symbol of the 
4-dimensional space group operation is always (T). 

Rules for systematically absent reflections for incommensurate crystal 
structures also involve the satellite reflections (De Wolff et al., 1981). 
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1.4. The fe-KaSQd type structure. 

The crystal structures discussed in this thesis are modifications of the £-
K2SO4 type structure. (The structure determination of Ê-K23Q4 has been done 
by McGinnety ,1972.) The &-K2SO4 type structure occurs in many compounds of 
chemical formula A2BX4 (see e.g. Muller and Roy, 1974). In this formula B 
and X represent single atoms while A can represent also NHa or hKCHs'U 
(Tetra Methyl Ammonium, TMA). The &-K23Ü4 type structure consists of 
negatively charged BX4 groups and positive A atoms (NH4 and N(CH3)4 will 
also be designated as "A atoms"). The BX4 groups are in good approximation 
regular tetrahedra. The X atoms of such a group are located at the four 
corners of the tetrahedron, while the B atom is located at the barycentre 
of it. 

In figure 1.4.1 three projections of a B-K2SO4 type structure are shown. 
This figure shows the contents of the orthorhombic unit cell: four BX4 
groups and eight A atoms. Of each BX4 group the B atom and two X atoms (Xi 
and X2 in figure 1.4.1) are located on a mirror plane. The other two X 
atoms <X3 and X4) are related to each other by te mirror plane operation. 
The A atoms are all located on mirror planes. 

The space group of the £-K2SQ4 type structure is Pcmn. Figure 1.4.Id shows 
the symmetry operations of this space group. The symbol Pcmn corresponds to 
the choice of axes a, b and c as shown in figure 1.4.1. If the 
axes would have been labelled in another way, as is often done in other 
publications, then another space group symbol should have been used. In 
this thesis the axes will be labelled throughout in the manner followed by 
De Pater (1973) and Rasing (1932) shown in figure 1.4.Id. 
The symmetry-independent atoms are A1, A2, B, X,, X2 and X3. If A 
represents NH4 or N(CH3)-i, then the position of this group is defined to be 
the position of the nitrogen atom. 

More information about the fc-KïSCk type structure can be found in Muller 
and Roy (1974) and Eysel (1971). 
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) N«ÉS O ^ 6 
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FIGURE 1 .4 .1 . Three p ro jec t i ons of a &-K2SQ4 type c rys ta l 
s t r uc tu re ( a , b and c) and i t s space group operat ions <d) . 
The s t r uc tu re shown i s that of (NH«)2ZnCl4 at 418K (Matsunaga, 
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Chapter 2 

DETERMINATION OF MODULATED STRUCTURES. 

2.1. Introduc tion. 

Whereas many computer programs are available -for normal crystal structures, 
at the beginning of the work described in this thesis, none was available 
-for incommensurate structures . Therefore a computer program has been 
written for the most frequently occurring type of incommensurate crystal 
structures ( 1-dimensional modulation). 
In 1933 a computer program for modulated structures written by Yamamoto 
became available. This program has a larger scope than the program 
discussed in this chapter. For instance, it is not limited to the case of 
1-dimensional modulation. For the structure determinations of this thesis 
(chapter 3), the program discussed in this chapter has been used. 

Additional features are needed in a computer program for modulated crystal 
structures because 
- extra parameters are necessary for modulated structures in order to 
describe the modulation, 
- the symmetry is more extended for modulated structures: it also involves 
the modulation functions, 
- the structure factor calculation is more complex for modulated 
structures, 
- moreover, the number of reflection indices is different: 4 for structures 
with a 1-dimensional modulation and 3 for normal structures. 

The computer program discussed in this chapter can handle structures with a 
displacive modulation (discussed in section 1.1) as well as structures with 
a so-called occupational modulation, or structures with a combination of 
the two types of modulations. The discussion in this chapter will be 
limited to the first type of modulation. 

Two refinement methods are incorporated in the computer program: the least 
squares procedure and the simplex method (Nelder and Mead, 1965; not used 
■for this thesis). Both methods minimize the sum of weighted squared 
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differences between calculated and observed structure amplitudes: 

S w,-(For-|FCI. |)2 , (2.1. 1) 
r 

where FOP is the observed structure amplitude, |Fcp I is the calculated 
structure amplitude, wr is the weight and the summation is over all 
measured X-ray or neutron reflections. 
The simplex method has the advantage that the starting values o-f the 
parameters need not be close to the values of the solution, but the 
disadvantage that it needs very much more computation time than the least 
squares procedure. 

In section 2.2 a new derivation o-f the structure factor formula for 
modulated structures is given. Section 2.3 will show how the symmetry of 
modulated structures is treated in the program. Section 2.4 will explain 
how superstructures can also be handled with the computer program. 

2.2. The structure factor. 

In this section the unit cell vectors a, b and c_ o-f the basic 
structure are denoted as a-, with i=l,2,3 respectively, for convenience. 
Also, the reflection indices h, k and 1 are denoted as hi , ti2 and h>3, and 
the components «, £ and U o-f the modulation wave vector (defined in 
equation 1.1.3) as qi, q2 and q3. 

For a modulated structure, the structure -factor F(H) can be written as 

F(H) = E fa( |H|) .TQCH) .GQ(H) . (2.2.1) 
a 

The summation is over all atoms in the unit cell of the basic structure. 
The atomic scattering -factor f«C|H|) o-f atom a is as for normal 
structures (including the dispersion correction), hi is given by 
equation 1.1.5. 
The expression for the temperature factor TQ(H) is identical to the one 
■for normal structures: 

TaCH) = exp(-2«2Uft|H|2) (2.2.2) 
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for the isotropic temperature factor, whereas for the anisotropic 
temperature -factor : 

3 3 
Tr,<H) = exp(-2-n;i S 2 U*, h Hi a;* Hu a**) . (2.2.3) 

i=l K=l 

Ua and Uoiu (i,k=l,2,3) are the isotropic temperature parameter and the 
anisotropic temperature parameters respectively and H;=hi+mq; (1=1,2,3) are 
the components of the diffraction vector H, 
It is not possible to modulate the temperature factor in the computer 
program discussed here. This means that the thermal motion o-f an atom is 
taken to be the same as that o-f the equivalent atom in any other subcel 1 . 
The geometrical part of the structure factor 6a(H) for modulated 
structures differs -from the geometrical part of the stucture factor for 
normal structures. De Nolff (1974) derived in a very elegant manner an 
expression for G«(H) , using a crystal description in four dimensions. 
In this section this expression will be derived via the expression for the 
geometrical part of the structure factor for superstructures. This has the 
advantage that the relation between both expressions becomes clear. The 
results will be used in section 2.4 to show how to calculate the structure 
factor for superstructures exactly, using the formula for incommensurate 
structures. 

The geometrical part of the structure factor of reflection h ot a 
normal (non-modu1 ated) crystal structure is 

GQ(h) = exp(2Ttih.xc,a) , (2.2.4) 

in which x_oa is the position of atom a: 

3 xoa ~ E xoaiai (2.2.5) 
i=l 

and h_ is the diffraction vector: 

3 h_ = E h; a.; * , hi integer . (2.2.6) 

Though i t i s not convent iona l , the same (normal) s t r u c t u r e can be described 

as a v - f o l d supers t ruc tu re w i th supercel 1 axes v i a i , vza.2 and 

V3§_3 ( V I , V 2 , V B : i n tege r , v=viV2V3). The d i f f r a c t i o n vec to rs h.' of 

the supers t ruc tu re are 
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FIGURE 2 . 2 . 1 . 
a . S u p e r s t r u c t u r e w i t h s i x e q u a l s u b c e l l s . A t and A? 
a r e t h e s u p e r s t r u c t u r e u n i t c e l l v e c t o r s . 
b . The c o r r e s p o n d i n g r e c i p r o c a l l a t i c e . The - f u l l and open 
c i r c l e s a r e r e - f l e c t i o n s w i t h n o n - z e r o and z e r o i n t e n s i t y 
r e s p e c t i v e ! y . 

FIGURE 2.2.2. 
a. The superstructure after modification by a displacive 
modulation with wave vector g. 
b. The corresponding reciprocal lattice. All indicated 
reflections have non-zero intensity. 
c. As b, but with new indices. Three indices are needed fo 
2-dimensional crystal in the new notation. 
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3 
h ' « £ J i C a i W j ) . ( 2 . 2 . 7 ; 

i = l 

Here .i ; can be any i n t e g e r , b u t i n t e n s i t i e s a r e o b s e r v e d o n l y i f j ; i s a 

m u l t i p l e o f v , f o r I = 1 , 2 , 3 , The o t h e r p o s i t i o n s i n r e c i p r o c a l space have 

z e r o i n t e n s i t i e s because a l l t h e s u b c e l l s i n t h i s u n u s u a l s u p e r s t r u c t u r e 

a r e e q u a l . The g e o m e t r i c a l p a r t o f t h e s t r u c t u r e f a c t o r o f d i f f r a c t i o n 

v e c t o r h ' i s 

1 v 
G 0 ( h ' ) = E e x p ( 2 i t i h ' . [ x O Q + e k ] ) , ( 2 . 2 . 8 ) 

v k= 1 

in which ei, are the v "centering translations" in the supercel 1 (to 
which )3 is added), numbered by K in an arbitrary sequence: 

e k = E eu;a, , e k , integer wi th % -<eu \ <v, . (2.2.9) 
i=l 

The factor 1/v in equation 2.2.8 makes G(h')=G( hj (equations 2.2.8 
and 2.2.4) . 
F i g u r e 2 . 2 . 1 g i v e s a 2 - d i m e n s i o n a l examp le o f such a s u p e r s t r u c t u r e . 

Now c o n s i d e r t h e p o s i t i o n s o f t h e a toms t o be d i s p l a c e d i n a s p e c i a l 

m a n n e r , so t h a t t h e a r t i f i c i a l s u p e r s t r u c t u r e becomes a r e a l o n e : 

x_oa + eu becomes x_oa + ei< + da(^uo.) ( 2 . 2 . 1 0 ) 

w i t h <i>\,a = (x_oa + e_k) .fl ( 2 . 2 . 1 1 ) 

3 ui 
and g = E a;* , ui ,v,: posi tive integers . (2.2.12) 

1=1 Vi 

drl(<Pka) is the displacement of atom a in subcel 1 k according to a 
static displacement wave with wave vector q. The functions da(t) 
are periodic with period I (dQ(t)=da(t+1)) . The wave vector £ 
is commensurate with the original lattice according to equation 2.2.12. u, 
and v; are mutually prime integers with ui<v, for each i. It can be 
verified that the unit cell vectors of the superstructure, v;a.;, are 
translation vectors in the new structure. For the example of figure 2.2.1 
the situation after displacing the atoms corresponding to a displacive 
modulation wave with a=a_t */2+a_2*/3 is given in figure 2.2.2. 

The geometrical part of the structure factor is now 
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1 V 
G a<h') = E expC2Tth'.[xoa+ei<^«< tP(ta>3) ■ ( 2 . 2 . 1 3 ) 

v k=l 

where in general a l l r e f l e c t i o n s , inc lud ing those w i th one or more non-
integer ind ices wi th respect to ai * , as* and a_3*, w i l l have 
non-zero s t r u c t u r e f a c t o r s . 

As shown in section 1.1, the diffraction vectors can be written in another 
way (equation 1. 15) : 

H ~ h+mg , m integer , (2.2.14) 

where h_ is given by equation 2.2.6. Reflections with m=0 are main 
reflections, those with m^0 are satellites, m is the order of the 
satellite. For a 3-dimensional crystal four indices are needed to denote a 
reflection in this notation: hi , ti2, h3 and m. If V|, v; and vj are 
pairwise mutually prime, so that their smallest common multiple w is equal 
to v=viV£Vj, then 2.2.14 gives all diffraction vectors of 2.2.7. If w<v, 
the new notation cannot cover all the reflections which are given by 2.2.7. 
In that case, apart from 0_, also one or more of the other ei< are 
translations of the modulated structure. These centering translations give 
rise to systematically absent reflections, which are exactly those 
superstructure reflections which are not covered by 2.2.14. In appendix A 
this will be proved. 
Figure 2.2.2b and 2.2.2c show the diffraction pattern for the example of 
figure 2.2.2a with the fractional indices of the old notation and with the 
new indices respectively. 

In terms of the new notation, the geometrical part of the structure factor 
becomes 

1 v 
Ga(h+mg.) = E exp<2iri(Ji+mq> . [x 0 a+eh + dQ<(pka) ]l ■ ( 2 . 2 . 1 5 ) 

v k=l " " 

This can be r e w r i t t e n to give 

G«(h+mg) - exp(2ifih_.xo a) 

1 v 
■ E exp(2Tti[ (h+mg) .dg('*i(«)+mtPk(!. + h . e k l ) . ( 2 . 2 . 16) 

v k=l 

Between the square brackets the last term is an integer, so it can be left 
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out. In appendix A it will be proved that 

ek „g = r/w (mod 1) (r = 0, 1, 2, , . . w-1) , < 

and that each value of r occurs g times if k runs from 1 to v if 

g = v/w (2.2.13) 

(If the smallest common multiple w of Vi, Vj and VB is v, then g=l and 
every value of r occurs once.) 
Hence equation 2.2.16 can be written as (see equations 2.2.11 and 2.2.17) 

G*(h+mg) = exp(2itili..Xoa) 

. 2 exp(2TTi[(h+mCi> .da( t , .a>+mt [ . c l]) ( 2 . 2 . 1 9 ) 
w r = l 

wi th Wa = x o a . 9 + r/w . ( 2 . 2 . 2 9 ) 

In order to approximate an incommensurate s t r u c t u r e ( i n which g. has 
non- ra t iona l components), a supers t ruc tu re w i th a large supercel 1 can be 
chosen. In the l i m i t of an i n f i n i t e l y large supercel 1 , the summation can be 
replaced by an i n t e g r a l , and the formula of De N o l t f (1974) i s obta ined: 

Go(h+mg.) - exp(2t f ih .x 0 f t ) ƒ exp(2it i C (h+mg) ,dQ< t) +mt]) dt . (2.2.21) 
0 

In t h i s equation the boundaries of the in teg ra l are s h i f t e d w i th respect to 
those in the summation. This i s al lowed because the in tegrand i s per iod ic 

wi th per iod 1. 
Putting da<t)=0 for all atoms again gives the geometrical part of 
the structure factor for a normal crystal structure. 

The periodic function da(t) can be written as a sum of fourier 
components (harmonics). In order to investigate the influence of the 
individual harmonics on the satellite reflections, the integral of 2.2.21 
is wri tten as 

ƒ exp(2fü(h+mg) .d«(t)3 exp(2iïimt) dt . (2.2.22) 
0 

For small da(t) the approximation exp(ix)=l+ix can be used for the 
first factor in the integrand, and 2.2.22 becomes 
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1 
f (1 + 2-rfi(h+mg) .d a ( t )> exp(2TÜmt) dt . (2.2.23) 
0 

In t h i s expression the n-th harmonie of d f t ( t ) has a non-zero 

c o n t r i b u t i o n only i f m=n. Hence, the m-th harmonic of d a ( t ) con t r ibu tes 

only to m-th order s a t e l l i t e s . I f d«<t) i s l a rge r , then the 

approximation is not v a l i d . Usual ly , however , clQ(t) i s small enough to 

s ta te that the m-th harmonic of d_<,(t) mainly con t r ibu tes to m-th order 

s a t e l 1 i t e s . 

In the computer program the integral of 2.2.21 is approximated by a 
summation: 

1 n 
2 e>;p(2iti [ (h+mg) .da< t;«) +mt i Q D (2.2.24) 

n i=l 

with tia = Xoa-g + i/n . (2.2.25) 

The value for n has to be chosen large enough to get a good approximation. 
For the room temperature structure of Rb2Zn6r4 (chapter 3 of this thesis) 
n=7 is found to be large enough. 
In section 2.4 it will be discussed how 2.2.24 can be used for 
superstructures. 
For incommensurate structures the first term on the right hand side of 
2.2.25 can be left out. 

2.3. Symmetry. 

If symmetry is taken into account, equation 2.2.1 can be written as 

1 
F(H) = E fa< IH|) STai(H).Ga;(H) . (2.3.1) 

a pa s 

This equation contains two summations. The summation over a extends over 
all atoms which are symmetry non-equivalent in the basic structure. The 
summation over s is over all symmetry operations necessary to generate the 
contents of one subcel1 (including the unity operation). pa is the so-
called multiplicity of an atom. This is the number of times the atom is 
transformed into itself by the symmetry operations of the basic structure. 
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The geometrical part Gar(H) of the structure factor for atom a and 
symmetry operation s can be written as (using equations 1.3.2, 1.3.4 and 
2.2.21) 

Gar(h+mg.) = exp(2ïTih_. (RjXoa + Sj)) 

1 . ; exp(2T(i[(h+mg) ,Rfdtt(£s(t-ti))])dt (2.3.2) 
8 

for symmetry operation (Rj,ss,E * , T S ) . 
The anisotropic temperature parameters Ua:h in the temperature factor (see 
2.2.3) are transformed as normally in order to get Tai(H). 
Isotropic temperature factors are equal for symmetry-equivalent atoms. 

In order to save computation time, two kinds of symmetry operations are not 
treated in the way shown above. The first is the inversion operation: 

(Ri ,Si,E,,1i) 
-1 

As for normal crystal structures expression 2.3.1 can be written more 
economically by combining pairs of terms in the summation over s. If one of 
the symmetry operations is an inversion operation, then the symmetry 
operations can be divided into two sets with an equal number of operations. 
The first set contains the unity operation. The operations in the second 
set can be derived by combining each operation of the first set with the 
inversion operation: 

<R2, s2, £2, *s) ■ <"Rii -t,) (2.3.4) 

Indices 1 and 2 denote operations of the first set and the second set 
respectively. If the origin in the basic structure and the phase of the 
modulation wave are chosen such that si=0_ and ti=0, as is assumed 
in 2.3.3, then the structure factor can be written as 

E fQC |H|) — — 2 ReC 2' Tai(H) .Gar(H) ], a pa s 
(2.3.5) 

where the summation 2' is only over the first set of symmetry operations. 
Hence the calculation of Tai(H) and GQj<H) for the symmetry 
operations of the second set is not necessary. Equation 2.3.5 can be 
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deduced by substitution, using the tact that TaiCH? is real. 

The second type o-f symmetry operations which is treated separately is the 
een ter ing translation: 

1 9 6 
(Re jSc,£c iT."c> = ( Ö 1 0 

0 a i 

where sCi . Scaj sC3 and tc *rs- not all zero. 
If nc centering translations (excluding 0) are present in the 
structure, then the symmetry operations can be divided into two sets. The 
operations in the second set can be derived by combining each operation o-f 
the first set 'which includes the unity operation) with each o-f the 
centering translations. Hence the number o-f operations in the second set is 
a -factor n c larger than in the -first set. 
For a structure with centering translations the structure -factor can be 
written as 

F(H) = [ 1 + 2 e x p ( 2 n i [ h . s c ] j 3 
c 

1 
. E - M l h l ) E" Tftf(H) .G«j<H) , (2 .3 .7) 

a p* s 

in which the summation E" is over the symmetry operat ions o-f the - f i r s t set 
on l y , and the summation over c i s over a l l cen ter ing t r a n s l a t i o n s 
(exc lud ing 8 ) , The summation over a is over a l l symmetry non-equivalent 
atoms. 

It an atom is trans-formed into itself by a symmetry operation (not the 
unity operation), then there will be restrictions on some o-f the parameters 
o-f that atom. Consider -for example the symmetry operation 

' 8 
9.5 , 1 , 0.5 ) . (2.3.3) 
6.5 

An atom a at position (xoa« , 0.25, x0a3> in the basic structure is situated 
on this mirror plane. As -for normal crystal structures with this situation, 
x0o2 has to be 0.25, and the anisotropic temperature parameters U023 and 
LU:2 have to vanish, as can be found in the tables of Peterse and Palm 

SC2 
Sc3 

, I 

m(s>: <R,s,e,t) = ( 

32 

(.1966). But there are also restrictions on the modulation functions. The 
modulation functions of the atom on the mirror plane must be equal to those 
of the reflected atom. Thus, according to 1.3.6: 

d,(t) » RdftCsU-*)) . (2.3.9) 

Hence, substituting 2.3.3: 

da)(t) = dai(t-0.5) , 
dazCt) = -da2(t-0.5) (2.3.19) 

and dft3<t) = da 3 (t-0.5) . 

From this it follows that daz(t) can have odd harmonics only, and d*i(t) 
and da3(t) can have even harmonics only. 
Uan Aalst et al. (1976) give more examples of this kind of restrictions. 
When treating a structure with such symmetry operations with the computer 
program, one has to indicate which parameters are restricted and which ones 
are allowed to vary. 

2.4. Superstructures as modulated structures. 

It is often advantageous to describe a superstructure as a modulated 
structure rather than as a normal one. There can be several reasons for 
doing so: 
- If satellite reflections of only low orders occur, then the structure can 
be described using modulation functions with only a few harmonics. This 
description needs fewer parameters than the normal description, and in the 
structure determination process, the reflections of the orders with zero 
intensities need not be used. 
The 17-fold superstructure of Rb2ZnBr4 provides a good illustration 
(chapter 3). The satellite reflections of second and higher order have 
negligible intensities; only the first harmonics of the modulation 
-functions are needed in the structure description. 
- It may be possible to describe the superstructure by a 4-dimensional 
space group which gives an excellent description of it, whereas it needs 
fewer parameters than a description by a 3-dimensional space group. The 
room temperature structure of Rb2ZnBr4, +or instance, can be very well 
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described by space group Pcmn(00's) (ssi) . As will be shown in section 4.2, 
the operators of this space group cannot exist all in one 3-dimensional 
space group. 
- In the process of structure determination one may more easily get 
convergence to the correct parameters (avoiding -false minima) in the 
structure model if in the refinement procedure founer coefficients of 
modulation functions and basic structure positions are used as parameters 
instead of superstructure positions. (Yamamoto, 1981). 
- It is nearly impossible to interrelate different superstructures and/or 
incommensurate structures (chapter 4) without using the modulation 
description. 

The description of a superstructure as a modulated structure may give rise 
to two ambiguities. The first one concerns the choice of the modulation 
wave vector. Apart from the question whether to choose g or one of its 
equivalents g+h_ (treated for incommensurate structures in section 
1.1 and subsection 4.2.1), there remains the question which satellite 
reflections should be chosen as first order satellites. For incommensurate 
structures this problem does not exist because there is only one modulation 
wave vector (apart from its equivalents) for which equation 1.1.5 covers 
all satellite reflections. For 5-fold or larger superstructures, however, 
more choices are possible: In equation 1.2.2 every value of u with u<v/2 
which has no divisor common with v gives a possible modulation wave vector. 
For example, for a superstructure with a 7-fold c_-axis, three non-
equivalent modulation wave vectors are possible: TRI/7, '5=2/7 and ̂ 3/7. 
Gften a compound with such a superstructure, in another temperature region 
has an incommensurate structure with a diffaction pattern \>ery similar to 
that of the superstructure. Then the obvious choice of the modulation wave 
vector in the superstructure is the one for which corresponding satellite 
reflections in both diffraction patterns have the same set of four indices. 
En other cases it is elegant to choose the modulation wave vector such that 
the strongest group of satellite reflections are of first order. 
The second ambiguity concerns the indices of the satellite reflections for 
a given modulation wave vector. For example, in a 7-fold superstructure in 
which the modulation wave vector has been chosen to be (2/7)c_+, 
reflection 0003 can also be indexed as 062-4. In general, for a structure 
with modulation vector (u/v)c_, a reflection with indices hklm can also 
be indexed with indices h ,k , 1+nu,m-nv, in which n may be any integer. A 
simple convention avoids this ambiguity: the absolute value of the fourth 
index m should be as small as possible, and if two choices result with the 
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same absolute va lue , then the p o s i t i v e one should be p r e f e r r e d . 

The 4-dimensional space group used in the modulation desc r ip t i on of the 
supers t ructure can be der ived from the 3-dimensional space group of the 

supers t ruc ture and that of the average s t r u c t u r e . 
The 3-dimensional part of the 4-dimensional space group (see sect ion 1.3) 
i s i den t i ca l w i th the space group of the average s t r u c t u r e . The second par t 
of the symbol of each 4-dimensianal space group can be obtained as f o l l o w s . 
I f R of the 3-dimensional par t of the operat ion transforms g i n to 
-q, then the second part i s ( Ï ) . I f R transforms g i n to i t s e l f , 
then the second par t of the symbol is determined by the se lec t ion ru les of 
the r e f l e c t i o n s fo r the chosen modulat ion wave vec to r . 

Because for a supers t ruc tu re the phase of the modulation wave cannot be 
chosen f r e e l y ( i n cont ras t to incommensurate s t r u c t u r e s ) , the value of 1 in 
the symmetry operat ions w i th E= -1 must be chosen p rope r l y : 
Take fo r example a n -g l i de plane normal to g in a s t r u c t u r e w i th 
o=-5g* and '«=u/v. The z coordinates of the atoms in the 
supers t ruc ture are inver ted w i th respect to the z coordinate z r, of t h i s 
p lane. In the desc r i p t i on as a modulated s t r u c t u r e t h i s means that the z 
coordinates of the atoms in the basic s t r u c t u r e and the "running d i r e c t i o n " 

of the modulation func t ions are both inver ted w i th respect to t h i s z n . 

Hence t has to f u l f i l the cond i t i on 

s3c = -fx (mod 1) ar 't = *S3 . (2 .4 .1) 

Such a condition does not exist far incommensurate structures, as can be 
seen in the second example in section 1.3. 

Now the calculation of the structure factor. Consider a structure with a 
modulation wave vector given by 2.2.12. From the comparison of equations 
2.2.19 and 2.2.24 it can be concluded that the structure factor of 
reflections of this superstructure can be calculated by using the same 
formula as for incommensurate structures. In the case of the 
superstructure, n in equation 2.2.24 has to be chosen equal to w if w is 
given by 2.2.13. 
The fact that the same formula can be used for incommensurate!y and 
commensuratel y modulated structures is due to the term x_oa.g in 
equation 2.2.25. This term is not necessary for incommensurate structures, 
but is essential for commensurately modulated structures (compare 2.2.25 
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Chapter 3 

3. STRUCTURE DETERMINATION OF THREE MODULATED PHASES IN Rb2ZnBr4. 

3.1. Introduct ion. 

In RbiZnBra -five phase trans-formations are observed at atmospheric 
pressure, at temperatures T,=374, Tc-190, T3=112, T4=77 and TE=59K (see 
e.g. Yamaguchi et al . , 1932 and Nomoto et al . , 1933). The values -found in 
literature for these temperatures scatter around the above mentioned 
values. Rb2ZnBra melts at 753K according to Sawade et al. £ 1977) . The six 
solid phases are denoted as N (normal), I (incommensurate), F 
(ferroelectric), IV, U and VI from high to low temperatures. Tc has a 
hysteresis of about 18K. This value strongly depends on the sample: De 
Pater (1973) observed that part of a crystal remained in phase I even at 
4K, and De Boer (1934) observed that a crystal remained in phase I at 
temperatures below 108K. No hysteresis has been observed for the other 
phase transilions. 

In phase H (above T.) RbïZnBr^ has the 6-K2SQ4 type structure with unit 
cell dimensions a=13.330(3), b=7.679(2) and c=9.753(2) at 373K (De Pater, 
1979). 
In phase I (between T; and Tc) the crystal structure is modulated by a 
displacive modulation wave with the modulation wave vector parallel to 
c_*: g=UC*. The value of 'S is constant at 5/17=9.294 within 
experimental error in the large temperature interval between T| and TC+10K 
(see De Pater et al., 1979 and Iizumi and Gesi, 1933). So here the 
structure of the so-called incommensurate phase is commensurate (section 
4.6) . 
Below the so-called lock-in phase transition temperature Tc the value of ï 
is 1/3, and hence phase F has a 3-fold superstructure. It is not yet clear 
what happens between TC

+18K and Tc. Until recently is has been assumed that 
on lowering the temperature from TC+10K, * increases monotonously from 
0.294 to about 0.31 at Tc, where it jumps to 1/3. Recent measurements of 
Iizumi and Gesi (1933), however, indicate a more complex behaviour. These 
measurements suggest that several extra phase transitions exist in that 
small temperature region, )J jumping at each transition temperature to a new 
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value. 
The symmetry o-f the 3—fold superstructure in phase F (between Tc and T3) is 
Pc2m according to De Pater (197?) and Ueda et al. (1932). Only little is 
Known about the structures of phases IV, V and VI. According to Ueda et al 
(1982) these structures have the same 3—fold unit cell as phase F. They 
observed in phase IV the same rules -for systematically absent X-ray 
re-flections as in phase F, corresponding to a c-gl ide plane normal to â  
and a n-glide plane normal to c_. In phases V and VI they only observed 
the n-glide plane. Yamaguchi et al. (1932) observed that the 
ferroelectricity along b, which appears on cooling at Tc (there-fare, 
this temperature is o-ften called Curie temperature), is present in all 
phases below this temperature. Only in phase IV they also observed a double 
D-E hysteresis loop along the a axis. This indicates that this phase is 
antiferroelectrie along a_. 
Magnetic resonance measurements on Rb2ZnBr4 o-f Belobrova at al . (1991) show 
3 3,Br NGR -frequencies in phase N, 12 in phase F and 32 in phase IV. In 
phase N the intensity o-f one o-f the 3 -frequencies is twice as large as that 
o-f the other two. For phase N and phase F these results correspond nicely 
to the symmetry information mentioned above. The number o-f lines in phase 
IV, however, does not correspond to a 3-fold superstructure with symmetry 
Pc2in. The frequency peaks of phase IV do not have a normal shape. 
Belobrova at al. suggest that either several of the observed peaks are 
close doublets or the structure is incommensurate. 

De Pater (1979) determined the structure of Rb2ZnBr4 in phase N at 373 K 
from a neutron diffraction powder diagram. He used the same technique to 
determine the average structure at 300K (phase I) and at 4K (phase VI) . In 
all cases he fitted the measurements to a structure model with the unit 
cell size and symmetry of phase N. He used split atoms to account for the 
thermal motion at 373K and for the modulation displacements in the other 
cases. 
De Jager (1980) determined the structure of RbiZnBr4 at 398K in a 3-fold 
superstructure approximation, using 730 X-ray reflections, of which 78 are 
satellites. His structure model has the same unit cell size and symmetry as 
the structure of phase F: a 3-fold supercel 1 and space group Pc2m. 

Several other compounds exist of which the crystals have the phase sequence 
normal - incommensurate - 3-fold superstructure. The phase transition 
temperatures Ti and Tc are 553K and 403K for K«2ltCU (Gesi and Iizumi, 
1979a), 303K and 194K for Rb2ZnCl4 (Quilichini and Pannetier, 1983) and 
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129K and 94K for K2SeG4 Clizumi et al,, 1977). 
Many other A2BX4-compounds show incommensurately and commensurate!y 
modulated structures related to the modulated structure of Rb22nBr4 
(chapter 4). 

In this chapter structure determinations of Rb2ZnBr4 at room temperature, 
140K and 95K will be presented. At these temperatures Rb2ZnBr4 is in phase 
I, phase F, and phase IV. The structures at room temperature and 140K have 
been determined from single crystal X-ray measurements. For the structure 
at 95K single crystal neutron diffraction data have been used. The 
structures have been refined using the computer program described in 
chapter 2. 

3.2. Experimental■ 

Transparent single crystals of Rb2ZnBr4 have been grown from aqueous 
solution containing RbBr and ZnBr2 in the molar ratio 2:1 (RbBr: 99.?'/., 
Alpha Products; ZnBr2: 99.3X, Ventron GmbH). At room temperature, from a 
fresh solution first another compound crystallizes. The molar ratio of the 
two components in the solution changes then. Finally, clear Rb2ZnBr4 
crystals appear. At 30°C only Rb2ZnBr4 crystals grow from a fresh solution. 
Attempts to make small spheres (diameter < 0.3mm) of Rb2ZnBr4 failed. 
Therefore the X-ray measurements have been performed on small ellipsoid-
shaped crystals. Because of the strong absorption of X-rays in Rb22nBr4 
(the linear absorption coefficient of Mo K« radiation in Rb2ZnBr4 is 
jj=28200m-') , special care is necessary for the absorption correction 
(section 3.4) . 
Experimental details about the diffraction measurements at the three 
temperatures are given in table 3.2.1. The X-ray measurements have been 
performed with an Enraf Nonius CAD4 four circle diffractometer. During the 
measurements at 140K the crystal has been cooled by a controlled flow of N2 
vapour. The neutron diffraction measurements have been carried out by means 
of the four circle diffractometer at the HFR reactor in Petten. The crystal 
was mounted in a He-flow cryostat (Herbert and Campbell, 1977). 

At the three temperatures the main reflections and the first order 
satellites have been measured in one octant. No higher order satellites 
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TABLE 3.2.1. Data on the structure determinations o-f Rb2ZnBr4 

temperature CK] 
stability tK3 

radiation 
monochromator 

2 9 3 ( 2 ) 
±5 

Mo K« 8 . 7 1 6 7 8 
g r a p h i t e 

e l 1 i p s o i d 
8 . 2 1 - 8 . 2 7 

am 

3 0 ° 

148(3 ) 
±3 

Mo K« 8 . 7 1 0 7 5 
g r a p h i t e 

e l 1 i p s o i d 
0 . 2 3 - 0 . 2 3 

130 

3 0 ° 

9 5 ( 1 ) 
+ 0 . 2 

n e u t r o n s 1 . 3 0 4 A 
d o u b l e Cu ( 2 2 0 ) 

r o u g h s p h e r e 
3 . 5 

1388 

3 8 . 3 ° 3 8 ° 

P c 2 m 

1 3 . 1 9 8 ( 5 ) $ 
7 . 5 9 4 ( 4 ) * 
3x 9 . 6 1 4 ( 3 ) t 

3 8 . 3 ° 

P c 2 m 

1 3 . 1 3 4 ( 4 ) 
7 . 5 9 9 ( 2 ) 
3x 9 . 0 2 3 ( 5 ) 

crystal shape 
diameter [mm] 

max. meas. time [si 

space g r o u p PcmnOGU) ( s s ï ) P c 2 m 

a I S ] 1 3 . 3 3 8 ( 3 ) tt 
b t S l 7 . 0 5 6 ( 2 ) tt 
c [ S ] 9 . 7 8 7 ( 2 ) tt 

ï (g=-5c*) 8 . 2 9 3 t, 1/3 1/3 

number o f r e f 1 . 
m a i n 1512 1494 582 
s a t e l l i t e 2654 3882 980 
t o t a l 4166 4496 1432 

removed r e - f l e c t i o n s : 
e x t i n c t i o n 8 2 8 0 , 8 4 0 8 , 1038 

1030 , 4008 
x / 2 c o n t a m i n a t i o n 2 0 0 8 , 1100 2 0 0 0 , 1100 

w e i g h t i n g scheme l / t f » ( F 0 ) l / ( » 2 ( F 0 ) + ( . 0 5 F „ ) 2) l / t r 2 ( F 0 ) 

number o-f p a r a m e t e r s 
b a s i c s t r . p o s i t i o n 13 28 28 
mod. - f o u r , c o e f - f . 16 42 42 
t e m p e r a t u r e p a r a m . 26 42 42 
s c a l e - f a c t o r 1 1 1 
t o t a l 56 185 185 

l a r g e s t p a r a m e t e r s h i - f t 
i n l a s t r e - f i n e m . c y c l e 0 . 0 1 2 0 0 . 1 7 c 8 . 2 1 » 

Rui o-f a l l r e f l e c t i o n s 8 . 8 8 8 0 . 1 1 9 8 . 0 5 0 
Ru o-f ma in r e - f l e c t i o n s 0 . 0 6 3 0 . 8 8 8 8 . 8 4 0 
RUJ o-f s a t . r e - f l e c t i o n s 0 . 1 6 7 8 . 1 5 4 0 . 8 7 3 

D [ J ] Ü 8 . 8 3 7 8 . 8 4 7 8 . 8 2 5 

tt t a k e n -from De P a t e r ( 1 9 7 9 ) . 
$ t h e s e l a t t i c e p a r a m e t e r s have a l a r g e r e r r o r t h a n t h e e . s . d . 

i n d i c a t e , b e c a u s e o-f t h e s t r o n g a b s o r p t i o n . 
& - a k e n -from I i z u m i and Ges i ( 1 9 8 3 ) . 
* 0 i s d e f i n e d i n e q u a t i o n 3 . 4 . 2 . 
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have been measured because they are not visible on precession photo's. Each 
reflection was measured until the desired accuracy <<r( I) s(0.021) or the 
maximum measuring time was reached. In the neutron diffraction measurements 
the measurement of a reflection has been stopped after 908s in case the 
intensity was very low (Uff(D). For negative measured intensities I has 
been put to zero. All these weak reflections, however, take full part in 
the data set. The lorentz-Polarizatlon correction of the X-ray measurements 
have been applied according to Azaroff (1955). No extinction correction has 
been used. 

During the refinements of the structures at room temperature and 148K, a 
few reflections have been removed from the data set (see table 3.2.1). The 
reflections suspected of extinction have small 9, a very high intensity and 
a calculated structure factor which is much higher than the observed one. 
The reflections with x/2 contamination have a low intensity, a calculated 
structure factor which is much lower than the observed one and a very 
strong reflection at the position with double indices. It has been checked 
that the V 2 contamination is indeed of the proper magnitude to explain the 
discrepancy. 

The atomic scattering factors and the dispersion corrections of Rb(+), 
Zn(2+) and Br(-) for Mo Ka radiation are taken from International Tables IV) 
(1974). The neutron diffraction scattering amplitudes of Rb, Zn and Br, 
8.703, 0.5630 and 0.679 respectively, are taken from Koester and Yelon 
(1982) . 

3.3. Symmetry. 

Although the room-temperature phase of Rb2ZnBra is a commensurate 
superstructure ("5= 5/17, cf. section 4.6), it shows systematic extinctions 
which strongly suggest a (3+1)-dimensional space group as the best 
description of its symmetry. The reflection conditions which we observed on 
X-ray precession photographs are shown in table 3.3.1. 
In our diffractometer results, these rules are obeyed as well. Since the 
three symmetry operations listed in table 3.3.1 generate the complete group 
Pcmn(00«)(ssT) , it can be expected that this pseudo-"prototype symmetry" 
(cf. section 4.2.2) will lead to a satisfactory description of the 
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(i) 0klm : 1+m = even =* cis') 
Cii) h01m : m = even 4 m(s) 
(iii) hk93 : h+k = even 4 n(ï) 

structure. It has indeed turned out to be the best basis for refinement. 
The true symmetry of the superstructure has not been solved, in spite of 
considerable effort. For "J=5/17, only the elements c(s) and n(T) in the 
above symbol correspond to 3-dimensiona! elements, viz. c and n, in the 
required unit cell with c:=l?c. The element m(s) is lost. This can be seen 
e.g. from the reflection condition Cii) which for the multiple cell 
(L=171+5m) does not lead to 3 parity condition on L in h0L. 
Accordingly, the true space group would become Pc2in in the multiple cell. 
This is in flagrant contradiction with two observations: 
- Crystals grown from aqueous solution at about 30 °C have a very 
pronounced 222 symmetry (De Pater, 1973; De Wolff, 1980). The same point 
group was also seen in experiments by Dam and Janner (1983). Nith a true 
symmetry Pc2m, however, the point group would be m2m; and m2m is not even 
a subgroup of 222. 
- Neutron diffraction experiments of Iizumi and Gesi (1983) show that 
reflections 0219, 0201 and 022T, at 25 °C, have intensities differing 
significantly from zero. These reflections are not allowed by condition 
(i), so they exclude the presence of a c-glide plane in the actual 
superstructure. It should be remarked, however, that their intensities are 
very small indeed. Therefore, it must be concluded that the structure 
almost has symmetry Pcmn(00"s) (ssT) . (The choice of a- and b axes was not 
stated by Iizumi and Gesi. Judging from other reflection intensities we 
concluded that their a (b) is our b (a), so in the indices mentioned above 
h and k have been interchanged with respect to those given in their paper.) 
The two observations together suggest that the actual space group is 
P2t2,2, (00-<r)(ïïl) . 
Certain physical properties have been checked by other authors, mainly with 
a view to test a possible departure from centrosymmetry. All results, 
however, have been negative, so that no definite conclusion can be drawn: 
- Smid (1984): no optical second harmonic generation (detection limit: 10~4 
times the second harmonic generation level of quartz); 
-Yamaguchi et el. (1982): no ferroelectricity or pyroelectricity. 

A definite answer to the question what the space group of Rb2ZnBra in the 
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room temperature phase is, cannot be given. Structure refinements have been 
done in three space groups (section 3.4). Pcmn(90lr) (ssT) gives the best 
results. Hence, the room temperature structure of Rb2ZnBra can at least in 
qood approximation be described by this space group. 

The room temperature structure will be treated as incommensurate in the 
structure refinements, notwithstanding its rational modulation wavevector. 
Table 3.3.2 gives the symmetry operations of space group Pcmn(00'a) (ssT) . 
The atoms on the mirror plane (m(s)) are at special positions. As explained 
in section 2.3, the modulation functions di(t) and ds(t) of such atoms, 
describing the displacement components in the a_ and c_ directions, 
cannot contain odd harmonics. The modulation functions d2<t) of these atoms 
cannot contain even harmonics. These symmetry restrictions exist together 
with the usual ones on the basic structure positions and the temperature 
parameters. 

No inconsistencies exist concerning the space group of phase F: Pc2in. 
Rb2ZnBr4 is ferroelectric along b in this phase (Yamaguchi et al., 
1982) and generates second harmonic light at a level of about 0.1 times 
that of quartz (Smid, 1934). The systematic absences for the c- and n-glide 
planes are clearly present (Ueda et al., 1932). A few apparent violations 
of these systematic absences in our measurements were shown to be caused by 
X/2 contamination. 

The space group of phase IV is still a puzzle. Despite the fact that the 
observations of Yamaguchi et al . (1982) and Belobrova et al . (1931) 
indicate that the structure of this phase is different from that of phase 
F, we could not find differences in the diffraction symmetry: the 
systematic absences of the c- and n-glide planes are still present (as has 
also been found by Ueda et al,,1932): no extra reflections could be found 
on the a*-, b*- or c.* axes; no tripling of a or b could 
be found; it has been checked that the modulation wavevector is c_*/3, 
and not e.g. 3c_*/8 as suggested by the results of the magnetic 
resonance measurements of Belobrova et al. (1981). Moreover, Just like in 
phase F, in this phase Rb2ZnBra is ferroelectric along b (Yamaguchi et 
al ., 1982) and generates second harmonic light (Smid, 1934). Therefore it 
is concluded that the structure of this phase can be described as a 3-fold 
superstructure with space group Pc2in, like phase F. This symmetry has been 
used for the structure determination. 
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TABLE 3.3.2. Space group operations o+ Pcmn(00'W Cssl> . For each 
operation, P, _s, E and t s.r9 given. 

1 
0 
e 
l 
e 
0 

i 
e 
e 

0 
1 
@ 
e 

- i 
0 

0 
ï 
0 

0 
0 
1 

0 
0 
1 

0 
0 

-1 

1/2 1, 1, 1/2 

-1, 0 

1 
0 
0 

-1 
0 
0 

- 1 
0 
0 

1 
0 
0 

0 
-1 

0 

0 
1 
0 

0 
-1 

0 

0 
1 
8 

0 
e i 

- ï | 

e 
0 

- ï 

0 
0 
ï 

o 
0 
1 

j 

, 

, 

1/2 
0 

1/2 

r 0 
1/2 
0 

1/2 
1/2 
1/2 

' 0 
0 
8 

-i, 1/2 

, -1, 1/2 

TABLE 3 . 3 . 3 . The 4 - d i m e n s i o n a l symmet ry o p e r a t i o n s u s e d t o d e s c r i b e 
3 — f o l d s u p e r s t r u c t u r e w i t h s p a c e g r o u p P c 2 i n . 

1 
0 
0 

1 
0 
0 

0 
1 
0 

0 
1 
0 

0 
0 
1 

0 
0 

-1 

1/2 
, 1 e 

1/2 

, 
1/2 
1/2 
1/2 

-1 
e 
0 

i 
a 
0 

0 
1 
0 

0 
1 
0 

0 
8 

- 1 

e 
8 
i 

I 1 , 

TABLE 3.4.1. Comparison of refinements using reflections corrected for 
absorption with (A) and without <B) the anisotropic part. 
N is the number of used reflections, wp is the weighting scheme, Rw is 
the residual and D is the average of the differences between the maximum 
and minimum of the distance types Zn-Br; (i=l,2,3,4). 

nr 
temp used 
CK] r e f l e c t i o n s N w,. Riu DCS] Ru D I S ] 

1 293 ! > 1 0 f f < D 528» l / t f 2 (Fo> 
2 293 h2+k2+12<100 1673* l / t f 2 ( F o > 
3 293 all 4166 l/tf*(Fo> 

.0640 .051 .0689 .051 

.0771 .038 .0733 .937 

.0884 .037 

4 
5 
6 
7 
8 

140 
140 
149 
149 
149 

I > 1 0 J U ) 

a l 1 
a l 1 
a l 1 
a l 1 

390* 
4498* 
4496 
4498* 
4496 

l/tf»(Fo) 
l/o*(Fo> 
l/o*(F„) 

I/<»2(Fo)+<.05FO>*) 

.9657 .067 

.0771 .952 

.0735 .056 
l/(»2<F<,)+<.85Fo>*) .1206 .047 

. 118 .047 

.0730 .067 

.0796 .057 

including two reflections which are strongly contaminated by "A/2. 
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The 3-fold superstructures of Rb2ZnBr<, at 149K and 95K have been refined 
using space group Pc2lnCBBW(sTT), of which the symmetry operations are 
given in table 3.3.3. Condition 2.4.1 is fulfilled for operations n(TJ and 
2,(T), as can be checked in this table. As explained in section 2.4 this 
condition must be fulfilled for a proper description of a superstructure 
using 4-dimensional symmetry. 

3.4. Absorption correction and refinement. 

The refinements are carried out with the computer program described in 
chapter 2. The value of n in equation 2.2.24 has been 5 or 7 in the 
refinements of the room temperature structure. Only in the final stage of 
these refinements n=7 has been used. There is not much difference between 
using n=5 or n=7. n=7 gives a slightly lower residual, but needs more 
computation time. Because second and higher order satellite reflections are 
very much weaker than the first order ones (they were not seen by X-ray 
diffraction), only the first harmonics of the modulation functions are 
considered in the refinements. 
The 3-fold superstructures have also been refined using the above mentioned 
computer program. In these cases, n=3 has been used, together with the 
symmetry operations mentioned in table 3.3.3. 
All refinements are based on structure factors. The residua] CRU> is 
calculated using 

E wflF0,-|Fcl. II* 
Ru = 2 Wi-Fof2 

r 
in which the summations are over all used reflections, Wr is the weight of 
reflection r, Fcr is the calculated structure factor and For is the 
observed structure amplitude. 

The linear absorption coefficient Cjtl) of Mo Ka radiation in Rb2ZnBro is 
28209m-', that of neutrons <5s=1.3848) is 8.2m"'. For the neutron 
diffraction data no absorption correction is needed, but for the X-ray 
measurements a large correction is necessary. Because the absorption is 
very strong and because the crystals used for these measurements are not 
spheres, the usual isotropic correction (International Tables II, 1959) is 
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not sufficient. Therefore, the reflection intensities have been corrected 
with the computer program CAMEL JOCKEY of Flack (1974, 1975). 
The absorption correction is derived by this program from a separate set of 
measurements, consisting of 17 non-equivalent reflections and their 
symmetry equivalents, each measured for i£=nx20° (n=-4,-3,-2,-l,0,1,2,3,4; ^ 
is the rotation angle around the reflection vector)., as far as the geometry 
of the diffractometer allowed. In total, 1227 of these measurements were 
done at room temperature 'some of them are double) and 1160 at 140K. If the 
crystal would have been a sphere, then for each of the 17 non-equivalent 
reflections all the measurements should give the same intensity within 
exper imen tal error. The prooram calculates the average for each of the 17 
groups of intensities, and calculates the correction necessary to make the 
eight measurements at t£=0° in each group equal to this average. This 
correction, which is a function of the diffractometer angles, is applied to 
the intensities in the main data set, together with the usual isotropic 
correc tion. 

Because the crystals are not spheres, the choice of the radius CR) for the 
isotropic part of the absorption correction is ambiguous, as pointed out by 
Flack (1974). For both crystals used for X-ray measurements, uR=3.5 has 
been chosen. For the room temperature measurements, also ,uR=3.8 has been 
tried, in order to investigate the effect of a different choice of radius. 
Using 1673 reflections (those with h2+K2+!2<I88) , after the refinement the 
residuals were Rw=6.67713 and Rw=6.07719 for ,uR=3.5 and uR=3.8 
respectively. In the case of ,uR=3.S, the diagonal temperature parameters 
were about 0.082 larger than in he case of ,uR=3.5, while the other 
parameters did not show noticable differences. Therefore it can be 
concluded that the only effect of choosing a different radius is that the 
refinements result in slightly different temperature parameters. 
For the crystal used for the room temperature measurements, the program 
used 4 nonzero coefficients (including a scale factor) in the function that 
describes the transmission factor. For the crystal of the- 148K 
measurements, 9 nonzero coefficients have been used. 
The effect of the absorption correction can be evaluated by comparing 
results of refinements using reflections which are corrected as described, 
with the results of refinements using the same reflections corrected only 
by the isotropic part of the absorption correction. These results are shown 
in table 3.4.1. It can be concluded from the residuals in this table, that 
the absorption correction according to Flack is significantly better than 
the mere isotropic correction. The correction has more effect on the 
Stronger reflections because the corrections are larger for stronger 
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reflections. 
Besides the residual, another quantity is used to obtain information about 
the quality of the model. This quantity CD) is calculated from the Zn-Br 
distances within the rather rigid ZnBr-4 tetrahedra. The use of this 
quantity is based on the fact that all Zn-Br distances of a certain type 
(e.g. Zn-Bn) will be equal in good approximation. This is true because the 
tetrahedra in different subcells have about the same surroundings since the 
deviation of the structure from the symmetry of the normal phase CN) is 
smal 1. D is defined by 

1 4 D = - E [ ("Zn-Br-ii - (Zn-Br;) 3 . (3.4.2) 
4 i=l max min 

The structures at room temperature and at 95K indeed have quite small 
values of D: 0.837A and 0.025S respectively. However, the resulting 
structure at 140K (using weighting scheme Wp=l/ffS:<Fo)) has a quite large 
value: D=8.056B. Assuming that perhaps the absorption correction for the 
measurements at this- temperature is not as good as desirabl e, weigh t ing 
scheme Wr-=l/(tf2 (FQ> + (8.05FO)2') has been used. This weighting scheme gives a 
lower weight to stronger reflections. If something is wrong with the 
absorption correction, then those reflections will be more affected than 
weaker ones. The result is shown in table 3.4.1: the value of 0 is smaller 
far the new weighting scheme. Therefore, the structure of this refinement 
is considered to be the better approximation of the real crystal structure 
of RbzZnBra at 140K. 

Many attempts have been made to refine the room temperature structure with 
space group Pc2in(80*)(sTT), using 1Ó73 reflections (h*+k*+ 12< 100) or 1359 
reflections (the 557 main reflections with h*+k*+1*<180 and the 882 
satellites with h2+ki+l2<80). These refinements have not been done with 
more reflections because that would not change the results much (compare D 
of refinements 2 and 3 in table 3.4.1), and it would require much more 
computation time. The number of parameters in these refinements is 180: 28 
position parameters, 42 modulation parameters, 37 temperature parameters 
(isotropic temperature factor for Zn) and 1 scale factor. Several sets of 
starting parameters have been tried, several refinement strategies have 
been used and also soft constraints on the Zn-Br distances by using a 
penalty function (Yamamoto, 1933) in the first stage of refinements have 
been used. The residuals resulting from these refinements are about 8.8Ó3. 
According to Hamilton (1965) these values are significantly lower than the 
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4941(8) 
1922(3) 

4588(3) 
-44(8) 

1888(3) 

s t r u c 
ions ( 

951! 

die 

3(5) 
174(4) 
23(6) 

27(6) 
-223(5) 

6(7) 

-7 (6 ) 
-14(4) 

37(7) 

-27(5) 
-172(4) 

28(5) 

- 3 (5 ) 
593(4) 

- 2 (4 ) 

314(4) 
-243(7) 
283(4) 

-315(4) 
-276(4) 

-283(4) 

t u r e 
<18 4 ) . 

d i , 

-15(4) 
284(4) 

-3(4) 

58(4) 
-28(5) 
-25(4) 

-8(4) 
-132(4) 
-18(6) 

-52(5) 
-568(5) 
-14(4) 

6(4) 
-496(7) 
-33(6) 

-218(4) 
187(6) 
46(4) 

286(4) 
185(6) 
-46(4) 

TABLE 3.5.2. The anisotropic temperature parameters E10"ft«*3, 
corresponding to temperature- -factor exp( -2ifJEi KU, i<h , hua, *au*) 

atom 

Rbi 

Rb2 

2n 

Bri 

Bn 

Br j 

Br, 

(111 
U23 

354(6) 
8 

1178(14) 
8 

296(7) 
8 

462(9) 
8 

338(7) 

8 

982(11) 
-46(4) 

293K 

U22 

111! 

593(9) 
29(5) 

494(11) 
-55(8) 

279(7) 
-4 (5 ) 

1152(18) 
-74(6) 

1165(22) 
-121(6) 

373(7) 
258(9) 

833 
111! 

367(6) 
8 

349(8) 
6 

292(7) 

8 

248(4) 
6 

414(8) 
8 

431(8) 
-316(8) 

U11 
U2J 

254(4) 
-22(18) 

454(12) 
-8(19) 

217(6) 
4(18) 

374(8) 
-23(15) 

258(7) 
-18(17) 

464(14) 
-25(12) 

549(15) 
18(12) 

148K 

Uu 
l), 3 

349(8) 
9(5) 

456(11) 
- 4 (7 ) 

216(7) 
6(5) 

546(13) 
-34(4) 

581(12) 
-54 (4 ) 

237(13) 
133(13) 

244(14) 
71(13) 

Ö33 
Uu 

172(4) 
-1 (13) 

176(7) 
98(21) 

148(6) 
- 2 ( 16) 

119(6) 
-81(16) 

288(7) 
53(15) 

291(13) 
-145(12) 

386(14) 
98(12) 

Un 
1)23 

113(9) 
22(29) 

444(13) 
68(28) 

96(11) 
23(27) 

178(12) 
8(24) 

137(16) 

36(23) 

346(18) 
-37(17) 

382(19) 
-8(19) 

95K 
Ö22 

D13 

232( 11) 
2(8) 

396(13) 
6(9) 

164(11) 

1(9) 

345( 17) 
-23(9) 

441(17) 
-46(9) 

144(21) 
78< 17) 

73(28) 
118(17) 

U33 
U12 

128(9) 
-22(21) 

112(18) 
-8 (32) 

48(18) 
-27(33) 

45(9) 
-79(25) 

124(11) 
49(24) 

144(17) 
-124(18) 

195(19) 
54(17) 
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value o-f 0.Q771 for space group Pcmn ( 09'5) ( ssT) , but the corresponding 
structures have values of D above 0.09a (mostly about 0.12A). Moreover, 
parameters which are zero because o-f symmetry in space group 
Pcmn(00 ï) Cssï) , and in principle unequal to zero in Pc2i n ( 887F) t'sTT) , have 
strongly varying values: the x0z parameters o-f the atoms on the pseudo-mCs) 
plane vary more than 0.01 and the modulation parameters more than G.005. 
This could be caused by systematic errors in the observed structure 
-factors, which remained a-fter the absorption correction. The above 
mentioned parameters are adapted to these errors, thus lowering Rw. They 
get values deviating strongly -from Pcmn(001rt (ssT) symmetry, because they 
can compensate each others Rw-increasing effects, due to the very strong 
correlations between these parameters in the least squares procedure. The 
same is observed during refinements in space group P2\ 2i 2j (0030 (77 1) . 
Because the initial stages o-f ret inemen ts in this space group resulted in 
much smaller drops o-f Rw than in space group Pc2i n (8010 (s77) , this space 
group has not been investigated further. 
Therefore, the room temperature structure of Rb2ZnBr4 is supposed to be 
appro); i ma ted best by the structure resu Iting from the refi nemen t in space 
group Pcmn(00-ï) CssT) . 

3.5. Results. 

In the table 3.5.1 to 3.5.6 the results of the structure refinements are 
presented. The fractional coordinates of the basic structure and the 
fourier coefficients of the modulation functions are given in table 3.5.1 
for the three structures. The actual position >L 0* an atom in a given 
subcelI of the modulated structure (incommensurate or commensurate) can be 
represented by 

x = n_ + x0 + d(<n+x.ö) .g> j (3.5.1) 

in which n_ is the position of the subcel1, x0 is the basic 
structure position of the atom, g is the modulation wavevector and 
d(t) is the displacement vector function, defined by its components 
di(t) , which are the modulat ion functions. 
For the three structures described in this chapter, the modulation 
functions are given by 
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TABLE 3.5.3. The amplitudes (As, xifl4) and phases («;) of the modulation 
functions. 5/12 has been added to the phases of the modulation functions 
in the room temperature structure to make them comparable to the phases 
of the two other structures. 

293K 14ÖK ?5K 

Rbi 

Rb2 

Zn 

Bn 

Br2 

Br3 

Bra 

1 

3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 

0 
147(4) 
0 
6 

143(5) 
0 
0 
93(4) 
0 
0 

354(5) 
0 
0 

520(5) 
0 

252(2) 
193(3) 
150(3) 

.155(4) 

.527(5) 

.716(6) 

.694(2) 

.399(2) 

.916( 1) 

.468(2) 

.022(3) 

33(3) 
223(3) 
14(5) 
56(4) 
198(4) 
32(5) 
12(4) 

138(3) 
11(5) 
53(3) 
535(4) 
41(4) 
13(3) 

699(5) 
23(4) 
341(3) 
251(5) 
247(4) 
348(3) 
291(5) 
184(4) 

.37(1) 

.134(2) 

.75(5) 

.19( 1) 

.527(3) 

.34(2) 

.33(5) 

.730(4) 

.76(7) 

.67( 1) 

.699(1) 

.03( 1) 

.27(4) 

.892( 1) 

.77(3) 

.913(1) 

.460(3) 

.038(2) 

.413(1) 

.453(3) 

.508(3) 

15(4) 
268(4) 
23(6) 
57(6) 

225(5) 
26(6) 
11(6) 
133(4) 
41(7) 
59(5) 

585(5) 
26(5) 
7(4) 

769(7) 
33(6) 
383(4) 
265(7) 
286(4) 
373(4) 
295(6) 
208(4) 

.78(5) 

.138(3) 

.98(4) 

.17(2) 

.520(3) 

.79(4) 

.63(9) 

.731(5) 

.93(3) 

.67( 1) 

.702(1) 

.89(3) 

.3( 1) 

.890( 1) 

.74(3) 

.904(2) 

.434(4) 

.026(2) 

.410(2) 

.442(3) 

.535(3) 

Note that in chapter 5 subscript i of A; and <?; has a different meaning. 

TABLE 3.5.4. The equivalent isotropic temperature parameters 
U(eq)=(UM+U22 + U33)/3 [18-***]. 

Rb, 
Rb2 

Zn 
Br, 
Brs 
Br3 
8P4 

438(4) 
745(6) 
289(4) 
665(7) 
639(8) 
664(5) 

265(4) 
427(6) 
189(4) 
345(6) 
346(5) 
377(8) 
374(8) 

157(6) 
317(7) 
85(6) 
196(7) 
235(8) 
217(11) 
217(11) 
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d[<t) = diccos2Ttt + d,!sin2irt . (3.5.2) 

In table 3.5.2 the amsotropic temperature parameters are given for the 
three structures. The parameters in tables 3.5.1 and 3.5.2 are the direct 
results of the refinements. The only exceptions are the X0a parameters in 
the 140K and 95K structures, because the origin in these stuctures has been 
shifted in the b direction in order to get the baricentre of the unit 
cell contents in the middle of the unit cell. In the room temperature 
structure the baricentre is automatically at this position because of the 
m(s' mirror piane. 
The modulation functions can also be written as 

d,(t) = A; COS2TT( t-<?;) , (3.5.3) 

with A; and w-, being respectively their amplitude and phase. The values of 
A; and <t>, of the three structures are given in table 3.5.3. To the phases 
at room temperature we added 5/12 in order to make them comparable with the 
phases of the other structures. 
Table 3.5.4 lists the equivalent isotropic temperature parameters. 
For the two 3-fold superstructures the fractional coordinates of the 
asymmetric set of atoms are given with respect to the supercel] axes in 
table 3.5.5. These coordinates ^r& calculated from the parameters of table 
3.5.1 using equations 3.5.1 and 3.5.2. 
Table 3.5.4 gives the distances in the ZnBr4 tetrahedra. These distances 
are not corrected for thermal motion. 
In the tables, the numbers between brackets are the estimated standard 
deviations. 

The residuals for the three structures are listed in table 3.2.1. The 
residuals for only the main reflections and only the satellites are also 
given. The residuals for only the satellites are larger than those for only 
main reflections because the satellites are much weaker, on the average, 
than the main reflections. This results in a smaller denominator in 
equation 3.4.1, and hence a larger Rw. 
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TABLE 3.5.5. The atomic fractional coordinates <xl8 
the supercel 1 axes a, b and c_i=3c_. 

with respect to 

atom 

Rbi i 
Rbt i 
Rbi 3 

R b 2 , 
Rb«2 
Rb23 

Z n , 
Zn2 
Zns 

B r , , 
B r , 2 

B r , 3 

B r 2 , 
B r 2 2 

B r 2 3 

B r 3 , 
Br = 2 
B r 3 3 

B r a , 
Bra 2 
B r o s 

X i , 

3 2 1 9 ( 3 ) 
3 2 8 7 ( 3 ) 
3 2 6 1 ( 3 ) 

6 0 1 6 ( 5 ) 
5 9 1 8 ( 5 ) 
5 9 7 6 ( 5 ) 

5 7 3 5 ( 4 ) 
5 7 9 4 ( 4 ) 
5 7 7 4 ( 4 ) 

5 7 5 8 ( 4 ) 
5 8 3 2 ( 3 ) 
5 8 2 7 ( 4 ) 

4 1 4 9 ( 3 ) 
4 1 5 5 ( 3 ) 
4 1 3 4 ( 3 ) 

6 8 8 6 ( 4 ) 
é 3 4 7 ( 4 ) 
6 8 2 8 ( 4 ) 

6 3 6 3 ( 4 ) 
6 9 1 5 ( 4 ) 
6 4 2 8 ( 4 ) 

140K 
x j a 

2 6 9 3 ( 8 ) 
2 3 2 3 ( 8 ) 
2 4 1 2 ( 8 ) 

2 5 4 8 ( 1 8 ) 
2 6 9 1 ( 1 8 ) 
2 3 5 8 ( 1 8 ) 

2 4 8 1 ( 3 ) 
2 4 4 5 ( 3 ) 
2 6 2 7 ( 3 ) 

1958(9 ) 
2 6 7 1 ( 9 ) 
2 8 1 5 ( 9 ) 

2 9 5 5 ( 9 ) 
1984 (9 ) 
2 9 5 1 ( 9 ) 

4 7 6 6 ( 8 ) 
5 1 9 7 ( 8 ) 
4 9 3 4 ( 8 ) 

- 2 7 2 ( 8 ) 
2 2 4 ( 8 ) 
- 9 4 ( 8 ) 

x l 3 

1785(2 ) 
5 8 4 3 ( 2 ) 
3 3 8 8 ( 2 ) 

2 9 8 9 ( 2 ) 
6 2 5 6 ( 2 ) 
9 5 9 4 ( 2 ) 

9 2 8 ( 2 ) 
4 2 5 3 ( 2 ) 
7 5 9 2 ( 2 ) 

1758(1 ) 
5 8 6 K 1) 
8413< 1) 

5 8 4 ( 2 ) 
3 9 1 3 ( 2 ) 
7 2 5 9 ( 1 ) 

7 1 8 ( 2 ) 
3 9 1 8 ( 2 ) 
7 2 7 4 ( 2 ) 

5 6 1 ( 2 ) 
3 9 9 9 ( 2 ) 
7 2 9 7 ( 2 ) 

X j l 

321 1 (5 ) 
3 2 2 1 ( 5 ) 
3 2 3 7 ( 5 ) 

60 11 (6 ) 
5 9 1 6 ( 6 ) 
5 9 8 3 ( 7 ) 

5 7 7 9 ( 6 ) 
5 7 9 2 ( 6 ) 
5 7 9 6 ( 6 ) 

5 7 3 3 ( 5 ) 
5 8 2 1 ( 5 ) 
5 8 2 1 ( 5 ) 

4 1 5 6 ( 5 ) 
4 1 6 3 ( 5 ) 
4 1 5 1 ( 5 ) 

6 9 0 9 ( 5 ) 
6 3 2 1 ( 5 ) 
6 8 8 1 ( 5 ) 

6 3 6 7 ( 5 ) 
6 9 5 2 ( 5 ) 
6 4 2 2 ( 5 ) 

95K 
X12 

275 1( 11) 
2 3 1 0 ( 1 1 ) 
2 4 0 5 ( 1 1 ) 

2 5 5 K 13) 
2 6 9 6 ( 1 3 ) 
2 3 1 1 ( 1 3 ) 

2 4 1 1 ( 4 ) 
2 4 5 2 ( 4 ) 
2 6 2 8 ( 4 ) 

1921( 11) 
2 6 9 7 ( 1 1 ) 
2 8 7 4 ( 1 1 ) 

2 9 9 8 ( 1 1 ) 
1849 (12 ) 
3 0 8 9 ( 1 2 ) 

4 7 6 0 ( 1 0 ) 
5 2 0 0 ( 1 0 ) 
4 8 6 4 ( 1 0 ) 

- 2 7 8 ( 1 8 ) 
220 ( 18) 

- 1 3 2 ( 1 0 ) 

X ; 3 

1789(2 ) 
5 8 3 2 ( 2 ) 
8 3 7 8 ( 2 ) 

2 9 1 3 ( 2 ) 
6 2 6 8 ( 2 ) 
9 5 9 3 ( 2 ) 

9 3 1 ( 2 ) 
4 2 4 4 ( 2 ) 
7 5 9 3 ( 2 ) 

1743(2 ) 
5 0 7 2 ( 2 ) 
8 4 1 9 ( 2 ) 

5 7 5 ( 2 ) 
3 9 0 7 ( 2 ) 
7 2 5 8 ( 2 ) 

7 3 3 ( 2 ) 
3 9 8 8 ( 2 ) 
7 2 8 1 ( 2 ) 

561 (2 ) 
4 8 8 7 ( 2 ) 
7 3 2 8 ( 2 ) 

TABLE 3.5.6. The interatomic distances in the ZnBr4 tetrahedra [10_5ft]. 
The estimated standard deviations are 0.004ft, 0.008A and 0.01A for the 
distances at 293K, 140K and 95K respectively, av is the average of the 
distances of a type and md is the maximum difference between two 
distances of a type. 

distance 
type 

Zn-Br, 
Zn-Brj 
Zn-Br3 

Zn-Bra 

Zn-Br 

Bn-Br! 
Br,-Br3 
Bri-Bi-4 
Br!-Br3 
Bn-Br» 
8'-.-Br4 

F.r-Br 

293K 
distances 

2368 . 
2378 . 
2361 . 
236! . 

2360 . 

3982 . 
3876 . 
3876 . 
3795 . 
3795 . 
3838 . 

3795 . 

. 2378 

. 2199 

. 2414 

. 2414 

. 2414 

. 4819 

. 3937 
. 3937 
. 3874 
. 3874 
. 3988 

. 4819 

av 

2365 
2394 
2388 
2388 

2384 

4888 
3967 
3987 
3827 
3827 
3869 

3B98 

md 

18 
31 
54 
54 

54 

38 
61 
61 
79 
79 
61 

224 

dt 

2417 
2484 
2382 
2483 

2337 

4843 
3959 
3984 
3885 
3814 
3914 

3812 

148K 
stances 

2337 
2411 
2416 
2368 

4826 
3876 
3858 
3824 
3868 
3857 

2373 
2381 
2418 
2396 

2418 

4818 
3889 
3984 
3862 
3812 
3855 

4843 

av 

2376 
2399 
2485 
2386 

2392 

4826 
3988 
3915 
3857 
3831 
3875 

md 

88 
39 
35 
43 

81 

34 
84 

126 
61 
56 
59 

3982 231 

95K 
distances 

2374 
2414 
2394 
2433 

2374 

4843 
3944 
3898 
3895 
3833 
3926 

3818 

2397 
2482 
2485 
2383 

4862 
3916 
3988 
3818 
3898 
3885 

2388 
2398 
2482 
2393 

2433 

4813 
3888 
3991 
3867 
3833 
3847 

4862 

av md 

2384 23 
2495 16 
2481 11 
2483 49 

2398 59 

4939 49 
3913 64 
3927 181 
3869 76 
3852 57 
3886 79 

3913 244 
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3.6. Discussion . 

By c o m p a r i n g t h e t h r e e s t r u c t u r e s i n t a b l e 3 . 5 . 3 , one can see t h a t t h e 

m o d u l a t i o n i n t h e s e s t r u c t u r e s i s v e r y s i m i l a r . The m o d u l a t i o n a m p l i t u d e s 

a r e l a r g e r f o r l ower t e m p e r a t u r e s , b u t t h e same p a t t e r n s o f l a r g e and s m a l l 

a m p l i t u d e s e x i s t i n a l l s t r u c t u r e s , and t h e p h a s e s a r e e q u a l i n v e r y good 

a p p r o x i m a t i o n . T h i s i s t h e c a s e d e s p i t e t h e f a c t t h a t t h e s t r u c t u r e a t 293K 

i s i n c o m m e n s u r a t e ( o r a 1 7 - f o l d s u p e r s t r u c t u r e ) and b o t h o t h e r s a r e 3 - f o l d 

s u p e r s t r u c t u r e s . I n a l l t h r e e s t r u c t u r e s t h e l a r g e s t a m p l i t u d e s a r e As o f 

B r i and B r a . 

I n t h e room t e m p e r a t u r e s t r u c t u r e B ra i s e x a c t l y t h e fn(s) image o f B r ? . I n 

b o t h o t h e r s t u c t u r e s , t h i s symmet r y o p e r a t i o n d o e s n o t e x i s t . H o w e v e r , i n 

t h e 140K and 95K s t r u c t u r e s , B r 4 i s i n good a p p r o x i m a t i o n t h e m(s ) image o f 

B r 3 , as can be seen f r o m t h e m o d u l a t i o n a m p l i t u d e s and p h a s e s i n t a b l e 

3 . 5 . 3 : d , ( t ) and d a < t ) o f Bra a r e i n a n t i p h a s e w i t h t h o s e o f B r 3 and d 2 ( t ) 

i s i n phase w i t h d 2 ( t ) o f B r 3 . 

T a b l e 3 . 5 . 6 shows t h a t Z n B r 4 t e t r a h e d r a a r e r a t h e r r i g i d . A l l Z n - B r 

d i s t a n c e s a r e a b o u t e q u a l . A l s o , a l l B r j - B r n d i s t a n c e s a r e a b o u t e q u a l f o r 

each s e t o f i , K . Bu t t h e B r i ~ B r 2 d i s t a n c e s a.re s y s t e m a t i c a l l y l a r g e r t h a n 

t h e o t h e r o n e s , and t h e B r i ~ B r 3 and B r , - B r 4 d i s t a n c e s a r e s y s t e m a t i c a l l y 

l a r g e r t h a n B r 2 - B r 3 , B r 2 - B r 4 and B r 3 " B r a . T h e s e s y s t e m a t i c d i f f e r e n c e s a l s o 

e x i s t i n t h e n o r m a l p h a s e (De P a t e r , 1 9 7 9 ) , and a l s o i n R b 2 Z n C U 

( Q u i l i c h i n i and P a n n e t i e r , 1 9 8 3 ) , K 2 Z n C U ( M i k h a i l and P e t e r s , 1 9 7 9 ) , 

K2C0CU ( v e r m i n e t a l . , 1 9 7 6 ) , ( N h U ^ Z n C U ( M a t s u n a g a , 1 9 8 2 ) , CssCdBr* and 

Cs 2 HgBr 4 ( A l t e r m a t t e t a l . , 1 9 3 4 ) . 

Because a p a r t f r o m t h e s e s y s t e m a t i c d i f f e r e n c e s t h e v a r i a t i o n s i n t h e 

d i s t a n c e s i n ZnBr4 t e t r a h e d r a a r e much s m a l l e r t h a n t h e m o d u l a t i o n 

a m p l i t u d e s o f t h e Br a toms and b e c a u s e t h e Zn a t o m s have s m a l ! m o d u l a t i o n 

a m p l i t u d e s , i t can be c o n c l u d e d t h a t t h e m o d u l a t i o n c o n s i s t s m a i n l y o f 

r o t a t i o n s o f t h e t e t r a h e d r a . 

As w i l l be shown i n c h a p t e r 4 o f t h i s t h e s i s , t h e m o d u l a t i o n o f t h e t h r e e 

s t r u c t u r e s o f R b 2 Z n B r 4 d i s c u s s e d h e r e a r e i^ery s i m i l a r t o m o d u l a t e d 

s t r u c t u r e s i n o t h e r A 2 BX 4 compounds . 

For each s t r u c t u r e t h e e q u i v a l e n t i s o t r o p i c t h e r m a l p a r a m e t e r s ( t a b l e 

3 . 5 . 4 ) o f t h e Br a toms a r e a b o u t e q u a l . The t h e r m a l m o t i o n o f t h e s e a toms 

( t a b l e 3 . 5 . 2 ) t u r n s o u t t o be s t r o n g l y a n i s o t r o p i c , w i t h t h e l a r g e r a x e s i n 

d i r e c t i o n s no rma l t o t h e Z n - B r b o n d s , w h i l e t h e t h e r m a l m o t i o n o f Zn i s 

much s m a l l e r t h a n t h a t o f t h e Br a t o m s . From t h i s i t can be c o n c l u d e d t h a t 

53 



the thermal motion ,too, consists mainly of rotational movements o-f the 
tetrahedra. 
In each of the three RbïZnBr-a structures the thermal motion of Rb2 is much 
larger than that of Rbi . This corresponds to the -fact that the cage o-f Br 
atoms around Rb2 is considerably larger than the one around Rbi . Rb; has 
more space to move in. 

A few questions remain: what is the actual space group o-f the room 
temperature phase o-f RbïZnBra; and what is the essential di-f-ference between 
phase F and phase IV? The results o-f the three structure determinations 
described in this chapter do not give a clue to answers. 
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Chapter 4 

COMPARISON OF DISTORTED Ê-K2SO4 TYPE STRUCTURES. 

4.1. Introduct ion. 

In this chapter the "distorted &-K2SO4 type structures" will be compared 
with each other. Distorted £-K2SQ4 type structures are incommensurate 
structures or supers true tures i n which the atoms have coordi nat ions 
analogous to the coordinations of the atoms in ft-KjSO*. For the reasons 
given below, the term superstructure is understood to include u 1-fold 
superstructures": structures with the same unit cell as 0-K2SO4, but with 
lower symmetry. The space group of the basic structure of an 
incommensurately distorted £-KjS04 type structure is Pcmn (the space group 
of &-K2SO4) or a subgroup of it, The space group of a distorted £-K2SQ4 
type superstructure is a proper subgroup of Pcmn. The &-K2SO4 type itself 
is not included in the group of distorted £-K2SCM type structures. It 
occurs, however, often as a high temperature phase of compounds that have a 
phase with a distorted J&-K2SQ4 type structure. 
In practice there is no problem in deciding whether a structure is of the 
distorted £~K2S0A type or not. This statement can be illustrated by the 
following examples of structures that have some similarities with £-K2504, 
but very clearly do not belong to the £-K2S04 type or the distorted £-K2S04 
type structures. In olivine type structures (Eysel, 1971) the coordinations 
of part of the atoms are very different from those in B-K2SO4. The 
incommensurate phases of K2M0O4, K2WO4 and Rb2WÜ4 (Tuinstra and v"an den 
Berg, 1983) have a basic structure of wich the space group (Ccmm) is not 
Pcmn or a subgroup of it. 
The modulated structures in Rb2ZnBra and related compounds, however, 
clearly are distorted JÏ-K2SO4 type structures. 

In this chapter, modulation wave vectors will be assigned also to 1-fold 
and 2-fold superstructures. Though these structures are not modulated 
structures according to the definition given in chapter 1, they will be 
regarded here as such. As will be shown in section 4.4, these structures 
have the same kind of local distortions as the other distorted &-K2SO4 type 
structures. Some of the 1-fald and 2-fold superstructures actually are 
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structures of lock-in phases of compounds having an incommensurate 
structure. 

In this thesis only distorted £-K2SG,i type structures with an 
incommensurate or commensurate modulation wave vector parallel to c_ are 
studied. Most distorted £-K2304 type structures obey this condition. Only a 
few exceptions are known. In these exceptional structures other axes are 
doubled or the modulation wave vector has another direction, as indicated 
behind the compound name: 
- Cs2MnU: 2a, 2b, 2c_, below 195K (Zandbergen, 1931) 
- CS2M9U: 2a, 2b, 2c, below 35K (Zandbergen, 1931) 
- CsjHgBr*: 2b, below S5K (Plesko, 1931) 
- (TMA)2CuBra: g='*a* , 9.33<^<9.43, between 242K and 272K, 

2a, between 237K and 242K (Hasebe et al., 1932) 
- Ca2SiÜ4 with part of Ca replaced by Ba or Sr or part o-f Si by B: 

2a, 2b (Suzuki and Yamaguchi, 19Ó8) 
- ÓCa2Si04. lCa3(P04>2: g=0.2o7b* (Saal-feld and Klaska, 1981) 
In (TMA) iCuBr̂ i the CuBr-4 groups are distorted considerably -from a regular 
tetrahedron by the Jahn-Teller effect. This can be the cause of the 
exceptional behaviour of this compound in comparison with the other TMA 
compounds (see section 4.2). The last two examples strictly do not belong 
to the distorted .&-K2SQ4 type structures, because the compounds cannot be 
represented by the general chemical formula A2BX4. 
The seven exceptions will not be considered further. 

In section 4.2 the symmetry of the distorted £-K2S04 type structures will 
be discussed. The structures reported in literature that will be compared 
are introduced in section 4.3. In section 4.4 the interatomic distances in 
these structures are compared. Section 4.5 compares the modulation 
functions of incommensurate structures and 3- and 4-fold superstructures. 
In section 4.6 the existence of large superstructures, in phases which have 
been supposed to be incommensurate until recently, will be discussed. Parts 
of this chapter have been published before (Hogervorst and De Wolff, 1982; 
Hogervorst, 1934). 
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4 .2. Symmetry. 

Many compounds, for instance RbjZnBra and RbaZnCl^t, show phase transitions 
from an incommensurate structure to a superstructure. The diffraction 
patterns of both phases are almost identical. The incommensurate structures 
and the superstructures therefore cannot differ much, so their symmetries 
must be closely related. In this section, for the distorted B-K23O4 type 
structures the relation between 4-dimensional space groups of 
incommensurate structures and 3-dimensional space groups of superstructures 
wi 11 be discussed. 
Although the basic symmetry Pcmn allows two different 4-dimensional space 
groups with the modulation wave vector parallel to c_, it turns out that 
the symmetries of all observed distorted 6-K2SO4 type structures are 
related to .just one of them. 
It also will be shown that symmetry can help to choose the correct 
modulation wave vectors in incommensurate structures and superstructures in 
order to obtain comparable modulation functions. This information will be 
used in section 4.5. 
In section 4.Ó the results of this section will be used in connection with 
large superstructures having a special kind of modulation wave vector. 

4.2.1. 4-dimensional space groups. 

A 4-dimensional space group can have different symbols, depending on the 
choice of the modulation wave vector. 
As an illustration, figure 4.2.1 shows the same structure described as a 
modulated structure with wave vector g, and as one with modulation wave 
vector g'=c_*-g. In the description with g the two rows of 
atoms are related by symmetry operation c(s) : the modulation functions have 
a phase difference of 0.5. In the other description (with g', dashed 
modulation functions) the two rows of atoms are related by c(l): the 
modulation functions do not have a phase difference. 
Figure 4.2.1b shows the reciprocal lattice. The reflection conditions are 
different. If g is chosen, the reflection condition for the h01m 
reflections is: 1+m=even, whereas the condition is l=even if g'' is 
chosen. 
Choosing another wave vector in a modulated structure is analogous to 
choosing one of the crystal 1ographic axes in another way in a normal 
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FIGURE 4.2.! Two descriptions -for the same 
modula ted structure. 
a. The atomic positions o-f the structure can be 
described by modulation -functions corresponding to 
modulation wave vector g (-full lines) or to 
g'=c+-g (the dashed ones). 
Note that these curves have the same shape, in spite 
o-f different wavelengths and an inversion in z. 
The symbol -for the c-gl ide plane normal to a is 
c(s) in the -first case and c(l) in the second case. 
b. The corresponding reciprocal lattice. The rule for 
systematic absences (open circles) is different in 
both cases for the h01m reflections: 1+m=odd and 
l=odd respectively. 
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s t r u c t u r e . For example: i f a space group has symbol PIn l w i th respect to 

axes a, b and £ , then i t has symbol P l c l w i th respect to axes 

a, b and a+c_. The r e f l e c t i o n cond i t i ons change accord ing ly . 

4-dimensional space groups are non-equivalent i f t he i r symbols cannot be 
transformed i n to a s ing le symbol by a change of axes and/or a change of 

3-
Just two non-equivalent ^-dimensional space groups exist for an 
incommensurate structure with Pcmn as basic structure space group and a 
modulation wave vector g parallel to £ (De Wolff et al., 1931). The 
first of these is 

P - • - O H ) C -) , or in short: Pcmn < 00'*) Css?) . (4.2.1) 
c m n s s i ' 

If the equivalent modulation wave vector g'=g*-g is chosen, 
then the symbol of the same space group is 

P — — (0 8 If') (- - -) or Pcmn<00vr') ( lsT) , V«1-*. (4.2.2) 
c m n 1 s i 

The second poss ib le 4-dimensional space group is 

P — — — (6 8 u) ( - - -> or Pcmn(00-3) (1 IT) . (4.2.3) 
c m n 1 1 1 

Choosing g/ as modulat ion wave vec to r , the space group symbol i s 

P — — — (0 0 * ' ) <- - h or Pcmn(00'«O(slT) , ï ' = l - ï . (4 .2.4) 
c m n s 1 i 

In this thesis the symbols 4.2.1 and 4.2.3 are chosen to represent the 
first and the second possible 4-dimensional space groups respectively. 
It should be noted that this choice implies that the modulation wave vector 
is not limited to the first Brillouin zone (see subsection 4.2.3). 

4.2.2. Superstructure space groups. 

Now we will investigate how superstructure space groups can be deduced from 
4-dimensional space group 4.2.1 or 4.1.3. 
In order to find the relation between the symmetry of an incommensurate 
structure and that of a superstructure, let us examine what happens with 
individual 4-dimensional symmetry operations if the modulation wave vector 
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FIGURE 4.2.2, Modulation in superstructures with K = odd/odd 
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symmetry element; a. the symmetry element is m( 1) ; b. m(s) ; 
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FIGURE 4.2,3. 
a. Symmetry element nt'T) does not appear in a superstru 
the phase o-f the modulation wave is chosen arbitrarily. 
b. It the phase is chosen properly, symmetry element n< 
appears in the superstructure as a n-glide plane -for- an 
rational value o-f '$. 
Only two of the n-glide planes are drawn in each 
superstructure. The -first superstructure is obtained fr 
structure in part a o-f this figure by shifting the comp 
modulation wave with respect to the basic structure. 
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becomes commensurate (something similar has been done independently by 
Yamamoto, 1932 and Janssen, 1985): 

g = U c_* with "5 = u/v (u, v integer). C4.2.5) 

Suppose the symmetry o-f the basic s t r u c t u r e and the symmetry r e l a t i o n s 
between the modulat ion func t i ons do not change dur ing t h i s imaginary lock-
in process. Then many of these r e l a t i o n s w i l l condense i n to 3-dimensional 
symmetry elements, but not n e c e s s a n l l y a l l r e l a t i o n s w i l l do so. I t w i l l 
now be shown that some 4-dimensional symmetry elements can e x i s t as a 3-
dimensional Euc l id ian symmetry element in the supers t ruc tu re only f o r 
ce r t a i n p a r i t y combinations of u and v : fo r the re levant 4-dimensional 
symmetry opera t ions , f i g u r e 4 .2 .2 shows the 3-dimensional symmetry 
operat ions which can r e s u l t . Each drawing in t h i s f i g u r e shows two rows of 
atoms, mutua l ly r e l a t e d by the 3-dimensional par t of the 4-dimensional 
symmetry ope ra t i on . The modulat ion i s represented by hor izon ta l bars 
repeat ing w i th the modulat ion per iod c / ï , s t a r t i n g w i th a bar through the 
top l e f t atom A. The type of modulat ion ( e . g . magnetic, occupational or 
d i sp lac ive ) i s not re levant in t h i s d i scuss ion . For a r a t i o n a l value of "5, 
bars c ross ing an atom w i l l occur again at the supers t ruc tu re repeat 
d is tance c s=vc. I f the 4-dimensional symmetry operat ion involves a phase 
d i f f e rence in the modulat ion f u n c t i o n s , the bars in the second raw are 
s h i f t e d accord ing ly . The symmetry operat ions of the supe rs t ruc tu re , i f any, 
are those which map the atom A on any other atom A' crossed by a bar . 
Figure 4.2.2a shows that a simple mi r ro r operat ion m(l> i s conserved 
independently of the values of u and v . I f the r e f l e c t i o n i s combined w i th 
a s h i f t 1/2 in the phase of the modulat ion (operat ion m(s)> the bars 
a l t e r n a t e as shown in f i g u r e 4 .2 .2b . Coincidences of bars w i th atoms in the 
second row now occur only i f u=odd and v=even. In that case the m(s) 
operat ion appears in the supers t ruc tu re as a c - g l i d e plane r e l a t i n g , f o r 
ins tance, the atoms A and A ' . For the other p a r i t y combinat ions, the 4 -
dimensional operat ion m(s) i s completely l o s t . 

Figure 4.2.2c dep ic ts the s i t u a t i o n fo r a c ( l ) element. Conservation of the 
po in t group element now requ i res u=even and v=odd. Then a c - g l i d e plane 
r e s u l t s in the supe rs t ruc tu re . Such a c - g l i d e plane a lso appears f o r the 
element c(s) : in f i g u r e 4 .2 .2d the a l t e r n a t i n g bars correspond to the phase 
s h i f t of 1/2 of that element. But the cond i t ion now i s : u and v both odd. 
The 4-dimensional symmetry operat ions 2 i ( l ) and 2 i ( s ) (not shown in the 
f i gu re ) impose the same p a r i t y cond i t ions as c ( l ) and c(s) r e s p e c t i v e l y . 
The r e s u l t i n g symmetry operat ion in the supers t ruc tu re i s a 2i~screw ax is 
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in both cases. 

Thus -far only 4-dimensional symmetry elements w i th £=1 are considered (g 
and R33 are def ined in sect ion 1.3). Symmetry elements w i th E--1 do not 
give r i s e to p a r i t y cond i t i ons . The phase of the modulat ion wave can always 
be chosen such that the symmetry operat ion e x i s t s in the supers t ruc tu re . 4-
dimensional symmetry element n(T) becomes a n -q l i de plane then and 2i(T) a 
2)-screw a x i s . Figure 4 .2 .3 shows the case of a n(T) opera t ion . In par t a 
of t h i s f i g u r e i t i s shown that i f the phase of the modulation wave i s 
a rb i t r a r y the n (T) operat i on does not appear in the super 5 true t u r e . In par t 
b i t can be seen that for a proper choice of the phase of the modulat ion 
wave, the n(T) operat ion appears as a n -g l ide plane in the supers t ruc ture 
fo r a l l p a r i t y combinations of u and v . 

Now, a f t e r the above discussion of i nd i v idua l symmetry operat ions, the 
re l at 1 on between 4-dimensi onal space groups and supers true ture space groups 
w i l l be discussed. F i r s t we def ine a new concept, " r a t i ona l subgroup". I f 
each symmetry elemen t of a supers true ture space group can be deduced from 
an element of a ce r t a i n 4-dimensional space group by the imaginary l o c k - i n 
procedure described above, then t h i s supers t ruc ture space group i s a 
ra t i ona l subgroup of that 4-dimensional space group. This 4-dimensional 
space group w i l l then be ca l l ed a prototype symmetry of that supers t ruc tu re 
space group. In genera l , more than one prototype symmetry ex i s t s for one 
supers t ruc ture space group. A 4-dimensional space group w i l l a lso be ca l l ed 
a prototype symmetry of i t s e l f and of each of i t s proper subgroups. 
With the in format ion suppl ied above, fo r each space group of a 
supers t ruc ture w i th a mu l t ip le -c . ax is we w i l l i nves t i ga te whether i t i s 
a r a t i ona l subgroup of the two 4-dimensional space groups mentioned in the 
previous subsect ion. In order to do t h i s i t i s s u f f i c i e n t to consider the 
supers t ruc ture space group elements w i th 1*33*1. I * a l l these elements can 
o r i g i n a t e from 4-dimensional symmetry elemen t s of one of the two 4 -
dimensional space groups, then the supers t ruc ture space group i s a r a t i ona l 
subgroup of t h i s 4-dimensianal space group. 

( I t i s always poss ib le to choose the phase of the modulation wave such that 
one of the symmetry elements w i th R3 3=-l can be deduced from a 4 -
dimensional space group element. Then t h i s i s a lso t rue fo r a l l other 
elements w i th R33=- l , s ince each of them i s a product of the one j u s t 
mentioned and an element w i t h R33=+l.) 

The p a r i t y cond i t ions fo r u and v , necessary f o r the re levant 4-dimensional 
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symmetry operations to be present in a rational subgroup of the two 
possible prototype symmetries (4.2.1 and 4.2.3) are given in table 4.2.1. 
From this table it can be seen that for instance a rational subgroup of 
prototype symmetry 4.2.1 cannot contain both a c-glide plane normal to 
a and a 2i-screw axis parallel to c_ because the parity conditions 
are different. It can also be seen that a rational subgroup of this 
prototype symmetry cannot contain a mirror plane normal to b. Rational 
subgroups of the second prototype symmetry cannot contain a c-glide plane 
perpendicular to b_. Hence certain space groups can be a rational 
subgroup of only one of the prototype symmetries. 
In table 4.2.2 one can find for each space group of a superstructure with a 
multiple-^ axis wether it is a rational subgroup of Pcmn(001r) (ssT) , or 
of Pcmn(09'tf)(1 IT), or of both. 

Now we shall investigate whether there is a 4-dimensional space group that 
is a prototype symmetry of all Known distorted &-K2SG4 type structures. All 
the commensurate distorted .6-K2SO4 type structures published so far (see 
table 4.2.4) have a structure with a space group of row 1 or 2 of table 
4.2.2 (underlined). Hence all these space groups are rational subroups of 
Pcmn(00-S) (ssT) . The observed space groups for the incommensurate structures 
sre either Pcmn(00"S) (ssT) or one of its subgroups. 
Hence Pcmn(90ï)(ssT) is the only common prototype symmetry of all observed 
distorted A-K2SO4 type structures with the modulation wave vector parallel 
to c*. 

4.2.3. Standardization of the modulation wave vectors. 

The standardization discussed in this subsection is based on a remarkable 
common feature of distorted &-K2SQ4 type structures. They already share 
Pcmn(00ii) (ssT) as a common prototype symmetry (see above), which means that 
at least some of the symmetry conditions for modulation functions imposed 
by Pcmn(00Tr) (ssT) are conserved as exact 3-dimensional symmetry relations. 
The new feature, to be called "pseudo prototype symmetry" manifests itself 
in the fact that those conditions which are not thus exactly fulfilled, are 
still satisfied in a very good approximation as non-crystal 1ographic 
symmetries of the superstructure. Foremost among these pseudo-
Pcmn(00u) (ssT) properties is the fact that (the first harmonics of) 
displacements of atoms lying in the mirror plane perpendicular to b in 
B-K2SG4 (which are also the dominant displacements in all structures) are 
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TABLE 4.2.1. Parity conditions for occurrence of symmetry elements in a 
rational subgroup. 
>:/-: the symmetry element can/cannot result from the indicated 4-
dimensional space group for the indicated type of modulation wave vector 
g=(u/v)c* Co=odd, e=even). 

Pcmn<80-ï) Css7) = (4.2.1) Pcmn<00Tr) (11T) = (4.2.3:' vmmetr' 
1emen t 

t i l 
l c l 
112, 
1ml 

u/v= o/o e/o o/ 

TABLE 4.2,2. The possible space groups for distorted .6-K20O4 type 
superstruc tures. 
x/-; the -superstructure space groups are / are not rational subgroups of 
the indicated prototype symmetry. The space groups that are actually 
found (see table 4.2.4) are underlined. 

superstructure space groups prototype symmetry 
Pcmn(00'5) (ssi) Prmn(00-'.j) C 1 IT) 

1 P2tcn, P12,/cl, Plcl 

2 Pc2tn. P 2 i / c l l . P e l l , 
P112 i /n , P2 i2 i2 i , PI 12, , 
PI In , P2, 11, P12i K E l , PI 

3 Pcmn, P2imn, Pcm2(, P12 i /m l , Plml 

TABLE 4 . 2 . 3 . Possib le combinations (x) of r a t i ona l subgroups of 
Pcmn(00'ff) (ssT) and modulation wave vectors g=<u/v)c.* g i v i ng 
modulation func t ions that correspond to those of incommensurate 
s t ruc tu res w i th space group symbol Pcmn(00'«) CssT) . 

r a t i ona l subgroups u/v=odd/odd 

Pc2,n, P 2 , / c l l , Pe l l 
P112t /n, P 2 i 2 , 2 i . P112i 
P2,cn, P 1 2 i / c l , P l c l 
PI m , P2i 11, P12, 1, PT, PI 
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parallel to b in good approximation, even in the many cases where there 
is no symmetry constraint for their direction. (In structures with the 
other space group, Pcmn(00lr) ( 1 IT) , the displacements of atoms in the mirror 
plane cannot have components parallel to b!) 

Figure 4.2.1 already demonstrated that the relations between modulation 
functions of symmetry-equivalent atoms depend on the choice of the 
modulation wave vector. For modulation wave vector fl/B:c*-3 
other modulation functions are needed than for q. This is the case for 
superstructures as well as for incommensurate structures. (The only 
exception is the 2-fold superstructure. In that case g'=3.) 
Therefore, for comparison of modulation functions of different 
incommensurate structures and superstructures, it is important that the 
choices of the modulation wave vectors in different structures correspond 
to each other. The symmetry can guide us to the correct choice. As stated 
at the end of subsection 4.2.1, for incommensurate structures with the 
prototype symmetry, o, is chosen such that the space group symbol is 
(4.2.1) rather then (4.2.2). This choice has also been made by Rasing 
(1982), and it corresponds to the choice of the modulation wave vector for 
Rb2ZnBrd, Rb2ZnCl4 and K*2nCU made by De Pater (1979) and Gesi and Iizumi 
(1973, 1979a) . 
More generally the modulation wave vector in an incommensurate structure 
will be chosen here such that the symbol of the c-glide plane normal to 
a. is c(s.) and the symbol of the 2,-screw axis parallel to c_ is 
2i(1). These are the symmetry elements of which the symbols change if the 
other modulation wave vector is chosen. Of course this recipe can only be 
used if at least one of these symmetry elements is present in the space 
group. 
If both elements are absent, then a more detailed investigation is 
necessary. In that case the c(s)-glide plane is not present, so the 0klm 
reflections do not show the corresponding systematic absences. 
Nevertheless, because of the pseudo-prototype symmetry, the reflections 
which correspond to those systematically absent for the prototype symmetry 
will be much weaker than the other reflections. This information can be 
used to find the modulation wave vector corresponding to symbol (4.2.1). 

In superstructures, the results of subsection 4.2.2 can be used for the 
standardization of the modulation wave vectors. The relation between 
superstructure symmetry and prototype symmetry (4.2.1) can be found in 
table 4.2.1. From this table it can be concluded that if a c-glide plane 
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normal to â  i s present , then the modulation wave vector must be 
cp(u/v)c_* w i th u and v both odd. I f a 2 i -screw ax is p a r a l l e l to 
c_ i s present , u must be even. The r e s u l t i n g modulation f u n c t i o n s , found 
by f o u r i e r - a n a l y s i s of the atomic coordinates of the supers t ruc tu re , can be 
compared d i r e c t l y w i th those of the incommensurate s t ruc tu res discussed 
before . For a l l r a t i ona l subgroups of Pcmn(00';) CssT) the modulation wave 
vectors for which they can occur are l i s t e d in tab le 4 . 2 . 3 . 
I f both the c - g l i d e plane normal to a_ and the 2|-screw ax is p a r a l l e l to 

c. are absent, again that choice should be made fo r which the 0klm 
r e f l e c t i o n s w i th l+m=odd are weak. 
(This i s not poss ib le in the case of a 1- fo ld or a 2 - f o l d supers t ruc tu re . 
For a 1- fo ld supers t ruc ture the s a t e l l i t e r e f l e c t i o n s are also main 
r e f l e c t i o n s : e . g . r e f l e c t i o n 1231 i s r e f l e c t i o n 1240 fo r g=c_* or 
1230 f o r g=0_. For a 2 - f o l d supers t ruc ture the r e f l e c t i o n s w i th 
1+m=odd are the same as those w i th 1+m=even: e .g . r e f l e c t i o n 0231 i s 
r e f l e c t i o n 024Ï fo r g = ( l / 2 ) c * . On the other hand: for a 1-fold 
supers t ruc ture the modulation func t ions are constants and for a 2 - f o l d 
supers t ruc ture there i s only one poss ib le choice fo r n because 

g'=cj. There fore , in e i t he r case the choice does not matter anyhow.) 

A consequence of the above described s tandard iza t ion of modulation wave 
vec tors i s that fo r some s t ruc tu res the standardized modulation wave vector 
i s outs ide the f i r s t B r i l l o u i n zone. Now, s o l i d s ta te p h y s i c i s t s prefer to 
choose wave vec tors w i t h i n t h i s zone. The f o l l o w i n g example w i l l show why 
i t i s convenient to neglect t h i s preference here. 

Consider an A2BX4 compound w i th a 2 - f o l d supers t ruc tu re phase between two 
incommensurate phases. On lowering the temperature, the modulation wave 
vector changes cont inuous ly from 0.4óc_* to 0.49c_* in the high 
temperature phase. Then i t jumps to c_*/2 at the l o c k - i n phase 
t r a n s i t i o n . On lower ing the temperature f u r t h e r , a second phase t r a n s i t i o n 
occurs and the s t r u c t u r e becomes incommensurate aga in . In t h i s second 
incommensurate phase the modulat ion wave vec to r changes from 0.52c.* to 
0 .57c* . Using these modulation wave v e c t o r s , the two incommensrate 
phases have the same 4-dimensional space group ( e . g . Pcmn(00n)(ssï ) ) , the 
r e f l e c t i o n s w i th the same ind ices in both phases have about equal 
i n t e n s i t i e s , and the r u l e s f o r systematic e x t i n c t i o n s are equa l . In f a c t , 
the two incommensurate phases can be i n t e rp re ted as one incommensurate 
phase, i n t e r r u p t e d by the 2 - f o l d supers t ruc tu re phase. 

I f in the second incommensurate phase the modulat ion wave vector would have 
been chosen w i t h i n the f i r s t B r i l l o u i n zone, the space group symbol and the 
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rules for systematic extinctions would have been completely different for 
both incommensurate phases. The relationship between these two phases would 
be hard to recognize in this situation. 
It should be noted that the above comment, although illustrated for 
incommensurate structures, applies to superstructures as well, even 
including the 1-fold superstructures. 

4.2.4. Application to observed structures. 

In table 4.2.4 all distorted &-K2SO4 type structures which are mentioned in 
the literature are given, together with the standardized modulation wave 
vectors (expressed as "fc in cp"Sc*) • 
The 4-fold superstructures in this table do not contain a c-glide plane 
normal to a or a 2i -screw axis parallel to c_. As discussed above, 
in this case we have to rely on systematically weak intensities. The 
diffraction pattern of (NH4>22nCl4 at room temperature (space group Plcl) 
shows very clearly that cp(l/4)c_* should be chosen, and not 
a=(3/4)c_*: for q=( \/4') t* the 0klm reflections with l+m=odd 
are very weak, and for the other choice they are strong. In section 4.4 it 
will be shown that the resulting modulation functions of the Plcl- and the 
P2icn structure of (NH4)2ZnCl4 are indeed very similar to the modulation 
functions of the other structures. According to Zandbergen (1931) Cs^Mnls 
has space group P2tcn and is probably isomorphous with (NH<i>2ZnCl4-
Table 4.2.4 includes 3-fold and 7-fold superstructures with space group 
P2(2i2t or P1121/n. The standardized modulation wave vectors, based on the 
presence of the 2|-screw axis parallel to c_ (originating from the 2i ( 1) 
operation of the prototype symmetry), have "«=2/3 or S=4/7. For these 
modulation wave vectors, the 0klm reflections with l+k=odd are very much 
weaker than those with l+m=even. Hence, they show pseudo-c(s) symmetry. The 
combination of this pseudo-c(s) operation and the 2i (1) operation excludes 
Pcmn(08v) CUT) from being the prototype symmetry of these structures, and 
again confirms the pseudo-prototype symmetry. 

The space group of the structure of (NH4)2ZnCl4 with 11=2/7 is not given in 
the literature. This value of t has been determined on the basis of pseudo-
c(s) absences. Assuming that Pcmn(00"5) (ssT) is the prototype symmetry of 
this superstructure, it can be concluded from this value of S that the 
space group of this structure is P112i/n, P2i2t2i or a subgroup of one of 
them (see table 4.2.3). Sato et al. (1984) observed that this structure is 
weakly ferroelectric along the b axis. This means that the space group 
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TABLE 4,2.4. Distorted .6-K23Q4 type structures. 
ts gives the length of the modulation wave vector: cj = t c_* . 

:ompound re+erences 

i n c . 1 
S 

X 
£ 

* 
* 
* 

S V. 

* S 

* X 

i n c . 2 

P 2 , 2 1 2 

8 . 3 1 
8 . 3 1 
0 . 2 9 4 
8 . 3 1 
0 . 3 8 4 
8 . 4 3 
8 . 2 5 5 
8 . 2 5 5 
8 . 5 1 7 
8 . 3 2 6 

8 . 5 6 , 8 . 5 8 
8 . 5 5 
8 . 5 S 

8 . 5 9 , 8 . 6 1 

8 . 13 

8 . 15 

4 / 7 

K 2 Z n C1 4 
R b 2 Z n C l 4 
Rb2ZnBr-4 
K 2 S e O , 
C s 2 F e U 
(NH4) 2 BeF4 
(NH4) 2 Z n C U 
( N H 4 ) 2 Z n B r 4 
(TMA) 2 MnCl4 
(TMA) 2C11CI4 
( T M A ) 2 F e C l 4 
(TMA)2N1CI4 
( T M A ) 2 2 n C l 4 

(TMA)2C0CI4 

C s 2 C d B r 4 

Cs2HgBr-4 

( T M A ) 2 F e C U 

Gesi and Iizumi (1979a) 
Gesi and Iizumi (1979a) 
this thesis (chapter 3) 
Iizumi et a!. (1977) 
Zandbergen (1931, 1984)) 
Iizumi and Gesi <1977) 
Sato et al. (1934) 
Sato et al. (1983) 
Mashiyama and Tanisaki (1981) 
Gesi (1982), Sugiyama et al . (1988) 
Mashiyama and Tanisaki (1982) 
Mashiyama and Tanisaki (1982) 
Gesi (1932), Tanisaki and Mashiyama 
(1938) 
Gesi (1982), Marion <1981) 

Maeda et al. (1933), Altermatt et al. 
(1984) 
Plesko (1931), Altenmatt et al . (1984) 

Mashiyama and Tanisaki (1932), Hasebe et 
al . (1984) 

D-(TMA)2ZnCl4 Marion et al. (1981) 
9 

P c 2 , n 

P 2 , c n 
tt 

tt 

# 
P l c l 

P c 2 , n 

tt 
tt 

2 / 7 

3 / 5 

1/4 

1/4 

1/3 

( N H 4 ) 2 Z n C l 4 

(TMA)2FeC14 
( T M M j Z n C U 
(TMA)2C0CI4 

C s 2 M n l 4 
CS2M9U 
< N H , ) 2 Z n C l 4 
(NH4> 2 ZnBr4 
(NH4) 2C0CU 

( N H 0 ) 2 Z n C l a 

K j Z n C U 
R b 2 Z n C l 4 
Rb 2 ZnBr4 
K2Se04 
K2CoCU 
Rb2MgBr4 
B a 2 T i 0 4 
( N H 4 ) 2 Z h C l 4 
(NH4>2ZnBr 4 

(NH4)2C0CI4 

Sato et al. (1984) 

Mashiyama and Tanisaki (1932) 
Gesi ( 1932) , Marion (1981) 
Gesi (1982), Marian (1981) 

Zandbergen (1931) 
Zandbergen (1931) 
Matsunaga (1982) 
Sato et al. (1983) 
Broda (1984) 

Wan Koningsveld (1983) 

Mikhail and Peters (1979) 
Quilichini and Pannetier (1933) 
this thesis (chapter 3) 
Iizumi et al. (1977) 
V e r m i n e t a l . ( 1 9 7 6 ) 
S e W e r t and W a s e l - N i e l e n ( 1 9 7 7 ) 
Gunter and Jameson (1984) 
Matsunaga et al. (1982) 
Sato et al. (1983) 
Broda (1934) 

■'? 

TABLE 4.2.4. continued. 

sp.gr. 'G compound 

P2i/cll 1/3 (TMA)jCuCl4 Gesi (1932) 

P2,2121 2/3 <TMA)2ZnCU Sesi (1932) 
<TMA)2CoCU Gesi (1932) 

P112i/n 2/3 (TMA)2MnCl4 Mashiyama and Tanisaki (1981) 
<TI1A)2FeCU Mashiyama and Tanisaki (1932) 
(TMA)2ZnCl4 Gesi (1932) 
(TMA) 2CoCU Gesi ( 1932) 

Suza and Steinfink (1971) 
Wil helmi (1966) 
Misvul et al. (1988) 

Zandbergen (198D 

Mashiyama and Tanisaki (1931) 

Schlemper and Hamilton (1966) 

Hasebe et al. (1932) 
Mashiyama and Tanisaki (1932) 
Gesi (1932) 
Gesi (1932) 
Hasebe et al. <1984) 
Hasebe et al. (1934) 
P l e s k o ( 1 9 8 1 ) , A l t e r m a t t e t a l . ( 1 9 3 4 ) 
P l e s k o ( 1 9 3 1 ) , A l t e r m a t t e t a l . ( 1 9 3 4 ) 

P l e s k o ( 1 9 8 1 ) , A l t e r m a t t e t a l . ( 1 9 8 4 ) 
P l e s k o ( 1 9 8 1 ) , A l t e r m a t t e t a l . ( 1 9 8 4 ) 
J o s t e t a l . ( 1977 ) 
Wu and Brown (1973) 
Catti et al. (1983) 
Zandbergen (1981) 
Mul Ier and Roy (1974) 
Mul Ier and Roy (1974) 
Gesi (1932) 

inc. 1: Pcmn(88'5) (ssT) 
inc.2: P112i/n(88'ï) ( 111/T) 
* symmetry not determined, but assumed by the author o-f this thesis. 
tt symmetry assigned on basis o-f similarities with the preceding compound 
ï (NH4)2BeF4 has the same symmetry as the other two compounds in this 

group, but the structure is different (see section 4.3). 
'A two phases with such a structure exist. 
? space group unknown. 

P 2 , c n 

* 
P 1 2 i / c l 

Pc2 ,n 

P 2 , / c l l 

P i 

P 1 1 2 , / n 

1/2 

1/2 

1/1 

1/1 

8 / 1 

8 / 1 

BaaSnSfl 
Sr 2 O Ü 4 
(NH4)zBeFa 

C s 2 F e l 4 
(TMA) 2MnCl4 

(NH4)2SO4 

O
 

3 
O

 
=>

 
IB

 
C

 
O

J[
D

 n
 O

 r
y 

CD
 

C s 2 H g B r a 

Cs 2 CdBr4 

CsaCdBrf l 
Cs 2 HgBr4 
Ca 2 SiQ4 
B a 2 T i 0 4 
3 r 2 3 i Q 4 
C s 2 M n U 
Eu 2 3 i 84 
Na2BeF4 
(TMA) 2 CuCl4 
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TABLE 4.2.5. Phase sequence of A2BX4 compounds with phases having 
distorted Ê-K2SO4 type structures. For each compound alternately 
structures and phase transition temperatures are given. Each structure is 
represented by its space group and the standardised modulation wave 
vector component "ï (between brackets). 

compound phase sequence (temperatures In K) references 

K2ZnCl4 

Rb2ZnCU 

Rb2ZnBr4 

CsiCdBra 

CsiHgBra 

CsiFeU 
Cs2Mnl4 

K2Se04 

Sr jSi04 
BaïTiOa 
Ca23i04 

(NH4) jSOa 

(NH4)2BeF4 

(NH4)22nCl4 

(NH4) 2CoCU 
(NH4)2ZnBr4 

(TMA)2FeCl4 

(TMA)2MnCl4 

(TMA) 2CuCU 

(TMA) 2 NiCU 

(TMA)jZnCU 

(TMA)2CoCl4 

(,,MA)2ZnBr4 
(TMA) 2CoBr4 

Pcmn 553 inc(0.31) 403 Pc2,n( l /3> 
213 ?(?) 145 ?(?) 

Pcmn 383 inc(0.31) 194 P c 2 m ( l / 3 ) 
75 ?(1/3) 

Pcmn 347 inc<0.294) 190 Pc2m( l /3> 
112 Pc2m( l / 3 ) 77 P c l K 1/3)? 

Pcmn 252 inc(0.18> 237 P112i/n(0) 
153 PT(0) 

Pcmn 245 inc(0.15) 232 P112,/n(0) 
167 PT(0) 85 PT(2b) 

Pcmn 152 inc(8.384) 123 P 1 2 , / c l ( l / 2 ) 
Pcmn 240 P2,cn( l /4 ) 211 p l l 2 i / n ( 0 ) 

105 F l or FT(2a,2b,2c) 
P63/mmc 734 Pcmn 129 inc(8.31) 94 

Pc2,n(1/3) 54 ?(?) 

Pcmn 353 P112i/n(0) 
Pc2m(l/3) ? P112i/n(0) 
P63/mmc 1720 Pcmn 1430 ?(1/3) 943 

P112,/n(0) 700 olivine 
Pcmn 223 Pc2in(1) 

Pcmn 183 inc(0.48) 177 P 2 i c n ( l / 2 ) 

Pcmn 406 inc 
319 P l c K 
P c 2 m ( l / 3 

Pcmn 323 P2i 
Pcmn 432 inc 

217 Pc2,n 
Pcmn 2B2 inc 

267 inc(0 
240 P2,/c 

Pcmn 292 inc 
267 P112 

Pcmn 299 inc 
264 P112, 

Pcmn 285 inc 
?(0 or 1) 

Pcmn 297 inc 
275 PI 12 
155 P2i2, 

Pcmn 294 inc 
279 inc(8 
192 P2i/c 

Pcmn 288 P2 
Pcmn 288 P2 

(0.255) 365 P2icn(l/4) 
1/4) 276 ?(2/7) 269 ) 
c n ( l / 4 ) ? 158? Pc2in( l /3> 
(0.255) 395 P2 i cn ( l / 4 ) 
(1/3) 
(0.56) 271 P2 i2 ,2 i ( 4 /7 ) 
.58) 266 P112i /n(2/3) 
11(1) 
(0.517) 291 P12, /c l< 1/2) 
/ n (2 /3 ) 175 ?(?) 

.326) 291 P 2 i / c l l ( l / 3 ) 
/n (0 ) 
(0.55) 275 ?(1/2) 223 

(0.53) 280 Pc2,n(3/5) 
/ n ( 2 / 3 ) 168 P 2 i / c l l ( l ) 
2 i (2 /3 ) 
(0.59) 281 Pc2in(3/5) 
.61) 277 P112|/n(2/3) 
11(1) 122 P2I2,2I(2/3) 
/cll(l) 
/cll(l) 

Gesi and Iizumi (1979a), 
Shuvalov et al.(1983) 

Qui1ich ini and 
Pannetier (1983) 

this thesis (chapter 3) 

Altermatt et al. !1934), 
Plesko (1931) 

Altermatt et al. (1984) , 
Plesko ( 1981) 

Zandbergen (1981) 
Zandbergen (1981) 

Iizumi et al. (1977), 
Lopez Echarri et al. 
(1938) 

Catti et al. (1983) 
Gunter and Jameson (1934) 
Saalfeld (1975) 

Schlemper and 
Hamilton (1966) 

Qnodera and Shiozaki 
(1979) 

Matsunaga (1932), Sato 
et al. (1934) 

Broda (1984) 
Sato et al. (1983) 

Mashiyama and 
Tanisaki (1932) 

Mashiyama and 
Tanisaki (1981) 

Gesi (1982) 

Mashiyama and 
Tanisaki (1982) 

Gesi (1982) 

Gesi (1932) 

Hasebe et al. (1984) 
Hasebe et al. (1984) 
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is either Plln , P12i1 or PI. 
The value of 's tor the structures o-f Cs2CdBr4 and Cs2HgBr4 with space group 
P7 is assigned on the basis of the similarity of these structures with the 
structures with space group P112i/n of the same compounds. 

In table 4.2.5 the phase sequence is given for most of the compounds 
mentioned in table 4.2.4. 

Conclusion: It is shown that the space groups of all reported distorted &-
K2SÜ4 type structures are closely related to the 4-dimensional space group 
Pcmn(00'tf)(ssT). A recipe is given for choosing the modulation wave vectors 
in these structures such that the modulation functions are comparable. 

4.3. Reported structure determinations. 

Several structure determinations of distorted £-K2SÜ4 type structures have 
been published (mainly in the last few years). The results are used in this 
chapter to compare these structures. In the comparison, also some 
undistorted £-K2S0a type structures are included. 

Table 4.3.1a contains all determinations of distorted £-K2304 type 
structures reported in literature. For each of these structures the 
standardized modulation wave vector is given. The cell parameters of the 
structures listed in table 4.3.1a are given in table 4.3.1b. 
- For the room temperature structure of (Nrl4)2ZnCl4 two structure 

determinations have been reported independently. The results of the two 
are not in good agreement with each other. The positions of the N atoms 
differ by up to 0.265 and those of the Cl atoms by up to 0.155. The 
structure found by Uan Koningsveld (1983) is based on twice as many 
reflections, and the standard deviations of the atomic coordinates are 
much smaller in this structure. Moreover van Koningsveld has taken into 
account that the crystals of (NH4)2ZnCl4 at room temperature are 
twinned. Therefore his data are used in this thesis. 

- For the 2-fold superstructure phase of (NH4)2BeF4 also two structure 
determinations have been reported independently: one at 133K and the 
other at 153K. The differences in the atomic positions (after 
transformation to the average unit cell) are small (up to 8.0545). The 
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TABLE 4.3.1a. Reported structure determinations o-f distorted JÏ-K2SÖ4 type 
structures. T is the temperature at which the structure analysis has been 
performed (r.t.= room temperature). ■"■! gives the standardized modulation 
wave vector: g»*c*. 

no. compound T reference 
CK3 

1 
2 

3 
4 
5 

6 

7 

a 
9 

IB 
11 

12 

13 
14 

15 

l é 

17 
IS 

19 

28 
21 

22 

23 

24 
25 

26 

(NH4)2ZnCl„ 
(NH4)2ZnCl4 

(NH4)2ZnCl4 

<NH«) 2ZnCl4 

K2ZnCl4 

K2C0CU 
Rb2ZnCI4 

RbjZnCU * 
Rb2ZnBr4 

Rb2ZnBr4 

Ba2Ti04 

(NH4)2BeF4 

(NH4)2BeF4 

Ba2SnS4 

S r 2 O 0 4 

Cs2FeI4 

(NH4)2S04 

Ba2Ti04 

Ca2Si04 

Sr 2 Si0 4 

Cs2CdBr4 

Cs2HgBr4 

Cs2CdBr4 

Rb2ZnBr4 

K2Se04 

Cs2FeI4 tt 

P2,cn 
Plcl 
P l c l 
Pc2,n 
Pc2m 
Pc2,n 
Pc2,n 
Pc2m 
Pc2m 
Pc2m 
Pc2m 
P2icn 
P2icn 
P2,cn 
P2icn 
P12i/cn 
Pc2m 
P112(/n 
P112i/n 
P112,/n 
PI 12,/n 
P112i/n 
PT 

Pcmn(00K> (ssT) 
Pcmn(08-S> (ssT) 
PcmnCeeu)(ssT) 

1/4 
1/4 

1/4 
1/3 

1/3 

1/3 

1/3 

1/3 

1/3 
1/3 

1/3 

1/2 

1/2 

1/2 

1/2 

1/2 

1 
8 

8 

8 
8 

9 

9 

8.294 
8.31 
8.384 

333 
r . t 

r . t 

223 
r . t 

r . t 

188 

68 

148 

95 

r . t 

153 

133 

r . t 
r . t 

188 

180 

r . t 

r . t 

r . t 
195 

288 

128 

r . t 

113 

133 

Matsunaga <1982) 
, Wan Koningsveld (1983) 

Matsunaga (1982) 
Matsunaga et al. (1982) 
Mikhail and Peters (1979) 

,X vermin et al. (1976) 
Quilichini and Pannetier (1983) 
Quilichini and Pannetier (1983) 
this thesis (chapter 3) 
this thesis (chapter 3) 

* Gunter and Jameson (1984) 
Misyul et al. (1988) 
Onodera and Shiozaki (179) 
Suza and Stein-fink (1971) 
Wilhelmi (1966) 
Zandbergen (1981) 
Schlemper and Hamilton (1966) 

. Nu and Brown (1973) 
Jost et al. (1977) 

. Catti et al. (1983) 
Altermatt et al. (1984) 
Altermatt et al. (1984) 
Altermatt et al. (1984) 
this thesis (chapter 3) 
Yamada and Ikeda (1983) 
Zandbergen (1981) 

undistorted £-K2S04 type structures: 
27 K2Se04 Pcmn - r.t. 
28 (NH4)2ZnCl4 Pcmn - 418 

Kalman et al. (1978) 
Matsunaga (1982) 

X The reported structure is metastable at this temperature. 
$ The symmetry is not correct (see text). 
H The reported structure is a 5-fold superstructure approximation. See 

the text -for further remarks. 
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TABLE 4.3.1b. Cell parameters of the structures of table 4.3.1a. 
For incommensurate structures the eel 1 parameters are those of the basic 
structure. 

eel 1 parameters 
a [«] b [«] Cj [«] « I °] % I °] 

1 

2 
3 

4 

5 

6 

7 
8 

9 

ie 
l i 

12 
13 
14 

15 

16 

17 
18 

19 

28 
21 
22 

23 

24 

25 

26 

(NH4)2ZnCI4 

(NH4)2ZnCl4 

(NH4)2ZnCl4 

(NH4)2ZnCl4 

K2ZnCl4 

K2C0CU 
Rb2ZnCI4 

Rb2ZnCl4 

Rb2ZnBr4 

Rb2ZnBr4 

Ba2Ti04 

(NH4)2BeF4 

(NH4)2BeF4 

Ba2SnS4 

Sr2Cr04 

Cs2FeI4 

(NH4)2S04 

Ba2Ti04 

Ca2Si04 

Sr 2 Si0 4 

Cs2CdBr4 

Cs2HgBr4 

Cs2CdBr4 

Rb2ZnBr4 

K2Se04 

Cs2FeI4 

12.661 
12.628 
12.629 
12.568 
12.482 
12.486 
12.627 
12.542 
13.198 
13.184 
18.540 
10.495 
18.482 
12.613 
10.180 
14.318 
10.61 
18.545 
9.297 
9.767 

13.949 
13.796 
13.898 
13.338 
not repor 
14.343 

7.236 
7.211 
7.213 
7. 184 
7.256 
7.262 
7.242 
7.201 
7.549 
7.599 
6. 197 
5.915 
5.910 
7.359 
5.788 
8.287 
5.967 
6.096 
5.502 
5.663 
7.856 
7.813 
7.788 
7.656 

t e d 

8.288 

37.116 
37.098 
37.118 
27.838 
26.778 
26.838 
27.505 
27.439 
28.842 
28.869 
22.952 
15.123 
15.185 
17.823 
14.182 
21.459 
7.837 
7.681 
6.745 
7.884 

18.281 
18.162 
10.208 
9.707 

10.74 

undistorted £-K2S04 type structures: 
27 K2Se04 10.466 6.883 7.661 
28 (NH4)2ZnCl4 12.745 7.275 9.295 

98.08 
89.992 

92.99 
94.59 
92.67 
98.0 
98.0 
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153K structure (reported by Misyul et al, 1930) is used in the 
comparison because it is based on more than twice as many re-flections, 
resulting in smaller standard deviations of the atomic coordinates. 

- The reported structure of K2C0CI4 is almost equal to the reported 
structure 0+ H^ZnCU (maximal differences in atomic positions: 0.032A). 
The differences between these two structures are much smaller than the 
differences between one of these structures and each o-f the other 3-fold 
superstructures of table 4.3.1a. Therefore, all conclusions made in this 
thesis for the room temperature structure of" «2ZnCl4 are also valid for 
the structure of K2C0CI4. 

- The structure of Cs2HgBr4 at 200K is also not considered explicitely, 
because of its very strong resemblence with the structure o-f Cs2CdBr4 at 
195K (maximal differences in atomic positions: 0.0705). 

- The reported structure o-f the incommensurate phase o-f Cs2FeIa (at 133K) 
is a 5-fold superstructure approximation with symmetry P112i/n. The 
actual symmetry of the incommensurate phase is Pcmn(00-fr)(ssT) 
(Zandbergen, 1984). In the reported structure the second harmonics in 
the modulation functions are larger than the first harmonics. This is 
hardly possible, because Zandbergen (1981) reports that no second order 
satellite reflections could be observed. It is also not in accord with 
the other determined incommensurate structures (Rb2ZnBra, KaSeCU), in 
which only first harmonics are found in the modulation functions, and 
with the reported 4-fold superstructures, in which the second harmonics 
are much smaller than the first harmonics. The strong second harmonics 
found by Zandbergen are probably caused by the fact that in the last 
stage of the structure refinement no second order satellites were 
included (Zandbergen, 1981, 1934). The amplitudes of the second 
harmonics of the modulation functions are then only very weakly fixed, 
since they depend chiefly on the second order satellites. Hence they can 
easily assume unrealistic values. Therefore the reported structure of 
Cs2Fel4 at 133K is considered not to be correct and will be ignored. 

- Because the symmetry of Rb2ZnCU at 62K is not known, Quilichini and 
Pannetier (1983) used the symmetry of the compound at higher 
temperatures (Pc2m). The actual symmetry is lower because some of the 
reflections that should be systematically absent for space group Pc2jn 
are found to have non-zero intensity. Nevertheless, the agreement 
between observed and calculated intensities is very good. The reported 
Ó9K structure of Rb2ZnCl4 has a strong resemblence with the reported 
structure of the same compound at 100K (maximal difference in atomic 
positions: 9.0623). Therefore the structure of Rb2ZnCl4 at Ó8K is not 

7̂  

considered explicitely further. 
- As will be discussed in section A.6, the structure of RbzZnBr^ at room 

temperature is probably a 17-fold superstructure. Because this supercel 1 
is much larger than that of any other superstructure in table 4.3.1, the 
structure is treated as incommensurate in this and the next two 
sections. 

To compare structures, they must be described with respect to the same set 
of axes, with the origin in corresponding positions. Also, the nomenclature 
of the atoms must be the same. These conditions are not satisfied by the 
data reported in the original publications. Therefore a computer program 
has been made that automatically puts the origin of the set of 
crystallographic axis at the proper position, generates the positions of 
all atoms in the unit cell and normalizes the (code) numbers of the atoms. 
For polar structures the position of the origin is chosen such that the 
centre of gravity of the unit cell contents is at position (0.5, 0.5, 0.5). 
The incommensurate structures are treated separately. 

4.4. Local structural details. 

4.4.1. Interatomic distances. 

The first neighbour interatomic distances have been calculated from the 
atomic coordinates and the cell parameters (see table 4.3.1b) without 
applying corrections for the effect of thermal vibrations (see Cruickshank, 
1956). These corrections would be very small in comparison with the 
differences in distances which will be considered here. 
For the incommensurate structure o-f KiSeCM the cell parameters have not 
been reported. The room temperature cell parameters are used instead. They 
are sufficiently precise. 
For incommensurate structures the distances are found by approximating the 
structure by a large superstructure: a 23-fold superstructure is used for 
K2Se04 and a 17-fold one for Rb2ZnBr4. 
The interatomic distances in the BX4 tetrahedra are not discussed here, 
because their variations are much smaller than the variations in other 
distances. They deviate only a few percent from those corresponding to 
regular and identical BXa tetrahedra. 
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FIGURE 4.4.1. Nomenclature of the types of distances. The 
capitals denote A-X distances, whereas the lower-case letters 
denote X-X distances. Distance g is between two X atoms of two 
tetrahedra which coincide in the given projection. 
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The nomenclature of the distances is given in figure 4.4.1, showing a 
projection of a B-K2SO4 type structure. The A-X distances are denoted by a 
capital (A, ... F for Aj-X, and 6, ... M tor A2-X) and the X-X distances by 
a lower case letter. The same letter is used for interatomic distances that 
are equivalent (related by symmetry) if the distortion with respect to the 
£-K:>SÜ4 type structure is disregarded: each letter denotes a "type" of 
distance. Because in the Ê-K23Q4 type structure the A atoms are located on 
a mirror plane (perpendicular to b) , most of the A-X distances around 
an A-atom occur in pairs of the same type, and hence with the same letter. 
The distances which do not occur in pairs are those of type A, B, E, G, H, 
J, g and h. 

The interatomic distances for the crystal structures which are compared are 
given in figure 4.4.2. 
Figure 4.4.2 also shows the A-X and X-X contact distances for each 
compound. These contact distances are calculated as the sum of the 
effective ionic radii, taken from Shannon (1976). The radii are those for 
atoms with a sixfold coordination. For the halogen ions, this is the 
largest coordination number for which radii are given. If for the A ions 
eight would have been chosen as coordination number, then each A-X contact 
distance would have been about 8.15 larger. 
The Ai atoms are surrounded by nine X atoms. According to figure 4.4.2 only 
Ai-X distances of type C, corresponding to two distances per A1 atom, have 
values covering a large range. The Ai-X distances of the other types have 
almost the same value within each structure. The values for these non-
varying distance types are approximately equal to the minimum value of 
distance type C, and correspond to the contact distance of the atoms 
represented by A and X. 
The A2 atoms are surrounded by thirteen X atoms. As can be seen from figure 
4.4.2, the A2-X distances are in general larger then the Ai~X distances. 
Distances of only two types (G and H) always have about the same value; for 
G this value is close to the contact distance. The distances of the other 
types diverge considerably. It can be concluded that the A2 atoms have more 
space than the A1 atoms. 

4.4.2. Displacements of individual atoms. 

In the following the positions of the atoms in the distorted £-K2S04 type 
structure will be considered with respect to the "related Pcmn structure". 
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For incommensurate structures with the prototype symmetry this is the basic 
structure. For superstructures, the related Pcmn structure is -found in the 
following way. First the Pcmn symmetry operations of £-K2S04 are made to 
act on the atomic coordinates of the superstructure, letting the 
corresponding symme try elemen ts coincide. These Pcmn operations are at 
least present in the superstructure as pseudo symmetry operations, so they 
yield clusters of atoms. The related Pcmn structure results from averageing 
the atomic coordinates of atoms in each cluster, For 1ncommensurate 
structures of Which the 4-dimensional space group is a proper subgroup of 
the prototype symmetry, the related Pcmn structure is- found by applying the 
same recipe to its basic structure. 
The displacements C in it) of the atoms with respect to the positions in the 
related Pcmn structure are given in absolute value in figure 4.4.3. The 
nomen c I a ture of the atoms is as given in chapter 1 (-figure 1.4.1). For all 
structures shown in figure 4.4.3, the same pattern 15 found. The 
displacements of the atoms are mainly in the b direction for the Ai-, 
A;-, B-, Xf- and Xa atoms. Only the Xs atoms have important components also 
in the a- and c_ directions. 
The largest deviations are those of the X atoms. They mainly represent 
rotations of the tetrahedra, because the tetrahedra are rigid in good 
approximation and because the di splacemen ts of the B atoms are small. 
Because the displacements of the X|- and X2 atoms are mainly parallel to 
b, the rota 11 on compon en t around an ax 1s para 1 1 el to b is zero in 
good approximation. The other two rotation components can be characterized 
by the displacements of the Xi~ and X3 atoms in the b direction. These 
displacements will be investigated in more detail. 

For the superstructures, the displacements of the individual Xi- and X2 
atoms parallel to p_ are given in more detail in figure 4.4.4. These 
superstructures can be thought to consist of layers of BX4 tetrahedra 
normal to c_. The B atoms of both tetrahedra in such a layer have 
approximately the same z coordinates. Two such Iayers exist per c 
period. The A2 atoms are located in these layers between the tetrahedra. 
Each A1 atom is located between two layers. 
For most layers the displacements of the two X2 atoms are equal in good 
approximation. Therefore in figure 4.4.4 the corresponding triangles often 
form a single rhomb. The most important exceptions a.re found in the 2-fold 
superstructures of (NH4)2BeF4, Ba23nS4 and SrjCrCU. In half of the layers 
in these structures the displacements of the two different X2 atoms are 
opposi te. 

81 



R b 2 Z n B r 4 ( r . t . ) 

1 1 1 II 
x y z x y z x y z x y z x y z x y z 
A i A2 B X, X2 X3 

ï 

Rb2Zn 

T 1 

Bra (14810 

ï s ï 
x y z x y z x y z x y z x y z x y z 

A, A 2 B X, X2 X3 

I 

Rb2Zn Bra (?5K) 

I - ï 
x y z x y z x y z x y z x y z x y z 

A i A2 B X i X 2 X 3 

R b 2 Z n C U (188K) 

- Lij mil 
< y z x y z x y z x y z x y z x y z 
A, A 2 B X, X 2 X 3 

( N H , ) 2 Z n C l a (223K) 

T i l » ■ J_X 
x y z x y z x y z x y z x y z x y z 

A, A 2 B X, X 2 X 3 

( N H f l ) 2 Z n C U ( r . t . ) 

I 

JLJ^ 

I 

: .!. li f . 

, 

! ; 
J _ . J L 

x y z x y z x y z 
At A 2 B 

x y z x y z 
X , X2 

< y z 
X 3 

FIGURE 4 . 4 . 3 . Components o f t h e d i s p l a c e m e n t s o f 
t h e a toms w i t h r e s p e c t t o t h e r e l a t e d Pcmn 
s t r u c t u r e . 
The i n d i v i d u a l d i s p l a c e m e n t s a r e i n d i c a t e d by 
h o r i z o n t a l b a r s , e x c e p t f o r t h e i n c o m m e n s u r a t e 
c a s e , w h e r e t h e r a n g e i s i n d i c a t e d . 

8 . 6 

8 . 4 

8 . 2 

C s a F e l a (188K) 

,1 . 1, .1. . - T 

| _ 
x y z x y z x y z x y z x y z x y z 

A, A 2 B X, X 2 X3 

x y z x y z x y z x y z x y z x y z 
A, A 2 B X i X 2 X 3 

4 

2 

B a 2 T i 0 4 ( 3 - f o l d 

, L Ï -

' 

[■' 

8 . 4 

" 
8 . 2 

B a 2 T i 0 a ( 1 - f o l d ) 

! T 

1 i 

. 

T 

T 
x y z x y z x y z x y z x y z x y z 

A, A2 B X i X 2 X 3 

x y z x y z x y z x y z x y z x y z 
A f A 2 B X , X2 X 3 

Figure 4.4.3 continued 

82 83 



.4 

.2 

' Ca23iOa 

T 

(r . t .) 

1 

■ 

• 
T ' 

x y z x y z x y z x y z x y ; x y z 
A, A2 B X, X 2 X3 

1 i , T 
x y z x y z x y z x y z x y z x y z 

Ai A Ï B Xi X 2 X3 

e.4 

e.2 

Cs2CdBra 

I I 

(195K) 

T T I 
x y z x y z x y z x y z x y z x y z 

Ai A2 B X, X2 X 3 

x y z x y z x y z x y z x y z x y z 
Ai A2 B Xi X2 X 3 

x y z x y z x y z x y z x y z x y z 
At A 2 B X, X 2 X 3 

x y z x y z x y z x y z x y z x y z 
Ai A2 B X, X 2 X 3 

x y z x y z x y z x y z x y z x y z 
Ai A2 B X, X 2 X 3 

x y z x y z x y z x y z x y z x y z 
Ai A2 B X, X 2 X 3 

F i g u r e 4 . 4 . 3 c o n t i n u e d 

84 

The structure of (NH4)2BeF4 strikingly differs from the structures of 
Ba23nSa and SrjCrCU, despite the fact that these three structures have the 
same symmetry. Xi atoms with approximately equal z coordinates have 
displacements with opposite sign in (NH^aBeFa, and of the same sign in 
both other compounds. In (NH4)2BeF4 the displacements of four of the eight 
X2 atoms are opposite to the displacements of the corresponding X2 atoms in 
the other two structures. 

The difference between the two 4-fold superstructures of (NHa)2ZnCl4 is 
also visible in figure A.A.A. In the 333K structure of this compound there 
are two layers in the supercel 1 in which the two different X2 atoms are 
related by a 2i axis parallel to a. Because of this relation the 
displacements of these two X2 atoms must be opposite; actually they almost 
vanish here. In the room temperature structure of (NHd)2ZnCla this 2\ axis 
is not present. Here all X2 atoms have displacements of approximately the 
same absolute value in the room temperature structure. 

The displacements of the X2 atoms (see figure 4.4.3) are mainly caused by 
rotations of the tetrahedra around an axis parallel to c_. If the 
displacements of the two X2 atoms in a layer have the same sign, then the 
corresponding rotations of the tetrahedra are in the same direction. Figure 
4.4.5 shows a layer of tetrahedra (drawn with full lines as triangles) 
which are all rotated clock-wise over the same angle; this is the most 
frequently occurring situation. The rotation angle in the figure (18°) is 
representative for the actual rotations in the distorted jft-KjtSQ̂  type 
structures. In the figure neighbouring X atoms of different tetrahedra are 
connected by dashed lines representing distances of type d and g, and 
forming triangles. If the tetrahedra are rotated clockwise, then the dashed 
triangles are rotated anti clock-wise. Because in the related Pcmn 
structure mirror planes normal to b_ exist, the distances of type d and 
g are hardly influenced by the cooperative rotations of the tetrahedra; 
this is confirmed by figure 4.4.2. 
In the plane of figure 4.4.5, the A2 atoms in the layer are surrounded by 
six X atoms belonging to three different tetrahedra. Three of the six A2-X 
distances around each A2 atom are considerably shortened by the rotations 
of the tetrahedra, the other three are lengthened. In most of the layers 
shown in figure 4.4.4 the rotation angle of the tetrahedra is such that the 
shorter A2-X distances are equal to the sum of the atomic radii. (These 
distances are the smaller K-, L- and M distances in figure 4.4.2.) In such 
a layer the rotation has reached the limit imposed by steric hindrance. 

85 



- e . i e . i -B.I 8.1 -
—»4y —»4y 

(NlWiBeFi (153K) BajSnS, 

V 

VA 

e . i 8.i 
»4y —»4y 

Si-iOOa Cs j f fU (18810 

$1 
o-

V - A v ^ 

. 1 - 8 . 1 - 8 . 1 8 . 1 - 8 . 1 
—>4y —)Ay —>4y 

(NHahSOa (18810 BajTiO! (W.) CaiSiO, 

.1 8 .1 
- > 4 y 

SrjSiOj 

- 8 . 1 8 . 1 - 8 . 1 8 .1 
—»Jy —>4y 

CS!CdBr4 (19510 CsjCdB^ (12910 

FIGURE 4 . 4 . 4 . D e v i a t i o n o-f t h e y c o o r d i n a t e s o-f t h e 
X ( - and Xi a toms f r o m t h o s e i n t h e r e l a t e d Pcmn 
s t r u c t u r e . The open and - f u l l t r i a n g l e s i n t h e l e f t 
■ f i g u r e s r e p r e s e n t X ( - and X2 a toms r e s p e c t i v e l y . 
Fo r t h e s u p e r s t r u c t u r e s t h e c o r r e s p o n d i n g 
d e v i a t i o n s o-f t h e y c o o r d i n a t e s a r e g i v e n i n t h e 
o t h e r d r a w i n g s a t t h e same h o r i z o n t a l l e v e l s . 
T h i s page shows 1 - and 2 - f o l d s u p e r s t r u c t u r e s . 

86 

A 
1, 

:i A 
?„ 

% 
A 

?. 

r^ 

-* 

V 

#-

<h-
♦ 
i 

A^ 

$r-

e-l 
v 

-# 

- ♦ 

-e 
v-
-♦ 
* 
► 
U^ 

- 8 . 1 8 . 1 
> j y 

0-

e-

»4y >4y 

- ♦ 

MWtZaCU (333K) (NH4)2ZnCU ( r . t . ) (NWiZnCU (223K) 
—»4y 

K22nClj 

^ 

VA 
% 

21 A 
t, 

% 
A 

"k 

e-

0 -

[* 
^ 
-♦ 
-♦ 
A? 

v 
-♦ 
-♦ 

>4y 

0-

0-

>4y 

0 -

v6 

0 -

>4y 

-0 

-0 

-0 

>4y 
RbiZnCU (18810 Rb2ZnBr4 (14810 RbiZnBr, (9510 BliTiOj (3-f .) 

F i g u r e 4 . 4 . 4 c o n t i n u e d w i t h t h e 3 - and 4 - f o l d 
s u p e r s t r u c t u r e s . 

87 



FIGURE 4.4.5. Layer of tetrahedra normal to c_. Of each 
tetrahedron, three X atoms are shown, which are connected to 
each other by solid lines to form a triangle. All A- and X 
atoms shown in this figure have about equal z coordinates. 

a . 

ex 
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-XX. 

FIGURE 4.4.4. Two neighbouring Xi-A, chains parallel to b. 
The atoms shown have about equal z coordinates. 
All Xi atoms are displaced in the positive b direction, the 
Ai atoms in the negative b direction. As a corollary, the 
distances of type C in a chain are alternately longer and 
shorter. 
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The Xi atoms with approximately the same z coordinates also have in most 
cases the same displacements, as can be seen in f igure 4.4.4, Tooether wi th 
Ai atoms having approximately the same x- and z coordinates, they form 
chains parallel to b consisting of alternate X|- and Ai atoms. Now the 
displacements of the Ai atoms parallel to b are always opposite to the 
displacements of the Xi atoms in the same chain. As a result the Ai-Xi 
distances (of type C, see figures 4.4.1 and 4.4.2) in an A1-X1 chain are 
alternately large and small, see figure 4.4.6. In a A-K2SO4 type structure 
the distances in the chains are equal. Because the X atoms carry a negative 
and the A atoms a positive charge, the opposite displacements of both types 
of atoms will result in large local dipoles. 
In figure 4.4..£ the most frequently occuring situation is shown: the 
displacements of the Xi atoms in the two neighbouring chains are equal and 
in the same direction. This has as a result that the Xi-Xi distances (shown 
in figure 4.4.Ó as dashed lines) are hardly influenced by the 
displacements. This corresponds to figure 4.4.2, in which it can be seen 
that these distances (of type a) are almost equal within each structure. 

It has been shown in this section that the superstructures have the same 
local distortions with respect to £-K23Q<i as the incommensurate structures. 
Hence these structures (including the 1-fold superstructures) can also 
provide information about the origin of the modulation. The local 
distortions consist mainly of rotations of the BX4 tetrahedra, and can be 
characterized by the displacements of the X(- and X2 atoms parallel to 

4.5. Modulation functions. 

In this section the modulation functions of the incommensurate structures 
and the 3- and 4-fold superstructures will be compared. The modulation 
functions of superstructures have been obtained from the atomic coordinates 
by fourier analysis, using the standardized modulation wave vectors. 
In that analysis, for a v-fold superstructure only the harmonics of orders 
0 ... (v-l)/2 for v odd, or 0 ... v/2 for v even (with the minimum 
amplitude of the v/2-th harmonic) were not assumed to vanish. So the 
highest order allowed for a 3-fold superstructure is the first, and for a 
4-fold one it is the second harmonic. 
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Only the first harmonics will be discussed. The reported incommensurate 
structures do not contain higher harmonics. (The only exception is CszFel^ 
at 133K, but the determination is probably not correct, as explained in 
section 4.3), In the reported 4-fold superstructures the second harmonics 
are smaller than 28X of the largest first-harmonic amplitude. Therefore, in 
the following the second and higher harmonics will be neglected. So for a 
given atom the modulation functions can be written as 

diQ) = A; cos(.2TUt-<Pi>) CAi>/S) . (4.5.1) 

In this equation A; is the amplitude of the displacement modulation 
function in direction i Ci=l, 2 and 3 correspond to directions x, y and z 
respectively) and y-, is the phase of this function. (Note that subscript i 
of A; and m has another meaning in chapter 5.) Figure 4.5.1 shows how 
these functions will be represented graphically. The modulation function in 
this figure can be represented by either one of two line segments of length 
A;, which we shall call si and sz. The position of the line segment si, 
drawn above that axis at t=<$; , gives the value of t at which d;(t) is 
maximal; S2 is at the position t=*pi±0.5 of the minimum and is drawn below 
the base line. Using for each modulation function one of these symbols, it 
is possible to represent many modulation functions in one drawing. Having 
two symbols available one can display more clearly the symmetry by choosing 
for each modulation function the most appropriate one. 
In figure 4.5.2 the first harmonics of modulation functions in KïZnClfl are 
given, together with two projections of a Ê-K2SO4 type structure. For each 
modulation function the corresponding atom can be found in the projections 
by extending the horizontal line to which the symbol is connected into the 
projection and looking there for the same square, circle or triangle on 
that line. In the upper part of figure 4.5.2b the modulation functions 
da(t) are given. In the lower part di(t) and ds<t) are given for the X3-
and X4 atoms. For the other atoms di(t) and d3(t) are not shown because 
they have amplitudes smaller than 167. of the largest amplitude in the same 
structure. In the incommensurate structures with the prototype symmetry and 
in the superstructures with a c-glide plans normal to b the first 
harmonics of these modulation functions have zero amplitude because of 
symmetry, cf. sect ion 2.3. 
The functions dg(t) are longitudinal modulation functions. Therefore the 
line segments representing these functions are drawn horizontally. Figure 
4.5.2c shows the nomenclature of the atoms used in the following 
discussion. In figure 4.5.3 the modulation functions of the other 
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FIGURE 4 . 5 . 1 . Function d ; ( t ) = A ;cos(2 t f ( t -w ; ) ) can 
represented by l i n e segments si or 5* . 

FIGURE 4 .5 .2a . Two p ro jec t i ons of a £-KzS0fl type s t r u c t u r e . 
b. The f i r s t harmonics of modulat ion func t ions in K jZnCU, 
represented in the way shown in f i g u r e 4 . 5 . 1 . The corresponding 
atoms l i e on the same hor i zon ta l level in the p ro j ec t i ons of 
par t a of t h i s f i g u r e . The length of the arrows corresponds to 
an ampli tude of 0 .94. 
c. Nomenclature of the atoms. 
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structures are given. 

The -first conclusion is that the drawings -for the di-f-ferent structures are 
very much alike, in spite o-f the -fact that some of the structures are 
incommensurate, whereas others are 3--fold or 4-fold superstructures. This 
is most easily seen when looking at the dominant modulation -functions for 
the Xi- and X2 atoms, but it is true -for the amplitudes and phases o-f the 
other atoms as well. The major di-f-ferences between structures are found in 
the phases of the Ó2 functions of X3- and X4 atoms. 
The deviation from prototype symmetry is small in all structures. As an 
example of the minor character of the deviations which still exist, one may 
look at the d2 functions of Xj- and Xa atoms for <NH4)22nCl4 at room 
temperature. For the prototype symmetry, each pair (two 62 functions 
connected by a horizontal bar) has a phase difference of 1/2. This can be 
verified in the figure for RbïZnBra because the corresponding symbols are 
pairwise mirror images with respect to the horizontal base line. A (very 
small) shift occurs in the figure for (NH^aZnCU at 333K, because this 
structure lacks the c-glide plane normal to a_. The room temperature 
structure shows a somewhat larger shift (phase difference 0.39 instead of 
8.5) which is related to the disappearence of the 2i axis along a_ 
discussed before (section 4.1.2). Still, such a deviation is smalt enough 
to allow the statement that the c(s) element is approximately present even 
in this 4-fold superstructure. 
Nith regard to the m(s) element of the prototype symmetry, the following 
observations can be made. 
The modulation functions d|(t) and d^(t) of the X3 atoms are exactly in 
antiphase with those of the X4 atoms of the same BX4 group for the 
incommensurate structures and the 4-fold superstructures, because of the 
m(s) symmetry operation and the c-glide plane normal to b_ respectively. 
For the same reason, the functions da(t) are in phase. For the modulation 
functions in the 3-fold superstructures this is almost true. Combining this 
with the observation mentioned earlier, viz. that the amplitudes of the 
first harmonics of the functions dt(t) and d?(t) of the atoms an the mirror 
plane in the related Pcmn structure are small, it can be concluded that the 
m(s) operation is present in good approximation. 
The fact that the symmetry operations of the prototype symmetry are obeyed 
in good approximation in the 4- and 3-fold superstructures again confirms 
that these supers true tures have pseudo-prototype symmetry. 

The translations of the BX4 tetrahedra can be found from the modulation 
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FIGURE 4.6.1. Modulation wavevector component ï as a function 
of the reduced temperature T/Ti for Rb2ZnBr4 (Ti=347K) and 
Rb2ZnCla <Ti=308K) . The figure is taken -from Gesi and Iizumi 
(1979b), including the curves. Only the 's-scale (TJ=1/3-S) has 
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FIGURE 4.Ó.2. The possible rational values u/v of 's as a 
function of the supercel 1 size v, for all three parity 
combinations: both u and v odd (crossed circles); u odd, v even 
(crosses); u even, v odd (open circles). 
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functions of the B atoms. Because the latter's amplitudes are small, it can 
be concluded that these translations are small as well. 
For the structures of which the modulation functions are given in figures 
4.5.3 and 4.5.2 the function d 2 < t) of atom A M is approximately in 
antiphase with dj(t3 of X14. These two atoms have approximately the same x-
and 2 coordinates and form a chain parallel to b. The same situation 
occurs for the atom pairs Ai3-X12, Ai2-X13 and A14-X11. The fact that the 
modu 1 a t ion functions d2 (t) of the two a tarns in one chain are in antiphase 
means that if the A1 atoms are displaced in the positive b direction, 
then the ><i atoms in the same chain are displaced in the negative b 
direction. These chains have already been discussed in section 4.4. 
Other observations made in section 4.4 which can be confirmed here are the 
cooperative displacements of the X2 atoms of tetrahedra in the same layer 
of tetrahedra normal to c_ and the cooperative displacements of Xi atoms 
with approximately the same z coordinates. Two X2 atoms of tetrahedra in 
the same layer are for example X21 and X23 (see figure 4.5.2). Indeed it 
can be seen from figures 4.5.3 and 4.5.2 that the modulation functions 
d2(t) of these atoms have the same phase in good approx imat i on. 
Two Xi atoms with approximately the same z coordinates are for example X1i 
and X14. These atoms also have modulation functions dï(t) with 
approximately the same phase, as expected. 

4.Ó. Large superstructures. 

In this section those structures will be discussed in which the measured 
value of "•! as a function of temperature has one or more plateau's not 
corresponding to simple superstructures. As mentioned in chapter 1, this 
leaves some doubt as to whether the structure - within the range of such a 
plateau - is incommensurate or is a complex superstructure. 

The temperature dependence of ï of Rb2ZnBr4 has been measured by De Pater 
et al. (1979) and by Gesi and lizumi (1978), see figure 4.6.1. Both 
measurements reveal that from Ti down to about 210K the value of ï remains 
constant at 0.293(1) . This value equals 5/17=0.2941 within the experimental 
error. Iizumi and Gesi (1983) verified this by more precise measurements. 
Gesi and Iizumi (1973) also found a clear anomaly in the intensities of 
satellite reflections at the temperature where 'a leaves the constant region 

97 



Cat about 210K). They suggested that there is a phase transition at this 
temperature. By means of dielectric measurements, Uan Kleef et al (1981) 
actually did find in some of there samples two successive phase 
transitions, 10 to 20K apart (depending on the sample) instead of one at 
T c 
The temperature dependence of 'u for Rb2ZnCU has been measured by Mashiyama 
et al. (1981) and by Gesi and Iizumi (1979a), whose results are reproduced 
in figure 4.6.1. The curve in that figure is smooth but the measured points 
allow the assumption of two intervals in which 'S is constant. The first 
lies between 260K and 300K, the second between 200K and 220K. Gesi and 
Iizumi (1979a) also measured the intensity of a satellite reflection as a 
function of temperature. This curve has a shoulder around 210K, which seems 
to confirm the second plateau of Tr<T) . The values which 's takes in the 
regions mentioned are 0.305 above 260K and 0.311 around 210K. The simplest 
fractions which equal these numbers within experimental error (estimated 
from the spreading of the data to be 0.001) are 7/23=0.3843 and 
9/29=0.3103. 
The measurements of Mashiyama et a!. (1981) also show that 'S has the value 
0.305 between 260K and 300K. The other plateau is not found in their 
measurements. A narrow but well-established shoulder in their curve of U(T) 
suggest that « also is constant with value 0.317 (13/41=0.3171) in a small 
temperature interval just above Tc. 
Zandbergen (1981) reports that in Cs2FeU ■* has the value 0.384(5) in the 
entire temperature region (123K-152K) of the so-called incommensurate 
phase. This value is equal to 5/13=0.3840 within the experimental error. 

The rational values of '* mentioned above (5/13, 5/17, 7/23, 9/29, 13/41) 
all obey the same parity condition: u and v both odd. The same condition 
holds for the 3-fold superstructures found at lower temperatures in 
Rb2Zn8r4 and Rb2ZnCU: TJ=1/3. 
As can be seen in figure 4.6.2, the values 1/3, 5/17, 7/23 and 9/29 are -
among the fractions which obey this parity condition - the ones which give 
the smallest supercells in the region 0 .29<'<F<0 .34. Several fractions which 
do not obey this condition and correspond to smaller supercells (e.g. 3/10, 
4/13. 5/16), are not observed. Therefore it can be concluded that Rb2ZnBr4 
and RbaZnCla have a preference for commensurate modulation wave vectors 
with u and v both odd. 
From figure 4.2.2 it can be seen that only under this condition the c(s) 
operation of the prototype symmetry can be present as a c-glide plane 
normal to a in a rational subgroup of this symmetry. Hence the observed 
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parity condition suggests that it is energetically favorable to keep this 
symmetry element in the structure. 

The above-mentioned compounds are not the only ones with a preference for 
modulation wave vectors obeying such a parity condition. In thiourea a 
similar situation exists. This compound has an orthorhombic modulated phase 
with the modulation vector parallel to c_. A careful neutron diffraction 
analysis of the p-T phase diagram of fully deuterated thiourea by Denoyer 
et al . (1981) has shown that there are stable superstructures for "ï=l/9, 
1/7 and 1/3, the latter two occuring at higher pressures only. In the p-T 
phase diagram, the stability regions for these superstructures border on, 
or are surrounded by a large area in which 'S appears to change 
continuously. An earlier paper by Shiozaki (1971) deals with such an 
incommensurate phase. The conditions for reflections observed by X-ray 
diffraction are: 
(i) Qklm present only for k=even, 
(ii) h01m present only for h+l+m=even. 
Condition (ii) corresponds to an n(s)-glide plane normal to b. 
Projected along a, this element yields exactly the same configuration 
as c(s) in figure 4.4.4d, and therefore yields the same condition, viz. u 
and v both odd. Hence also in thiourea the rational values for 's which are 
observed are just those for which a certain symmetry element can be present 
in a rational subgroup of a prototype symmetry. 
Moudden et al. (1982) observed that in the presence of an electric field 
parallel to t), and hence normal to the n(s)-glide plane, also a 
superstructure with le=l/S exists in a certain temperature region. This 
electric field apparently destroys the n(s)-glide plane. 

An attempt has been made to find more evidence for the 7/23 and 9/29 
plateaus in Rb2ZnCl4 by neutron diffraction, 's has been determined from the 
position of the reflections 0200, 021-1, 0211 and 0220 at several 
temperatures between Ti and Tc. 
The result is given in figure 4.6.3. Near Tc, which has been found to be 
196K in this experiment, also higher order satellites can be observed. 
Figure 4.6.4 shows a complete scan parallel to £ between reflections 
0208 and 0220 of Rb2ZnCU at 193K. For this temperature ï also has been 
calculated from the positions of the higher order satellite reflections. 
This value is in good agreement with the value calculated from the 
positions of the first order satellites, as can be seen in figure 4.6.3, 
where both values are given. 

S3 



-> T [K] 

FIGURE A.6.3. * in Rb2ZnCU as a function of 
temperature. 
■ : from first order satellites 
X : -from higher order satellites 
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In figure 4.6.3 it can be seen that our measurements do not give evidence 
for a plateau at '5=9/29. The plateau of the high temperature side of the 
incommensurate phase is at ^0.3954(2) . This value deviates significantly 
from 7/23=0.3043. The measured value is too large. 

The reflections observed at 198 K in RbïZnCU on the line between 
reflections 0200 and 0220 are (see figure 4.6.4): 021-3, 9291, 92-15, 
621-1, 023-7, 0210, 92-17, 9211, 022-2, 023-5 and 022-1. Note that the 
higher order satellite reflections are very weak with respect to the first 
order satellites 921-1 and 9211. Three of the observed reflections (9291, 
9210 and 922-1) do not obey the rule for systematic absences of the c(s)-
glide plane normal to a: 9klm reflections are absent if l+m=odd. The 
observation of these three reflections is not due to half-wavelength 
contamination of the neutron beam. 
The same "forbidden" reflections are present more pronouncedly in a similar 
scan made by lizumi and Gesi (1933) for RbzZnBrq at room temperature. 
Therefore it must be concluded that this cCs) symmetry element is not 
present in the incommensurate phase of Rb2ZnCl4 and in the 17-fold 
superstructure phase of Rb2ZnBra. This contradicts the above hypothesis 
that this element is conserved - no explanation has yet been found. 

Though the existence of superstructure phases in Rb2ZnCla is questionable, 
this is not the case for RbaZnBrq. lizumi and Gesi (1933, see also chapter 
3) confirmed that the room temperature phase of this compound has a 17-fold 
superstructure. Together with the value *=8.384(5)^5/13, found for a large 
temperature region in Cs2Fel4, this seems to show that these compounds in 
their large superstructures prefer ^odd/odd above other kinds of 
fractions. 

Acknowledgement. The measurements on RbjZnCU described in this section, 
have been performed in cooperation with dr. C. van Dijk of ECN (Netherlands 
Energy Research Foundation) in Petten. 
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Chapter 5 

THE ORIGIN OF THE MODULATION. 

5.1. Introduc tion. 

The origin of the modulation in distorted J-KzSO* type crystal structures 
is still unclear, despite appreciable efforts of several authors. 
Phenomenologic theories, of the Landau type, have been put forward for the 
crystal structures of interest here. Though satisfactory explanations can 
be given for some of the phenomena, no insight is provided in the 
microscopic interactions causing the modulation of these structures (De 
Pater et al., 1979; Iizumi et al., 1977). 
In relation to our detailed comparison of the crystal structures, we are 
especially interested in microscopic theories. An Ising model constructed 
by Yamada and Hamaya (1983a, 1983b) gives some hints towards the origin of 
the phase transitions. The interactions, however, bear no direct relation 
to the actual structural interactions. Janssen (1985) brings the model of 
Janssen and Tjon (1981, 1982, 1983) in connection with some of the crystal 
structures discussed in this thesis. The interactions which he assumes to 
exist are in our opinion not argumented adequately. 
Haque and Hardy (1980) performed a theoretical lattice dynamical study of 
the normal to incommensurate phase transition of K2Se0a. All possible 
Coulomb interactions as well as 32 independent short range interactions 
were taken into account. The calculations showed the presence of a 
softening low frequency optical mode with a wave vector close to the 
observed modulation wavevector. The treatment regards the dynamics of the 
normal phase. Because of the complexity of the model it is very difficult 
to get insight in the mechanism which causes the modulation. 

The purpose in the present chapter will be to calculate explicitly the 
static stability of the modulated phases, using the structural knowledge to 
sort out those interactions which are expected to play a dominant role in 
the stability. The word "interaction" will be used to indicate a simple 
interatomic force as well as the result of a combination of such forces. 

The model will be presented in section 5.2, whereas in section 5.3 the 
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FIGURE 5.2.1. The numbering oi 
the tetrahedra in a subcell, 
as used in this chapter. 
The dotted line indicates the 
plane containing the atoms shown 
in -figure 5.3.3. 
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FIGURE 5.2.2. The interactions between the X2 atoms in the 
model crystal structure. Jik is the displacement parallel to 
b of the X2 atom o-f tetrahedron i in subcell k. 
Each solid line indicates an interaction -favouring equal 
displacements, whereas each dashed line indicates an 
interaction favouring opposite displacements. 
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relation o-f this model to the js-KiSOa type crystal structure will be 
discussed. In section 5.4 it will be shown which structures are stable as a 
-function o-f the interaction parameters in the model. In section 5.5 it will 
be assessed which of the observations can be explained by the model and 
which of them cannot. In the last section 15.61 the results will be 
discussed. 

5.2. The model. 

The model consists of an energy expression (5.2.1) derived from an assembly 
of interactions between first neighbours in an idealized structure. 
Although not exhaustive, this assembly is thought to be representative 
because the consequences of each interaction, taken separately, are 
reflected in systematic features present in the actual structures. 
In the model it is assumed that a and b are true symmetry 
translation vectors. Hence, the modulation wave vector is parallel to 
c, and it is sufficient to consider only a single row of subcells 
parallel to c. It is further assumed that a structure is completely 
determined by the displacements parallel to b of the X2 atoms from the 
mirror planes in Pcmn. Hence, the model contains four parameters for the k-
th subcell: the displacements ^i, of the X2 atoms, 1=1,2,3,4 denoting the 
tetrahedron number as indicated in figure 5.2.1. 

The potential energy per subcell in the model is given by 

F =
H m J _ £ [ S ( j i k » - ^ i ^ ) ♦ £,((,),k-<53k)2 + <J2«-J4k)2) ♦ 
N-̂ ct 2N+1 k=-N i=l 

♦ E2<<<ii k - J d k > 2 + < J 2 k - J ! l < - H > 2 > ♦ 

+ £ 3 « J 3 k + ,d2k>2 + < ^ k + ^ k + 1 > 2 > ) ■ ( 5 . 2 . D 

I n t h e f o l l o w i n g we s h a l l r e f e r t o F as " t h e e n e r g y " . The c o e f f i c i e n t s a , 

E t , £2 and £3 a r e p o s i t i v e . 

The t e r m 

( J i k ' - ^ i k 2 ) ( 5 . 2 . 2 ) 
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in equation 5.2.1 represents a double-well potential -for Aw.. It is the 
only type of term in that equation which can have a negative value. The 
double well potential 5.2.2 has its minima at A; u=±-/(o-/2) . 
Each term of the form 

describes an interaction between the X2 atoms o-f tetrahedra i and m o-f 
subcel1 k and n respectively. 1+ acting alone it would make Jiu=Jmn■ In 
equation 5.2.1 the terms with coefficients £1 and £2 are o-f this type. The 
interactions represented by these terms are called EI~ and £2 interactions 
respectively. 
The terms o-f the form 

(A; k+J*n)2 (5.2.4) 

describe another Kind o-f interaction, tending to make Aw=-Ann. They all 
have coe-f-ficient £3 and are called £3 interactions. 
In figure 5.2.2 all interactions in the model are represented graphically. 
Interactions of type 5.2.3 are shown as full lines, those of type 5.2.4 as 
dashed 1ines. 

The model shows the feature of frustration: the interactions have 
counteracting tendencies. For instance, in figure 5.2.2 A20 is coupled to 
^3o by £1- and £2 interactions via Aa,Q and A\0. The corresponding terms in 
the energy are smallest if 

Azo = Aq0 = J|0 = J30 . (5.2.5) 

However, A20 is also coupled directly to J30 by a £3 interaction. This 
interaction has the tendency to make 

^20 = -A30 . (5.2.6) 

The crystal structure, represented by the model, must find a compromise for 
this conflict, assuming that c in equation 5.2.1 is large enough (and hence 
the wells of the double well potential deep enough) to prevent vanishing of 
all displacements Aw 

Such a competition of interactions is typical for the models that show 
incommensurate structures. An example is the model of Janssen an Tjon 
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(1981, 1982, 1933). 

The coefficient a in equation 5.2.1 can be associated with the temperature: 
for a larger value of c the wells of the potential are narrower and deeper. 
This can be interpreted as a decrease of the smoothing effect of thermal 
motion. Hence, a larger value of a corresponds to a lower temperature. For 
low values of a the energy (5.2.1) has its minimum at Jiu=0 for each 1 and 
k, while for large values of ■? the minimum will have nonzero displacements. 
Of course, the other coefficients in the model (ii, £2 and £3) may be 
temperature dependent as well, but presumably much less than a. 

5.3. Relation between model and crystal structure. 

5.3.1. Introduction. 

Four types of local atomic arrangements in distorted fr-KiSQa type crystal 
structures will be discussed in this section. The interatomic forces 
involved will lead to the energy expression 5.2.1. Before discussing the 
structural details, let us discuss the interatomic forces between two 
individual atoms. The interaction between two negative X atoms can be 
described by the usual potential energy expression 

C| C2 
E(r) = — + — (ci, C2 positive: n»l, e.q. n=12) , (5.3.1) r r 

in which r is the distance between the centres of both atoms. The -first 
term is the Coulomb energy. The second one is an extra repulsive term, 
which is dominant for small values of r. Here the exact value of n is not 
relevant. 
The first derivative of E with respect to r is negative, the second 
derivative is positive. 

For the interaction of a negative X atom and a positive A-atom we write: 

-Cl C4 E'(r) = + -o (C3, C4 positive) . (5.3.2) r r 

Often a Taylor series will be used, writing e.g. for E(r): 
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FIGURE 5.3.1. A layer normal to c of X2, X3, X4 and A2 
atoms. The X atoms are located at the corners of the triangles 
a. undistorted; 
b. after rotation of the tetrahedra around an axis parallel 

to c . 
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dE d*E E(r) = E(rQ) + (—) Ar + C ) Ar^/2 + ... (5.3.3) dr To dr^ r0 

wi th r = r0 + Ar , (5.3.4) 

where r0 is a distance in an undistorted £-K2S04 type structure. 

In chapter 4 it has been shown that the distortions of the structures with 
respect to Pcmn symmetry are mainly rotations of the tetrahedra, which can 
be characterized by displacements of the X,- and X2 atoms parallel to 
b. In this section this observation will be used as a starting point 
for the discussion: it will be assumed that the B atoms are not displaced, 
that the tetrahedra are regular and rigid and that the rotation of each 
tetrahedron has just two components, the component around an axis parallel 
to b being zero (this component is very small in the actual structures, 
as discussed in section 4.4). He consider first a rotation around the line 
B-Xi, corresponding to a displacement of the X2 atom parallel to b (in 
first approximation). The second component, also about an axis lying in the 
a,,c_ plane, will be considered later. 

5.3.2. Layer of tetrahedra normal to c_. 

The first one of the local atomic arrangements to be studied is the layer 
of tetrahadra normal to c_ already discussed in section 4.4. Because 
a and b are translation vectors, only two non-equivalent tetrahedra 
exist in such a layer. 
In figure 5.3.1a an undistorted layer is shown, whereas in figure 5.3.1b 
the tetrahedra are rotated. The atoms shown all have about equal z 
coordinates. Therefore the other rotation component (involving displacement 
of the Xi atoms) does not have much influence on the distances between the 
atoms in the figure. The A2 atoms are supposed to be fixed at the centra of 
the hexagons. In order to make equations simpler, it is further assumed 
that a=th/3 (hexagonal lattice), that the x coordinates of all atoms in 
figure 5.3.1 are equal and that the length of the tetrahedra edges is equal 
to b/2, so that 

do = go == Ko = LQ = M0 = b/2 . (5.3.5) 
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These simplifications do not affect the conclusions which will be made 
later. 
Only interactions between atoms which are connected by first neighbour 
distances (types d, g, K, L and M) are considered here. 

For small rotation angles we find, developing orthogona) components of each 
distance up to J;u1: 

CM = ^ . „ ♦ ^ „ ♦ ^ i ï l , 2 • ! ( b-2„ k t?ilïi tl^i, 2 , (3.3.4, 

b 3Jikt 2 
9 , 2 = 2 t _ b ~ * 3 J n < 2 ' (5.3.7) 

From these equations and their analogues tor d2 etc one tinds, in the same 
order of approximation: 

j b 4m Jan ? 3 
d, = d 4 = j - — + — + _(j,„2+j3k2) f —Alk<l3k , (5.3.?) 

b Jm J311 9 3 
d2 = d 3=;; + — " — + ^ J ^ ' ^ + Jjk2) + 2bJm^3k , (5.3.18) 

b 6 
2 + b J (5.3.11) 

_ b 6 
92 - 5 + b J 3 k 2 ' (5.3.12) 

K, = La = M3 = - + J3„ , (5.3.13) 

b K2 - L3 - M4 = - - Aiv , (5.3.14) 

KB = Lz = Mi = - + J H , (5.3.15) 

b Kn - Li - M2 = - - Ju, . (5.3.16) 

Using 5.3.3 and the analogous equation tor E'(r), and neglecting third and 
higher order terms in J,k and Jsn, the energy contribution of the 
interactions of these distances can be written as (leaving out the terms 
not depending on Jt u or J311) : 

Fi = -tr2(j, i|2+j3k2) t E,'(J,k-j3k)2 (5.3.1?) 
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-13 dE d2E' with a2 = <—) - 3( ) (5.3.13) b dr b/2 dr2 b/2 
-3 dE d2E and st' = — ( — ) + ( ) (5.3.1?) b dr b/2 dr2 b/2 

Now in the structures with space group Pcmn the distances of type K, L and 
M are larger than the A-X contact distance whereas in the other structures 
at least the average of the distances of each of these types is larger than 
that contact distance (as can be seen in figure 4.4.2). Therefore it can be 
assumed that the first term of 5.3.3 is dominant for small values of JiM 
and J3ii. Hence 

d2E' ( ) < 8 . (5.3.28) 
di-2 b/2 

The first derivative of E(r) (equation 5.3.1) is always negative, and its 
second derivative always positive. From this it follows that tf2 and Ei' are 
both posi tive. 
So far it has been assumed that the rotation angles are small. For larger 
rotation angles the contact distance will be approached by some of the 
distances K, L or M. Then the repulsive second term in equation 5.3.2 
becomes dominant, raising the energy. Therefore, in the model the terms 

tfuJi u4 * craJsk4 (da positive) (5.3.21) 

are included. 

The energy of the layer then becomes 

F,' = ïsJiiii - ff2Jik2 + ffaJ3k" -tf2Jjk2 + EI '(Ji k-J3k>2 ■ (5.3.22) 

This energy has its minimum at 

Mv = A3k = ±4^- • (5.3.23) 

The term with EI' in equation 5.3.22 accounts for the observation in 
section 4.4 that the X2 displacements within a layer are very often almost 
equal and in the same sense. 

Combining the energy of all layers in a structure gives 
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X2 

FIGURE 5.3.2. Chain o-f X, atoms parallel to b. The two 
equivalent X( atoms are o-f tetrahedra 1 and 4 respectiv 
■figure 5.2.1 the numbering o-f the tetrahedra is shown} . 
a. undistorted; 
b. distorted: Ay\ and Aya are the two non-equivalent Xi 

displacements in the chain. 

non-
Fel y (in 

FIGURE 5.3.3. A tetrahedron with 
three surrounding Xi atoms, lying 
in good approximation in one plane 
(indicated in -figure 5.2.1) . 
The -forces between atoms connected 
by the indicated distances result 
in an e-f-fective interaction 
between atoms Xi and X2. 

FIGURE 5.3.4. The interaction 
chain between two X2 atoms via 
the Xi atoms o-f the same 
tetrahedra. This chain can be 
replaced by a single interaction 
between the two X; atoms. 

* y , , 
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FT' = E f S (.^Ji^-rf^.k1) + Ei'f(Jik-J3k)i + (^2k-Jdk)i)ll (5.3.24) 
k i = l 

being the -first part o-f the model energy expression, apart from the -factor 

5.3.3. Interaction between layers involving Xi atoms. 

a. Xi chains parallel to b. 

In figure 5.3.2a an undistorted chain 0+ Xi atoms parallel to b is 
shown (in subcell k) . The atoms in the -figure all have approximately equal 
z coordinates. In -figure 5.3.2b a situation is shown in which tetrahedra 1 
and 4 are rotated such that the Xi atoms are displaced in the positive 
b direction. Because b is a translation vector, only two non-
equivalent Xj atoms exist in the chain. 
The distances ai and a2 can be written as 

b .a.i-b*/^ 
ai ■ a 0 " s—(Jyik-Jy4u> + — = — 5 — C J y i v.-Aytu)2 , (5.3.25) 

b a0
2-b-/4 , fB „ „„ and 32 = a0 + <-.Ay\ v.~AyAk> + s—C 4yi u~^y«K>z , ( 5 . 3 . 2 Ó ) 2a 0 2a 0

3 

with Ay\ u and Aya\>. being the displacements of the Xi atoms of tetrahedra 1 
and 4 respectively, and a,5 the length of the distances in the undistorted 
situation (figure 5.3.2a). Here and in all subsequent calculations we 
neglect third and higher powers of Ay\ u, and we omit constant terms in the 
energy. 
The contribution to the energy of the interactions between the atoms 
connected by distances ai and a2 can be obtained by substituting 5.3.25 and 
5.3.2Ó into 5.3.3. The sum of the results is 

F2 = E 2" C^yi u.-Ayak)1 (5.3.27) 

aoi-b^/4.dE. b*/4,d*E, With £2" = -= (—) + ( ) . (5.3.23) ao^ or aQ a 0
2 dr^ a 0 

The coefficient £2" is positive, as can be checked by substituting in 
5.3.28 the first and second derivatives, which can be calculated from 
5.3.1, and using 

a0
£-bV4 < bV4 . (5.3.2?) 
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The energy F2 has a minimum (F2=8) -for 

Ay\ k = ̂ y4k ■ (5.3.38) 

Th is corresponds to the observati on (-figure 4.4.4) that in most X1 chai ns 
in distorted &-K2SO4 type structures the Xi displacements within a X1 chain 
parallel to b are almost equal. 

b. Effective interaction between Xj and X; o-f the same tetrahedron. 

Uia this interaction the interaction between the Xt atoms in the chain 
discussed above is transmitted to the X2 atoms o-f the corresponding 
tetrahedra. Then, effectively, there is an interaction between the two X2 
atoms of the tetrahedra to which the Xt atoms in the chain belong. 

Figure 5.3.3 shows schematically part of the surrounding atoms of a 
tetrahedron. In real structures, the atoms shown in figure 5.3.3, except Xi 
and X2, H e in one plane in good approximation (see the dashed line in 
figure 5.2.1). Atoms Xi and X2 are approximately mirror images of each 
other with respect to this plane. Xi, X14 and Xi4' are atoms of the same 
chain parallel to b_. 
For simplicity, the following assumptions are made: the atoms X14, X14' and 
Xi2 are fixed at their positions in the high temperature phase; the 
tetrahedron edges and the undistorted distances of type b and f have length 
b/2 (b being the length of translation vector b); the atoms B, Xa, X4 , 
X14, Xi4' and X(2 lie in one plane. 
In figure 5.3.3, two rotation components of the tetrahedron are indicated. 
Rotation component ,6 corresponds to equal but opposite displacements of 
atoms Xi and X2, whereas component « corresponds to equal displacements of 
these atoms in the same direction. Together, these rotations take also into 
account the second non-zero component of the total rotation, mentioned in 
subsection 5.3.1. 

The distances bi, b2, fi and f2 as a function of the Xi- and X2 
displacements Ay and A (suppressing the indices giving the tetrahedron 
number and subcel1 number) can be written as 

b /Ó+I 6V3-13 1 bi - - - ——(Jy+J) - -^-j-—(Jy+J)2 + —-(jy-j)2 , (5.3.31) 
£. 4 lob 2b 
b ^6+1 6/3-13 1 b2 = - + —:—<.Ay+A) - ——-— (Ay+A)z + —(Ay-A^i , (5.3.32) 
AH lob 2b 

1 (4 

fl = Ë + ^(Ay+A) - ̂ li(jy +j)2 , (5.3.33) 

U = - - Üïl(Ay*A) - ^Zl(.Ay+A)2 . (5.3.34) 

The contribution to the energy of the interactions between the atoms 
connected by the distances of type b and f shown in figure 5.3.3 can be 
obtained by substituting 5.3.31, 5.3.32, 5.3.33 and 5.3.34 into 5.3.3 
respectively. The sum of the results is 

F,. = E4(Jy+J)2 - X(Jy*+Ji) (5.3.35) 

with £4 = — — <-—).._ + — ~ A — C 3 - T ) K / O (5.3.36) 
8b dr b/2 4 dr-̂  b/2 

-2 dE and x = — <—>,_,„ • (5.3.37) b dr b/2 

Both £4 and X are positive because the first derivative of E is negative 
and the second derivative is positive. 
The first term of equation 5.3.35 gives the effective interaction between 
the displacements of the Xi- and X2 atoms of the same tetrahedron. 

c. Resulting effective interaction. 

Between the X2 atoms of tetrahedrons 1 and 4 of subcel1 8 there is a chain 
of three interactions, as shown in figure 5.3.4. This chain can be replaced 
by a single interaction between the two X2 atoms, as will be shown in the 
f o 1 1 ow i n g. 
The relevant terms of the energy are: 

F c = l2a(Ay\Q-Ay4c>')2 + E4((Jyio + J l o ) 2 + (Jy4o + ̂ 4o)2) -

- X(Jyio2+Jy4o2+4io1+J4o2) . (5.3.38) 

The term w i th £2" i s taken from equation 5 .3 .27 . The terms w i th £4 and X 

are from 5 .3 .35 . 

Because the Xi displacements Ay-.u. are not involved in other i n t e r a c t i o n s , 

they can be eleminated in the energy expression by s u b s t i t u t i n g the values 

of Ayto and Ay^o f o r which the energy i s min imal : 

- — — a 2 [ (£ 2
B + £4-X) Jyi0+£4^io-£2u-dy4o3 = 8 , (5.3.39) 

oAy\Q 
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dAyao 2[( £ 2" +E4~X>Jy40+E4^4o-E2"^yi oJ = 0 

The so l u t i on of 5.3.3? and 5.3.40 (two l inear equat ions, two unknowns: Ay\o 
and ^yaoJ gives a minimum of Fc i f 

c«Fc , „ 

and 

d j y i o 2 

7 r > 6 
JJyao^ 

d2Fc 02FC c»Fc 

d j y i o 1 ö^yao2 c)^yio-i)^y4 

Now fnom 5.3.38 

t)2Fc 32Fc 
öAy^o2 d<iy\Q'* 

t> 2 F c 

£4 

( 2 £ 2 " + £ 4 - X ) ( E 4 - X ) 
c)y4o^yi 

Since J2">8, cond i t ions 5 . 3 . 4 1 , 5.3.42 and 5.3.43 ane - f u l f i l l e d i f 

£4 - X 

This condition is fulfilled for our simplified structure (figune 5.3.3), as 
can be checked by substituting 5.3.1 into 5.3.3Ó and 5.3.37, and 5.3.3<i and 
5.3.37 into 5.3.4é. 
Fnom equations 5.3.39 and 5.3.48 it follows that 

4yio ■ 

and Ayao = 

£ 4 < E 2 " + £ 4 - X ) A \ o f E 4 E 2 U J 4 o 

£ 2 " 2 - < £ 2 " f £ 4 - X ) 2 

£4 ( £ 2 " f £ 4 - X ) Mo f £ 4 £ 2 " ^ 1 o 

£ 2 " 2 - ( £ 2 " t £ 4 - X ) 2 

Substitution of 5.3.47 and 5.3.48 into 5.3.38 gives 

Fc » £2'<^1o-^4o>2 - X'<J| 02fJ 4 o2) 

with £2' = i^ii 
<£2"f£4-X)2 " £2°2 

XC2E4-X) and X' = 

(5.3.47) 

(5.3.49) 

(5.3.50) 

(5.3.51) 

Because of 5.3.44 and because E2", £4 and X are positive, £2' and X' ane 
also positive. 
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Combining the energy c o n t r i b u t i o n s o-f a l l Xi chains p a r a l l e l to b and 
a l l in t r a - t e trahedron i n t e r a c t i o n s one gets -from 5 .3 .49 : 

4 
F e ' = S [ Ea'<<Jlu--d«k> i + (^2lc-^SIc+1>ï3 + 2 X '4 i«* 3 , (5.3.52) 

k i = l 

in which the summation over k is over all subcel Is. 

5.3.4. Interaction between layers not invol ving Xi atoms. 

Figure 5.3.5 shows in a projection on the a,b plane the relevant 
atoms in subcel l k. Part a ot this -figure shows the undistorted situation, 
whereas in part b the tetrahedra are rotated around an axis parallel to 
c_. The other rotation component, involving displacements at the Xi 
atoms, is not considered here, since that would make the calculation much 
more complicated. 

As in subsection 5.3.1 we assume that a=b/3 (hexagonal lattice) and that 
the edges o-f the rigid and regular tetrahedra have length b/2. Further, it 
is assumed that -for each tetrahedron the three X atoms shown in 41 gure 
5.3.5 have equal z coordinates. 
The distances ei , Bt, 03 and ea a.re 

b 1 1 
81 = 0 4 = ■= + ^ ( J ? K + J 2 k > + -rz(Jlk + <i2k)2 , ( 5 . 3 . 5 3 ) 

I JL 4b 

b ''■ ■ » - (5.3.54) 

The undistorted distance eQ has been put equal to b/2 in these equations. 
The energy of the interactions o-f these distances can be obtained by 
substituting the distances in 5.3.3 respectively and summing the results: 

Fa = E3'(J3i. + iJ2k)2 (5.3.55) 

1 dE 1 d*E with E3' = -(—) + U ) . (5.3.54) b dr b/2 2 dr1 b/2 

£3' is positive. This can be seen by substituting the derivatives 
calculated -from equation 5.3.1. 
For the other pair o-f tetrahedra in the subcel 1 , a similar energy 
expression can be derived. 
The energy F3 is smallest i-f Atvp-Atv* There indeed is such a tendency in 
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FIGURE 5.3.5. Projection of the X2, X3 and X4 atoms of 
tetrahedra 2 and 3 on the a,b_ plane. 
a. undistorted; 
b. after rotation of the tetrahedra around an axis parallel 

to c_. J2K and Aiv are positive if the displacements are 
in the positive b direction. 
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the actual structures, cf. figure 4.4.4. 
The sum of the energies of all interactions of this type is given by 

F 3 ' = E E3' ( ( j 3H+J2k> 2+<J4k+Jlk+f ) 2 ) 

k 

The summation i s over a l l subce l l s . 

5 . 3 .5 . Assembly. 

Summing the energy c o n t r i b u t i o n s der ived in the prev ious three subsect ions 
( F i " , Fe' and F3

f in equations 5 .3 .24 , 5.3.52 and 5.3.57 respec t i ve l y ) and 
averageing over the subce l l s gives 

lim 1 N 4 
F ' = 2 [ E (tf4^ik4"(tf2+X') A\ k2> + 

k ^ w 2N+1 k=-N i = l 

+ E f ' ( ( J m - J 3 k > i + C ^ 2 k - J 4 n ) 2 ) + E « ' < ( J i k - J 4 k ) 2 + < ^ 2 k - ^ 3 k + i > 2 > + 

+ £ 3 ' ( C ^ 3 k + 4 2 k > 2 + ( J 4 H + ^ 1 k + l ) 2 J ] - ( 5 . 3 . 5 8 ) 

Div i s i on by tf4 gives the model energy given in sect ion 5.2 (equat ion 

5 .2 . 1) , w i th 

tf = (rf2+X')/tfa , ( 5 . 3 . 5 9 ) 

€i = £1Vrf4 , ( 5 . 3 . 6 0 ) 

£2 = l%'/da, , ( 5 . 3 . 6 1 ) 

E3 = C3Vtf4 . ( 5 . 3 . 6 2 ) 

The in tera tomic i n t e r a c t i o n s included in the d iscussion above to der ive the 
model are not the on ly nearest neighbour ones in the A2BX4 compounds. 
However, they are considered to be the most important ones. As w i l l be 
shown in sec t ion 5 .5 , the r e s u l t i n g model indeed can exp la in most of the 
observat ions. There fore , no ex t ra i n t e r a c t i o n s have been inc luded. 
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5.4. Model cal gul at ions 

Using energy expression 5.2.1, one can calculate -for which X2 displacement 
A-, k the model structure is stable tor certain values of tf, £1 , £2 and £3. 
These calculations and their results will be discussed in this section. 

For reasons o-f convenience it is assumed that the modulation -functions do 
not contain second or higher harmonics: 

JiM = Bi + AiCos2-rr( (.z i0 + k)iï-Vi) (5.4. 1) 

It should be noted that for 1-, 2-, or 3—fold superstructures only the 
■first harmonic is relevant anyhow. In 4-fold superstructures only the 
second harmonic is excluded by our assumption. 
Aj and <?; are the amplitude and the phase of the first harmonic of the 
modulation function for the X2 displacements of tetrahedra i (the numbering 
of the tetrahedra is as shown in figure 5.2.1; in chapter 3 and 4 subscript 
i in A; and <$\ has another meaning). Bi is the average X2 displacement for 
these tetrahedra. Jik is the X2 displacement of tetrahedron i in subcel1 k. 
Zio is the z coordinate of the X2 atom of subcel1 0. For i=l,2,3 and 4 this 
coordinate is 0, 8.5, 8 and 0.5 respectively. 
The term modulation function has a slightly different meaning in this 
chapter: contrary to the definition in section 1.1, a modulation function 
can have a non-zero average (Bi) here. In this chapter the modulation 
functions give the displacements with respect to Pcmn symmetry, rather than 
with respect to the basic structure. 
For an incommensurate structure and a 4-fold or 3-fold superstructure, the 
X2 displacements are as given by 5.4.1 with 1i=irrat ional , is=l/4 and ^=1/3 
respectively. For a 2-fold or a 1-fold superstructure, however, the 
expression can be simplified because the modulation function is determined 
by less than three points per modulation period, leading to 

Jih Bi + Aicostfk (5.4.2) 

Because no higher harmonics are allowed in the modulation functions and the 
highest power of A\* in equation 5.2.1 is 4, 5-fold and larger 
superstructures are not stable in the model. 

The energy as a function of the parameters A;, ^, and B, -for a v—fold 
superstructure can be found by substituting equation 5.4.1, 5.4.2 (for a 
fold superstructures or 5.4.3 (1-fold superstructure) into 5.2.1, and by 
replacing the summation 

1 
N->w 2N+1 k=-N 

.4.4; 

by 
1 v-1 
- E [ v k=e 

For an incommensurate structure the energy as a function of Aj , <f\ , B; and 
U can be obtained by substituting 5.4.1 into 5.2.1, but a more convenient 
expression can be found by substitution of 

+ A; cos2Tt( (z ,o + k) '5-(?; +?> (5.4.Ó) 

instead of 5 .4 .1 i n t o 5 . 2 . 1 , and rep lac ing the summation (5 .4 .4) by an 

i n t e g r a l : 

Jd<f [ . . . ] . ( 5 . 4 . 7 ) 
0 k=0 

The extra term $ in the argument of the cosine in equation 5.4.6 is an 
overall phase shift of the modulation wave. This does not change the 
incommensurate crystal structure. The replacement of the summation by the 
integral is allowed, because shifting an incommensurate modulation wave 
over one modulation wavelength and integrating over all subsequent 
situations in one unit cell has the same result as summing over all unit 
cells for one phase (^0) of the modulation wave. 

For each set of values for *, £1, £2 and £3 we can determine which 
structure is stable. This has been done for each structure (incommensurate, 
4-fold, 3-fold, 2-fold and 1-fald superstructure) by calculating the values 
of the parameters A; , $ 1 , Bi and 'S (for the incommensurate structure only) 
for which the energy is minimal. If all A; and Bi are found to be zero, 
then the stable stucture is the normal (undistorted) structure. 
The energy functions to be minimized have 4, 8 or 12 arguments for the 1-
fold, the 2-fold and the other structures respectively. For the 
incommensurate structure this number is not 13 since a phase shift in this 
case is irrelevant. In order to find the minimum, a steepest descent method 
(Scheid, 19Ó8) has been used. 
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The structures which are compared do not have an imposed symmetry. However, 
it turns out that the parameters A;, <$■, and B; of the stable structures are 
such that they always describe a structure of which the pointgroup has 
order 4 (for the superstructures) or 3 (for the undistorted and 
incommensurate structures). These are the largest point group orders which 
are possible in each case. 
Using the symmetry relations between the modulation functions, the number 
of parameters in the energy expressions can be reduced. The final number of 
parameters is 1, 2, 3, 4 and 3 respectively for 1-fold, 2-fold, 3-fold 4-
fold and incommensurate structures. 
The full set of structures which are stable in the model are represented 
schematically in table 5.4.1, together with the energy expressions. Apart 
from the normal structure the stable structure types include one type of 
incommensurate structure, four types of 4-fold superstructures, four types 
of 3-fold superstructures, two types of 2-fold superstructures and two 
types of 1-fold superstructures. The simplified energy expression for the 
incommensurate structure type is derived in appendix B. For the other types 
it can be found by substituting the X2 displacements mentioned in table 
5.4.1 into equation 5.2.1 (after replacing the summation by the one given 
in 5.4.5). 

For the incommensurate structure type and the two 1-fold superstructure 
types the values of the parameters for which the energy has its minimum can 
be derived analytically without difficulties. In appendix B these 
calculations are perfomed for the incommensurate structure. The result of 
these calculations is that under condition 

-1 < «■<»-»> < , ( 5 . „ . 8 ) 
4E3E2 

and condi tion 

tf > tf0 (5.4.9) 

( E 2+E 3) "^7^47777 
with tf0 = £1 + £2 + ES - —?- (5.4.18) 

2^ £ 2 £ 3 
the incommensurate structure is stable, provided that its energy is smaller 
than the minima for the superstructures. The energy then has its minimum 

F = -2(cr-tfQ)2/3 . (5.4.11) 

for 
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TABLE 5.4.1. The stable structures in the model. Given are super-cell s n 
space group, modulation wave vector length ('j, standardized according to 
subsection 4.2.3), X; di spl 3cements ( A, [<) and energy (F) . 

A-$\ At\ An Ai2 

M\ ^1 2 Ml 

1.5A" + 2A*1 Ei + £2 + £3~cr 

incommensurate structure 
Pcmn<089) (ssT) 
A\ k= Acos2-rf(«■"«-«>) 
A2k= Acos2K(<8.5+k)Vfe+0.5) 
A3k= ACOs2TT(k'$+W) 
Aa,u= Acos2rt<(8.5+K}$+<e+0.5) 

lCOS4Tt<? +E«COS2 f f ( 2«+V2) -E3COs2'Tt (2 tp-V2) ] 

l o ^20 — JJ 1 1 ^21 " J l o — A20 ^11 - 4 2 1 

& 2 t - J1 1 Ó 20 

\ | N 1/4 

Aiv= A2COS2T((' ('8 .5*10 ■*-(*>2) 

4 - f o l d 

supers t ruc ture 

P2 fcn 

* = 1/4 or 3/4 

A\ k= A1 cos2if(k^-dJ 1) , 

F = Ai4<3+cos8iftpi>/4 + A24(3-':os8-Tti*>2)/4 + 2Ai A2 [ £2cos2Tr(tvi +«? 2+SV2) + 

2 
+ £3COs2TT(ci>, +W2-V2) ] + S A] 2 [ £ I + £ 2+ £3-* - ElCOS4lï«[3 

i= l 

}rJ- r -j 

4i k= AlC0s2lf(k'S-<pt) 

1/4 

A2Cos2it((0.5+k)"»-«2> 

4-fold 

superstructure 

P 1 2 , / c l 
a = 1/4 or 3/4 

F = A,"(3+cos8«<»i)/4 + A23<3-cos8it<iJ2)/4 + 2A,A2€i cos2n(»i+*2+Sï/2) + 
2 

+ S Ai2 [£ l+£2+£3-t f + E2COS2fT(2 î -TJ) + £3COS4Tt4?il 
i = l 
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Table 5 . 4 . 1 . cont inued. 

J 1 O A1 2 - A1 2 J 1 ,;, J I 

J 1 0 J 1 I J 1 i J i n J | 

3—fol d superstrue ture 
Pc2m 
■* - 1/3 
d(k= B + Acos2if<k/3-«) 

F = I.5A4 + 4B4 + 12A2B* + 4A*Bco*4iW + 4Bi<2£3-a\> + 
+ 2A2C-E| -:oï4n'4i + e 2COs2i(( 2*+ 1/4) + E3COs2if(2^+ 1/3) + £1 +e 2+ 63-0"] 

J 

J1 

0 - J 

- J f 
- 0 -
1 A\ 

2 -A 

1 ~A\ 0 

A 

A\ 

1 "J 

2 -M 

1 

2 

3—fold superstructure 
P112|/n 
» = 2/3 
JiK= B + Acos2«(2k/3-»> 

F = 1.5A" + 4B" + 12A*B* + 4AiBcos6iftJ + 4B2(2£2-ff) ♦ 
+ 2A2[-eicos4ir<p + E2COs2ir(2(p+l/3) + £5.:üs2it(2w+1/é) + EI+E2+£3-* l 

~A\.-j A\ 2 — J1 2 A\o ~A\\ J i t 

J l - j _ 4 i i J11 - J i o 4 i 2 - J ] 2 

3—fold supers t ruc ture 
P 2 , / c l l 
ir = 1/3 
A\v= B + Acos2it(k/3-<?) 

F = 1.5A" + 4B3 + 12AiB^ + 4ASB.:asért» + 4B*(2si+2£2-ff) + 
+ 2A 2 t £( COS41T4J + £ 2COS2lt<2^ + 2 / 3 ) + £3COS2ltf 2 < f - l / 4 ) + £l + £2+£3-o0 

A\rj - A\ 2 ^-A\ 2 ~A\o -A\ \ -A 

Ato A\ \ 7 A \ \ A^o A \ 2 A \ 2 

3 - fo l d supers t ruc ture 
P21 2121 
t = 2/3 
J lk= B + Acos2K(2k/3-<?> 

J J 
F = 1.5A' + 4B« + 12A2B2 + 4A3Bcos<i«i> + 4B* <2E I +2E3-tf) + 

+ 2A![£|COS4KW + £2COS2Tt(2*-l/^> ♦ £3COS2ir(2«+2/3) + E1 + E2+E3-»] 

Tsbl e 5 . 4 . 1 . cont inued . 

A] 0 -Aqrj ~A\ o Aav 

A\ rj Aar, ~~A\o ~At\<i 

2-+old supers t ruc ture 
P2,cn , ' i = 1/2 
A\ ri— Ai j Ano~ Aa 
F= 2<Ai"+Aai) + 2(A t2+An2)fS2+E3-*) 

+ 4A^Ei - 4A1A4U2+E3) 

2 - f o l d supers t ruc tu re 
P12 i / c l , » = 1/2 
Mi= Ai , A2i= A2 

F = 2(Ai i '+A24) + 2(Ai*+A2 I><Si-tf> 
+ 4 A 2 i ( £ 2 + £ 3 > - 4 A 1 A 2 E 1 

1-fo ld supers t ruc tu re 
Pc2,n , 3 = 1 
Alo= B 
F = 4B" + 4B*<2«-f f ) 

1—fold supers t ruc tu re 
PI 12,/n , ' 3 = 8 

F = 4B" + 4B2(2£2-») 

1 1 
0 , 1/4 undistorted structure 

Pcmn 
F = 0 
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1 .£1 <£3-E2>. 
is = — a r c c o s ( ) , 

1 , / i Ó E ï 2 E 3 2 - E l 2 < £ 3 - £ 2 ) 2 — arctan( ) 4ït £, (E3+E2) 

A = ^2(o-cro)/3 . (5.4.14) 

If conditions 5.4.3 and 5.4.9 are not fulfilled, then the incommensurate 
structure is not stable. 

The minimum o-f the energy -for the 1-fold superstructure with space group 
Pc2in (see table 5.4.1) is at 

B = '■/o'/2~£3 C5.4.15) 

under condi tion 

2£3 - ■* C 0 . (5.4.16) 

The value o-f the energy at this minimum is 

F = -(2ES-CT)Ï . (5.4.17) 

I f cond i t ion 5.4.16 i s not f u l f i l l e d , t h i s 1- fo ld supers t ruc ture is not 
s t a b l e . 
The energy of the 1-fold superstructure with space group P112j/n has its 
minimum at 

B = ^ / 2 - S 2 (5.4.13) 

i f cond i t ion 

2 E 2 - o- < 8 (5.4.1?) 

is fulfilled. In this minimum the energy is 

F = -(2£2-tf)2 . (5.4.29) 

Figure '5.4.1 shows the tz,Z3,<r phase diagram fo r the model w i th £| = 1. Part 
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a of t h i s f i g u r e i s a p ro jec t i on of l i n e s at which regions of three phases 
meet each o the r . Part b and c are c ross-sec t ions through the E2,E3,rf phase 
diagram. These c ross-sec t ions are the planes 

ï 2 + £3 = 0.8 (5.4.21) 

and £2 + £3 - 1.2 (5.4.22) 

respectively. 
In figure 5.4.1a the regions with £2,£3 values for which the incommensurate 
structure cannot be stable are hatched. The region in which the 
incommensurate structure can be stable (for suitable values of tf) is 
determined by condition 5.4.3. (with £1=1). 
Depending on £2 and £3 the modulation wave vector can have each value 
between 9, and c_*, as indicated in figure 5.4.1b and 5.4.1c. 
The boundary between the normal phase and the incommensurate one is 
determined by condition 5.4.9. The boundary between the 1-fold Pc2tn phase 
and the normal phase is determined by condition 5.4.16, and the boundary 
between the 1-fold P112t/n phase and the normal one is given by condition 
5.4.19. 
The boundary between the phases of both 2-fold superstructure types is 
given by 

£2 + £3 = £1 . (5.4.23) 

This can be checKed by comparing the energy expressions of these two 
structures (given in table 5.4.1). These equations are equal if condition 
5.4.23 is fulfilled. Hence the energy of the minimum for such a set of 
£2j£3j£i will be equal for both structure types. If condition 5.4.23 is not 
fulfilled, then the expressions are different, and will result in different 
minima. 
The numerical calculations strongly suggest that each boundary between two 
3-fold or between two 4-fold superstructure phases is also given by 5.4.23 
exactly. 

In figure 5.4.1 it can be seen that the E2,£3,rf phase diagram has mirror 
symmetry. The mirror plane £3=E2 exists if one only considers the 
boundaries between the different phases, the supercel 1 size and the energy 
of the stable structures. If an arbitrary point P in the phase diagram 
corresponds to a structure with modulation wave vector component ir 
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A Pc2in [1/3} 

k PH^/n (2/3) 

D P12-,/c1 (1/4) 

m P12^c1 (3/4) 

— " > £3 

O P2 lCn [1/4) 

♦ P2lCn (3/4) 

FIGURE 5 . 4 . 1 . The £z,E3,tf phase diagram 0+ the model (£ ( = 1) . 
a. p ro jec t i on on the £2,£3 plane o-f l i nes at which three phases 

meet. 
■full l i n e s : between two supers t ruc ture phases and the 
incommensurate phase. 
dashed lines: between a superstructure phase, the 
incommensurate pha.se and the normal phase. 
dotted lines: locations of the cross-sections shown in parts 
b and c o-f this -figure. 
In the hatched £2,£3 regions the incommensurate structure 
cannot be stable. 

b. cross-section £3=0.3-£2. S gives the modulation wave vector 
length (Cf=̂ e*) in the incommensurate regions; 

c. cross-section £3=1.2-£2. 
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Table 5.5.2. Comparison of observed phase sequences (in table 4.2.5 
phase transition temperatures and references are given) with phase 
sequences possible in the model (m). 

10 _ -i 

X X X X x" S 'S 
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n 
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x 
ho 

^ 
\ ■""■ 

\ ho 
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X 
<JJ 

h i 

n 
* ■ * 

X 

*~ 

l\J 
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"* 
V 
OJ 

n 

• ■ * 

C D E F G H I J K L M N O P Q R 

KtZnCU 
RbjZnCU 
Rb22nBr4 
K2Se04 
Cs2HgBr4 
Cs2CdBr4 
Cs2FeU 
Cs2MnU 
Sr2Si04 

Ba2TiQ4 
Ca2SiÜ4 
(NH4)2S04 

(NH4)2BeF4 
(NH4>2ZnCl4 
(NH4)2CoCl4 
CNH4)2ZnBr4 

CTMA)2FeCl4 
(TMA)2MnCl4 

(TMA)2CuCI4 

CTMA)2NiCl4 

<"PMA)2ZnC14 

CTMA)2CoCU 

CTMA)2ZnBr4"| <TMA)2CoBr4 

A—B#-

?f 

-0—P—Q 

% The symmetry of the incommensurate structures is Pcmn(00"*> (ssT) , 
except in one case. 

tt The symmetry o-f the observed structures is PI 12i/n(80-ï) (111/T) . 
? Foî  this phases only the supercel 1 size has been reported. 
* This structure differs -from the model structure P2tcn(l/2). 
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higher d corresponds to a lower temperature. Therefore, compounds are 
expected to -follow trajectories approximately parallel to the a axis in the 
model phase diagram if their temperature is varied. 
In table 5.5.2, for each compound mentioned in table 4.2.5 the observed 
phase sequence is given together with the most appropriate possible phase 
sequence in the model. 

If the phases with structure types which cannot be stable in the model are 
disregarded, then the observed phase sequences for 19 of the 24 compounds 
can be explained by the model. In the remaining five compounds, phase 
transitions occur between structure types which border on each other at a 
line in the model phase diagram. Such a transition (indicated by a dashed 
line in table 5.5.2) corresponds to a trajectory in the model phase diagram 
(figure 5.4.1) going through this line of contact. It would be a 
coincidence if a compound would follow such a trajectory. 

The unexplained phase transitions (indicated by dashed lines in table 
5.5.2) are of two types. The first type is the phase transition between 
phases with structure types P2icn(l/4) and Pc2(n(l/3) respectively. This 
transition type occurs in (NH4)2C0CI4, (NH4>2ZnBr4 and (NH4)2ZnCl4. It 
might be that in these compounds an intermediate phase exists which has 
been overlooked, but no other indications exist for this assumption. 
The second type is between the high temperature phase with space group Pcmn 
and a 4-fold or 3-fold superstructure. Such a phase transition is observed 
in Cs2MnI4, Ca2SiQ4 and in (NH 4)ÏCOC1 4. It might very well be that in these 
compounds an incommensurate phase has been overlooked. The observed phase 
sequences would match the model if an incommensurate phase would be added 
between the normal phase and the superstructure phase. In other words: the 
model predicts an incommensurate phase in these compounds. This conclusion 
is supported by the fact that in other models with competing interactions 
(e.g. Janssen and Tjon, 1981, 1982, 1983) the normal high temperature 
structure and a 4-fold or 3-fold superstructure are also separated by an 
incommensurate phase. 

The mode! phase diagram suggests the existence of other phases and phase 
transitions, which have not been observed until now. Ba2Ti04 might show 
phase transitions from the 3-fold superstructure to an incommensurate 
structure and from the incommensurate structure to a normal structure on 
heating, just like e.g. K2ZnCl4. 
For Ba2SnS4 and Sr2Cr04 only the room temperature structure has been 
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-8.1 8.1 
->J 

P2icntl/« 
a. 

-8.1 9.1 
-*i 

Pc2m(l/3) 
b. 

-8.1 e.i 
- > J 

PI2i/cl<l/2> 
c. 

-e.i e.i 
- > / j 

P2icn(l/2) 
d . 

(NWïZnCU (333K) BaiTiOq O- f . ) 
e . f . 9 -

.1 6.1 
—»J 
BiiSnS^ 

h. 

F i g u r e 5 . 5 . 1 . E x a m p l e s o-f X2 d i s p l a c e m e n t s ( J ) 
t h e model f o r : 
a . £t = l , E 2 = 8 . 2 5 , E 3 = 0 . ? 5 , tf=9.5é; 
b . £ i = l , £ 2 = 0 . 1 4 , £ 3 = 0 - 2 , tf=0.35; 
c . € i = l , £ 2 = 8 . 1 ó , £ 3 = 0 . 2 , rf=8.3; 
d . £ i = l , £ 2 = 8 . 0 , £ 3 = 0 . 6 , tf=8.66; 
e - h . a c t u a l d i s p l a c e m e n t s , -from f i g u r e 4 . 4 . 4 . 
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reported (table 4.2.4). According to the model these compounds might show 
phase transitions from the room temperature phase to an incommensurate 
phase and from this phase to a normal phase. 

5.5.3. X2 displacements. 

The X2 displacements calculated in the model for several values of <*, E2 
and £3 C e 1 = 1 > will be compared with the observed X2 displacements, as 
discussed in section 4.4. 
For incommensurate structures with space group Pcmn (08^) (ssT) the values of 
"fr, ̂  and A of the model can be compared with those of actual crystal 
structures. For a certain value of 'c and *, A can always be adapted in the 
model to match the observed amplitude of the modulation function of the X2 
atoms in a real crystal structure. This can be achieved in two manners. The 
first one is multiplying the coefficients <x, £| , £2 and £3 by a suitable 
factor. The other manner is changing tf only, as can be seen in equation 
5.4.14. 
For a certain value of ï, ̂  can have each value between 0 and t/4 for 
suitable choices of Ei, £2 and £3. This can be derived from equations 
5.4.12 and 5.4.13 in the following way. From equation 5.4.12 it follows 
that 

£2 = „E1E3 - (5.5.1) 
£1 +4£3COSTtS 

Substitution of this in 5.4.13 gives 

, = JL a r c Un ( y
2*i"** ) . (5.5.2) 

4it £t/£3+2cosTf-ï 
From this equation it follows that for each Ti between 0 and 9.5, <? can get 
each value between 0 and -5/4 by choosing a suitable ratio £i/£3-
For the room temperature structure of Rb22nBra and the structure of K2SeÜ4 
at 113K the observed values of t? are 8.018 and -0.007 respectively, while 
v;0.3 for both structures. For Rb2ZnBr4, the value of <f can be realized in 
the model for suitable choices of £1, £2 and £3. But for K2SeÜ4 this is not 
possible. The model value of (̂  can only be quite close to the negative 
value of this compound by choosing the ratio £i/£3 large. Then cp gets a 
positive value close to zero. 

The X2 displacements of observed 1-fold superstructures with symmetry Pc2tn 
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or P112]/n can always be found in the model by choosing the parameters £2, 
E3 and o- properly, as can be seen in equations 5.4.15 and 5.4.18 
respectively. 

Because for 2-fold, 3-fold and 4-fold superstructures no analytical 
expressions are available for the amplitudes and phases of the modulation 
functions, numerical results will be compared with the observations. In 
figure 5.5.1 for some sets of values of £2, £3 and c CEI=1), the X2 
displacements of the stable structure in the model are shown. These sets of 
values are chosen such that the X2 displacements resemble the observed ones 
(figure 4.4.4). Of course, the values of the model Xa displacements can be 
scaled to the observed ones by multiplication of the coefficients £1, £2, 
£3 and tf by a suitable factor. 
As can be seen by comparing figure 5.5.1a-d with figure 4.4.4 (part of 
which has been reproduced in figure 5.5.1e-f), the resemblence is quite 
good. 

5.6. Discussion. 

From the results of the previous sections of this chapter, it can be 
concluded that 
1. the model can explain most of the observations. No other model is 

known which explains as much as this one; 
2. the interactions in the model are clearly present in the real crystal 

structures. Except for the complicated lattice dynamical model of 
Haque and Hardy (1986), no model has such realistic interactions as 
this one; 

3. the model is a very simple one: the subcel1 containes only 4 atoms, 
which can displace only parallel to b; only three types of 
interactions exist. The number of atoms cannot be smaller, because in 
that case the model crystal could not adopt all important space 
groups. Also the number of interactions cannot be smaller. If one of 
the interactions would be taken out of the model, the frustration 
would be gone; 

With regard to point 1 the following can be remarked. As mentioned in 
section 5.5, only two deficiencies of the model are not readily explained: 
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first the incapability to explain the existence of the 1-fold P2i/cll 
structure, (which appears in part of the THA compounds) and the 2-fold 
superstructure of (NFU>2BeF4; second, the incapability to explain the phase 
transition between the structure types Pc2m(l/3) and P2icn(l/4), occurring 
in part of the NH4 compounds. 
In connection with these deficiencies, two comments can be made. In the 
first place the A ions are not single atoms in these compounds, but NH4 or 
N(CH3>4 groups. These ions cannot always be regarded as spheres, and will 
have preferential contact regions for the X atoms because of the charge 
distribution on the positive ions and because of the shape of the groups. 
The interatomic interactions will be different in both cases. This could be 
the cause of both types of deficiencies. 
Secondly the approximation, made in section 5.3, viz. that the X-X 
distances in the tetrahedra as well as the shortest X-X distances between 
tetrahedra (e.g. distance type g) are equal to b/2, is not valid for 
(NH4)2BeFfl and the TMA-compounds. In table 5.6.1 it can be seen that the 
inter-tetrahedra X-X distances are much larger than the intra-tetahedron 
ones for these compounds and for (NH4)2S04, while the two types of X-X 
distances are about equal for the other compounds. This shows that the 
former structures differ from the latter ones in this aspect. The 
interatomic interactions in the first group of compounds can be expected to 
differ from those in the other group. This could be the reason why the 
existence of the two structure types cannot be explained by the model. 

Apart from the slight deficiencies, the model explains all observations for 
the structures discussed in this thesis. On the basis of the results of the 
model calculations, it can be concluded that the modulation in distorted ft-
K20O4 type crystal structures is probably caused by the competing 
interactions discussed in section 5.3. As is shown in that section, all the 
interactions of the model are present in real crystal structures, whereas 
the correlations between X2 displacements of neighbouring tetrahedra, as 
discussed in section 4.4 and in section 5.3, indicate that these 
interactions are important ones. 

The model explains many things with regard to the distorted £-KaSOa type 
crystal structures: 
- the existence of incommensurate structures with modulation wave 
vectors from 6. to c_*; 

- the normal-to-incommensurate phase transition; 
- the existence of many different superstructure types: four different 
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Table 5.6.1. Comparison o-f X-X distances intra BX4 with X-X distance g 
(between tetrahedra). 
av is the average X-X distance intra BX4 . g is the average o-f the 
distances o-f type g (as given in -figure 4.4.2). 

compound temp, av g g/av re-ferences 
[K] Ul LA] 

K2ZnCU 
Rb2ZnCl4 
RbiZnBra 
Cs2CdBr4 
Cs2Hg6r4 
Cs2FeU 
K2Se04 

Sr2Si04 
Ba2TiÜ4 
Ca2Si04 
(NH4)2S04 

(NH4)2BeF4 
(NH4>2ZnCl, 
(THA)zFeCl, 
(TMA)2NiCl4 
(TMA)2ZnCl, 
(TMA)2CoCl4 
(TMA)2ZnBr4 

r. t. 
188 
r.t. 

195 
280 
188 
113 
r.t. 
r.t. 
r.t. 
188 
153 
r.t. 
r.t. 
r.t. 
r.t. 
r.t. 

r.t. 

3 
3 
3 
4 
4 
4 
0 

2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 

é8 
69 

38 
17 
1? 
28 
69 
67 

92 
66 

41 
53 
68 
74 
65 

67 

67 

91 

3 
3 
3 
3 
3 
4 
3 
3 
3 
2 
3 
3 
3 
5 
5 
5 
5 
5 

82 
72 
84 
36 
31 
87 
34 
85 
24 
99 
65 
39 
72 
25 
28 
32 
28 
31 

1 
1 
e 
e 
e 
e 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

84 
.81 
.99 
.93 
.91 
.95 
.24 
. 14 
11 
.12 
51 
34 
81 
.48 
45 
45 
44 
36 

Mikhail and Peters (1979) 
Quilichini and Pannetier (1983) 

this thesis 
Altermatt et al. ( 1984) 
Altermatt et al. (1984) 
Zandbergen (1981) 
Yamada and Ikeda (198) 
Catti et al. (1983) 
Wu and Brown (1973) 
Jost et al. (1977) 
Sen temper and Hamilton (1966) 

Misyul et al. (1988) 
Van Koningsveld (1983) 
Lauher and Ibers <1975) 
Wiesner et al. (1967) 
Hiesner et al. (1967) 
Hiesner et al. (1967) 
Trouetan et al . (1984) 

138 

4—fold-, -four different 3—fold-, two di-f-ferent 2—fold- and two 
di-f-ferent 1—fold superstructure types. 
I-f the shape o-f the double well potential would have been chosen in 
another way (e.g. A3-&A4 instead o-f A4~&A2) and/or higher harmonics 
were allowed in the modulation -functions, then also larger super
structures would probably exist in the model. 

- lock-in phase transitions to each o-f these superstructures; 
- phase transitions between di-f-ferent superstructure types; 
- phase transitions -from the normal structure to each o-f the 1-fold 

superstructures directly, without an intermediate incommensurate 
phase; 

- re-entering incommensurate phases. E.g. phase sequence normal -
incommensurate ( K l / 4 ) - P2icn(l/4) - incommensurate C*>l/4>. This 
phase sequence has not been observed, but two incommensurate phases 
with a 7—fold or a 5—fold superstructure phase in between have been 
observed in (TMA) 2FeCU and (TMA) 2C0CI4 respectively (table 4.2.5). 

The two 1—fold superstructure types mentioned in the sixth point above are 
two extremes. As can be seen in section 5.4, P c 2 m ( l ) is stable -for es»E3 
and P112i/n(8) is stable for E 2 « £ 3 - The X a displacements o-f half o-f the 
tetrahedra in the latter structure type are opposite to those o-f the 
■former. In P c 2 m ( l ) the interactions with Ei and E 2 clearly have won the 
competition, while in the other structure type the interactions with EI and 
Eg have won. The fact that the two di-f-ferent structures can both appear as 
a low temperature phase o-f the same high temperature stucture type, is thus 
explained by the presence o-f competing interactions. 
Turning this argument around leads us to the -following conjecture: i-f -for a 
certain structure type two or more quite di-f-ferent low temperature 
structures have been observed (e.g. in di-f-ferent compounds) with the same 
kind o-f local distortions (e.g. rotation o-f a group o-f atoms around a 
certain axis), then competing interactions are present in structures of 
that type. This set of competing interactions can also cause incommensurate 
structures (e.g. in another compound) to occur for a suitable balance of 
the interactions. 
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Appendix A 

CENTERING TRANSLATIONS IN SUPERSTRUCTURES. 

In this appendix, which belongs to section 2.2, the largest common divisor 
of integers ii, 12, ... i r, will be denoted as LCD<ii,ia, ... in) and the 
smallest common multiple of these integers as SCM(it,i2j ... i n> - The 
symbol s u \ , v;, ei< | , v, w and g denote integers as defined in section 2.2. 
In this appendix the index a (to denote the atom to which a quantity 
belongs) is omitted. 

The following theorems, which are used in section 2.2, will be proved in 
this appendix. They refer to the superstructure described above equation 
2.2.15. 

Theorem 1: The dot-product of a subcel1 translation vector eu and 
the modulation wave vector g can be written as 

en.2= r/w (mod 1) (r=0,l,2, ... W-l) , <A.1) 

with w = SCM(vi ,v2,v3) , (A.2) 

and every value of r in A.1 occurs exactly g times, with 

g = v/w , (A. 3) 

if k runs from 1 to v (then ei< runs through all subcel 1 translations in 
the supercel 1). 

Theorem 2; Among the reflections given by equation 2.2.7, those which 
cannot be written as in 2.2.14, are systematically absent. 

Before the proof of the above mentioned theorems will be started, the 
following theorem will be proved. 

Theorem 3: For each set of integers It, I2, ... In, N (n>̂ 2) there is a 
set of integers i,, i2, ... in fulfilling 
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iili + iaU* ... +inIn = N 

if LCDCI, ,U, ... In) = 1 ■ 

Proof of theorem 3: 
For n=2 theorem 3 is an elementary theorem of the theory of numbers (see 
e.g. Deas, I960). For n)2 theorem 3 can be derived from theorem 3 for n-1: 
I f we pi! t 

J = LCDCIi ,I2, ... In-iJ , (A.6) 

then, according to A.5 

LCD(J,In) = LCD(LCD(Ii,I2, ... In-t>,In> = 

= LCDCIi,Ia, ■■■ In) = 1 . CA.7) 

According to theorem 3 for n=2, there is always a set of integers j,in 
fui fi11 ing 

jj + i I n = N . (A.3) 

According to theorem 3 for n-1, there is always a set of integers it,12,13, 
... i n-1 fulfi1ling 

, Ii . Ia . U-1 
j = !, + l2 + ... + in_,__— (A.9) 

because (see A.6') 

I1 I2 U-1 , 
(A.18) 

Substituting A.9 into A.8 gives A.4. 
Hence there is always a set of integers ii,i2, ... in fulfilling A.4 under 
condition A.5. 

Proof of theorem 1: 
According to equations 2.2.9 and 2.2.12 the dot-product in A.l can be 
written as 

gk.g : 
3 
i=l 

3 ui E 1=1 Vi 
3 e h i U i E = p/w i=l vj 

with w given by A.2 and p integer. 

Because always 

p/w = p/w (mod 1) (r=0,i,2, ... W-l) , (A.12) 

e_«.g can be written as in A.l. 
If k runs from 1 to v, then the set eni,ek2,en3 runs through all possible 

combinations with (see 2.2.9) 

0 4, eki 4. Vi-1 U-1,2,3) . (A.13) 

From A.l it follows that 

wê n-a + ws = r (s integer) , (A. 14) 

or, wri tten out: 

Ui V2V3 
em 

wi th g given by A.3. 
If 

(A.16) 

it can be concluded, using theorem 3 with n=4, that for each r there is a 
set of integers e«i >eu2 ,©(0 ,s which fulfils A.15. If the set xi,X2,X3,s' is 
a solution of A.15, then suitable integers pi (i=l,2,3) can be found such 
that 

6k1 = X1+P1V1 

e|<2 = X2 + P2V2 

e k 3 = X3+P3V3 

s = s'-piui-p2U2-P3U3 (p; : arbitrary integers) 

(A. 17) 

satisfies both A.15 and A.13, as can be checked by substitution of A.17 in 
A.15. 
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From this it follows that for each r there is at least one vector ek 

that fulfils A.l. 
All vectors e_u for which r=0 are translation vectors (including (3) 
in the superstructure because, if we call these vectors e_c, 

ec.g = 6 (mod 1) (A. 

and hence for two position vectors xj and x.2 with 

the arguments of the modulation functions are equal: 

x.2.3 = Cx,i+ec) .g = x_\ .g_ + ec.g = x.1 -9 ■ (A.20) 

Suppose there are g' different vectors e_c. Then each value of r occurs 
g' times, because if it occurs for ei , then 

e« = e, + ec (A.21) 

gives the same value of r in A.l. Because the number of basic structure 
translation vectors ei< in the supercel 1 is v, and w different values of 
r exist, we have g'=w/v=g: each value of r occurs exactly g times. This 
proves theorem 1 except for one point: A.16 must be proved. 

A.Id is equivalent to 

LCD(uiV2V3}U2ViV3JU3V1V2,viV2V3) = 9 . (A.22) 

According to the definition of u; and V; (see the text under equation 
2.2.12): 

LCD(u;,Vi) = 1 <i=l,2,3) . (A.23) 

From t h i s i t f o l l ows that 

LCD(u fV2V3,viv2V3) = V2V3 . (A.24) 

Hence the d i v i s o r s of ui are not re levant in A.24. Because the l e f t hand 
s ide of A.22 i s a d i v i so r of LCDCuiV2V3,viV2V3), u\ can be l e f t out of i t . 
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The same i s t rue fo r u2 and U3. Hence in A.22 the f a c t o r s U i , U2 and U3 can 
be omi t ted g i v i ng 

g = LCDCV2V3,viV3,viV2TViV2V3) = LCD(V2V3,viV3,viV2) . (A.25) 

Using only elementary r u l e s fo r LCD and SCM, one gets 

9 = LCD(LCD<v2V3,vtV3> , v i v 2 ) = LCD<v3LCD(v2,Vi> , v i v 2 ) = 

= LCD(v2 ,V i ) .LCD(v3,v iV2/LCD(vi ,v?)) = 

•3V1va/LCD(vi,v2) = LCDCv2,Vi) SCM(V3,Viv2/LCD(vi,v2)) 
VjV2V3 V1V2V3 

SCM(V3,SCM(vi,v2)) SCM(vi,V2,v3) 

According to A.2 and A.3 this is true, and hence A. 16 is proved. 

The proof of theorem 2: 
This proof consists of three parts. First it will be proved that the 
centering translations do not cause one of the reflections given by 2.2.14 
to be systematically absent. Next it will be proved that the number of 
satellite reflections given by 2.2.14 per main reflection is w-1. At the 
end it will be proved that the number of systematically present reflections 
is exactly the number of main reflections plus the number of satellite 
reflections given by 2.2.14. The rest of the reflections must be 
systematically absent then. 

The first part: 
Equation 2.2.15 can be written as 

1 v 
G(H) = exp(2TÜH.x0) S exp(2rti <H. [en+dC (xo + e«) .g) ]) , (A.27) 

v K=l 

with H given by 2.2. 14. 
Each of the subcell translation vectors e* <k=l,2, ... v) can be 
written as 

t k = ec + e,. <c=l,2, ... g and r=l,2, ... w) , (A.28) 

where ec is a centering translation and er is a basic structure 
translation vector with 
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e f ,g = r/w (mod 1) . (A.29) 

Using A .28 , the summation in A.27 can be w r i t t e n as 

w g 
E <exp(2iTiH.Cer + d ( ( x 0 + e r ) .g) ]) . 2 exp(2TÜH.ec) ) CA.38) 

r = l c= l 

because (see A.18) 

d<(x0+e r + ec) .g) = d( (x ö+e r ) .g) . (A.31) 

The second summation in A.30 gives the in f l uence of the center ing 
t r a n s l a t i o n s on the s t r u c t u r e f a c t o r , and can be w r i t t e n as (using 2.2.14) 

g 
Z Cexp(2ftih .ec) .exp(2it img.ec) > . (A.32) 

c= l 

Because h.-e_c and mg.ec are integer (see 1.1.6 , 2.2.9 and 
A.18), the result of this summation is g. Hence the centering translations 
do not cause systematic absences among the reflections given by 2.2.14. 

The second part: 
Because g is commensurate with the basic structure, there are values of 
m with rn^Q for which equation 2.2.1 represents main reflections. It can be 
verified, using 2.2.14, that each m given by m=nv (n integer) is such a 
value. In a superstructure with g>1, more such values for m exist. The 
number of satellite reflections of a main reflection is equal to mi~l if mi 
is the smallest value of m for which 2.2.14 represents a main reflection. 
mi represents a main reflection if the components of mig are multiples 
of ai*, a2* and a_3*. 
mig can be w r i t t e n as (us ing 2.2.12) 

U l US U l 
rrng = mi ( — - a , * + — - a 2* + — - a 3 * ) . (A.33) 

V i V2 V3 

In order to get in teger m u l t i p l e s of the rec ip roca l basic s t r u c t u r e vec to rs 
in A .33 , mi must have d i v i s o r s v i , v 2 and v j . Because of A.23 the smal lest 
value of m fo r which 2.2.14 represents a main r e f l e c t i o n i s 

mi = SCM(vi , v 2 , v 3 ) = w . (A.34) 

Hen':e the number of satellite reflections per main reflection is w-1. 
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The third part: 

The volume Ur of the supercel I is 

Us = vv (A. 35) 

i f U i s the volume of the s u b c e l l . 
The volume V j ' of the p r i m i t i v e un i t c e l l in the supers t ruc tu re i s 

v V = V j / g = Vv/g = wv , (A.36) 

since g centering translations (including @) exist in the v-fold 
supercel I . 
The volume [JS*' of the cell spanned by the reciprocals of the primitive 
unit cell vectors is 

v"r*' = l/V;' = 1/wv = V*/w (A.37) 

if v-* is the volume of the cell spanned by the reciprocals of the basic 
structure unit cell vectors. 
Hence w reflections exist per main reflection. These must be the main 
reflection itself plus the w-1 satellites given by 2.2.14. The ref1ection 
not given by 2.2.14 are systematically absent because of the g centering 
translations. Theorem 2 has now been proved. 

147 



148 

Appendix B 

INCOMMENSURATE STRUCTURE WITH SYMMETRY Pcmn(00-5) (ssT) IN THE MODEL. 

This appendix belongs to section 5.4. 

B. 1. Energy expression■ 

For an incommensurate structure with symmetry PcmnCSB^r) (ssT) , the Xj-
displacements Jik in the model can be written as 

Ji k = A cos2Tr(k-$-<e+¥) , (B.l.1) 

A2k = A cos2Tf((0.5+k)lT-4>+0.5+¥) (operation c(s) on A\ n) , (B.l.2) 

^3k = A cos2'rt(k'*+<e+$) (operation n(T) on A\ «) , (B.l.3) 

J4k = A cos2'rt((0.5+k)'ï+^+0.5+*) (operation 2i(T) on A\ u> , (B.l.4) 

in which A is the amplitude of the modulation -functions, ̂  is the overall 
phase o-f the modulation wave, <f is the phase o-f the -first modulation 
■function, ^ is the modulation wavevector component (g=lrc_*) and k is 
the subcel 1 number. In A\K i is the number o-f the tetrahedron in the 
subcel1 , as indicated in figure 5.2.1. 
For an incommensurate structure the summation over all subcells in equation 
5.2.1 can be replaced by an integration over <¥ between 0 and 1 for one 
subcelI: 

lim 1 N 1 
2 [ ... ] =» ƒ d$[ ... ] . (B.l.5) 

N-*a 2N+1 k=-N 9 k=9 

This is possible because in a single subcel1 all possible subcell contents 
will be generated during the shifting of the modulation wave over one 
wavelength. The energy expression for the incommensurate structure is then: 

1 4 
F = ƒ df [ E (Jio^-tf^io2) + Ê1((Jio-^3o)i+(^2o-^4o)2) + 

9 i=l 
+ £2((4to-^4o) 2 + C42o--<l3t)i) + €3(C^3o + ̂ 2 o ) 2 + ̂ 4 o + 4l i)2) ] . (B.l.4) 
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In the -following the different kinds of terms in the integrand will be 
worked out successively. 

After substitution of B.l.1 a term with d in equation B.l.6 becomes 

; crJio* d* = <rA2/2 (1=1,2,3,4) . (B.l.7) 
a 

The second type of term to be worked out is the fourth order term. Using 
equation B.l.1 one gets by simple goniometry 

1 
I A;oa df = 3AV8 (i=l,2,3,4) . CB.1.8) 
e 

In order to treat the other terms of equation B.l.6 together as one type of 
term, equations B.l.1 - B.l.4 are written as 

Jik = AcoslK^+f) (i-1,2,3,4) . (B.l.9) 

The third type of term can be written as 

1 
ƒ UiK+sJ„„)2 d* , <B. I.IB) 
0 

in which s is +1 if it concerns a term with coefficient £3 and -1 if it 
concerns a term with coefficient £i or £2. 
Substituting B.l.9 into B.l.18 gives 

1 
/ A2[cos2i««i k+»+scos2if< «„»+*> I 2 d« = 
8 

1 
= ƒ AUcos22it(«i k f !B+2scos2l((«ik+ iBcos2«(«n»t ! t , ) tcos22i«qn»+»)] d * = 

0 
1 

= ƒ A2[cos4it(o<i n + tp) + l f2scos2it(«i k+K„„ + 2*) + 
0 

+ 2scos2i((«i k-«n«>+cos4it(an«+!ii) + n / 2 d * = 

= A2 [ l + scos2it(«i k-«„i«>] . (B . l . 11 ) 

Using t h i s r e s u l t one can w r i t e out the terms in B . l . ó w i th c o e f f i c i e n t Ei 

1 
f £i [ ( J i o - ^ 3 o ) 2 - < ^ 2 o - ^ < j ) 2 ] = 
e 

= £ I A 2 [ 2 - C O S 2 K ( K I O - « 3 O ) - C O S ( « 2 O - « 3 O ) ) . (B . l . 12 ) 
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Subs t i t u t i on of the proper values of «;u reduces the r i g h t hand s ide to 

E I A 2 [ 2 - C O S ( - 4 I « ? > - C O S < - 4 I « ? ) ] = 2E iA2 ( l-cos4iti*J . CB.1.13) 

Analogously the terms in B . l . ó w i th c o e f f i c i e n t s £2 and £3 can be w r i t t e n 
respec t i ve l y as 

1 
r E2f (^ ic-Jao>2 -K/ l2<,-^3i )2 ] = 2£2A 2 [ l + cos2fl(2i(i+S/2) ] (B . l . 14 ) 
0 

1 
and ! £3t < <J3o + vi2<j> 2 + < Joo+^f I) 2 3 = 2 E 3 A 2 [ l -cos2«(2*-S/2) 1 . (B . l . 15 ) 

0 

Subs t i t u t i on of B . l . 7 , B . l . 8 , B . l . 1 3 , B . l . 14 and B. l .15 i n to B . l . ó gives 

F = 3AV2 - 2<rA2 + 2É I A2 ( l-cos4*?> + 

+ 2 E 2 A 2 [ lfcos2ir(2i(i+'5/2) ) t 2 E 3 A 2 [ l-cos2«(2<<i-s/2) Ï = 

= 3AV2 + 2A2 l£ i + £2 + £3 -1 - £icos4ni(i + E2COS2T((2<?+1S/2) -

- £3cos2i((2i?-V2) J . CB. l . l é ) 

This is the energy expresssion of the incommensurate structure with 
symmetry PcmntOB-*) (ssT) in the model, as mentioned in table 5.4.1. 

B.2. Calculation of the minimum. 

In this section the values of the parameters A, tp and ̂  for which the 
energy of the incommensurate structure in the model has its minimum will be 
calculated. First, the energy expression B.l.lé is rewritten to give 

F = 3A"/2 + 2 A 2 [ £ i + E 2 + £ 3 - t f - £1C0S4«J -

- <£3-£2) COS4TT¥ cositTr - <£3 + £2> Sin4-rf<e s in i rs ] . (B.2.1) 

As discussed in sec t ion 5 .3 , the c o e f f i c i e n t s E I , £2, £3 and a are a l l 
p o s i t i v e . In the minimum the f i r s t d e r i v a t i v e s of F w i th respect to A, <p 
and t have to be zero . For <Q t h i s g ives 
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— = 81ÏA2 I £ i s i n 4 i f ^ + (E3 -E2 ) sin4-rr<*> cosn"S -

- (E3+E2.) cos4 f f ^ sin-rf 'c] = 0 . 

Fo r n o n z e r o A and f o r @<"ï< l t h i s g i v e s 

COS4ltte E l+<£3 _ £2> COST'S 

s in4 i f tp (E3+E 2> sin-r("5 

P u t t i n g t h e - f i r s t d e r i v a t i v e o f F w i t h r e s p e c t t o 's e q u a l t o z e r o g i v e s 

OF 

For n o n z e r o A and 0<$<1 ( e x c l u d i n g t h e c o m m e n s u r a t e v a l u e s 0 a n d 1) t h i s i c 

e q u i v a l e n t t o 

COSIt'tf _ C E B-E2) COS4Tt¥ 

sinrt ' f f (C3+E2Ï s in47t¥ 

S u b s t i t u t i o n o f B . 2 . 3 i n t o B . 2 . 5 g i v e s , a f t e r r e w o r k i n g : 

£ 1 ( E 3 - E 2 > 
cosn'1* : 

4 E 3 Ë 2 

This equation only has a solution if (taken into account the exclusion of 
the commensurate values 0 and 1 for is, see equation B.2.5) 

4E3E2 

If as a solution 

4E3E2 (B.2.8) 

i s c h o s e n , t h e n n c o v e r s t h e r a n g e 0 < 1 F < 1 f o r s u i t a b l e c h o i c e s o f E i , E2 and 

£3- All other solutions of B.2.6 (excluding 0 and 1) give modulation wave 
vectors g=,5jc_* which are equivalent (differing an integer multiple 

of c* in length) to those given by B.2.8. 

In equation B.2.3 t can be eliminated by substituting B.2.Ó in it. After 
reworking one gets 

. A_ ^ 1 0 E 3 2 £ 2 2 - S l 2 ( £ 3 - £ 2 > 2 

tan4 iö f = — - — . ( B . 2 . ? ) 
£1 ( Ë 3 + E 2 ) 

The s q u a r e r o o t i s r e a l i f c o n d i t i o n B . 2 . 7 i s f u l f i l l e d . From e q u a t i o n 

B . 2 . r ' i t f o l l o w s t h a t 
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1 . ^ I 0 £ 3 i £ 2 i - £ 1 2 ( E 3 - £ 2 ) Ï , 
cp = — a r c t a n ( ; ) 

4TT E1 (E3+E2) 

I n o r d e r t o know f o r w h i c h v a l u e s o f n <# g i v e s a min imum o f F , t h e s e c o n d 

o r d e r d e r i v a t i v e has t o be i n v e s t i g a t e d : 

- 32 i t2A2[ Eicos4-rt<e + ( E 3 - £ 2 > cos4iT(f cos i r » + 

+ (E3+£2> sin4i t<f s i n i t t r ] . ( B . 2 . 1 1 ) 

S u b s t i t u t i o n o f B . 2 . 6 g i v e s 

d*F E1Cï*-**)* 
- — - 3 2 T f 2 A 2 [ ( e i + - ! - — ^ : — ) C O S 4 T ( * + 
3^2 4E3E2 

x (E3 + £ 2 ) - / 1 6 E 3 2 £ 2 2 - e i ^ ( £ 3 - £ 2 ) i . . . , _ _ . „ 
+ sin^iTcp] . ( B . 2 . 1 2 ) 

4£ 3 E2 

Because a c c o r d i n g t o e q u a t i o n B . 2 . 9 and B . 2 . 7 tan4-rftp i s l a r g e r t h a n 0 , 

cos4K4> and sin4i t*p a r e b o t h p o s i t i v e o r b o t h n e g a t i v e . I n t h e f i r s t c a s e t h e 

s e c o n d d e r i v a t i v e ( B . 2 . 1 2 ) i s p o s i t i v e , b e c a u s e t h e c o e f f i c i e n t s o f cos4 t t¥ 

and sin4TT(p i n B . 2 . 1 2 a r e p o s i t i v e ( b e c a u s e t\ , E2 and £3 a r e p o s i t i v e ) . I n 

t h e s e c o n d c a s e t h e s e c o n d d e r i v a t i v e i s n e g a t i v e . O n l y t h e f i r s t c a s e i s 

c o m p a t i b l e w i t h a m i n i m u m . Hence n i n e q u a t i o n B . 2 . 1 0 has t o be e v e n . 

F o r n=0 i n e q u a t i o n B . 2 . 1 0 , t h e v a l u e o f <$ i s b e t w e e n 0 a n d 1 / 8 . Fo r n=2 i t 

i s b e t w e e n 1/2 and 5 / 8 . I t can be c h e c k e d i n e q u a t i o n s B . l . 1 - B . l . 4 t h a t 

t h e r e s u l t i n g c r y s t a l s t r u c t u r e i s t h e same as f o r n=0 ( d i f f e r i n g o n l y 0 . 5 

i n o v e r a l l p h a s e ) . H e n c e , t h e s o l u t i o n o f B . 2 . 9 can be l i m i t e d t o B . 2 . 1 0 

w i t h n=0 . 

I t can be c h e c k e d t h a t 

d*F 
— 3> 0 (B .2 .13) 
dn* 

for H and <e given by B.2.8 and B.2.10 (with n=0) respectively, as should be 

in a minimum. 

The first derivative of F with respect to A is equal to 

<DF 
~ 6A* + 4ALe, 

- ( £ 3 + £ 2 ) s i n 4 i t ( ? s i n * - * ] . ( B . 2 . 1 4 ) 

P u t t i n g t h i s f i r s t d e r i v a t i v e e q u a l t o z e r o and s u b s t i t u t i o n o f H and <e 

f r o m B . 2 . 8 a n d B . 2 . 1 0 ( w i t h n=8) g i v e s 
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ACóAï + 4(cr0- t f) ] = 0 (B.2.15) 

(e2+E3) , /eïT+4ë7eT ,D 0 . . . 
With (To = Ei + £2 + £3 - . (B.2.1Ó) 

21'' £ £ £ 3 
The solutions of B.2.15 are 

and A2 = 2<tf-r f0) /3 . (B.2.18) 

The second order d e r i v a t i v e i)2F/0A2 i s equal to 

— s ISA2 - «Utf-tfo) . (B.2.19) 
5A2 

Accordingly, solution B.2.17 gives a minimum if tf-tfo^8« The other solution 
(B.2.18) gives a minimum if o-o-o>0. Hence if 

then the amplitude of the modulation is nonzero, and if this condition is 
not fulfilled, the amplitude is zero. In the first case the amplitude A is 
equal to 

A = ±y2<cr-tfo)/3 . (B.2.21) 

The two signs give crystal structures that are mirror images of each other 
with respect to the a,c_ plane. Hence, only the plus sign needs to 
be considered. 

Concluding: we have found that the energy expression B.2.1 has a minimum 
for 'fs, (? and A given by B.2.3, B.2.18 (with n=9> and B.2.21 if conditions 
B.2.7 and B.2.20 are fulfilled (it has been checked numerically that for 
these values of 'S, y and A F has a minimum, and not e.g. a saddle point) . 
The energy at the minimum is equal to 

F = -2<tf-tfo)£ , (B.2.22) 

as can be verified by substituting B.2.3, B.2.18 and B.2.21 into B.2.1. 
Outside the region in £i,€z,£3,tf space determined by conditions B.2.7 and 
B.2.20 the incommensurate structure cannot be the stable crystal structure 
in tht? model . 
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SUMMARY 

This thesis concerns about 6<d distorted £,-K2$0a type crystal structures. 
These structures are mainly incommensurate!y or commensurately modulated 
with a JS-K2SQ4 type basic structure. They occur in RbjZnBra and in many 
other compounds with the general chemical formula AEBX-I-
After transformation to equivalent bases all Known structures of the 
mentioned type are compared in detail. The comparison reveals a remarkable 
equivalence of the modulation wave functions among all structures reported 
in 1i terature. 
Detailed structural information from literature, supplemented with original 
structure determinations of Rb2ZnBra phases, leads to an ionic interaction 
model. This model explains and predicts the stability and phase sequence of 
the different distorted É-K2SO4 type structures fairly well. 

In chapter 2 a new computer program, which has been used for the structure 
determinations, is described. It can handle superstructures as well as 
incommensurate structures. 

Chapter 3 describes structure determinations of three different phases of 
Rb22nBra. Two determinations are based on single crystal X-ray diffraction, 
the third one uses single crystal neutron diffraction. The phase at room 
temperature is the so-called incommensurate phase, the other two are 3-fold 
superstructures. 
The results show that the modulations in the three phases are strikingly 
similar. For the room temperature phase the fact that the modulation wave 
vector is a constant fraction of c_* in a large temperature range 
suggests a superstructure. However the four dimensional space group 
Pcmn(00'fr)(ssT) gives the best agreement. 

In chapter 4 the symmetry, the interatomic distances, the atomic 
displacements with respect to Pcmn symmetry and the normalized modulation 
functions of the distorted JÏ-K2SO4 type structures are compared. It turns 
out that these structures have symmetry or pseudo-symmetry properties all 
corresponding to those of the same "prototype" symmetry: Pcmn(00ir) (ssT) . 
It also turns out that all structures considered have the same local 
distortions with respect to the A-f^SCU type structure. The main component 
of these distortions is a rotation of the BX4 tetrahedra around an axis 
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parallel to the pseudo-hexagonal c_ axis. 

In chapter 5 a microscopic model is developed, which reveals the origin o-f 
the modulation. In the model the distortions o-f a structure are expressed 
in terms of displacements o-f certain X atoms out o-f the mirror plane; this 
displacement is a direct consequence o-f the above-mentioned rotation. The 
model takes into account the interactions between di-f-ferent pairs of 
nearest neighbours. One of the -four parameters o-f the model can be 
interpreted as a measure o-f the temperature. The choice of these 
interactions is based on common -features o-f the crystal structures. By 
minimizing the ensuing expression -for the potential energy, most of the 
observations can be explained, such as the occurrence o-f the various types 
o-f distorted P-K2SO4 type structures, including incommensurate structures 
and superstructures, and the phase transitions between the different types 
of structure. 
According to the model the origin of the modulation in Rb22nBr4 and related 
compounds resides in the fact that the BX4 tertrahedra cannot rotate 
independently. Their rotations are interrelated in more than one way. These 
interrelations have counteracting tendencies (there is "frustration"), and 
the actual structure is the result of a compromise between the 
counteracting tendencies. This compromise may be an incommensurately 
modulated structure, a superstructure, or a structure with the same unit 
cell as the fi-K^SGU type structure, depending on the temperature and the 
relative strengths of the interactions. 
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SAMENVATTING. 

Dit proefschrift betreft ongeveer 68 vervormde £-K2SCU-type kristal-
strukturen. Deze strukturen zijn veelal incommensurabel of commensurabel 
gemoduleerd met een É-KsSCU-type basisstruktuur. 2e komen voor in Rb?ZnBr4 
en in veel andere verbindingen met de algemene chemische formule A2BX4. 
Na transformatie naar equivalente bases worden alle bekende strukturen van 
het genoemde type in detail vergeleken. De vergelijking laat een 
opmerkelijke overeenkomst zien tussen de modulatiegolf-functies van alle in 
de literatuur gerapporteerde strukturen. 
Uit gedetailleerde gegevens van strukturen uit de literatuur, aangevuld met 
nieuwe struktuurbepalingen van Rb2ZnBr4~fasen, wordt een interactiemodel 
afgeleid. Dit model verklaart en voorspelt de stabiliteit en fase-volgorde 
van de verschillende £-K2SÜ4-type strukturen goed. 

Hoofdstuk 2 beschrijft een nieuw computerprogramma, dat gebruikt is voor de 
struktuurbepalingen. Het kan zowel superstrukturen als incommensurabele 
strukturen behandel en. 

In hoofdstuk 3 worden de struktuurbepal ingen van drie verschillende fasen 
van Rb2ZnBr4 beschreven. Twee bepalingen zijn gebaseerd op eenkristal 
rontgendiffrak tie-metingen, de derde op eenkristal neutronendiffraktie-
metingen. De fase bij kamertemperatuur is de zogenaamde incommensurabele 
fase, de beide andere zijn 3-voudige superstrukturen. 
De resultaten laten zien dat de modulaties in de drie fasen opvallend 
gelijkvormig zijn. Het feit dat de modulatiegolfvektor een constante 
fractie van c_* is in een groot temperatuurgebied, suggereert dat de 
struktuur van de kamertemperatuurfase een superstruktuur is. Toch geeft de 
vierdimensionale ruimtegroep Pcmn(08"ï) (ssï) de beste overeenstemming met de 
metingen. 

In hoofdstuk 4 worden de symmetrie, de interatomaire afstanden, de 
atoomverplaatsingen ten opzichte van Pcmn-symmetrie en de genormaliseerde 
modulatiefuncties van de vervormde £-K2S04-type strukturen vergeleken. Het 
blijkt dat deze strukturen symmetrie- of pseudo-symmetrie eigenschappen 
hebben, die corresponderen met dezelfde "prototype"-symmetrie: 
Pcmn(00-u) (sst) . 
Het blijkt ook dat alle bekeken strukturen dezelfde lokale vervormingen ten 
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opzichte van de £-KïS04-type struktuur hebben. De voornaamste component van 
deze vervormingen is een rotatie van de BX^-tetraeders rond een as 
evenwijdig aan de pseudo-hexagonal e c-as. 

In hoofdstuk 5 wordt een microscopisch model ontwikkeld, dat de oorzaak van 
de modulatie aangee-ft. In het model warden de vervormingen van de struktuur 
uitgedrukt in termen van verplaatsingen van bepaalde X-atomen uit het 
spiegelvlak. Deze verplaatsing is een direct gevolg van de bovengenoemde 
rotatie. Het model houdt rekening met interacties tussen verschillende 
paren van naaste buren. Een van de vier parameters van het model kan 
opgevat worden als een maat voor de temperatuur. De keuze van de 
interacties is gebaseerd op gemeenschappelijke kenmerken van de 
kristalstrukturen. Door de uitdrukking van potentiële energie die uit het 
model volgt te minimaliseren, kunnen de meeste waarnemingen verklaard 
worden, zoals het voorkomen van de diverse soorten vervormde ü-KïSOfl-type 
strukturen, inclusie-f incommensurabel e strukturen en superstruk turen, en de 
■fase-overgangen tussen de diverse struktuur typen. 
Molgens het model berust de oorsprong van de modulatie in RbzZnBra en 
verwante verbindingen op het -feit dat de BX4~tetraeders niet onafhankel ijk 
kunnen roteren. Hun rotaties zijn gekoppeld op meer dan een manier. Deze 
koppelingen werken elkaar tegen (er is "-frustratie") , en de werkelijke 
struktuur is het resultaat van een compromis tussen de elkaar tegenwerkende 
koppelingen. Dit compromis kan een incommensurabele struktuur zijn, een 
superstruk tuur, o-f een struktuur met dezel-fde eenheidscel als de É-K2SO4-
type struktuur, a-fhankelijk van de temperatuur en de relatieve sterkte van 
de interakties. 
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LIST OF SYMBOLS 

The units of the quantities represented by the symbols are given between 
square brackets. The position in the text where a symbol is de-fined or has 
been used for the -first time, is given between braces. I-f a symbol is used 
only in part ot the thesis, this part is indicated between triangular 
brackets. 

a, b, c tfi] the lengths o-f a, b and c_ 
a_, b, c_ unit cell vectors of a Ê-K2SO4 type 

structure or of the basic structure of a distorted 
.&-K2SO4 type structure 

a*, b*, C* the reciprocals of a., b and c_ 
ai, a2, as equal to a, b and c respectively 
&t*i i.2*, a.3* equal to a.*, b* and c_* respectively 
a, b, ... i types of X-X distances (fig. 4.4.1) 
a;, b; , du, eu, f;, g; (i=@,l,2; k=0,1,2,3,4) 

values of distances of respectively types a, b, etc., 
used for calculating interactions <ch. 5> 

A atom type in chemical formula A2BX4 
A; (i=l,2) atom of type A at position i in a .6-K2SQ4 type 

structure Cfig. 1.4.1) 
Aik (i=l,2; k=l,2,3,4) 

atom of type A at position ik in a distorted Ê-K2SQ4 
type structure Cfig. 4.5.2) 

A; Ci—1,2,3) amplitude of modulation function di(t) {eq.3.5.3) 
Cch. 3 and O 

A; or A <i=l,2,3,4) amplitude of modulation function dz(t) of atom X2i 
Ceq. 5.4.1) <ch. 5} 

A, B, ... M types of A-X distances Cfig. 4.4.1) 
B atom type in the chemical formula A2BX4 
Bk atom of type B at position k in a distorted Ê-K2SO4 

type structure Cfig. 4.5.2) 
Bi or B (i=l,2,3,4) constant part of modulation d2<t) of atom X2 i 

Ceq. 5.4.1) <ch. 5> 
ct, C2 positive coefficients in the expression for E(r) 

Ceq. 5.3.1) <ch. 5> 
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C3i ca positive coe-f-ficients in the expression for E'(r) 
Ceq. 5.3.2) <ch. 5> 

C; [j] i ength of c_j 
c_i or C supercell vector: c_i - C = vc_ 
d;(t) or daiCt) (i=l,2,3) 

modulation functions; components of d(t) or 
da<t) with respect to a; (i=l,2,3) 

die, dis (i-1,2,3) first harmonic fourier coefficients of modulation 
function d;Ct) Ceq. 3.5.2? 

d(t) or d.oi(t) modulation displacement (of atom a) Ceq. 1.1.2) 
D [A] defined in equation 3.4.2 <ch. 3> 
eui (i=l,2,3) components of e_k with respect to a., (i=l,2,3) 

<ch. 2> 
9n subcel1 translation vector in a supercell CK is an 

identification number) Ceq. 2.2.9) <ch. 2> 
E(r) potential energy of the interaction between two X atoms 

as a function of the interatomic distance r Ceq. 5.3.1) 
<ch. 5> 

E'(r) potential energy of the interaction between an A atom 
and a X atom as a function of the interatomic distance 
r Ceq. 5.3.2) <ch. 5> 

fa( |H|) atomic scattering factor of atom a for the 
reflection with diffraction vector H Ceq.2.2.1) 
<ch. 2> 

F potential energy of the model structure Ceq. 5.2.1) 
<ch. 5) 

Fo or För- observed structure amplitude (of reflection r) 
Fcr calculated structure factor of reflection r 
F(H) calculated structure factor of the reflection with 

diffraction vector H Ceq.2.2.1) 
F', Ft , Fi', F,n, F2, ft, Fc, Fc', F3j F3' 

potential energies of (idealized) parts of a crystal 
structure <ch. 5> 

g v/w Ceq. 2.2.13) <ch. 2> 
Ga(H) or GaiCH) geometrical part of the structure factor of the 

reflection with diffraction vector H for atom a (or 
as) Ceq. 2.2.1) <ch. 2> 

h, k, 1, m reflection indices of a reflection with respect to 
a*, b*, c* and g Ceq. 1.1.5, 1.1.6') 

h; 11=1,2,3) equal to h, k and 1 respectively Cch. 2> 
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h_ diffraction vector of a main reflection Ceq. 1.1.6) 
h_' defined in equation 2.2.7 Cch. 2> 
Hi (i=l,2,3) components of H with respect to ai* (i=l,2,3); 

Hi = hi + mq; 
H diffraction vector; H = h_ + mg, 

Ceq. 1.1.5} 
I measured diffraction intensity <ch. 3> 
Kki Lk, Mk (i=0,1,2,3,4) 

values of distances of respectively types K, L and M, 
used for calculating interactions <ch. 5> 

m satellite order C 1.1.5) 
n, position vector of unit cell n Ceq. 1.1.1) 
Pa multiplicity of atom a Ceq. 2.3.1) -Cch. 2> 
q; (i=l,2,3) components of g with respect to a,* (i—1,2,3) 

<ch. z> 
g modulation wave vector Ceq. 1.1.3) 
r distance between two atoms <ch. 5> 
r0 interatomic distance in an undistorted ê-KzSOa type 

structure <ch. 5> 
R tml effective radius of a crystal <ch. 3> 
Rw residual Ceq. 3.4.1) 
R or Rs 3x3 rotation matrix of a 3- or 4-dimensional symmetry 

operation (operation s) Ceq. 1.3.1) 
Rik (i,k=l,2,3) element of rotation matrix R 
s; (i=l,2,3) component of s with respect to aj (i=l,2,3) 
s, or Sj shift of the 3-dimensional (part of a) symmetry 

operation (operation s) Ceq. 1.3.1) 
t argument of a modulation function; 

t = Cn. + x0) .g Ceq. 1. 1.2) 
Tj CKl normal-to-incommensurate phase transition temperature; 

for Rb2ZnBr,j: Tj = 374K 
Tc tK] incommensurate-to-cammensurate phase transition 

temperature; for Rb2ZnBr4: Tc = 190K 
Ï3, T4, Ts [K] phase transition temperatures of Rb22nBr4 at 

respectively 112K, 77K and 58K 
Ta(H) or Tai(±0 temperature factor of the reflection with 

diffraction vector H for atom a (or as) Ceq. 2.2.1) 
<ch. 2> 

TMA tetramethylammonium, N(CH3)4 
u, v numerator and denominator of a rational value of ï: 
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■ï = u/v 
Ui, v; (i=l,2,3) numerator and denominator of a rational value of q,: 

qj = Ui/v; {eq. 2.2.12) <ch. 2} 
Ua isotropic temperature parameter of atom a (eq. 2.2.2) 
Ui„ or Uaik (i,k=l,2,3) 

anisotropic temperature parameters (of atom a) 
Ceq. 2.2.3) 

v V1V2V3 <ch. 2> 
w the smallest common multiple of Vj , V2 and va <ch. 2> 
W(- weight of reflection r in a structure refinement 

Ceq. 2.1.1) 
x, y, z fractional coordinates of an atom with respect to 

a_, b_ and c_ 
xr; (i=l,2,3) fractional coordinates of an atom with respect to 

a, b and Cj <table 3.5.5> 
Xoi or x0ia (i=l,2,3) 

components of x_o or x.oa with respect to a; 
(i=l,2,3) 

x.o or x.o-1 the position vector of an atom (atom a) in the 
basic structure Ceq. 1.1,1) 

X atom type in chemical formula AïBXa 
X| (i=l,2,3,4) atom of type X at position i in a Ê-K2SO4 type 

structure Cfig. 1.4.1) 
X i k (i,k=l,2,3,4) atom of type X at position ik in a distorted A-K2SQ4 

type structure Cfig. 4.5.2) 
Zio (i=l,2,3,4) z coordinates of the X2 atoms in subcel 1 8 in the 

model: 8, 8.5, 8 and 8.5 respectively for i=1,2,3 and 4 
Ceq. 5.4.1) <ch. 5) 

«} £, "* components of 9 with respect to a*, b* and 
£*j equal to respectively qi, q2 and q3 Ceq. 1.1.3) 

«, £, 'a [ °] angles between, b and c, a and c and 
a and b respectively <table 4.3.lb> 

£ 1/3 - 'S <fig. 4.Ó.1) 
d a_3* component of a position in reciprocal space 

<fig. 4.6.4> 
/fin or i) (i = l,2,3,4) 

displacement of the X2 atom of tetrahedron i in subcel1 
k Ceq. 5.2.1) <ch. 5> 

Ay, u or Ay (i=l,2,3,4) 
displacement of the Xi atom of tetrahedron i in subcel1 
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k Ceq. 5.3.25) <ch. 5> 
E or Ej factor in the 4-th dimension of a symmetry operation 

(operation s) (eq. 1.3.1) 
EI , E2, E3 coefficients in the model potential energy expression 

Ceq. 5.2.1) -Cch. 5> 
£1 ', Ej', £2" , £3' , £4 

coefficients in potential energy expressions (ch. 5> 
ju [m-'] linear absorption coefficient of X-rays or neutrons in 

Rb2ZnBr4 <ch. 3> 
d calculated standard deviation of a mode! parameter 

<ch. 3> 
c coefficient in the model potential energy expression 

Ceq. 5.2.1) Cch. 53> 
standard deviation of F0 <ch. 3> 
standard deviation of I <ch. 3> 
defined in equation 5.4.18 <ch. 5} 
coefficients in potential energy expressions <ch. 5> 
s h i f t of the modulation wave in a 4-dimensional 

symmetry operat ion (operat ion s) Ceq. 1.3.1) 
<c; ( i = l , 2 , 3 ) phase of modulation func t i on d i ( t ) Ceq. 3 .5 .3 ) <ch. 3 

and 4> 
<a\ or ^ ( i = l , 2 , 3 , 4 ) phase of modulation func t i on d ï ( t ) of atom X2 i 

Ceq. 5 . 4 . 1 ) <ch. 5} 
«ua (xoK + e k ) - 3 ; argument of t h e modu1 a t i on 

f unc t i on Ceq. 2.2.11) <ch. 2> 
X, x ' c o e f f i c i e n t s in po ten t i a l energy expressions <ch. 5> 

ff(F0 

»<I) 
rf0 

" 2 | 

t or 

) 

tf4 

* 
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NAWOORD 

Graag wil ik op deze plaats iedereen bedanken die bijgedragen heeft aan het 
in dit proefschrift beschreven werk. 
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STELLINGEN 
behorend b i j het proe-f schr i-f t van 
A.C.R. Hogervorst 
13 mei 1934 

1. 
E-f-fekten bij een lock-in -faseovergang, zoals het breder worden van 
satell ietre-f 1 ektïes, kunnen ook verklaard worden, als men aanneemt dat in 
het kristal makroskopische ïncommensurabele en commensurabele domeinen 
naast elkaar bestaan CR. BUnc, B. Lozar, F. Milia, R. Kind: J, Phys. C 17 
(1734' 241; H. Mashiyama, S. Tanisak 1, K. Hamano: J. Phys. Soc. Jap. 50 
( 1981.' 2139) . 

Een superstruktuur beschreven met een 4-dimensiona!e ruimteqroep die voor 
dit geval niet als een 3-dimensionale symmetrie opgevat kan worden, kan 
hooqu it een qoede benader ing van de echte struk tuur zijn CA. Yamamoto: Ac t 
Cryst. B 33 (1932) 1446; K.D. Bronsema: proe-f schri-f t , Groningen, 1935; dit 
proe-f schri-f t) . 

3. 
De door Hasebe et al. als -funktie van de temperatuur gemeten 
modu 1 at ïegoHvec tori engte in CN<CH3>4}aCuBP4 wijst sterk op de aanwezi ghei 
van superstruktuur-fasen in het temperatuurgebied waarin volgens Hasebe et 
al. de kristal struktuur ïncommensurabel is. Plateau's in deze -funktie zijn 
verenigbaar met een 5-voudige en een 21-voudige superstruktuur (K, Hasebe, 
H. Mashiyama, S. Tanisaki, K. Sesi: J. Phys. Soc. Jap. 51 (1932) 1045). 

4. 
ïncommensurabele strukturen kunnen verklaard worden met een model voor een 
ruimtelijke struktuur, zei -fs wanneer er all een interacties tussen naaste 
buren aanwezig zijn. 

5. 
Resultaten verkregen uit verfijningen die tot nevenminima leiden, bevatten 
in-formatie over de juiste struktuur. 



Het -feit, dat er nog voor weiniq kristallen met verpl aat singsmodul at ie een 
mikroskopische verklaring is gevonden voor de modulatie, komt voort uit het 
-feit, dat er nog maar weinig struktuurbepal ingen van dergelijke strukturen 
zijn uitcevoerd. 

Uan polaire materialen kunnen kristallen met een gemoduleerde struktjur 
gemaakt morden door ze te laten kristalliseren in een geschikt periodiek 
wisselend e l e k t n s c h v e l d . 

He t is aan te beve1 en om de onderzoeksinspanni ng op het gebi ed van 
elektrostatische kon tak topl ading , die in de kunststo-f -f en i ndustr i e veel 
problemen veroorzaakt, te vergroten. 

9. 
Mensen kunnen voor iedere verstandelijke taak computer<programma')s maken, 
die deze taak beter kunnen ui tvaeren dan zijzelf. 

10. 
De ber ich tgev ing over ak t ies voor sa la r isverhog ing zou ob jek t iever z i j n , 

a ls ook het huid ige s a l a r i s van de akt ievoerders vermeld werd. 

11. 

Uit het feit, dat hondenbezitters hun honden bijna nooit voor eigen 
voordeur o-f in eigen tuintje hun behoe-fte laten doen, blijkt, dat ook zij 
uitwerpselen van honden vies vinden. 


